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Abstract

Latent space based GAN methods and atten-
tion based sequence to sequence models have
achieved impressive results in text generation
and unsupervised machine translation respec-
tively. Leveraging the two domains, we pro-
pose an adversarial latent space based model
capable of generating parallel sentences in two
languages concurrently and translating bidi-
rectionally. The bilingual generation goal is
achieved by sampling from the latent space
that is shared between both languages. First
two denoising autoencoders are trained, with
shared encoders and back-translation to en-
force a shared latent state between the two
languages. The decoder is shared for the
two translation directions. Next, a GAN is
trained to generate synthetic ‘code’ mimick-
ing the languages’ shared latent space. This
code is then fed into the decoder to generate
text in either language. We perform our ex-
periments on Europarl and Multi30k datasets,
on the English-French language pair, and doc-
ument our performance using both supervised
and unsupervised machine translation.

1 Introduction

Many people in the world are fluent in at least
two languages, yet most computer applications
and services are designed for a monolingual au-
dience. Fully bilingual people do not think about
a concept in one language and translate it to the
other language but are adept at generating words
in either language.

Inspired by this bilingual paradigm, the suc-
cess of attention based neural machine translation
(NMT) and the potential of Generative Adversar-
ial Networks (GANs) for text generation we pro-
pose Bilingual-GAN, an agent capable of deriving
a shared latent space between two languages, and
then generating from that space in either language.

Attention based NMT (Bahdanau et al., 2014;
Gehring et al., 2017; Vaswani et al., 2017) has
achieved state of the art results on many differ-
ent language pairs and is used in production trans-
lation systems (Wu et al., 2016). These systems
generally consist of an encoder-decoder based
sequence to sequence model where at least the
decoder is auto-regressive. Generally, they re-
quire massive amount of parallel data but recent
methods that use shared autoencoders (Lample
et al., 2017, 2018) and cross-lingual word embed-
dings (Conneau et al., 2017a) have shown promise
even without using parallel data.

Deep learning based text generation systems
can be divided into three categories: Maximum
Likelihood Estimation (MLE)-based, GAN-based
and reinforcement learning (RL)-based. MLE-
based methods (Sutskever et al., 2014) model the
text as an auto-regressive generative process using
Recurrent Neural Networks (RNNs) but generally
suffer from exposure bias (Bengio et al., 2015).
A number of solutions have been proposed in-
cluding scheduled sampling (Bengio et al., 2015),
Gibbs sampling (Su et al., 2018) and Professor
forcing (Lamb et al., 2016).

Recently, researchers have used GANs (Good-
fellow et al., 2014) as a potentially powerful gen-
erative model for text (Yu et al., 2017; Gulrajani
et al., 2017; Haidar and Rezagholizadeh, 2019),
inspired by their great success in the field of image
generation. Text generation using GANs is chal-
lenging due to the discrete nature of text. The dis-
cretized text output is not differentiable and if the
softmax output is used instead it is trivial for the
discriminator to distinguish between that and real
text. One of the proposed solutions (Zhao et al.,
2017) is to generate the latent space of the autoen-
coder instead of generating the sentence and has
shown impressive results.

We use the concept of shared encoders and
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multi-lingual embeddings to learn the aligned la-
tent representation of two languages and a GAN
that can generate this latent space. Particularly,
our contributions are as follows:

• We introduce a GAN model, Bilingual-GAN,
which can generate parallel sentences in two
languages concurrently.

• Bilingual-GAN can match the latent distri-
bution of the encoder of an attention based
NMT model.

• We explore the ability to generate parallel
sentences when using only monolingual cor-
pora.

2 Related Work

2.1 Latent space based Unsupervised NMT

A few works (Lample et al., 2017; Artetxe et al.,
2017; Lample et al., 2018) have emerged recently
to deal with neural machine translation without
using parallel corpora, i.e sentences in one lan-
guage have no matching translation in the other
language. The common principles of such sys-
tems include learning a language model, encoding
sentences from different languages into a shared
latent representation and using back-translation
(Sennrich et al., 2015a) to provide a pseudo su-
pervision. Lample et al. (2017) use a word by
word translation dictionary learned in an unsuper-
vised way (Conneau et al., 2017b) as part of their
back-translation along with an adversarial loss to
enforce language independence in latent represen-
tations. Lample et al. (2018) improves this by re-
moving these two elements and instead use Byte
Pair Encoding (BPE) sub-word tokenization (Sen-
nrich et al., 2015b) with joint embeddings learned
using FastText (Bojanowski et al., 2017), so that
the sentences are embedded in a common space.
Artetxe et al. (2017) uses online back translation
and cross-lingual embeddings to embed sentences
in a shared space. They also decouple the decoder
so that one is used per language.

2.2 Latent space based Adversarial Text
Generation

Researchers have conventionally utilized the GAN
framework in image applications (Salimans et al.,
2016) with great success. Inspired by their suc-
cess, a number of works have used GANs in var-
ious NLP applications such as machine transla-

tion (Wu et al., 2017; Yang et al., 2017a), dia-
logue models (Li et al., 2017), question answer-
ing (Yang et al., 2017b), and natural language gen-
eration (Gulrajani et al., 2017; Kim et al., 2017).
However, applying GAN in NLP is challenging
due to the discrete nature of text. Consequently,
back-propagation would not be feasible for dis-
crete outputs and it is not straightforward to pass
the gradients through the discrete output words
of the generator. A latent code based solution
for this problem, ARAE, was proposed in Kim
et al. (2017), where a latent representation of the
text is derived using an autoencoder and the man-
ifold of this representation is learned via adversar-
ial training of a generator. Another version of the
ARAE method which proposes updating the en-
coder based on discriminator loss function was in-
troduced in (Spinks and Moens, 2018). Gagnon-
Marchand et al. (2019) introduced a self-attention
based GAN architecture to the ARAE and Haidar
et al. (2019) explore a hybrid approach generating
both a latent representation and the text itself.

3 Methodology

The Bilingual-GAN comprises of a translation
module and a text generation module. The com-
plete architecture is illustrated in Figure 1.

Figure 1: The complete architecture for our unsuper-
vised bilingual text generator (Bilingual-GAN)

3.1 Translation Unit
The translation system is a sequence-to-sequence
model with an encoder and a decoder extended to
support two languages. This first translation com-
ponent is inspired by the unsupervised neural ma-
chine translation system by Lample et al. (2017).
We have one corpus in language 1 and another in
language 2 (they need not be translations of each
other), an encoder and a decoder shared between
the two languages. The weights of the encoder
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are shared across the two languages, only their
embedding tables are different. For the decoder,
the weights are also shared except for the last lan-
guage specific projection layer.

The loss function which is used to compare two
sentences is the same as the standard sequence-
to-sequence loss: the token wise cross-entropy
loss between the sentences, that we denote by
∆(sentence a, sentence b). For our purpose, let sli
be a sentence in language i with i ∈ {1, 2}. The
encoding of sentence sli is denoted by enc (sli) in
language i using the word embeddings of language
i to convert the input sentence sli . Similarly, de-
note by dec (x, li) the decoding of the code x (typ-
ically the output of the encoder) into language li
using the word embeddings of target language i.

Then, the system is trained with three losses
aimed to allow the encoder-decoder pair to recon-
struct inputs (reconstruction loss), to translate cor-
rectly (cross-domain loss) and for the encoder to
encode language independent codes (adversarial
loss).

Reconstruction Loss This is the standard au-
toencoder loss which aims to reconstruct the input:

Lrecon = ∆

sli ,
ŝli :=︷ ︸︸ ︷

dec (enc (sli) , li)


This loss can be seen in Figure 2.

Cross-Domain Loss This loss aims to allow
translation of inputs. It is similar to back-
translation (Sennrich et al., 2015a). For this loss,
denote by transl (sli) the translation of sen-
tence sli from language i to language 1 − i. The
implementation of the translation is explained in
subsection 3.1.1 when we address supervision.

Lcd = ∆

sli , dec (enc (transl (sli)) , li)︸ ︷︷ ︸
s̃li :=


(1)

In this loss, we first translate the original sentence
sli into the other language and then check if we
can recreate the original sentence in its original
language. This loss can be seen in Figure 2.

Adversarial Loss This loss is to enforce the
encoder to produce language independent code
which is believed to help in decoding into either
language. This loss was only present in Lample

et al. (2017) and removed in Lample et al. (2018)
as it was considered not necessary by the authors
and even harmful. Our results show a similar be-
haviour.

Input Noise In order to prevent the encoder-
decoder pair to learn the identity function and to
make the pair more robust, noise is added to the
input of the encoder. On the input sentences, the
noise comes in the form of random word drops (we
use a probability of 0.1) and of random shuffling
but only moving each word by at most 3 positions.
We also add a Gaussian noise of mean 0 and stan-
dard deviation of 0.3 to the input of the decoder.

Figure 2: The translation unit of the Bilingual-GAN.

3.1.1 Supervision
The choice of the translation function
transl (sli) directly affects the amount of
supervision in the trained model. If the trans-
lation function transl () is a lookup of a
word-by-word translation dictionary learned in
an unsupervised fashion as in Conneau et al.
(2017b), then the whole system is trained in
an unsupervised manner since we have no
groundtruth information about sli . After a couple
of epochs, the encoder-decoder model should be
good enough to move beyond simple word-by-
word translation. At that point the translation
function can be changed to using the model itself
to translate input sentences. This is what’s done
in Lample et al. (2017) where they change the
translation function from word-by-word to model
prediction after 1 epoch. In our case, we get
the word-by-word translation lookup table by
taking each word in the vocabulary and looking
up the closest word in the other language in
the multilingual embedding space created by
Conneau et al. (2017a).

If the translation function transl () is able to
get the ground truth translation of the sentence,
for example if we have an aligned dataset, then
transl (sli) = slj which is encoded and de-
coded into the original language i and compared
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with sli getting the usual supervised neural ma-
chine translation loss.

3.1.2 Embeddings
There are a few choices for embedding the sen-
tence words before feeding into the encoder. In
particular, we use randomly initialized embed-
dings, embeddings trained with FastText (Bo-
janowski et al., 2017) and both pretrained and self-
trained cross-lingual embeddings (Conneau et al.,
2017a).

3.2 Bilingual Text Generation Unit

The proposed bilingual generator is a GAN trained
to learn the latent state manifold of the encoder of
the translation unit. We use the Improved Wasser-
stein GAN gradient penalty (IWGAN) (Gulrajani
et al., 2017) loss function in our experiments:

(2)L = Eĉ∼Pg [D(ĉ)]− Ec∼Pr [D(c)]

+ λEc̄∼Pḡ [(||∇c̄D(c̄)||2 − 1)2])

where Pr is the is the real distribution, c repre-
sents the ‘code’ or the latent space representation
of the input text, Pg is the fake or mimicked distri-
bution, ĉ represents the generated code represen-
tation. The last term is the gradient penalty where
[c̄ ∼ Pḡ(c̄)]← α [c ∼ Pr(c)]+(1−α) [ĉ ∼ Pg(ĉ)]
and it is a random latent code obtained by sam-
pling uniformly along a line connecting pairs of
the generated code and the encoder output. λ is a
constant. We used λ = 10 in our experiments.

3.2.1 Matrix-based code representation
In latent-space based text generation, where the
LSTM based encoder-decoder architectures do not
use attention, a single code vector is generally em-
ployed which summarizes the entire hidden se-
quence (Zhao et al., 2017). A variant of the ap-
proach is to employ global mean pooling to pro-
duce a representative encoding (Semeniuta et al.,
2018). We take advantage of our attention based
architecture and our bidirectional encoder to con-
catenate the forward and backward latent states
depth-wise and produce a code matrix which can
be attended to by our decoder. The code matrix is
obtained by concatenating the latent code of each
time steps. Consequently, the generator tries to
mimic the entire concatenated latent space. We
found that this richer representation improves the
quality of our sentence generation.

3.2.2 Training

First we pre-train our NMT system (see sec-
tion 3.1). In order to train the GAN, we used the
encoder output of our NMT system as ’real’ code.
The encoder output is a latent state space matrix
which captures all the hidden states of the LSTM
encoder. Next we generate noise which is upsam-
pled and reshaped to match the dimensions of the
encoder output. This is then fed into a genera-
tor neural network comprising 1 linear layer and
5 1-d convolutional with residual connections. Fi-
nally we pass it through a non-linearity and output
the fake code. The ‘real’ code and the fake code
are then fed into the discriminator neural network,
which also consists of 5 convolutional and 1 lin-
ear layer. The last layer of the discriminator is a
linear layer which ouputs a score value. The dis-
criminator output is used to calculate the generator
and discriminator losses. The losses are optimized
using Adam (Kingma and Ba, 2014). Unlike the
GAN update in (Gulrajani et al., 2017), we use
1 discriminator update per generator update. We
think that because we train our GAN on the latent
distribution of machine translation we get a better
signal to train our GAN on and don’t require mul-
tiple discriminator updates to one generator update
like in Zhao et al. (2017)

In one training iteration, we feed both an En-
glish and a French sentence to the encoder and
produce two real codes. We generate one fake
code by using the generator and calculate losses
against both the real codes. We average out the
two losses. Although, the NMT is trained to align
the latent spaces and we can use just one language
to train the GAN, we use both real codes to re-
duce any biases in our NMT system. We train
our GAN on both the supervised and unsupervised
NMT scenarios. In the supervised scenario, we
feed English and French parallel sentences in each
training iteration. In the unsupervised scenario,
our corpus does not contain parallel sentences.

Once the GAN is trained, the generator code
can be decoded in either language using the pre-
trained decoder of the NMT system.

4 Experiments

This section presents the different experiments we
did, on both translation and bilingual text genera-
tion, and the datasets we worked on.
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4.1 Datasets

The Europarl and the Multi30k datasets have
been used for our experimentation. The Europarl
dataset is part of the WMT 2014 parallel cor-
pora (Koehn, 2005) and contains a little more than
2 millions French-English aligned sentences. The
Multi30k dataset is used for image captioning (El-
liott et al., 2017) and consists of 29k images and
their captions. We only use the French and English
paired captions.

As preprocessing steps on the Europarl dataset,
we removed sentences longer than 20 words and
those with a ratio of number of words between
translations is bigger than 1.5. Then, we tokenize
the sentence using the Moses tokenizer (Koehn
et al., 2007). For the Multi30k dataset, we use
the supplied tokenized version of the dataset with
no further processing. For the BPE experiments,
we use the sentencepiece subword tokenizer by
Google 1. Consequentially, the decoder also pre-
dicts subword tokens. This results in a common
embeddings table for both languages since English
and French share the same subwords. The BPE
was trained on the training corpora that we cre-
ated.

For the training, validation and test splits, we
used 200k, after filtering, randomly chosen sen-
tences from the Europarl dataset for training and
40k sentences for testing. When creating the splits
for unsupervised training, we make sure that the
sentences taken in one language have no transla-
tions in the other language’s training set by ran-
domly choosing different sentences for each of
them with no overlap. For the validation set in that
case, we chose 80k sentences. In the supervised
case, we randomly choose the same sentences in
both languages with a validation set of 40k. For
the Multi30k dataset, we use 12 850 and 449 sen-
tences for training and validation respectively for
each language for the unsupervised case and the
whole provided split of 29k and 1014 sentences
for training and validation respectively in the su-
pervised case. In both cases, the test set is the
provided 1k sentences Flickr 2017 one. For the
hyperparameter search phase, we chose a vocabu-
lary size of 8k for the Europarl, the most common
words appearing in the training corpora and for
the final experiments with the best hyperparame-
ters, we worked with a vocabulary size of 15k. For
Multi30k, we used the 6800 most common words

1https://github.com/google/sentencepiece

as vocabulary.

4.2 System Specifications

NMT Unit The embeddings have size 300, the
encoder consists of either 1 or 2 layers of 256
bidirectional LSTM cells, the decoder is equipped
with attention (Bahdanau et al., 2014) and consists
of a single layer of 256 LSTM cells. The discrim-
inator, when the adversarial loss is present, is a
standard feed-forward neural network with 3 lay-
ers of 1024 cells with ReLU activation and one
output layer of one cell with Sigmoid activation.

We used Adam with a β1 of 0.5, a β2 of 0.999,
and a learning rate of 0.0003 to train the encoder
and the decoder whereas we used RMSProp with
a learning rate of 0.0005 to train the discriminator.
Most of the specifications here were taken from
Lample et al. (2017).

NTG Unit The Generator and Discriminator are
trained using Adam with a a β1 of 0.5, a β2 of
0.999, and a learning rate of 0.0001.

4.3 Quantitative Evaluation Metrics

Corpus-level BLEU We use the BLEU-N scores
to evaluate the fluency of the generated sentences
according to Papineni et al. (2002),

BLEU-N = BP · exp(
N∑

n=1

wnlog(pn)) (3)

where pn is the probability of n-gram and wn =
1
n . The results is described in Table 3. Here, we set
BP to 1 as there is no reference length like in ma-
chine translation. For the evaluations, we gener-
ated 40 000 sentences for the model trained on Eu-
roparl and 1 000 on the model trained on Multi30k.

Perplexity is also used to evaluate the fluency
of the generated sentences. For the perplexity
evaluations, we generated 100 000 and 10 000 sen-
tences for the Europarl and the Multi30k datasets
respectively. The forward and reverse perplexi-
ties of the LMs trained with maximum sentence
length of 20 and 15 using the Europarl and he
Multi30k datasets respectively are described in
Table 4. The forward perplexities (F-PPL) are
calculated by training an RNN language model
(RNNLM) (Zaremba et al., 2015) on real training
data and evaluated on the generated samples. This
measure describe the fluency of the synthetic sam-
ples. We also calculated the reverse perplexities
(R-PPL) by training an RNNLM on the synthetic
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samples and evaluated on the real test data. The
results are illustrated in Table 4.

4.4 Translation

MTF the epoch at which we stop using the
transl () function and instead start using
the model

NC a new concatenation method used to combine
the bidirectional encoder output:
concatenate either the forward and backward
states lengthwise or depthwise

FastText the use of FastText (Bojanowski et al., 2017)
to train our embeddings

Xlingual refers to the use of cross-lingual embeddings
using (Conneau et al., 2017a) either trained
on our own (Self-Trained) or pretrained
(Pretrain.) ones.

BPE the use of subword tokenization learned as
in (Sennrich et al., 2015b)

NoAdv not using the adversarial loss to train the
translation part described in section 3.1

2Enc using a 2 layers of 256 cells each bidirectional
LSTM encoder

Table 1: Notations that are used for this experiment

This section of the results focuses on the scores
we have obtained while training the neural ma-
chine translation system. The results in Table 2
will show the BLEU scores for translation on a
held out test set for the WMT’14 Europarl cor-
pus and for the official Flickr test set 2017 for the
Multi30k dataset. The notations that are used in
Table 2 are described in Table 1. The baseline is
our implementation of the architecture from Lam-
ple et al. (2017). From Table 2, we notice first
that removing the adversarial loss helps the model.
It’s possible that the shared encoder and decoder
weights are enough to enforce a language inde-
pendent code space. We note that using 2 layers
for the encoder is beneficial but that was to be ex-
pected. We also note that the new concatenation
method improved upon the model. A small change
for a small improvement that may be explained by
the fact that both the forward and the backward
states are combined and explicitly represent each
word of the input sentence rather than having first
only the forward states and then only the backward
states.

Surprisingly, BPE gave a bad score on English
to French. We think that this is due to French being
a harder language than English but the score differ-
ence is too big to explain that. Further investiga-
tion is needed. We see also good results with train-

able FastText embeddings trained on our training
corpora. Perhaps using pre-trained ones might be
better in a similar fashion as pre-trained cross-
lingual embeddings helped over the self-trained
ones. The results also show the importance of
letting the embeddings change during training in-
stead of fixing them.

4.5 Text Generation

We evaluated text generation on both the fluency
of the sentences in English and French and also on
the degree to which concurrently generated sen-
tences are valid translations of each other. We
fixed our generated sentence length to a maxi-
mum of length 20 while training on Europarl and
to a maximum of length 15 while training on
Multi30k. We measured our performance both on
the supervised and unsupervised scenario. The su-
pervised scenario uses a pre-trained NMT trained
on parallel sentences and unsupervised uses a
pre-trained NMT trained on monolingual corpora.
The baseline is our implementation of Zhao et al.
(2017) with two additions. We change the Lin-
ear layers to 1-d convolutions with residual con-
nections and our generator produces a distributed
latent representation which can be paired with an
attention based decoder.

Corpus-level BLEU scores are measured using
the two test sets. The results are described in Ta-
ble 3. The higher BLEU scores demonstrate that
the GAN can generate fluent sentences both in En-
glish and French. We can note that the English
sentences have a higher BLEU score which could
be a bias from our translation system. On Europarl
our BLEU score is much higher than the base-
line indicating that we can improve text genera-
tion if we learn from the latent space of translation
rather than just an autoencoder. This however, re-
quires further investigation. The BLEU scores for
the Multi30k are lower because of the smaller test
size.

Perplexity result is presented in Table 4. We
can easily compare different models by using the
forward perplexities whereas it is not possible by
using the reverse perplexities as the models are
trained using the synthetic sentences with different
vocabulary sizes. We put the baseline results only
for the English generated sentences to show the su-
periority of our proposed Bilingual generated sen-
tences. The forward perplexities (F-PPL) of the
LMs using real data are 140.22 (En), 136.09 (Fr)
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Europarl
FR to EN EN to FR Mean

Supervised + Train. Pretrain. Xlingual + NC + 2Enc + NoAdv* 26.78 26.07 26.43
Supervised + NC 24.43 24.89 24.66
Unsupervised + Train. Pretrain. Xlingual + NC + MTF 5 + 2Enc + NoAdv* 20.82 21.20 21.01
Unsupervised + Train. Self-Trained FastText Embeddings + NC + MTF 5 18.12 17.74 17.93
Unsupervised + Train. Pretrain. Xlingual + NC + MTF 5 17.42 17.34 17.38
Unsupervised + NC + MTF 4 16.45 16.56 16.51
Unsupervised + Train. Self-Trained Xlingual + NC + MTF 5 15.91 16.00 15.96
Baseline (Unsupervised + Fixed Pretrain. Xlingual + NC + MTF 5) 15.22 14.34 14.78

Multi30k
Supervised + Train. Pretrain. Xlingual + NC + 2Enc + NoAdv 36.67 42.52 39.59
Unsupervised + Train. Pretrain. Xlingual + NC + MTF 5 + 2Enc + NoAdv 10.26 10.98 10.62

Table 2: The BLEU-4 scores for French to English and English to French translation. The *’ed experiments use
a vocabulary size of 15k words. The Multi30k experiments use the best hyperparameters found when training on
the Europarl dataset and a vocabulary size of 6800 words.

Europarl
English French

Bilingual-GAN Bilingual-GAN Baseline Bilingual-GAN Bilingual-GAN
(Supervised) (Unsupervised) (ARAE) (Supervised) (Unsupervised)

B-2 89.34 86.06 88.55 82.86 77.40
B-3 73.37 70.52 70.79 65.03 58.32
B-4 52.94 50.22 48.41 44.87 38.70
B-5 34.26 31.63 29.07 28.10 23.63

Multi30k
B-2 68.41 68.36 72.17 60.23 61.94
B-3 47.60 47.69 51.56 41.31 41.76
B-4 29.89 30.38 33.04 25.24 25.60
B-5 17.38 18.18 19.31 14.21 14.52

Table 3: Corpus-level BLEU scores for Text Generation on Europarl and Multi30k Datasets

and 59.29 (En), 37.56 (Fr) for the Europarl and the
Multi30k datasets respectively reported in F-PPL
column. From the tables, we can note the models
with lower forward perplexities (higher fluency)
for the synthetic samples tend to have higher re-
verse perplexities. For the Europarl dataset, the
lower forward perplexities for the Bilingual-GAN
and the baseline models than the real data indi-
cate the generated sentences by using these mod-
els has less diversity than the training set . For the
Multi30k dataset, we cannot see this trend as the
size of the test set is smaller than the number of
synthetic sentences.

4.6 Human Evaluation

The subjective judgments of the generated sen-
tences of the models trained using the Europarl
and the Multi30k datasets with maximum sentence
length of size 20 and 15 is reported in Table 6. As
we do not have ground truth for our translation we
measure parallelism between our generated sen-
tences only based on human evaluation. We used
25 random generated sentences from each model
and give them to a group of 4 bilingual people. We

asked them to first rate the sentences based on a 5-
point scale according to their fluency. The judges
are asked to score 1 which corresponds to gibber-
ish, 3 corresponds to understandable but ungram-
matical, and 5 correspond to naturally constructed
and understandable sentences (Semeniuta et al.,
2018). Then, we ask ask them to measure par-
allelism of the generated samples assuming that
the sentences are translations of each other. The
scale is between 1 and 5 again with 1 correspond-
ing to no parallelism, 3 to some parallelism and
5 to fully parallel sentences. From Table 6, we
can note that on text quality human evaluation re-
sults corresponds to our other quantitative metrics.
Our generated sentences show some parallelism
even in the unsupervised scenario. Some exam-
ple generated sentences are shown in Table 5. As
expected, sentences generated by the supervised
models exhibit more parallelism compared to ones
generated by unsupervised models.

5 Conclusion

This work proposes a novel way of modelling
NMT and NTG whereby we consider them as a
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Europarl
English French

F-PPL R-PPL F-PPL R-PPL
Real 140.22 - 136.09 -
Bilingual-GAN (Supervised) 64.91 319.32 66.40 428.52
Bilingual-GAN (Unsupervised) 65.36 305.96 82.75 372.27
Baseline (ARAE) 73.57 260.18 - -

Multi30k
Real 59.29 - 37.56 -
Bilingual-GAN (Supervised) 65.97 169.19 108.91 179.12
Bilingual-GAN (Unsupervised) 83.49 226.16 105.94 186.97
Baseline (ARAE) 64.4 222.89 - -

Table 4: Forward (F) and Reverse (R) perplexity (PPL) results for the Europarl and Multi30k datasets using
synthetic sentences of maximum length 20 and 15 respectively. F-PPL: Perplexity of a language model trained
on real data and evaluated on synthetic samples. R-PPL: Perplexity of a language model trained on the synthetic
samples from Bilingual-GAN and evaluated on the real test data.

English French
Europarl Supervised

the vote will take place tomorrow at 12 noon tomorrow. le vote aura lieu demain à 12 heures.
mr president, i should like to thank mr. unk for the

report.
monsieur le président, je tiens à remercier tout

particulièrement le rapporteur.

i think it is now as a matter of trying to make it with a
great political action.

je pense dès lors qu’une deuxième fois, je pense que
nous pouvons agir à une bonne manière que nous

sommes une bonne politique.
the debate is closed. le débat est clos.

Europarl Unsupervised
the report maintains its opinion, the objective of the

european union.
la commission maintient son rapport de l ’ appui, tout

son objectif essentiel.
the question is not on the basis of which the

environmental application which we will do with.
le principe n’est pas sur la loi sur laquelle nous avons

besoin de l’application de la législation.
i have no need to know that it has been adopted in a

democratic dialogue. je n’ai pas besoin de ce qu’il a été fait en justice.

Multi30k Supervised
a child in a floral pattern, mirrored necklaces, walking

with trees in the background.
un enfant avec un mannequin, des lunettes de soleil,

des cartons, avec des feuilles.
two people are sitting on a bench with the other people. deux personnes sont assises sur un banc et de la mer.

a man is leaning on a rock wall. un homme utilise un mur de pierre.
a woman dressed in the rain uniforms are running

through a wooden area
une femme habille‘e en uniformes de soleil marchant

dans une jungle
Multi30k Unsupervised

three people walking in a crowded city. trois personnes marchant dans une rue animée.

a girl with a purple shirt and sunglasses are eating. un homme et une femme mange un plat dans un
magasin local.

a woman sleeping in a chair with a graffiti lit street. une femme âgée assise dans une chaise avec une canne
en nuit.

Table 5: Examples of aligned generated sentences

Europarl
Fluency

(EN) (FR) Parallelism
Real 4.89 4.81 4.63
Bilingual-GAN (Sup.) 4.14 3.8 3.05
Bilingual-GAN (Unsup.) 3.88 3.52 2.52

Multi30k
Real 4.89 4.82 4.95
Bilingual-GAN (Sup.) 3.41 3.2 2.39
Bilingual-GAN (Unsup.) 4.07 3.24 1.97

Table 6: Human evaluation on the generated sentences
by Bilingual-GAN using the Europarl and the Multi30k
dataset.

joint problem from the vantage of a bilingual per-
son. It is a step towards modeling concepts and
ideas which are language agnostic using the latent
representation of machine translation as the basis.

We explore the versatility and the representation
power of latent space based deep neural architec-
tures which can align different languages and give
us a principled way of generating from this shared
space. Using quantitative and qualitative evalua-
tion metrics we demonstrate that we can generate
fluent sentences which exhibit parallelism in our
two target languages. Future work will consist of
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improving the quality of the generated sentences,
increasing parallelism specially without using par-
allel data to train the NMT and adding more lan-
guages. Other interesting extensions include us-
ing our model for conditional text generation and
multi-modal tasks such as image captioning.
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