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Abstract

The increased demand for structured scientific
knowledge has attracted considerable attention
in extracting scientific relation from the ever
growing scientific publications. Distant su-
pervision is widely applied approach to auto-
matically generate large amounts of labelled
data for Relation Extraction (RE). However,
distant supervision inevitably accompanies the
wrong labelling problem, which will nega-
tively affect the RE performance. To address
this issue, (Han et al., 2018) proposes a novel
framework for jointly training RE model and
Knowledge Graph Completion (KGC) model
to extract structured knowledge from non-
scientific dataset. In this work, we firstly in-
vestigate the feasibility of this framework on
scientific dataset, specifically on biomedical
dataset. Secondly, to achieve better perfor-
mance on the biomedical dataset, we extend
the framework with other competitive KGC
models. Moreover, we proposed a new end-
to-end KGC model to extend the framework.
Experimental results not only show the fea-
sibility of the framework on the biomedical
dataset, but also indicate the effectiveness of
our extensions, because our extended model
achieves significant and consistent improve-
ments on distantly supervised RE as compared
with baselines.

1 Introduction

Scientific Knowledge Graph (KG), such as Uni-
fied Medical Language System (UMLS) 1, is ex-
tremely crucial for many scientific Natural Lan-
guage Processing (NLP) tasks such as Question
Answering (QA), Information Retrieval (IR), Re-
lation Extraction (RE), etc. Scientific KG provides
large collections of relations between entities, typ-
ically stored as (h, r, t) triplets, where h = head

1https://www.nlm.nih.gov/research/
umls/

entity, r = relation and t = tail entity, e.g., (ac-
etaminophen, may treat, pain). However, as with
general KGs such as Freebase (Bollacker et al.,
2008) and DBpedia (Lehmann et al., 2015), sci-
entific KGs are far from complete and this would
impede their usefulness in real-world applications.
Scientific KGs, on the one hand, face the data spar-
sity problem. On the other hand, scientific pub-
lications have become the largest repository ever
for scientific KGs and continue to increase at an
unprecedented rate (Munroe, 2013). Therefore, it
is an essential and fundamental task to turn the
unstructured scientific publications into well orga-
nized KG, and it belongs to the task of RE.

In RE, one obstacle that is encountered when
building a RE system is the generation of training
instances. For coping with this difficulty, (Mintz
et al., 2009) proposes distant supervision to au-
tomatically generate training samples via leverag-
ing the alignment between KGs and texts. They
assumes that if two entities are connected by a
relation in a KG, then all sentences that contain
these entity pairs will express the relation. For in-
stance, (aspirin, may treat, pain) is a fact triplet
in UMLS. Distant supervision will automatically
label all sentences, such as Example 1, Exam-
ple 2 and Example 3, as positive instances for the
relation may treat. Although distant supervision
could provide a large amount of training data at
low cost, it always suffers from wrong labelling
problem. For instance, comparing to Example 1,
Example 2 and Example 3 should not be seen as
the evidences to support the may treat relationship
between aspirin and pain, but will still be anno-
tated as positive instances by the distant supervi-
sion.

(1) The clinical manifestations are generally typ-
ical nocturnal pain that prevents sleep and
that is alleviated with aspirin.

https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
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(2) The tumor was remarkably large in size , and
pain unrelieved by aspirin.

(3) The level of pain did not change significantly
with either aspirin or pentoxifylline , but the
walking distance was farther with the pentox-
ifylline group .

To automatically alleviate the wrong labelling
problem, (Riedel et al., 2010; Hoffmann et al.,
2011) apply multi-instance learning. In order to
avoid the handcrafted features and errors propa-
gated from NLP tools, (Zeng et al., 2015) proposes
a Convolutional Neural Network (CNN), which
incorporate mutli-instance learning with neural
network model, and achieves significant improve-
ment in distantly supervised RE. Despite the im-
pressive achievement in RE, this model still has
the limitation that it only selects the most infor-
mative sentence and ignores the rest, thereby loses
the rich information stored in those neglected sen-
tences, For instance, among Example 1, Exam-
ple 2 and Example 3, Example 1 is undoubtedly
the most informative one for detecting relation
may treat, but it unnecessarily means other sen-
tences such as Example 3 could not contribute to
the relation detection. In Example 3, entity aspirin
and entity pentoxifylline have alternative relation,
and the latter is a drug to treat muscle pain, there-
fore the former is also likely to be a pain-killing
drug. To address this issue, recently, attention
mechanism is applied to extract features from all
collected sentences. (Lin et al., 2016) proposes a
relation vector based attention mechanism for dis-
tantly supervised RE. (Han et al., 2018) proposes
a novel joint model that leverages the KG-based
attention mechanism and achieves better perfor-
mance than (Lin et al., 2016) on distantly super-
vised RE from New York Times (NYT) corpus.

The success that the joint model (Han et al.,
2018) has attained in the newswire domain (or
non-scientific domain) inspires us to choose the
strong model as our base model and assess its
feasibility on biomedical domain. Specifically,
the first question of this research is how the joint
model behaves when the system is trained on
biomedical KG (e.g., UMLS) and biomeical cor-
pus (e.g., Medline corpus). (Han et al., 2018)
indicates that the performance of the base model
could be affected the representation ability of
KGC model. The representation ability of a KGC
model also varies with dataset (Wang et al., 2017).

Therefore, given a new dataset (e.g., a biomedical
dataset), it is necessary to extend the base model
with other competitive KGC models, and choose
the best fit for the given dataset. However, the
base model only implements two KGC models,
which are based on TransE (Bordes et al., 2013)
and TransD (Ji et al., 2015) respectively. Thus, the
second question of this work is how other com-
petitive KGC models such as ComplEx (Trouil-
lon et al., 2016) and SimplE (Kazemi and Poole,
2018) influence the performance of the base model
on biomedical dataset. At last but not least,
in biomedical KG, a relation is scientifically re-
stricted by entity type (ET). For instance, in the
relation (h, may treat, t), the ET of t should be
Disease or Syndrome. Therefore, ET in-
formation is an important feature for biomedical
RE and KGC. For leveraging the ET information,
which the base model lacks, in this work, we pro-
pose an end-to-end KGC model to enhance the
base model. The proposed KGC model is capable
of identifying ET via the word embedding of tar-
get entity and incorporating the predicted ET into
a state-of-to-art KGC model to evaluate the plau-
sibility of potential fact triplets.

We conduct evaluation on biomedical datasets
in which KG is collected from UMLS and textual
data is extracted from Medline corpus. The ex-
perimental results not only show the feasibility of
the base model on the biomedical domain, but also
prove the effectiveness of our proposed extensions
for the base model.

2 Related Work

RE is a fundamental task in the NLP commu-
nity. In recent years, Neural Network (NN)-based
models have been the dominant approaches for
non-scientific RE, which include Convolutional
Neural Network (CNN)-based frameworks (Zeng
et al., 2014; Xu et al., 2015; Santos et al., 2015)
Recurrent Neural Network (RNN)-based frame-
works (Zhang and Wang, 2015; Miwa and Bansal,
2016; Zhou et al., 2016). NN-based approaches
are also used in scientific RE. For instance, (Gu
et al., 2017) utilizes a CNN-based model for iden-
tifying chemical-disease relations from Medline
corpus. (Hahn-Powell et al., 2016) proposes an
LSTM-based model for identifying causal prece-
dence relationship between two event mentions in
biomedical papers. (Ammar et al., 2017) applies
(Miwa and Bansal, 2016)’s model for scientific
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RE.

Although remarkably good performances are
achieved by the models mentioned above, they
still train and extract relations on sentence-level
and thus need a large amount of annotation data,
which is expensive and time-consuming. To ad-
dress this issue, distant supervision is proposed
by (Mintz et al., 2009). To alleviate the noisy
data from the distant supervision, many studies
model distant supervision for RE as a Multiple
Instance Learning (MIL) problem (Riedel et al.,
2010; Hoffmann et al., 2011; Zeng et al., 2015), in
which all sentences containing a target entity pair
(e.g.,aspirin and pain) are seen as a bag to be clas-
sified. To make full use of all the sentences in the
bag, rather than just the most informative one, (Lin
et al., 2016) proposes a relation vector based atten-
tion mechanism to extract feature from the entire
bag and outperforms the prior approaches. (Han
et al., 2018) proposes a joint model that adopts a
KG-based attention mechanism and achieves bet-
ter performance than (Lin et al., 2016) on distantly
supervised RE from NYT corpus.

In this work, we are primarily interested in ap-
plying distant supervision techniques to extract
biomedical fact triplets from scientific publica-
tions. To validate and enhance the efficacy of
the previous techniques in biomedical domain,
we choose the strong joint model proposed by
(Han et al., 2018) as the base model and make
some necessary extension for our scientific RE
task. Since from the two main groups of KGC
models (Wang et al., 2017): translational dis-
tance models and semantic matching models, the
base model only implements the translational dis-
tance models, TransE (Bordes et al., 2013) and
TransD (Ji et al., 2015), we thus extend the base
model with the semantic matching models, Com-
plEx (Trouillon et al., 2016) and SimplE (Kazemi
and Poole, 2018), for selecting the best fit for our
task. In addition, the base model has not incor-
porated the ET information, which we assume is
crucial for scientific RE. Therefore, we propose
an end-to-end KGC model to enhance the base
model. Different from the work (Xie et al., 2016),
which utilizes an ET look-up dictionary to obtain
ET, the end-to-end KGC is capable of identifying
ET via the word embedding of a target entity and
thus is free of the attachment to an incomplete ET
look-up dictionary.
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Figure 1: Overview of the base model.

3 Base Model

The architecture of the base model is illustrated
in Figure 1. In this section, we will introduce the
base model proposed by (Han et al., 2018) in two
main parts: KGC part, RE part.

3.1 KGC Part
Suppose we have a KG containing a set of fact
triplets O = {(e1, r, e2)}, where each fact triplet
consists of two entities e1, e2 ∈ E and their re-
lation r ∈ R. Here E and R stand for the set
of entities and relations respectively. KGC model
then encodes e1, e2 ∈ E and their relation r ∈ R
into low-dimensional vectors h, t ∈ Rd and r
∈ Rd respectively, where d is the dimensional-
ity of the embedding space. As mentioned above,
the base model adopts two representative trans-
lational distance models Prob-TransE and Prob-
TransD, which are based on TransE (Bordes et al.,
2013) and TransD (Ji et al., 2015) repectively, to
score a fact triplet. Specifically, given an entity
pair (e1, e2), Prob-TransE defines its latent rela-
tion embedding rht via the Equation 1.

rht = t− h (1)

Prob-TransD is an extension of Prob-TransE and
introduces additional mapping vectors hp, tp ∈
Rd and rp ∈ Rd for e1, e2 and r respectively.
Prob-TransD encodes the latent relation embed-
ding via the Equation 2, where Mrh and Mrt

are projection matrices for mapping entity embed-
dings into relation spaces.

rht = tr − hr, (2)
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hr = Mrhh,

tr = Mrtt,

Mrh = rph
>
p + Id×d,

Mrt = rpt
>
p + Id×d

The conditional probability can be formalized
over all fact triplets O via the Equations 3 and
4, where fr(e1, e2) is the KG scoring function,
which is used to evaluate the plausibility of a given
fact triplet. For instance, the score for (aspirin,
may treat, pain) would be higher than the one for
(aspirin, has ingredient, pain), because the former
is more plausible than the latter. θE and θR are pa-
rameters for entities and relations respectively, b is
a bias constant.

P(r|(e1, e2), θE , θR) =
exp(fr(e1, e2))∑

r′∈R exp(fr′(e1, e2))

(3)

fr(e1, e2) = b− ‖rht − r‖ (4)

3.2 RE Part
Sentence Representation Learning. Given a sen-
tence s with n words s = {w1, ..., wn} includ-
ing a target entity pair (e1, e2), CNN is used
to generate a distributed representation s for the
sentence. Specifically, vector representation vt

for each word wt is calculated via Equation 5,
where Ww

emb is a word embedding projection ma-
trix (Mikolov et al., 2013), Wwp

emb is a word posi-
tion embedding projection matrix, xw

t is a one-hot
word representation and xwp

t is a one-hot word po-
sition representation. The word position describes
the relative distance between the current word and
the target entity pair (Zeng et al., 2014). For in-
stance, in the sentence “Patients recorded pain

e2
and aspirin

e1
consumption in a daily diary”, the

relative distance of the word “and” is [1, -1].

vt = [vw
t ;vwp1

t ;vwp2
t ], (5)

vw
t = Ww

embx
w
t ,

vwp1
t = Wwp

embx
wp1
t ,

vwp2
t = Wwp

embx
wp2
t

The distributed representation s is formulated via
the Equation 6, where, [s]i and [ht]i are the i-th
value of s and ht, M is the dimensionality of s,
W is the convolution kernal, b is a bias vector,
and k is the convolutional window size.

[s]i = max
t
{[ht]i}, ∀i = 1, ...,M (6)

ht = tanh(Wzt + b),

zt = [vt−(k−1)/2; ...;vt+(k−1)/2]

KG-based Attention. Suppose for each fact
triplet (e1, r, e2), there might be multiple sen-
tences Sr = {s1, ..., sm} in which each sentence
contains the entity pair (e1, e2) and is assumed to
imply the relation r, m is the size of Sr. As dis-
cussed before, the distant supervision inevitably
collect noisy sentences, the base model adopts a
KG-based attention mechanism to discriminate the
informative sentences from the noisy ones. Specif-
ically, the base model use the latent relation em-
bedding rht from Equation 1 (or Equation 2) as
the attention over Sr to generate its final represen-
tation sfinal. sfinal is calculated via Equation 7,
where Ws is the weight matrix, bs is the bias vec-
tor, ai is the weight for si, which is the distributed
representation for the i-th sentence in Sr.

sfinal =

m∑
i=1

aisi, (7)

ai =
exp(〈rht,xi〉)∑m

k=1 exp(〈rht,xk〉)
,

xi = tanh(Wssi + bs)

Finally, the conditional probability P (r|Sr, θ)
is formulated via Equation 8 and Equation 9,
where, θ is the parameters for RE, which includes
{Ww

emb,W
wp
emb,W,b,Ws,bs,M,d}, M is the

representation matrix of relations, d is a bias vec-
tor, o is the output vector containing the predic-
tion probabilities of all target relations for the in-
put sentences set Sr, and nr is the total number of
relations.

P (r|Sr, θ) =
exp(or)∑nr
c=1 exp(oc)

(8)

o = Msfinal + d (9)

4 Extensions

The base model opens the possibility to jointly
train RE models with KGC models for distantly
supervised RE. The empirical results of the base
model on NYT corpus indicate that the perfor-
mance of distantly supervised RE varies with
KGC models (Han et al., 2018). In addition, the
performance of KGC models depends on a given
dataset (Wang et al., 2017). Therefore, we assume
that it is necessary to attempt multiple competi-
tive KGC models for the joint framework so as
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to find the optimal combination for our biomedi-
cal dataset. However, the base model only imple-
ments translational distance models: TransE and
TransD, but not the semantic matching models,
and this, we assume, might hinder its performance
in the new dataset. To address this, we select two
representative semantic matching models: Com-
plEx (Trouillon et al., 2016) and SimplE (Kazemi
and Poole, 2018) as the alternative KGC part.

As discussed in Section 1, in scientific
KGs, a fact triplet is severely restricted by
ET information (e.g., ET of e2 should be
Disease or Syndrome in the fact triplet
(e1,may treat, e2)). Therefore, for leveraging
ET information, which the base model lacks, we
also propose an end-to-end KGC model to extend
the base model. Since the proposed KGC model is
build on SimplE and is capable of Named Entity
Recognition (NER), we call it SimplE NER.

4.1 ComplEx based Attention

Given a fact triplet (e1, r, e2), ComplEx then en-
codes entities e1, e2 and relation r into a complex-
valued vector e1 ∈ Cd, e2 ∈ Cd and r ∈ Cd

respectively, where d is the dimensionality of the
embedding space. Since entities and relations are
represented as complex-valued vector, each x ∈
Cd consists of a real vector component Re(x)
and imaginary vector component Im(x), namely
x = Re(x)+iIm(x). The KG scoring function of
ComplEx for a fact triplet (e1, r, e2) is calculated
via Equation 10, where ē2 is the conjugate of e2;
Re(·) (or Im(·)) means taking the real (or imagi-
nary) part of a complex value. 〈u, v, w〉 is defined
via Equation 11, where [·]n is the n-th entry of a
vector.

fr(e1, e2) = Re(〈e1, r, ē2〉) =

〈Re(r), Re(e1), Re(e2)〉
+〈Re(r), Im(e1), Im(e2)〉
+〈Im(r), Re(e1), Im(e2)〉
−〈Im(r), Im(e1), Re(e2)〉

(10)

〈u,v,w〉 =

d∑
n=1

[u]n[v]n[w]n (11)

Since the asymmetry of this scoring function,
namely fr(e1, e2) 6= fr(e2, e1), ComplEx can ef-
fectively encode asymmetric relations (Trouillon
et al., 2016). For calculating the attention, the rht
in Equation 7 is defined via Equation 12, where �

represents the element-wise multiplication.

rht = Re(e1)�Re(e2)+Im(e1)�Im(e2) (12)

4.2 SimplE based Attention
Given a fact triplet (e1, r, e2), SimplE then en-
codes each entity e ∈ E into two vectors he, te
∈ Rd and each relation r ∈ R into two vectors
vr, vr−1 ∈ Rd respectively, where d is the di-
mensionality of the embedding space. he captures
the entity e’s behaviour as the head entity of a fact
triplet and te captures e’s behaviour as the tail en-
tity. vr represents r in a fact triplet (e1, r, e2),
while vr−1 represents its inverse relation r−1 in
the triplet (e2, r

−1, e1). The KG scoring function
of SimplE for a fact triplet (e1, r, e2) is defined via
Equation 13.

fr(e1, e2) =
1

2
(〈he1 ,vr, te2〉+ 〈he2 ,vr−1 , te1〉)

(13)
Similar to the attention from ComplEx, the rht in
Equation 7 is defined via Equation 14.

rht =
1

2
(he1 � he2 + te1 � te2) (14)

4.3 SimplE NER based Attention
The proposed end-to-end KGC model is based
on SimplE, because SimplE outperforms sev-
eral state-of-the-art models including Com-
plEx (Kazemi and Poole, 2018). The proposed
model is illustrated in Figure 2. It includes ET
classification part (below) and KG Scoring part
(above). In ET classification part, a multi-layer
perceptron (MLP) with two hidden layers are
applied to identify ET based on word embedding
of target entity. In KG Scoring part, head entity
and tail entity along with their predicted ETs and
their relation are projected into corresponding KG
embeddings, which are then fed to a KG scoring
function.

ET Classification Part. In this work, we use
a MLP network to classify ET for head entity and
tail entity. The architecture of our MLP network
is as bellow:

hw = tanh(Ww
embx

w),

h1 = sigmoid(W1hw + b1),

h2 = sigmoid(W2h1 + b2),

y = sigmoid(WETh2 + bET )

(15)

where Ww
emb is a word embedding projection ma-

trix, which is initialized by the pre-trained word
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Figure 2: Overview of the proposed end-to-end KGC
model.

embedding that is trained on Medline corpus via
Gensim word2vec tool, xw is a one-hot entity rep-
resentation, y is the output vector containing the
prediction probabilities of all target ETs. W1, b1,
W2, b2, WET and bET are parameters to opti-
mize.

KG Scoring Part. Given fact triplet and pre-
dicted ET pair ET1 (for e1) and ET2 (for e2),
the proposed model project them into their cor-
responding KG embeddings namely he1 , te1 , vr,
vr−1 , he2 , te2 , hET1 , tET1 , hET2 and tET2 respec-
tively, where hET1 (or tET1) represents the KG
embedding of ET for e1 when e1 acts as the head
entity (or tail entity) in a fact triplet. The KG scor-
ing function is defined via Equation 16. Since the
proposed KGC model is build on SimplE, we ap-
ply Equation 14 to calculate rht.

fr(e1, e2) =
1

4
(〈he1 ,vr, te2〉

+〈he2 ,vr−1 , te1〉
+〈hET1 ,vr, tET2〉

+〈hET2 ,vr−1 , tET1〉)

(16)

5 Experiments

Our experiments aim to demonstrate that, (1) the
base model proposed by (Han et al., 2018) is fea-
sible for biomedical dataset, such as UMLS and
Medline corpus, and (2) in order to improve the
performance on the given biomedical dataset, it
is necessary to extend the base model with other
competitive KGC models, such as ComplEx and
SimplE, and (3) the proposed end-to-end KGC
model is effective for distantly supervised RE
from biomedical dataset.

#Entity #Relation #Train #Test
25,080 360 53,036 11,810

Table 1: Statistics of KG in this work.

5.1 Data

The biomedical datasets used for evaluation con-
sist of biomedical knowledge graph and biomedi-
cal textual data, which will be detailed as follows.

Knowledge Graph. We choose the UMLS as
the KG. UMLS is a large biomedical knowledge
base developed at the U.S. National Library of
Medicine. UMLS contains millions of biomedi-
cal concepts and relations between them. We fol-
low (Wang et al., 2014), and only collect the fact
triplet with RO relation category (RO stands for
“has Relationship Other than synonymous, nar-
rower, or broader”), which covers the interesting
relations like may treat, my prevent, etc. From the
UMLS 2018 release, we extract about 60 thousand
such RO fact triplets (i.e., (e1, r, e2)) under the
restriction that their entity pairs (i.e., e1 and e2)
should coexist within a sentence in Medline cor-
pus. They are then randomly divided into train-
ing and testing sets for KGC. Following (Weston
et al., 2013), we keep high entity overlap between
training and testing set, but zero fact triplet over-
lap. The statistics of the extracted KG is shown
in Table 1. For training the ET Classification
Part in Section 4.3, we also collect about 35 thou-
sand entity-ET pairs (e.g., heart rates-Clinical
Attribute) from the UMLS 2018 release.

Textual Data. Medline corpus is a collection
of bimedical abstracts maintained by the National
Library of Medicine. From the Medline corpus,
by applying a string matching model 2, we extract
732, 771 sentences that contain the entity pairs
(i.e., e1 and e2) in the KG mentioned above as our
textual data, in which 592, 605 sentences are for
training and 140, 166 sentences for testing. For
identifying the NA relation, besides the “related”
sentences, we also extract the “unrelated” sen-
tences based on a closed world assumption: pairs
of entities not listed in the KG are regarded to have
NA relation and sentences containing them con-
sidered to be the “unrelated” sentences. By this
way, we extract 1, 738, 801 “unrelated” sentences
for the training data, and 431, 212 “unrelated” sen-
tences for the testing data. Table 2 presents some

2We adopt the NER model that is available at https:
//github.com/mpuig/spacy-lookup.

https://github.com/mpuig/spacy-lookup
https://github.com/mpuig/spacy-lookup
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Figure 3: Aggregate precision/recall curves for differ-
ent RE models.

sample sentences in the training data.

5.2 Parameter Settings

We base our work on (Han et al., 2018) and ex-
tend their implementation available at https://
github.com/thunlp/JointNRE, and thus
adopt identical optimization process. We use the
default settings of parameters 3 provided by the
base model. Since we address the distantly super-
vised RE in biomedical domain, we use the Med-
line corpus to train the domain specific word em-
bedding projection matrix Ww

emb.

5.3 Result and Discussion

(Han et al., 2018) evaluates the base model on non-
scientific dataset. In this work, we firstly plan to
assess its feasibility on scientific dataset, and sec-
ondly, to investigate the effectiveness of our exten-
sions, which is discussed in Section 4, with respect
to enhancing the distantly supervised RE from sci-
entific dataset.

Relation Extraction We follow (Mintz et al.,
2009; Weston et al., 2013; Lin et al., 2016; Han
et al., 2018) and conduct the held-out evaluation,
in which the model for distantly supervised RE
is evaluated by comparing the fact triplets identi-
fied from textual data (i.e., the bag of sentences
containing the target entity pairs) with those in

3As a preliminary study, we only adopt the default hyper-
parameters, but we will tune them in the furture.

KG. We report precision-recall curves and Preci-
sion@N (P@N) as well in our evaluation.

The precision-recall curves are shown
in Figure 3, where “JointD+KATT” and
“JointE+KATT” represent the RE model with the
KG-based attention obtained from Prob-TransD
and Prob-TransE respectively, which are our base
models and trained on both KG and textual data.
Similarly, “JointComplEx+KATT”, “JointSim-
plE+KATT” and “JointSimplE NER+KATT”
represent the RE model with the KG-based
attention obtained from ComplEx, SimplE and
SimplE NER respectively, which are our exten-
sions. “CNN+AVE” and “CNN+ATT” represent
the RE model with average attention and relation
vector based attention (Lin et al., 2016) respec-
tively, which are not joint models and only trained
on textual data. The results show that:

(1) All RE models with KG-based attention,
such as “JointE+KATT”, outperform those models
without it, such as “CNN+ATT”. This observation
is in line with (Han et al., 2018). This demon-
strates that not just for non-scientific dataset ,
jointly training a KGC model with a RE model
is also an effective approach to improve the per-
formance of distantly supervised RE for biomed-
ical dataset. In other words, the outperformance
proves the feasibility of the base model proposed
by (Han et al., 2018) on biomedical dataset. The
comparison between (Han et al., 2018)’s results on
non-scientific dataset and ours on scientific dataset
also indicates that the performance of base model
could differ according to the dataset. Specifically,
on scientific dataset, “JointE+KATT” performs
better than “JointD+KATT” but in non-scientific
dataset the latter outperforms the former.

(2) Our extended models, “JointCom-
plEx+KATT”, “JointSimplE+KATT” and
“JointSimplE NER+KATT”, achieve better
precision than the base model over the major
range of recall. It could be attributed to their
better capability of modeling asymmetric relations
(e.g., may treat and may prevent), because
their KG scoring functions are asymmetry (i.e.,
fr(e1, e2) 6= fr(e2, e1)). The superior perfor-
mance indicates the necessity of our extensions on
the base model. Specifically, given the frequently
used biomedical dataset, UMLS and Medline
corpus, it would be an effective method to switch
the translational distance models, such as TransE
and TransD, with the semantic matching models,

https://github.com/thunlp/JointNRE
https://github.com/thunlp/JointNRE
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Fact Triplet Textual Data

(insulin,
gene plays role in process,
lipid metabolism)

s1 : It is unknown whether short - term angiotensin receptor blocker therapy
can improve glucose and lipid metabolisme2 in insuline1 - resistant subjects.
s2 : Adipocyte lipid metabolisme2 is primarily regulated by insuline1 and the
catecholamines norepinephrine and epinephrine.
s3 : ...

(insulin, NA, TPA)

s1 : M wortmannin resulted in 80% and 20% decreases of glucose uptake
stimulated by insuline1 and TPAe2 , respectively.
s2 : The effects of insuline1 , IGF1 and TPAe2 were also observed in the
presence of cycloheximide.
s3 : ...

Table 2: Examples of textual data extracted from Medline corpus.

such as ComplEx and SimplE, for increasing
the performance of distantly supervised RE. The
effect of different KGC models on the distantly
supervised RE will be discussed later.

(3) The model enhanced by our proposed KGC
model, “JointSimplE NER+KATT”, achieves the
highest precision over almost entire range of recall
compared with the models that apply the existing
KGC models. This proves the effectiveness of our
proposed KGC model for the distantly supervised
RE. Additionally, different from the exiting KGC
models, the proposed end-to-end KGC model is
capable of identifying ET information from word
embedding of target entity. This indicates that the
incorporation of semantic information of entity,
such as ET, is a promising approach for enhanc-
ing the base model.

Effect of KGC on RE. (Han et al., 2018) in-
dicates that KGC models could affect the perfor-
mance of distantly supervised RE. For investigat-
ing the influence of KGC models on our specific
RE task, we compare their link prediction results
on our KG with their corresponding Precision@N
(P@N) results on our RE task. Link prediction is
the task that predicts tail entity t given both head
entity h and relation r, e.g., (h, r, ∗), or predict
head entity h given (∗, r, t). We report the mean
reciprocal rank (MRR) and mean Hit@N scores
for evaluating the KGC models. MRR is defined
as: MRR = 1

2∗|tt|
∑

(h,r,t)∈tt(
1

rankh
+ 1

rankt
),

where tt represents the test triplets. Hit@N is the
proportion of the correctly predicted entities (h or
t) in top N ranked entities. Table 3 and Table 4 rep-
resent the RE precision@N and link prediction re-
sults respectively. This comparison indicates that
given a biomedical dataset, the performance of a
KGC model on the link prediction task could pre-
dict its effectiveness on its corresponding distantly

supervised RE task. This observation also instruct
us how to select the best KGC model for the base
model. In addition, Table 3 and Table 4 indicate
that ET is not only effective for distantly super-
vised RE task, but also for KGC task, and this ob-
servation will inspire us to explore other useful se-
mantic feature of entity, such as the definition of
entity, for our task.

Model P@2k P@4k P@6k Mean
JointE+KATT 0.876 0.786 0.698 0.786
JointD+KATT 0.848 0.725 0.528 0.700

JointComplEx+KATT 0.892 0.819 0.741 0.817
JointSimplE+KATT 0.900 0.808 0.721 0.809

JointSimplE NER+KATT 0.913 0.829 0.753 0.831

Table 3: P@N for different RE models, where k=1000.

MRR Hit@
Model Raw Filter 1 3 10
TransE 0.156 0.200 0.113 0.244 0.356
TransD 0.138 0.149 0.098 0.160 0.245

ComplEx 0.278 0.457 0.380 0.507 0.587
SimplE 0.273 0.455 0.368 0.516 0.598

SimplE NER 0.339 0.538 0.473 0.578 0.651

Table 4: Link prediction results for different KGC
models.

6 Conclusion and Future Work

In this work, we tackle the task of distantly su-
pervised RE from biomedical publications. To
this end, we apply the strong joint framework pro-
posed by (Han et al., 2018) as the base model. For
enhancing its performance on our specific task,
we extend the base model with other competitive
KGC models. What is more, we also propose a
new end-to-end KGC model, which incorporates
word embedding based entity type information
into a sate-of-the-art KGC model. Experimental
results not only show the feasibility of the base
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model on the biomedical domain, but also indicate
the effectiveness of our extensions. Our extended
model achieves significant and consistent im-
provements on the biomedical dataset as compared
with baselines. Since the semantic information of
target entity, such as ET information, is effective
for our task, in the future, we will explore other
useful semantic features, such as the definition of
target entity and fact triplet chain between enti-
ties (e.g., cancer→disease has associated gene→
Ku86→gene plays role in process→NHEJ), for
our task.
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