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Abstract
Downstream evaluation of pretrained word
embeddings is expensive, more so for tasks
where current state of the art models are very
large architectures. Intrinsic evaluation us-
ing word similarity or analogy datasets, on
the other hand, suffers from several disad-
vantages. We propose a novel intrinsic eval-
uation task employing large word associa-
tion datasets (particularly the Small World
of Words dataset). We observe correlations
not just between performances on SWOW-
8500 and previously proposed intrinsic tasks
of word similarity prediction, but also with
downstream tasks (eg. Text Classification and
Natural Language Inference). Most impor-
tantly, we report better confidence intervals
for scores on our word association task, with
no fall in correlation with downstream perfor-
mance.

1 Introduction

With the recent rise in popularity of distributional
semantics, word embeddings have become the ba-
sic building block of several state-of-the-art mod-
els spanning multiple problems across Natural
Language Processing and Information Retrieval.
Word embeddings are essentially non-sparse rep-
resentations of words in the form of one (rela-
tively) small dimensional vector of real numbers
for every word, and all of these vectors lie in the
same continuous space.

Despite the clear benefits of these distributed
representations, it is not obvious how to come
up with apt word embeddings for a given NLP
task. Approaches such as word2vec (Mikolov
et al., 2013b), GloVe (Pennington et al., 2014),
etc. have been shown to perform well on down-
stream tasks such as text classification, sequence
labelling, question answering, text summarization,
and machine translation.

Typically, word vectors are used in NLP mod-
els in two ways: fixed pretrained embeddings, and

Figure 1: Visualization of the cue Kite and its
associated words according to the SWOW dataset.
Source: https://smallworldofwords.org/
en/project/explore

finetuning. In the first way, word vectors have
already been trained on some large dataset (e.g.
Wikipedia, Twitter, Blog corpus, etc.) using one of
the aforementioned techniques. These vectors are
taken as fixed weights and the model merely uses
them as they are rather than learning them during
the training phase. On the other hand, finetuning
allows for these vectors to be modified too, using
backpropagation. Here the word embeddings are
taken only as initialized weights for the model’s
first layer.

It is of natural interest to the NLP community
to identify evaluation metrics for word embed-
dings. Besides direct performance measurement
on downstream tasks, there have also been pro-
posed several intrinsic evaluation measures such
as MEN, WordSim, SimLex, etc. These are small
proxy tasks which word vectors are expected to
perform well on, given the assumption that they
capture semantics of words. While Extrinsic eval-
uations use word embeddings as input features to

https://smallworldofwords.org/en/project/explore
https://smallworldofwords.org/en/project/explore
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a downstream task and measure changes in perfor-
mance metrics specific to that task, Intrinsic eval-
uations directly test for syntactic or semantic rela-
tionships between words (Schnabel et al., 2015).
For example, the word similarity task asks word
embeddings to predict how similar are the mean-
ings of two prompt words. The closer this estimate
is to human judgements, higher is the score allot-
ted to the (pretrained) word embedding.

Through this paper, we propose the Word Asso-
ciation task for evaluating non-contextualized pre-
trained word embeddings, with the help of word
asssociation datasets originally collected for psy-
chological research. The datasets were formed
by asking participants to respond to certain cue
words. For example, given the cue tiger, one could
respond with the words lion, panther, wild, etc.
Large datasets of this sort are now available on-
line, and it can be argued that they capture a no-
tion of which words are in close association with
others (as perceived by human participants).

According to cognitive theories of the mind,
people form associations between concepts based
on similarity, contiguity, or contrast. Our task pro-
posal stems from the following argument: Any
model that claims to understand the semantics
of words should be able to mimic human beings
in recognizing the associations between pairs of
words. For example, a distributed representation
of words, i.e., word embeddings, should be able to
tell that the word tiger is in some way associated
with lion but not with, say, kettle, assuming such a
statistic is observed in the word association dataset
too.

Given the scale of these datasets, they seem like
a lucrative way to evaluate pretrained word em-
beddings. We see them as a manually annotated
corpus of word associations, though not originally
meant for word embedding evaluation. Therefore,
we must devise a convenient way to compare the
semantics captured in a given set of pretrained
word vectors with that captured in such word as-
sociation datasets.

We make our scripts, along with several other
resources, available at https://github.
com/avi-jit/SWOW-eval

2 Related Work

2.1 Word Embedding Evaluation

There exist several intrinsic evaluation tasks for
word embeddings. One way to tell apart intrin-

sic from extrinsic evaluations is the lack of any
trainable parameters in the former. Schnabel et
al. (2015) discuss word relatedness, analogy, se-
lective preference, and categorization as types of
intrinsic tasks.

Our proposed task is most similar to the word
relatedness/similarity tasks, several of which have
already been proposed in literature: WS-3533
(Finkelstein et al., 2002), WS-SIM and WS-
REL (Agirre et al., 2009), RG-65 (Rubenstein
and Goodenough, 1965), MC-30 (Miller and
Charles, 1991), MTurk-2875 (Radinsky et al.,
2011), MTurk-771 (Halawi et al., 2012), MEN7
(Bruni et al., 2012), YP-130 (Yang and Powers,
2006), Rare Words (Luong et al., 2013), etc. We
list the ones above specifically since those are
the ones we compare our proposed task to, us-
ing the online resource wordvectors.org (Faruqui
and Dyer, 2014), whose code remains available
on GitHub 1. Association of Computational Lin-
guistics2 and Vecto AI3 also maintain benchmark
pages for word similarity.

Likewise, VecEval (Nayak et al., 2016)
and Multilingual-embeddings-eval-portal (Ammar
et al., 2016) are GitHub repositories for Extrinsic
Evaluation of word embeddings. 4,5.

Another direction of work has been towards
critiquing intrinsic evaluation, in a bid to under-
stand its shortcomings and potential workarounds
(Schnabel et al., 2015; Zhai et al., 2016). One of
the key shortcomings is the Absence of Statisti-
cal Significance (Faruqui et al., 2016), which we
aim to tackle through this proposal. We believe
that a massive dataset of word associations can be
used to circumvent issues related to confidence in-
tervals of scores reported. We put this belief to test
in later sections of this paper.

2.2 Word Association

Our prime motivation behind this work was Mar-
vin Minsky’s Society of Mind (1988) which the-
orizes that humans learn by linking concepts to-
gether, using what Minsky calls K-Lines. If we
assign meanings to concepts by associating them

1http://github.com/mfaruqui/
eval-word-vectors

2http://aclweb.org/aclwiki/
Similarity_(State_of_the_art)

3http://github.com/vecto-ai/
word-benchmarks

4http://github.com/NehaNayak/veceval
5http://github.com/wammar/

multilingual-embeddings-eval-portal

https://github.com/avi-jit/SWOW-eval
https://github.com/avi-jit/SWOW-eval
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with each other, artificial models of semantics
should also be able to do the same.

Word Association games are those wherein a
participant is asked to utter the first (or first few)
words that occur to him/her when given a trig-
ger/cue/stimulus word. For example, given king,
one could respond with rule, queen, kingdom, or
even kong (from the movie King Kong). Word
associations have long intrigued psychologists in-
cluding Carl Jung (1918) and hence large stud-
ies have been conducted in this direction. Some
prominent datasets which collect user responses to
word association games are:

1. University of Southern Florida: Free Asso-
ciation (USF-FA) (Nelson et al., 2004) has
single-word association responses from an
average of 149 participants per cue for a set
of 5,019 cue words.

2. Edinburgh Association Thesaurus (EAT)
(Kiss et al., 1973) collects 100 responses per
cue for a total of 8,400 cues.

3. JeuxDeMots: over 5 million french words
(Lafourcade, 2007).

4. Small World of Words (SWOW) (De Deyne
et al., 2018): Word association and partici-
pant data for 100 primary, secondary and ter-
tiary responses to 12,292 cues, collected from
over 90,000 participants6.

5. Birkbeck norms (Moss et al., 1996) contain
40 to 50 responses for over 2,600 cues in
British English.

Among non-English word association norms,
the largest resources available include 16000 cues
in Dutch (De Deyne et al., 2013), 3900 cues in Ko-
rean (Jung et al., 2010), and 2100 cues in Japanese
(Joyce, 2005).

The authors of SWOW and Jeux De Mots have
even attempted to employ their word association
datasets for learning word embeddings (De Deyne
et al., 2016; Plu et al.) . They use both count-based
and random walk based strategies to learn vector
representations of words. Note that we differ in
using the SWOW dataset not as a corpus to learn
word vectors, but as a human annotated dataset for
evaluating other pretrained word vectors.

cue response R123 N R123.Str

would should 63 288 0.220
would could 63 288 0.220
would will 24 288 0.083
would can 11 288 0.038
. . . . . . . . . . . . . . .
stumble fall 76 290 0.262
stumble trip 68 290 0.234
stumble upon 16 290 0.055

Table 1: A few example cue-response tuples from
the SWOW dataset, along with their associated
R123.Strength scores

Summary Statistic Value

Sample Minimum 115
(the smallest observation)
Lower Quartile 270
(the first quartile)
Median 282
(the middle value)
Upper Quartile 289
(the third quartile)
Sample Maximum 300
(the largest observation)

Table 2: The five number summary for N , i.e. the num-
ber of responses per cue

3 Dataset

Here onwards, we restrict ourselves to only the
Small World of Words dataset (SWOW), a part
of which can be seen in Table 1. For each cue-
response pair C-R, the value R123 is the num-
ber of participants who responded with R when
given the cue C. Note that out of at most three re-
sponses collected per cue per respondent, it does
not matter to the R123 score whether R occurred
in the first response or the third. N is the num-
ber of total responses given the cue C in the pro-
cessed version of released SWOW dataset. The
value R123.Strength is simply equal to R123

N .
There are 978, 908 cue-response pairs in the lat-

est release of SWOW dataset. The statistics for
the number of responses per cue is shown in Table
2. For our own SWOW evaluations, we got rid of
anything that was not a single word, e.g. New York
or get-together. We further selected only the most

6http://smallworldofwords.org/en/
project

http://smallworldofwords.org/en/project
http://smallworldofwords.org/en/project
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frequently co-occurring word associations. In par-
ticular, we kept only those cue-response pairs that
have R123.strength (i.e., number of people who
cited this response for this cue within any of the
three responses they gave, divided by the total
number of responses for this cue word) is greater
than 0.2 which corresponds to saying that at least
one fifth of all respondents believe this response is
one of the three top associated words for the given
cue. We were now left with 8500 cues and a few
of their corresponding top responses each. While
we restrict ourselves to experimenting only on the
SWOW-8500 dataset, we make available the code
and resources to create even larger datasets (with
fewer restrictions on, say, minimum strength of as-
sociation, needed). 7

Note that word association datasets are asym-
metric in that they treat the pairs C-R and R-C
separately, i.e., for the cue coffee, the response tea
might be the most frequent one but for the cue tea,
the most frequent response could be black. We
need to bear this in mind when using this dataset to
evaluate word embeddings intrinsically, since usu-
ally intrinsic datasets give out a single value for a
word pair. This also does not fit well with the tra-
ditional measure of similarity/relatedness between
two words, i.e., cosine distance, which is a sym-
metric metric.

4 Methodology

Supplemental Table 4 in the original SWOW
dataset paper (De Deyne et al., 2018) shows high
correlations with a few of the word similarity
datasets mentioned above. In this aspect, our work
can be seen as their direct successor, since we
build upon these correlations to propose a new
(and larger) task for intrinsic evaluation of word
vectors.

We wish to compare performances of any pre-
trained word embedding on (1) Our proposed task,
(2) other Intrinsic evaluation tasks, and (3) Down-
stream Tasks. To that end, we first settle upon
some candidate word embeddings. All embed-
dings had 300 dimensions, thereby avoiding dif-
ferent numbers of parameters to be learnt for
downstream models. They were reduced to a very
small common vocabulary of 7779 words. This
helped in conveniently expressing results, with-
out accounting for Out-of-Vocabulary words dif-
ferently. We attempt to have a representative set

7https://github.com/avi-jit/SWOW-eval

of embeddings, including the best and most popu-
lar ones:

1. Word2Vec Skip Gram (Mikolov et al.,
2013b,a) trained on Google News.8

2. GloVe (Pennington et al., 2014) trained on
Wikipedia 2014 and Gigaword 5.9

3. FastText (Bojanowski et al., 2017) trained
with subword information on Common
Crawl (600B tokens).10

4. ConceptNet Numberbatch (Speer et al.,
2017) trained on a big knowledge graph and
some text corpora.11

5. Baroni and Lenci’s (2014) count-based em-
beddings, which are the result of dimension-
ality reduction on a large count matrix.12

6. Random Baseline: a baseline developed by
randomly allotting 300 floating numbers to
each word in the common vocabulary of the
above five embeddings.

We used intrinsic evaluations in the form of
13 word similarity tasks, provided by wordvec-
tors.org (Faruqui and Dyer, 2014). For our pro-
posed task SWOW-8500, and for a given pre-
trained embedding E, we ask E to predict top k
responses for each of the 6481 cues (the ones in
common between the 7779 sized vocabulary of
our word vectors, and the 8500 cues in our pro-
posed task). This corresponds to listing the top-
k most similar words to the cue (which we have
found from decreasing order of cosine similarity).
We tried with several fixed values of k but fi-
nally report results keeping k variable, and always
equal to the number of responses for that particular
cue (in the SWOW-8500 dataset). Here k can be
thought of as the number of guesses allotted to an
image classifier. We then report how many of the
correct responses (according to SWOW dataset)
also occurred in the guesses made by E.

The True Positives are those words that occur
both in SWOW-8500 as well as E’s guesses. False

8http://code.google.com/archive/p/
word2vec/

9http://nlp.stanford.edu/projects/
glove/

10http://fasttext.cc/docs/en/
english-vectors.html

11http://github.com/commonsense/
conceptnet-numberbatch

12http://clic.cimec.unitn.it/dm/

https://github.com/avi-jit/SWOW-eval
http://code.google.com/archive/p/word2vec/
http://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
http://fasttext.cc/docs/en/english-vectors.html
http://fasttext.cc/docs/en/english-vectors.html
http://github.com/commonsense/conceptnet-numberbatch
http://github.com/commonsense/conceptnet-numberbatch
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cue Correct Guesses (TP) Incorrect Guesses (FP) Couldn’t Guess (FN)

ConceptNet Numberbatch

assassination murder assassin, killing president, kill
sect religion, cult religious group
newt salamander democrat, republican lizard, amphibian

Baroni and Lenci (Count-based)

assassination - killing, kidnapping, massacre president, murder, kill
sect cult fraternity, republic group, religion
newt salamander ladybird, alligator lizard, amphibian

Table 3: Responses to Cues by two of the compared pretrained embeddings, along with ground truth responses

Positives are those words that were correct re-
sponses (according to SWOW-8500) but could not
be guessed by E (not present in SWOW-8500).
False Negatives correspond to wrong guesses by
E. Note that since no ground truth responses are
labelled as negative (i.e., we only have words that
should be present in the response set for a given
cue), the number of True Negatives is always 0.
From a confusion matrix, we can report accuracy,
error, precision, recall, F1 score, and also a confi-
dence interval for the error score.

Lastly, we also conduct downstream evaluation
of embeddings on five tasks (Sentiment Analysis,
Chunking, Natural Language Inference, Named
Entity Recognition, and POS Tagging) using the
VecEval framework (Nayak et al., 2016). The
original framework uses, on top of the embed-
ding layers, LSTMs for some of the tasks. This
brings up the question of which other architectures
should then be tried out. Since bidirectional lan-
guage modelling has been shown to outperform a
simple left-to-right traversal (Devlin et al., 2018),
should biLSTMs be used instead? What about
Transformers, or self-attention layers (Vaswani
et al., 2017)? To avoid a very large number of
model parameters, and to conveniently report re-
sults only about the word embeddings like we in-
tend to, we instead chose to go ahead with simple
feed forward neural networks (one or two hidden
layers) and no LSTM layers. Based on several ex-
periments, we chose our hyperparameters as: 50
neurons per hidden layer, a dropout of 0.5, and 50
epochs with a batch size of 128. For details of the
tasks and data involved, please refer to their paper
or webpage. 13

13http://veceval.com

5 Results

Table 3 is a sample from the cues and responses
in the SWOW-8500 task. For each cue, the
ground truth extracted from SWOW is the union of
the words shown under columns Correct Guesses
(True Positives) and Couldn’t Guess (False Nega-
tives). It is noteworthy how (qualitatively) close-
to-correct are the responses by ConceptNet as op-
posed to those by the Count-Based embedding,
and as we shall see, the same holds in the quanti-
tative scores assigned to the two, by SWOW-8500
task.

Table 4 shows performance of the selected
pretrained embeddings on intrinsic evaluation:
the upper half covering existing word similarity
datasets and the lower half covers SWOW-8500.
ConceptNet Numberbatch seems to outperform all
the others, which could be attributed to it be-
ing based on a knowledge graph that links words
based on what concepts people think are associ-
ated. Table 5 shows performances on Downstream
tasks.

From Table 5 and the upper half of Table 4,
one can see a good correlation between intrinsic
and extrinsic evaluations, contrary to past reports
(Faruqui et al., 2016), at least for Fixed versions of
the tasks. However for model runs where Finetun-
ing was allowed, and with a large enough training
set, even Random Baseline embeddings quickly
came at par with the others. This goes to show
that, for the mostly classification-type tasks that
we considered, requiring little linguistic knowl-
edge and relying on topical semantics, our pro-
posed task acts as a great proxy.

Within Table 4, we notice how the Precision,
Recall, and F1 scores (from our proposed SWOW-
8500 task) correlate well with all intrinsic evalua-

http://veceval.com
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CN FT GloVe w2v Count Base Pairs OOV

EN-MEN-TR-3k 0.855 0.806 0.744 0.771 0.254 0.014 3000 423
CI width: 0.027 0.036 0.046 0.041 0.095 0.102

EN-MC-30 0.932 0.940 0.902 0.916 0.658 0.264 30 10
CI width: 0.190 0.177 0.276 0.240 0.725 1.054

EN-MTurk-771 0.839 0.740 0.659 0.685 0.228 0.034 771 192
CI width: 0.064 0.098 0.122 0.114 0.203 0.213

EN-SIMLEX-999 0.638 0.426 0.359 0.435 0.179 0.030 999 113
CI width: 0.103 0.141 0.151 0.141 0.170 0.173

EN-VERB-143 0.569 0.324 0.454 0.538 0.360 0.072 144 124
CI width: 0.833 1.026 0.940 0.864 1.005 1.105

EN-YP-130 0.727 0.542 0.524 0.463 0.178 -0.077 130 48
CI width: 0.274 0.403 0.413 0.445 0.541 0.554

EN-RW-STANFORD 0.815 0.666 0.552 0.648 0.401 -0.113 2034 1952
CI width: 0.200 0.325 0.402 0.338 0.480 0.558

EN-RG-65 0.939 0.943 0.862 0.819 0.492 -0.084 65 20
CI width: 0.202 0.196 0.217 0.275 0.593 0.751

EN-WS-353-ALL 0.814 0.738 0.615 0.707 0.287 -0.051 353 88
CI width: 0.108 0.145 0.198 0.160 0.295 0.315

EN-WS-353-SIM 0.842 0.826 0.683 0.776 0.448 0.002 203 43
CI width: 0.121 0.132 0.221 0.166 0.327 0.406

EN-WS-353-REL 0.771 0.709 0.608 0.659 0.090 -0.163 252 68
CI width: 0.157 0.192 0.242 0.217 0.375 0.369

EN-MTurk-287 0.863 0.816 0.764 0.779 0.261 -0.253 287 187
CI width: 0.137 0.179 0.221 0.210 0.478 0.481

EN-SimVerb-3500 0.580 0.337 0.208 0.341 0.088 -0.022 3500 694
CI width: 0.064 0.086 0.093 0.086 0.096 0.098

Precision 0.254 0.223 0.171 0.169 0.059 0.000
Recall 0.280 0.246 0.189 0.186 0.065 0.000
F1 Score 0.266 0.233 0.180 0.177 0.061 0.000 8500 2019
Error 0.746 0.777 0.829 0.831 0.941 1.000
(Error CI width) 0.008 0.008 0.007 0.007 0.005 0.000

Table 4: Intrinsic tasks performance. CN: ConceptNet Numberbatch; FT: FastText; Count: Baroni and Lenci.
Pairs: Number of word pairs in the dataset; OOV: Number of word pairs of which at least one word was missing
(for upper half of table) or Number of cues missing (for lower half of table) in the common vocabulary shared by
the six pre-trained embeddings. All Confidence Intervals (CI) reported at 99% confidence level.

tions. Thus SWOW task captures more or less the
same properties already captured by existing word
similarity datasets. So far the only added advan-
tage is that it has already been built (along with
others like USF and EAT), and therefore did not
require additional expensive annotation efforts.

The large scale of SWOW also offers a solu-

tion to the underlying shortcomings in intrinsic
evaluations: reporting statistical signficance. As
evident from Table 4, SWOW-8500 offers up to
three times narrower confidence intervals for error
rate, as opposed to the best amongst word similar-
ity datasets, i.e. EN-MEN-TR-3k. The table cites
all values at Confidence Intervals 99%. Even at
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CN FT GloVe w2v Count Random
Ques Fixed 0.6245 0.5055 0.6099 0.6264 0.5000 0.2234
Ques Finetuned 0.7015 0.7143 0.6978 0.7033 0.4506 0.7033

Senti Fixed 0.6984 0.6663 0.5436 0.6766 0.4874 0.5092
Senti Finetuned 0.6318 0.6445 0.6468 0.6480 0.5344 0.6640

Chunk Fixed 0.6598 0.6605 0.5980 0.6352 0.4168 0.3138
Chunk Finetuned 0.5824 0.5682 0.5925 0.6002 0.3863 0.3138

NLI Fixed 0.4142 0.4222 0.3234 0.3234 0.3345 0.3233
NLI Finetuned 0.4312 0.4303 0.4334 0.4280 0.3398 0.4245

NER Fixed 0.9264 0.9297 0.9226 0.9245 0.8332 0.8332
NER Finetuned 0.9145 0.9124 0.9190 0.9197 0.8332 0.8332

POS Fixed 0.6625 0.6695 0.6285 0.6547 0.3609 0.3244
POS Finetuned 0.5323 0.5305 0.5491 0.5456 0.3535 0.3244

Table 5: Downstream tasks performance. CN: ConceptNet Numberbatch; FT: FastText; Count: Baroni and Lenci

a more modest confidence level of 90%, for the
largest intrinsic dataset, i.e. SimVerb with 3500
word pairs, the accuracy of Numberbatch embed-
dings at 90% confidence could be reported within
a span of 0.039. The smallest dataset MC had 30
data points, leading to a 90% confidence span of
0.114. For SWOW with 6481 data points, the error
rate can be reported with a 90% confidence span
of 0.003. Thus, we have greater confidence in re-
porting SWOW evaluations than with previous in-
trinsic datasets, yet have little difference in actual
(relative) scores reported.

The Confidence Intervals for correlation scores
reported are based on the Fischer Transforma-
tion (Fisher, 1915). The transformation is de-

fined as zr =
ln( 1+r

1−r )
2 , where r is the correla-

tion coefficient. Thereafter, the confidence inter-
val (lower and upper limits) can be computed as:
ẑ = zr ±

z1−α
2√

N−3 , where N is the number of pairs
of observations, (in our case the number of pairs
shared with vocabulary).

Confidence Interval for the SWOW-8500,
which is a classification task, is reported as the
Wilson Score Interval (Wilson, 1927). The error
interval (lower and upper limits) are defined as:

e = ê ± z
√

e(1−e)
n , where e is the error value, z

is the constant (equal 2.58 for 99% CI), and n is
the number of observations evaluated upon (equal
to the total number of responses for all cues in
SWOW-8500).

6 Conclusions and Future Work

In this paper, we’ve suggested a new breed of in-
trinsic evaluation tasks, that rely not on word sim-
ilarity but on word association. More concretely,
we use the Small World of Words dataset to create
SWOW-8500, an intrinsic evaluation task We de-
scribe the task, and compare performance for six
word embeddings, on (1) our proposed task, on
(2) thirteen word similarity tasks, and on (3) five
downstream tasks.

We find that the same sets of properties as cap-
tured by word similarity datasets, which have been
shown to correlate with downstream tasks as well,
are also captured by the Word Association task
SWOW-8500. To add to that, we report higher
confidence scores which shall help in reporting
significance of results on intrinsic evaluation bet-
ter. Thus we hope to dispel the suspicion over
results reported using the (relatively) small word
similarity datasets, since they are now corrobo-
rated with much larger human studies as well.

There remain several interesting directions to be
explored, primarily the use of even more Word
Association datasets (mentioned in Section 2.2).
While in this paper, we’ve cited only the Response
Prediction task, we tried out several others, includ-
ing a Word Similarity task, and a Response Order-
ing task. With further experimentation, it would be
interesting to see what properties of embeddings
do these variations capture. Lastly, more down-
stream tasks could be tested for correlation, e.g.
morphological analysis.
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