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Abstract

We describe a series of experiments applied
to data sets from different languages and
genres annotated for coherence relations ac-
cording to different theoretical frameworks.
Specifically, we investigate the feasibility of a
unified (theory-neutral) approach toward dis-
course segmentation; a process which divides
a text into minimal discourse units that are in-
volved in some coherence relation. We ap-
ply a RandomForest and an LSTM based ap-
proach for all data sets, and we improve over
a simple baseline assuming simple sentence or
clause-like segmentation. Performance how-
ever varies a lot depending on language, and
more importantly genre, with f-scores ranging
from 73.00 to 94.47.

1 Introduction

The last few decades have seen several differ-
ent theories and frameworks being proposed for
the task of discourse processing, or discourse
parsing; the analysis and (automatic) extraction
of coherence relations from a text. Among the
most popular approaches are Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988), the
Penn Discourse Treebank (PDTB) (Prasad et al.,
2008), Segmented Discourse Representation The-
ory (SDRT) (Asher et al., 2003) and the Cognitive
approach to Coherence Relations (CCR) (Sanders
et al., 1992). While each of these approaches may
serve a different purpose or have a specific focus,
to a certain extent they all rely on segmenting texts
into segments that express specific propositions
which make up the arguments or components of
some relation. The 2019 DISRPT workshop aims
to contribute to a shared understanding of coher-
ence relations by providing training and evalua-
tion data from several available treebanks in the
RST, SDRT and PDTB formalisms. Because each
of these formalisms have their specific character-

istics for the various stages of analyses (i.e. differ-
ences in segmentation, relation inventory, flat or
tree-like representations, etc.) the shared task1 ac-
companying the workshop is meant to promote the
design of flexible methods for dealing with these
differences. The focus is on the first (and com-
parably easiest) step in the process; segmenting a
text into minimal units, as a standard for discourse
segmentation would, in addition to a better gen-
eral understanding, allow treebanks or resources
annotated according to one theoretical framework
to help in (manually or automatically) annotating
data according to other frameworks. In this pa-
per we describe a set of experiments using the col-
lection of data sets provided in the context of the
shared task, including nine different languages and
a variety of genres.

The rest of the paper is structured as follows:
Section 2 describes related work in this direction.
Section 3 describes the three formalisms that are
present among the data sets and the data sets them-
selves. Section 4 describes our approach toward
the segmentation task. Sections 5 and 6 present
and discuss the results, respectively, and finally,
Section 7 sums up our approach and main find-
ings.

2 Related Work

Since the introduction of RST in Mann and
Thompson (1988), several discourse parser for En-
glish have been proposed ((Soricut and Marcu,
2003), (Hernault et al., 2010), (Ji and Eisenstein,
2014), (Joty et al., 2015)). Additionally, the re-
lease of the PDTB (Prasad et al., 2008) helped fur-
ther enabling machine-learning approaches toward
shallow discourse parsing through its relatively
large size (compared to RST and also SDRT cor-

1https://github.com/disrpt/
sharedtask2019

https://github.com/disrpt/sharedtask2019
https://github.com/disrpt/sharedtask2019
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pora). More recently, the 2015 and 2016 CoNLL
shared tasks, following the PDTB framework,
sparked interest for the task of shallow discourse
parsing, with Wang and Lan (2015) and Oepen
et al. (2016) as winning systems, respectively. The
tasks featured both English and Chinese discourse
parsing. With the generation of several treebanks
in other languages over the last decade(s) (see Ta-
ble 1 in Section 3 for an overview), training and
evaluation data became available for several other
languages as well (where before systems had to
be rule-based, as the one described in Pardo and
Nunes (2008)). On the topic of multi-lingual pars-
ing, Braud et al. (2017) describe a cross-lingual
approach to RST parsing, using 6 of the 9 cor-
pora used in our experiments, but use language-
specific segmenters for the languages they work
with (Basque, Dutch, English, German, Spanish
and Brazilian Portuguese). Iruskieta et al. (2016)
look at a particular kind of segment and detect
central units in both Basque and Brazilian Por-
tuguese, where they define central units (CUs) to
be units that “(do) not function as satellite of any
other unit or text span.”. Earlier work on uni-
fying discourse parsing frameworks is described
in Rehbein et al. (2016), Benamara and Taboada
(2015), Bunt and Prasad (2016), Chiarcos (2014)
and Sanders et al. (2018) from a theoretical per-
spective, and in Demberg et al. (2017) from a prac-
tical perspective, but their main focus is on rela-
tion senses. Although this presupposes some sort
of mapping of units, language- and data-set indi-
vidual segmentation can be, and in many cases is
used. The 2019 DISRPT shared task will undoubt-
edly generate many more contributions to the seg-
mentation task specifically.

3 Data

The data that is featured in the shared task stems
from three different formalisms and covers nine
different languages. An overview of the data sets,
their formalism and size is shown in Table 1. Note
that the indicated number of tokens are for the
training and development sets only2.

The three different formalisms that the tree-
banks originated from, each have their own con-
ventions, underlying theory and potential applica-
tion scenarios. While these bridges may be too
large to gap for the entire representation of co-

2The test sets were added only in the final stage of the
shared task.

herence relations, when it comes to just text seg-
mentation, interesting synergies, and perhaps even
unified approaches can be explored. In what fol-
lows, we will briefly explain the most important
specifics with regard to segmentation of each of
the three theories featured in the shared task, to
conclude with our expectations in terms of over-
lap when dealing with the sub-task of segmenta-
tion alone.

3.1 RST
Introduced by Mann and Thompson (1988), RST
aims to represent a text as a single tree structure, in
which every single token is included in some ele-
mentary discourse unit (EDU) which serves as ei-
ther a satellite or a nucleus in some relation. EDUs
can be sequences of tokens at text level, or can be
complex sub-trees which hierarchically represent
a larger body of text. In RST, segmentation is an
important first step in analysing a text (and conse-
quently generating a tree); before a hierarchy of
EDUs can be considered, the EDUs themselves
have to be identified, which puts the segmentation
task at the center of any RST analysis.

3.2 PDTB
In contrast to RST, in the PDTB framework, which
originated as a discourse annotation layer over the
Penn Treebank (Miltsakaki et al., 2004), no com-
mitment to the overall structure of the text is made,
an approach typically referred to as shallow dis-
course parsing. Relations between two (often ad-
jacent, but not necessarily so) pieces of text are
classified according to a set of relation senses.
This is first done by locating explicit connectives
and their two arguments (internal, or arg2 and ex-
ternal, or arg1). Subsequently, adjacent sentences
inside the same paragraph that are not yet con-
nected through an explicit relation are classified
according to an (implicit) relation sense, or as ent-
rel or no-rel (see Prasad et al. (2008) for more de-
tails). Segmentation plays a less central role and
is somewhat less formally defined. The two ar-
guments of a relation should refer to propositions
and typically include a finite verb, but under cer-
tain circumstances exceptions are made (for nom-
inalized constructions such as “the uprising of the
Bolsheviks” for example).

3.3 SDRT
SDRT (Asher et al., 2003) was proposed as an
extension to Discourse Representation Theory
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Corpus name Language Annotation style Tokens
RSTBT (Iruskieta et al., 2013) Basque RST 28,658
CDTB (Zhou and Xue, 2015) Chinese PDTB 63,239
SCTB (Cao et al., 2018) Chinese RST 11,067
NLDT (Redeker et al., 2012) Dutch RST 21,355
PDTB (Prasad et al., 2008) English PDTB 1,100,990
GUM (Zeldes, 2017) English RST 82,691
RSTDT (Carlson et al., 2002) English RST 184,158
STAC (Asher et al., 2016) English SDRT 41,666
ANNODIS (Afantenos et al., 2012) French SDRT 25,050
PCC (Stede and Neumann, 2014) German RST 29,883
RRST (Toldova et al., 2017) Russian RST 243,896
RSTSTB (da Cunha et al., 2011) Spanish RST 50,565
SCTB (Cao et al., 2018) Spanish RST 12,699
CSTN (Cardoso et al., 2011) Brazilian Portuguese RST 51,041

Table 1: Shared task data sets

(Kamp, 1981). By including propositions as vari-
ables to reason over and discourse relations to rule
out certain antecedents or promote others, it ac-
counts for relations in a text beyond the sentence
level (where dynamic semantic approaches often
fail). Because our contribution deals with dis-
course segmentation only, and the two corpora in-
cluded in this paper that have SDRT annotations
both use RST-style EDUs for initial segmentation,
the differences between the two theories are irrel-
evant for the segmentation task at hand.

3.4 Segmentation & Overlap

Segmentation of text into minimal units is not the
first step in processing some piece of text in all
of the frameworks described above. In PDTB for
example, typically explicit signals in the form of
connectives are identified first, upon which their
arguments are extracted. Subsequently extracting
implicit relations more or less means filling in the
blanks between explicit relations. In RST and in
the two corpora with SDRT annotations, it plays
a much more central role, and segmenting a text
into EDUs is the first step in constructing a tree
for some text. Annotating coherence relations is
a time-consuming and difficult task, as is reflected
by low inter-annotator agreement scores compared
to other NLP tasks, especially when using the RST
framework (because of its requirement to end up
with one single tree-like representation covering
the entire text). As a result, available annotated
corpora are relatively small and sparse. For this
reason alone, attempting to unify the first, and rel-

atively simple (compared to what follows) step of
segmenting some piece of text into minimal units
can be very beneficial. Apart from this practical
motivation, investigating segmentation character-
istics over multiple different frameworks may lead
to a broader understanding of the ways meaning-
ful propositions are realised in the languages cov-
ered in this shared task. Most of the data in the
shared task (i.e. the RST and SDRT data sets
from Table 1) is annotated for segment boundaries
and in addition is provided with dependency trees
which, for most data sets, follows the Universal
Dependencies scheme, meaning that we have sen-
tence segmentation, part-of-speech tags and posi-
tion and function for every word in the dependency
tree. For the PDTB data sets, instead of segments
(EDUs), connectives were labeled, meaning that
the information in this data set is of a very dif-
ferent type. Also, the dependency trees were pro-
vided for these data sets. Furthermore, note that
we did not have access to the Chinese Discourse
Treebank, so though labels were provided in the
shared task, we do not apply our methods to this
data set3. Since we worked on the data sets as they
were provided by the organisers, for more specific
information related to the data sets we refer the
reader either to the corresponding publications in-
cluded in Table 1, or to the shared task website
referred to in Section 1.

3In the final stage of the shared task, a Turkish data set
was added to which we also had no access.
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4 Method

To compare results against a simple, yet for some
languages and data sets already relatively effective
baseline, we first implement our baseline system
which either assumes a segment boundary (seg-
ment start) at the beginning of each sentence, or
at the beginning of each sentence and after every
comma. To give a realistic impression of the per-
formance of the other algorithms, the score for the
baseline system in Table 2 represents whichever
version scored best. This was the version basi-
cally assuming every sentence to be a segment
for the RSTBT, PDTB, GUM, RRST, RSTSTB and
Spanish SCTB data sets. The version assuming
a segment boundary after every comma as well
performed better for the Chinese SCTB, NLDT,
RSTDT, STAC, ANNODIS and CSTN data sets.

4.1 RandomForest

To improve over the baseline, we try two dif-
ferent approaches. The RandomForest method
(based on Scikit-learn (Pedregosa et al., 2011))
uses a combination of information present in the
CoNLL-format files of the shared task (i.e. the
dependency tree) and augment this, where avail-
able, with constituency syntax features. The base
set of features we use for all languages consists
of the surface form of the word itself; the sur-
face forms of the next and previous word; the dis-
tance of this word to its parent in the dependency
tree; the function of the parent word; the func-
tions of the previous and next word; the part-of-
speech tags (both coarse and fine-grained) tag for
the previous, current and next word and the par-
ent; binary features for whether or not the previ-
ous, current and parent word are starting with an
uppercase character; absolute position in the sen-
tence; relative position in the sentence (absolute
position divided by sentence length); whether or
not there is a verb ((lowercased) coarse part-of-
speech tag starts with a “v”) in between the cur-
rent word and the next punctuation mark4. We
are using the Stanford CoreNLP lexicalized PCFG
parser (Klein and Manning, 2003) to obtain con-
stituency trees for the languages supported (Chi-
nese, English, French, German, and Spanish). For
data sets in these languages, we additionally use as
features the category of the parent node; the cate-
gories of the left and right siblings in the tree; the

4Any character in the set
{!”#$%&’()*+,-./:;¡=¿?@[\]ˆ ‘— }

path to the root node and the compressed path to
the root node, where consecutive identical nodes
are deleted (i.e. [N → NP → S → S] becomes [N
→ NP → S]). These features are inspired by the
approach of Pitler and Nenkova (2009) for con-
nective disambiguation.

4.2 LSTM

The LSTM-based method (based on Keras (Chol-
let et al., 2015)) uses a smaller feature set, includ-
ing the distance to the parent, (grammatical) func-
tion of the parent and the current word, the par-
ent’s pos-tag and the current word’s pos-tag, a bi-
nary feature for whether or not the first character
of the word is uppercased and the relative position
in the sentence. For the encoding of the word it-
self, we use two different approaches; either we
use pre-trained word embeddings (Grave et al.,
2018), or we use the embeddings from the corpus
itself. The approach with pre-trained embeddings
performed better for the RSTBT, NLDT, RSTDT,
RRST, RSTSTB, Spanish SCTB and CSTN corpora,
whereas the approach using the embeddings from
the corpus itself performed better for the Chinese
SCTB, GUM, STAC, ANNODIS, PDTB and PCC
corpora. In general though, the scores for the two
LSTM approaches were often very close together.

The results when training on the training and
development section of every corpus and evaluat-
ing on the test section (as defined by the shared
task setup) are shown in Table 2. The baseline
rows include results for the baseline approach and
the RandomForest rows include results using the
above-mentioned feature set with the RandomFor-
est classifier. The LSTM rows show the results
for the best scoring LSTM system (either the one
with pre-trained embeddings or the embeddings
from the corpus itself, as explained above). Note
that due to a much larger variation in scores over
individual runs, for the LSTM approach (regard-
less of which one specifically), scores are macro-
averaged over 10 runs5. Our code is publicly avail-
able at reference anonymised.

5 Results

For all data sets, we beat the baseline, be it with
a small margin for some (STAC and the Span-
ish SCTB for example). We did not check for

5Except for the RRST and PDTB corpora. Due to their rel-
atively large size, hence longer processing time, these scores
were averaged over 5 runs.
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precision recall f1 score

Basque RSTBT
baseline 98.13 52.95 68.78
RandomForest 92.60 61.21 73.71
LSTM 87.75 68.63 75.95

Chinese SCTB
baseline 87.23 73.21 79.61
RandomForest 88.89 76.19 82.05
LSTM 77.40 77.32 76.74

Dutch NLDT
baseline 87.79 87.54 87.66
RandomForest 98.04 86.96 92.17
LSTM 90.00 85.94 86.92

English

PDTB
baseline 0.13 0.24 0.02
RandomForest 38.80 35.74 37.21
LSTM 9.14 9.46 9.29

GUM
baseline 100 73.98 85.05
RandomForest 97.76 83.54 90.10
LSTM 93.20 84.69 88.41

RSTDT
baseline 66.16 56.10 60.72
RandomForest 93.89 87.13 90.38
LSTM 94.58 90.27 92.35

STAC
baseline 93.47 94.80 94.13
RandomForest 98.19 91.49 94.47
LSTM 95.42 90.45 92.81

French ANNODIS
baseline 93.63 69.12 79.53
RandomForest 93.50 80.44 86.48
LSTM 89.61 82.31 85.32

German PCC
baseline 100 72.45 84.02
RandomForest 95.74 84.01 89.49
LSTM 92.29 82.41 86.90

Russian RRST
baseline 76.04 49.00 59.60
RandomForest 82.98 67.02 74.15
LSTM 84.48 70.05 76.42

Spanish
RSTSTB

baseline 97.36 64.69 77.73
RandomForest 93.51 75.88 83.78
LSTM 86.21 76.21 79.97

SCTB
baseline 97.00 57.74 72.39
RandomForest 94.33 59.52 73.00
LSTM 68.92 55.60 61.45

Brazilian Portuguese CSTN
baseline 64.47 73.96 68.90
RandomForest 92.07 78.87 84.96
LSTM 92.33 82.26 86.43

Table 2: Results for the different data sets

statistical significance, so claiming overall im-
provement over the baseline may not be justified.
While the principle behind EDUs is taken to be
language-neutral, it is interesting to see that the
operationalisations vary greatly among languages
and data sets/domains. This is demonstrated by
the fluctuation in the baseline scores; from 59.60
(f1 score) for Russian (RRST), to 94.13 for En-

glish (STAC). For all but STAC and CSTN, pre-
cision is higher than recall (and in general com-
paratively high), meaning that the lower scoring
languages have more EDUs per sentence, or just
longer sentences on average. The latter is in-
deed what we see for Brazilian Portuguese, Rus-
sian and Basque, with average sentence lengths
of 26.87, 21.85 and 19.93 words per sentence, re-
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spectively (compared to average lengths of 14.07,
14.74 and 5.05 for the much higher scoring Ger-
man, Dutch and English STAC data sets, respec-
tively). Since sentence length is a more informa-
tive property of domain than of language6, this
may suggest that a language-wise division is not
the ideal one, and perhaps the domain should in-
stead serve as the main indicator for performance.
In line with the numbers above, we see that the
Brazilian Portuguese, Russian and Basque data
sets include scientific writing in their corpora,
while the German and Dutch data sets tend more
to (popular) news commentary, encyclopedia texts
(targeted at the general public instead of scien-
tists) and fund-raising letters and commercial ad-
vertisements. The English STAC data set is a do-
main of its own (in-game chats), with very short
average sentences. If one takes the level of ex-
perience of the author and targeted reader as in-
dications of text complexity (and also as proper-
ties of domain), this is likely to correlate to seg-
mentation agreement figures. Unfortunately, map-
ping domain and complexity onto some shared di-
mensional space (allowing correlations to arise)
is not straightforward. In addition, the creators
of corpora used in our experiments do no use a
single, easily unify-able metric to calculate Inter-
Annotator Agreement (IAA) for EDU segmenta-
tion. We do note however that, again, for the
higher scoring corpora, IAA was relatively high;
Carlson et al. (2002) note a Kappa of 0.97 for
RSTDT, Asher et al. (2016) note an initial agree-
ment of 90% for automatic segmentation in STAC,
and segmentation is manually improved after this
automatic procedure, and Redeker et al. (2012)
note an agreement of 97% for EDU segmenta-
tion in NLDT. On the other end of the spectrum,
Iruskieta et al. (2013) report an EDU agreement
of 81.35% for RSTBT and Toldova et al. (2017)
report Krippendorf’s α figures of 0.2792, 0.3173
and 0.4965 where they consider figures around 0.8
to be acceptable for RRST.

6 Discussion

Figure 1 plots performance for the RandomFor-
est and LSTM approaches (and the baseline for
comparison) on the Y axis (f1 score) and the cor-
pora ordered by size (increasing from left to right)

6For highly agglutinative languages, depending on tokeni-
sation procedures average sentence lengths may of course be
shorter, but given the set of languages here, excluding Chi-
nese, difference in morphology plays a less prominent role.

on the X axis, illustrating that there is no clear
correlation between corpus size and performance.
The largest two corpora by a considerable mar-
gin7 (RSTDT and RRST) do not score better than
many of the other, smaller corpora. Regarding the

Figure 1: Results for the baseline, RandomForest and
LSTM.

RandomForest and LSTM performance, the fig-
ure shows that the two come closer together and
LSTM outperforms RandomForest on the larger
corpora. Overall, RandomForest performs best in
9 data sets, whereas LSTM performs best in 4
cases. The difference however is typically small,
and as we did not check for statistical signifi-
cance, drawing conclusion based on this may not
be justified in the cases where the two score close
together. The cases where there is a large gap
between the baseline and either of the two ap-
proaches (CSTN, RSTDT and RRST most no-
tably) all contain (at least a portion of) text from
the news domain, but two other corpora contain-
ing (a portion of) news text, i.e. PCC and ANN-
ODIS, show much less of a gap. More investiga-
tion would be needed for these corpora to find the
cause of this gain when using a classifier, com-
pared to the baseline performance.

Figure 2 shows the information gain per feature
for the RandomForest classifier for all data sets.
Recall that the syntax features based on the con-
stituency tree were not used for all data sets, hence
blank for some.

The grammatical function in the dependency
tree, (coarse) part-of-speech tag of the parent, po-
sition in the sentence, previous word and its part-
of-speech tag play an important role for all data
sets. For some data sets, the word itself plays

7Excluding the PDTB, as explained in the remainder of
this section.
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Figure 2: Information gain for the RandomForest classifier.

a relatively important role, while for others this
is much less informative. Looking specifically at
data sets from the same language (allowing to fac-
tor out language differences, and in some cases
maintaining a genre difference only), the most no-
table differences is the informativeness of the part-
of-speech tag when comparing GUM, RSTDT and
STAC (i.e. it is informative for RSTDT but not for
the other English data sets). The binary feature for
last word in the sentence is partially encoded by
relative sentence position as well and in general
is very uninformative (with no information gain
for most data sets). Surprising is the difference
in granularity for the part-of-speech tags. We in-
cluded both the fine-grained and the coarse tag,
suspecting that the fine-grained one may exhibit
too much variation for the classifier to pick up on.
This does not seem to be the case for the part-of-
speech tag of the word itself and that of the previ-
ous word. For the parent however, the coarse part-
of-speech tag is generally more informative than
its more fine-grained version. The data sets in Fig-
ure 2 are ordered by size (smallest to largest), but
it does not seem to be the case that certain features
become more or less informative once data sizes

increase.
Note that we largely leave the PDTB, by far the

biggest resource of them all, out of this discus-
sion (and consequently also out of Figure 1) due
to its different nature of segmentation (at least in
the context of the shared task). The task descrip-
tion here notes that for the PDTB-style corpora,
“the task is to identify the spans of discourse con-
nectives that explicitly identify the existence of
a discourse relation.” While this sounds like the
task is about discourse connective identification,
we note that the data set as published in the shared
task includes many instances of words that would
not be considered connectives by the usual defini-
tions, such as verbs, nouns and in general includes
many alternative lexicalisations. In this case, the
baseline scores exceptionally low, as it makes little
sense to assume a connective at the start of every
sentence. Figure 2 also shows that all the syntactic
features8 add little information for the PDTB, and
the focus on the surface form could be evidence
that the classifier just tries to memorise the words

8Although the part-of-speech tag, which can be seen as
some kind of syntactic information, does seem to be informa-
tive.
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as the only thing to go on. However, because we
did not investigate this in much detail, we inten-
tionally and equally leave it out of the discussion
regarding feature information gain. While due to
its size, this data set can potentially contribute a lot
to machine-learning based approaches, we argue
that a higher degree of unification in the segmen-
tation procedure should be realised before cross-
fertilisation can happen. Even though standardis-
ing the segmentation task in a theory-neutral way
is at the core of the shared task at hand, we found
that a better definition and corresponding anno-
tated data set would be needed before reliable clas-
sifiers can be constructed. For an idea of connec-
tive disambiguation scores on the PDTB, we refer
to reference anonymised.

We experimented with multilingual word em-
beddings (Conneau et al., 2017) to have a shared
representation for the word and used the syntax
features from the dependency layer (as this follows
the Universal Dependencies scheme). This allows
training on the entire collection (all data sets), and
evaluating on just the development set of interest.
This however did not improve results compared to
using just the data set’s corresponding training set.

It seems then that the language usage (i.e. fac-
tors like domain, complexity and target audience)
plays a more important role in the task of dis-
course segmentation than the language (i.e. Span-
ish, Dutch or English for example) in which it
is written does. This is also noted by Iruskieta
et al. (2016) who look at Basque and Brazilian
Portuguese specifically, but equally include and
compare texts from different genres. Text from
a particular genre from language can thus poten-
tially serve as training data for text from that same
genre, but in a language for which no training
data for this task is available. We consider fur-
ther investigation into this direction, adhering to
a genre-based distinction rather than a language-
based one, the most important pointer to future
work and the most promising for performance im-
provement. First concrete steps in this direction
can be the grouping of the data sets included in our
experiments in combination with the multilingual
word embeddings approach mentioned above.

With regard to the unification of different
frameworks, as demonstrated in our experiments,
the same systems that work well for EDU segmen-
tation perform very poor for the PDTB-style seg-
mentation defined for the purpose of this shared

task. Since shallow annotations are typically eas-
ier to obtain and therefore their corresponding cor-
pora can grow larger more easily, the mapping of
segments and their properties from a (shallow) the-
oretical framework (i.e. PDTB) to another (i.e.
RST, SDRT or CCR) is a promising direction, but
also one that needs more research. Earlier work
in this direction ((Demberg et al., 2017), (Sanders
et al., 2018) and (Scheffler and Stede, 2016)) may
help in the definition of a unifying minimal seg-
ment for future attempts at the segmentation task.

7 Conclusion & Outlook

We perform the task of discourse segmentation for
various languages, genres and data sets, focusing
on segmenting a text into EDUs. Experimenting
with 14 data sets from 9 languages representing a
variety of domains, we try a RandomForest clas-
sifier and an LSTM classifier, and use the same
setup for different languages and domains. With
the results of the two approaches being close to-
gether and no clear winner emerging, the main
take-away is that not the language, but the genre
seems the most reliable indicator of segmenta-
tion performance. We consider more research into
genre differences with respect to discourse seg-
mentation the most important suggestion for fu-
ture work. In addition, while a large corpus with
shallow annotations like the PDTB has a lot of po-
tential for improving machine-learning based ap-
proaches, we argue that a more refined, unified
notion of a minimal segment is needed for cross-
theory segmentation to succeed.
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