
Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, pages 27–36
Dresden, Germany, September 23-25, 2019. c©2019 Association for Computational Linguistics

27

MSO with tests and reducts

Tim Fernando and David Woods and Carl Vogel
School of Computer Science and Statistics

Trinity College Dublin, Ireland
{tim.fernando,dwoods,carl.vogel}@tcd.ie

Abstract

Tests added to Kleene algebra (by Kozen
and others) are considered within Monadic
Second Order logic over strings, where they
are likened to statives in natural language.
Reducts are formed over tests and non-tests
alike, specifying what is observable. Notions
of temporal granularity are based on observ-
able change, under the assumption that a finite
set bounds what is observable (with the possi-
bility of stretching such bounds by moving to a
larger finite set). String projections at different
granularities are conjoined by superpositions
that provide another variant of concatenation
for Booleans.

1 Introduction

Regular languages can be studied declaratively
through formulas of Monadic Second-Order logic
over strings (MSO; e.g., Libkin, 2010) or through
equations built with the constructs +, ·,∗ , 0, 1 of
a Kleene algebra (KA; e.g., Kozen, 1994). A KA
with a subalgebra of tests forming a Boolean alge-
bra is a KA with tests (KAT; e.g., Kozen, 1997).
Tests are identified below with statives that serve
as a basis for the approach to temporal semantics
in linguistics initiated in Dowty (1979). This iden-
tification is justified by

(i) a guarded string interpretation of KAT
(Kozen and Smith, 1996), in which tests
form states, as conceived in Propositional
Dynamic Logic (PDL, Fischer and Ladner,
1979), and

(ii) a notion of homogeneity associated (by
Dowty and other linguists) with statives, and
linked below to tests under a conception of
time as observable change.

These two points are developed below in MSO
using reducts. Kozen and Smith’s definition of
guarded strings is reformulated so that

(†) the MSO-sentence ϕ picking out guarded
strings over actions Σ and tests B does not
mention B (or their Boolean complements),
asserting only that exactly one action occurs
at every position except for the final one,
where no action occurs.

Precisely what (†) means is taken up in section 2,
with the help of reducts. Why (†) is significant
becomes plain in section 3, where the reformula-
tion is used to clarify the connection with tests and
states in PDL.1 A notion of temporal granularity
based on observable change in MSO is built on
projections that compress reducts. These projec-
tions are applied in section 4 to generalize interval
networks from (Allen, 1983).

2 Guarded strings, MSO and reducts

For any finite set Σ, let RegΣ be the set of lan-
guages over the alphabet Σ accepted by finite au-
tomata. Then 〈RegΣ,∪, ·,∗ , ∅, ε〉 is a KA — ar-
guably, the Σ-canonical KA. For a KA with tests,
we start in §2.1 with a finite set B of tests, and
present the free Boolean algebra generated byB in
terms of powersets 2X of sets X . Strings over the
alphabet 2B∪Σ are then used in §2.2 for an exten-
sion to a KA. This deviates tellingly from Kozen
and Smith (1996)’s presentation of guarded strings
over the alphabet Σ ∪ B ∪ B with Boolean com-
plements B of B, reviewed in §2.3. The deviation
is natural from the perspective of MSO, which is
brought into the picture along with reducts in §2.4.

2.1 Finite free Boolean algebras
Given a set B, the set TB of Boolean terms over
B is the smallest set ⊇-containing B ∪ {0, 1} that
is closed under the binary connectives +, · and the
unary connective c (for complements). Assuming

1 We focus throughout on semantic intuitions relevant to
our present purposes, leaving out details such as the equa-
tional axioms of KA or the precise language of PDL.

28

B is finite, the free Boolean algebra generated by
B is

F (B) = 〈2(2B),∪,∩, ∅, 2B, 2B \ ·〉

(with addition ∪, multiplication ∩, and comple-
ment 2B \ X of a subset X of 2B). A B-atom is
a subset q of B, and is used to interpret Boolean
terms over B as follows

[[b]]B := {q ⊆ B | b ∈ q} for b ∈ B
[[0]]B := ∅ [[1]]B := 2B

and for terms t, t′ ∈ TB ,

[[t+ t′]]B := [[t]]B ∪ [[t′]]B

[[t · t′]]B := [[t]]B ∩ [[t′]]B

[[c(t)]]B := [[1]]B \ [[t]]B.

2.2 Guarded strings of sets

Next, given a set Σ disjoint from TB , Σ∩TB = ∅,
let the set TΣ,B of (Σ, B)-terms be the smallest set
containing Σ ∪ TB that is closed under the binary
connectives +, · and the unary connective ∗. To
extend the interpretation [[t]]B of Boolean terms t
over B to (Σ, B)-terms, we weaken the notion of
a B-atom as follows. Let 2BΣ be the set

2BΣ := {q ∪ {p} | q ⊆ B and p ∈ Σ}

of sets obtained from a subset of B by adjoining
an element of Σ. The set

GBΣ := (2BΣ)∗2B (⊂ (2B∪Σ)+

is generated by the rules

q ⊆ B
q ∈ GBΣ

q ⊆ B p ∈ Σ s ∈ GBΣ
(q ∪ {p})s ∈ GBΣ

to produce strings

(q1 ∪ {p1}) · · · (qn ∪ {pn})qn+1

of length n + 1 (for n ≥ 0), formed from
q1 · · · qn+1 ∈ (2B)n+1 and p1 · · · pn ∈ Σn. Let us
call elements of GBΣ (Σ, B)-guarded strings (mak-
ing B-atoms (Σ, B)-guarded strings of length 1).
To interpret a (Σ, B)-term as a set of (Σ, B)-
guarded strings, two bits of notation are handy.

(i) For any string s of length > 0, let αs be the
symbol that occurs first in s.

(ii) For any symbol q and language L, let L[q] be
the set of strings that, with q attached to the
right, belong to L

L[q] := {s | sq ∈ L}.

Now, given sets L and L′ of strings of length > 0,
the Σ-fused product of L and L′ is the set

L •Σ L′ := {ss′ | s′ ∈ L′ and s ∈ L[αs′ \ Σ]}

of strings ss′ from s′ ∈ L′ and s such that sq ∈ L
where q is αs′ \ Σ. That is,

L •Σ L′ = {s ·Σ s′ | s ∈ L, s′ ∈ L′ and

s ·Σ s′ is defined}

where ·Σ is a partial binary function on strings of
length > 0 such that

sq ·Σ αs′ is defined ⇐⇒ q = α \ Σ

=⇒ sq ·Σ αs′ = sαs′.

Notice that if L and L′ are both sets of B-atoms,
then their Σ-fused product is just their intersection

L •Σ L′ = L ∩ L′.

Consequently, we can extend [[·]]B : TB → 22B to
an interpretation [[·]]Σ,B : TΣ,B → 2G

B
Σ , setting

[[t]]Σ,B := [[t]]B for t ∈ TB
[[p]]Σ,B := {(q ∪ {p})q′ | q, q′ ⊆ B} for p ∈ Σ

and for all t, t′ ∈ TΣ,B ,

[[t+ t′]]Σ,B := [[t]]Σ,B ∪ [[t′]]Σ,B

[[t · t′]]Σ,B := [[t]]Σ,B •Σ [[t′]]Σ,B

[[t∗]]Σ,B := ([[t]]Σ,B)?Σ

where the Σ-asterate ?Σ is the Σ-fused analog of
Kleene star

L?Σ :=
⋃
n≥0

Ln

with L0 := 2B (the •Σ-identity for 2G
B
Σ) and

Ln+1 := L •Σ Ln.

2.3 Strings in place of sets
Guarded strings in Kozen and Smith (1996) are
conceived over an alphabet different from 2B∪Σ

by fixing a string b1 · · · bn that enumerates

B = {b1, . . . , bn}

29

B-atom alphabet product
GBΣ q ⊆ B 2Σ∪B •Σ
GΣ,B c1 · · · cn ∈ AB Σ ∪B ∪B �n

Table 1: Guarded strings 2 ways, given Σ and B

without repetition (making n the cardinality ofB).
Each b ∈ B is paired with a fresh test b, relative
to which a B-atom q ⊆ B can be understood as n
choices c1 · · · cn between bi and bi, with

ci :=

{
bi if bi ∈ q
bi otherwise.

2B is repackaged as the language

AB := (b1 + b1)(b2 + b2) · · · (bn + bn)

to turn GBΣ from §2.2 into the set

GΣ,B := (AB Σ)∗AB

of guarded strings over Σ and B, with alphabet

Σ ∪B ∪B where B := {b1, . . . , bn}.

Every (Σ, B)-term t is then interpretable as a sub-
set [[t]] of GΣ,B , with

[[p]] = {sps′ | s, s′ ∈ AB} for p ∈ Σ

and for b ∈ B,

[[b]] = {s ∈ AB | s ∈ (B ∪B − {b})+}.

In place of the Σ-fused product •Σ, we have the
coalesced product �n

L �n L′ := {sŝs′ | sŝ ∈ L, ŝs′ ∈ L′

and length(ŝ) = n}.

Inasmuch as the two KATs over 2G
B
Σ and 2GΣ,B

are isomorphic, it is tempting to dismiss the dif-
ference recorded in Table 1 as cosmetic. Nonethe-
less, there are reasons for preferring 2B over AB

from the perspective of MSO, a natural home for
Boolean tests, with or without atoms.

2.4 MSO and reducts

Given a finite set A, an MSOA-model is under-
stood (in this paper) to be a structure

〈[n], Sn, {Ua}a∈A〉

over the set [n] := {1, . . . , n} of integers from 1 to
n (for some positive integer n), with the successor
relation

Sn := {(i, i+ 1) | i ∈ [n− 1]}

on [n], and for each a ∈ A, a subset Ua of [n].
We can identify 〈[n], Sn, {Ua}a∈A〉with the string
α1 · · ·αn over the alphabet 2A given by

αi := {a ∈ A | i ∈ Ua} for i ∈ [n]

making Ua the set of positions where a occurs

Ua = {i ∈ [n] | a ∈ αi}.

To construe a string a1 · · · an ∈ A+ as an MSOA-
model, we lift it to a1 · · · an ∈ (2A)+, draw-
ing boxes instead of curly braces {, } for sets qua
string symbols, as opposed to sets qua languages.2

Given a string s over the alphabet 2A and a subset
A′ ofA, theA′-reduct of s, ρA′(s), is s intersected
componentwise with A′

ρA′(α1 · · ·αn) := (α1 ∩A′) · · · (αn ∩A′)

(Fernando, 2016). To illustrate, for A = Σ ∪ B,
the Σ-reduct of a string

(q1 ∪ p1) · · · (qn ∪ pn)qn+1

in GBΣ is
p1 · · · pn .

Indeed, we can describe GBΣ by embedding Σ into
2Σ∪B via

Σ2 := { p | p ∈ Σ}.

or by MSOA-formulas built with unary predicate
symbols Pa labeled by a ∈ A and the binary pred-
icate symbol S (for successors).

Proposition 1. For any disjoint sets Σ and B,

GBΣ = {s ∈ (2B∪Σ)+ | ρΣ(s) ∈ Σ2
∗2}

= {s ∈ (2B∪Σ)+ | s |= ∀xχΣ(x)}

where χΣ(x) is the MSOΣ(x)-formula

∃y(xSy) ≡
∨
a∈Σ

Pa(x)

(saying x is non-final iff some a ∈ Σ occurs at x)
2 Although conflating a string s with the singleton lan-

guage {s} is usually harmless, it is dangerous to confuse, for
instance, the empty language ∅ with the string 2 (of length 1),
or the language of two strings {a, a′} with the single string

a, a′ .

30

conjoined with the MSOΣ(x)-formula

¬
∨
a∈Σ

(Pa(x) ∧
∨

a′∈Σ\{a}

Pa′(x))

(saying no two symbols from Σ occur at x).

Note that ∀xχΣ(x) is an MSOΣ-sentence stating

(†) exactly one symbol from Σ occurs at every
string position except for the last position,
where no symbol from Σ occurs.

Inasmuch as (†) describes a very particular encod-
ing of guarded strings (applicable to GBΣ but not
to GΣ,B), it is natural to ask: can we motivate (†)
without resorting to details of encoding? We will
argue in section 3 that we can, observing for now
that χΣ(x) makes no mention of B (belonging, as
it does, to MSOΣ).

The price for working with

〈GBΣ ,∪, •Σ, ∅, 2B, 2B \ ·〉

as opposed to Kozen and Smith (1996)’s KAT

〈GΣ,B,∪, �n, ∅,AB,AB \ ·〉

is a complication in the alphabet of strings inter-
preting MSOA from A to 2A. But since MSOA-
models are already strings over 2A, that price has
already been paid. Rather it is the step from GBΣ
to GΣ,B that is costly, complicating the label set A
with a set B of labels for complements of B. It is
telling that a string in GΣ,B satisfies the MSO{b,b}-
biconditionals

Pb(x) ≡ ¬Pb(x)

only at positions x where b or b occurs. By con-
trast, every string in GBΣ can be expanded to a
MSOΣ∪B∪B-model satisfying

∀x (Pb(x) ≡ ¬Pb(x)) for every b ∈ B

(not that b is needed to interpret TΣ,B in 2G
B
Σ).

A crude measure of the complexity of a regular
language L ⊆ (2A)+ is given by

Proposition 2. For any finite set A and regular
language L ⊆ (2A)+, there is a smallest subset A′

of A such that for some MSOA′-formula ϕ,

L = {s ∈ (2A)+ | s |= ϕ}.

Proposition 2 follows from

(‡) for all strings s ∈ (2A)+, subsetsA′ ofA and
MSOA′-formulas ϕ,

s |= ϕ ⇐⇒ ρA′(s) |= ϕ

and the fact that if A′′ is another subset of A,

ρA′′(ρA′(s)) = ρA′∩A′′(s).

Provable by induction on ϕ, (‡) is an instance of
the satisfaction condition characteristic of institu-
tions (Goguen and Burstall, 1992), to which we
shall return in §3.3 below.

If the least set A′ that Proposition 2 associates
with L is called the grain of L, then GBΣ has grain
Σ (by Proposition 1 and a moment’s reflection).
Not so the regular language GΣ,B , whose image
under the map

a1 · · · an 7→ a1 · · · an

has grain Σ ∪ B ∪ B. Proposition 1 consigns
B to the background (using MSO’s propositional
connectives to interpret the Boolean structure of a
KAT), drawing all attention to Σ. Indeed, as con-
ceived in PDL, tests belong in Σ — or so we argue
in the next section (pace Kozen)

The remainder of this section fleshes out, for
A = Σ∪B ∪B, an MSOA-definition ψB

Σ of GΣ,B

GΣ,B = {s ∈ A+ | s |= ψB
Σ}

and is best skipped by readers for whom χΣ(x)
is ugly enough. We let ψB

Σ be ∀x ψΣ,B(x) for
ψΣ,B(x) given with the help of some abbrevia-
tions. For A′ ⊆ A, let oneA′(x) be the MSO dis-
junction

oneA′(x) :=
∨
a∈A′

Pa(x)

saying some symbol from A′ occurs in position x,
and let atmB(x1 . . . xn) abbreviate∧

1≤i<n

xiSxi+1 ∧
∧

1≤i≤n
one{bi,bi}(xi)

putting a string from AB in x1 . . . xn. Now,
ψΣ,B(x) is the conjunction of (1), (2) and (3)
below, where (1) ensures bi + bi is followed by
bi+1 + bi+1 for i from 1 to n− 1

n−1∧
i=1

(one{bi,bi}(x) ⊃ ∃y(xSy ∧

one{bi+1,bi+1}(y))) (1)

31

KAT PDL
Boolean in B formula ϕ
action in Σ program (e.g., test ϕ?)
B-atom ⊆ B state ∈ Q
guarded string input/output pair ∈ Q×Q

Table 2: KAT vs PDL

while (2) says bn + bn can only be followed by a
symbol from Σ

∀y(one{bn,bn}(x) ∧ xSy ⊃ oneΣ(y)) (2)

(allowing for the case where x is the last position
of the string), and (3) puts atoms before and after
x whenever a symbol from Σ occurs at x

oneΣ(x) ⊃ (beforeB(x) ∧ afterB(x)) (3)

where beforeB(x) abbreviates

∃x1 · · · ∃xn (xnSx ∧ atmB(x1 . . . xn))

and afterB(x) abbreviates

∃x1 · · · ∃xn (xSx1 ∧ atmB(x1 . . . xn)).

3 Tests and observable change

A test in PDL is a program ϕ? built from a propo-
sition ϕ, where, given a set Q of states,

(i) ϕ is interpreted as the set [[ϕ]] ⊆ Q of states
satisfying ϕ, and

(ii) a program p is interpreted as a binary relation
[[p]] on Q consisting of pairs (q, q′) such that

on input q, p can output q′

(iii) ϕ? is a side-effect free test of ϕ that aborts on
states that do not satisfy ϕ

[[ϕ?]] := {(q, q) | q ∈ [[ϕ]]}.

A cursory comparison of PDL with KAT, sum-
marised in Table 2, suggests KAT Booleans form
PDL states (or B-atoms), raising the question:

where is the KAT counterpart of ϕ? in
Σ, which is assumed disjoint from the
set B of Booleans?

The present section fills this gap by introducing for
every b ∈ B, a test ?b that is interpreted the way
an action p in Σ is in KAT, albeit with more care
than the “anything-goes” clause

[[p]]Σ,B := {(q ∪ p)q′ | q, q′ ⊆ B}

that accepts any input/output pair q, q′. To reg-
ulate the changes effected by an action in Σ, we
introduce a labeled transition relation

E ⊆ 2B × Σ× 2B

and interpret each p ∈ Σ as the subset

{(q ∪ p)q′ | E(q, p, q′)}

of GBΣ (writing E(q, p, q′) and (q, p, q′) ∈ E inter-
changably). The “anything-goes” interpretation is
the special case

E = 2B × Σ× 2B.

But to capture the meaning of a test ?b in the man-
ner PDL does for ϕ?, we require that

E(q, ?b, q′) =⇒ b ∈ q and q = q′

for all q, q′ ⊆ B. To align the interpretation closer
to the input/output semantics of PDL programs,
we will interpret [[?b]] as

{(q ∪ ?b)q | q ⊆ B and b ∈ q}

and form B-reducts (removing actions p ∈ Σ
buried in guarded strings) before compressing
them (according to bc from §3.1).

3.1 Regulated programs including tests
Given sets Σ and B, and for every b ∈ B, a label
?b 6∈ Σ ∪B such that

?b =?b′ only if b = b′,

let
Σ[B] := Σ ∪ {?b | b ∈ B}.

We can then extend any set E ⊆ 2B × Σ× 2B to

EB := E ∪ {(q, ?b, q) | q ⊆ B and b ∈ q}

and pick out the subset G�E (pronounced “G re-
stricted by E”) of GΣ[B]

B generated by

q ⊆ B
q ∈ G�E

sq ∈ G�E EB(q, p, q′)

s(q ∪ p)q′ ∈ G�E
.

to interpret a term t from TΣ[B],B as a subset [[t]]�E
of G�E by suitable adjustments to [[·]]Σ,B . In partic-
ular, for b ∈ B,

[[b]]�E = {q | q ⊆ B and b ∈ B}

32

and for p ∈ Σ[B],

[[p]]�E = {(q ∪ {p})q′ | q, q′ ⊆ B and

EB(q, p, q′)}

and for •Σ as defined in §2.2,

[[t · t′]]�E = [[t]]�E •Σ [[t′]]�E .

Now, whereas

L •Σ L′ = L ∩ L′ for L,L′ ⊆ 2B,

the interpretation [[?b]]�E of a test ?b is not a subset
of 2B unless it is ∅.

To relate [[?b]]�E back to [[b]]�E , a few definitions
are helpful. Let us call a string α1 · · ·αn stut-
terless if αi 6= αi+1 for all i ∈ [n − 1]. The
block compression bc(s) of a string s = α1 · · ·αn

deletes from s every αi such that αi = αi+1

bc(s) := s if length(s) < 2

bc(αα′s) :=

{
bc(α′s) if α = α′

αbc(α′s) otherwise.

Clearly, bc(s) is stutterless and

s is stutterless ⇐⇒ s = bc(s).

Moreover, if ?b were removed from the strings in
[[?b]]�E , then we would be left with strings qq such
that b ∈ q, to which we can apply bc to get [[b]]�E .
We systematise the removal of elements of Σ[B]
from strings in [[t]]�E next, aligning our semantics
with PDL’s.

3.2 Observable change
For terms t ∈ TΣ[B],B and subsets C of Σ[B]∪B,
let us apply block compression bc to the C-reducts
of strings in [[t]]�E for

[t]E,C := {bc(ρC(s)) | s ∈ [[t]]�E}

and observe that for all b ∈ B,

[?b]E,B = [b]E,B = [[b]]�E .

More generally, let us define a translation

θ : TΣ[B],B → TΣ,B

translating tests ?b back to b

θ(?b) := b for b ∈ B

otherwise leaving t as is

θ(a) := a for a ∈ Σ ∪B
θ(t+ t′) := θ(t) + θ(t′) θ(t∗) := θ(t)∗

θ(t · t′) := θ(t) · θ(t′) θ(c(t)) := c(θ(t)).

Also, let us say Σ is E-active if for every p ∈ Σ,

E(q, p, q′) =⇒ q 6= q′

for all q, q′ ⊆ B (requiring that states change un-
der p).

Proposition 3. For all t ∈ TΣ[B],B ,

[t]E,B = [θ(t)]E,B

and assuming Σ is E-active,

[θ(t)]E,B = {ρB(s) | s ∈ [[θ(t)]]�E}.

The two parts of Proposition 3 can be sharpened at
the cost of complicating the notation.

Part 1 For all t ∈ TΣ[B],B ,

[t]E,C = [θ(t)]E,C

for any set C disjoint from Σ[B].

Given p ∈ Σ, let us say p is (E,C)-observable if

E(q, p, q′) =⇒ q ∩ C 6= q′ ∩ C

for all q, q′ ⊆ B (so that p is C-observably E-
active).

Part 2 For all t ∈ TΣ,B ,

[t]E,C = {ρC(s) | s ∈ [[t]]�E}

assuming that every p ∈ Σ from which t is formed
is (E,C)-observable.

3.3 Actions for a specific Boolean
The condition that p is (E,C)-observable can be
formulated in MSOC∪{p} as

∀x∀y ((Pp(x) ∧ xSy) ⊃ diffC(x, y)) (4)

where diffC(x, y) abbreviates the MSO-formula

diffC(x, y) :=
∨
b∈C
¬(Pb(x) ≡ Pb(y))

saying x and y can be separated by a unary pred-
icate with label from C. Dropping the action p
from (4) results in the requirement that every tem-
poral step S change C

∀x∀y (xSy ⊃ diffC(x, y)) (ntcC)

designated (ntcC) for the slogan

33

no time without changeC .

This slogan is behind the function bcC that maps a
string s to the block compression of its C-reduct

bcC(s) := bc(ρC(s))

(turning [[t]]�E to [[t]]E,C in §3.2).

Proposition 4. For any C ⊆ A and s ∈ (2A)∗,

s |= (ntcC) ⇐⇒ bcC(s) = s

and

bcC(bcC(s)) = bcC(s).

To understand the importance of the subscript C,
recall that MSO satisfaction |= has the property
(‡) for all strings s ∈ (2A)+, subsets C of A and

MSOC-sentences ϕ,

s |= ϕ ⇐⇒ ρC(s) |= ϕ.

(‡) brings out a fundamental limitation of an
MSOC-sentence ϕ, its insensitivity to differences
between strings with the same C-reduct.

The significance of the subscript C is easy to
overlook when describing G�E in MSO. Consider
from Proposition 1, the χΣ(x) conjunct

¬twoΣ(x) := ¬
∨
a∈Σ

(Pa(x) ∧
∨

a′∈Σ\{a}

Pa′(x))

banning two programs in Σ from occurring simul-
taneously at x. The problem with running p ∈ Σ
simultaneously with ?b 6∈ Σ at x is that the state
transitions they describe under EB may clash. In-
deed, programs in PDL and more generally, Dy-
namic Logic (Harel et al., 2000) are interpreted as
executing in isolation; for instance, the PDL test
ϕ? ensures the input state does not change, and
a random assignment x :=? changes at most the
value of x. In both cases, any change from a pro-
gram running concurrently is ruled out. Put an-
other way, χΣ(x)’s conjunct ¬twoΣ(x) expresses
the assumption that each program in Σ is to be un-
derstood as covering all programs that might run
at x.

By contrast, actions described in everyday
speech are invariably partial in that

(i) their effects are bounded, and
(ii) they never occur in isolation.

Keeping (i) and (ii) in mind, and zeroing in on
a specific Boolean b ∈ B, let us add labels l(b)
and r(b) to Σ for actions that mark the left and
right borders of b as follows. Let ∆l

b(x) be the
MSO{b}(x)-formula

∆l
b(x) := (∃y)(xSy ∧ Pb(y)) ∧ ¬Pb(x)

putting x just before b becomes true, and let ∆r
b(x)

be the MSO{b}(x)-formula

∆r
b(x) := Pb(x) ∧ ¬(∃y)(xSy ∧ Pb(y))

putting x at b’s right border. We then use ∆l
b(x) to

define Pl(b)

∀x (Pl(b)(x) ≡ ∆l
b(x)) (lb)

and ∆r
v(x) for Pr(v)

∀x (Pr(b)(x) ≡ ∆r
b(x)) (rb)

(Fernando, 2019). Now, replacing diffC(x, y) in
(ntcC) by

borderC(x) :=
∨
b∈C

(Pl(b)(x) ∨ Pr(b)(x))

yields: no time without bordersC

∀x∀y (xSy ⊃ borderC(x)). (ntbC)

More precisely,

(
∧
b∈C

(lb) ∧ (rb)) ⊃ ((ntcC) ≡ (ntbC))

since for every b ∈ C,

((lb) ∧ (rb) ∧ xSy) ⊃
(Pb(x) ≡ Pb(y)) ≡ (Pl(b)(x) ∨ Pr(b)(x))

suppressing ∀x∀y to simplify the notation. Re-
turning now to points (i) and (ii) above, notice that
under (lb) and (rb),

(i) the effects of l(b) and r(b) are confined to b
and although

((lb) ∧ (rb)) ⊃ ¬∃x(Pl(b)(x) ∧ Pr(b)(x))

means l(b) cannot occur with r(b),
(ii) l(b) can occur with l(b′) or r(b′) for b′ 6= b. 3

Complex actions can be built from a finite set of
b-specific actions l(b) and r(b), provided we stay
away from the GBΣ postulate ¬twoΣ(x), which ef-
fectively pretends actions are indivisible atoms.

3 Approximating l(b) by the Dynamic Logic program

(b = false)?; b :=?; (b = true)?

overshoots badly, having unbounded effects that go beyond
l(b) in banning any changes to b′ different from b.

34

4 Projections and superpositions

Having re-interpreted concatenation · as •Σ and �n
in section 2 so that its restriction to tests is Boolean
conjunction, we present in this section yet another
notion of conjunction for combining descriptions
of change at varying granularities. We start with
the descriptions in §4.1, computing their conjunc-
tions in §4.2.

4.1 Some star-free descriptions
Given a subsetC of some fixed setA (determining
a fragment MSOA) and a string s of subsets of C,
let us agree the pair (C, s) describes the set of stut-
terless strings over the alphabet 2A that bcC maps
to s.4 That is, if we gather together all stutterless
strings over 2A in

LA := {bc(s) | s ∈ (2A)∗}

then

[[(C, s)]]A := {s′ ∈ LA | bcC(s′) = s}.

To illustrate, for

s1 = 1 ,

[[({1}, s1)]]{1,2} consists of s1, all strings from

(2)∗ 1

and many more, including 2 2,1 2 . In general,
for s ∈ LA, [[(A, s)]]A is {s}. Otherwise, if C is
a proper subset of A, then [[(C, s)]]A is infinite. In
either case, [[(C, s)]]A is first-order definable with
the transitive closure < of S. That is, [[(C, s)]]A is
star-free.

Next, we interpret a finite subset C of 2A × LA
as the intersection

[[C]]A =
⋂

(C,s)∈C

[[(C, s)]]A

of the interpretations of pairs (C, s) in C. No-
tice [[C]]A is also star-free. Continuing the example
above, if

C2 = {({1}, s1), ({2}, s2)}

where si = i then [[C2]]{1,2} consists of ex-
actly 13 strings, one for each of the interval rela-
tions from Allen (1983), such as

2 1,2 2 depicting 1 during 2

4 The restriction here to stutterless strings is motivated
by the Aristotelian dictum, no time without change, a C-
relativization of which is enforced by bcC (Proposition 4).

(e.g., Fernando, 2016). Generalizing from 2 inter-
vals to any integer n ≥ 2, we can extend the set

{({i}, si) | i ∈ [n]}

to a partial function C from 2[n] to L[n], defined
on certain pairs {i, j} which C maps to a string
C({i, j}) depicting an Allen relation between i
and j. The result is an interval network with node
set [n] and edge set

{C ∈ domain(C) | |C| = 2},

each C in which is labeled by the Allen relation
depicted by C(C). We can label the edge C by a
set L ⊆ LC if we loosen (C, s) to the pair (C,L),
interpreted as the inverse image of L under bcC
restricted to LA

[[(C,L)]]A := {s ∈ LA | bcC(s) ∈ L}

=
⋃
s∈L

[[(C, s)]]A.

For A ⊆ A′,

[[C]]A′ = {s ∈ LA′ | bcA(s) ∈ [[C]]A}
= [[(A, [[C]]A)]]A′

since

bcC(s) = bcC(bcC′(s)) when C ⊆ C ′ ⊆ A.

Thus, we can calculate [[C]]A by concentrating on⋃
domain([[C]]) before attending to the full set A

[[C]]A = [[(Ĉ, [[C]]Ĉ)]]A for Ĉ :=
⋃

domain(C).

As §4.2 makes clear, [[C]]Ĉ is always finite (unlike
[[C]]A ⊇ [[C]]Ĉ).

4.2 Conjunction as superposition
We now define, for any subsets C and C ′ of A, a
binary operation &C,C′ on languages such that for
all s ∈ LC and s′ ∈ LC′ ,

[[{(C, s), (C ′, s′)}]]C∪C′ = {s} &C,C′ {s′}

and more generally, for all L ⊆ LC and L′ ⊆ LC′ ,

L &C,C′ L′ = [[(C,L)]]C∪C′ ∩ [[(C ′, L′)]]C∪C′ .

As a first stab, observe that if &◦ forms the com-
ponentwise union of strings of the same length

α1 · · ·αn &◦ α
′
1 · · ·α′n := (α1 ∪ α′1) · · · (αn ∪ α′n)

35

then

ρC∪C′(s) = ρC(s) &◦ ρC′(s).

It will be useful to introduce rules (s0) and (s1)

&(ε, ε, ε)
(s0)

&(s, s′, ŝ)

&(αs, α′s, (α ∪ α′)ŝ)
(s1)

that together generate &◦ as the set of triples
(s, s′, ŝ) such that

&(s, s′, ŝ) is derivable from (s0) and (s1).

To factor in bc for bcC , we add the two rules (b1)
and (b2)

&(αs, s′, ŝ)

&(αs, α′s′, (α ∪ α′)ŝ)
(b1)

&(s, α′s′, ŝ)

&(αs, α′s′, (α ∪ α′)ŝ)
(b2)

so that, for example, the language

[[({1}, 1)]]{1,2} ∩ [[({2}, 2)]]{1,2}

of Allen relations between 1 and 2 (from §4.1) is
the set of strings s such that

&(1 , 2 , s)

is derivable from (s0), (s1), (b1) and (b2). The in-
tersection [[(C, s)]]C∪C′ ∩ [[(C ′, s′)]]C∪C′ becomes
trickier when C ∩ C ′ 6= ∅ (as with the transitiv-
ity table in Allen (1983)). Accordingly, we refine
the rules (s1), (b1) and (b2), adding the side con-
ditions

α ∩ C ′ ⊆ α′ and α′ ∩ C ⊆ α

to these rules for

&(s, s′, ŝ) α ∩ C ′ ⊆ α′ α′ ∩ C ⊆ α
&(αs, α′s, (α ∪ α′)ŝ)

(s1)C,C′

and similarly for (b1)C,C′ and (b2)C,C′ . Now, let
&C

C′(s, s′, ŝ) abbreviate:

&(s, s′, ŝ) is derivable from (s0),

(s1)C,C′ , (b1)C,C′ and (b2)C,C′ .

Then for all s ∈ LC , s′ ∈ LC′ and ŝ ∈ LC∪C′ ,

&C
C′(s, s′, ŝ) ⇐⇒ ŝ ∈ [[{(C, s), (C ′, s′)}]]C∪C′

and indeed, the definition we require is

L &C,C′ L′ := {ŝ ∈ LC∪C′ | (∃s ∈ L)(∃s′ ∈ L′)
&C

C′(s, s′, ŝ)}

(Woods and Fernando, 2018).

4.3 More projections
Recalling the KAT dichotomy between Booleans
inB and actions in Σ (paralleling that between for-
mulas and programs in Dynamic Logic5) it should
be noted that the sets C and C ′ have been con-
strued throughout to be subsets of B. The MSO-
formulas ∆l

b(x) and ∆r
b(x) introducing the actions

l(b) and r(b) in §3.3 define a border translation
from B to Σ under which bc becomes the removal
d2 of empty boxes underlying projections in the
S-strings of Durand and Schwer (2008), with, for
instance, the Allen relation 1 during 2 recast as

l(2) l(1) r(1) r(2)

(Fernando, 2019; Fernando and Vogel, 2019).
This section has focused on bc (for tests/statives)
to lighten the notation. We can adapt §§4.1, 4.2
for C,C ′ ⊆ Σ, putting d2 in place of bc.

5 Conclusion

The present paper is essentially an argument for
interpreting MSOA relative to strings over the al-
phabet 2A, rather than strings over the alphabet A.
The latter smuggles in an assumption ∀x specA(x)
where specA(x) is the MSOA(x)-formula∨

a∈A
(Pa(x) ∧

∧
a′∈A\{a}

¬Pa′(x))

specifying exactly one label from A for the string
position x. For a KAT generated by Booleans B
and actions Σ, the alphabet A may contain B ∪ Σ
(not to mention B), with the guarded string in-
terpretation in (Kozen and Smith, 1996) impos-
ing specB(x) and specΣ(x) at various positions
x, treating states as Boolean atoms (absent in an
infinite free Boolean algebra) and actions as pro-
grams running in isolation (as in Dynamic Logic).
Neither specB(x) nor specΣ(x) is necessary or
desirable for applications where descriptions of
states and actions are partial. Section 2 challenges
specB(x), slighting B with a Σ-reduct (Proposi-
tion 1), while section 3 puts notions of observ-
able change (described in Propositions 3 and 4)
ahead of specΣ(x) to account for tests. Cast-
ing spec aside, section 4 compresses C-reducts,
for C ⊆ B, and conjoins them by superposition.
(More in Fernando, To appear.)

5Linguistic papers applying Dynamic Logic to tempo-
ral semantics include Naumann (2001); Pustejovsky and
Moszkowicz (2011).

36

Acknowledgments

Thanks to three anonymous referees for their
comments, and to Heiko Vogler for encourage-
ment. This research is supported by Science
Foundation Ireland (SFI) through the CNGL Pro-
gramme (Grant 12/CE/I2267) in the ADAPT Cen-
tre, https://www.adaptcentre.ie. The
ADAPT Centre for Digital Content Technology
is funded under the SFI Research Centres Pro-
gramme (Grant 13/RC/2106) and is co-funded un-
der the European Regional Development Fund.

References
J. Allen. 1983. Maintaining knowledge about tem-

poral intervals. Communications of the ACM,
26(11):832–843.

D.R. Dowty. 1979. Word Meaning and Montague
Grammar. Reidel, Dordrecht.

I.A. Durand and S.R. Schwer. 2008. A tool for
reasoning about qualitative temporal information:
the theory of S-languages with a Lisp implemen-
tation. Journal of Universal Computer Science,
14(20):3282–3306.

T. Fernando. 2016. On regular languages over power
sets. Journal of Language Modelling, 4(1):29–56.

T. Fernando. 2019. Projecting temporal properties,
events and actions. In Proceedings 13th Inter-
national Conference on Computational Semantics,
pages 1–12. www.aclweb.org/anthology/W19-0401.

T. Fernando. To appear. Pictorial narratives and tem-
poral refinement. In Proc 29th Semantics and Lin-
guistic Theory (SALT). UCLA/Cornell.

T. Fernando and C. Vogel. 2019. Prior proba-
bilities of Allen interval relations over finite
orders. In Proc 11th International Confer-
ence on Agents and Artificial Intelligence
(ICAART 2019), Special Session on Natural
Language Processing in AI. Prague, available in
www.scss.tcd.ie/Tim.Fernando/NLPinAI 2019.pdf.

M.J. Fischer and R.E. Ladner. 1979. Propositional dy-
namic logic of regular programs. J. Comput. Syst.
Sci., 18(2):194–211.

J.A. Goguen and R.M. Burstall. 1992. Institutions: ab-
stract model theory for specification and program-
ming. Journal of the ACM, 39(1):95–146.

D. Harel, D. Kozen, and J. Tiuryn. 2000. Dynamic
Logic. MIT Press.

D. Kozen. 1994. A completeness theorem for Kleene
algebras and the algebra of regular events. Informa-
tion and Computation, 110(2):366–390.

D. Kozen. 1997. Kleene algebra with tests. Trans-
actions on Programming Languages and Systems,
19(3):427–443.

D. Kozen and F. Smith. 1996. Kleene algebra with
tests: Completeness and decidability. In Proc. 10th
Int. Workshop Computer Science Logic (CSL’96),
LNCS 1258, pages 244–259. Springer-Verlag.

L. Libkin. 2010. Elements of Finite Model Theory.
Springer.

R. Naumann. 2001. Aspects of changes: a dynamic
event semantics. Journal of Semantics, 18:27–81.

J. Pustejovsky and J.L. Moszkowicz. 2011. The quali-
tative spatial dynamics of motion in language. Spa-
tial Cognition and Computation, 11:15–44.

D. Woods and T. Fernando. 2018. Improving string
processing for temporal relations. Proc. 14th Joint
ACL-ISO Workshop on Interoperable Semantic An-
notation (ISA-2018), pages 76–86.

