
Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, pages 37–45
Dresden, Germany, September 23-25, 2019. c©2019 Association for Computational Linguistics

37

Finite State Transducer Calculus for Whole Word Morphology

Maciej Janicki
NLP Group, University of Leipzig

Augustusplatz 10, 04109 Leipzig, Germany
macjan@o2.pl

Abstract

The research on machine learning of mor-
phology often involves formulating morpho-
logical descriptions directly on surface forms
of words. As the established two-level mor-
phology paradigm requires the knowledge of
the underlying structure, it is not widely used
in such settings. In this paper, we pro-
pose a formalism describing structural rela-
tionships between words based on theories of
morphology that reject the notions of inter-
nal word structure and morpheme. The for-
malism covers a wide variety of morpholog-
ical phenomena (including non-concatenative
ones like stem vowel alternation) without the
need of workarounds and extensions. Further-
more, we show that morphological rules for-
mulated in such way can be easily translated to
FSTs, which enables us to derive performant
approaches to morphological analysis, genera-
tion and automatic rule discovery.

1 Introduction

In computational linguistics, morphological anal-
ysis is usually understood as segmenting words
into smaller meaningful units, called morphs.
There exists a well-established computational
model for such analysis, called two-level morphol-
ogy (Koskenniemi, 1983; Beesley and Karttunen,
2003). It models the mapping between the sur-
face forms of words and the morph sequences us-
ing handwritten rules, which are compiled to Fi-
nite State Transducers. This allows for a com-
position of lexicon and rules to an efficient mor-
phological analyzer. Examples of such analyzers
include Omorfi for Finnish (Pirinen, 2015), Mor-
phisto for German (Zielinski and Simon, 2008)
and TRMorph for Turkish (Çöltekin, 2010).

However, the research coming from the ma-
chine learning side often requires models that
describe string transformations between surface

forms directly, without referring to any underlying
structures which cannot be observed in the data
and are difficult to infer by a learning algorithm.
Such transformations can also be described and
implemented as finite-state transducers. Despite
that, a standardized model of this kind of morpho-
logical description seems to be lacking. Instead,
many authors develop their own models and im-
plementations for the purpose of a concrete learn-
ing algorithm. With some exceptions, the design,
implementation and performance of the string pro-
cessing algorithms is usually not described in de-
tail and the approaches used for that are sometimes
suboptimal.

In this paper, we present a finite-state computa-
tional model of string transformations on surface
forms based on a linguistic theory called Whole
Word Morphology. We first review research on
machine learning of morphology which motivates
the need for such a model (Sec. 2). In Sec. 3,
we describe the formalism and its linguistic foun-
dations, and in Sec. 4, we present the implemen-
tation of the formalism within the FST calculus.
Sec. 5 contains a procedure for automatic rule dis-
covery from unannotated data, while in Sec. 6, we
measure the performance of our implementation
of the model.

2 Motivation and Related Work

The recent research on machine learning of mor-
phology tends more and more often towards mod-
els describing transformations on whole words, in-
stead of representing words as concatenations of
morphs. Arguably the most important reason for
this is that morph boundaries are often not clearly
visible in surface forms due to morphophonology
and orthography.1 In the following, we review

1This was also the reason for the emergence of two-
level morphology. However, two-level morphology was de-

38

some of the papers utilizing such transformational
models. Our focus here is not the learning algo-
rithm (which is usually the main focus of the re-
spective paper), but the assumed model of mor-
phology, together with its linguistic and computa-
tional foundations.

(Neuvel and Fulop, 2002) present a compu-
tational model of morphology based on Whole
Word Morphology (Ford et al., 1997). Morphol-
ogy is described in terms of patterns which sum-
marize structural similarities and differences be-
tween pairs of words. The patterns consist of con-
stant elements and wildcards: for example, the
relationship within the pair (receive, reception)
would be expressed as /Xceive/ ↔ /Xception/.
In order to discover such rules automatically, the
authors use rather simple string processing algo-
rithms: they try matching every word to every
other and check whether the beginnings or the
ends of the words match. They subsequently com-
pute an alignment by anchoring the words either
at their beginning or end.

(Wicentowski, 2002) proposes a transforma-
tional model designed for learning mappings be-
tween inflected forms and lemmas. It is based on
splitting words into seven parts and describing the
changes in each part separately. In addition to pre-
fixation and suffixation, it aims to cover phenom-
ena such as internal vowel changes or changes at
the boundary between stem and prefix/suffix (e.g.
hop ∼ hopping), which are attributed to a sepa-
rate segment. (Lindén, 2008, 2009) likewise at-
tempts to model the transformation between base
and inflected form part by part, but adopts a sim-
pler, three-way split into prefix, stem and suffix.
(Lindén, 2009) mentions that the model was im-
plemented as a cascade of Finite State Transduc-
ers.

(Botha and Blunsom, 2013) propose a model
of morphology aimed at capturing especially the
templatic morphology found in Semitic languages.
The model is based on Simple Range Concate-
nating Grammars (SRCGs), which are a mildly
context-sensitive class of formal grammars. It is
thought as an extension of the purely concatena-
tive model, which can be represented by a context-
free (or perhaps even regular) grammar.

signed with the goal of efficient implementation of handwrit-
ten grammars and, despite some research in this direction
(Theron and Cloete, 1997; Koskenniemi, 2013), is rather not
suitable for the machine learning scenario.

(Durrett and DeNero, 2013) and (Ahlberg et al.,
2014) present two different approaches to learning
inflection from complete paradigm tables. The in-
put data in such setting are lists of tuples (b, w, t),
where b is the base word (lemma), w the inflected
word and t a tag, i.e. a bundle of inflectional fea-
tures. An important point of learning algorithms
for this task is an appropriate model of string
transformations from b to w. (Durrett and DeN-
ero, 2013) use a semi-Markov log-linear model to
model the probability of application of individual
transformations (like prefix, stem or suffix change)
independently, while (Ahlberg et al., 2014) model
string transformations on whole words in form of
patterns with wildcards. We note that the string
transformation model of (Durrett and DeNero,
2013) is tightly coupled to the machine learning
method applied by the authors, while the model of
(Ahlberg et al., 2014) is more general and inde-
pendent of the classification method (in this case,
memory-based classification).

With works like (Soricut and Och, 2015;
Narasimhan et al., 2015; Luo et al., 2017), we can
observe a shift from segmentation to word-based
string transformations also in the area of unsuper-
vised learning of morphology. Currently, they ap-
pear to adopt very simple transformation models
that only involve affixation. On the other hand,
(Janicki, 2015) and (Sumalvico, 2017) present
a probabilistic model suitable for unsupervised
learning, which is based on Whole Word Morphol-
ogy and describes morphology in terms of whole-
word transformation patterns.

As a conclusion from the above literature re-
view, we recognize a need for a standardized
model of morphological relationship between sur-
face forms of words. As most of the models pre-
sented above are motivated by the need to cover
non-concatenative phenomena, especially internal
vowel changes and Semitic templatic morphology,
the model we aim at should be able to handle those
phenomena in a natural and general fashion. Fol-
lowing (Neuvel and Fulop, 2002), we see Whole
Word Morphology as the right linguistic founda-
tion for such formalism, and following (Lindén,
2008, 2009), we consider FSTs to be the right
tool for implementing string transformations effi-
ciently. Thus, the contribution of the present paper
is twofold:

1. A formal definition of a transformational
model of morphology, similar to the ones em-

39

ployed by (Neuvel and Fulop, 2002; Ahlberg
et al., 2014; Janicki, 2015),

2. An implementation of the model based on the
FST calculus.

3 The Formalism

3.1 Definitions

We base our formalism on the linguistic theory of
Whole Word Morphology (henceforth, WWM) in-
troduced by (Ford et al., 1997; Neuvel and Singh,
2002). It models structural similarities in form and
meaning between words in form of rules, which
are expressed as patterns containing wildcards.
For example, the relationship within the French
pair (chanteur, chanteuse) can be expressed by the
following rule:2

/Xœr/N.MASC ↔ /Xøz/N.FEM (1)

In the above rule, X denotes a variable which can
be instantiated with any string of phonemes and
represents the common part of both words. The
units inside slashes refer to whole words in their
surface forms.

In general, we express a morphological rule
with n variables as follows:

/a0X1a1 . . . Xnan/ 7→ /b0X1b1 . . . Xnbn/ (2)

The elements ai and bi are constants (literal
strings), which usually represent the differing
parts of words on the left-hand and right-hand side
of the rule.3 The elements Xi are variables (wild-
cards), which represent the part that is preserved
by the rule, but varies from pair to pair. Addition-
ally, the following conditions must be satisfied:

1. The variables must be retained in the same
order on both sides of the rule.

2. For 0 < i < n, either ai or bi has to be non-
empty.

2The example comes from (Ford et al., 1997), which is a
linguistic monography, thus it represents words in form of
phonemic transcriptions. All further examples use written
representations.

3However, the constants ai, bi for a given position i do
not have to differ. By being equal or containing a common
part, they might also represent the context necessary for the
rule to apply. For example, in the rule /Xate/ 7→ /Xation/,
both constants contain the common prefix ‘at’. Formulating
this rule as /Xe/ 7→ /Xion/ would correspond to the same
string transformation, but would extend its coverage to a few
further cases, like (deplete, depletion).

Because of the first condition, we can repre-
sent such rule as a vector of 2n + 2 strings:
〈a0, a1, . . . , an, b0, b1, . . . , bn〉.

Contrary to (1), which is a relational descrip-
tion and thus uses a bidirectional arrow, we for-
mulate our rules as having a privileged direction.
Although most rules can be applied in both direc-
tions, the productivity of back-formation is mostly
much lower, so that specifying a direction seems
linguistically plausible. Modeling rules which
are similarly productive in both directions can be
achieved by including the reverse rule separately
in the grammar.

As an illustration of (2), the rule expressing
the relationship between the German pairs (sin-
gen, gesungen), (klingen, geklungen), (trinken,
getrunken) could have the following form:

/X1iX2/ 7→ /geX1uX2/ (3)

The rule could also contain more constant ele-
ments to express the necessary conditions for its
application:

/X1inX2en/ 7→ /geX1unX2en/ (4)

With each rule, we can associate a function r,
which transforms a word fitting to the left-hand
side of the rule into a set of corresponding words
fitting to the right-hand side:

r(v) = {b0x1b1 . . . xnbn : x1, . . . , xn ∈ Σ+

∧ v = a0x1a1 . . . xnan}
(5)

Note that the outcome of the rule application is a
set of words, rather than a single word. In gen-
eral, the rule application might result in multi-
ple different words, because there might be dif-
ferent ways of splitting the word into the sequence
a0X1a1 . . . Xnan. For example, the application of
the rule /X1aX2/ → /X1äX2e/ to the German
word Kanal results in the set: {Känale,Kanäle}.
In case the word does not fit to the left-hand side of
the rule, the rightmost condition is never fulfilled
and the result is an empty set. Thus, the function
r is defined on the whole of Σ+.

3.2 Coverage of Morphological Phenomena
In addition to covering affixation, circumfixation
and stem vowel alternations, as shown already in
the previous section, the following further mor-
phological phenomena can be handled by the for-
malism:

40

Templatic morphology. A relationship between
pairs like the Arabic (kataba, kutiba) can be gen-
eralized as the following rule:

/X1aX2aX3a/ 7→ /X1uX2iX3a/ (6)

Although the formalism does not provide a way
to restrict the instantiations of variables to a single
consonant, it could be easily extended to express
such restrictions on variables in a form similar to
regular expressions.

Compounding. The proponents of Whole Word
Morphology and similar theories explicitly reject
the analysis of compounds as ‘words composed
of multiple words’ (Singh and Dasgupta, 2003;
Starosta, 2003). In consequence, compounds are
also analyzed as related to a single word, while
the other part is considered to be a morphological
constant. For example, the English word black-
berry would be related to black via the following
rule:

/X/N/ADJ 7→ /Xberry/N (7)

According to (Singh and Dasgupta, 2003;
Starosta, 2003), the relationship between the a
rule like (7) and the word ‘berry’ is purely ety-
mological and thus not a part of a synchronic de-
scription of morphology. This claim is supported
by the fact that newly coined compounds (in lan-
guages that exhibit compounding) virtually always
involve at least one part that is already known as
‘compound-forming’, rather than combining two
arbitrary words. Indeed, in morphological analyz-
ers based on two-level morphology, the cyclicity
used to model compouding often causes massive
overgeneration.

4 WWM Rules as FSTs

A rule defined as in (2) can be easily converted
to an FST. The general scheme for that is given
in Fig. 1. The arrows represent concatenation
and each rectangular block represents a transducer.
There are two kinds of blocks: transducers map-
ping corresponding constants, like a0 : b0, and
transducers representing the variables. The latter
are simply identity transducers accepting Σ+. Fig-
ure 2 shows a concrete FST corresponding to the
rule (4).

4.1 Analysis
There is no concept of a ‘morphological analy-
sis’ in WWM. Each word is treated as an indepen-
dent unit of language. However, given a word, we

might be interested in its structural relationships to
other words.

Let R be the set of rules found in the morphol-
ogy of a language of interest and let Tr be a trans-
ducer corresponding to rule r. The disjunction of
all rules, TR, yields a transducer accepting mor-
phologically related pairs:

TR =
⋃
r∈R

Tr (8)

Further, let V denote a vocabulary and TV the
identity transducer corresponding to V . With the
following composition, we obtain a transducer ca-
pable of mapping all words from V to all their pos-
sible derivations:

TA = TV ◦ TR (9)

TA can be called a ‘WWM analyzer’. A lookup
of an unknown word v in TA yields all words
from the known vocabulary from which v can be
derived. Furthermore, a three-way composition
TV ◦ TR ◦ TV gives us all pairs of related words
from V .

4.2 Generation
Another common question of morphology is:
Given a vocabulary V and a set of rules R, what
further words can be postulated? The identity
transducer for such new words, TN , is obtained
from the following formula:

TN = TA ↓ \TV (10)

where TA ↓ denotes the output projection of TA
and \ denotes subtraction.

5 Automatic Rule Discovery

As shown in Sec. 3, our definition of rule
is general enough to capture many morphologi-
cal phenomena, including some important non-
concatenative ones. On the other hand, the re-
sulting computational model is simple enough to
allow for completely unsupervised rule discovery
without prior linguistic knowledge. In this section,
we show how to achieve this in two stages: first,
we identify pairs of string-similar words in the vo-
cabulary. Then, we extract candidate rules from
each such pair. Frequent patterns are good candi-
dates for rules, which can be passed to a further
statistical model, like the one of (Janicki, 2015;
Sumalvico, 2017).

41

a0 : b0 X1 a1 : b1 . . . Xn an : bn

Figure 1: A scheme for converting morphological rules into FSTs.

start
0:g 0:e ?

?

i:u n:n ?

?

e:e n:n

Figure 2: The transducer corresponding to rule (4).

5.1 Finding Pairs of Similar Words

A plausible and widely used string similarity mea-
sure is edit distance (Levenshtein, 1966). Using
the Fast Similarity Search algorithm (Bocek et al.,
2007), we are able to identify pairs of words with
edit distance at most k without comparing each
word to every other. The algorithm works by
generating a deletion neighborhood of each word,
consisting of strings that can be obtained from that
word by deleting up to k characters. The result-
ing list of pairs (word, substring) is sorted accord-
ing to the substring. Observe that words with edit
distance ≤ k are guaranteed to share a common
substring, although words sharing a common sub-
string might also have edit distance> k. Thus, we
treat pairs of words sharing a common substring as
candidates, for which edit distance has to be com-
puted with usual means.

For the purpose of discovering potential mor-
phological rules, it is reasonable to modify the no-
tion of edit distance. Firstly, morphological rules
usually operate on groups of consecutive letters,
rather than single letters independently, so deletion
or substitution of a segment of consecutive letters
should yield higher similarity than deletion or sub-
stitution of the same number of non-consecutive
letters. Secondly, although we are going to permit
word-internal alternations, more change should be
permitted at the beginning and at the end of words,
since that is where most morphological rules op-
erate. Bearing in mind the representation (2), let
laffix denote the maximum length of a morpholog-
ical constant at the beginning or the end of a word
(a0, b0, an, bn in (2)), linfix the maximum length of
a morphological constant inside the word (ai, bi
for 0 < i < n in (2)) and kmax the maximum
number of variables. In order to generate pairs
which are related by a rule satisfying this con-
straint, we obtain the following constraints on a
deletion environment: deleting up to laffix con-

secutive letters at the beginning and end of the
word, and up to linfix consecutive letters in at most
kmax − 1 slots inside the word. The usual setting
for those parameters, which covers a vast majority
of morphological rules encountered in practice, is
laffix = 5, linfix = 3, kmax = 2.

Such settings allow for deletion of up to 13 let-
ters in total, so that even for middle-length words
it would consider all pairs to be similar. In order to
prevent this, we introduce an additional constraint:
the total amount of deleted characters must be
smaller than half of the word’s length. In this way,
we can consider long affixes, but only if enough of
the word is still left to form a recognizable stem.

With all those constraints, computing a deletion
neighborhood of a word becomes a complex op-
eration. It is therefore helpful to visualize and
implement it using transducers. We will con-
struct the transducer S mapping words to their
deletion neighborhoods as a composition of two
simpler transducers: S = S1 ◦ S2. The trans-
ducer S1 (Fig. 3) performs the deletions, substitut-
ing a special symbol δ for each deleted character.
The transducer consists of segments, correspond-
ing to the deleted sequences: states 0-5 represent
the prefix, 10-15 the suffix and 7-9 the infix. Be-
tween each pair of segments, an arbitrary number
of identity mappings is performed (state sequences
5-6 and 9-10). The epsilon transitions, for exam-
ple from states 0-4 to 5, correspond to a less-than-
maximum number of deletions in a given slot. It
can easily be seen that changing e.g. the parameter
laffix simply corresponds to altering the length of
the top and bottom chains, just as linfix correspond
to the length of the middle chain and kmax − 1 to
the number of such middle chains.

The transducer S2 (Fig. 4) takes the output of
S1 and checks whether the number of deletions is
smaller than the number of remaining characters.
As the general formulation of this problem can-
not be solved by a finite-state machine, it requires

42

0start 1 2 3 4 5

6789

10 11 12 13 14 15

?:δ ?:δ ?:δ ?:δ ?:δ

0

0

0

0

0

?

?

?:δ?:δ?:δ

0

0

0?

?

?:δ ?:δ ?:δ ?:δ ?:δ

0

0

0

0

0

Figure 3: The transducer S1 for generating a deletion neighborhood.

start

. . .

. . .

???

?

?

? ? ?

δ:0δ:0δ:0
δ:0
δ:0

δ:0 δ:0 δ:0

Figure 4: The filter S2 ensuring that no more than the
half of a word is deleted.

a bound on word length. In my implementation,
I restrict the maximum word length to 20 charac-
ters, but it is easy to change this parameter. The
states of S2 correspond to the difference between
the number of letters and the number of deletions
seen so far. The states above the initial state cor-
respond to positive, and the ones below to nega-
tive values. Furthermore, S2 removes the deletion
symbols and returns the substring consisting of the
remaining letters.

We can now generate all pairs of similar words
from a lexicon automatonL by performing the fol-
lowing composition:

P = (L ◦ S) ◦ (L ◦ S)−1 (11)

There are various ways to implement this in prac-

tice. Computing the composition directly is usu-
ally not feasible because of high memory com-
plexity. One possibility is to use S for substring
generation, but otherwise proceed as in the orig-
inal FastSS algorithm: store the words and sub-
strings in an index structure, either on disk or in
memory, then retrieve words for each substring.
Another possibility is to use S to generate sub-
strings for a given word and then look the sub-
strings up in the transducer (L ◦ S)−1 to obtain
similar words. The latter composition can be com-
puted statically. We additionally convert the re-
sulting transducer to HFST optimized lookup for-
mat (Silfverberg and Lindén, 2009). While the
lookup approach is still significantly slower, it has
an advantage in providing a way to retrieve all
words w′ similar to a given word w at once. It
is thus better suited for parallelization, especially
in case the pairs (w,w′) are subject to further pro-
cessing.

5.2 Extraction of Rule Candidates

Given a pair (w,w′) of string-similar words, we
want to extract morphological rules modeling the
difference between those words. For this purpose,
we first align the words on character-to-character
basis using the well-known dynamic programming

43

algorithm for computing edit distance (Wagner
and Fischer, 1974). Then, we attribute each char-
acter mapping either to a morphological constant
or a variable, in a way that fulfills the constraints
on laffix, linfix and k. The candidate rules are
constructed incrementally while iterating over the
alignment and unfinished rules are stored in a pri-
ority queue. In case an aligned character pair can
be attributed either to a constant or to a variable,
both possibilities are stored in a queue, so that
at the end we obtain multiple rules with varying
degrees of generality. For example, the rules ex-
tracted from the German pair (trifft, getroffen) in-
clude /X1iX2t/→ /geX1oX2en/ (the most gen-
eral rule), as well as e.g. /Xifft/→ /geXoffen/.

Table 1 shows example rules extracted from a
word list coming from German Wikipedia. While
the top of the list consists entirely of morpholog-
ical patterns, the bottom of the table shows that
patterns resulting from accidental word similari-
ties can also become frequent enough to be con-
fused with morphological rules. Thus, this ap-
proach identifies rule candidates, which have to
be further filtered based on other criteria than mere
frequency.

6 Experiments

We have implemented the algorithms described
in the previous section using the HFST library
(Lindén et al., 2011). Furthermore, we conducted
experiments realizing the algebraic operations de-
scribed in Sec. 4 and the rule discovery proce-
dure described in Sec. 5. The results demonstrate
that our model is suitable for building analyzers
based on the Whole Word Morphology paradigm
and the required computational resources are eas-
ily achievable.

First, we run the rule discovery procedure on
word lists extracted from German Wikipedia.4

The generation of pairs of similar words and the
subsequent rule extraction is implemented in a
parallelized fashion. Table 2 shows the computa-
tion times for various sizes of input vocabulary and
numbers of processes. The results demonstrate
that this step is feasible for input data of as much
as 150,000 words (and probably even somewhat
larger). In our view, this is enough to discover the

4Note that unsupervised learning of morphology per se
is not our focus in this paper. The rule discovery procedure
would constitute only a preprocessing step to proper learning.
However, we use the resulting rule transducer TR in further
compositions to demonstrate their computational feasibility.

vast majority of productive morphological rules.
We disjunct several thousand most frequent

rules to construct a rule transducer TR, which is
used in algebraic operations shown in Table 3.
Most operations are realized within at most several
minutes, the longest one being the construction of
the largest generator in slightly above 11 minutes.

Note that the computation times reported in Ta-
ble 3 are much shorter than the ones in Table 2.
Moreover, the former appear to increase linearly
in both |V | and |R|. Thus, although the limits on
the vocabulary size in the rule discovery procedure
are quite tight, once we have discovered the rules
(or obtained them in another way, e.g. manually
written), we can apply the transducer to find pairs
of related words in much larger lexica. Using 3-
way composition (Allauzen and Mohri, 2008) for
computing TA◦TV could probably further improve
the analysis of a new lexicon.

7 Conclusion

We have presented a formalism allowing for the
description of morphological regularities as trans-
formational patterns on whole words in their sur-
face forms. The formalism is grounded in linguis-
tic theories rejecting the notion of internal struc-
ture of words and can be especially useful in the
context of machine learning, where descriptions
of such underlying structures are not available. It
captures non-concatenative phenomena naturally
and allows for representing rules as FSTs, so that
performant algorithms for morphological analysis
and generation are readily available as algebraic
operations on transducers. We suggest that such
standardized formalism can present an alternative
to models of morphology and string processing al-
gorithms developed for a specific machine learn-
ing method, which are common in the literature.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphologi-
cal paradigms and lexicons. In Proceedings of the
EACL, pages 569–578.

Cyril Allauzen and Mehryar Mohri. 2008. 3-way com-
position of weighted finite-state transducers. In In-
ternational Conference on Implementation and Ap-
plication of Automata (CIAA 2008), pages 262–273,
San Francisco, CA, USA.

Kenneth R. Beesley and Lauri Karttunen. 2003. Fi-

44

rank rule frequency example
1 /Xn/→ /X/ 8555 Epoche → Epochen
2 /X/→ /Xn/ 8555 Epochen → Epoche
3 /Xen/→ /Xe/ 7465 aufgehenden → aufgehende
4 /Xe/→ /Xen/ 7465 aufgehende → aufgehenden
5 /Xen/→ /X/ 6030 Abkürzungen → Abkürzung
6 /X/→ /Xen/ 6030 Abkürzung → Abkürzungen
7 /Xe/→ /X/ 5640 niedrige → niedrig
8 /X/→ /Xe/ 5640 niedrig → niedrige
9 /Xs/→ /X/ 4917 Erdbebens → Erdbeben

10 /X/→ /Xs/ 4917 Erdbeben → Erdbebens
. . .

53 /Xen/→ /Xt/ 1194 nutzen → nutzt
54 /Xen/→ /Xes/ 1194 einfachen → einfaches

. . .
746 /X1aX2/→ /X1oX2/ 196 unterbrachen → unterbrochen
747 /X1tX2/→ /X1mX2/ 195 warten → warmen
748 /X1nX2/→ /X1lX2/ 195 Zähnen → Zählen
749 /X1mX2/→ /X1tX2/ 195 warmen → warten
750 /X1lX2/→ /X1nX2/ 195 Zählen → Zähnen
751 /X1geX2t/→ /X1X2en/ 195 zugefügt → zufügen
752 /{CAP}X1X2/→ /X1schX2/ 195 Allergie → allergische
753 /X1schX2/→ /{CAP}X1X2/ 195 allergische → Allergie
754 /X1äX2er/→ /X1aX2/ 195 Häuser → Haus
755 /X1aX2/→ /X1äX2er/ 195 Haus → Häuser
756 /gX/→ /ausgX/ 194 gegraben → ausgegraben
757 /ausgX/→ /gX/ 194 ausgegraben → gegraben

Table 1: Example rules extracted from the German Wikipedia.

|V | num. processes
1 2 4 6

10k 426 238 146 134
50k 8757 5273 4128 3657
100k 33629 22981 18624 15297
150k 82287 55268 41827 37623

Table 2: Computation times (in seconds) for the rule
discovery procedure.

Computa-
tion

|V | |R|
1k 2k 5k 10k

TV ◦ TR

10k 2.86 5.72 13.6 22.8
50k 13.4 28.7 67.2 115
100k 26.9 56.3 137 237
150k 41.3 86.6 208 355

TA ◦ TV

10k 0.68 1.17 2.36 3.77
50k 3.58 5.82 11.4 18.0
100k 7.21 11.6 22.9 35.3
150k 10.9 16.8 33.7 51.7

TA ↓ \TV

10k 5.39 10.0 23.1 40.4
50k 28.6 51.9 125 219
100k 57.9 107 266 452
150k 88.6 159 397 682

Table 3: Computation times (in seconds) for various
operations related to the WWM analyzer. All alge-
braic operations include the minimization of the result-
ing transducer.

nite State Morphology. Center for the Study of Lan-
guage and Information.

Thomas Bocek, Ela Hunt, and Burkhard Stiller. 2007.
Fast similarity search in large dictionaries. Techni-
cal report, University of Zurich.

Jan A. Botha and Phil Blunsom. 2013. Adaptor gram-
mars for learning non-concatenative morphology. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages
345–356, Seattle, Washington.

Çağrı Çöltekin. 2010. A freely available morphologi-
cal analyzer for Turkish. In LREC 2010, Seventh In-
ternational Conference on Language Resources and
Evaluation.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of NAACL-HLT, pages 1185–1195.

Alan Ford, Rajendra Singh, and Gita Martohardjono.
1997. Pace Pān. ini: Towards a word-based theory
of morphology. American University Studies. Series
XIII, Linguistics, Vol. 34. Peter Lang Publishing, In-
corporated.

Maciej Janicki. 2015. A multi-purpose bayesian model
for word-based morphology. In Systems and Frame-
works for Computational Morphology – Fourth In-
ternational Workshop, SFCM 2015. Springer.

Kimmo Koskenniemi. 1983. Two-Level Morphology:
A General Computational Model for Word-Form
Recognition and Production. Ph.D. thesis, Univer-
sity of Helsinki.

45

Kimmo Koskenniemi. 2013. An informal discovery
procedure for two-level morphological rules.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. So-
viet Physics Doklady, 10(8):707–710.

Krister Lindén. 2008. A probabilistic model for guess-
ing base forms of new words by analogy. In
CICling-2008, 9th International Conference on In-
telligent Text Processing and Computational Lin-
guistics, Haifa, Israel.

Krister Lindén. 2009. Entry generation by analogy
– encoding new words for morphological lexicons.
Northern European Journal of Language Technol-
ogy, 1:1–25.

Krister Lindén, Erik Axelson, Sam Hardwick,
Tommi A. Pirinen, and Miikka Silfverberg. 2011.
HFST – framework for compiling and applying mor-
phologies. In Systems and Frameworks for Compu-
tational Morphology – Second International Work-
shop, SFCM 2011. Springer.

Jiaming Luo, Karthik Narasimhan, and Regina Barzi-
lay. 2017. Unsupervised learning of morphological
forests. TACL.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for un-
covering morphological chains. TACL.

Sylvain Neuvel and Sean A. Fulop. 2002. Unsuper-
vised learning of morphology without morphemes.
In Proceedings of the 6th Workshop of the ACL
Special Interest Group in Computational Phonology
(SIGPHON), pages 31–40.

Sylvain Neuvel and Rajendra Singh. 2002. Vive la
différence! What morphology is about. Folia Lin-
guistica, 35(3-4):313–320.

Tommi A. Pirinen. 2015. Development and use of
computational morphology of Finnish in the open
source and open science era: Notes on experiences
with Omorfi development. SKY Journal of Linguis-
tics, 28:381–393.

Miikka Silfverberg and Krister Lindén. 2009. Hfst
runtime format - a compacted transducer format al-
lowing for fast lookup. In Finite-State Methods
and Natural Language Processing - FSMNLP 2009
Eight International Workshop.

Rajendra Singh and Probal Dasgupta. 2003. On so-
called compounds. In (Singh and Starosta, 2003),
pages 77–89.

Rajendra Singh and Stanley Starosta, editors. 2003.
Explorations in Seamless Morphology. SAGE Pub-
lications, New Delhi.

Radu Soricut and Franz Josef Och. 2015. Unsu-
pervised morphology induction using word embed-
dings. In NAACL 2015, pages 1626–1636.

Stanley Starosta. 2003. Do compounds have inter-
nal structure? A seamless analysis. In (Singh and
Starosta, 2003), pages 116–147.

Maciej Sumalvico. 2017. Unsupervised learning of
morphology with graph sampling. In Proceedings
to RANLP 2017, Varna, Bulgaria.

Pieter Theron and Ian Cloete. 1997. Automatic ac-
quisition of two-level morphological rules. In Fifth
Conference on Applied Natural Language Process-
ing, Washington, DC, USA.

Robert A. Wagner and Michael J. Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM, 21(I):168–173.

Robert Wicentowski. 2002. Modeling and Learn-
ing Multilingual Inflectional Morphology in a Min-
imally Supervised Framework. Ph.D. thesis, Johns
Hopkins University.

Andrea Zielinski and Christian Simon. 2008. Mor-
phisto – an open source morphological analyzer
for German. In Finite State Methods and Natural
Language Processing, 7th International Workshop,
FSMNLP 2008, Ispra, Italy.

