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Preface

The RepEval series of workshops started in the midst of a boom of word embeddings with the goals
of promoting new benchmarks for vector space meaning representations, highlighting the issues with
existing benchmarks and improving on them. In addition to proposals for new evaluation tasks, it has
played an important role by providing an outlet for critical analysis, negative results, and methodological
caveats (reproducibility, parameters impact, the issue of attribution of results to the representation or the
whole system, dataset structure/balance/representativeness).

Three years later, mainstream NLP is switching to contextualized representations, but we are still facing
many of the same issues: reliable intrinsic metrics are scarce, which means that we rarely know what
features of representations make them successful for a given downstream task. This makes development
of new meaning representations and their fine-tuning a slow and expensive process with too many
variables - even more so than before.

The 3rd edition of RepEval aims to foster the discussion of the following issues:

• approaches to intrinsic and extrinsic evaluation of all kinds of distributional meaning
representations;

• evaluation motivated by linguistic, psycholinguistic or neurological evidence, its predictive power,
and interpretability of meaning representations;

• the (in)stability of vector representations, best practices for reproducible and reliable experiments;

• evaluation of representations at subword level, especially for morphologically complex languages;

• evaluation of phrase, sentence, paragraph and document-level representations: evidence of
compositionality, further diagnostic tests, and how much the preservation of abstract syntactic
information actually contributes to performance;

• formal analysis of properties of embedding spaces and their impact on downstream tasks;

• the contribution of representations per se vs. other modeling choices to system performance in
extrinsic evaluations;

• validation of evaluation methodology and findings in cross-lingual studies;

• specialized vs general-purpose representations, and whether the latter have inherent limits in
downstream tasks;

• internal states of end-to-end systems as meaning representations, and ways to make more sense of
them.

In the long run, the methodological and practical contributions of RepEval will add to the discussions on
what kinds of representations work best for what tasks, how we can interpret and reliably optimize them,
and to what extent it is possible to create cross-task meaning representations that would be necessary for
general AI.

The third edition of RepEval received 25 submissions (2 more were withdrawn). 4 submissions
presented an analysis of existing proposals, 3 contributed proposals for new evaluation tasks, and 3
dealt with scaling, improving or extending prior proposals to other languages. 8 proposals focused
on interpretation/analysis of meaning representations, and 7 - on their applications. We accepted 13
submissions, with acceptance rate of 52%.

iii





Organizers:

Anna Rogers, Univeristy of Massachusetts Lowell (USA)
Aleksandr Drozd, RIKEN (Japan)
Anna Rumshisky, University of Massachusetts Lowell (USA)
Yoav Goldbgerg, Bar-Ilan University (Israel)

Program Committee:

Omri Abend, The Hebrew University of Jerusalem (Israel)
Emily Bender, University of Washington (USA)
Sam Bowman, New York University (USA)
Jose Camacho Collados, Cardiff University (UK)
Alexis Conneau, Facebook AI Research (USA)
Barry Devereux, Queen’s University Belfast (UK)
Georgiana Dinu, Amazon AWS (USA)
Allyson Ettinger, University of Chicago (USA)
Mohit Iyyer, University of Massachusetts Amherst (USA)
Hila Gonen, Bar-Ilan University (Israel)
Douwe Kiela, Facebook AI Research (USA)
Jonathan K. Kummerfeld, University of Michigan (USA)
Tal Linzen, Johns Hopkins University (USA)
Preslav Nakov, Qatar Computing Research Institute (Qatar)
Neha Nayak, University of Massachusetts Amherst (USA)
Mark Neumann, Allen Institute for Artificial Intelligence (USA)
Denis Paperno, Utrecht University (the Netherlands)
Ellie Pavlick, Brown University (USA)
Marek Rei, University of Cambridge (UK)
Roi Reichart, Technion (Israel)
Vered Shwartz, Bar-Ilan University (Israel)
Diarmuid O’Seaghdha, Apple (UK)
Gabriel Stanovsky, University of Washington (USA)
Karl Stratos, Toyota Technological Institute at Chicago (USA)
Yulia Tsvetkov, Carnegie Mellon University (USA)
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Abstract

Distributed word vector spaces are consid-
ered hard to interpret which hinders the under-
standing of natural language processing (NLP)
models. In this work, we introduce a new
method to interpret arbitrary samples from a
word vector space. To this end, we train a
neural model to conceptualize word vectors,
which means that it activates higher order con-
cepts it recognizes in a given vector. Contrary
to prior approaches, our model operates in the
original vector space and is capable of learning
non-linear relations between word vectors and
concepts. Furthermore, we show that it pro-
duces considerably less entropic concept acti-
vation profiles than the popular cosine similar-
ity.

1 Introduction

In the vast majority of state-of-the-art NLP mod-
els, as for instance in translation models (Bo-
jar et al., 2018) or text classifiers (Howard and
Ruder, 2018), language is represented in dis-
tributed vector spaces. Using distributed represen-
tations comes at the price of low interpretability
as they are generally considered uninterpretable,
without further means (Levy and Goldberg, 2014;
Montavon et al., 2018). In this work, we address
this lack of interpretability with neural vector con-
ceptualization (NVC), a neural mapping from a
word vector space to a concept space (e.g. “chair”
should activate the concept “furniture”).

Using concepts to interpret distributed vec-
tor representations of language is inspired by
the finding that “humans understand languages
through multi-step cognitive processes which in-
volves building rich models of the world and mak-
ing multi-level generalizations from the input text”
(Shalaby and Zadrozny, 2019). We are not the
first, however, to utilize concepts for this purpose.

* Shared first authorship.

Koç et al. (2018), for instance, modify the
objective function of GloVe (Pennington et al.,
2014) to align semantic concepts with word vector
dimensions to create an interpretable space. Their
method does not, however, offer an interpretation
of vectors in the original space.

Senel et al. (2018), in contrast, do offer an in-
terpretation of the original space: They propose
a mapping of word vector dimensions to con-
cepts. This mapping, however, is linear and con-
sequently, their method is incapable of modeling
non-linear relations.

Our method offers an interpretation of the orig-
inal space and is capable of modeling non-linear
relations between the word and the concept space.
Furthermore, arguably, we interpret vectors sim-
ilar to how a neural NLP model would, because
a neural NLP model lies at the heart of our
method. In addition, by design, our model is
able to conceptualize random continuous samples,
drawn from the word vector space.

This is particularly important as word vectors
are sparse in their vector space and vectors without
a word representative do not have intrinsic mean-
ing. This hinders adapting methods from vision,
such as activation maximization (Simonyan et al.,
2013) or generative adversarial networks (Good-
fellow et al., 2014), as in NLP these methods po-
tentially produce vectors without word representa-
tions.

For introspection, one could map any vector
onto its nearest neighbor with a word representa-
tive. However, nearest neighbor search does not
necessarily find the closest semantic representa-
tive in the vector space (Schnabel et al., 2015).
Moreover, we show that concept activation pro-
files produced with nearest neighbor search tend
to be considerably more entropic than the activa-
tion profiles our method returns.
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2 Method

For NVC, we propose to train a neural model to
map word vectors onto associated concepts. More
formally, the model should learn a meaningful
mapping

f : IRd → IR|C| (1)

where d denotes the number of word vector di-
mensions and C is a set of concepts. The training
objective should be a multi-label classification to
account for instances that belong to more than one
concept (e.g. “chair” should also activate “seat”).

For the training, we need to make two basic
choices:

1. We need a ground truth concept knowledge
base that provides the concepts a training in-
stance should activate and

2. we need to choose a model architecture ap-
propriate for the task.

In the following, we motivate our choices.

2.1 Ground Truth Concept Knowledgebase
As a ground truth concept knowledge base we
chose the Microsoft Concept Graph (MCG),
which is built on top of Probase, for the follow-
ing reasons:

1. Wu et al. (2012) convincingly argue that with
Probase they built a universal taxonomy that
is more comprehensive than other existing
candidates, such as for example, Freebase
(Bollacker et al., 2008).

2. Furthermore, Probase is huge. The core tax-
onomy contains about 5.38 million concepts,
12.5 million unique instances, and 85.1 mil-
lion isA relations. This allows our model to
illuminate the word vector space from many
angles.

3. Instance-concept relations are probabilistic in
the MCG: For (instance, concept) tuples a
rep score can be retrieved. The rep score
describes the “representativeness” of an in-
stance for a concept, and vice versa. Accord-
ing to the MCG, for example, the instance
“chair” is a few thousand times more repre-
sentative for the concept “furniture” than is
the instance “car.” During training, we ex-
ploit the rep scores to retrieve representative
target concepts for a training instance.

The scores are based on the notion of Basic
Level Concepts (BLC) which were first introduced

by Rosch et al. (1976), as part of Prototype The-
ory. A basic level concept is a concept on which
all people of the same culture consciously or un-
consciously agree. For instance, according to Pro-
totype Theory, most humans would categorize a
“wood frog” simply as a “frog.” “Wood frog” is a
representative instance of the concept “frog.”

Aiming to provide an approach to the computa-
tion of the BLC of an instance i in the MCG, Wang
et al. (2015) combine pointwise mutual informa-
tion (PMI) with co-occurrence counts of concept
c and instance i. The authors compute the “repre-
sentativeness” of an instance i for a concept c as

rep(i, c) = P (c|i) · P (i|c). (2)

By taking the logarithm of the rep score, we can
isolate the involvement of PMI:

log rep(i, c)− log P (i, c) = PMI(i, c). (3)

In doing so, the authors boost concepts in the mid-
dle of the taxonomy (the basic level concepts)
while reducing extreme values leading to super-
or subordinate concepts. To find the BLC of a sin-
gle instance, Wang et al. (2015) maximize over the
rep value of all concepts associated with i.

To train our model, for a training instance i, we
collect all concepts for which rep(i, c)1 is above
a certain threshold and use them as the target la-
bels for i. We discard concepts that have very few
instances above a threshold rep value in the graph.

2.2 Model
During training, the model repeatedly receives a
word vector instance as input and a multi-hot vec-
tor retrieved from the MCG as the target concept
vector. Thus, it must identify concepts encoded in
the word vector.

We do not see any sequentiality or recurrence
in this task which is why we discarded recurrent
and Transformer candidate models. Concerning
convolutional networks, we disregard small recep-
tive fields because dimensional adjacency is se-
mantically irrelevant in word vectors. However,
any convolutional network with a receptive field
over the whole input vector is equivalent to a fully-
connected (FC) feed-forward network. Thus, we
ultimately trained an FC feed-forward network to
conceptualize vectors.

1We computed the rep values ourselves as we only ac-
quired a count-based version of the graph.
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Figure 1: Vector interpretations of the word vector of “listening” with 637 concepts. Top: Neural vector conceptu-
alization (our method, 10 highest activations labelled). Bottom: Cosine similarity (baseline, 10 highest activations
labelled). Both activation profiles are unnormalized.

3 Experiments

For a proof of concept, we chose the word-
2vec embedding (Mikolov et al., 2013) as the
word vector space to interpret. Recently, contex-
tualized representations, like ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019), received in-
creased attention. Nevertheless, well-established
global representations, such as word2vec re-
main highly relevant: ELMo still benefits from
using global embeddings as additional input and
BERT trains its own global token embedding
space.

The word2vec model and the MCG are based
on different corpora. As a consequence of using
data from two different sources, we sometimes
needed to modify MCG instances to match the
word2vec vocabulary.

We filtered the MCG for concepts that have at

least 100 instances with a rep value of at least
−10. This leaves 637 concepts with an average
of 184 instances per concept and gives a class im-
balance of 524 negative samples for every positive
sample.

With the obtained data, we trained a three-layer
FC network to map word vectors onto their con-
cepts in the MCG. The model returns independent
sigmoid activations for each concept. We trained
with categorical cross entropy and applied weights
regularization with a factor of 10−7. For all exper-
iments, we optimized parameters with the ADAM
optimizer (Kingma and Ba, 2015).2

To estimate task complexity, Table 1 lists the
precision, recall and F1 scores that our model
achieved on a fixed, randomly sampled test set that

2Our experiments are open source and can be replicated
out of the box: https://github.com/dfki-nlp/
nvc.
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Figure 2: Concept activations for the instance “listening.” Upper left: Top 25 concepts according to cosine simi-
larity. Bottom left: NVC activations of the same cosine top 25 concepts. Upper right: Top 25 concepts according
to NVC. Bottom right: Cosine activations of the same NVC top 25 concepts.

contained 10 % of the data. The table contains
the weighted average scores accomplished for all
concepts as well as the scores the model achieved
for selected individual concepts, grouped semanti-
cally.

Fig. 1 juxtaposes the NVC and the baseline ac-
tivation profile of the word vector of “listening”,
which was not encountered during training. Sev-
eral other NVCs can be found in the appendix (see
Figs. 3, 4 and 5) as well as selected concept acti-
vations of continuous samples (see Fig. 6).

While Fig. 1 shows a global perspective of the
activation profiles, Fig. 2 zooms in on the top 25
concepts, activated by the baseline method (first
column) and our method (second column).

4 Discussion

The weighted classification F1 score is 0.22 which
suggests that the task is complex, probably due to
the highly imbalanced data set. According to Ta-
ble 1, however, F1 scores vary significantly along
individual concepts. While we observe a high
score for province, our model has difficulties clas-
sifying locations, for instance. The same trend
can be observed for choreographers and legends.
What we see reflected in this table is the sharpness

P R F S
all concepts 0.43 0.16 0.22 9766

province 0.81 0.81 0.81 36
district 0.79 0.62 0.69 78
island 0.96 0.38 0.54 64

locality 0.5 0.03 0.06 29
location 0 0 0 14

choreographer 0.85 0.69 0.76 16
composer 0.8 0.66 0.72 61

artist 0.57 0.36 0.44 70
legend 0 0 0 33
dish 0 0 0 34
meal 0 0 0 17

delicacy 0 0 0 11
salad 0 0 0 9

Table 1: Precision (P), recall (R), F1 Score (F), and
support (S) for all 637 concepts (F1 Score weighted by
support) and selected individual concepts. Class mem-
bership was determined by an activation threshold of
0.5.

of concept boundaries. Arguably, the definition of
a province is sharper than that of location. The
same is true for choreographer and legend. We
assume that the more precise a concept boundary,
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the higher the classification performance tends to
be. We cannot, however, offer an explanation for
the poor classification performance on some other
concepts, such as the last ones in Table 1.

Fig. 1 (top) shows the NVC of “listening”
with the top ten peaks labelled. For Table 1, a
class membership was determined by an activa-
tion threshold of 0.5 of the relevant output neuron.
Fig. 1 (top), however, illustrates that the model
activates many meaningful concepts beneath this
threshold and thus 0.5 might not be appropriate to
determine class membership.

Some of the peaks are also reflected in the bot-
tom plot of Fig. 1, which depicts the activation
profile of the cosine similarity baseline method.
The most notable difference between our method
and the baseline is that the latter produces much
more entropic activation profiles. It is less selec-
tive than NVC as NVC deactivates many concepts.

Fig. 2 (first column) shows that NVC indeed de-
activates unrelated concepts, such as personality,
finding, filling, great, and work that, according to
cosine similarity, are close to the instance “listen-
ing.” Speaker, phone, and organ arguably are rea-
sonable concepts and yet deactivated by NVC but
NVC replaces them with more meaningful con-
cepts, as can be seen in the upper right plot in
Fig. 2. Note that, contrary to NVC, the baseline
method is not able to deactivate concepts that have
close vectors in the word vector space, nor is it
able to activate concepts that have vectors that are
far from the input vector. Overall, a manual anal-
ysis suggests that the top 25 NVC concepts are
more fitting than the top 25 cosine concepts.

5 Related Work

Concept knowledge bases such as the MCG ex-
ist because concepts are powerful abstractions of
natural language instances that have been used for
many downstream tasks, such as text classification
(Song et al., 2011), ad-query similarity and query
similarity (Kim et al., 2013), document similarity
(Song and Roth, 2015), and semantic relatedness
(Bekkali and Lachkar, 2019). The approaches
mentioned above all implement some form of text
conceptualization (TC).

TC models the probability P (c|I) of a concept
c being reflected in a set of observed natural lan-
guage instances I (Shalaby and Zadrozny, 2019;
Song et al., 2011). This is also the objective func-
tion of the model we train and our interpretability

method can thus be understood as an implementa-
tion of TC.

Furthermore, besides the methods already dis-
cussed in the introduction, there is more research
into the interpretability of language representa-
tions. Adi et al. (2017), for instance, also use aux-
iliary prediction tasks to analyse vector represen-
tations. However, they work on sentence level, not
word level. Moreover, instead of retrieving con-
cepts, they probe sentence length, word content
conservation and word order conservation in the
representation.

An approach similar to ours was introduced by
Sommerauer and Fokkens (2018). The authors
investigate the kind of semantic information en-
coded in word vectors. To this end, they train
a classifier that recognizes whether word vectors
carry specific semantic properties, some of which
can be regarded as concepts.

6 Conclusion & Future Work

We introduced neural vector conceptualization as
a means of interpreting continuous samples from
a word vector space. We demonstrated that our
method produces considerably less entropic con-
cept activation profiles than the cosine similarity
measure. For an input word vector, NVC acti-
vated meaningful concepts and deactivated unre-
lated ones, even if they were close in the word
vector space.

Contrary to prior methods, by design, NVC op-
erates in the original language space and is capa-
ble of modeling non-linear relations between lan-
guage instances and concepts. Furthermore, our
method is flexible: At the heart of it lies a neural
NLP model that we trained on an instance-concept
ground truth that could be replaced by another one.

In the future, we would like to extend NVC to
contextualized representations. We consider this
non-trivial because it may not be possible to di-
rectly apply the current instance-concept ground
truth to contextualized instances, in particular if
they are represented by sub-word embeddings.

Acknowledgements

This research was partially supported by the Ger-
man Federal Ministry of Education and Research
through the project DEEPLEE (01IW17001). We
would also like to thank the anonymous reviewers
for their feedback and Leonhard Hennig for data
and feedback.

5



References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In International Conference of Learning
Representations (ICLR).

Mohammed Bekkali and Abdelmonaime Lachkar.
2019. An effective short text conceptualization
based on new short text similarity. Social Network
Analysis and Mining, 9(1):1.
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Figure 3: NVC of the word vector for “mafioso” (the
instance was not encountered during training).
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B Concept Activations for Continuous
Samples

Figure 6: Concept activations of five selected concepts
of word vectors sampled on the path between the in-
stances “listening” and “speaking”. Note the steady,
non-oscillating paths between the instances.
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Abstract

Analysis of word embedding properties to
inform their use in downstream NLP tasks
has largely been studied by assessing near-
est neighbors. However, geometric prop-
erties of the continuous feature space con-
tribute directly to the use of embedding fea-
tures in downstream models, and are largely
unexplored. We consider four properties of
word embedding geometry, namely: posi-
tion relative to the origin, distribution of fea-
tures in the vector space, global pairwise dis-
tances, and local pairwise distances. We de-
fine a sequence of transformations to gener-
ate new embeddings that expose subsets of
these properties to downstream models and
evaluate change in task performance to under-
stand the contribution of each property to NLP
models. We transform publicly available pre-
trained embeddings from three popular toolk-
its (word2vec, GloVe, and FastText) and evalu-
ate on a variety of intrinsic tasks, which model
linguistic information in the vector space, and
extrinsic tasks, which use vectors as input to
machine learning models. We find that intrin-
sic evaluations are highly sensitive to absolute
position, while extrinsic tasks rely primarily
on local similarity. Our findings suggest that
future embedding models and post-processing
techniques should focus primarily on similar-
ity to nearby points in vector space.

1 Introduction

Learned vector representations of words, known
as word embeddings, have become ubiquitous
throughout natural language processing (NLP) ap-
plications. As a result, analysis of embedding
spaces to understand their utility as input fea-
tures has emerged as an important avenue of in-
quiry, in order to facilitate proper use of embed-
dings in downstream NLP tasks. Many analyses
have focused on nearest neighborhoods, as a vi-
able proxy for semantic information (Rogers et al.,

∗These authors contributed equally to this work.

2018; Pierrejean and Tanguy, 2018). However,
neighborhood-based analysis is limited by the un-
reliability of nearest neighborhoods (Wendlandt
et al., 2018). Further, it is intended to evaluate the
semantic content of embedding spaces, as opposed
to characteristics of the feature space itself.

Geometric analysis offers another recent an-
gle from which to understand the properties of
word embeddings, both in terms of their distri-
bution (Mimno and Thompson, 2017) and corre-
lation with downstream performance (Chandrahas
et al., 2018). Through such geometric investiga-
tions, neighborhood-based semantic characteriza-
tions are augmented with information about the
continuous feature space of an embedding. Ge-
ometric features offer a more direct connection
to the assumptions made by neural models about
continuity in input spaces (Szegedy et al., 2014),
as well as the use of recent contextualized rep-
resentation methods using continuous language
models (Peters et al., 2018; Devlin et al., 2018).

In this work, we aim to bridge the gap between
neighborhood-based semantic analysis and geo-
metric performance analysis. We consider four
components of the geometry of word embeddings,
and transform pretrained embeddings to expose
only subsets of these components to downstream
models. We transform three popular sets of em-
beddings, trained using word2vec (Mikolov et al.,
2013),1 GloVe (Pennington et al., 2014),2 and
FastText (Bojanowski et al., 2017),3 and use the
resulting embeddings in a battery of standard eval-
uations to measure changes in task performance.

We find that intrinsic evaluations, which model
linguistic information directly in the vector space,

13M 300-d GoogleNews vectors from https://code.
google.com/archive/p/word2vec/

22M 300-d 840B Common Crawl vectors from https:
//nlp.stanford.edu/projects/glove/

31M 300-d WikiNews vectors with subword infor-
mation from https://fasttext.cc/docs/en/
english-vectors
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Original Affine CDE NNE

Translation

Reflection

Rotation
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Thresholded

Weighted

Unweighted

Random
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Figure 1: Sequence of transformations applied to word embeddings, including transformation variants. Note that
each transformation is applied independently to source word embeddings. Transformations are presented in order
of decreasing geometric information retained about the original vectors.

are highly sensitive to absolute position in pre-
trained embeddings; while extrinsic tasks, in
which word embeddings are passed as input fea-
tures to a trained model, are more robust and rely
primarily on information about local similarity be-
tween word vectors. Our findings, including evi-
dence that global organization of word vectors is
often a major source of noise, suggest that fur-
ther development of embedding learning and tun-
ing methods should focus explicitly on local sim-
ilarity, and help to explain the success of several
recent methods.

2 Related Work

Word embedding models and outputs have been
analyzed from several angles. In terms of per-
formance, evaluating the “quality” of word em-
bedding models has long been a thorny problem.
While intrinsic evaluations such as word similar-
ity and analogy completion are intuitive and easy
to compute, they are limited by both confounding
geometric factors (Linzen, 2016) and task-specific
factors (Faruqui et al., 2016; Rogers et al., 2017).
Chiu et al. (2016) show that these tasks, while cor-
related with some semantic content, do not always
predict downstream performance. Thus, it is nec-
essary to use a more comprehensive set of intrinsic
and extrinsic evaluations for embeddings.

Nearest neighbors in sets of embeddings are
commonly used as a proxy for qualitative seman-
tic information. However, their instability across
embedding samples (Wendlandt et al., 2018) is a
limiting factor, and they do not necessarily corre-
late with linguistic analyses (Hellrich and Hahn,
2016). Modeling neighborhoods as a graph struc-
ture offers an alternative analysis method (Cuba
Gyllensten and Sahlgren, 2015), as does 2-D or
3-D visualization (Heimerl and Gleicher, 2018).
However, both of these methods provide qualita-
tive insights only. By systematically analyzing ge-
ometric information with a wide variety of eval-

uations, we provide a quantitative counterpart to
these understandings of embedding spaces.

3 Methods

In order to investigate how different geomet-
ric properties of word embeddings contribute to
model performance on intrinsic and extrinsic eval-
uations, we consider the following attributes of
word embedding geometry:
• position relative to the origin;
• distribution of feature values in Rd;
• global pairwise distances, i.e. distances be-

tween any pair of vectors;
• local pairwise distances, i.e. distances be-

tween nearby pairs of vectors.
Using each of our sets of pretrained word em-

beddings, we apply a variety of transformations to
induce new embeddings that only expose subsets
of these attributes to downstream models. These
are: affine transformation, which obfuscates the
original position of the origin; cosine distance en-
coding, which obfuscates the original distribution
of feature values in Rd; nearest neighbor encod-
ing, which obfuscates global pairwise distances;
and random encoding. This sequence is illustrated
in Figure 1, and the individual transformations are
discussed in the following subsections.

General notation for defining our transforma-
tions is as follows. Let W be our vocabulary of
words taken from some source corpus. We asso-
ciate with each word w ∈ W a vector v ∈ Rd
resulting from training via one of our embedding
generation algorithms, where d is an arbitrary di-
mensionality for the embedding space. We define
V to be the set of all pretrained word vectors v for
a given corpus, embedding algorithm, and param-
eters. The matrix of embeddings MV associated
with this set then has shape |V | × d. For simplic-
ity, we restrict our analysis to transformed embed-
dings of the same dimensionality d as the original
vectors.
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3.1 Affine transformations
Affine transformations have been previously uti-
lized for post-processing of word embeddings. For
example, Artetxe et al. (2016) learn a matrix trans-
form to align multilingual embedding spaces, and
Faruqui et al. (2015) use a linear sparsification to
better capture lexical semantics. In addition, the
simplicity of affine functions in machine learn-
ing contexts (Hofmann et al., 2008) makes them
a good starting point for our analysis.

Given a set of embeddings in Rd, referred to as
an embedding space, affine transformations

faffine : Rd → Rd

change positions of points relative to the origin.
While prior work has typically focused on linear

transformations, which fix the origin, we consider
the broader class of affine transformations, which
do not. Thus, affine transformations such as trans-
lation cannot in general be represented as a square
matrix for finite-dimensional spaces.

We use the following affine transformations:

• translations;
• reflections over a hyperplane;
• rotations about a subspace;
• homotheties.

We give brief definitions of each transformation.

Definition 1. A translation is a function Tx :
Rd → Rd given by

Tx(v) = v + x (3.1)

where x ∈ Rd.
Definition 2. For every a ∈ Rd, we call the map
Refla : Rd → Rd given by

Refla(v) = v − 2
v · a
a · aa (3.2)

the reflection over the hyperplane through the ori-
gin orthogonal to a.

Definition 3. A rotation through the span of vec-
tors u,x by angle θ is a map Rotu,x : Rd → Rd
given by

Rotu,x(v) = Av (3.3)

where

A = I + sin θ(xuT − uxT )

+ (cos θ − 1)(uuT + xxT )
(3.4)

and I ∈ Matd,d(R) is the identity matrix.

Definition 4. For every a ∈ Rd and λ ∈ R \ { 0 },
we call the map Ha,λ : Rd → Rd given by

Ha,λ(v) = a + λ(v − a) (3.5)

a homothety of center a and ratio λ. A homothety
centered at the origin is called a dilation.

Parameters used in our analysis for each of these
transformations are provided in Appendix A.

3.2 Cosine distance encoding (CDE)
Our cosine distance encoding transformation

fCDE : Rd → R|V |

obfuscates the distribution of features in Rd by
representing a set of word vectors as a pairwise
distance matrix. Such a transformation might be
used to avoid the non-interpretability of embed-
ding features (Fyshe et al., 2015) and compare em-
beddings based on relative organization alone.

Definition 5. Let a,b ∈ Rd. Then their cosine
distance dcos : Rd × Rd → [0, 2] is given by

dcos(a,b) = 1− a · b
||a||||b|| (3.6)

where the second term is the cosine similarity.

As all three sets of embeddings evaluated in this
study have vocabulary size on the order of 106, use
of the full distance matrix is impractical. We use
a subset consisting of the distance from each point
to the embeddings of the 10K most frequent words
from each embedding set, yielding

fCDE : Rd → R104

This is not dissimilar to the global frequency-
based negative sampling approach of word2vec
(Mikolov et al., 2013). We then use an autoen-
coder to map this back to Rd for comparability.

Definition 6. Let v ∈ R|V |,W1,W2 ∈ R|V |×d.
Then an autoencoder over R|V | is defined as

h = ϕ(vW1) (3.7)

v̂ = ϕ(W2
Th) (3.8)

Vector h ∈ Rd is then used as the compressed rep-
resentation of v.

In our experiments, we use ReLU as our activa-
tion function ϕ, and train the autoencoder for 50
epochs to minimize L2 distance between v and v̂.
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We recognize that low-rank compression us-
ing an autoencoder is likely to be noisy, thus po-
tentially inducing additional loss in evaluations.
However, precedent for capturing geometric struc-
ture with autoencoders (Li et al., 2017b) suggests
that this is a viable model for our analysis.

3.3 Nearest neighbor encoding (NNE)
Our nearest neighbor encoding transformation

fNNE : Rd → R|V |

discards the majority of the global pairwise dis-
tance information modeled in CDE, and retains
only information about nearest neighborhoods.
The output of fNNE(v) is a sparse vector.

This transformation relates to the common use
of nearest neighborhoods as a proxy for seman-
tic information (Wendlandt et al., 2018; Pierre-
jean and Tanguy, 2018). We take the previously
proposed approach of combining the output of
fNNE(v) for each v ∈ V to form a sparse adja-
cency matrix, which describes a directed nearest
neighbor graph (Cuba Gyllensten and Sahlgren,
2015; Newman-Griffis and Fosler-Lussier, 2017),
using three versions of fNNE defined below.

Thresholded The set of non-zero indices in
fNNE(v) correspond to word vectors ṽ such that
the cosine similarity of v and ṽ is greater than or
equal to an arbitrary threshold t. In order to en-
sure that every word has non-zero out degree in the
graph, we also include the k nearest neighbors by
cosine similarity for every word vector. Non-zero
values in fNNE(v) are set to the cosine similarity
of v and the relevant neighbor vector.

Weighted The set of non-zero indices in
fNNE(v) corresponds to only the set of k nearest
neighbors to v by cosine similarity. Cosine simi-
larity values are used for edge weights.

Unweighted As in the previous case, only k
nearest neighbors are included in the adjacency
matrix. All edges are weighted equally, regardless
of cosine similarity.

We report results using k = 5 and t = 0.05;
other settings are discussed in Appendix B.

Finally, much like the CDE method, we use a
second mapping function

ψ : R|V | → Rd

to transform the nearest neighbor graph back to
d-dimensional vectors for evaluation. Following
Newman-Griffis and Fosler-Lussier (2017), we

use node2vec (Grover and Leskovec, 2016) with
default parameters to learn this mapping. Like the
autoencoder, this is a noisy map, but the intent of
node2vec to capture patterns in local graph struc-
ture makes it a good fit for our analysis.

3.4 Random encoding
Finally, as a baseline, we use a random encoding

fRand : Rd → Rd

that discards original vectors entirely.
While intrinsic evaluations rely only on input

embeddings, and thus lose all source informa-
tion in this case, extrinsic tasks learn a model to
transform input features, making even randomly-
initialized vectors a common baseline (Lample
et al., 2016; Kim, 2014). For fair comparison, we
generate one set of random baselines for each em-
bedding set and re-use these across all tasks.

3.5 Other transformations
Many other transformations of a word embedding
space could be included in our analysis, such as
arbitrary vector-valued polynomial functions, ra-
tional vector-valued functions, or common decom-
position methods such as principal components
analysis (PCA) or singular value decomposition
(SVD). Additionally, though they cannot be effec-
tively applied to the unordered set of word vectors
in a raw embedding space, transformations for se-
quential data such as discrete Fourier transforms
or discrete wavelet transforms could be used for
word sequences in specific text corpora.

For this study, we limit our scope to the transfor-
mations listed above. These transformations align
with prior work on analyzing and post-processing
embeddings for specific tasks, and are highly in-
terpretable with respect to the original embedding
space. However, other complex transformations
represent an intriguing area of future work.

4 Evaluation

In order to measure the contributions of each geo-
metric aspect described in Section 3 to the utility
of word embeddings as input features, we evalu-
ate embeddings transformed using our sequence
of operations on a battery of standard intrinsic
evaluations, which model linguistic information
directly in the vector space; and extrinsic eval-
uations, which use the embeddings as input to
learned models for downstream applications Our
intrinsic evaluations include:
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(a) Results of intrinsic evaluations

(b) Results of extrinsic evaluations

Figure 2: Performance metrics on intrinsic and extrinsic tasks, comparing across different transformations applied
to each set of word embeddings. Dotted lines are for visual aid in tracking performance on individual tasks, and
do not indicate continuous transformations. Transformations are presented in order of decreasing geometric infor-
mation about the original vectors, and are applied independent of one another to the original source embedding.

• Word similarity and relatedness, using co-
sine similarity: WordSim-353 (Finkelstein
et al., 2001), SimLex-999 (Hill et al., 2015),
RareWords (Luong et al., 2013), RG65
(Rubenstein and Goodenough, 1965), MEN
(Bruni et al., 2014), and MTURK (Radinsky
et al., 2011).4

• Word categorization, using an oracle combi-
nation of agglomerative and k-means clus-
tering: AP (Almuhareb and Poesio, 2005),
BLESS (Baroni and Lenci, 2011), Battig
(Battig and Montague, 1969), and the ESS-
LLI 2008 shared task (Baroni et al. (2008),
performance averaged across nouns, verbs,

4https://github.com/kudkudak/
word-embeddings-benchmarks using single-word
datasets only. For brevity, we omit the Sim/Rel splits of
WordSim-353 (Agirre et al., 2009), which showed the same
trends as the full dataset.

and concrete nouns).5

Given the well-documented issues with using
vector arithmetic-based analogy completion as an
intrinsic evaluation (Linzen, 2016; Rogers et al.,
2017; Newman-Griffis et al., 2017), we do not in-
clude it in our analysis.

We follow Rogers et al. (2018) in evaluating on
a set of five extrinsic tasks:5

• Relation classification: SemEval-2010 Task
8 (Hendrickx et al., 2010), using a CNN with
word and distance embeddings (Zeng et al.,
2014).
• Sentence-level sentiment polarity classifica-

tion: MR movie reviews (Pang and Lee,
2005), with a simplified CNN model from
(Kim, 2014).

5https://github.com/drgriffis/
Extrinsic-Evaluation-tasks
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• Sentiment classification: IMDB movie re-
views (Maas et al., 2011), with a single 100-d
LSTM.
• Subjectivity/objectivity classification: Rotten

Tomato snippets (Pang and Lee, 2004), using
a logistic regression over summed word em-
beddings (Li et al., 2017a).
• Natural language inference: SNLI (Bow-

man et al., 2015), using separate LSTMs for
premise and hypothesis, combined with a
feed-forward classifier.

5 Analysis and Discussion

Figure 2 presents the results of each intrinsic and
extrinsic evaluation on the transformed versions of
our three sets of word embeddings.6 The largest
drops in performance across all three sets for in-
trinsic tasks occur when explicit embedding fea-
tures are removed with the CDE transformation.
While some cases of NNE-transformed embed-
dings recover a measure of this performance, they
remain far under affine-transformed embeddings.
Extrinsic tasks are similarly affected by the CDE
transformation; however, NNE-transformed em-
beddings recover the majority of performance.

Comparing within the set of affine transforma-
tions, the innocuous effect of rotations, dilations,
and reflections on both intrinsic and extrinsic tasks
suggests that the models used are robust to simple
linear transformations. Extrinsic evaluations are
also relatively insensitive to translations, which
can be modeled with bias terms, though the lack
of learned models and reliance on cosine similar-
ity for the intrinsic tasks makes them more sensi-
tive to shifts relative to the origin. Interestingly,
homothety, which effectively combines a transla-
tion and a dilation, leads to a noticeable drop in
performance across all tasks. Intuitively, this re-
sult makes sense: by both shifting points rela-
tive to the origin and changing their distribution
in the space, angular similarity values used for in-
trinsic tasks can be changed significantly, and the
zero mean feature distribution preferred by neu-
ral models (Clevert et al., 2016) becomes harder
to achieve. This suggests that methods for tuning
embeddings should attempt to preserve the origin
whenever possible.

The large drops in performance observed when
using the CDE transformation is likely to relate

6Due to their large vocabulary size, we were unable to run
Thresholded-NNE experiments with word2vec embeddings.

to the instability of nearest neighborhoods and
the importance of locality in embedding learn-
ing (Wendlandt et al., 2018), although the effects
of the autoencoder component also bear further
investigation. By effectively increasing the size
of the neighborhood considered, CDE adds ad-
ditional sources of semantic noise. The similar
drops from thresholded-NNE transformations, by
the same token, is likely related to observations
of the relationship between the frequency ranks of
a word and its nearest neighbors (Faruqui et al.,
2016). With thresholded-NNE, we find that the
words with highest out degree in the nearest neigh-
bor graph are rare words (e.g., “Chanterelle” and
“Courtier” in FastText, “Tiegel” and “demangler”
in GloVe), which link to other rare words. Thus,
node2vec’s random walk method is more likely
to traverse these dense subgraphs of rare words,
adding noise to the output embeddings.

Finally, we note that Melamud et al. (2016)
showed significant variability in downstream task
performance when using different embedding di-
mensionalities. While we fixed vector dimension-
ality for the purposes of this study, varying d in
future work represents a valuable follow-up.

Our findings suggest that methods for train-
ing and tuning embeddings, especially for down-
stream tasks, should explicitly focus on local geo-
metric structure in the vector space. One concrete
example of this comes from Chen et al. (2018),
who demonstrate empirical gains when changing
the negative sampling approach of word2vec to
choose negative samples that are currently near to
the target word in vector space, instead of the orig-
inal frequency-based sampling (which ignores ge-
ometric structure). Similarly, successful methods
for tuning word embeddings for specific tasks have
often focused on enforcing a specific neighbor-
hood structure (Faruqui et al., 2015). We demon-
strate that by doing so, they align qualitative se-
mantic judgments with the primary geometric in-
formation that downstream models learn from.

6 Conclusion

Analysis of word embeddings has largely fo-
cused on qualitative characteristics such as near-
est neighborhoods or relative distribution. In this
work, we take a quantitative approach analyzing
geometric attributes of embeddings in Rd, in order
to understand the impact of geometric properties
on downstream task performance. We character-
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ized word embedding geometry in terms of abso-
lute position, vector features, global pairwise dis-
tances, and local pairwise distances, and generated
new embedding matrices by removing these at-
tributes from pretrained embeddings. By evaluat-
ing the performance of these transformed embed-
dings on a variety of intrinsic and extrinsic tasks,
we find that while intrinsic evaluations are sensi-
tive to absolute position, downstream models rely
primarily on information about local similarity.

As embeddings are used for increasingly
specialized applications, and as recent contextual-
ized embedding methods such as ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2018)
allow for dynamic generation of embeddings
from specific contexts, our findings suggest that
work on tuning and improving these embeddings
should focus explicitly on local geometric struc-
ture in sampling and evaluation methods. The
source code for our transformations and com-
plete tables of our results are available online at
https://github.com/OSU-slatelab/
geometric-embedding-properties.
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Appendix A Parameters

We give the following library of vectors in Rd used
as parameter values:

vdiag =




1√
d
...
1√
d


 ;

vdiagNeg =




− 1√
d

1√
d
...
1√
d



.

(A.1)

Transform Parameter Value

Translation Direction: 0
Magnitude: 1

Dilation Magnitude: 2

Homothety Center: vdiag

Magnitude: 0.25

Reflection Hyperplane Vector: vdiag

2-D Rotation Basis Vector 1: vdiag

Basis Vector 2: vdiagNeg

Angle: π/4

Table 1: Transform parameters.

Appendix B NNE settings

We experimented with k ∈ {5, 10, 15} for our
weighted and unweighted NNE transformations.
For thresholded NNE, in order to best evaluate the
impact of thresholding over uniform k, we used
the minimum k = 5 and experimented with t ∈
{0.01, 0.05, 0.075}; higher values of t increased
graph size sufficiently to be impractical. We report
using k = 5 for weighted and unweighted settings
in our main results for fairer comparison with the
thresholded setting.

The effect of thresholding on nearest neigh-
bor graphs was a strongly right-tailed increase in
out degree for a small portion of nodes. Our re-
ported value of t = 0.05 increased the out de-
gree of 20,229 nodes for FastText (out of 1M to-
tal nodes), with the maximum increase being 819
(“Chanterelle”), and 1,354 nodes increasing out
degree by only 1. For GloVe, 7,533 nodes in-
creased in out degree (out of 2M total), with max-
imum increase 240 (“Tiegel”), and 372 nodes in-
creasing out degree by only 1.

Table 2 compares averaged performance values
across all intrinsic tasks for these settings, and
Table 3 compares average extrinsic task perfor-
mance.

NNE params FastText word2vec GloVe
Thresholded
k = 5, t = 0.01 0.160 – 0.106
k = 5, t = 0.05 0.129 – 0.130

k = 5, t = 0.075 0.150 – 0.132
Weighted

k = 5 0.320 0.419 0.426
k = 10 0.342 0.363 0.460
k = 15 0.346 0.376 0.448

Unweighted
k = 5 0.330 0.428 0.435

k = 10 0.351 0.396 0.463
k = 15 0.341 0.365 0.432

Table 2: Mean performance on intrinsic tasks under
different NNE settings.

NNE params FastText word2vec GloVe
Thresholded
k = 5, t = 0.01 0.642 – 0.666
k = 5, t = 0.05 0.650 – 0.664

k = 5, t = 0.075 0.649 – 0.663
Weighted

k = 5 0.721 0.720 0.738
k = 10 0.728 0.713 0.740
k = 15 0.725 0.713 0.739

Unweighted
k = 5 0.720 0.717 0.732

k = 10 0.724 0.712 0.738
k = 15 0.729 0.708 0.725

Table 3: Mean performance on extrinsic tasks under
different NNE settings.
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Abstract

The stability of word embedding algorithms,
i.e., the consistency of the word representa-
tions they reveal when trained repeatedly on
the same data set, has recently raised concerns.
We here compare word embedding algorithms
on three corpora of different sizes, and evalu-
ate both their stability and accuracy. We find
strong evidence that down-sampling strategies
(used as part of their training procedures)
are particularly influential for the stability
of SVDPPMI-type embeddings. This finding
seems to explain diverging reports on their
stability and lead us to a simple modification
which provides superior stability as well as
accuracy on par with skip-gram embeddings.

1 Introduction

Word embedding algorithms implement the latest
form of distributional semantics originating from
the seminal work of Harris (1954) or Rubenstein
and Goodenough (1965). They generate dense
vector space representations for words based on
co-occurrences within a context window. They
sample word-context pairs, i.e., typically two co-
occurring tokens, from a corpus and use these
to generate vector representations of words and
their context. Changes to the algorithm’s sampling
mechanism can lead to new capabilities, e.g., pro-
cessing dependency information instead of linear
co-occurrences (Levy and Goldberg, 2014a), or
increased performance, e.g., using word associa-
tion values instead of raw co-occurrence counts
(Bullinaria and Levy, 2007).

Word embedding algorithms commonly down-
sample contexts to lessen the impact of high-
frequency words (termed ‘subsampling’ in Levy
et al. (2015)) or increase the relative importance
of words closer to the center of a context window
(called ‘dynamic context window’ in Levy et al.
(2015)). The effect of using such down-sampling

strategies on accuracy in word similarity and
analogy tasks was explored in several papers (e.g.,
Levy et al. (2015)).

However, down-sampling and details of its
implementation also have major effects on the
stability of word embeddings (also known as
‘reliability’), i.e., the degree to which models
trained independently on the same data agree on
the structure of the resulting embedding space.
This problem has lately raised severe concerns
in the word embedding community (e.g., Hellrich
and Hahn (2016b); Antoniak and Mimno (2018);
Wendlandt et al. (2018)) and is also of interest to
the wider machine learning community due to the
influence of probabilistic—and thus unstable—
methods on experimental results (Reimers and
Gurevych, 2017; Henderson et al., 2018), as
well as replicability and reproducibility (Ivie and
Thain, 2018, pp. 63:3–4).

Stability is critical for studies examining the
underlying semantic space as a more advanced
form of corpus linguistics, e.g., tracking lexical
change (Kim et al., 2014; Kulkarni et al., 2015;
Hellrich et al., 2018). Unstable word embeddings
can lead to serious problems in such applications,
as interpretations will depend on the luck of the
draw. This might also affect high-stake fields
like medical informatics where patients could be
harmed as a consequence of misleading results
(Coiera et al., 2018).

In the light of these concerns, we here eval-
uate down-sampling strategies by modifying the
SVDPPMI (Singular Value Decomposition of a
Positive Pointwise Mutual Information matrix;
Levy et al. (2015)) algorithm and comparing its
results with those of two other embedding algo-
rithms, namely, GLOVE (Pennington et al., 2014)
and SGNS (Mikolov et al., 2013a,c). Our analysis
is based on three corpora of different sizes and
investigates effects on both accuracy and stability.
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The inclusion of accuracy measurements and the
larger size of our training corpora exceed prior
work. We show how the choice of down-sampling
strategies, a seemingly minor detail, leads to major
differences in the characterization of SVDPPMI
in recent studies (Hellrich and Hahn, 2017; An-
toniak and Mimno, 2018). We also present
SVDWPPMI, a simple modification of SVDPPMI
that replaces probabilistic down-sampling with
weighting. What, at first sight, appears to be a
small change leads, nevertheless, to an unrivaled
combination of stability and accuracy, making it
particularly well-suited for the above-mentioned
corpus linguistic applications.

2 Computational Methodology

2.1 Measuring Stability

Measuring word embedding stability can be linked
to older research comparing distributional thesauri
(Salton and Lesk, 1971) by the most similar
words they contain for particular anchor words
(Weeds et al., 2004; Padró et al., 2014). Most
stability experiments focused on repeatedly train-
ing the same algorithm on one corpus (Hellrich
and Hahn, 2016a,b, 2017; Antoniak and Mimno,
2018; Pierrejean and Tanguy, 2018; Chugh et al.,
2018), whereas Wendlandt et al. (2018) quantified
stability by comparing word similarity for models
trained with different algorithms. We follow the
former approach, since we deem it more relevant
for ensuring that study results can be replicated or
reproduced.

Stability can be quantified by calculating the
overlap between sets of words considered most
similar in relation to pre-selected anchor words.
Reasonable metrical choices are, e.g., the Jaccard
coefficient (Jaccard, 1912) between these sets
(Antoniak and Mimno, 2018; Chugh et al., 2018),
or a percentage based coefficient (Hellrich and
Hahn, 2016a,b; Wendlandt et al., 2018; Pierrejean
and Tanguy, 2018). We here use j@n, i.e., the
Jaccard coefficient for the n most similar words.
It depends on a setM of word embedding models,
m, for which the n most similar words (by cosine)
from a set A of anchor words, a, as provided by
the ’most similar words’ function msw(a, n,m),
are compared:

j@n :=
1

|A|
∑

a∈A

|⋂m∈M msw(a, n,m)|
|⋃m∈M msw(a, n,m)| (1)

2.2 SVDPPMI Word Embeddings

The SVDPPMI algorithm from Levy et al. (2015)
generates word embeddings in a three-step pro-
cess. First, a corpus is transformed to a word-
context matrix listing co-occurrence frequencies.
Next, the frequency-based word-context matrix
is transformed into a word-context matrix that
contains word association values. Finally, singular
value decomposition (SVD; Berry (1992); Saad
(2003)) is applied to the latter matrix to reduce its
dimensionality and generate word embeddings.

Each token from the corpus is successively pro-
cessed in the first step by recording co-occurrences
with other tokens within a symmetric window
of a certain size. For example, in a token se-
quence . . . , wi−2, wi−1, wi, wi+1, wi+2, . . . , with
wi as the currently modeled token, a window
of size 1 would be concerned with wi−1 and
wi+1 only. Down-sampling as described by Levy
et al. (2015) increases accuracy by ignoring certain
co-occurrences while populating the word-context
matrix (further details are described below). A
word-context matrix is also used in GLOVE,
whereas SGNS directly operates on sampled co-
occurrences in a streaming manner.

Positive pointwise mutual information (PPMI)
is a variant of pointwise mutual information (Fano,
1961; Church and Hanks, 1990), independently
developed by Niwa and Nitta (1994) and Bul-
linaria and Levy (2007). PPMI measures the
ratio between observed co-occurrences (normal-
ized and treated as a joint probability) and the
expected co-occurrences (based on normalized
frequencies treated as individual probabilities) for
two words i and j while ignoring all cases in
which the observed co-occurrences are fewer than
the expected ones:

PPMI(i, j) :=

{
0 if P (i,j)

P (i)P (j) < 1

log( P (i,j)
P (i)P (j)) otherwise

(2)
Truncated SVD reduces the dimensionality of

the vector space described by the PPMI word-
context matrix M . SVD factorizes M in three
special1 matrices, so that M = UΣV T. Entries of
Σ are ordered by their size, allowing to infer the
relative importance of vectors in U and V . This
can be used to discard all but the highest d values

1 U and V are orthogonal matrices containing so called
singular vectors. Σ is a diagonal matrix containing singular
values.
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and corresponding vectors during truncated SVD,
so that Md = UdΣdV

T
d ≈ M . Both GLOVE

and SGNS start with randomly initialized vectors
of the desired dimensionality d and have thus
no comparable step in their processing pipeline.
However, Levy and Goldberg (2014c) showed
SGNS to perform as an approximation of SVD
applied to a PPMI matrix.

2.3 Down-sampling
Down-sampling by some factor requires both a
formal expression to define the factor, as well as
a strategy to perform down-sampling according to
this factor—data can either be sampled probabilis-
tically or weighted (see below). The following set
of formulae is shared by SGNS and SVDPPMI,
whereas GLOVE uses a distinct one.

Distance-based down-sampling depends on the
distance between the currently modeled token wi

and a second token wj in a token sequence (such
as the above example). The distance d between wi

and wj is given as:

d(wi, wj) := |j − i| (3)

To increase the effect of the nearest—and thus
assumedly most salient—tokens both SVDPPMI
and SGNS down-sample words based on this
distance with a distance factor, df (s being the size
of the window used for sampling):

df(wi, wj) :=
s+ 1− d(wi, wj)

s
(4)

To limit the effect of high-frequency words—
likely to be function words—both algorithms also
down-sample words according to a frequency
factor (ff ), which compares each token’s relative
frequency r(w) with a threshold t:

ff(w) :=

{√
t/r(w) if r(w) > t

1 otherwise
(5)

The frequency down-sampling factor for the co-
occurrence of two tokens wi and wj is then given
by the product of their down-sampling factors, i.e.,
the probabilities are treated as being independent:

ff(wi, wj) := ff(wi) · ff(wj) (6)

The strategy used to apply these down-sampling
factors can affect accuracy and, especially, sta-
bility, as can the decision not to apply them at
all. These down-sampling processes can either
be probabilistic, i.e., each word-context pair is
processed with a probability given by df(wi, wj) ·

ff(wi, wj), or operate by weighting, i.e., for each
observed co-occurrence only a fraction of a count
according to the product of df and ff is added
to the word-context matrix. SGNS uses prob-
abilistic down-sampling, GLOVE uses weighting
and SVDPPMI by Levy et al. (2015) allows for
probabilistic down-sampling or no down-sampling
at all. As SVD itself is non-probabilistic2 (Saad,
2003, chs. 6.3 & 7.1) any instability observed for
SVDPPMI must be caused by its probabilistic
down-sampling. We thus suggest SVDWPPMI, i.e.,
SVD of a PPMI matrix with weighted entries, a
simple modification which uses fractional counts
according to df(wi, wj) · ff(wi, wj). As shown in
Section 5, this modification is beneficial for both
accuracy and stability.

3 Corpora

The corpora used in most stability studies are
relatively small. For instance, the largest corpus in
Antoniak and Mimno (2018) contains 15M tokens,
whereas the corpus used by Hellrich and Hahn
(2017) and the largest corpus from Wendlandt
et al. (2018) each contain about 60M tokens.
Pierrejean and Tanguy (2018) used three corpora
of about 100M words each. Two exceptions are
Hellrich and Hahn (2016a,b) using relatively large
Google Books Ngram corpus subsets (Michel
et al., 2011) with 135M to 4.7G n-grams, as
well as Chugh et al. (2018) who investigated
the influence of embedding dimensionality on
stability based on three corpora with only 1.2–
2.6M tokens.3

We used three different English corpora as
training material: the 2000s decade of the Corpus
of Historical American English (COHA; Davies
(2012)), the English News Crawl Corpus (NEWS)
collected for the 2018 WMT Shared Task4 and a
Wikipedia corpus (WIKI).5 COHA contains 14k
texts and 28M tokens, NEWS 27M texts and
550M tokens, and WIKI 4.5M texts and 1.7G
tokens, respectively. COHA was selected as it
is commonly used in corpus linguistic studies,
whereas NEWS and WIKI serve to gauge the
performance of all algorithms in general applica-

2 Assuming that a non-stochastic SVD algorithm (Halko
et al., 2011) is used, as in Levy et al. (2015).

3 Size information from personal communication.
4 statmt.org/wmt18/translation-task.html
5 To ease replication, we used a pre-compiled 2014

Wikipedia corpus: linguatools.org/tools/
corpora/wikipedia-monolingual-corpora/
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tions. The latter two corpora are far larger than
common in stability studies, making our study the
largest-scale evaluation of embedding stability we
are aware of.

All three corpora were tokenized, transformed
to lower case and cleaned from punctuation. We
used both the corpora as-is, as well as inde-
pendently drawn random subsamples (see also
Hellrich and Hahn (2016a); Antoniak and Mimno
(2018)) to simulate the arbitrary content selection
in most corpora—texts could be removed or
replaced with similar ones without changing the
overall nature of a corpus, e.g., Wikipedia articles
are continuously edited. Subsampling allows us
to quantify the effect of this arbitrariness on the
stability of embeddings, i.e., how consistently
word embeddings are trained on variations of
a corpus. Subsampling was performed on the
level of the constituent texts of each corpus, e.g.,
individual news articles. For a corpus with n texts
we drew n samples with replacement. Texts could
be drawn multiple times, but only one copy was
kept, reducing corpora to 1 − 1/e ≈ 2/3 of their
original size.

4 Experimental Set-up

We compared five algorithm variants: GLOVE,
SGNS, SVDPPMI without down-sampling,
SVDPPMI with probabilistic down-sampling,
and SVDWPPMI. While we could use SGNS6

and GLOVE7 implementations directly, we had
to modify SVDPPMI

8 to support the weighted
sampling used in SVDWPPMI. As proposed by
Antoniak and Mimno (2018), we further modified
our SVDPPMI implementation to use random
numbers generated with a non-fixed seed for
probabilistic down-sampling. A fixed seed would
benefit reliability, but also act as a bias during all
analyses—seed choice has been shown to cause
significant differences in experimental results
(Henderson et al., 2018).

Down-sampling strategies for df and ff can be
chosen independently of each other, e.g., using
probabilistic down-sampling for df together with
weighted down-sampling for ff . However, we
decided to use the same down-sampling strategies,
e.g., weighting, for both factors, taking into ac-

6 github.com/tmikolov/word2vec
7 github.com/stanfordnlp/GloVe
8 github.com/hellrich/hyperwords – See also

further experimental code: github.com/hellrich/
embedding_downsampling_comparison

count computational limitations as well as results
from pre-tests that revealed little benefit of mixed
strategies.9

We trained ten models for each algorithm
variant and corpus.10 In the case of subsampling,
each model was trained on one of the indepen-
dently drawn samples. Stability was evaluated
by selecting the 1k most frequent words in each
non-bootstrap subsampled corpus as anchor words
and calculating j@10 (see Equation 1).11

Following Hellrich and Hahn (2016a,b), we
did not only investigate stability, but also the
accuracy of our models to gauge potential trade-
offs. We measured the Spearman rank correlation
between cosine-based word similarity judgments
and human ones with four psycholinguistic test
sets, i.e., the two crowdsourced test sets MEN
(Bruni et al., 2012) and MTurk (Radinsky et al.,
2011), the especially strict SimLex-999 (Hill et al.,
2014) and the widely used WordSim-353 (WS-
353; Finkelstein et al. (2002)). We also mea-
sured the percentage of correctly solved analogies
(using the multiplicative formula from Levy and
Goldberg (2014b)) with two test sets developed
at Google (Mikolov et al., 2013a) and Microsoft
Research (MSR; Mikolov et al. (2013b)).

5 Experimental Results

Table 1 shows the accuracy and stability for
all tested combinations of algorithm and corpus
variants. Accuracy differences between test sets
are in line with prior observations and general

9 The strongest counterexample is a combination of
probabilistic down-sampling for df and weighting for ff
which lead to small, yet significant improvements in the MEN
(0.703± 0.001) and MTurk (0.568± 0.015) similarity tasks
(cf. Table 1). However, other accuracy tasks showed no
improvements and the stability of this approach (0.475 ±
0.001) was far closer to SVDPPMI with fully probabilistic
down-sampling than to the perfect stability of SVDWPPMI.

10 Hyperparameters roughly follow Levy et al. (2015).
We used symmetric 5 word context windows for all models
as well as frequent word down-sampling thresholds of 100
(GLOVE) and 10−4 (others). Default learning rates and
numbers of iterations were used for all models. Eigenvalues
as well as context vectors were ignored for SVDPPMI
embeddings. 5 negative samples were used for SGNS.
The minimum frequency threshold was 50 for COHA, 100
for NEWS and 750 for WIKI—increased thresholds were
necessary due to SVDPPMI’s memory consumption scaling
quadratically with vocabulary size.

11 Stability calculation was not performed directly between
all 10 models, as this would result in a single value and
preclude significance tests. Instead, we generated ten j@10
values by calculating the stability of all subsets formed by
leaving out each model once in a jackknife procedure.
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Corpus Algorithm Down- Word Similarity Analogy Stabilitysampling MEN MTurk SimLex WS-353 Google MSR

COHA
SVDPPMI

none 0.697 0.582 0.318 0.591 0.248 0.226 1.000
prob. 0.689 0.571 0.333 0.577 0.224 0.257 0.324

weight 0.702 0.551 0.351 0.594 0.262 0.277 1.000
SGNS prob. 0.642 0.560 0.394 0.551 0.248 0.311 0.288
GLOVE weight 0.590 0.522 0.222 0.405 0.167 0.214 0.808

COHA
Subs.

SVDPPMI

none 0.645 0.537 0.267 0.569 0.192 0.184 0.310
prob. 0.632 0.519 0.287 0.542 0.169 0.203 0.198

weight 0.651 0.534 0.305 0.568 0.206 0.235 0.329
SGNS prob. 0.551 0.486 0.363 0.479 0.192 0.243 0.091
GLOVE weight 0.518 0.470 0.182 0.383 0.120 0.165 0.330

NEWS
SVDPPMI

none 0.775 0.559 0.406 0.643 0.469 0.357 1.000
prob. 0.784 0.561 0.431 0.666 0.492 0.445 0.654

weight 0.786 0.568 0.435 0.667 0.502 0.444 1.000
SGNS prob. 0.739 0.675 0.430 0.672 0.643 0.553 0.652
GLOVE weight 0.698 0.576 0.309 0.536 0.548 0.444 0.679

NEWS
Subs.

SVDPPMI

none 0.771 0.558 0.401 0.623 0.445 0.335 0.584
prob. 0.776 0.564 0.423 0.642 0.463 0.420 0.571

weight 0.781 0.567 0.430 0.649 0.476 0.421 0.635
SGNS prob. 0.734 0.673 0.417 0.647 0.601 0.513 0.452
GLOVE weight 0.687 0.572 0.301 0.508 0.505 0.408 0.461

WIKI
SVDPPMI

none 0.731 0.510 0.353 0.715 0.432 0.246 1.000
prob. 0.747 0.571 0.392 0.718 0.482 0.311 0.714

weight 0.743 0.560 0.393 0.717 0.482 0.305 1.000
SGNS prob. 0.735 0.659 0.372 0.717 0.669 0.421 0.488
GLOVE weight 0.744 0.651 0.354 0.667 0.653 0.397 0.666

WIKI
Subs.

SVDPPMI

none 0.726 0.526 0.355 0.699 0.410 0.244 0.635
prob. 0.742 0.568 0.391 0.706 0.448 0.304 0.604

weight 0.740 0.555 0.389 0.704 0.451 0.300 0.651
SGNS prob. 0.723 0.657 0.364 0.686 0.629 0.407 0.501
GLOVE weight 0.735 0.642 0.345 0.655 0.599 0.382 0.486

Table 1: Performance of different algorithms and down-sampling strategies with models trained on corpora with
and without subsampling. Bold values are best or not significantly different by independent t-tests (with p < 0.05).

performance on WIKI is roughly in-line with the
data reported in Levy et al. (2015).

In general, corpus size does seem to have a
positive effect on accuracy. However, for MEN,
MTurk and MSR the highest values are achieved
with NEWS and not with WIKI. SVDPPMI vari-
ants seem to be less hampered by small training
corpora, matching observations by Sahlgren and
Lenci (2016). Stability is clearly positively influ-
enced by corpus size for all probabilistic algorithm
variants except GLOVE, which, in contrast, bene-
fits from small training corpora. Also, randomly
subsampling corpora has a negative effect on
both accuracy and stability—this can be explained
by the smaller corpus size for accuracy and the
differences in training material (as subsampling
was performed independently for each model) for
stability.

Figure 1 illustrates the stability of all tested
algorithm variants. SVDWPPMI and SVDPPMI
without down-sampling are the only systems
which achieve perfect stability when trained on
non-subsampled corpora. GLOVE is the third
most reliable algorithm in this scenario, except

for the large WIKI corpus. Corpus subsampling
decreases the stability of all algorithms, with
SVDWPPMI still performing better than all other
alternatives. The only exception is subsampled
COHA where the otherwise suboptimal GLOVE

narrowly (0.330 instead of 0.329; difference
significant with p < .05 by two-sided t-test)
outperforms SVDWPPMI . SVDWPPMI can achieve
stability values on subsampled corpora that are
competitive with those for SGNS and GLOVE

trained on non-subsampled corpora. We found
standard deviations for stability to be very low,
the highest being 0.01 for GLOVE trained on non-
subsampled WIKI, probably due to the overlap in
our jackknife procedure.

Finally, we tested12 the overall performance of
each algorithm variant by first performing a Quade
test (Quade, 1979) as a safeguard against type I

12 All tests were conducted on the averaged accuracy
values of the ten individual models per corpus (both sub-
sampled and as-is) and algorithm variant (as listed in Table
1). Using the models directly would have been ill-advised
because of their overlapping training data (see Demšar (2006,
p. 15)). Analyses on individual corpora would have resulted
in insufficient samples given the pre-conditions of our tests.
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Figure 1: Stability for each combination of algorithm variant and corpus. Measured with j@10 metric (higher is
better). Same data as in Table 1, standard deviations too small to display.

errors, thus confirming the existence of significant
differences between algorithms (p = 1.3 · 10−7).
We then used a pairwise Wilcoxon rank-sum
test with Holm-Šidák correction (see Demšar
(2006)) in order to compare other algorithms with
SVDWPPMI.13 We found it to be not significantly
different in accuracy from SGNS (p=0.101), but
significantly better than SVDPPMI without down-
sampling (corrected p=5.4 ·10−6) or probabilistic
down-sampling (corrected p = 0.015), as well as
GLOVE (corrected p=0.027).

Our results show SVDWPPMI to be both highly
reliable and accurate, especially on COHA, which
has a size common in both stability studies and
corpus linguistic applications. Diverging reports
on SVDPPMI stability—described as perfectly
reliable in Hellrich and Hahn (2017), yet not
in Antoniak and Mimno (2018)—can thus be
explained by their difference in down-sampling
options, i.e., no down-sampling or probabilistic
down-sampling. GLOVE’s high stability in other
studies (Antoniak and Mimno, 2018; Wendlandt
et al., 2018) seems to be counterbalanced by its
low accuracy and also appears to be limited to
training on small corpora.

6 Discussion

We investigated the effect of down-sampling
strategies on word embedding stability by com-
paring five algorithm variants on three corpora,
two of which were larger than those typically used
in stability studies. We proposed a simple mod-
ification to the down-sampling strategy used for
the SVDPPMI algorithm, SVDWPPMI, which uses
weighting, to achieve an otherwise unmatched
combination of accuracy and stability. We also

13 This test is a non-parametric alternative to the t-test;
corrections prevent false results due to multiple comparisons.

gathered evidence that GLOVE lacks accuracy and
is only stable when trained on small corpora.

We thus recommend using SVDWPPMI, es-
pecially for studies targeting (qualitative) inter-
pretations of semantic spaces (e.g., Kim et al.
(2014)). Overall, SGNS provided no benefit in
accuracy over SVDWPPMI and the latter seemed
especially well-suited for small training corpora.
The only downside of SVDWPPMI we are aware of
is its relatively large memory consumption during
training shared by all SVDPPMI variants.

Further research could investigate the perfor-
mance of SVDWPPMI with other sets of hyperpa-
rameters or scrutinize the effect of down-sampling
strategies on the ill-understood geometry of em-
bedding spaces (Mimno and Thompson, 2017). It
would also be interesting to investigate the effect
of down-sampling and stability on downstream
tasks in a follow-up to Wendlandt et al. (2018).

Finally, the increasingly popular contextualized
embedding algorithms, e.g., BERT (Devlin et al.,
2018) or ELMo (Peters et al., 2018), are also
probabilistic in nature and should thus be affected
by stability problems. A direct transfer of our
type specific evaluation strategy is impossible.
However, an indirect one could be achieved by av-
eraging token-specific contextualized embeddings
to generate type representations.
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Abstract

In this paper, we apply various embedding
methods to multiword expressions to study
how well they capture the nuances of non-
compositional data. Our results from a range
of word-, character-, and document-level em-
bbedings suggest that word2vec performs the
best, followed by fastText and infersent.
Moreover, we find that recently-proposed con-
textualised embedding models such as BERT
and ELMo are not adept at handling non-
compositionality in multiword expressions.

1 Introduction

Modern embedding models, including contextual
embeddings, have been shown to work impres-
sively well across a range of tasks (Peters et al.,
2018; Devlin et al., 2018). However, study of
their performance on data with a mix of composi-
tionality levels, whose meaning is often not easily
predicted from that of its constituent words, has
been limited (Salehi et al., 2015; Hakimi Parizi
and Cook, 2018; Nandakumar et al., 2018).

At present, there exists no definitive metric
to measure the modelling capabilities of an em-
bedding technique across a spectrum of non-
compositionality, especially in the case of newer,
contextualised representations, such as ELMo and
BERT.

In this study, we apply various embedding
methods to the task of determining the com-
positionality of English multiword expressions
(“MWEs”), specifically noun–noun and adjective–
noun pairs, to test their performance on data rep-
resenting a range of compositionality (Sag et al.,
2002). Compositionality prediction can be mod-
eled as a regression task (Baldwin and Kim, 2010)
that involves mapping an MWE onto a continu-
ous scale, representing its compositionality as a
whole or with respect to each of its components.
For example, application form can be considered

to be quite compositional, while sitting duck1 is
considered to be idiomatic or non-compositional.
Close shave2 could be seen as partially composi-
tional, heavily compositional with regards to the
first word and less compositional with regards
to the second. In this study, we focus on pre-
dicting the compositionality of the MWE as a
whole. Although we conduct our experiments on
English datasets, they can be applied to other lan-
guages with ease as we do not perform any kind of
language-specific manipulation of the data.

The main contributions of this paper are:
(i) we compare embeddings over 3 different

MWE datasets, focusing on noun–noun and
adjective–noun pairs;

(ii) we experiment with 7 character-, word-, and
document-level embedding models, includ-
ing contextualised models;

(iii) we show that, despite their success on a
range of other tasks, recent embedding learn-
ing methods lag behind simple word2vec in
capturing MWE non-compositionality.

2 Related Work

Although vector space models have been popu-
lar since the 1990s, it was only after Collobert
and Weston (2008) proposed a unified neural net-
work architecture to learning distributed word rep-
resentations and demonstrated its performance on
downstream tasks, that embedding learning estab-
lished a footing in NLP, with word2vec (Mikolov
et al., 2013a) being the catalyst to the “embedding
revolution”.

Language embeddings are an example of an
unsupervised representation learning application
done well. They are preferred primarily because
they can be learned from unannotated corpora and,

1A sitting duck means “a person or thing with no protec-
tion against an attack or other source of danger.”

2A close shave is “a narrow escape from danger or disas-
ter.”
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therefore, eliminate the need for manual annota-
tion (which is expensive and time-consuming).

Salehi et al. (2015) were the first to apply word
embeddings to the task of predicting the compo-
sitionality of MWEs. The assumption is that the
compositionality of an MWE is proportional to
the relative similarity between each of the compo-
nents and the overall MWE, represented by their
respective embeddings. This method was recently
tuned variously by Cordeiro et al. (2019) and re-
mains state-of-the-art for the task of MWE com-
positionality prediction, but has the downside that
it requires automatic token-level pre-identification
of each MWE in the training corpus in order to
train a model (i.e. all occurrences of sitting duck
need to be pre-tokenised to a single token, such
as sitting duck). This is not ideal, as it means
the model will need to be retrained for a new
set of MWEs (as the tokenisation will necessarily
change). It also requires “complete” knowledge of
the MWEs before the training step, which is im-
practical in most cases.

Character-level embedding models
(Hakimi Parizi and Cook, 2018) are one possible
solution to the fixed-vocabulary problem, in
being able to handle an unbounded vocabulary,
including MWEs. Document embeddings (Le and
Mikolov, 2014; Conneau et al., 2017a) are also
highly relevant to dynamically generating embed-
dings for MWEs, as they generate representations
of arbitrary spans of text, which are potentially
able to capture the context of use of the MWE.

3 Methodology

Following Salehi et al. (2015) and Nandakumar
et al. (2018), we compute the overall composi-
tionality of an MWE with three broad metrics:
direct composition, paraphrase similarity, and a
combined metric. In all experiments, the similar-
ity of a pair of vectors is measured using cosine
similarity.

3.1 Direct Composition

Intuitively, an MWE appearing in similar contexts
to its components is likely to be compositional.
We directly compare the vector embedding of the
MWE (described in Section 4.2) with that of its
component words, in one of two ways: (1) per-
forming an element-wise sum to obtain a ‘com-
bined’ vector, which is then compared with the
vector of the MWE (Directpre); and (2) a post-hoc

combination of the scores obtained by individually
comparing the component vectors with that of the
MWE via a weighted sum (Directpost). Formally:

Directpre =cos(mwe,w1 +w2)

Directpost =α cos(mwe,w1)+

(1− α) cos(mwe,w2) ,

where: mwe, w1, and w2 are the embeddings for
the combined MWE, first component and second
component, respectively;3 w1+w2 is the element-
wise sum of the vectors of each of the component
words of the MWE; and α ∈ [0, 1] is a scalar
which allows us to vary the weight of the respec-
tive components in predicting the compositional-
ity of the compound. This helps us effectively
capture the compositionality of the MWE with re-
gards to each of its individual constituents.

We do not perform any tuning of α over held-
out data and are, as such, overfitting as we select
the best-performing α post hoc. We do, however,
present analysis of hyper-parameter sensitivity in
Section 5.

3.2 Paraphrase Similarity
Assuming access to paraphrases of an MWE, an-
other intuition is that if the MWE appears in sim-
ilar contexts to the component words of its para-
phrases, it is likely to be compositional (Shwartz
and Waterson, 2018). Each paraphrase provides an
interpretation of the semantics of the MWE, e.g.
ancient history is “in the past”, “old news” or “for-
ever ago” (note how each paraphrase brings out a
slightly different interpretation). The RAMISCH

MWE dataset (described in Section 4.1) provides
one or more paraphrases for each MWE contained
in it. We calculate the similarity of the embed-
dings of the MWE and its paraphrases using the
following three formulae:

Para first =cos(mwe,para1)

Para allpre =cos(mwe,
∑

i

parai)

Para allpost =
1

N

N∑

i=1

cos(mwe,parai) ,

where para1 and parai denote the embedding for
the first (most popular) and i-th paraphrases, re-
spectively.

3All methods are presented and evaluated in terms of two-
element MWEs in this work, but are trivially generalisable to
multi-element MWEs.
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In the case of Para allpost, we considered com-
puting the maximum instead of the average (as we
report here) of the similarity scores between each
paraphrase and its MWE, following the intuition
that an MWE would be similar to at least one re-
ported paraphrase, rather than all of them. How-
ever, the results for the average similarity were
empirically higher across models.

3.3 Combined Metric

Finally, we present the combined results from the
two metrics stated above:

Combined =βmax
(
Directpre,Directpost

)
+

(1− β)max
(
Para first,Para allpre,

Para allpost
)
,

where β ∈ [0, 1] is a scalar weighting factor used
to balance the effects of the two methods, in order
to measure the extent to which the composition-
ality is determined by each of the methods. The
choice of the max operator here to combine the
sub-methods for each of the direct composition
and paraphrase methods is that all methods tend
to underestimate the compositionality (and empir-
ically, it was found to be superior to taking the
mean).

4 Experiments

4.1 Datasets

We used three datasets for our experiments, eval-
uating each model’s performance using Pearson’s
correlation coefficient (r) to compare the similar-
ity scores obtained with the annotated composi-
tionality scores provided in the dataset.

REDDY The dataset of Reddy et al. (2011) con-
tains 90 binary English noun compounds (“NCs”),
along with human-annotated scores of their over-
all compositionality and component-specific com-
positionality, both ranging from 0 to 5. For our
experiments, we consider the overall composition-
ality scores only.

RAMISCH Similar to REDDY, the English
dataset of Ramisch et al. (2016) contains 90 binary
noun compounds with annotated scores of compo-
sitionality ranging from 0 to 5, both overall and
component-specific (of which we use only the for-
mer). It also contains a list of paraphrases for each
NC, presented in decreasing order of popularity
among the annotators.

Dataset µ σ

REDDY 53.2 30.0
RAMISCH 52.6 35.0
DISCO 68.1 21.7

Overall 59.7 29.0

Table 1: Mean (µ) and standard deviation (σ) of the
compositionality scores for the three datasets used in
this research, over a normalised range [0, 100].

DISCOADJ The English dataset from the DiSCo
shared task (Biemann and Giesbrecht, 2011) con-
taining a total of 348 binary phrases, comprising
adjective–noun, verb–nounsubj, and verb–nounobj
pairs, along with their overall compositionality
rating ranging from 0 to 100. The phrases were ex-
tracted semi-automatically and their relations were
assigned by patterns and checked manually. The
compositionality scores were collected from Ama-
zon Mechanical Turk, where workers were pre-
sented 4–5 randomly sampled sentences from the
UK English WACKy corpora. We focus on the 144
adjective–noun pairs in this study.

The breakdown of compositionality scores
across the three datasets in Table 1 indicates there
is a reasonable distribution of data in terms of
compositionality, with REDDY and RAMISCH be-
ing roughly comparable and covering a broad (and
somewhat balanced) spectrum of compositionali-
ties, while DISCO is more skewed towards com-
positional usages, with lower standard deviation.

4.2 Embeddings

We made use of various embeddings, ranging from
character- to document-level, in our study. Below
is a description of each model along with how they
are trained. Where available, we made use of pre-
trained models as is standard practice in NLP. As
the different models were trained on different cor-
pora, we are not attempting to perform a controlled
comparative evaluation of the different models, so
much as a comparison of the standard pre-trained
versions of each. If we were to retrain our own
models over a standard dataset such as English
Wikipedia, we would expect the results for the
document-level embedding methods in particular
to drop.
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4.2.1 Word-level
A word embedding captures the context of a word
in a document (in relation to other words) in the
form of a vector representation. It tokenises text at
the word level.

word2vec We trained word2vec (Mikolov
et al., 2013b) on a recent English Wikipedia
dump,4 after pre-processing (removing the for-
matting and punctuation) and concatenating each
occurrence of the multiword expressions in our
datasets (e.g. every occurrence of close shave in
the corpus becomes closeshave). We make the
greedy assumption that every occurence of the
component words in sequence is an occurrence of
the expression. We perform this token-level iden-
tification and manipulation of the corpus in order
to obtain a single embedding for the expression,
instead of a separate embeddings for the individ-
ual component words. In cases where the model
still fails to generate an embedding (2 for REDDY,
8 for RAMISCH and 25 for DISCO) for the expres-
sion (due to low token frequency), we assign a de-
fault compositionality score of 0.5 (neutral; based
on a range of [0, 1]). For paraphrases, we compute
an element-wise sum of the embeddings for each
of the component words to serve as the embedding
of the phrase. We do this because token-level iden-
tification of each paraphrase in the training corpus
is not practical.

4.2.2 Character-level
Character-level embeddings can generate vectors
for words based on n-gram character aggrega-
tions. This means they can generate embeddings
for out-of-vocabulary (OOV) words, as well new
words or misspelled words. It tokenises text at the
character level.

fastText We used the 300-dimensional fast-
Text model pre-trained on Common Crawl and
Wikipedia using CBOW (fastTextpre), as well as
one trained over the same Wikipedia corpus4 us-
ing skip-gram (fastText). Again, since fastText
(Bojanowski et al., 2017) assumes all words to
be whitespace delimited, we preprocess our MWE
and paraphrases the same way as above (removing
the space between them so that armchair critic be-
comes armchaircritic, say).

Contextualised Embeddings Unlike classical
embedding techniques, contextualised embed-

4Dated 07-Jan-2019

dings capture the semantics of a word or phrase
in a manner which is sensitised to the context of
usage.

We used the pretrained implementations of
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018) found in the Flair framework.5 The
framework also has a contextualised string embed-
ding model of its own, also named Flair (Akbik
et al., 2018).

We supplied sentences extracted from the
Brown corpus where available in order to derive
a contextualised interpretation. We extracted 25
sentences at random per MWE, except where there
were fewer sentences in the corpus.

However, we also included a naive context-
independent implementation in our study, consis-
tent with the other models, following the intuition
that the relative compositionality of even a novel
compound can often be predicted from its com-
ponent words alone (e.g. giraffe potato having the
plausible compositional interpretation of a potato
shaped like a giraffe vs. couch intelligence having
no natural interpretation).

4.2.3 Document-level

Document embeddings aggregate from words to
documents, generating vector representations for
entire documents. Since document and sentence
embeddings are capable of generating a single em-
bedding for a span of text, we are able to gener-
ate representations of the MWEs and paraphrases
without preprocessing them (to remove space).
We treat each constituent word as a single word
document to generate embeddings.

infersent We used two versions of infersent
(Conneau et al., 2017b): infersentGloVe and in-
fersentfastText . Each generates a representation of
300 dimensions, trained over the 1,000,000 most
popular English words using GloVe (Pennington
et al., 2014) and fastText, respectively.

doc2vec We used the gensim implementation
of doc2vec (Le and Mikolov, 2014; Lau and
Baldwin, 2016) pretrained on Wikipedia data us-
ing the word2vec skip-gram models pretrained on
Wikipedia and AP News.6

5https://github.com/zalandoresearch/
flair

6https://github.com/jhlau/doc2vec
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Emb. method Directpre Directpost Para first Para allpre Para allpost Combined

Flair 0.165 0.295 (α = 0.1) 0.334 0.399 0.492 0.492 (β = 0.0)
Flaircontext 0.181 0.314 (α = 0.1) 0.357 0.411 0.522 0.522 (β = 0.0)
fastTextpre 0.395 0.446 (α = 0.7) 0.242 0.531 0.703 0.703 (β = 0.0)
fastText 0.464 0.532 (α = 0.7) 0.548 0.613 0.673 0.673 (β = 0.0)
BERT 0.071 0.086 (α = 1.0) 0.242 0.531 0.583 0.583 (β = 0.0)
BERTcontext 0.089 0.111 (α = 1.0) 0.267 0.546 0.601 0.601 (β = 0.0)
ELMo 0.420 0.459 (α = 0.6) 0.361 0.488 0.546 0.546 (β = 0.2)
ELMocontext 0.461 0.489 (α = 0.6) 0.373 0.492 0.552 0.627 (β = 0.2)
word2vec 0.581 0.571 (α = 0.6) 0.443 0.510 0.504 0.677 (β = 0.9)
infersentGloVe 0.321 0.427 (α = 0.7) 0.636 0.700 0.741 0.783 (β = 0.5)
infersentfastText 0.169 0.221 (α = 0.6) 0.488 0.712 0.636 0.774 (β = 0.0)
doc2vec −0.157 0.039 (α = 1.0) 0.388 0.334 0.373 0.419 (β = 0.3)

Table 2: Pearson correlation coefficient for compositionality prediction results on the RAMISCH dataset.

Emb. method Directpre Directpost

Flair −0.127 0.024 (α = 0.0)
Flaircontext 0.012 0.172 (α = 0.0)
fastTextpre 0.223 0.285 (α = 0.3,0.4)
fastText 0.217 0.287 (α = 0.3,0.4)
BERT 0.304 0.352 (α = 0.2)
BERTcontext 0.313 0.377 (α = 0.2)
ELMo 0.339 0.406 (α = 0.5)
ELMocontext 0.387 0.416 (α = 0.5)
word2vec 0.634 0.622 (α = 0.6)
infersentGloVe 0.413 0.500 (α = 0.5)
infersentfastText 0.401 0.527 (α = 0.6)
doc2vec −0.049 0.025 (α = 0.0)

Table 3: Pearson correlation coefficient for composi-
tionality prediction results on the REDDY dataset.

5 Results and Discussion

The results from our experiments on the
RAMISCH, REDDY and DISCO datasets can
be found in Tables 2, 3 and 4, respectively, with
the best performing αs and βs for each embedding
method.

We observe that the αs in Table 2 are high, im-
plying the compound nouns in RAMISCH are more
compositional in terms of their head (second)
nouns. Similarly, the lower α scores in Table 3
suggest REDDY’s compound nouns are more de-
pendent on their modifiers, or first nouns. Table 4,
on the other hand, shows the αs embracing the en-
tire range of [0, 1]. This suggests the adjective–
noun pairs in DISCO are spread in terms of their

Emb. method Directpre Directpost

Flair 0.261 0.291 (α = 0.4)
Flaircontext 0.280 0.315 (α = 0.4)
fastTextpre 0.339 0.353 (α = 0.6,0.7)
fastText 0.374 0.419 (α = 0.4)
BERT 0.154 0.177 (α = 0.3,0.4)
BERTcontext 0.163 0.189 (α = 0.3)
ELMo 0.253 0.287 (α = 0.5)
ELMocontext 0.301 0.319 (α = 0.5)
word2vec 0.427 0.419 (α = 0.4)
infersentGloVe 0.321 0.315 (α = 0.4)
infersentfastText 0.001 0.202 (α = 1.0)
doc2vec −0.023 0.003 (α = 0.0)

Table 4: Pearson correlation coefficient for composi-
tionality prediction results on the DISCOADJ dataset.

dependency on their constituents, which also de-
pends on the embedding method used. Overall, the
methods are sensitive to the choice of the α hyper-
parameter, with ELMo and infersent being partic-
ularly sensitive and showing substantial change in
output with change in α (Figures 1,2 and 3).

We see that for RAMISCH (Table 2), word2vec
achieves the highest scores among the direct com-
bination metrics, while infersent outperforms the
other methods among the paraphrase metrics, and
word2vec falls behind character embedding mod-
els like fastText, ELMo and BERT (even when
the latter two were performed without context).
The lower β scores also show the other models
favouring the paraphrase metrics, while the high
β score for word2vec shows its preference for di-

31



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

α

r
ELMo fastText

doc2vec infersentGloVe
infersentfastText word2vec

BERT Flair

Figure 1: Sensitivity analysis of α (REDDY)
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Figure 2: Sensitivity analysis of α (RAMISCH)

rect combination.
We observe that, consistent with its perfor-

mance on RAMISCH, word2vec performs the best
of all models for the direct combination methods.

Overall, we observe that word2vec is con-
sistent in providing the best results based on
the methods outlined in Section 3.1, while fast-
Text and infersent come a close second and
third, respectively. It is noteworthy, however,
that word2vec required explicit modelling of the
MWEs during the training procedure, while the
other models did not.

It is not surprising that infersent, being a
document-level embedding model, works better
with paraphrase data than the other models. How-
ever, doc2vec has really poor scores overall
across the three datasets. It does, however, re-
deem itself with the paraphrases, with substan-
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Figure 3: Sensitivity analysis of α (DISCO)

tially higher scores than the direct metric but still
quite a way behind the top-scoring methods.

We also see that the paraphrase metric seems
to achieve much greater results across all mod-
els, suggesting this could be a direction for fu-
ture study (noting the requirement for paraphrase
data for the MWE in order to apply this method,
which has inherent scalability limitations). The
combined metric seems to favour the paraphrase
results as well, based on the relative β values.

One of the reasons word2vec did not work as
well with the paraphrases could be the naive as-
sumption that the Directpre is a representation of
the paraphrase itself. As we see from the results
across the datasets and methods, Directpre does not
entirely capture the compositionality of the MWE,
so it is reasonable to assume that a paraphrase
would not be accurately represented by Directpre
either.

We see that fastText provides us with impres-
sive scores throughout, and we notice a slight im-
provement when trained on the same corpus as
word2vec. However, there is a huge gap in the
performance between word2vec and fastText, es-
pecially in the case of REDDY (which could be
an issue of a heavier representation of a particu-
lar level of compositionality, say).

We also notice that, unlike the noun compounds
in REDDY and RAMISCH, there is less variance in
the relative scores of each method in the case of
DISCOADJ, with overall results dropping appre-
ciably, and the best-performing word2vec drop-
ping back in raw r value compared to noun–noun
pairs.

In terms of the contextualised embeddings, we
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notice that across the three models, there is only a
slight increase in correlation when contextualised
embeddings are used. This suggests that even with
context, these modern embedding techniques are
unable to capture non-compositionality as well as
their simpler counterparts.

Further analysis reveals that most models strug-
gle to accurately predict the compositionality of
idiomatic noun compounds, as well as semi-
compositional terms wherein one of the con-
stituent words are used in a metaphoric sense. In
REDDY, we observe this for silver bullet and snail
mail. Interestingly, while BERT struggles to ef-
fectively model compositionality throughout, it is
surprisingly the only model able to perfectly pre-
dict the compositionality of snail mail (which ap-
pears as an extreme outlier). This suggests that
BERT might be more successful using a different
metric. In the case of the adjective–noun phrases
in DISCO, we see that the models are still unable
to accurately predict the compositionality of non-
compositional phrases (like big fish, heavy metal
and red tape). This time, however, they are also
unable to capture mobile phone and floppy disk,
perhaps because of their relatively archaic use.

6 Conclusion

In this paper, we investigated the modelling capa-
bilities of various embedding techniques applied
to the specific task of predicting the MWE compo-
sitionality, to see how well they model a mixture
of compositionalities in the dataset. Our results
indicate that modern character- and document-
level embedding methods are inferior to the sim-
ple word2vec approach. However, the promis-
ing results of fastText and infersent across the
datasets indicate that, among the more modern
methods, they are better equiped to handle non-
compositionality as they did not require much
manipulation of the corpus or knowledge of the
MWEs beforehand. We also found that the para-
phrase metric results in greater correlation scores
across the models.

In future work, we intend to tune our hyperpa-
rameters over held-out data, and experiment with
other languages and language-independent tech-
niques, including other models.
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Abstract

In this paper, we investigate whether multilin-
gual neural translation models learn stronger
semantic abstractions of sentences than bilin-
gual ones. We test this hypotheses by mea-
suring the perplexity of such models when ap-
plied to paraphrases of the source language.
The intuition is that an encoder produces bet-
ter representations if a decoder is capable
of recognizing synonymous sentences in the
same language even though the model is never
trained for that task. In our setup, we add 16
different auxiliary languages to a bidirectional
bilingual baseline model (English-French) and
test it with in-domain and out-of-domain para-
phrases in English. The results show that
the perplexity is significantly reduced in each
of the cases, indicating that meaning can be
grounded in translation. This is further sup-
ported by a study on paraphrase generation
that we also include at the end of the paper.

1 Introduction

An appealing property of encoder-decoder mod-
els for machine translation is the effect of com-
pressing information into dense vector-based rep-
resentations to map source language input onto ad-
equate translations in the target language. How-
ever, it is not clear to what extent the model actu-
ally needs to model meaning to perform that task;
especially for related languages, it is often not nec-
essary to acquire a deep understanding of the in-
put to translate in an adequate way. The intu-
ition that we would like to explore in this paper
is based on the assumption that an increasingly
difficult training objective will enforce stronger
abstractions. In particular, we would like to see
whether multilingual machine translation models
learn representations that are closer to language-
independent meaning representations than bilin-
gual models do. Hence, our hypothesis is that

representations learned from multilingual data sets
covering a larger linguistic diversity better reflect
semantics than representations learned from less
diverse material. This hypothesis is supported by
the findings of related work focusing on univer-
sal sentence representation learning from multi-
lingual data (Artetxe and Schwenk, 2018; Artetxe
and Schwenk, 2018; Schwenk and Douze, 2017)
to be used in natural language inference or other
downstream tasks. In contrast to related work, we
are not interested in fixed-size sentence represen-
tations that can be fed into external classifiers or
regression models. Instead, we would like to fully
explore the use of the encoded information in the
attentive recurrent layers as they are produced by
the seq2seq model.

Our basic framework consists of a standard
attentional sequence-to-sequence model as com-
monly used for neural machine translation (Sen-
nrich et al., 2017), with the multilingual extension
proposed by Johnson et al. (2016). This extension
allows a single system to learn machine transla-
tion for several language pairs, and crucially also
for language pairs that have not been seen during
training. We use Bible translations for training, in
order to keep the genre and content of training data
constant across languages, and to enable further
studies on increasing levels of linguistic diversity.
We propose different setups, all of which share the
characteristics of having some source data in En-
glish and some target data in English. We can
then evaluate these models on their capacity of
recognizing and generating English paraphrases,
i.e. translating English to English without explic-
itly learning that task. Starting with a base model
using French–English and English–French train-
ing data, we select 16 additional languages as aux-
iliary information that are added to the base model,
each of them separately.

There is a large body of related work on
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paraphrase generation using machine translation
(Quirk et al., 2004; Finch et al., 2004; Prakash
et al., 2016) based on parallel monolingual cor-
pora (Lin et al., 2014; Fader et al., 2013),
pivot-based translation (Bannard and Callison-
Burch, 2005; Mallinson et al., 2017) and para-
phrase databased extracted from parallel corpora
(Ganitkevitch et al., 2013). Related work on
multilingual sentence representation (Artetxe and
Schwenk, 2018; Schwenk and Douze, 2017; Lam-
ple and Conneau, 2019) has focused on fixed-
size vector representations that can be used in
natural language inference (Conneau et al., 2018;
Eriguchi et al., 2018) or other downstream tasks
such as bitext mining (Artetxe and Schwenk,
2018) or (cross-lingual) document classification
(Schwenk and Li, 2018).

2 Experimental Setup

For our experiments, we apply a standard at-
tentional sequence-to-sequence model with BPE-
based segmentation. We use the Nematus-style
models (Sennrich et al., 2017) as implemented
in MarianNMT (Junczys-Dowmunt et al., 2018).
These models apply gated recurrent units (GRUs)
in the encoder and decoder with a bi-directional
RNN on the encoder side. The word embeddings
have a dimensionality of 512 and the RNN dimen-
sionality is set to 1,024. We enable layer normal-
ization and we use one RNN layer in both, encoder
and decoder.

In training we use dynamic mini-batches to au-
tomatically fit the allocated memory (3GB in our
case) based on sentence length in the selected sam-
ple of data. The optimization procedure applies
Adam (Kingma and Ba, 2015) with mean cross-
entropy as the optimization criterion. We also
enable length normalization, exponential smooth-
ing, scaling dropout for the RNN layers with ra-
tio 0.2 and also apply source and target word
dropout with ratio 0.1. All of these values are
recommended settings that have empirically been
found in the related literature. For testing con-
vergence, we use independent development data
of roughly 1,000 test examples and BLEU scores
to determine the stopping criterion, which is set
to five subsequent failures of improving the val-
idation score. The translations are done with a
beam search decoder of size 12. The validation
frequency is set to run each 2,500 mini-batches.

For the multilingual setup, we follow Johnson

Language Transl. Verses Tokens
English 19 234,173 6,750,869
French 14 369,910 10,529,929
Afrikaans 5 75,974 2,329,773
Albanian 2 58,192 1,648,242
Breton 1 1,781 44,316
German 24 499,844 13,712,459
Greek 7 87,218 2,357,095
Frisian 1 29,173 852,582
Hindi 4 93,242 2,829,274
Italian 5 122,363 3,429,182
Dutch 3 87,460 2,596,298
Ossetian 2 37,807 936,533
Polish 5 52,668 1,248,108
Russian 5 75,904 1,727,536
Slovene 1 29,088 748,367
Spanish 8 236,830 6,607,932
Serbian 2 35,019 844,299
Swedish 1 29,088 833,983

Table 1: Statistics about the Bible data in our collec-
tion: number of individual Bible translations, number
of verses and number of tokens per language in the
training data sets.

et al. (2016) by adding target language flags to
the source text placing them as pseudo tokens in
the beginning of each input sentence. We always
train models in both directions enabling the model
to read and generate the same language without
explicitly training that task (i.e. paraphrasing is
modeled as zero-shot translation). BPE (Sennrich
et al., 2016) is used to avoid unknown words and
to improve generalisations. Note that in our setup
we need to ensure that subword-level segmenta-
tions are consistent for each language involved in
several translation tasks. We opted for language-
dependent BPE models with 10,000 merge opera-
tions for each code table. The total vocabulary size
then depends on the combination of languages that
we use in training but the vocabulary stays exactly
the same for each language involved in all experi-
ments.

2.1 Training data and configurations

The main data we use for our experiments comes
from a collection of Bible translations (Mayer and
Cysouw, 2014) that includes over a thousand lan-
guages. For high-density languages like English
and French, various alternatives are available (see
Table 1). Using the Bible makes it possible to
easily extend our work with additional languages
representing a wide range of linguistic variation,
while at the same time keeping genre and content
constant across languages.

For the sake of discussion, we selected English
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Figure 1: Paraphrase perplexity measured on Bible (left) and Tatoeba (right) test sentences (lower values are
better). The figures show the effect of one auxiliary language added to the bilingual French-English model (leftmost
bars). The lower red line represents the supervised model trained on English paraphrases. Languages are sorted by
decreasing perplexity on the Bible data.

as our pivot language that we will use for evaluat-
ing the ability of the model to act as a paraphrase
model. Furthermore, we took French as a second
language to create a bilingual baseline model that
can translate in both directions. As additional aux-
iliary languages, we then apply the ones listed in
Table 1 together with some basic statistics of the
training data. The idea behind the language se-
lection is to create a somewhat diverse set of lan-
guages representing different amounts of coverage
and typological relationships. The set is easy to
extend but training requires extensive resources,
which necessarily limits our selection at this point.

In the general setup, we do not include any pairs
of English Bible translations as we do not want to
evaluate a model that is specifically trained for a
paraphrasing task. However, for comparison we
also create a model comprising all pairs of En-
glish translation variants, which will serve as an
upper bound (or rather, a lower bound in terms of
perplexity) for models that are trained without ex-
plicit paraphrase data.

Exhaustively looking at all possible subsets of
languages is not possible even with our small se-
lection of 18 languages. Therefore, we restricted
our study to the following test cases:

Bilingual model: A model trained on all com-
binations of English and French Bible transla-
tions. Each pair of aligned Bible verses represents
two training instances, one for English-to-French
and one for French-to-English. We also include
French-to-French training instances using identi-
cal sentences in the input and output, in order to

guide the model to correctly learn the semantics
of the language flags.1

Trilingual models: Translation models trained on
all bilingual combinations of Bibles in three lan-
guages – English, French and another auxiliary
language (in both directions) + identical French
verse pairs.
Multilingual model: One model that includes
all languages in our test set with training data in
both directions (translating from and to English or
French) + identical French verse pairs.
Paraphrase model: A model trained on combina-
tions of English Bible translations (the supervised
upper bound).

Note that all models (including the bilingual
one) cover the same English data including all
Bible variants. We use exactly the same vocab-
ulary for the English portion of each setup and no
new English data is added at any point and any
change that we observe when testing with English
paraphrase tasks is due to the auxiliary languages
that we add to the model as a translational training
objective.

2.2 Test data

For our experiments, we apply test sets from two
domains. One of them represents in-domain data
from the Bible collection that covers 998 verses

1 During our initial experiments, we realized that the lan-
guage labels did not always pick up the information about the
target language they are supposed to indicate. Especially in
the bilingual case this makes sense as the model always sees
the same language pair and identifying the source language is
enough to determine what kind of output language it needs to
generate. The label is not necessary and, therefore, ignored.
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Figure 2: Learning curves from three models (the bilingual English-French model, a trilingual model and a multi-
lingual one): Perplexity on Bible data, English-French in validation (blue) and English paraphrases in testing (red).
Note the different scales.

from the New Testament that we held out of train-
ing and development sets. Our second test set
comes from a very different source, namely data
collected from user-contributed translations that
are on-line in the Tatoeba database.2 They include
everyday expressions with translations in a large
number of languages. As the collection includes
translation alternatives, we can treat them as para-
phrases of each other. We extracted altogether
3,873 pairs of synonymous sentences in English.

From both test data sources, we create a single-
reference test set for paraphrase recognition and a
multi-reference test set for paraphrase generation.
The single-reference Bible test set uses the Stan-
dard English Bible as the source, and the Com-
mon English Bible3 as the reference. The multi-
reference Bible test set uses the Amplified Bible
as the source (the first one on our list), and all 18
other English Bibles as the references.

The Tatoeba single-reference test set contains
all 3,873 synonymous sentence pairs. For the
multi-reference test set, we filtered the data to ex-
clude near-identical sentence pairs by expanding
contractions (like ”I’m” to ”I am”) that are quite
common in the data and removed all pairs that dif-
fer only in punctuation after that procedure. Fur-
thermore, we merged alternatives of the same sen-
tence into synonym sets and created, thus, a multi-
reference corpus for testing containing a total of
2,444 sentences with their references.

3 Results

We evaluate the models on two tasks: (1) para-
phrase recognition and (2) paraphrase generation.

2https://tatoeba.org/eng/
3CEB is an ambitious new translation rather than a revi-

sion of other translations (https://www.biblegateway.com).

The following sections summarize our main find-
ings in relation to these two tasks. We also eval-
uated the actual translation performance to ensure
that the models are properly trained. The results of
that test are listed in the supplementary material.

3.1 Paraphrase Recognition

First of all, we would like to know how well our
translation models are capable of handling para-
phrased sentences. For this, we compute perplex-
ity scores of the various models when observing
English output sentences for given English input
coming from the two paraphrase test sets. The
intuition is that models with a higher level of se-
mantic abstraction in the encoder should be less
surprised by seeing paraphrased sentences on the
decoder side, which will result in a lower perplex-
ity.

Let us first look at the in-domain data from our
Bible test set. Figure 1 (left half) illustrates the
reduction in perplexity when adding languages to
our bilingual model. The figure is sorted by de-
creasing perplexities. While the picture does not
reveal any clear pattern about the languages that
help the most, we can see that they all contribute to
an improved perplexity in comparison to the bidi-
rectional English-French model. Breton is clearly
the least useful language, without doubt due to
the size of that language in our collection. Note
that a further 5% perplexity reduction over the
best trilingual model is achieved by the model that
combines all languages (perplexity of 7.23, which
is very close to the lower bound of 6.05).

The picture is similar but with a slightly differ-
ent pattern on out-of-domain data. Figure 1 (right
half) shows the same plot for the Tatoeba test set
with languages sorted in the same order as in the
previous figure. Adding languages helps again,
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Figure 3: Paraphrase BLEU vs. PINC scores for the Bible test set (left) and the Tatoeba test set (right).

which is re-assuring, but the amount is less pro-
nounced and further away from the lower bound
(which is, however, to be expected in this setup).
Again, Breton is not helping as much. Further-
more, in the out-of-domain case, the model com-
bining all languages actually does not improve the
perplexity any further (the value of 42.63 is similar
to other trilingual models), which is most probably
due to the strong domain mismatch that influences
the scores significantly.

To further demonstrate the problems of the
bilingual model to learn proper semantic represen-
tations that can be used for paraphrase detection,
we can also have a look at the learning curves
in Figure 2. The first plot nicely shows that the
perplexity scores on paraphrase data do not fol-
low the smooth line of the validation data in En-
glish and French whereas the models that include
auxiliary languages have the capability to improve
the model with respect to paraphrase recognition
throughout the training procedure in a similar way
as the main objective (translation) is optimized.
The model that combines all languages achieves
by far the lowest paraphrase perplexity. Learning
curves of other trilingual models look very similar
to the one included here.

3.2 Paraphrase Generation

This second experiment aims at testing the capac-
ity of the NMT models to generate paraphrases
of the input instead of translations. The hypoth-
esis is that the generated sentences will preserve
the meaning of the input, but not necessarily the
same form, such that the generated sentences can
be viewed as genuine paraphrases of the input sen-
tences.

Good paraphrase models should produce sen-

tences that are as close as possible to one of the
references, yet as different as possible from the
source. The first part can be measured by com-
mon machine translation metrics such as BLEU
(Papineni et al., 2002), which supports multiple
references. The second part can be measured by
specific paraphrase quality metrics such as PINC
(Chen and Dolan, 2011), which computes the pro-
portion of non-overlapping n-grams between the
source and the generated paraphrase. Good para-
phrases should thus obtain high BLEU as well as
high PINC scores on some paraphrase test set.

Figure 3 plots BLEU scores against PINC
scores for the two test sets (lowercased and ignor-
ing punctuations), the alternative English transla-
tions in the heldout data from the Bible and the
Tatoeba paraphrase set. We exclude the bilingual
model and the Breton model from the graphs, as
they have BLEU scores close to 0 and PINC scores
close to 100% due to the output being generated in
the wrong language.

The figures show a more or less linear correla-
tion between BLEU and PINC. This is expected
to a certain extent, as there is a clear trade-off be-
tween producing varied sentences (higher PINC)
and preserving the meaning of the source sen-
tence (higher BLEU). However, we find that the
model containing all languages shows the over-
all best performance (e.g., according to the arith-
metic mean of PINC and BLEU). This suggests
that a highly multilingual model provides indeed
more abstract internal representations that eventu-
ally lead to higher-quality paraphrases. We also
conclude that additional languages with large and
diverse (i.e., many different Bibles) datasets are
better at preserving the meaning of the source sen-
tence. However, there is no obvious language fam-
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Source But even as he was on the road going down, his servants met
him and reported, saying, Your son lives!

+NLD And as he was on the road, his servants went down with him,
and reported, saying, Thy son lives!

+SPA But as it was on the road, his servants came to him and told
him, “Your own Son lives!”

+ALL And while he was on the way, his servants came to him, saying,
“Your son lives!”

Source Give attention to this! Behold, a sower went out to sow.
+AFR Pay attention to this! Behold, the sower went out to sow.
+ALL Take care of this. Behold, a sower went out to sow.
+BRE Give attention to this! For, look! un semeur sortit pour semer.
+DEU Listen to this! Behold, a sower went out to sow.

Source He slept soundly.
Eng-Fra Et il se prosterna devant soi.
+BRE And, behold, he rose up quickly.
+DEU And he began to sleep.
+ELL He was sleeping.
+ALL And when he had died, he was

asleep.

Source She has no brothers.
Eng-Fra Elle n’a point de frères.
+BRE Or, elle n’a pas de frères.
+DEU For she has no brothers.
+OSS No, brothers.
+ALL You have no brothers.

Table 2: Examples of generated Bible (left) and Tatoeba (right) paraphrases.

ily or similarity effect.
The Tatoeba test set yields much lower BLEU

scores than the Bible test set, due to the large num-
ber of unseen words and constructions, and also
because the Tatoeba test set has only an average
of 1.1 reference paraphrases per sentence, whereas
the Bible test set has 18 references for each verse.
This is most probably also the reason why the mul-
tilingual model including all languages (ALL) per-
forms worse than most other models in terms of
BLEU scores for the Tatoeba paraphrase test. It
is highly likely that plausible paraphrases are not
part of the test set if it only includes one or very
few references like it is the case with Tatoeba,
which is obviously a short-coming of BLEU as a
metric for paraphrase evaluation.

Table 2 shows some examples of paraphrases
generated from the Bible and Tatoeba test set. One
can see that different models tend to produce dif-
ferent paraphrases while preserving the general
meaning of the source sentence at least in the case
of the Bible data. Tatoeba is more problematic due
to the domain mismatch and we will come back to
that issue in the discussions further down.

One caveat is that paraphrase generation could
trivially be achieved by copying the input to the
output especially when evaluating the results us-
ing BLEU. Therefore, we also measured the per-
centage of identical copies that each model pro-
duces leaving out punctuations and lowercasing
the data. The results show that copying is a rare
case for the multilingual models and the input is
only matched in at most 1.4% of the cases (for
Bible data) and at most 5.1% of the cases in the
Tatoeba test set. However, adding English-English
training data changes this behaviour dramatically,
increasing the copying effect to over 70% of the
cases in both test sets, which breaks the use of

Source Have you never eaten a kiwi?
+AFR Have you not eaten sour grapes?

Source Do you have a cellphone?
+HIN Do you have a scorpion?

Source Do your children speak French?
+SPA Do your children speak Greek?

Source Could I park my car here?
+ITA Do I get up here with my cavalry?

Source Birds fly.
+DEU The flying creatures shall fly away .

Figure 4: Examples of generated Tatoeba paraphrases.

such models as a paraphrase generator. This hap-
pens even though we train on pairs of different
Bible translations into English, effectively train-
ing a paraphrase model with supervised learning.
Details of this evaluation are given in the supple-
mentary material.

Finally, we can also observe the effect of do-
main mismatch between the training data and the
Tatoeba test set. A considerable proportion of
the test vocabulary refers to contemporary ob-
jects which obviously do not appear in the Bible
training corpus, and it will, thus, be difficult
for the model to generate adequate paraphrases.
A few examples of sentences containing out-of-
vocabulary words are shown in Figure 4. They in-
dicate that the models are able to partially grasp
the semantics of concepts and sentences often try-
ing to replace unknown expressions with creative
but reasonable alternatives coming from the con-
text of the Bible. However, this observation calls
for a more systematic evaluation of the semantic
similarity of paraphrases than it is done by n-gram
overlap with reference paraphrases, which is, un-
fortunately, out of the scope of this paper.
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4 Conclusions

We have presented a study on the meaning rep-
resentations that can be learned from multilingual
data sets. We show that additional linguistic di-
versity lead to stronger abstractions and we verify
our intuitions with a paraphrase scoring task that
measures perplexity of multilingual sequence-to-
sequence models. We also investigate the ability
of translation models to generate paraphrases and
conclude that this is indeed possible with promis-
ing results even without diversified decoders. In
the future, we will try to push the model further
to approach truly language-independent meaning
representation based on massively parallel data
sets as additional translational grounding. We will
also study the model with bigger and less homoge-
nous data sets and compare it to other approaches
to paraphrase generation including pivot-based
back-translation models. Furthermore, we will test
sentence representations obtained by multilingual
NMT models with additional downstream tasks to
further support the main claims of the paper.
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Abstract
Downstream evaluation of pretrained word
embeddings is expensive, more so for tasks
where current state of the art models are very
large architectures. Intrinsic evaluation us-
ing word similarity or analogy datasets, on
the other hand, suffers from several disad-
vantages. We propose a novel intrinsic eval-
uation task employing large word associa-
tion datasets (particularly the Small World
of Words dataset). We observe correlations
not just between performances on SWOW-
8500 and previously proposed intrinsic tasks
of word similarity prediction, but also with
downstream tasks (eg. Text Classification and
Natural Language Inference). Most impor-
tantly, we report better confidence intervals
for scores on our word association task, with
no fall in correlation with downstream perfor-
mance.

1 Introduction

With the recent rise in popularity of distributional
semantics, word embeddings have become the ba-
sic building block of several state-of-the-art mod-
els spanning multiple problems across Natural
Language Processing and Information Retrieval.
Word embeddings are essentially non-sparse rep-
resentations of words in the form of one (rela-
tively) small dimensional vector of real numbers
for every word, and all of these vectors lie in the
same continuous space.

Despite the clear benefits of these distributed
representations, it is not obvious how to come
up with apt word embeddings for a given NLP
task. Approaches such as word2vec (Mikolov
et al., 2013b), GloVe (Pennington et al., 2014),
etc. have been shown to perform well on down-
stream tasks such as text classification, sequence
labelling, question answering, text summarization,
and machine translation.

Typically, word vectors are used in NLP mod-
els in two ways: fixed pretrained embeddings, and

Figure 1: Visualization of the cue Kite and its
associated words according to the SWOW dataset.
Source: https://smallworldofwords.org/
en/project/explore

finetuning. In the first way, word vectors have
already been trained on some large dataset (e.g.
Wikipedia, Twitter, Blog corpus, etc.) using one of
the aforementioned techniques. These vectors are
taken as fixed weights and the model merely uses
them as they are rather than learning them during
the training phase. On the other hand, finetuning
allows for these vectors to be modified too, using
backpropagation. Here the word embeddings are
taken only as initialized weights for the model’s
first layer.

It is of natural interest to the NLP community
to identify evaluation metrics for word embed-
dings. Besides direct performance measurement
on downstream tasks, there have also been pro-
posed several intrinsic evaluation measures such
as MEN, WordSim, SimLex, etc. These are small
proxy tasks which word vectors are expected to
perform well on, given the assumption that they
capture semantics of words. While Extrinsic eval-
uations use word embeddings as input features to
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a downstream task and measure changes in perfor-
mance metrics specific to that task, Intrinsic eval-
uations directly test for syntactic or semantic rela-
tionships between words (Schnabel et al., 2015).
For example, the word similarity task asks word
embeddings to predict how similar are the mean-
ings of two prompt words. The closer this estimate
is to human judgements, higher is the score allot-
ted to the (pretrained) word embedding.

Through this paper, we propose the Word Asso-
ciation task for evaluating non-contextualized pre-
trained word embeddings, with the help of word
asssociation datasets originally collected for psy-
chological research. The datasets were formed
by asking participants to respond to certain cue
words. For example, given the cue tiger, one could
respond with the words lion, panther, wild, etc.
Large datasets of this sort are now available on-
line, and it can be argued that they capture a no-
tion of which words are in close association with
others (as perceived by human participants).

According to cognitive theories of the mind,
people form associations between concepts based
on similarity, contiguity, or contrast. Our task pro-
posal stems from the following argument: Any
model that claims to understand the semantics
of words should be able to mimic human beings
in recognizing the associations between pairs of
words. For example, a distributed representation
of words, i.e., word embeddings, should be able to
tell that the word tiger is in some way associated
with lion but not with, say, kettle, assuming such a
statistic is observed in the word association dataset
too.

Given the scale of these datasets, they seem like
a lucrative way to evaluate pretrained word em-
beddings. We see them as a manually annotated
corpus of word associations, though not originally
meant for word embedding evaluation. Therefore,
we must devise a convenient way to compare the
semantics captured in a given set of pretrained
word vectors with that captured in such word as-
sociation datasets.

We make our scripts, along with several other
resources, available at https://github.
com/avi-jit/SWOW-eval

2 Related Work

2.1 Word Embedding Evaluation

There exist several intrinsic evaluation tasks for
word embeddings. One way to tell apart intrin-

sic from extrinsic evaluations is the lack of any
trainable parameters in the former. Schnabel et
al. (2015) discuss word relatedness, analogy, se-
lective preference, and categorization as types of
intrinsic tasks.

Our proposed task is most similar to the word
relatedness/similarity tasks, several of which have
already been proposed in literature: WS-3533
(Finkelstein et al., 2002), WS-SIM and WS-
REL (Agirre et al., 2009), RG-65 (Rubenstein
and Goodenough, 1965), MC-30 (Miller and
Charles, 1991), MTurk-2875 (Radinsky et al.,
2011), MTurk-771 (Halawi et al., 2012), MEN7
(Bruni et al., 2012), YP-130 (Yang and Powers,
2006), Rare Words (Luong et al., 2013), etc. We
list the ones above specifically since those are
the ones we compare our proposed task to, us-
ing the online resource wordvectors.org (Faruqui
and Dyer, 2014), whose code remains available
on GitHub 1. Association of Computational Lin-
guistics2 and Vecto AI3 also maintain benchmark
pages for word similarity.

Likewise, VecEval (Nayak et al., 2016)
and Multilingual-embeddings-eval-portal (Ammar
et al., 2016) are GitHub repositories for Extrinsic
Evaluation of word embeddings. 4,5.

Another direction of work has been towards
critiquing intrinsic evaluation, in a bid to under-
stand its shortcomings and potential workarounds
(Schnabel et al., 2015; Zhai et al., 2016). One of
the key shortcomings is the Absence of Statisti-
cal Significance (Faruqui et al., 2016), which we
aim to tackle through this proposal. We believe
that a massive dataset of word associations can be
used to circumvent issues related to confidence in-
tervals of scores reported. We put this belief to test
in later sections of this paper.

2.2 Word Association

Our prime motivation behind this work was Mar-
vin Minsky’s Society of Mind (1988) which the-
orizes that humans learn by linking concepts to-
gether, using what Minsky calls K-Lines. If we
assign meanings to concepts by associating them

1http://github.com/mfaruqui/
eval-word-vectors

2http://aclweb.org/aclwiki/
Similarity_(State_of_the_art)

3http://github.com/vecto-ai/
word-benchmarks

4http://github.com/NehaNayak/veceval
5http://github.com/wammar/

multilingual-embeddings-eval-portal
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with each other, artificial models of semantics
should also be able to do the same.

Word Association games are those wherein a
participant is asked to utter the first (or first few)
words that occur to him/her when given a trig-
ger/cue/stimulus word. For example, given king,
one could respond with rule, queen, kingdom, or
even kong (from the movie King Kong). Word
associations have long intrigued psychologists in-
cluding Carl Jung (1918) and hence large stud-
ies have been conducted in this direction. Some
prominent datasets which collect user responses to
word association games are:

1. University of Southern Florida: Free Asso-
ciation (USF-FA) (Nelson et al., 2004) has
single-word association responses from an
average of 149 participants per cue for a set
of 5,019 cue words.

2. Edinburgh Association Thesaurus (EAT)
(Kiss et al., 1973) collects 100 responses per
cue for a total of 8,400 cues.

3. JeuxDeMots: over 5 million french words
(Lafourcade, 2007).

4. Small World of Words (SWOW) (De Deyne
et al., 2018): Word association and partici-
pant data for 100 primary, secondary and ter-
tiary responses to 12,292 cues, collected from
over 90,000 participants6.

5. Birkbeck norms (Moss et al., 1996) contain
40 to 50 responses for over 2,600 cues in
British English.

Among non-English word association norms,
the largest resources available include 16000 cues
in Dutch (De Deyne et al., 2013), 3900 cues in Ko-
rean (Jung et al., 2010), and 2100 cues in Japanese
(Joyce, 2005).

The authors of SWOW and Jeux De Mots have
even attempted to employ their word association
datasets for learning word embeddings (De Deyne
et al., 2016; Plu et al.) . They use both count-based
and random walk based strategies to learn vector
representations of words. Note that we differ in
using the SWOW dataset not as a corpus to learn
word vectors, but as a human annotated dataset for
evaluating other pretrained word vectors.

cue response R123 N R123.Str

would should 63 288 0.220
would could 63 288 0.220
would will 24 288 0.083
would can 11 288 0.038
. . . . . . . . . . . . . . .
stumble fall 76 290 0.262
stumble trip 68 290 0.234
stumble upon 16 290 0.055

Table 1: A few example cue-response tuples from
the SWOW dataset, along with their associated
R123.Strength scores

Summary Statistic Value

Sample Minimum 115
(the smallest observation)
Lower Quartile 270
(the first quartile)
Median 282
(the middle value)
Upper Quartile 289
(the third quartile)
Sample Maximum 300
(the largest observation)

Table 2: The five number summary forN , i.e. the num-
ber of responses per cue

3 Dataset

Here onwards, we restrict ourselves to only the
Small World of Words dataset (SWOW), a part
of which can be seen in Table 1. For each cue-
response pair C-R, the value R123 is the num-
ber of participants who responded with R when
given the cue C. Note that out of at most three re-
sponses collected per cue per respondent, it does
not matter to the R123 score whether R occurred
in the first response or the third. N is the num-
ber of total responses given the cue C in the pro-
cessed version of released SWOW dataset. The
value R123.Strength is simply equal to R123

N .
There are 978, 908 cue-response pairs in the lat-

est release of SWOW dataset. The statistics for
the number of responses per cue is shown in Table
2. For our own SWOW evaluations, we got rid of
anything that was not a single word, e.g. New York
or get-together. We further selected only the most

6http://smallworldofwords.org/en/
project
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frequently co-occurring word associations. In par-
ticular, we kept only those cue-response pairs that
have R123.strength (i.e., number of people who
cited this response for this cue within any of the
three responses they gave, divided by the total
number of responses for this cue word) is greater
than 0.2 which corresponds to saying that at least
one fifth of all respondents believe this response is
one of the three top associated words for the given
cue. We were now left with 8500 cues and a few
of their corresponding top responses each. While
we restrict ourselves to experimenting only on the
SWOW-8500 dataset, we make available the code
and resources to create even larger datasets (with
fewer restrictions on, say, minimum strength of as-
sociation, needed). 7

Note that word association datasets are asym-
metric in that they treat the pairs C-R and R-C
separately, i.e., for the cue coffee, the response tea
might be the most frequent one but for the cue tea,
the most frequent response could be black. We
need to bear this in mind when using this dataset to
evaluate word embeddings intrinsically, since usu-
ally intrinsic datasets give out a single value for a
word pair. This also does not fit well with the tra-
ditional measure of similarity/relatedness between
two words, i.e., cosine distance, which is a sym-
metric metric.

4 Methodology

Supplemental Table 4 in the original SWOW
dataset paper (De Deyne et al., 2018) shows high
correlations with a few of the word similarity
datasets mentioned above. In this aspect, our work
can be seen as their direct successor, since we
build upon these correlations to propose a new
(and larger) task for intrinsic evaluation of word
vectors.

We wish to compare performances of any pre-
trained word embedding on (1) Our proposed task,
(2) other Intrinsic evaluation tasks, and (3) Down-
stream Tasks. To that end, we first settle upon
some candidate word embeddings. All embed-
dings had 300 dimensions, thereby avoiding dif-
ferent numbers of parameters to be learnt for
downstream models. They were reduced to a very
small common vocabulary of 7779 words. This
helped in conveniently expressing results, with-
out accounting for Out-of-Vocabulary words dif-
ferently. We attempt to have a representative set

7https://github.com/avi-jit/SWOW-eval

of embeddings, including the best and most popu-
lar ones:

1. Word2Vec Skip Gram (Mikolov et al.,
2013b,a) trained on Google News.8

2. GloVe (Pennington et al., 2014) trained on
Wikipedia 2014 and Gigaword 5.9

3. FastText (Bojanowski et al., 2017) trained
with subword information on Common
Crawl (600B tokens).10

4. ConceptNet Numberbatch (Speer et al.,
2017) trained on a big knowledge graph and
some text corpora.11

5. Baroni and Lenci’s (2014) count-based em-
beddings, which are the result of dimension-
ality reduction on a large count matrix.12

6. Random Baseline: a baseline developed by
randomly allotting 300 floating numbers to
each word in the common vocabulary of the
above five embeddings.

We used intrinsic evaluations in the form of
13 word similarity tasks, provided by wordvec-
tors.org (Faruqui and Dyer, 2014). For our pro-
posed task SWOW-8500, and for a given pre-
trained embedding E, we ask E to predict top k
responses for each of the 6481 cues (the ones in
common between the 7779 sized vocabulary of
our word vectors, and the 8500 cues in our pro-
posed task). This corresponds to listing the top-
k most similar words to the cue (which we have
found from decreasing order of cosine similarity).
We tried with several fixed values of k but fi-
nally report results keeping k variable, and always
equal to the number of responses for that particular
cue (in the SWOW-8500 dataset). Here k can be
thought of as the number of guesses allotted to an
image classifier. We then report how many of the
correct responses (according to SWOW dataset)
also occurred in the guesses made by E.

The True Positives are those words that occur
both in SWOW-8500 as well asE’s guesses. False

8http://code.google.com/archive/p/
word2vec/

9http://nlp.stanford.edu/projects/
glove/

10http://fasttext.cc/docs/en/
english-vectors.html

11http://github.com/commonsense/
conceptnet-numberbatch

12http://clic.cimec.unitn.it/dm/
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cue Correct Guesses (TP) Incorrect Guesses (FP) Couldn’t Guess (FN)

ConceptNet Numberbatch

assassination murder assassin, killing president, kill
sect religion, cult religious group
newt salamander democrat, republican lizard, amphibian

Baroni and Lenci (Count-based)

assassination - killing, kidnapping, massacre president, murder, kill
sect cult fraternity, republic group, religion
newt salamander ladybird, alligator lizard, amphibian

Table 3: Responses to Cues by two of the compared pretrained embeddings, along with ground truth responses

Positives are those words that were correct re-
sponses (according to SWOW-8500) but could not
be guessed by E (not present in SWOW-8500).
False Negatives correspond to wrong guesses by
E. Note that since no ground truth responses are
labelled as negative (i.e., we only have words that
should be present in the response set for a given
cue), the number of True Negatives is always 0.
From a confusion matrix, we can report accuracy,
error, precision, recall, F1 score, and also a confi-
dence interval for the error score.

Lastly, we also conduct downstream evaluation
of embeddings on five tasks (Sentiment Analysis,
Chunking, Natural Language Inference, Named
Entity Recognition, and POS Tagging) using the
VecEval framework (Nayak et al., 2016). The
original framework uses, on top of the embed-
ding layers, LSTMs for some of the tasks. This
brings up the question of which other architectures
should then be tried out. Since bidirectional lan-
guage modelling has been shown to outperform a
simple left-to-right traversal (Devlin et al., 2018),
should biLSTMs be used instead? What about
Transformers, or self-attention layers (Vaswani
et al., 2017)? To avoid a very large number of
model parameters, and to conveniently report re-
sults only about the word embeddings like we in-
tend to, we instead chose to go ahead with simple
feed forward neural networks (one or two hidden
layers) and no LSTM layers. Based on several ex-
periments, we chose our hyperparameters as: 50
neurons per hidden layer, a dropout of 0.5, and 50
epochs with a batch size of 128. For details of the
tasks and data involved, please refer to their paper
or webpage. 13

13http://veceval.com

5 Results

Table 3 is a sample from the cues and responses
in the SWOW-8500 task. For each cue, the
ground truth extracted from SWOW is the union of
the words shown under columns Correct Guesses
(True Positives) and Couldn’t Guess (False Nega-
tives). It is noteworthy how (qualitatively) close-
to-correct are the responses by ConceptNet as op-
posed to those by the Count-Based embedding,
and as we shall see, the same holds in the quanti-
tative scores assigned to the two, by SWOW-8500
task.

Table 4 shows performance of the selected
pretrained embeddings on intrinsic evaluation:
the upper half covering existing word similarity
datasets and the lower half covers SWOW-8500.
ConceptNet Numberbatch seems to outperform all
the others, which could be attributed to it be-
ing based on a knowledge graph that links words
based on what concepts people think are associ-
ated. Table 5 shows performances on Downstream
tasks.

From Table 5 and the upper half of Table 4,
one can see a good correlation between intrinsic
and extrinsic evaluations, contrary to past reports
(Faruqui et al., 2016), at least for Fixed versions of
the tasks. However for model runs where Finetun-
ing was allowed, and with a large enough training
set, even Random Baseline embeddings quickly
came at par with the others. This goes to show
that, for the mostly classification-type tasks that
we considered, requiring little linguistic knowl-
edge and relying on topical semantics, our pro-
posed task acts as a great proxy.

Within Table 4, we notice how the Precision,
Recall, and F1 scores (from our proposed SWOW-
8500 task) correlate well with all intrinsic evalua-
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CN FT GloVe w2v Count Base Pairs OOV

EN-MEN-TR-3k 0.855 0.806 0.744 0.771 0.254 0.014 3000 423
CI width: 0.027 0.036 0.046 0.041 0.095 0.102

EN-MC-30 0.932 0.940 0.902 0.916 0.658 0.264 30 10
CI width: 0.190 0.177 0.276 0.240 0.725 1.054

EN-MTurk-771 0.839 0.740 0.659 0.685 0.228 0.034 771 192
CI width: 0.064 0.098 0.122 0.114 0.203 0.213

EN-SIMLEX-999 0.638 0.426 0.359 0.435 0.179 0.030 999 113
CI width: 0.103 0.141 0.151 0.141 0.170 0.173

EN-VERB-143 0.569 0.324 0.454 0.538 0.360 0.072 144 124
CI width: 0.833 1.026 0.940 0.864 1.005 1.105

EN-YP-130 0.727 0.542 0.524 0.463 0.178 -0.077 130 48
CI width: 0.274 0.403 0.413 0.445 0.541 0.554

EN-RW-STANFORD 0.815 0.666 0.552 0.648 0.401 -0.113 2034 1952
CI width: 0.200 0.325 0.402 0.338 0.480 0.558

EN-RG-65 0.939 0.943 0.862 0.819 0.492 -0.084 65 20
CI width: 0.202 0.196 0.217 0.275 0.593 0.751

EN-WS-353-ALL 0.814 0.738 0.615 0.707 0.287 -0.051 353 88
CI width: 0.108 0.145 0.198 0.160 0.295 0.315

EN-WS-353-SIM 0.842 0.826 0.683 0.776 0.448 0.002 203 43
CI width: 0.121 0.132 0.221 0.166 0.327 0.406

EN-WS-353-REL 0.771 0.709 0.608 0.659 0.090 -0.163 252 68
CI width: 0.157 0.192 0.242 0.217 0.375 0.369

EN-MTurk-287 0.863 0.816 0.764 0.779 0.261 -0.253 287 187
CI width: 0.137 0.179 0.221 0.210 0.478 0.481

EN-SimVerb-3500 0.580 0.337 0.208 0.341 0.088 -0.022 3500 694
CI width: 0.064 0.086 0.093 0.086 0.096 0.098

Precision 0.254 0.223 0.171 0.169 0.059 0.000
Recall 0.280 0.246 0.189 0.186 0.065 0.000
F1 Score 0.266 0.233 0.180 0.177 0.061 0.000 8500 2019
Error 0.746 0.777 0.829 0.831 0.941 1.000
(Error CI width) 0.008 0.008 0.007 0.007 0.005 0.000

Table 4: Intrinsic tasks performance. CN: ConceptNet Numberbatch; FT: FastText; Count: Baroni and Lenci.
Pairs: Number of word pairs in the dataset; OOV: Number of word pairs of which at least one word was missing
(for upper half of table) or Number of cues missing (for lower half of table) in the common vocabulary shared by
the six pre-trained embeddings. All Confidence Intervals (CI) reported at 99% confidence level.

tions. Thus SWOW task captures more or less the
same properties already captured by existing word
similarity datasets. So far the only added advan-
tage is that it has already been built (along with
others like USF and EAT), and therefore did not
require additional expensive annotation efforts.

The large scale of SWOW also offers a solu-

tion to the underlying shortcomings in intrinsic
evaluations: reporting statistical signficance. As
evident from Table 4, SWOW-8500 offers up to
three times narrower confidence intervals for error
rate, as opposed to the best amongst word similar-
ity datasets, i.e. EN-MEN-TR-3k. The table cites
all values at Confidence Intervals 99%. Even at
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CN FT GloVe w2v Count Random
Ques Fixed 0.6245 0.5055 0.6099 0.6264 0.5000 0.2234
Ques Finetuned 0.7015 0.7143 0.6978 0.7033 0.4506 0.7033

Senti Fixed 0.6984 0.6663 0.5436 0.6766 0.4874 0.5092
Senti Finetuned 0.6318 0.6445 0.6468 0.6480 0.5344 0.6640

Chunk Fixed 0.6598 0.6605 0.5980 0.6352 0.4168 0.3138
Chunk Finetuned 0.5824 0.5682 0.5925 0.6002 0.3863 0.3138

NLI Fixed 0.4142 0.4222 0.3234 0.3234 0.3345 0.3233
NLI Finetuned 0.4312 0.4303 0.4334 0.4280 0.3398 0.4245

NER Fixed 0.9264 0.9297 0.9226 0.9245 0.8332 0.8332
NER Finetuned 0.9145 0.9124 0.9190 0.9197 0.8332 0.8332

POS Fixed 0.6625 0.6695 0.6285 0.6547 0.3609 0.3244
POS Finetuned 0.5323 0.5305 0.5491 0.5456 0.3535 0.3244

Table 5: Downstream tasks performance. CN: ConceptNet Numberbatch; FT: FastText; Count: Baroni and Lenci

a more modest confidence level of 90%, for the
largest intrinsic dataset, i.e. SimVerb with 3500
word pairs, the accuracy of Numberbatch embed-
dings at 90% confidence could be reported within
a span of 0.039. The smallest dataset MC had 30
data points, leading to a 90% confidence span of
0.114. For SWOW with 6481 data points, the error
rate can be reported with a 90% confidence span
of 0.003. Thus, we have greater confidence in re-
porting SWOW evaluations than with previous in-
trinsic datasets, yet have little difference in actual
(relative) scores reported.

The Confidence Intervals for correlation scores
reported are based on the Fischer Transforma-
tion (Fisher, 1915). The transformation is de-

fined as zr =
ln( 1+r

1−r )
2 , where r is the correla-

tion coefficient. Thereafter, the confidence inter-
val (lower and upper limits) can be computed as:
ẑ = zr ±

z1−α
2√

N−3 , where N is the number of pairs
of observations, (in our case the number of pairs
shared with vocabulary).

Confidence Interval for the SWOW-8500,
which is a classification task, is reported as the
Wilson Score Interval (Wilson, 1927). The error
interval (lower and upper limits) are defined as:

e = ê ± z
√

e(1−e)
n , where e is the error value, z

is the constant (equal 2.58 for 99% CI), and n is
the number of observations evaluated upon (equal
to the total number of responses for all cues in
SWOW-8500).

6 Conclusions and Future Work

In this paper, we’ve suggested a new breed of in-
trinsic evaluation tasks, that rely not on word sim-
ilarity but on word association. More concretely,
we use the Small World of Words dataset to create
SWOW-8500, an intrinsic evaluation task We de-
scribe the task, and compare performance for six
word embeddings, on (1) our proposed task, on
(2) thirteen word similarity tasks, and on (3) five
downstream tasks.

We find that the same sets of properties as cap-
tured by word similarity datasets, which have been
shown to correlate with downstream tasks as well,
are also captured by the Word Association task
SWOW-8500. To add to that, we report higher
confidence scores which shall help in reporting
significance of results on intrinsic evaluation bet-
ter. Thus we hope to dispel the suspicion over
results reported using the (relatively) small word
similarity datasets, since they are now corrobo-
rated with much larger human studies as well.

There remain several interesting directions to be
explored, primarily the use of even more Word
Association datasets (mentioned in Section 2.2).
While in this paper, we’ve cited only the Response
Prediction task, we tried out several others, includ-
ing a Word Similarity task, and a Response Order-
ing task. With further experimentation, it would be
interesting to see what properties of embeddings
do these variations capture. Lastly, more down-
stream tasks could be tested for correlation, e.g.
morphological analysis.
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Abstract

In clinical assessment of people with aphasia,
impairment in the ability to recall and pro-
duce words for objects (anomia) is assessed
using a confrontation naming task, where a tar-
get stimulus is viewed and a corresponding la-
bel is spoken by the participant. Vector space
word embedding models have had inital re-
sults in assessing semantic similarity of target-
production pairs in order to automate scoring
of this task; however, the resulting models are
also highly dependent upon training parame-
ters. To select an optimal family of models,
we fit a beta regression model to the distribu-
tion of performance metrics on a set of 2,880
grid search models and evaluate the resultant
first- and second-order effects to explore how
parameterization affects model performance.
Comparing to SimLex-999, we show that clin-
ical data can be used in an evaluation task
with comparable optimal parameter settings as
standard NLP evaluation datasets.

1 Introduction
In clinical assessment of people with aphasia,
impairment in the ability to recall and produce
words for objects (anomia) is assessed using a
confrontation naming task, where a target stim-
ulus is viewed and a corresponding label is spo-
ken by the participant. Semantic impairment is
measured by a clinician’s rating of semantic simi-
larity between the target-production pairs, and in-
volves a defined similarity criteria involving syn-
onymy, association, and hypernymy. Research
into word embedding models has shown that dif-
ferent window parameterization settings capture
different semantic relations of association/related-
ness vs synonymy, functional properties vs top-
icality, and word embedding models have been
adapted to synonymy, association, and hypernymy
(Hill et al., 2015; Levy et al., 2015; Levy and
Goldberg, 2015; Lison and Kutuzov, 2017). A

central question in NLP research is how to use ex-
trinsic evaluation to measure what semantic rela-
tions are encoded by a model. In this paper, we
engage in the interdiscplinary question of how se-
mantic relations can be modeled in a clinical do-
main, and present an application of word embed-
ding models for assessing semantic impairment.

The Philadelphia Naming Test (PNT) imple-
ments one such naming task that was developed
for psycholinguistic and clinical research; the
scoring of this test involves a large taxonomy of
coding responses based on phonological and se-
mantic similarity of the response to the target ob-
ject (Roach et al., 1996). The taxonomy is moti-
vated by Dell’s two-step model of aphasia, where
anomia results from a disruption in accessing both
the phonological representation as well as seman-
tic properties of the object (Dell, 1986).

PNT scoring is time-intensive due to the high
number of items, and there have been successful
attempts to both shorten the number of items on
the test via computer adaptive assessment (Hula
et al., 2015) as well as automate the scoring of the
PNT via automated classification of paraphasias
to facilitate the use of the PNT as a tool in clin-
ical practice (Fergadiotis et al., 2016). Our work
is part of a broader goal to develop an end-to-end
automation of the PNT, from presentation of target
items to an individual error profile.

In this paper, we present results of a classifica-
tion task that identifies semantic paraphasias (er-
rors) on the PNT, using a word embedding model
to measure semantic similiarity of a production to
the target item. Fergadiotis et al. (2016) showed
that word embeddings can be successfully ap-
plied to classification of semantic paraphasias in
the context of the PNT, and our paper builds on
this baseline work by exploring (i) the nature of
semantic similarity that their optimal model en-
codes; (ii) the relationship between the evaluation
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synonym TOILET→ “commode”
category coordinate BANANA→ “apple”
superordinate APPLE→ “fruit”
subordinate FLOWER→ “rose”
associated BENCH→ “park”
diminutive DOG→ “doggie”

Table 1: PNT Semantic Error Relations

metric, a large database of PNT target-production
pairs, and the distribution of similarity scores in an
optimal model.

We present results of parameter optimization
tasks and post-hoc analysis of the resulting vec-
tor space in optimal and non-optimal models for
the downstream application of classifying seman-
tic paraphasias on the PNT, using a novel applica-
tion of the beta regression model to evaluate grid
search parameters. We then compare the evalu-
ation metric of psycholinguistic aphasic data with
SimLex-999, a standard NLP evaluation tasks with
measured controls for synonymy and association,
and explore best practices for adapting models to
psycholinguistic, clinical environments.

2 Optimizing for confrontation naming

2.1 Using Clinical Data for Model Evaluation

Canonical word embedding tasks strive to model
semantic relations that are similar to those used
in the definition of PNT semantic errors such as
synonymy and association (e.g. Hill et al. (2015);
Levy et al. (2015)), and thus should be well suited
for the classification of semantic errors in the PNT.
Conventional scoring of the PNT defines a criteria
for semantic errors that involves a real word noun
production that is in one of six semantic relations
with the target word; see Table 1 (Roach et al.,
1996).

The PNT consists of 175 items, represented
by a set of black-and-white images, and were
selected based on a series of controls, involv-
ing varying word frequency based on Francis and
Kučera (1982), word length (1 to 4 syllables),
and high name performance by control partici-
pants (Roach et al., 1996). Items in the PNT come
from several semantic categories, and avoid land-
marks or other recognizable individuals (Mirman
et al., 2010). The Moss Aphasia Psycholinguistic
Project Database (MAPPD) contains transcribed
responses from over 300 administrations of the
PNT, and is often used in aphasiological research;
in this work, we use a subsample of 152 admin-

istrations selected on the basis of clinical char-
acteristics. The 152 administrations of the PNT
are from 99 subjects from 1-195 months post on-
set of aphasia. Five different sub-types of aphasia
were present among the subjects (anomic, Broca,
conduction, transcortical sensory, and Wernicke).
Some subjects had multiple administrations of the
PNT at different months post onset; the range is
1-6 administrations per subject.

The frequency and length controls for targets on
the PNT, in addition to the semantic relations that
define paraphasic errors on the naming test, estab-
lish a paradigm for target-production word pairs
that is quite similar to the structure of certain ex-
ternal evaluation datasets developed for word em-
bedding models. For example, SimLex-999 (Hill
et al., 2015) is a benchmark dataset for assess-
ing semantic similarity that is based on human
ratings of word pairs on a scale of synonymy, as
opposed to association/relatedness. SimLex-999
balances word association strength using the USF
Free Association norms, samples from both asso-
ciated and unassociated word pairs, and controls
for features such as the concreteness and part-of-
speech of the word pairs. Additionally, the PNT
involves human evaluation of these semantic re-
lations – in this case, two trained clinicians –
with instructions that train evaluators to look for
specific dimensions of semantic similiarity when
evaluating whether a word pair is semantically
similar (the instructions are very similar to those
used by SimLex-999). Comparing results from
MAPPD, which depends on a clinician’s identifi-
cation of a word pair as semantically similar, with
results from SimLex-999 should establish whether
clinical data is a reliable evaluation metric for em-
bedding models.

2.2 Parameterization Affects Semantic Rela-
tions in Word Embedding Models

From the NLP literature, parameterization is one
consideration that has been shown to have a large
effect on the semantic information encoded in
word embedding models. In general, larger con-
text windows are associated with more topical
similarities, while smaller windows are expected
to produce more functional/syntactic similarities
(Goldberg, 2015). For Skipgram models, a smaller
window size is associated with increased perfor-
mance on SimLex-999, a word pair similiarity task
(Lison and Kutuzov, 2017), and qualitatively less
topicality (Levy and Goldberg, 2015). Addition-
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ally, there are more domain general considerations
when optimizing models to our downstream task.
It has been shown that there is an ideal parame-
ter setting for dimensionality of the resulting word
vectors that is neither too high nor too low (Lan-
dauer and Dumais, 1997; Yin and Shen, 2018).

3 Methods

The current study tests whether model architec-
ture, corpus preparation, and training parameters
influence the semantic content of the word em-
bedding model, as measured via the downstream
classification task of scoring paraphasic errors on
the PNT. We performed a grid search over these
sets of parameters, and we evaluate the resultant
models on both the PNT dataset as well as the
SimLex-999 dataset (Hill et al., 2015), to evaluate
and compare what patterns both evaluation meth-
ods find in the data. In doing this, we ask whether
the items and semantic similarity criteria of the
Philadelphia Naming Test are informative in the
context of evaluating parameter settings of word
embedding models.

3.1 Corpus Preparation Pipelines

Following the method described by Fergadiotis
et al. (2016), four versions of the English Gi-
gaword corpus (LDC2011T07) were prepared,1

with stemming and stopword/punctuation removal
as variables (see Table 2).2 Stemming was
done using NLTK’s implementation of the Porter
stemming algorithm (Porter, 1980; Bird et al.,
2009). Stopword removal used the NLTK list of
English-language stop words, notably including
can, which is a PNT item; punctuation was re-

1A reviewer suggests that multiple corpora could have
been included in the grid search, with which we wholeheart-
edly agree. Our preliminary experiments using pretrained
embedding models trained on different corpora (such as a
Wikipedia crawl), do not show large differences in perfor-
mance in terms of optimal parameter settings. We leave a
more detailed parameter search over different corpora to fu-
ture research, and do have reason to expect that corpus selec-
tion would be important for this task. With the embeddings
described in the present study, we observed word sense issues
for certain PNT items, such as head, which when trained on
newswire text obtains a dominant word sense for ruler/dic-
tator/chairperson rather than the body part; work aimed at
modeling and addressing issues of word sense is in progress.

2Note that the original paper by Fergadiotis et al. had used
a version of the Gigaword corpus that had been augmented
with additional conversational text; we elected to use the
standard “vanilla” version of Gigaword, for reasons of repro-
ducibility. An initial pilot study showed that the changes to
the corpus resulted in negligible differences in performance.

Parameter Levels
Corpus Preparation +Stemming, -Stemming
Corpus Preparation +Stopword Removal,

-Stopword Removal
Dimensionality 100, 200, 500, 750
Minimum Word Frequency 100, 250, 500, 750, 1000,

1500, 2000, 3000, 4000, 5000
Context Window Size 1, 2, 3, 4, 5, 10, 15, 20, 25

Table 2: Grid Search Variables

moved with stopwords.3

3.2 word2vec Training Parameters

At training time, three parameters were varied:
the size of the context window4, dimensionality of
word embedding vectors, and minimum word fre-
quency threshold (see Table 2). 1,440 CBOW and
1,440 Skipgram models were trained using Gen-
sim v3.4.0, using the four Gigaword corpora, vary-
ing the above-mentioned parameters. The default
word2vec training parameters were used for both
CBOW and Skipgram models, including a nega-
tive sampling rate of 5, a negative sampling expo-
nent of 0.75, cbow mean=1 (uses the mean rather
than the sum of context word vectors), 5 training
epochs, alpha = 0.025, a minimum learning rate
of .0001, and downsampling word frequency of
0.001.5

3.3 Evaluation Tasks

3.3.1 MAPPD Database of Philadelphia Nam-
ing Tests

We evaluated the word embedding model using
a semantic classification task for all trials in the
MAPPD database. To do this, we took the or-
thographic representation of the visual target item
and the produced response to the naming task to
be a target-production word pair in the embedding
model, and used cosine similarity scores as input
to the classifier to determine semantic similarity of

3For comparability with previous classification ex-
periments, the version of Gigaword with +Stemming,
+Stopword Removal was formatted with line breaks after
each one article. This may have had an effect on window
trimming at training time for this particular variable manip-
ulation. However, the limited second-order interaction of
stemming and stopword removal shows that this likely had
only a minor effect (see Section 4). Samples from the cor-
pora are in Appendix A.

4word2vec window is symmetrical on both sides of target
word; e.g. window n = 1 is [Word1 Target Word2].

5A future grid search parameter could include a compari-
son of word2vec output/decoding methods (hierarchical soft-
max vs. negative sampling), along with their various related
hyperparameter settings. We did not vary this in the current
study.
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target-production pairs in MAPPD. Cosine simi-
larity of the vectors for the target and production
were computed from each model on a transformed
scale of [0,1]; target/production pairs including an
OOV term were assigned a similarity score of 0.6

We then used these cosine similarity scores to
determine whether, for the purposes of PNT item
scoring, a subject’s production is sufficiently sim-
ilar to the target word to count as a semantic para-
phasia. Following the approach described by Fer-
gadiotis et al. (2016), we do this via threshold-
based classification: word pairs with cosine si-
miliary above a pre-identified threshold are clas-
sified as paraphasias with semantic relatedness,
and word pairs with cosine similiarity below the
threshold are classified as not semantically related.
This approach has the advantage of being easily
integrated into downstream classifiers in a way
that is interpretable as well as tunable (by raising
or lowering the threshold, we can trivially trade
off precision for recall). Furthermore, there exist
numerous well-understood methods for optimiz-
ing the operating point of the threshold classifier.
In this work, we calculated the optimal operating
point for a model to be that which maximized the
S1 score (the harmonic mean of sensitivity and
specificity) in the cosine similiarity space.

In this work, we compared the performance of
a large number of trained similarity models. To
compare models, we took the set of computed
similarity scores from each model and calculated
the Area Under the Curve for the Receiver Oper-
ating Characteristic (AUC for ROC; Hanley and
McNeil (1982)). We take AUC score as a broad,
threshold-independent evaluation of model perfor-
mance (Huang and Ling, 2005) and use this as a
criteria for selection of our optimal family of mod-
els.

The resulting distribution of AUC scores show
clear interactions over parameter settings. We
used beta regression (Ferrari and Cribari-Neto,
2004) to model the distribution of the AUC scores

6A reviewer of this work noted that OOVs could have
been treated as missing data for this task. The output of the
semantic classifier under consideration in this study is used
as a feature in a larger multinomial classifier, which also in-
volves identifying nonwords, such that in our larger error-
classification pipeline, nonwords are not assigned a similarity
score. In the present study we used a zero value rather than
a missing value, to avoid conflating nonwords with OOVs.
Additionally, we note that investigations of the resulting dis-
tribution of cosine similiarty scores shows a floor of .49, so
that OOVs with a zero score are fully distinguishable from
low-similarity word pairs in the MAPPD dataset.

from our grid search, and used the resulting coef-
ficients to find optimal settings for each parame-
ter. Beta regression is used for a response variable
that is bounded within the standard unit interval,
such as rates or proportions, and is appropriate to
use for data that are heteroskedastic and/or asym-
metric, as is the case with the distribution of AUC
scores resulting from our grid search over word
embedding models. It is typical to fit two beta
regression models, one for each of the two hy-
perparameters of the Beta distribution (mode and
dispersion) (Simas et al., 2010; Cribari-Neto and
Zeileis, 2010).

3.3.2 SimLex-999

Cosine similarity scores for all SimLex-999 word
pairs were computed for each of the 2,880 grid
search models, and Spearman’s rank correlation
coefficient was calculated to test the correlation of
any given models’ similarity scores with the hu-
man rating of similarity for synonymy. The re-
sulting models were compared by fitting a beta re-
gression model, scaling (ρ+ 1)/2 as the response
variable to fit the distribution of ρ to the unit inter-
val [0,1] which is required in beta regression (see
Ferrari and Cribari-Neto (2004)).

4 Results

4.1 MAPPD Grid Search

Coefficients from a beta regression model are re-
ported individually for each parameter (a table of
estimates is provided in Appendex B). Coefficients
represent the log-odds of an increase in AUC score
per unit change in that parameter. We take the
mean model as the main heuristic to evaluate how
each parameter moves the center of AUC distribu-
tion. Precision model coefficients are used to eval-
uate how each parameter changes the dispersion
of the data (positive coefficients indicate smaller
dispersion). In beta regression, the dispersion (or
precision) parameter φ increases as the variance of
the reponse variable decreases when the mean of
the response variable is fixed (response variable in
this case is the AUC score) (Ferrari and Cribari-
Neto, 2004).

4.1.1 Model Type

AUC scores move in the positive direction for
Skipgram models compared with CBOW models
(βSKIP = .067, p < .001; mean model), indicating
that Skipgram models outperform CBOW models
when other parameters are held constant. How-
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ever, the type of word embedding model interacts
with corpus preparation and window size, such
that the absolute highest performing model is a
CBOW model with parameters (+stemmed, +stop-
word removed, dimensions= 750, window size
n = 1, frequency threshold= 100). However,
Skipgram models show higher dispersion, espe-
cially with smaller window sizes.

4.1.2 Corpus Preparation

Stopword removal moves AUC scores in a positive
direction when other parameters are held constant
(βSTOPRM = .108, p < .001; mean model). A neg-
ative interaction with Skipgram models indicates
that stopword removal improves CBOW mod-
els more than Skipgram models (βSKIP X STOPRM =
−.060, p < .001; mean model); however, for both
types of models the AUC scores are still pulled
in the positive direction when stopwords are re-
moved. Stopword removal also decreases variance
in the data, though there are second-order effects
with all other parameters that subsequently show
increased variance.

Optimal settings for stemming varies by the
type of word embedding model. As a main effect,
stemming improves model performance (βSTEM =
.034, p < .001; mean model). However, the neg-
ative interaction with Skipgram models is signifi-
cantly large enough that the effect is reversed, and
stemming is contraindicated for Skipgram mod-
els (βSKIP X STEM = −0.078, p < .001; mean model)
when other parameters are held constant.

The mean model shows a non-significant ef-
fect for the interaction of stemming and stopword
removal (βSTEM X STOPRM = .004, p > .05; mean
model). See Appendix C for a heat map of per-
fomance broken down by corpus preparation.

4.1.3 Frequency Threshold

The frequency threshold has the largest effect on
the mean model, in the negative direction (βFT =
−0.191, p < .001), indicating that the small-
est frequency threshold is optimal for all models.
This interacts with stemming as well (βSTEM X FT =
0.079, p < .001); models trained on stemmed
Gigaword show less decrease in the mean AUC
score than the non-stemmed versions. As fre-
quency threshold decreases, dispersion increases;
this is mitigated via second-order effects with
Skipgram/CBOW, Stemming, and Stopword re-
moval.

4.1.4 Dimensionality

As dimensionality increases, so do corresponding
AUC scores (βDIM = 0.035, p < .001). Skipgram
models show even higher performance from large
dimensionality (βSKIP X DIM = 0.015, p < .001).

4.1.5 Window Size

Increasing window size shows a corresponding in-
crease in AUC scores (βWIN = .027, p < .001;
mean model), but second-order effects show that
this holds only for CBOW models. A negative
interaction of window size with Skipgram mod-
els is large enough that the effect is reversed, and
a larger window size is contraindicated for Skip-
gram models (βSKIP X WIN = −0.080, p < .001;
mean model).

While CBOW models generally perform bet-
ter with larger windows, there is one parameter
setting for window size that violates the general
trend. A heat map of the three parameters is given
in Figure 1, which shows that the highest AUC
scores occur in the smallest windows. The inverse
relationship in performance for CBOW and Skip-
gram models holds for a window size of [2, 25],
but does not when n=1 (see Section 5.2).

4.1.6 Summary

The optimal parameter selection is frequency
threshold=100 and dimensions=750 for all mod-
els. Skipgram models are optimal when the cor-
pus has been stopword removed and not stemmed,
with window size n = 1. CBOW models perform
well when the corpus is stemmed and stopword-
removed. While CBOW models generally show
top performance as window sizes increase, with
the exception that for window size n = 1 the
CBOW models perform highest.

4.2 SimLex-999

To evaluate models on the SimLex-999 dataset,
Spearman’s rank correlation coefficient (ρ) was
calculated for each model comparing the relation-
ship of model similarity scores and the human
similarity judgments. The mean correlation across
models, meanρ = .379 and rangeρ = (.262, .496),
is close to the state-of-the-art SimLex-999 score
reported for Skipgram word2vec models of .37.7

There is a significant moderate correlation of
AUC scores to Spearman’s ρ (R = .41, p < .001).

Following the same method for reporting AUC
scores, we report only the differences on param-

7https://fh295.github.io/simlex.html
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Figure 1: Heat Map of AUC scores for CBOW and
Skipgram models, by Dimensionality (facet), Window
Size, and Frequency Threshold

eterization effects for a beta regression model, fit
to scaled SimLex ρ scores (Pseudo-R2 = .874; a
table of estimates is included in Appendix B).

Frequency threshold has much less of an ef-
fect on the SimLex task than the clinical MAPPD
task. The beta regression model finds less of a
negative impact for frequency threshold (βFT =
−.028, p < .001) than in the MAPPD model. This
is due to out-of-vocabulary (OOV) counts, as these
are much lower proportionally in SimLex. OOVs
impact the MAPPD dataset at a higher rate partly
because there is a pool of 175 items that occur, and
at differing frequency thresholds some of these
items are excluded from training.

Stemming is dispreferred when looking at per-
formance on SimLex CBOW models, (βSTEM =
−.084, p < .001). There is an interaction be-
tween stemming and Skipgram models that shows
slight improvement in performance when Skip-
gram models are stemmed over CBOW models
(βSKIP X STEM = 0.028, p < .001), but still dispre-
ferred. This differs from the MAPPD results,

where stemming improves CBOW models.
Interestingly, window size still shows an inverse

relation for CBOW and Skipgram models, as in
the MAPPD task. Larger window sizes are opti-
mal for CBOW models; smaller window sizes are
optimal for Skipgram models. The same excep-
tion for n = 1 with CBOW models is apparent,
with the highest ρ in the smallest window size.

5 Discussion

5.1 Dimensionality, Frequency Threshold and
Corpus Preparation

Across all model types, models with high dimen-
sionality and low minimum frequency thresholds
proved optimal. Furthermore, stopword removal
also produced consistently optimal results, while
stemming was optimal for CBOW models but not
for Skipgram models.

Stemming proved to be a more complex pa-
rameter, and interacted with minimum frequency
threshold. Models with a higher frequency thresh-
old performed better with unstemmed training
data, whereas those with a lower threshold ben-
efited from stemming. This is intuitive, as stem-
ming a corpus will increase the token frequency
for observed words while reducing the number of
distinct types (e.g. cat and cats are stemmed to
the same form, cat) relative to the unstemmed ver-
sion of the corpus. In the unstemmed condition,
there will be more distinct token types whose fre-
quency falls below any given minimum frequency
threshold, which will result in proportionally more
words being removed from the final model’s vo-
cabulary than would be the case in the stemmed
condition. A greater amount of information is
therefore removed prior to training, along with an
increase in the out-of-vocabularly count when an-
alyzing the PNT data.8

5.2 Parameter Optimization: Model Type
and the Window n=1 Mystery

Window size affects how much linguistic context
is available during training time and the semantic
properties of resulting word vectors. We find con-
cordance in the literature that Skipgram outper-
forms CBOW on small window sizes for word pair
similarity tasks (Levy et al., 2015) and that Skip-
gram models show better SimLex performance for

8Looking at the resulting distribution of cosine similar-
ity scores for comparable high vs. low frequency shows that
the OOV count is much higher, while the distribution of non-
OOV scores remains similar.
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smaller windows (Lison and Kutuzov, 2017); our
results show that Skipgram models perform bet-
ter with smaller window sizes for both MAPPD
and on SimLex. However, we also find overall
that CBOW models show improved performance
over Skipgram models as window size grows to
25, which is a much larger window size than re-
ported in the literature on hyperparameter compar-
ison. A notable exception is that performance for
n = 1 shows high performance for CBOW models
across all parameter settings.

In addition to small context windows, we find
Skipgram models to be optimal on the non-
stemmed corpora, which decreases the token fre-
quency. Levy et al. (2015) observe that the
smoothing in Skipgram models may alleviate
PMI’s bias towards rare occurrences, improving
performance. However, it may still be the case
that Skipgram models perform better with a larger
variety of lower-frequency tokens overall, as in
the non-stemmed corpora. This, combined with
a small context window may increase the rarity
of word co-occurrences overall with a given target
and explain the interaction.

It remains a mystery why CBOW models show
high performance with both large windows and
the smallest window size n = 1. It may be the
case that the symmetric bi-gram context returns
the densest information context, only matched by
window sizes that are quite large. While there are
qualitative differences in the information captured
by the CBOW window sizes for some items (not
reported here due to space), it also appears that
the resulting vector space geometry for large and
small windows differs even for items where the list
of most similar words is very similar.

For example, jewelry shares 4/5 of the five most
similar words (pendant, earring, brooch, jewelry)
for the optimal n = 1 and n = 25 CBOW
model, but the range of cosine similarity scores
for the two lists of most similar words differs:
n = 1, (.60, .70) vs. n = 25, (.46, .54). However,
the optimal operating threshold for these models
is approximately the same: n = 1, S1 = .562;
n = 25, S1 = .578. Investigation of neigh-
borhood density with respect to the target words
across models trained with different window sizes
may result in a very different geometry of the re-
sulting embedding space. Word frequency can
bias the resulting vector space of word embedding
models (Gong et al., 2018), making direct compar-

ison of word vectors of high and low frequencies
problematic. Simple optimization based on oper-
ating threshold on the ROC may be insufficient for
overall optimization, and transformations of em-
bedding space based on neighborhood density and
word frequency an interesting vein of future work.

5.3 MAPPD and SimLex: Using Clinical
Datasets for Evaluation

Optimization over the SimLex dataset shows sim-
ilar parameter settings as MAPPD for dimension-
ality and window size. Skipgram models are
optimal, and a similar pattern of performance
across window sizes is observed for Skipgram
and CBOW models. Key differences in fre-
quency threshold are related to differences in out-
of-vocabulary items. Stemming is dispreferred
across the SimLex dataset, which differs from the
MAPPD CBOW models. As MAPPD utilizes
only a limited vocabulary of nouns, the stemmed
corpus might have a smaller effect than on the
more morphologically varied SimLex word pairs.

6 Conclusion

Using beta regression to explore how parame-
terization affects model performance, we show
that performance on MAPPD and SimLex-999
datasets depends on similar optimal parameters.
The implications, particularly for window size,
are that the semantic relations encoded in these
word pair datasets are comparable. However,
results also reveal the importance of further in-
vestigation into the geometry of resulting vector
spaces. Patterns of performance demonstrate that
the MAPPD dataset, based on a carefully con-
structed clinical assessment, is useful as an eval-
uation task for word embedding models and sheds
additional insight onto the sensitivity of training
parameter selection.
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A Samples from Gigaword Corpora
+Stemming, +Stopword Removal

TRIBUT POUR AROUND WORLD LATE
LABOUR PARTI LEADER JOHN SMITH
DIE EARLIER MASSIV HEART ATTACK
AGE WASHINGTON US STATE DEPART
ISSU STATEMENT REGRET UNTIM DEATH
SCOTTISH BARRIST PARLIAMENTARIAN
SMITH THROUGHOUT DISTINGUISH CA-
REER GOVERN OPPOSIT LEFT PROFOUND
IMPRESS HISTORI PARTI COUNTRI STATE
DEPART SPOKESMAN MICHAEL MC-
CURRI SAID SECRETARI STATE WARREN
CHRISTOPH EXTEND DEEPEST CONDOL
SMITH SMITH CHILDREN

+Stemming, −Stopword Removal

TRIBUT POUR IN FROM AROUND THE
WORLD *DAY* TO THE LATE LABOUR
PARTI LEADER JOHN SMITH , WHO DIE
EARLIER FROM A MASSIV HEART ATTACK
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AGE # .

IN WASHINGTON , THE US STATE DE-
PART ISSU A STATEMENT REGRET “ THE
UNTIM DEATH ” OF THE RAPIER-TONGU
SCOTTISH BARRIST AND PARLIAMENTAR-
IAN .

“ MR. SMITH , THROUGHOUT HIS DIS-
TINGUISH CAREER IN GOVERN AND IN
OPPOSIT , LEFT A PROFOUND IMPRESS
ON THE HISTORI OF HIS PARTI AND HIS
COUNTRI , ” STATE DEPART SPOKESMAN
MICHAEL MCCURRI SAID .

“ SECRETARI ( OF STATE WARREN )
CHRISTOPH EXTEND HIS DEEPEST CON-
DOL TO MRS. SMITH AND TO THE SMITH
CHILDREN . ”

−Stemming, +Stopword Removal

tributes poured around world late labour party
leader john smith died earlier massive heart attack
aged

washington us state department issued state-
ment regretting untimely death scottish barrister
parliamentarian

smith throughout distinguished career gov-
ernment opposition left profound impression
history party country state department spokesman
michael mccurry said

secretary state warren christopher extends
deepest condolences smith smith children

−Stemming, −Stopword Removal

tributes poured in from around the world *day* to
the late labour party leader john smith , who died
earlier from a massive heart attack aged # .

in washington , the us state department is-
sued a statement regretting “ the untimely death
” of the rapier-tongued scottish barrister and
parliamentarian .

“ mr. smith , throughout his distinguished
career in government and in opposition , left a
profound impression on the history of his party
and his country , ” state department spokesman
michael mccurry said .
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B Table of Estimates for Beta Regression Models

MAPPD SimLex-999
Mean Model Precision Model Mean Model

Parameter Coefficient SE Coefficient SE Coefficient SE
Intercept 1.617*** (0.006) 7.778*** (0.155) 0.692*** (0.004)
SKIP 0.067*** (0.006) -0.582*** (0.148) 0.129*** (0.004)
STEM 0.034*** (0.006) 0.119 (0.148) -0.084*** (0.004)
STOPRM 0.108*** (0.005) 0.364* (0.148) 0.105*** (0.004)
DIM 0.035*** (0.001) 0.056* (0.027) 0.027*** (0.001)
WIN 0.027*** (0.003) 0.098 (0.089) 0.020*** (0.002)
FREQTHRESH -0.191*** (0.002) -0.118** (0.046) -0.028*** (0.001)
SKIP x STEM -0.078*** (0.004) 0.053 (0.105) 0.028*** (0.003)
SKIP x STOPRM -0.060*** (0.004) -0.013 (0.105) -0.077*** (0.003)
SKIP x DIM 0.015*** (0.001) 0.035 (0.021) 0.003*** (0.001)
SKIP x WIN -0.080*** (0.002) -0.236*** (0.064) -0.067*** (0.002)
SKIP x FREQTHRESH 0.003* (0.001) 0.109*** (0.033) 0.005*** (0.001)
STEM x STOPRM 0.004 (0.004) -0.274** (0.105) -0.017*** (0.003)
STEM x DIM -0.002** (0.001) -0.015 (0.021) 0.001 (0.001)
STEM x WIN 0.006* (0.002) -0.014 (0.064) -0.003* (0.002)
STEM x FREQTHRESH 0.079*** (0.001) 0.162*** (0.033) 0.013*** (0.001)
STOPRM x DIM -0.006*** (0.001) -0.062** (0.021) -0.002*** (0.001)
STOPRM x WIN -0.016*** (0.002) -0.164* (0.064) -0.020*** (0.002)
STOPRM x FREQTHRESH 0.000 (0.001) 0.118*** (0.033) 0.001 (0.001)
DIM x WIN -0.002*** (0.000) 0.055*** (0.013) -0.002*** (0.000)
DIM x FREQTHRESH -0.004*** (0.000) -0.029*** (0.006) -0.000 (0.000)
WIN x FREQTHRESH 0.004*** (0.001) -0.027 (0.020) 0.004*** (0.001)
Pseudo-R2 0.965 0.874
N 2880 2880

Table 3: Table of Estimates for Beta Regression for Mean (µ) and Precision (φ). ‘x’ denotes second-order effects.
∗p < .05/ ∗ ∗p < .01/ ∗ ∗ ∗ p < .001
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C MAPPD Grid Search Results, by Corpus Preparation Type

Figure 2: Heat Map of AUC scores for CBOW and Skipgram models, by Corpus Preparation Type (plot), Dimen-
sionality (facet), Window Size, and Frequency Threshold
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Abstract

Commonsense reasoning is a critical AI capa-
bility, but it is difficult to construct challenging
datasets that test common sense. Recent neu-
ral question answering systems, based on large
pre-trained models of language, have already
achieved near-human-level performance on
commonsense knowledge benchmarks. These
systems do not possess human-level common
sense, but are able to exploit limitations of the
datasets to achieve human-level scores.

We introduce the CODAH dataset, an
adversarially-constructed evaluation dataset
for testing common sense. CODAH forms a
challenging extension to the recently-proposed
SWAG dataset, which tests commonsense
knowledge using sentence-completion ques-
tions that describe situations observed in
video. To produce a more difficult dataset,
we introduce a novel procedure for question
acquisition in which workers author questions
designed to target weaknesses of state-of-
the-art neural question answering systems.
Workers are rewarded for submissions that
models fail to answer correctly both before
and after fine-tuning (in cross-validation). We
create 2.8k questions via this procedure and
evaluate the performance of multiple state-
of-the-art question answering systems on our
dataset. We observe a significant gap between
human performance, which is 95.3%, and the
performance of the best baseline accuracy of
65.3% by the OpenAI GPT model.

1 Introduction

Enabling commonsense reasoning in machines is
a longstanding challenge in AI. The rise of data-
driven methods has led to interest in developing
large datasets for commonsense reasoning over
text.

The Situations With Adversarial Generations
(SWAG) dataset (Zellers et al., 2018) introduced

a large-scale benchmark for commonsense ques-
tion answering in the form of multiple choice sen-
tence completion questions describing situations
as observed in video. However, while SWAG was
constructed to be resistant to certain baseline al-
gorithms, powerful subsequent methods were able
to perform very well on the dataset. In partic-
ular, the development of the transformer archi-
tecture (Vaswani et al., 2017) has led to power-
ful pre-trained language model representations, in-
cluding the OpenAI Transformer Language Model
(Radford et al., 2018) and the Bidirectional En-
coder Representations from Transformers (BERT)
model (Devlin et al., 2018). BERT achieved
new state-of-the-art performance on SWAG that
exceeded even that of a human expert. How-
ever, BERT does not possess human-level com-
mon sense in general, as our experiments demon-
strate. It is instead able to exploit regularities in
the SWAG dataset to score high. This motivates
the construction of additional datasets that pose
new challenges, and serve as more reliable bench-
marks for commonsense reasoning systems.

In this work, we introduce the COmmonsense
Dataset Adversarially-authored by Humans
(CODAH) for commonsense question answering
in the style of SWAG multiple choice sentence
completion. We propose a novel method for
question generation, in which human annotators
are educated on the workings of a state-of-the-art
question answering model, and are asked to
submit questions that adversarially target the
weaknesses. Annotators are rewarded for sub-
missions in which the model fails to identify
the correct sentence completion both before and
after fine-tuning on a sample of the submitted
questions, encouraging the creation of questions
that are not easily learnable.

We experimentally demonstrate that CODAH’s
generation procedure produces a dataset with a
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large gap between system performance and hu-
man expert accuracy, even when using state-of-
the-art pre-trained language models with and with-
out fine-tuning on the large SWAG dataset. Us-
ing a model initially fine-tuned on SWAG, we find
that the OpenAI GPT-1 and BERT neural ques-
tion answering models yield 65.3% and 64.5%
accuracy, respectively, on the CODAH dataset in
cross-validation. Thus, cross-validating on CO-
DAH can form a challenging additional evaluation
for SWAG-style commonsense QA systems. Hu-
man evaluators achieve 95.3% accuracy, which is
substantially higher than the 85.0% (Zellers et al.,
2018) and 87.7% (Ghaeini et al., 2018) human
performance on the SWAG and SNLI natural lan-
guage inference tasks. The high human perfor-
mance suggests that answers to the CODAH ques-
tions are in fact commonsense knowledge. Finally,
we also analyze differences in performance across
questions that target different types of common-
sense reasoning, including quantitative, negation,
and object reference, showing consistency in per-
formance for BERT and GPT on the proposed cat-
egories.

2 Related Work

Prior work in question answering has largely
focused on the development of reading
comprehension-based question answering and
resulted in the creation of several large datasets
for factoid extraction such as SQuAD (Rajpurkar
et al., 2016, 2018) and the Google Natural
Questions datasets (Kwiatkowski et al., 2019). In
these tasks, extraction of correct answers from
the provided context requires little external world
knowledge, understanding of intents, or other
commonsense knowledge.

Earlier work has established multiple bench-
marks for natural language inference and linguis-
tic entailment with the release SNLI (Bowman
et al., 2015) and MultiNLI datasets (Williams
et al., 2018). In these tasks, systems must iden-
tify whether a hypothesis agrees with or contra-
dicts a provided premise. In these datasets, de-
termining entailment solely relies upon the pro-
vided premise and does not require a question
answering system to utilize external knowledge.
More recently, the SWAG dataset (Zellers et al.,
2018) directly targets natural language inference
that leverages commonsense knowledge. SWAG
multiple choice completion questions are con-

structed using a video caption as the ground
truth with incorrect counterfactuals created using
adversarially-filtered generations from an LSTM
language model. State-of-the-art models for natu-
ral language inference have rapidly improved and
approach human performance, which leaves lit-
tle room for continued improvement on current
benchmarks.

Generation of adversarial examples has also
been used to increase the robustness of NLP sys-
tems as part of the Build it, Break It, The Lan-
guage Edition Workshop (Ettinger et al., 2017).
In this workshop, builders designed systems for
Sentiment Analysis and Question Answer Driven
Semantic Role Labeling tasks and were evaluated
on the accuracy of their models on adversarial
test cases designed by breakers. Whereas Build
It Break It adversarial generation required sub-
missions to match the format of a starter dataset
and offered limited adversarial access to the target
NLP systems, the CODAH construction procedure
allows for entirely new questions and provide ad-
versaries with a target model throughout the sub-
mission process, allowing workers to experiment.

3 The CODAH Dataset

Our dataset contains multiple choice sentence
completion questions in the format of the SWAG
dataset. Examples of the questions are shown in
Table 1. Each question consists of a prompt sen-
tence, the subject of the subsequent sentence, and
four candidate completions, such that exactly one
candidate completion is consistent with common
sense. This task definition allows for easy eval-
uation by many state-of-the-art models, such as
BERT and GPT-1, and enables us to utilize the
large SWAG dataset for pre-training. The full
dataset is available at https://github.com/
Websail-NU/CODAH.

3.1 Question Production

We collected questions via a Web-based system.
Participants were asked to compose a complete
question, including the prompt, subject, and the
four candidate completions. They would then be
presented with the response of a pre-trained BERT
model to their question. The pre-trained model
consisted of a BERT-base model fine-tuned on the
SWAG training set for 3 epochs with a batch size
of 8. This model achieved 80.68% accuracy on
the SWAG validation set. The ability to obtain
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Category Description Example

Idioms

Including phrases whose
meaning cannot be readily

interpreted from the meaning
of constituent parts

A man on his first date wanted to break the ice. He
drank all of his water.
threw the ice at the wall.
looked at the menu.
made a corny joke.

Negation Including negators to dictate
the meaning of the sentence

The man’s rebuttal was clearly not nonsensical. The rebuttal
has nothing to do with sense.
had some reasons associated with it.
did not make any sense.
was funny.

Polysemy
Testing the understanding of

multiple meanings of a
single word

An architect retrieves his compass. He
computes the area of a circle
explores the open sea
draws building dimensions on a canvas
uses his compass to find the north cardinal direction

Reference
Requiring understanding of
reference to one of multiple

subjects

Rose is walking the dog while Joseph cooks dinner. Rose
is following a new recipe.
enjoys the fresh air.
wags her tail with joy.
cuts tomatoes for the soup.

Quantitative
Reasoning

Involving basic arithmetic
calculations or comparisons

A woman is walking two dogs and carrying a cat on her way to
her car. She

puts all three animals in the back seat before driving off.
puts all four animals in the back seat before driving off.
puts both animals in the back seat before driving off.
puts all nine animals in the back seat before driving off.

Table 1: Question categories, descriptions, and examples

real-time feedback about the model’s answers al-
lowed participants to explore areas of weakness
and design challenging questions. All submitted
questions were added to the dataset, whether they
fooled the baseline model or not.

Annotators were provided explicit incentives to
produce questions that the model answered incor-
rectly. The vast majority of submissions were con-
tributed by university computer science students,
who were familiar with neural network question
answering systems. Students were rewarded with
extra credit points for submitting valid questions
that fooled the baseline model. Further, students
could earn an equal number of extra credit points
for questions that fooled the model when evalu-
ated in cross-validation, after fine-tuning on other
submitted questions. This protocol was designed
to encourage the creation of challenging and valid
commonsense questions that are also free from
stylistic annotation artifacts or redundancy, which
would reduce the difficulty of the questions after
fine-tuning and reduce the returns on their submis-
sions. A small portion of the dataset was submit-
ted anonymously by other individuals.

We received a total of 4,149 raw questions,
which were read and cleaned by four annotators
(the authors). During cleaning, the answer choice
order was shuffled and model’s output answer

were hidden from the annotator. We removed sub-
missions with multiple or no distinctive common-
sense answers, spelling or grammatical errors, in-
correct answers, as well as duplicate submissions.
The remaining questions were judged natural and
easily answerable from common sense with min-
imal ambiguity and dispute. The cleaning opera-
tion produced our current 2,801-question dataset.

Our 2,801-question dataset contains submis-
sions from 116 named participants. The median,
mean and standard deviation of the number of
valid questions submitted by named individuals
are 20.00, 21.38, and 13.86. The most prolific con-
tributor submitted 86 questions. Anonymous par-
ticipants contributed 321 questions, which is 11%
of the final dataset.

4 Experiments

We evaluate the dataset on state-of-the-art neu-
ral question answering systems built on the BERT
and GPT-1 architecture and provide multiple base-
lines. The models and experiment setups are
discussed below. We also analyze the questions
to identify distinctive categories of commonsense
reasoning that provide a finer-grained understand-
ing of model performances. In addition, the ab-
lation experiments on dataset size and the use of
fine-tuning on SWAG data allow us to further un-
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derstand the impact of the relatively small size of
CODAH.

4.1 Question Categorization

One of our goals is to analyze how system and
human performance varies across questions in
CODAH that employ different types of common
sense. Therefore, we identified a small number of
unambiguous categories of common sense, such
as questions involving quantitative reasoning or
negation. These categories only apply to a portion
of the questions in our dataset, but have the ad-
vantage of being unambiguous and in many cases
predictive of low system performance. In earlier
attempts to devise categories to cover all ques-
tions, similar to analysis performed for textual en-
tailment (LoBue and Yates, 2011), we found the
inter-annotator agreement on such complete cat-
egorizations to be substantially lower (at <0.4),
even after iterating on category definitions.

We manually inspected all questions in our
dataset and annotated each with one or more cate-
gory labels, representing all types of reasoning re-
quired to identify the correct answer and eliminate
incorrect ones. The descriptions and examples of
these categories are found in Table 1. Four human
annotators (the authors) categorized the questions,
and we calculated a Feiss’ Kappa score of 0.63 be-
tween the annotators over an additional 50 ques-
tions. Table 2 shows the distribution of labels over
the entire dataset.

Category Count Percentage
Idioms 249 8.8
Reference 133 4.8
Polysemy 108 3.9
Negation 116 4.1
Quantitative 87 3.1
Other 2108 75.3
Total 2801

Table 2: Distribution of question categories.

4.2 Models

4.2.1 BERT
We evaluate a pre-trained BERT-Large imple-
mented in PyTorch on the CODAH dataset. This
model consists of a 24-layer network, with 1,024
hidden units per layer, 16-heads and a total of
340M parameters. For fine-tuning, settings were
determined as described in Devlin et al. (2018): a
batch size of 16, learning rate of 2e-5, and linear

learning rate decay over 3 epochs (with a learning
rate warmup over the first 10% of training).

4.2.2 OpenAI GPT-1
We also evaluate a pre-trained GPT model im-
plemented in PyTorch. As described in Radford
et al. (2018), this model consists of a 12-layer
decoder transformer with 12 attention heads and
3,072-dimensional hidden states. Our fine-tuning
configuration is the same as described in the orig-
inal paper: a batch size of 32, learning rate of
6.25e-5, linear learning rate decay over 3 epochs
(with warmup over 0.2% of training), and λ of
0.5 (where λ is a tuning coefficient that balances
language-modeling loss and multiple-choice loss).

4.3 Model Evaluation

We evaluate the models on several different train
and test configurations described below. The CO-
DAH dataset is evaluated in 5-fold stratified cross-
validation which balances the distribution of ques-
tion categories in each fold.

• CODAH: Cross-validation fine-tuning on the
CODAH dataset. The CODAH 80% experi-
ment represents the standard cross-validation
setting on the full dataset, training on 80% of
the data in each fold and evaluating on the re-
maining 20%. The 60%, 40% and 20% abla-
tion experiments are trained on a smaller por-
tion of the CODAH dataset for each fold, but
are evaluated in on the same test set which
consists of 20% of the full dataset. The ques-
tion categories are balanced in both training
set and test set. This makes the results from
the experiments more comparable with each
other. Three trials are conducted for all set-
tings; the mean and standard deviation of the
model accuracy are reported in Table 3.

• SWAG+CODAH: Fine-tuned on SWAG
first, then fine-tuned again in cross-validation
on CODAH. Ablation experiments are con-
ducted in the same way as in the CODAH-
only setting above, with the same dataset
splits for training. The mean and standard de-
viation of the three trials are reported in Table
3.

• SWAG only: Fine-tuned on SWAG and eval-
uated on CODAH. Only one trial is con-
ducted.
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• Answer only: Cross-validation fine-tuning
on the full CODAH dataset with the ques-
tions left blank (in both training and testing).
Only one trial is conducted.

Results for the above configurations are shown
in Table 3. As a baseline, we evaluate both models
on the full SWAG training and validation sets, pro-
viding an accuracy of 83.7% on BERT and 80.2%
on GPT. To adjust for the difference in size be-
tween our dataset and SWAG, we also train the
models on a sample of 2,241 SWAG questions
(the size of the training set in each of CODAH’s
cross-validation folds) and evaluate them on the
full SWAG validation set. This produces an accu-
racy of 28.7% for BERT and 63.6% for GPT.

Experiment BERT % GPT-1 %
CODAH 80% 49.6 (5.21) 62.4 (0.66)
CODAH 60% 42.8 (13.6) 60.8 (0.50)
CODAH 40% 42.3 (2.23) 57.1 (0.48)
CODAH 20% 39.6 (7.19) 49.5 (0.59)
SWAG+CODAH 80% 64.5 (3.46) 65.3 (0.55)
SWAG+CODAH 60% 67.3 (0.62) 63.6 (0.85)
SWAG+CODAH 40% 64.8 (0.62) 60.6 (0.37)
SWAG+CODAH 20% 60.3 (2.98) 56.3 (0.51)
SWAG only 42.1 38.1
CODAH (Answer only) 28.4 53.9

Table 3: Accuracy of BERT and GPT on different
training settings when tested on CODAH. Numbers in
parentheses represent the standard deviation.

4.4 Human Evaluation

For each category, we measure the accuracy
of the BERT and GPT models trained on
SWAG+CODAH. We also measure human accu-
racy as a baseline. Human accuracy was calcu-
lated as the mean accuracy of three human an-
notators, covering 707 dataset questions in total.
Human annotators answered 95.3% of questions
correctly, presenting a 7-fold reduction in error
compared to the fine-turned BERT model. Inter-
annotator agreement was computed over a set of
50 additional questions with a pairwise average
Cohen-Kappa score of 0.89, which is interpreted
as almost perfect agreement by some guidelines.
Table 4 displays the accuracy of the human anno-
tators and neural networks on each category.

5 Discussion

Based on our experiments, we find that model
performance on CODAH is substantially lower

Category Human % BERT % GPT-1 %
Idioms 97.5 69.5 (4.44) 72.6 (1.33)
Reference 100 63.1 (4.08) 71.0 (2.04)
Polysemy 91.7 62.9 (4.93) 55.2 (3.40)
Negation 100 60.0 (5.37) 60.5 (2.14)
Quantitative 97.6 51.5 (1.82) 49.5 (3.80)
Other 94.9 64.9 (4.33) 65.7 (0.54)
Total 95.3 64.5 (3.46) 65.3 (0.55)

Table 4: Class-wise and overall accuracy of human
annotators and neural network models, sorted by BERT
performance on the proposed categories. Numbers in
parentheses represent the standard deviation.

than those seen on SWAG, which has seen mod-
els achieve over 85% accuracy. We observed a
decrease of 19.2% on BERT and 14.9% on the
OpenAI GPT-1 models between the accuracy on
SWAG and the accuracy on our SWAG+CODAH
setting. This is especially significant since human
error on CODAH is 4.7%—less than a third of the
15% expert error on the SWAG dataset. This sug-
gests that CODAH is challenging to our QA sys-
tems because of the difficult commonsense reason-
ing involved, and not because of ambiguity or in-
tractability in the dataset.

5.1 Question Categories

The logic categories including Quantitative and
Negation are especially difficult for our models,
seeing some of the lowest accuracies from both
models, in contrast to the 99.0% weighted aver-
age human accuracy on these categories. Surpris-
ingly, both models performed very well on the Id-
ioms category, suggesting that our neural systems
may be capable of learning idioms just like other
semantic knowledge. Further identification of ad-
ditional distinctive and interesting categories that
cover the entire dataset may prove very useful in
directing our efforts towards aspects of our com-
monsense QA systems that require the most atten-
tion.

5.2 Annotation Artifacts

Annotation artifacts are known to exist in many
datasets and may be exploited by supervised mod-
els to achieve inflated performances (Gururangan
et al., 2018). In CODAH, we did not explicitly fil-
ter questions with artifacts or try to detect them.
We instead incentivize the question authors, who
have some knowledge of how the learners work, to
avoid introducing noticeable artifacts in their sub-
missions, as explained in Section 3.1. Our results

67



show that artifacts do not provide sufficient signal
for state-of-the-art neural models to come close to
human-level accuracy on our data.

5.3 Answer-Only Baseline
In the answer-only experiment (where questions
are omitted during training and testing), we found
that BERT achieves 28.4% accuracy, only slightly
above random, whereas GPT-1 achieves 53.9% ac-
curacy, which is the equivalent of narrowing four
random options down to two. By comparing this
to the CODAH experiment setting, we can inter-
pret these results as an indication of the extent to
which the signal was in the answers. While this
could be due to artifacts, such as the right answer
commonly being of a certain length, we also ob-
served that in many cases, distinguishing between
reasonable and ridiculous answers (without seeing
the premise) is a part of commonsense reasoning.
For example, a commonsense reasoner would be
able to rule out the choice “picks up his phone
and calls his mom to tell her he doesn’t have his
phone” without seeing the premise, as a contradic-
tion is contained in the answer. Similarly, “kicks
a field goal, celebrates by transforming into a fish,
and then quits football” is unlikely to be veracious
regardless of the hidden subject.

5.4 Dataset Size
Our experiments show that CODAH forms a chal-
lenging extension to the existing SWAG dataset.
Even when we train a system to perform near
human-level on SWAG, and then fine-tune on CO-
DAH, the system still struggles to answer CO-
DAH questions correctly. However, CODAH is
also smaller than SWAG. Our results do not sug-
gest that CODAH questions are more difficult
than SWAG questions if dataset size is equalized.
When we restrict to a subset of SWAG of the same
number of questions as CODAH, we find that
SWAG has comparable accuracy for GPT (63.6%
on reduced-size SWAG vs 62.4% for CODAH)
and much lower accuracy for BERT (28.7% vs
49.6%). This shows that CODAH questions are
distinct from and complementary to SWAG ques-
tions, but taken in isolation are not necessarily
more challenging.

Our results suggest two recommendations for
dataset construction which we hope to evaluate
in future work. The first is, rather than using a
single protocol to collect one monolithic dataset,
the community may be able to obtain more chal-

lenging data by aggregating a variety of distinct,
independently-gathered datasets that follow a sim-
ilar format. For example, pre-training on SWAG
and evaluating on CODAH forms a more challeng-
ing benchmark than training and testing on SWAG
alone. Secondly, if we wish to use our adversar-
ial collection approach to grow CODAH to tens of
thousands of examples, we should update our sys-
tem as new data arrives, so that contributors are
able to tune their questions to remain difficult for
the strongest, most up-to-date version of the sys-
tem. Under such a data collection scheme, we may
need to increase the reward for fooling the model
in cross-validation compared to that for fooling the
current model (whereas, these two rewards were
equal in CODAH), in order to disincentivize ad-
versarial attacks that manipulate the current model
to make it easy to fool on subsequent questions.

Our experiments on different sizes of CO-
DAH produce very different results for BERT
and GPT. Unsurprisingly, GPT performance im-
proves with more data on both the CODAH-only
and SWAG+CODAH experiments, with the rate
of improvement slowing down as data size in-
creases. However, the BERT results are more chal-
lenging to interpret. On the CODAH-only set-
ting, BERT appears to improve with data size, but
the extremely high variance prevents us from be-
ing certain of any trend in BERT’s performance
on this setting. The variance is lower in the
SWAG+CODAH setting and accuracy increases
as data size goes from 20% to 60%, but ac-
curacy decreases between SWAG+CODAH-60%
and SWAG+CODAH-80% settings (although the
SWAG+CODAH-80% setting has high variance
and the true mean may be higher). The incon-
sistency in improvement with more CODAH data
after training on SWAG+CODAH-60% for BERT
and the reduced rate of performance gain for GPT
suggest that it is unclear whether the performance
of all models will improve dramatically with an
even larger CODAH dataset size.

6 Conclusion

We present CODAH, a commonsense question an-
swering dataset that is adversarially-constructed
by allowing humans to view feedback from a
pre-trained model and use this information to de-
sign challenging commonsense questions. Our
experimental results show that CODAH ques-
tions present a complementary extension of the
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SWAG dataset, testing additional modes of com-
mon sense.

We identify specific categories of commonsense
questions to determine types of reasoning that are
more challenging for existing models. In partic-
ular, we note that Quantitative questions have low
accuracy for both BERT and GPT. A more detailed
analysis into why models struggle to reason about
numbers as well as development of more detailed
categories of commonsense reasoning are items
for future work.
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Abstract

Nearest neighbors in word embedding mod-
els are commonly observed to be semantically
similar, but the relations between them can
vary greatly. We investigate the extent to
which word embedding models preserve syn-
tactic interchangeability, as reflected by dis-
tances between word vectors, and the effect
of hyper-parameters—context window size in
particular. We use part of speech (POS) as a
proxy for syntactic interchangeability, as gen-
erally speaking, words with the same POS are
syntactically valid in the same contexts. We
also investigate the relationship between in-
terchangeability and similarity as judged by
commonly-used word similarity benchmarks,
and correlate the result with the performance
of word embedding models on these bench-
marks. Our results will inform future research
and applications in the selection of word em-
bedding model, suggesting a principle for an
appropriate selection of the context window
size parameter depending on the use-case.

1 Introduction

Word embedding algorithms (Mikolov et al., 2013;
Pennington et al., 2014; Levy et al., 2015) attempt
to capture the semantic space of words in a metric
space of real-valued vectors. While it is common
knowledge that the hyper-parameters used to train
these models affects the semantic properties of the
distances arising from them (Bansal et al., 2014;
Lin et al., 2015; Goldberg, 2016; Lison and Kutu-
zov, 2017), and indeed, it has been shown that they
capture many different semantic relations (Yang
and Powers, 2006; Agirre et al., 2009), little has
been done to quantify the effect of model hyper-
parameters on output tendencies. Here we begin
to answer this question, evaluating fastText (Bo-
janowski et al., 2017) on benchmarks designed to
measure how well a model captures the degree of
similarity between words (§2).

In our experiments, we investigate how syntactic
interchangeability of words, represented by their
part of speech (§3), is expressed in word embed-
ding models and evaluation benchmarks.

Based on the distributional hypothesis (Harris,
1954), word embeddings are learned from text by
first extracting co-occurrences—finding, for each
word token, all words within a context window
around it, whose size (or maximal size) is a hyper-
parameter of the training algorithm. Word vectors
are then learned by predicting these co-occurrences
or factorizing a co-occurrence matrix.

We discover a clear relationship between the con-
text window size hyper-parameter and the perfor-
mance of a word embedding model in estimating
the similarity between words. To try to explain
this relationship, we quantify how syntactic inter-
changeability is reflected in each benchmark, and
its relation to the context window size. Our experi-
ments reveal that context window size is negatively
correlated with the number of same-POS words
among the nearest neighbors of words, but that this
fact is not enough to explain the complex interac-
tion between context window size and performance
on word similarity benchmarks.1

2 Word Similarity and Relatedness

Many benchmarks have been proposed for the eval-
uation of unsupervised word representations. In
general, they can be divided into intrinsic and ex-
trinsic evaluation methods (Schnabel et al., 2015;
Chiu et al., 2016; Jastrzebski et al., 2017; Alshargi
et al., 2018; Bakarov, 2018). While most datasets
report the semantic similarity between words, many
datasets actually capture semantic relatedness (Hill
et al., 2015; Avraham and Goldberg, 2016), or more
complex relations such as analogy or the ability to

1Our code and data are available at https://github.
com/danielhers/interchangeability.
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(a) CBOW (b) SGNS

Figure 1: Performance of the CBOW (a) and SGNS (b) algorithms on each benchmark, for each window size,
measured by Spearman correlation between the benchmark score and the word embedding cosine similarity.

categorize words based on the distributed represen-
tation encoded in word embeddings. We focus on
similarity and relatedness, and evaluate word em-
bedding models on several common benchmarks.

2.1 Data

We learn word embeddings from English
Wikipedia, using a dump from May 1, 2017.2 The
data is preprocessed using a publicly available
preprocessing script,3 extracting text, removing
nonalphanumeric characters, converting digits to
text, and lowercasing the text.

Benchmarks. We use the following benchmarks:
WordSim-353 (Finkelstein et al., 2001) and its par-
tition into WordSim-353-Sim (Agirre et al., 2009)
and WordSim-353-Rel (Zesch et al., 2008), Sim-
Lex999 (Hill et al., 2015), Rare Words (RW; Lu-
ong et al., 2013), MEN (Bruni et al., 2012), MTurk-
287 (Radinsky et al., 2011), MTurk-771 (Halawi
et al., 2012), and SimVerb-3500 (Gerz et al., 2016).
See Table 1 for the size of each benchmark.

2.2 Hyper-parameters

We use fastText (Bojanowski et al., 2017) to learn
300-dimensional word embedding models, using
both the CBOW (continuous bag-of-words) and
SGNS (skip-gram with negative sampling) algo-
rithms (Mikolov et al., 2013). The context window
size varies from 1 up to 15. We include only all

2https://dumps.wikimedia.org/enwiki
3http://mattmahoney.net/dc/textdata.

html

words occurring 500 times or more (including func-
tion words), to avoid very rare words or uncommon
spelling errors from skewing the results. All other
hyper-parameters are set to their default values.

2.3 Evaluation on Benchmarks

To investigate the effect of window size on a
model’s performance on the benchmarks, we eval-
uate each model on each benchmark, using cosine
similarity as the model’s prediction for each pair.
The performance is measured by Spearman corre-
lation between the benchmark score and the word
embedding cosine similarity (Levy et al., 2015).

Results. Figure 1 displays the performance of the
CBOW and SGNS algorithms on each benchmark,
with window sizes 1 to 15. Apart from a small dip
between windows 1 and 2 for CBOW, the perfor-
mance is either nearly constant, or changes nearly
monotonically with window size in each setting.

The relative improvement (or deterioration), in
percents, with the increase of window size from 2
to 15, are shown in Table 1 (∆win = 2 → 15(%)).
Interestingly, CBOW exhibits a positive correlation
of window size with model’s performance for all
benchmarks but SimLex999, while performance
for SGNS barely changes with window size, except
for SimLex999 and SimVerb3500, where we see a
strong negative correlation.

Discussion. In SimLex999 and in SimVerb3500,
the words in each pair have the same part of speech
by design (in particular, SimVerb3500 only con-
tains verbs). Hypothesizing that the effect of win-
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∆win = 2 → 15(%) # Related # Unrelated

Benchmark Size CBOW SGNS All Same-POS All Same-POS p-value

WordSim353 353 24 -3 122 107 53 40 0.038

WordSim353-S 203 13 -6 60 53 53 40 0.061

WordSim353-R 252 42 4 104 89 39 31 0.26

SimLex999 999 -1 -20 234 199 334 295 0.897

RW 2034 37 -12 944 555 262 144 0.149

MEN 3000 9 -2 791 564 781 439 3 · 10−10

MTurk287 287 8 -5 49 39 119 68 0.004

MTurk771 771 12 -5 204 153 200 146 0.365

SimVerb3500 3500 6 -30 633 265 1217 566 0.974

Table 1: Analysis of interchangeability (by same-POS) in word similarity and relatedness benchmarks. ∆win =
2 → 15(%) is the relative change, in percents, of the model’s performance (by Spearman correlation) when going
from window size 2 to window size 15, for the CBOW and SGNS algorithms (§2.3). Related and Unrelated are the
top and bottom 30% of the pairs, by benchmark score, respectively. P-value is calculated using the hypergeometric
test, comparing the enrichment of interchangeable pairs within related pairs, with a background of all related and
unrelated pairs (§3.1).

dow size is related to the model’s implicitly learned
concept of part of speech, we investigate this idea
in the next section.

3 Syntactic Interchangeability

A word’s part of speech (also known as syntac-
tic category) is determined by syntactic distribu-
tion, and conveys information about how a word
functions in the sentence (Carnie, 2002). We can
generally substitute each word in a sentence with
various words that are of the same part of speech,
but not words that are of different parts of speech.
While the same syntactic function can sometimes
be fulfilled by words of various parts of speech
or possibly longer phrases (such as adverbs and
prepositional phrases, or multi-word expressions),
part of speech is nonetheless a very good proxy for
syntactic distribution (Mohammad and Pedersen,
2004).

Related to our work, Vulić et al. (2017) intro-
duced a framework for automatic selection of spe-
cific context configurations for word embedding
models per part of speech, improving performance
on the SimLex999 benchmark. We take a different
approach, investigating existing word embedding

models and the way in which part of speech is
reflected in them.

We define two words to be (syntactically) inter-
changeable if they share the same part of speech.
We quantify interchangeability as a property of
a word embedding model, as the proportion of
words with the same part of speech within the
list of nearest neighbors (that is, the most simi-
lar words according to the model) for each word
in a pre-determined vocabulary. The higher the
interchangeability ratio is, the more importance we
assume the model implicitly places on interchange-
ability for the calculation of word similarity.

3.1 Interchangeability Analysis in Word
Similarity Benchmarks

While all benchmarks we experiment with assign a
score along a scale to each pair (calculated from hu-
man scoring), for our experiment we would like to
use a binary annotation of whether a pair is related
or not. For this purpose, we divide the whole range
of scores, for each benchmark, to three parts: the
lowest 30% of the range between the lowest and
highest scores is considered “unrelated”, the top
30% as “related”, and the middle 40% are ignored.
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Interchangeability enrichment. Given the bi-
nary classification obtained from the human-
annotated scores for each benchmark, we can find
the enrichment of interchangeable pairs among
related pairs. We use spaCy 2.0.114 (with the
en_core_web_sm model) to annotate the POS
for each word in each benchmark pair (tagging
them in isolation to select the most probable POS),
and look at the set of same-POS pairs in the bench-
mark. For each of the benchmarks, we calculate a
p-value using the hypergeometric test, comparing
the enrichment of same-POS pairs within related
pairs, with a background distribution of all related
and unrelated pairs (ignoring ones in the middle
40% range of scores).

Results. Table 1 shows the enrichment of in-
terchangeable pairs among related and unrelated
pairs for each benchmark. For WordSim353, MEN
and MTurk287, the set of related pairs contains
significantly more interchangeable pairs than the
background set (p < 0.05),5 suggesting that these
benchmarks are particularly sensitive to POS.

3.2 Nearest Neighbor Analysis

To try and relate the results from §2.3 and §3.1,
we measure the relation between window size and
interchangeability by analyzing nearest neighbors
in word embedding models. In our experiment, the
nearest neighbors of a word are the words with the
highest cosine similarity between their vectors.

Collecting pivots. We create a word list for each
of the three most common parts of speech: nouns,
adjectives and verbs. For each POS, we list all
lemmas of all synsets of that POS from WordNet
(Miller, 1998). To “purify” the lists and avoid noise
from homonyms, we remove from each list any
lemma that also belongs to a synset from another
POS. As a further cleaning step, we use spaCy to
tag each word, and only keep words for which the
spaCy POS agrees with the WordNet POS. Without
context, spaCy will likely choose the most common
POS based on its training corpus, which is different
from WordNet, increasing the robustness.

This process results in 6407 uniquely-noun, 2784
uniquely-adjective and 1460 uniquely-verb words,
which we refer to as our pivot lists.

4https://spacy.io
5The fact that not all pairs in SimLex999 and SimVerb3500

are judged as interchangeable in our experiment is due to
ambiguity: for some words, spaCy selected a POS which is
not the one intended when constructing the benchmark.

Algo- NOUN ADJ VERB

rithm 1 15 r 1 15 r 1 15 r

CBOW 79 70 -0.96 72 48 -0.93 55 41 -0.91

SGNS 78 66 -0.95 66 39 -0.94 51 41 -0.92

Table 2: Percentage of interchangeable neighbors per
pivot POS for the smallest (1) and largest (15) win-
dows in our experiment, for the CBOW and SGNS algo-
rithms. The number of interchangeable neighbors has
a strong negative Pearson correlation (r) with window
size for windows 1 to 15 (p < 0.01, two-tailed t-test).

Calculating nearest neighbor POS. We find
the 100 nearest neighbors for each word in our
pivot lists, according to each fastText model with
windows 1 through 15. We filter these neighbors
to keep only words in the spaCy vocabulary, and
inspect the remaining top 10. Again using spaCy,
we tag the POS of each neighbor in the result. We
subsequently calculate a histogram, for each POS
x, of its neighbor-POS y, that is, the POS assigned
to the neighbors of words with POS x.

Results. Table 2 shows the results of this experi-
ment. For nouns, adjectives and verbs, we consis-
tently see a decrease in the number of same-POS
neighbors when we increase the window size, rela-
tive to the total number of nearest neighbors.

Figure 2 shows the the absolute number of neigh-
bors per algorithm, pivot POS and neighbor POS,
for all window sizes we experimented with. The
number of nearest neighbors of the same POS is
consistently decreasing with window size, while
the number of nearest neighbors of other POS are
increasing or unaffected.

Discussion. The results clearly suggest that for
both CBOW and SGNS, models with a larger win-
dow size are less likely to consider words of the
same POS as strongly related. That is, syntactic
interchangeability is negatively correlated with win-
dow size. This is in sharp contrast to our results
from §2.3, where performance for CBOW on al-
most all benchmarks (among them WordSim353,
MEN and MTurk287, for which we showed that
syntactic interchangeability plays a role) consis-
tently improved with window size. We also find
the conclusion to contradict the impression regard-
ing SGNS, where SimLex999 and SimVerb3500
showed worse performance for larger windows: if
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(a) CBOW (b) SGNS

Figure 2: Number of neighbor per POS for each pivot POS and for each window size, for the CBOW (a) and
SGNS (b) algorithms. The number of same-POS neighbors is consistently decreasing with window size.

POS should not play a role in these benchmarks,
then models with a bias toward syntactic inter-
changeability (i.e., models with lower windows)
should perform worse on these benchmarks.

4 Conclusion

We investigated the effect of the context window
size hyper-parameter on the performance on word
similarity benchmarks. We showed that (1) increas-
ing the window size results in a lower probabil-
ity of interchangeable nearest neighbors for both
CBOW and SGNS algorithms; (2) in some widely
used benchmarks, syntactic interchangeability in-
creases the probability of similarity or relatedness;
(3) increasing the window size typically improves
performance in predicting similarity or relatedness
for CBOW, but has little impact on SGNS.

SimLex999 and SimVerb3500 proved to be ex-
ceptions to both (2) and (3), since all pairs in them
are interchangeable by construction, but on them,
increasing the window size has no effect for CBOW
and negative impact for SGNS.

This contradiction is presented as a challenge to
the community, and could perhaps be explained by
other factors affected by window size.

Our investigation focused on a specific relation
between words, namely whether they share a part
of speech. Many other relations are of interest to
the NLP community, such as syntactic dependency
relations, and semantic relations like hypernymy
and synonymy. Furthermore, a similar analysis
could be applied to other word embedding hyper-
parameters, such as the vector dimension. While
we used a constant vector dimension of 300 in
our experiments, it is an open question whether
models with different vector dimensions differ with
respect to their tendency to capture different word
relations. Future work will extend our analysis to
other relations and hyper-parameters.
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Abstract

This paper evaluates morphology-based em-
beddings for English and Russian languages.
Despite the interest and introduction of sev-
eral morphology-based word embedding mod-
els in the past and acclaimed performance im-
provements on word similarity and language
modeling tasks, in our experiments, we did
not observe any stable preference over two of
our baseline models - SkipGram and FastText.
The performance exhibited by morphological
embeddings is the average of the two baselines
mentioned above.

1 Introduction

One of the most significant shifts in the area of nat-
ural language processing is to the practical use of
distributed word representations. Collobert et al.
(2011) showed that a neural model could achieve
close to state-of-the-art results in Part of Speech
(POS) tagging and chunking by relying almost
only on word embeddings learned with a language
model. In modern language processing architec-
tures, high quality pre-trained representations of
words are one of the major factors of the resulting
model performance.

Although word embeddings became ubiqui-
tous, there is no single benchmark on evaluating
their quality (Bakarov, 2018), and popular intrin-
sic evaluation techniques are subject to criticism
(Gladkova and Drozd, 2016). Researchers very of-
ten rely on intrinsic evaluation, such as semantic
similarity or analogy tasks. While intrinsic evalu-
ations are simple to understand and conduct, they
do not necessarily imply the quality of embed-
dings for all possible tasks (Gladkova et al., 2016).

In this paper, we turn to the evaluation of mor-
phological embeddings for English and Russian
languages. Over the last decade, many approaches
tried to include subword information into word

representations. Such approaches involve addi-
tional techniques that perform segmentation of a
word into morphemes (Arefyev N.V., 2018; Virpi-
oja et al., 2013). The presumption is that we can
potentially increase the quality of distributional
representations if we incorporate these segmenta-
tions into the language model (LM).

Several approaches that include morphology
into word embeddings were proposed, but the
evaluation often does not compare proposed em-
bedding methodologies with the most popular em-
bedding vectors - Word2Vec, FastText, Glove. In
this paper, we aim at answering the question of
whether morphology-based embeddings can be
useful, especially for languages with rich mor-
phology (such as Russian). Our contribution is the
following:

1. We evaluate simple SkipGram-based (SG-
based) morphological embedding models
with new intrinsic evaluation BATS dataset
(Gladkova et al., 2016)

2. We compare relative gain of using morpho-
logical embeddings against Word2Vec and
FastText for English and Russian languages

3. We test morphological embeddings on sev-
eral downstream tasks other than language
modeling, i.e., mapping embedding spaces,
POS tagging, and chunking

The rest of the paper is organized as fol-
lows. Section 2 contains an overview of exist-
ing approaches for morphological embeddings and
methods of their evaluation. Section 3 explains
embedding models that we have tested. Section
4 explains our evaluation approaches. Section 5
describes results.
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2 Related work

The idea to include subword information into
word representation is not new. The question is
how does one obtain morphological segmentation
of words. Very often, researchers rely on the unsu-
pervised morphology mining tool Morfessor (Vir-
pioja et al., 2013).

Many approaches use simple composition, e.g.,
sum, of morpheme vectors to define a word em-
bedding. Botha and Blunsom (2014) were one
of the first to try this approach. They showed a
considerable drop in perplexity of log-bilinear lan-
guage model and also tested their model on word
similarity and downstream translation task. The
translation task was tested against an n-gram lan-
guage model. Similarly, Qiu et al. (2014) tweak
CBOW model so that besides central word it can
predict target morphemes in this word. Final em-
beddings of morphemes are summed together into
the word embedding. They test vectors on analog-
ical reasoning and word similarity, showing that
incorporating morphemes improves semantic sim-
ilarity. El-kishky et al. (2018) develop their own
morpheme segmentation algorithm and test the re-
sulting embeddings on the LM task with SGNS
objective. Their method achieved lower perplex-
ity than FastText and SG.

A slightly different approach was taken by Cot-
terell and Schütze (2015) who optimized a log-
bilinear LM model with a multitask objective,
where the second objective is to guess the next
morphological tag. They test resulting vector
similarity against string distance (morphologically
close words have similar substrings) and find that
their vectors surpass Word2Vec by a large margin.

Bhatia et al. (2016) construct a hierarchical
graphical model that incorporates word morphol-
ogy to predict the next word and then optimize the
variational bound. They compare their model with
Word2Vec and the one described by Botha and
Blunsom (2014). They found that their method
improves results on word similarity but is inferior
to approach by Botha and Blunsom (2014) in POS
tagging.

Another group of methods tries to incorporate
arbitrary morphological information into embed-
ding model. Avraham and Goldberg (2017) ob-
serve that it is impossible to achieve both high
semantic and syntactic similarity on the Hebrew
language. Instead of morphemes, they use other
linguistic tags for the word, i.e., lemma, the

word itself, and morphological tag. Chaudhary
et al. (2018) took the next level of a similar ap-
proach. Besides including morphological tags,
they include morphemes and character n-grams,
and study the possibility of embedding transfer
from Turkish to Uighur and from Hindi to Ben-
gali. They test the result on NER and monolingual
machine translation.

Another approach that deserves being men-
tioned here is FastText by Bojanowski et al.
(2017). They do not use morphemes explicitly, but
instead rely on subword character n-grams, that
store morphological information implicitly. This
method achieves high scores on both semantic and
syntactic similarities, and by far is the most popu-
lar word embedding model that also captures word
morphology.

There are also approaches that investigate the
impact of more complex models like RNN and
LSTM. Luong et al. (2013) created a hierarchical
language model that uses RNN to combine mor-
phemes of a word to obtain a word representa-
tion. Their model performed well on word sim-
ilarity task. Similarly, Cao and Rei (2016) cre-
ate Char2Vec BiLSTM for embedding words and
train a language model with SG objective. Their
model excels at the syntactic similarity.

3 Embedding techniques

In this work, we test three embedding models on
English and Russian languages: SkipGram, Fast-
Text, and MorphGram. The latter one is similar
to FastText with the only difference that instead
of character n-grams we model word morphemes.
This approach was often used in previous research.

All three models are trained using the negative
sampling objective

1

T

T∑

t=1

∑

−m≤j≤m,j 6=0

log σ(s(wj , wt))+

k∑

i=1

Ew∼Pn(wt) [log σ(s(w,wt))] (1)

In the case of SG, the similarity function s is the
inner product of corresponding vectors. FastText
and MorphGram are using subword units. We use
the same approach to incorporate subword infor-
mation into the word vector for both models:
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s(wj , wt) =
∑

s∈Swt

vTs vwj

where Swt is the set of word segmentations into
n-grams or morphemes. We use Gensim1 as the
implementation for all models (Řehůřek and So-
jka, 2010). For MorphGram, we utilize FastText
model and substitute the function that computes
character n-grams for the function that performs
morphological segmentation.

4 Experiments and Evaluation

To understand the effect of using morphemes for
training word embeddings, we performed intrin-
sic and extrinsic evaluations of SG, FastText, and
MorphGram model for two languages - English
and Russian. Russian language, in contrast to En-
glish, is characterized by rich morphology, which
makes this pair of languages a good choice for ex-
ploring the difference in the effect of morphology-
based models.

4.1 Data and Training Details

We used the first 5GB of unpacked English and
Russian Wikipedia dumps2 as training data.

For training both SG and FastText we used
Gensim library, for MorphGram - we adapted
Gensim’s implementation of FastText by break-
ing words into morphemes instead of n-grams,
all other implementation details left unchanged.
Training parameters remain the same as in the
original FastText paper, except the learning rate
was set to 0.05 at the beginning of the training,
and vocabulary size was constrained to 100000
words. Morphemes for English words were gen-
erated with polyglot3, and for Russian - with
seq2seq segmentation tool4.

When reporting our results in tables, we will re-
fer for FastText as FT and MorphGram as Morph.

4.2 Similarity

One of the intrinsic evaluations often used for
word embeddings is a similarity test - given word
pairs with human judgments of similarity degree

1https://radimrehurek.com/gensim
2https://dumps.wikimedia.org/
3https://polyglot.readthedocs.io/en/

latest/index.html
4https://github.com/kpopov94/morpheme_

seq2seq

SG FT Morph

en 0.37 0.35 0.36
ru 0.24 0.19 0.19

Table 1: Correlation between human judgments and
model scores for similarity datasets, Spearman’s ρ.

SG FT Morph

en
Google Semantic 65.34 48.75 57.52
Google Syntactic 55.88 75.10 61.16

BATS 29.67 33.33 32.71

ru
Translated Semantic 39.11 25.59 34.69
Translated Syntactic 32.71 59.29 43.68

Synthetic 24.52 36.78 27.06

Table 2: Accuracy of models on different analogies
tasks.

for words in each pair, human judgments are com-
pared with model scores—the more is the corre-
lation, the better model “understands” semantic
similarity of words. We used SimLex-999 (Hill
et al., 2015) dataset—the original one for English
and its translated by Leviant and Reichart (2015)
version for Russian, for evaluating trained embed-
dings. Out-of-vocabulary words were excluded
from tests for all models. The results are presented
in Table 1.

We see that SG beats the other two models
on similarity task for both languages, and Mor-
phGram performs almost the same as Fasttext.

4.3 Analogies

Another type of intrinsic evaluations is analo-
gies test, where the model is expected to answer
questions of the form A is to B as C is to D,
D should be predicted. For English, we used
Google analogies dataset introduced by Mikolov
et al. (Mikolov et al., 2013a) and BATS collec-
tion (Gladkova et al., 2016). For Russian, we used
a partial translation5 of Mikolov’s dataset, and a
synthetic dataset by Abdou et al. (2018).

Again, we excluded all out-of-vocabulary
words from tests. We report accuracy for differ-
ent models in Table 2.

Interestingly, MorphGram is between SG and
FastText in semantic categories for both lan-
guages, and between FastText and SG for syntactic
categories for English.

5https://rusvectores.org/static/
testsets/
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SG FT Morph

ru-en 1-nn 56.27 55.58 53.51
ru-en 10-nn 78.96 78.82 77.03

Table 3: Accuracy of supervised mapping from Rus-
sian to English using different models, searching
among first and ten nearest neighbors.

4.4 Mapping Embedding Spaces

Here we introduce a new type of evaluation—it fo-
cuses on a cross-lingual task of mapping two em-
bedding spaces for different languages. The core
idea is to transform embedding spaces such that
after this transformation the vectors of words in
one language appear close to the vectors of their
translations in another language. We were inter-
ested to see if using morphemes has any benefits
to perform this kind of mapping.

We map embeddings using a train seed dictio-
nary (dictionary with word meanings) and state
of the art supervised mapping method by Artetxe
et al. (2018), and calculate the accuracy of the
mapping on the test dictionary. In short, the
essence of this method is to find optimal orthogo-
nal transforms for both embedding spaces to map
them to a shared space based on a seed dictionary,
plus some additional steps such as embeddings
normalization. For each model—SG, FastText,
and MorphGram, we mapped Russian and English
embeddings trained using this model. We used the
original implementation6 for mapping (supervised
option), and ground-truth train/test dictionaries
provided by Facebook for their MUSE7 library.
We report 1-nn and 10-nn accuracy: whether the
correct translation was found as a first nearest
neighbor or among 10 nearest neighbors of a word
in the mapped space. See the results in Table 3.

We observe no positive impact of using Mor-
phGram for mapping word embedding spaces.

4.5 POS Tagging and Chunking

Other tasks where incorporation of morphology
can be crucial are the tasks of POS Tagging and
chunking. We use a simple CNN-based architec-
ture introduced in (Collobert et al., 2011), with
one projection layer, one convolutional layer, and
the final logit layer. The only input features we
use are the embeddings from corresponding mod-

6https://github.com/artetxem/vecmap
7https://github.com/facebookresearch/

MUSE

SG FT Morph

en 0.9824 0.9754 0.9722
ru 0.8817 0.8899 0.8871

Table 4: Accuracy on POS task

SG FT Morph

en 0.8966 0.9034 0.8985
ru 0.8442 0.8548 0.8534

Table 5: Accuracy on Chunk task

els. The English language embeddings are tested
with Conll2000 dataset which contains 8935 train-
ing sentences and 44 unique POS tags. The dataset
for the Russian language contains 49136 sentences
and 458 unique POS tags. Due to time constraint,
we train models only for a fixed number of epochs:
50 for English and 20 for Russian (iterations re-
duced due to a larger training set). The results for
POS and chunking are given in Tables 4 and 5 cor-
respondingly. It is interesting to note that SG em-
beddings perform better for English on POS task,
but for Russian, embeddings that encode more
syntactic information always perform better.

5 Results

In this paper, we compared three word embedding
approaches for English and Russian languages.
The main inquiry was about the relevance of pro-
viding morphological information to word em-
beddings. Experiments showed that morphology-
based embeddings exhibit qualities intermediate
between semantic driven embedding approaches
as SkipGram and character-driven one as FastText.
Morphological embeddings studied here showed
average performance on both semantic and syntac-
tic tests. We also studied the application of mor-
phological embeddings on two downstream tasks:
POS tagging and chunking. For English language,
SG provided the best results for POS, whereas
FastText gave the best result on chunking task.
For Russian, FastText showed better performance
on both tasks. Morphological embeddings, again,
showed average results. We recognize that the dif-
ference in the results on downstream task can be
considered marginal. We also did not observe im-
provements from morphological embeddings on
word similarity dataset compared to other models.
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Abstract

Contextualized word embeddings derived
from pre-trained language models (LMs) show
significant improvements on downstream NLP
tasks. Pre-training on domain-specific cor-
pora, such as biomedical articles, further im-
proves their performance. In this paper,
we conduct probing experiments to determine
what additional information is carried intrinsi-
cally by the in-domain trained contextualized
embeddings. For this we use the pre-trained
LMs as fixed feature extractors and restrict
the downstream task models to not have ad-
ditional sequence modeling layers. We com-
pare BERT (Devlin et al., 2018), ELMo (Pe-
ters et al., 2018a), BioBERT (Lee et al., 2019)
and BioELMo, a biomedical version of ELMo
trained on 10M PubMed abstracts. Surpris-
ingly, while fine-tuned BioBERT is better than
BioELMo in biomedical NER and NLI tasks,
as a fixed feature extractor BioELMo outper-
forms BioBERT in our probing tasks. We use
visualization and nearest neighbor analysis to
show that better encoding of entity-type and
relational information leads to this superiority.

1 Introduction

NLP has seen an upheaval in the last year, with
contextual word embeddings, such as ELMo (Pe-
ters et al., 2018a) and BERT (Devlin et al.,
2018), setting state-of-the-art performance on
many tasks. These empirical successes suggest
that unsupervised pre-training from large corpora
could be a vital part of NLP models. In spe-
cific domains like biomedicine, NLP datasets are
much smaller than their general-domain coun-
terparts1, which leads to a lot of ad-hoc mod-
els: some infer through knowledge bases (Chandu

1For example, MedNLI (Romanov and Shivade, 2018)
only has about 11k training instances while the general do-
main NLI dataset SNLI (Bowman et al., 2015) has 550k.

et al., 2017), while others leverage large-scale gen-
eral domain datasets for domain adaptation (Wiese
et al., 2017). However, unlabeled biomedical texts
are abundant, and their full potential has perhaps
not yet been fully realized.

We train a domain-specific version of ELMo on
10M PubMed abstracts, called BioELMo2. Ex-
periments on biomedical named entity recogni-
tion (NER) dataset BC2GM (Smith et al., 2008)
and biomedical natural language inference (NLI)
dataset MedNLI (Romanov and Shivade, 2018)
clearly show the utility in training in-domain con-
textual word representations, but we would also
like to know exactly what extra information is car-
ried intrinsically in these embeddings.

To answer this question, we design two probing
tasks, one for NER and one for NLI, where contex-
tualized embeddings are used solely as fixed fea-
ture extractors and no sequence modeling layers
are allowed above the embeddings. This setting
prohibits the model from capturing task-specific
contextual patterns, and instead only utilizes the
information already present in the representations.
In parallel to our work of BioELMo, Lee et al.
(2019) introduce BioBERT, which is a biomedical
version of in-domain trained BERT. We also probe
BioBERT in our experiments.

Expectedly, BioELMo and BioBERT perform
significantly better than their general-domain
counterparts. When fine-tuned, BioBERT out-
performs BioELMo, however, when used as
fixed feature extractors, BioELMo is better than
BioBERT in our probing tasks. Visualizations
and nearest neighbor analyses suggest that it’s be-
cause BioELMo more effectively encodes entity-
types and information about biomedical relations,
such as disease and symptom interactions, than
BioBERT.

2Available at https://github.com/Andy-jqa/
bioelmo.
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2 Related Work

Embeddings from Language Models: ELMo
(Peters et al., 2018a) is a pre-trained deep bidirec-
tional LSTM (biLSTM) language model. ELMo
word embeddings are computed by taking a
weighted sum of the hidden states from each
layer of the LSTM. The weights are learned along
with the parameters of a task-specific downstream
model, but the LSTM layers are kept fixed. Re-
cently, Devlin et al. (2018) introduced BERT,
and they showed that pre-training transformer net-
works on a masked language modeling objective
leads to even better performance by fine-tuning
the transformer weights on a broad range of NLP
tasks. We study biomedical in-domain versions of
these contextualized word embeddings in compar-
ison to the general ones.

Biomedical Word Embeddings: Context-
independent word embeddings, such as word2vec
(w2v) (Mikolov et al., 2013) trained on biomedi-
cal corpora, are widely used in biomedical NLP
models. Some recent works reported better
NER performance with in-domain trained ELMo
than general ELMo (Zhu et al., 2018; Sheikhshab
et al., 2018). Lee et al. (2019) introduce BioBERT,
which is BERT pre-trained on biomedical texts
and set new state-of-the-art performance on
several biomedical NLP tasks. We reaffirm these
results on biomedical NER and NLI datasets with
in-domain trained contextualized embeddings,
and further explore why they are superior.

Probing Tasks: Designing tasks to probe sen-
tence or token representations for linguistic prop-
erties has been a widespread practice in NLP. In-
ferSent (Conneau et al., 2017) uses transfer tasks
to probe for sentence embeddings pre-trained on
supervised data. Many studies (Dasgupta et al.,
2018; Poliak et al., 2018) design new test sets
to probe for specific linguistic signals in sen-
tence rerpesentations. Tasks to probe for token-
level properties are explored by Blevins et al.
(2018); Peters et al. (2018b), where they test
whether token embeddings from different pre-
training schemes encode part-of-speech and con-
stituent structure.

Tenney et al. (2018) extend token-level prob-
ing to span-level probing and consider a broader
range of tasks. Our work is different from them in
the following ways – (1) We probe for biomedical
domain-specific contextualized embeddings and

compare them to the general-domain embeddings;
(2) For NER, instead of classifying the tag for a
given span, we adopt an end-to-end setting where
the spans must also be identified. This allows us
to compare the probing results to state-of-the-art
numbers; (3) We also probe for relational infor-
mation using the NLI task in an end-to-end style.

3 Methods

3.1 Biomedical Contextual Embeddings

BioELMo: We train BioELMo on the PubMed
corpus. PubMed provides access to MEDLINE,
a database containing more than 24M biomedical
citations3. We used 10M recent abstracts (2.46B
tokens) from PubMed to train BioELMo. The
statistics of this corpus are very different from
more general domains. For example, the token pa-
tients ranks 22 by frequency in the PubMed cor-
pus while it ranks 824 in the 1B Word Bench-
mark dataset (Chelba et al., 2013). We use the
Tensorflow implementation4 of ELMo to train
BioELMo. We keep the default hyperparameters
and it takes about 1.7K GPU hours to train 8
epochs. BioELMo achieves an averaged forward
and backward perplexity of 31.37 on test set.

BioBERT: In parallel to our work, Lee et al.
(2019) developed BioBERT, which is pre-trained
on English Wikipedia, BooksCorpus and fine-
tuned on PubMed (7.8B tokens in total). BioBERT
was initialized with BERT and further trained on
PubMed for 200K steps.5

To get fixed features of tokens, we use the learnt
downstream task-specific layer weights to calcu-
late the average of 3 layers (1 token embedding
layer and 2 biLSTM layers) for BioELMo and
13 layers (1 token embedding layer and 12 trans-
former layers) for BioBERT. As fixed feature ex-
tractors, BioELMo and BioBERT are not fine-
tuned by downstream tasks.

3.2 Downstream Tasks

We first use BioELMo with state-of-the-art mod-
els and fine-tune BioBERT on the downstream
tasks, to test their full capacity. In §3.3 we intro-
duce our probing setup which tests BioBERT and

3https://www.ncbi.nlm.nih.gov/pubmed/
4https://github.com/allenai/bilm-tf
5We note there is a difference in the size of training

corpora for BioBERT and BioELMo, but since we trained
BioELMo before BioBERT was available, we could not con-
trol for this difference.
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Premise: He returned to the clinic three weeks later and was 

prescribed with antibiotics. 

Hypothesis: The patient has an infection. 

Label: Entailment 

to treat 

Figure 1: Relation information in a MedNLI instance.

BioELMo as fixed feature extractors.
NER: For BioELMo, following Lample et al.

(2016), we use the contextualized embeddings and
a character-based CNN for word representations,
which are fed to a biLSTM, followed by a condi-
tional random field (CRF) (Lafferty et al., 2001)
layer for tagging. For BioBERT, we use the single
sentence tagging setting described in Devlin et al.
(2018), where the final hidden states of each token
are trained to classify its NER label.

NLI: For BioELMo, We use the ESIM model
(Chen et al., 2016), which encodes the premise and
hypothesis using biLSTM. The encodings are fed
to a local inference layer with attention, another
biLSTM layer and a pooling layer followed by
softmax for classification. For BioBERT, we use
the sentence pair classification setting described in
Devlin et al. (2018), where the final hidden states
of the first token (special ‘[CLS]’) are trained to
classify the NLI label for the sentence pair.

3.3 Probing Tasks

We design two probing tasks where the contextu-
alized embeddings are only used as fixed feature
extractors and restrict the down-stream models to
be non-contextual, to investigate the information
intrinsically carried by them. One task is on NER
to probe for entity-type information, and the other
is on NLI to probe for relational information.

NER Probing Task: As shown in Figure
2 (left), we embed the input tokens to R =
[E1;E2; ...;EL] ∈ RL×De , where L is the se-
quence length and De is embedding size. The em-
beddings are fed to several feed-forward layers:

Ẽi = FFN(Ei) ∈ RT

where T is the number of tags. [Ẽ1; Ẽ2; ...; ẼL]
is then fed to a CRF output layer. CRF doesn’t
model the context but ensures the global consis-
tency across the assigned labels, so it’s compatible
with our probing task setting.

NLI Probing Task: Relational information be-
tween tokens of premises and hypotheses is vital to
solve MedNLI task: as shown in Figure 1, the hy-
pothesis is an entailment because antibiotics are
used to treat an infection, which is a drug-disease

relation. We design the task shown in Figure 2
(right) to probe such relational information: We
embed the premise and hypothesis seperately to
P ∈ RL1×De and H ∈ RL2×De , where L1, L2 are
sequence lengths. Then we use bilinear layers6 to
get S = [S1;S2; ...;SR] ∈ RR×L1×L2 where

Sr = PWrH
T ∈ RL1×L2 ,

and Wr ∈ RDe×De is the weight matrix of a bi-
linear layer. Note that each element of Sr encodes
the interaction between a token from the premise
and a token from the hypothesis. We denote

hij =
[
S1[i, j] ... SR[i, j]

]T ∈ RR, (1)

as the distributed relation representation be-
tween token i in premise and token j in hypoth-
esis, and R is the tunable dimension of it. We then
apply an element-wise maximum pooling layer:

h̃ = max
i,j

hij ∈ RR.

We use a linear layer to compute the softmax
logits of the NLI labels, e.g. p(entailment) ∝
exp(h̃T went), where went is the learnt weight
vector corresponding to the entailment label.

For BERT, we probe two variants. The first,
denoted as BERT / BioBERT, feeds the premise
and hypothesis to the model separately. The sec-
ond, denoted as BERT-tog / BioBERT-tog, con-
catenates the two sentences by the ‘[SEP]’ token
and feeds to the model together to get the embed-
dings. This is how BERT is supposed to be used
for sentence pair classification tasks, but it’s not
comparable to ELMo in our setting since ELMo
doesn’t take two sentences together as input.

4 Experiments

4.1 Experimental Setup
Data: For the NER task, we use the BC2GM
dataset. BC2GM stands for BioCreative II gene
mention dataset (Smith et al., 2008). The task is
to detect gene names in sentences. It contains 15k
training and 5k test sentences. We also test on the
general-domain CoNLL 2003 NER dataset (Tjong
Kim Sang and De Meulder, 2003), where the task
is to detect entities such as person and location.

For the NLI task, we use the MedNLI dataset
(Romanov and Shivade, 2018), where the task is,
given a pair of sentences (premise and hypothesis),
to predict whether the relation of entailment, con-
tradiction, or neutral (no relation) holds between

6We also tried models without bilinear layers, which turn
out to be suboptimal.
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Figure 2: Left: NER probing task. The contextual word representations are directly used to predict the NER labels,
followed by a CRF layer to ensure label consistency. Right: NLI probing task. Bilinear operators map pairs of
word representations to relation representations which are used to predict the entailment label.

them. The premises are sampled from doctors’
notes in the clinical dataset MIMIC-III (Johnson
et al., 2016). The hypotheses and annotations are
generated by clinicians. It contains 11,232 train-
ing, 1,395 development and 1,422 test instances.
We also test on the general-domain SNLI dataset
(Bowman et al., 2015), where the premises and hy-
potheses are drawn from image captions.
Compared Settings: For each dataset, the Whole
setting refers to the state-of-the-art model we used
(described in §3.2), including contextual modeling
layers or fine-tuning of the embedding encoder.
Probing and Control settings describe the prob-
ing task model introduced in §3.3. The control set-
ting tests the representations on a general-domain
dataset/task, to check whether we lose any infor-
mation in domain-specific embeddings. Probing
and control results are averaged over three seeds.
Compared Embeddings: We compare: (1) non-
contextual biomedical w2v trained on a biomedi-
cal corpus of 5.5B tokens (Moen and Ananiadou,
2013), (2) ELMo trained on a general-domain cor-
pus of 5.5B tokens7, (3) BioELMo8, (4) Cased
base version of BERT trained on a general-domain
corpus of 3.3B tokens9 and (5) BioBERT10.

4.2 Main Results

4.2.1 NER Results
In Domain v.s. General Domain: Results in
Table 1 show that BioBERT and BioELMo in

7https://allennlp.org/elmo
8Though BioELMo uses the smallest corpus to train, it

performs better than BioBERT in probing setting, and general
ELMo in whole and probing setting.

9https://github.com/google-research/
bert

10https://github.com/dmis-lab/biobert

Method F1 (%)

Whole Probe Ctrl.

Ando (2007) 87.2 – –
Rei et al. (2016) 88.0 – –
Sheikhshab et al. (2018) 89.7 – –

Biomed w2v 84.9 78.5 67.5
General ELMo 87.0 82.9 84.0
General BERT 89.2 84.9 83.6
BioELMo 90.3 88.4 80.9
BioBERT 90.6 88.2 83.4

Table 1: NER test results. Whole: whole model per-
formance on BC2GM; Probe: Probing task perfor-
mance on BC2GM; Ctrl.: Probing task performance
on CoNLL 2003 NER. We use the official evaluation
codes to calculate the F1 scores where there are multi-
ple ground-truth tags, so the F1 scores are much higher
than what were reported in Lee et al. (2019).

the Whole setting perform better than the general
BERT and ELMo and biomed w2v, setting new
state-of-the-art performance for this dataset.

BioBERT and BioELMo remains competitive
in the Probing setting, doing much better than
their general domain counterparts and even gen-
eral ELMo in the Whole setting. This shows that
with the right pre-training, the downstream model
can be considerably simplified.

Unsurprisingly, in the Control setting BioBERT
and BioELMo do worse than their general coun-
terparts, indicating that the gains come at the cost
of losing some general-domain information. How-
ever, the performance gaps (absolute differences)
between ELMo and BioELMo are larger in the
biomedical domain than it is in the general do-
main, which is also true for BERT and BioBERT.
For ELMo and BioELMo, we believe it is because
the PubMed corpus contains many mentions of
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general-domain entities whereas the reverse is not
true. Because BioBERT is initialzied with BERT
and also uses general-domain corpora like Enligsh
WikiPedia for pre-training, it’s not surprising that
BioBERT is just 0.2 worse than BERT on CoNLL
2003 NER in control setting.
BioELMo v.s. BioBERT: Fine-tuned BioBERT
outperforms BioELMo with biLSTM and CRF
on BC2GM. As a feature extractor, BioBERT is
slightly worse than BioELMo in probing task of
BC2GM, but outperforms BioELMo in probing
task of CoNLL 2003, which can be explained
by the fact that BioBERT is also pre-trained on
general-domain corpora.

Method Accuracy (%)

Whole Probe Ctrl.

Romanov and Shivade (2018) 76.6 – –

Biomed w2v 74.2 71.1 59.2
General ELMo 75.8 69.6 60.8
General BERT – 67.6 62.1
General BERT-tog 77.8 71.0 74.1
BioELMo 78.2 75.5 58.3
BioBERT – 70.1 58.8
BioBERT-tog 81.7 73.8 69.9

Table 2: NLI test results. Whole: whole model perfor-
mance on MedNLI; Probe: Probing task performance
on MedNLI; Ctrl.: Probing task performance on SNLI.
To make the results comparable, we only use the same
number of SNLI training instances as that of MedNLI.

4.2.2 NLI Results
In Domain v.s. General Domain: Table 2 shows
that BioBERT and BioELMo in the Whole setting
perform better than their general domain counter-
parts and biomedical w2v for NLI, setting state-
of-the-art performance for this dataset as well.

Once again, we observe that BioBERT and
BioELMo outperform their general domain coun-
terparts in the Probing settings, which comes at
the cost of losing general domain information as
indicated in the Control setting results.

Note that the Probing task only models relation-
ships between tokens, but we still see competitive
accuracy in that setting (75.5% vs 76.6% previ-
ous best). This suggests that, (i) many instances in
MedNLI can be solved by identifying token-level
relationships between the premise and the hypoth-
esis, and (ii) BioELMo already captures this kind
of information in its embeddings.
BioELMo v.s. BioBERT: Fine-tuned BioBERT
does much better than BioELMo with ESIM
model. However, BioELMo performs better than

BioBERT by a large margin in the probing task of
MedNLI. We explore this in more detail in the next
section. Again, BioBERT is better than BioELMo
in probing task of SNLI because it’s also pre-
trained on general corpora.

We notice that the -tog setting improves the
BERT performance. Encoding two sentences sep-
arately, BioELMo still outperforms BioBERT-tog.
It suggests that BioELMo is a better feature extrac-
tor than BioBERT, even though the latter has su-
perior performance when fine-tuned on MedNLI.

4.3 Analysis

4.3.1 Entity-type Information

In biomedical literature, the acronym ER has mul-
tiple meanings: out of the 124 mentions we found
in 20K recent PubMed abstracts, 47 refer to the
gene “estrogen receptor”, 70 refer to the organelle
“endoplasmic reticulum” and 4 refer to the “emer-
gency room” in hospital. We use t-SNE (Maaten
and Hinton, 2008) to visualize different contextu-
alized embeddings of these mentions in Figure 3.
In Domain v.s. General Domain: For general
ELMo, by far the strongest signal separating the
mentions is whether they appear inside or outside
parentheses. This is not surprising given the re-
current nature of LSTM and language modeling
training objective for learning these embeddings.
BioELMo does a better job of grouping mentions
of the same entity (ER as estrogen receptor) to-
gether, which is clearly helpful for the NER task.

ER mentions of the same entities cluster bet-
ter by BioBERT than general BERT: there are two
major clusters corresponding to estrogen receptor
and endoplasmic reticulum by BioBERT as indi-
cated by the dashed circles, while entities of dif-
ferent types are scattered almost evenly by BERT.
BioELMo v.s. BioBERT: Clearly BioELMo
better clusters entities from the same types to-
gether. Unlike ELMo/BioELMo, Whether the
ER mention is inside parentheses doesn’t affect
BERT/BioBERT representations. It can be ex-
plained by encoder difference between ELMo and
BERT: For ELMo, to predict ‘)’ in forward LM,
representations of token ‘ER’ inside the parenthe-
ses need to encode parentheses information due to
the recurrent nature of LSTM. For BERT, to pre-
dict ‘)’ in masked LM, the masked token can at-
tend to ‘(’ without interacting with ‘ER’ represen-
tations, so BERT ‘ER’ embedding does’t need to
encode parentheses information.
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Figure 3: t-SNE visualizations of the token ER embeddings in different contexts by BioELMo, general ELMo,
BioBERT and general BERT.  and K represent ER mentions within and outside of parentheses, respectively.
Colors refer to different actual meanings of the ER mention.

Relation Type NN w/ Representation of Same Type (%)

BioELMo ELMo BioBERT-tog BioBERT BERT-tog BERT Biomed w2v

disease-symptom 54.2 52.1 44.5 38.8 34.2 37.0 40.9
disease-drug 32.8 34.4 26.1 17.9 27.7 22.6 23.6
number-indication 70.5 63.9 47.0 45.3 48.1 49.5 74.4
synonyms 63.6 56.4 60.8 55.8 56.4 52.8 51.7

All 57.5 53.3 47.1 42.1 43.3 42.5 49.5

Subset Accuracy (%) 73.9 62.8 71.4 65.0 65.8 64.5 69.7

Table 3: Average proportion of nearest neighbor (NN) representations that belong to the same type for different
embeddings, averaged over three random seeds. Biomed w2v performs best for number-indication relations, prob-
ably because it uses a vocabulary of over 5M tokens, in which about 100k are numbers. Subset accuracy denotes
the probing task performance in the subset of MedNLI test set used for this analysis.

4.3.2 Relational Information

We manually examine all test instances with the
“entailment” label in MedNLI, and found 78 token
pairs across the premises and hypotheses which
strongly suggest entailment. Among them, 22 are
disease-symptom pairs, 13 are disease-drug pairs,
19 are numbers and their indications (e.g.: 150/93
and hypertension) and 24 are synonyms or closely
related concepts (e.g.: Lasix R© and diuretic). Fig-
ure 1 shows an example of disease-drug relation-
ship. We hypothesize that a model is required
to encode relation information to perform well in
MedNLI task. We evaluate relation representa-
tions from different embeddings by nearest neigh-
bor (NN) analysis: For each distributed relation
representation (Eq. 1) of these token pairs, we cal-
culated the proportions of its five nearest neigh-
bors that belong to the same relation type. We re-
port the average proportions in table 3 and use it
as a metric to measure the effectiveness of repre-
senting relations by different embedding schemes.
We also show model performance for this sub-
set (78 instances for relation analysis) in table 3.
The trends of subset accuracy moderately corre-
late with the NN proportions (Pearson correlation
coefficient r = 0.52).

In Domain v.s. General Domain: For all re-
lations, BioELMo is significantly11 better than
ELMo in representing same relations closer to
each other, while there is no significant differ-
ence between BioBERT and BERT. This indicates
that even pre-trained by in-domain corpus, as fixed
feature extractor, BioBERT still cannot effectively
encode biomedical relations compared to BERT.
BioELMo v.s. BioBERT: BioELMo signifi-
cantly outperforms BioBERT and even BioBERT-
tog for all relations. This explains why BioELMo
does better than BioBERT in the probing task:
BioELMo better represents vital biomedical rela-
tions between tokens in premises and hypotheses.

5 Conclusion

We have shown that BioELMo and BioBERT rep-
resentations are highly effective on biomedical
NER and NLI, and BioELMo works even without
complicated downstream models and outperforms
untuned BioBERT in our probing tasks. This ef-
fectiveness comes from its ability as a fixed fea-
ture extractor to encode entity types and especially
their relations, and hence we believe they should

11Significance is defined as p < 0.05 in two-proportion z
test.
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benefit any task which requires such information.
A long-term goal of NLP is to learn univer-

sal text representations. Our probing tasks can
be used to test whether learnt representations ef-
fectively encode entity-type or relational informa-
tion. Moreover, comprehensive characterizations
of BioELMo and BioBERT as fixed feature extrac-
tors would also be an interesting further direction
to explore.
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Abstract

This paper explores modern word embeddings
in the context of sound symbolism. Using ba-
sic properties of the representations space one
can construct semantic axes. A method is pro-
posed to measure if the presence of individual
sounds in a given word shifts its semantics of
that word along a specific axis. It is shown
that, in accordance with several experimental
and statistical results, word embeddings cap-
ture symbolism for certain sounds.

1 Introduction

Sound symbolism is a term used to describe a
hypothetical relation between sound and mean-
ing (Hinton et al., 2006). This idea recurrently
emerges in various cultures and languages dating
as far back as Plato’s Cratylus. Statements on
sound symbolism can also be found in Japanese
Buddhist monk Kukai’s work Sound, word, reality
(Kasulis, 1982). Upanishads contain a good deal
of material about sound symbolism, for example,
declaring that ”the mute consonants represent the
earth, the sibilants the sky, the vowels heaven”
(Max-Muller, 1879). Early in the twentieth cen-
tury, the rise of artistic symbolism and a gen-
eral interest in form, as developed in (Shklovsky,
1919) and (Kruchenykh, 1923) gave rise to sev-
eral artistic movements. (Sapir, 1929) made the
first systematic attempt to find empirical evidence
of sound symbolism.

To our knowledge, the issue of sound symbol-
ism has still not been studied from the represen-
tation learning perspective. This submission ad-
dresses the question of whether some aspects of
sound symbolism can be captured by the FastText
embeddings (Bojanowski et al., 2016)1. We show

∗https://en.wikipedia.org/wiki/Dyr bul shchyl
1We also want to explicitly state that we do not see any

reason why other embeddings that to a certain extent support
semantic arithmetic can not be used for this task.

that the representations do seem to capture the
sound symbolism of the English language to the
extent that it is covered by the research literature.
We also discuss the potential usage of such repre-
sentations in the future, particularly for generative
tasks.

2 Related work

Despite the fact, that sound symbolism is a rel-
atively old theoretical notion, until the second
half of the twentieth century there were only a
few empirical results that would definitively prove
it’s existence in natural languages. More re-
cently, (Whissell, 1999) has shown that certain
sounds tend to be over-represented in songs or
poetry to address specific emotions, but also in
names (Whissell, 2006). (Shinohara and Kawa-
hara, 2010) have demonstrated that certain sounds
in the English language are associated with at-
tributes of size. (Wrembel, 2010) has addressed
the role of sound symbolism in language acqui-
sition. (Perniss et al., 2010) provide evidence
for non-arbitrary relationships at multiple levels
of language, from phonology to syntax. (Adel-
man et al., 2018) have shown that specific sounds
in English or Spanish are associated with higher
levels of valence or emotional sound symbolism.
Even more impressively, in a massive study across
nearly two-thirds of the world’s languages (Blasi
et al., 2016) managed to demonstrate that a con-
siderable proportion of 100 essential vocabulary
items carry strong associations with specific kinds
of human speech sounds, occurring persistently
across continents and linguistic lineages.

More importantly for this work, (Otis and Sagi,
2008) have introduced a corpus-based method that
can be used to test whether an association between
sound and meaning exists within a given corpus.
This result was partially reproduced in (Abramova
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et al., 2013), who also showed that the seman-
tic content of at least some phonesthemes could
be identified automatically using WordNet. Fi-
nally, (Auracher et al., 2010) have demonstrated
the potential of sound symbolism for automatic
text analysis. Their study claims that, at least in
poetic language, the ratio of plosive versus nasal
sounds in a text predicts its emotional tone as read-
ers perceive. In other words, poems that have a rel-
atively high frequency of plosive sounds are more
likely to express a pleasant mood with high activa-
tion, whereas a relatively high frequency of nasal
sounds indicates an unpleasant mood with low ac-
tivation.

3 Sound symbolism in word
representations

Semantic arithmetic is one of the key features of
Word2Vec (Mikolov et al., 2013) and other mod-
ern vector representations. This property allows us
to subtract a vector that corresponds to the word
’male’ from the vector that represents the word
’king’. We can then add vector that represents
’female’ to obtain a new vector in the proximity
of representation for the word ’queen.’ Using se-
mantic arithmetic one can naturally form certain
semantic axes in the space of representations. To
do this, we can list a pair of antonyms, say ’good’
and ’bad,’ and draw a line defined by these two
words. We can expect that, up to a certain level of
correspondence, the projections of other word rep-
resentations on this axis will correspond with their
semantic relation to one of the two attributes. To
make such semantic lines more robust, we defined
the opposing semantic points as an average of sev-
eral synonyms for each of the two words that were
forming a semantic axis. The full list of the axes
that were tested can be found in the Appendix. The
English phonetics of the words was retrieved from
a proprietary dictionary.

To test whether word embeddings capture cer-
tain elements of sound symbolism, we have car-
ried the following experiment:

• out of pretrained FastText word embeddings
10 000 most frequent words were filtered;

• the representations of the words were pro-
jected on every semantic axis;

• the obtained distribution of the projections
for the words that start with a given sound

Sound Semantics
[2] passive’
[2] awful∗

[2] ugly∗

[2] slow?∗

[I] active∗

[I] strong∗

[I] hot∗

[I] ugly!∗

[I] difficult!∗

[I] sad!∗

[I] loud?∗

[I] short?#

[I] powerful∗

[d] evil∗

[d] difficult∗

[d] sad∗

[9] difficult
[a:] grand∗∗

Table 1: Associations between a sound and a semantic
axis in latent space representation with Mann–Whitney
U test p-value below 0.001; associations marked with ’
correspond to the ones mentioned in (Wrembel, 2010),
marked with * correspond with the ones, found in
(Adelman et al., 2018), with ** correspond with ones
found in (Shinohara and Kawahara, 2010); with # cor-
respond with ones found in (Blasi et al., 2016); while
associations with !* weakly contradict with (Adelman
et al., 2018), see discussion for further details; associ-
ations marked with ? show weak correspondence with
the results in the literature.

was compared to the distribution of projec-
tions for the words without it.

Table 1 and Table 2 summarize the results that
were obtained with p-values below 0.001 and 0.01
respectively. Figures 1 - 3 show examples of
the obtained distributions for different axes and
sounds.

4 Discussion

As we can see from Table 1 and Table 2, there
are several sounds which have a specific sym-
bolic aspect that is in line with some of the pre-
vious empiric results. There are also new sound-
semantic associations which have not been stud-
ied in the context of sound symbolism and could
potentially be interesting for further empirical in-
vestigations. Such cases have been flagged with
a question mark. The sound [I] is the only sound
which contradicts some of the previous findings.
It might be associated with something ugly, sad or
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Figure 1: Distributions of representation projections on
the ’passive - active’ axis. Sound [2] in the first position
shifts the words towards the ’passive’ semantic aspect.

Figure 2: Distributions of representation projections on
the ’short - long’ axis. Sound [I] in the first position
shifts the words towards the ’short’ semantic aspect.

Figure 3: Distributions of representation projections on
the ’easy - difficult’ axis. Sound [9] in the first position
shifts the words towards the ’difficult’ semantic aspect.

Sound Semantics
[r] big?∗

[r] strong?∗

[r] sad∗

[m] feminine
[m] not smooth
[m] long
[I] dark!∗,’
[I] angular
[9] active
[9] fast
[9] sad
[w] weak
[2] slow∗

[2] evil∗

[9U] not smooth
[k] safe
[6] benign
[b] feeble?∗

[g] feeble?∗

Table 2: Associations between a sound and a se-
mantic axis in the latent space representation with
Mann–Whitney U test p-value below 0.01; associa-
tions marked with ’ correspond to the ones mentioned
in (Wrembel, 2010), marked with * correspond with
the ones, found in (Adelman et al., 2018); associations
with !* weakly contradict with (Adelman et al., 2018),
see discussion for further details; associations marked
with ? show weak correspondence with the results in
the literature.

difficult according to our results, yet it is placed in
the category of mildly positive valence in (Adel-
man et al., 2018). It could also be associated with
something dark, which is in line with (Wrembel,
2010), but contradicts (Adelman et al., 2018). Fur-
ther examination is needed to give a definitive an-
swer as to the reason for this contradiction, but the
most probable explanations can be summed up as
follows: (Adelman et al., 2018) show that [I] is
associated with valence with a p-value above 0.1,
and the predictive power of phonemes for valence
in English is the lowest out of four languages stud-
ied in the paper. This probably means that the sig-
nal is too low to give a definitive answer about this
sound. What is more interesting is that the method
we used also points out several new sounds that
might have a symbolic component, but have not
been closely studied before. For example, [9] in
the context of difficulty, speed, activity and mood,
[m] in the contexts of femininity, roughness and
length, or [k] in context of safety.
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5 Conclusion

This paper shows that word embeddings such as
Fasttext can capture sound symbolism along sev-
eral semantic axes. Applying the obtained sound
symbolism information to generative tasks, one
can expect to generate more expressive poetry in
line with the results of (Auracher et al., 2010).
This new approach combined with such generative
methods as (Potash et al., 2016), (Tikhonov and
Yamshchikov, 2018), (Vechtomova et al., 2018)
or (Wołk et al., 2019). The possibility of testing
specific associations between sounds and seman-
tics computationally without any behavioral labo-
ratory experiments or surveys might also signifi-
cantly facilitate further studies of semantic sym-
bolism. Additional research questions that nat-
urally arise from this result include cross-lingual
studies of sound symbolism captured by word em-
beddings and experimental research of the poten-
tial connections between sounds and semantics.
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6 Appendices

The list of semantic axes that were tested:

• Angular - Round; ’plump’, ’lumpy’, ’circu-
lar’, ’round’, ’rounded’, ’angular’, ’gnarled’,
’gnarly’, ’craggy’, ’awkward’, ’angled’

• Bad - Good; ’good’, ’well’, ’nice’, ’pretty’,
’fine’, ’satisfactory’, ’solid’, ’fair’, ’hand-
some’, ’desirable’, ’bad’, ’poor’, ’ill’,
’amiss’, ’evil’, ’cheap’, ’defective’, ’infe-
rior’, ’low’, ’mean’

• Cold - Hot; ’cold’, ’chill’, ’chilly’, ’in-
clement’, ’wintry’, ’frozen’, ’frosty’, ’hot’,
’ardent’, ’passionate’, ’violent’, ’warm’,
’cordial’, ’thermal’, ’fervent’, ’heated’

• Complex - Simple; ’plain’, ’simple’, ’ordi-
nary’, ’elementary’, ’common’, ’straightfor-
ward’, ’easy’, ’complex’, ’complicated’, ’so-
phisticated’, ’compound’, ’intricate’, ’com-
posite’, ’elaborate’, ’tricky’

• Cowardly - Brave; ’brave’, ’gallant’, ’coura-
geous’, ’valiant’, ’redoubtable’, ’bold’,
’cowardly’, ’coward’, ’dastardly’, ’sneaky’,
’sneaking’

• Dangerous - Secure; ’secure’, ’sure’, ’safety’,
’permissible’, ’foolproof’, ’safe’, ’whole-
some’, ’terrible’, ’frightful’, ’dreadful’, ’aw-
ful’, ’agonizing’, ’fearful’, ’formidable’,
’horrible’, ’desperate’, ’tremendous’

• Dark - Luminous; ’light’, ’clear’, ’bright’,
’blond’, ’blonde’, ’fair’, ’luminous’, ’lu-
cid’, ’dark’, ’black’, ’murky’, ’shadowy’,
’gloomy’, ’shady’

• Difficult - Easy; ’difficult’, ’hard’, ’labo-
rious’, ’serious’, ’severe’, ’grave’, ’oppres-
sive’, ’painful’, ’heavy’, ’weighty’, ’easy’,
’light’, ’lucky’, ’facile’, ’slight’, ’gentle’,
’airy’, ’ready’, ’dolly’

• Evil - Benign; ’beneficent’, ’good’, ’be-
nign’, ’decent’, ’gentle’, ’gracious’, ’kind’,
’wicked’, ’evil’, ’vicious’, ’malicious’,
’spiteful’, ’angry’, ’fierce’, ’severe’, ’bad’,
’mordant’

• Faded - Bright; ’bright’, ’vivid’, ’shining’,
’cheerful’, ’striking’, ’glowing’, ’garish’,
’colorful’, ’faded’, ’withered’, ’delicate’,
’languid’, ’bleak’, ’flat’, ’faint’, ’sickly’

• Feeble - Strong; ’powerful’, ’mighty’,
’strong’, ’vigorous’, ’vibrant’, ’powerfully’,
’mightily’, ’strongly’, ’sickly’, ’feeble’,
’frail’, ’weakly’, ’puny’, ’spindly’

• Masculine - Feminine; ’masculine’, ’manly’,
’virile’, ’masculine’, ’manly’, ’feminine’,
’womanly’, ’ladylike’

• Passive - Active; ’active’, ’dynamic’, ’stir-
ring’, ’energetic’, ’dynamical’, ’favourable’,
’ambitious’, ’busy’, ’industrious’, ’passive’,
’dormant’, ’quiescent’, ’floppy’, ’unemo-
tional’, ’tame’, ’effortless’, ’flaccid’

• Quiet - Loud; ’loud’, ’noisy’, ’notorious’,
’pompous’, ’quiet’, ’calm’, ’soft’, ’low’,
’gentle’, ’flat’

• Rough - Tender; ’tender’, ’affectionate’,
’gentle’, ’delicate’, ’soft’, ’sweet’, ’subtle’,
’fond’, ’sentimental’, ’affectionate’, ’rude’,
’rough’, ’gross’, ’coarse’, ’crude’, ’tough’,
’brute’, ’barbaric’, ’barbarous’, ’beastly’

• Sad - Joyful; ’merry’, ’gay’, ’cheerful’,
’airy’, ’glad’, ’jolly’, ’joyful’, ’jaunty’, ’sad’,
’sorrowful’, ’dreary’, ’deplorable’, ’elegiac’,
’lamentable’, ’melancholy’, ’sorry’

• Short - Long; ’long’, ’tall’, ’gaunt’, ’spindly’,
’lanky’, ’voluminous’, ’lengthy’, ’short’,
’brief’, ’small’, ’little’, ’skimpy’

• Slow - Quick; ’quick’, ’fast’, ’swift’, ’agile’,
’prompt’, ’speedy’, ’rapid’, ’ready’, ’brief’,
’slow’, ’long’, ’slack’, ’sluggish’, ’laggard’,
’creeping’, ’leisurely’, ’plodding’

• Small - Big; ‘large’, ’great’, ’big’, ’greater’,
’high’, ’wide’, ’major’, ’grownup’, ’hulk’,
’small’, ’little’, ’petite’, ’diminutive’,’short’,
’trifling’, ’petty’

• Smooth - rough or not smooth; ’rough’, ’un-
even’, ’rugged’, ’coarse’, ’corny’, ’grainy’,
’harsh’, ’ragged’, ’shaggy’, ’smooth’, ’plain’,
’even’, ’glib’, ’sleek’, ’slick’, ’polished’,
’clean’, ’fluent’

• Ugly - Beautiful; ’beautiful’, ’handsome’,
’fine’, ’gallant’, ’goodly’, ’likely’, ’lovely’,
’personable’, ’sheen’,’homely’, ’ugly’,
’mean’, ’plain’, ’charmless’
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Abstract

In this paper, we present a novel algorithm
that combines multi-context term embeddings
using a neural classifier and we test this ap-
proach on the use case of corpus-based term
set expansion. In addition, we present a novel
and unique dataset for intrinsic evaluation of
corpus-based term set expansion algorithms.
We show that, over this dataset, our algorithm
provides up to 5 mean average precision points
over the best baseline.

1 Introduction

Term set expansion is the task of expanding a
given seed set of terms into a more complete set
of terms that belong to the same semantic class.
For example, given a seed of personal assistant
application terms like ‘Siri’ and ‘Cortana’, the ex-
panded set is expected to include additional terms
such as ‘Amazon Echo’ and ‘Google Now’.

Most prior work on corpus-based term set ex-
pansion is based on distributional similarity, where
early work is primarily based on using sparse vec-
tors while recent work is based on word embed-
dings. The prototypical term set expansion meth-
ods utilize corpus-based semantic similarity be-
tween seed terms and candidate expansion terms.
To the best of our knowledge, each of the prior
methods used a single context type for embedding
generation, and there are no reported comparisons
of the effectiveness of embedding different context
types. Moreover, the lack of a publicly available
dataset hinders the replicability of previous work
and method comparison.

In this paper, we investigate the research ques-
tion of whether embeddings of different context
types can complement each other and enhance the
performance of computational semantics tasks like
term set expansion. To address this question, we
propose an approach that combines term embed-

dings over multiple contexts for capturing differ-
ent aspects of semantic similarity. The algorithm
uses 5 different context types, 3 of which were pre-
viously proposed for term set expansion and addi-
tional two context types that were borrowed from
the general distributional similarity literature. We
show that combining the different context types
yields improved results on term set expansion. In
addition to the algorithm, we developed a dataset
for intrinsic evaluation of corpus-based set expan-
sion algorithms, which we propose as a basis for
future comparisons.

Code, demonstration system, dataset and term
embeddings pre-trained models are distributed as
part of NLP Architect by Intel AI Lab. 1

2 Related Work

Several works have addressed the term set ex-
pansion problem. We focus on corpus-based ap-
proaches based on the distributional similarity
hypothesis (Harris, 1954). State-of-the-art tech-
niques return the k nearest neighbors around the
seed terms as the expanded set, where terms are
represented by their co-occurrence or embedding
vectors in a training corpus according to different
context types, such as linear window context (Pan-
tel et al., 2009; Shi et al., 2010; Rong et al., 2016;
Zaheer et al., 2017; Gyllensten and Sahlgren,
2018; Zhao et al., 2018), explicit lists (Roark
and Charniak, 1998; Sarmento et al., 2007; He
and Xin, 2011), coordinational patterns (Sarmento
et al., 2007) and unary patterns (Rong et al., 2016;
Shen et al., 2017). In this work, we generalize
coordinational patterns, look at additional context
types and combine multiple context-type embed-
dings.

We did not find any suitable publicly available

1http://nlp_architect.nervanasys.com/term_

set_expansion.html
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dataset to train and evaluate our set expansion al-
gorithm. The INEX Entity Ranking track (De-
martini et al., 2009) released a dataset for the list
completion task. However, it addresses a some-
what different task: in addition to seed terms, an
explicit description of the semantic class is sup-
plied as input to the algorithm and is used to de-
fine the ground truth expanded set. Some works
like (Pantel et al., 2009) provide an evaluation
dataset that does not include any training corpus,
which is required for comparing corpus-based ap-
proaches. Sarmento et al. (2007) use Wikipedia as
training corpus, but exploit meta-information like
hyperlinks to identify terms; in our work, we opted
for a dataset that matches real-life scenarios where
terms have to be automatically identified.

Systems based on our approach are described
by (Mamou et al., 2018a,b).

3 Term Representation

Our approach is based on representing any term in
a (unlabeled) training corpus by its word embed-
dings in order to estimate the similarity between
seed terms and candidate expansion terms. Differ-
ent techniques for term extraction are described in
detail by Moreno and Redondo (2016). We fol-
low Kageura and Umino (1996) who approximate
terms by noun phrases (NPs),2 extracting them us-
ing an NP chunker. We use term to refer to such
extracted NP chunk and unit to refer to either a
term or a word.

As preprocessing, term variations, such as
aliases, acronyms and synonyms, which refer to
the same entity, are grouped together.3 Next, we
use term groups as input elements for embedding
training (the remaining corpus words are left in-
tact); this enables obtaining more contextual infor-
mation compared to using individual terms, thus
enhancing embedding model robustness. In the
remainder of this paper, by language abuse, term
will be used instead of term group.

While word2vec originally uses a linear win-
dow context around the focus word, the literature
describes other possible context types. For each
focus unit, we extract context units of different
types, as follows (see a typical example for each

2Our algorithm can be used for terms with other part-of-
speech or with other term extraction methods.

3For that, we use a heuristic algorithm based on text
normalization, abbreviation web resources, edit distance and
word2vec similarity. For example, New York, New-York, NY,
NYC and New York City are grouped.

type in Table 14).

3.1 Linear Context (Lin)

This context is defined by neighboring context
units within a fixed length window of context
units, denoted by win, around the focus unit.
word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014) and fastText (Joulin et al.,
2016) are state-of-the-art implementations.

3.2 Explicit Lists

Context units consist of terms co-occurring with
the focus term in textual lists such as comma sep-
arated lists and bullet lists (Roark and Charniak,
1998; Sarmento et al., 2007).

3.3 Syntactic Dependency Context (Dep)

This context is defined by the syntactic depen-
dency relations in which the focus unit partici-
pates (Levy and Goldberg, 2014; MacAvaney and
Zeldes, 2018). The context unit is concatenated
with the type and the direction of the dependency
relation. 5 This context type has not yet been used
for set expansion. However, Levy and Goldberg
(2014) showed that it yields more functional simi-
larities of a co-hyponym nature than linear context
and thus may be relevant to set expansion.

3.4 Symmetric Patterns (SP)

Context units consist of terms co-occurring with
the focus term in symmetric patterns (Schwartz
et al., 2015). We follow Davidov and Rappoport
(2006) for automatic extraction of SPs from the
textual corpus.6 For example, the symmetric pat-
tern ‘X rather than Y’ captures certain semantic
relatedness between the terms X and Y. This con-
text type generalizes coordinational patterns (‘X
and Y’, ‘X or Y’), which have been used for set
expansion.

3.5 Unary Patterns (UP)

This context is defined by the unary patterns in
which the focus term occurs. Context units con-

4We preferred showing in the example the strength of
each context type with a good example, rather than providing
a common example sentence across all the context types.

5Given a focus unit t with modifiers mi and a head h, the
context of t consists of the pairs (mi/li), where li is the type
of the dependency relation between the head h and the modi-
fier mi; the context stores also (h/l−1

i ) where l−1
i marks the

inverse-relation between t and h.
6SPs are automatically extracted using the dr06 li-

brary available at https://homes.cs.washington.edu/

˜roysch/software/dr06/dr06.html.
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Cont. type Example sentence Context units
Lin win = 5 Siri uses voice queries and a natural lan-

guage user interface.
uses, voice queries, natural language
user interface

List Experience in image processing, signal
processing, computer vision.

signal processing, computer vision

Dependency Turing studied as an undergraduate ... at
King’s College, Cambridge.

(Turing/nsubj), (undergraduate/prep as),
(King’s College/prep at)

SP Apple and Orange juice drink ... Orange
UP In the U.S. state of Alaska ... U.S. state of

Table 1: Examples of extracted context units per context type. Focus units appear in bold.

sist of n-grams of terms and other words, where
the focus term occurs; ‘ ’ denotes the placeholder
of the focus term in Table 1. Following Rong et al.
(2016), we extract six n-grams per focus term.7

We show in Section 7 that different context
types complement each other by capturing dif-
ferent types of semantic relations. As explained
in Section 2, to the best of our knowledge, sev-
eral of these context types have been used for set
expansion, except for syntactic dependency con-
text and symmetric patterns. We train a separate
term embedding model for each of the 5 context
types and thus, for each term, we obtain 5 dif-
ferent vector representations. When training for a
certain context type, for each focus unit in the cor-
pus, corresponding <focus unit, context
unit> pairs are extracted from the corpus and
are then fed to the word2vecf toolkit that can
train embeddings on arbitrary contexts, except for
linear context for which we use the word2vec
toolkit. Only terms representations are stored in
the embedding models while other word represen-
tations are pruned.

4 Multi-Context Seed-Candidate
Similarity

For a given context type embedding and a seed
term list, we compute two similarity scores be-
tween the seed terms and each candidate term,
based on cosine similarity. 8 First, we apply the

7Given a sentence fragment c−3 c−2 c−1 t c1 c2 c3
where t is the focus term and ci are the context units, the
following n-grams are extracted: (c−3 c−2 c−1 t c1),
(c−2 c−1 t c1 c2), (c−2 c−1 t c1), (c−1 t c1 c2 c3),
(c−1 t c1 c2), (c−1 t c1).

8Sarmento et al. (2007) and Pantel et al. (2009) use first-
order semantic similarities for explicit list and coordinational
pattern context types, respectively. However, Schwartz et al.
(2015) showed that for the symmetric patterns context type,
word embeddings similarity (second-order) performs gener-

centroid scoring method (cent), commonly used
for set expansion (Pantel et al., 2009). The cen-
troid of the seed is represented by the average
of the term embedding vectors of the seed terms.
Candidate terms become the k terms9 that are
the most similar, by cosine similarity, to the cen-
troid of the seed. Second, the CombSUM scoring
method (csum) is commonly used in Information
Retrieval (Shaw et al., 1994). We first produce a
candidate term set for each individual seed term:
candidate terms become the k′ terms9 that are the
most similar, according to the term embedding co-
sine similarity, to the seed term. The CombSUM
method scores the similarity of a candidate term to
the seed terms by averaging over all the seed terms
the normalized pairwise cosine similarities10 be-
tween the candidate term and the seed term.

To combine multi-context embeddings, we fol-
low the general idea of Berant et al. (2012) who
train an SVM to combine different similarity score
features to learn textual entailment relations. Sim-
ilarly, we train a Multilayer Perceptron (MLP) bi-
nary classifier that predicts whether a candidate
term should be part of the expanded set based on
10 similarity scores (considered as input features),
using the above 2 different scoring methods for
each of the 5 context types. Note that our MLP
classifier polynomially combines different seman-
tic similarity estimations and performs better than
their linear combination. We also tried to concate-
nate the multi-context term embeddings in order to
obtain a single vector representing all the context

ally better. We opted for term embeddings similarity (second-
order) for all the context types.

9Optimal values for k and k′ are tuned on the training
term list. Other terms are assigned a similarity score of 0 for
normalization and combination purpose.

10For any seed term, cosine similarities are normalized
among the candidate terms in order to combine cosine sim-
ilarity values estimated on different seed terms for the same
candidate term, as suggested by Wu et al. (2006).
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types. We trained an MLP classifier with concate-
nated vectors of candidate and seed terms as input
features, but it performed worst (see Section 7).

5 Dataset

Given the lack of suitable standard dataset for
training and testing term set expansion models,
we used Wikipedia to develop a standard dataset.
Our motivation for using Wikipedia is two-fold.
First, Wikipedia contains human-generated lists of
terms (‘List of’ pages) that cover many domains;
these lists can be used for supervised training
(MLP training in our approach) and for evaluating
set expansion algorithms. Second, it contains tex-
tual data that can be used for unsupervised training
of corpus-based approaches (multi-context term
embedding training in our approach). We thus ex-
tracted from an English Wikipedia dump a set of
term lists and a textual corpus for term embedding
training.

5.1 Term Lists

A Wikipedia ‘List of’ page contains terms be-
longing to a specific class, where a term is de-
fined to be the title of a Wikipedia article. We
selected term lists among ‘List of’ pages contain-
ing between fifty and eight hundred terms in order
to cover both specific and more common classes
(e.g., list of chemical elements vs. list of coun-
tries). Moreover, we selected term lists that de-
fine purely a semantic class, with no additional
constraints (e.g., skipping list of biblical names
starting with N’). Since there can be some prob-
lems with some Wikipedia ‘List of’ pages, 28 term
lists have been validated manually and are used as
ground truth in the evaluation. Here are some few
examples of term lists: Australian cities, chem-
ical elements, countries, diplomatic missions of
the United Kingdom, English cities in the United
Kingdom, English-language poets, Formula One
drivers, French artists, Greek mythological fig-
ures, islands of Greece, male tennis players, Mex-
ican singers, oil exploration and production com-
panies.

Terms having a frequency lower than 10 in the
training corpus are pruned from the lists since
their embeddings cannot be learned properly; note
that these terms are generally less interesting in
most of real case applications. Term variations are
grouped according to Wikipedia redirect informa-
tion.

On average, a term list contains 328 terms, of
which 3% are not recognized by the noun phrase
chunker; the average frequency of the terms in the
corpus is 2475.

The set of term lists is split into train, develop-
ment (dev) and test sets with respectively 5, 5 and
18 lists for MLP training, hyperparameters tuning
and evaluation. Each term list is randomly split
into seed and expanded term sets, where we are in-
terested in getting enough samples of seed and ex-
panded term sets. Thus, given a term list, we ran-
domly generate 15 seed sets (5 seed sets for each
seed size of 2, 5 and 10 terms) where seed terms
are sampled among the top 30 most frequent terms
within the list. For the train set, the non-seed terms
(expanded term set) provide the positive samples;
we randomly select candidate terms that occur in
the corpus but not in the list as negative samples;
positive and negative classes are balanced.

5.2 Textual Corpus

The corpus contains all the textual parts of
Wikipedia articles except ‘List of’ pages. 11 It
is used for training the multi-context embedding
models. 3% of the terms appearing in the term
lists are not recognized by our NP chunker in the
corpus. It contains 2.2 billion words, and 12 mil-
lion unique terms are automatically extracted.

5.3 Public Release

We use enwiki-20171201 English Wikipedia
dump 12 to develop the dataset. Full dataset will be
released upon publication and it will include train,
dev and test sets including the split into seed and
expanded terms, and negative samples for the train
set; the textual corpus along with NP chunks and
grouped term variations; term embedding model
for each context type.

6 Implementation Details

Code is distributed under the Apache license as
part of NLP Architect by Intel AI Lab 13, an open-
source Python library for exploring state-of-the-art
deep learning topologies and techniques for natu-
ral language processing and natural language un-
derstanding.

11Note that the corpus does not contain any Wikipedia
meta information.

12enwiki-20171201-pages-articles-multistream.

xml.bz2
13http://nlp_architect.nervanasys.com
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We used the following tools for the implemen-
tation and for the development of the dataset:
spaCy 14 for tokenization, noun phrase chunk-
ing and dependency parsing; textacy 15 for text
normalization; word2vec 16 and fastText 17

to model term embeddings of linear context type;
word2vecf 18 to model term embeddings of
other context types; WikiExtractor 19 to ex-
tract textual part of Wikipedia dump; Keras 20 to
implement the MLP classifier.

Similarity scores are softmax-normalized over
all the candidate terms per context type and per
scoring method, in order to combine them with the
MLP classifier. Our MLP network consists of one
hidden layer. The input and hidden layers have
respectively ten and four neurons.

7 Experiments

Following previous work (Sarmento et al., 2007),
we report the Mean Average Precision at several
top n values (MAP@n) to evaluate ranked candi-
date lists returned by the algorithm. When com-
puting MAP, a candidate term is considered as
matching a gold term if they both appear in the
same term variations group. We first compare the
different context types; then, we report results on
their combination.

7.1 Context Type Analysis

We provide a comparison of the different context
types in Table 2. These context types are baselines
and we compare them to the linear context that is
more standard. Note that the dependency context
type is affected by the performance of the depen-
dency parser.21 Linear context with centroid scor-
ing yields consistently best performance of at least
19 MAP@10 points and is consistently more sta-
ble looking at standard deviation. However, other
context types achieve better performance than lin-
ear context type for 55% of the term lists, suggest-
ing that the different context types complement
each other by capturing better different types of

14https://spacy.io
15https://github.com/chartbeat-labs/textacy
16https://code.google.com/archive/p/word2vec
17https://github.com/facebookresearch/fastText
18https://bitbucket.org/yoavgo/word2vecf
19https://github.com/attardi/wikiextractor
20https://github.com/keras-team/keras
21We used spaCy for dependency parsing; it achieves

92.6% accuracy on the OntoNotes 5 corpus (Choi et al.,
2015).

Context Scor. MAP@10 stdev best %
Lin cent .78 .22
List csum .59 .30 20
Dep cent .53 .31 15
SP csum .48 .32 10
UP csum .47 .36 10

Table 2: Comparison of the different context types. For
each context type, we report the scoring method with
higher MAP@10 on dev set, MAP@10 with 5 seed
terms, its standard deviation among the different test
term lists, the percentage of the test term lists where
the context type achieves best performance.

Method MAP@10 MAP@20 MAP@50
Linear .78 .71 .59
Concat. .68 .65 .56
MLP .83 .74 .63
Oracle .89 .82 .73

Table 3: MAP@n performance evaluation of the linear
context, concatenation, MLP binary classification and
oracle, with 5 seed terms.

semantic relations and that their combination may
improve the quality of the expanded set.

In addition, performance consistently increases
with the number of seed terms e.g., MAP@10,
MAP@20 and MAP@50 of the linear context are
respectively .66, .58 and .51 with 2 seed terms.

7.2 Context Combination

We provide in Table 3 MAP@n for the centroid
scoring of the linear context and for the MLP clas-
sification with 5 seed terms. For comparison, we
report in ‘Concat.’ row the performance for the
MLP binary classification on the concatenation
of the multi-context term embeddings. In addi-
tion, we report oracle performance assuming we
have an oracle that chooses, for each term list, the
best context type with the best scoring method.
Oracle performance shows that the context types
are indeed complementary. The MLP classifier
which combines all the context types, yields ad-
ditional improvement in the MAP@n compared
to the baseline linear context. Moreover, we ob-
served that the improvement of the MLP combina-
tion over the linear context is preserved with 2 and
10 seed terms. Yet, looking at the oracle, the MLP
combination still does not optimally integrate all
the information captured by the term embeddings.
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8 Conclusion

We proposed a novel approach to combine differ-
ent context embedding types and we showed that
it achieved improved results for the corpus-based
term set expansion use case. In addition, we pub-
lish a dataset and a companion corpus that en-
able comparability and replicability of work in this
field.

For future work, we plan to run similar ex-
periments using recently introduced contextual
embeddings, (e.g., ELMo (Peters et al., 2018),
BERT (Devlin et al., 2018), OpenAI GPT-2 (Rad-
ford et al., 2019)), which are expected to implicitly
capture more syntax than context-free embeddings
used in the current paper. We plan also to investi-
gate the contribution of multi-context term embed-
dings to other tasks in computational semantics.
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