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Abstract

In the medical domain and other scientific ar-
eas, it is often important to recognize differ-
ent levels of hierarchy in entity mentions, such
as those related to specific symptoms or dis-
eases associated with different anatomical re-
gions. Unlike previous approaches, we build a
transition-based parser that explicitly models
an arbitrary number of hierarchical and nested
mentions, and propose a loss that encourages
correct predictions of higher-level mentions.
We further propose a set of modifier classes
which introduces certain concepts that change
the meaning of an entity, such as absence, or
uncertainty about a given disease. Our model
achieves state-of-the-art results in medical en-
tity recognition datasets, using both nested and
hierarchical mentions.

1 Introduction

One of the most common studied tasks in NLP lies
in extracting semantic information from unstruc-
tured text in the form of entities and detecting en-
tity mentions across a single document, in partic-
ular where the mention is located (its span) and
its corresponding classification or entity semantic
type, such as person (PER), location (LOC), orga-
nization (ORG), etc. The task of entity recogni-
tion has long been studied and applied to different
higher level tasks such as question answering (Ab-
ney et al., 2000), coreference resolution (Fragkou,
2017), relation extraction (Mintz et al., 2009;
Miwa and Bansal, 2016; Liu et al., 2017), en-
tity linking (Gupta et al., 2017; Guo and Barbosa,
2014) and event extraction (Feng et al., 2016).
Most of the existing work in Named Entity Recog-
nition and Classification focuses on flat mentions,
usually corresponding to the longest outer men-
tion (Ling and Weld, 2012; Marcinczuk, 2015;
Leaman and Lu, 2016), or using nested mentions
that can capture overlapping mentions within dif-
ferent nested levels (Finkel and Manning, 2009;

Lu and Roth, 2015; Wang et al., 2018; Ju et al.,
2018). One of the main disadvantages of using
simple independent classes to model different hi-
erarchies is that there is no information that con-
veys an explicit hierarchical nature, in a way that
lower level classes help to disambiguate the nature
of higher level classes.

The most common approach to circumvent this
issue involves projecting each lower level class to
an individual label throwing away all of the in-
herent structure of the ontology. This approach is
limited, since it does not propagate information to
higher level classes and it does not use common
information of all children in the ontology. The
ability to identify hierarchical entities is very use-
ful in many fields, in particular in the medical do-
main, where we associate medication, symptoms
and other pathological conditions with more spe-
cific subtypes giving a more refined classification.

Additionally, we introduce the concept of mod-
ifier classes that can alter the meaning of a given
class. Often, in medical records, the doctor states
either the absence or presence of a particular con-
dition, for that purpose we created a modifier level
that acts on a particular class and is associated with
the degree of relevance of that class, for example
in the medical domain it may identify the absence
or probability of certain symptoms/diseases, or re-
fer to their duration (chronic, acute), etc. This con-
cept is of particular use if we consider a hierarchi-
cal model to identify where this modifier actuates.

We test our model against other state-of-the-art
methods modelling nested mentions whose clas-
sification is defined by their projected lower lev-
els. We make use of hierarchical datasets in
the medical field, where these notions are of ex-
treme importance. We evaluate our model us-
ing the GENIA (Ohta et al., 2002) dataset, a big-
ger and more complex proprietary medical corpus
(MED18) with higher hierarchical dependencies
and modifier classes. To summarize, this paper
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makes the following contributions:
• we introduce a novel Hierarchical and Nested

Named Entity Recognition (HNNER) model
based on a neural transition based approach (Dyer
et al., 2015), that is able to handle different levels
of nested mentions and hierarchy,
• we further propose a model that can learn

from modifier classes, allowing to model more
complex and fine grained relations, such as degree
of importance/variants of each class.
• we obtain state-of-the-art performance when

compared with existing nested models with lower
level projected labels (corresponding to the same
hierarchical levels).

2 Related Work

Named entity recognition and classification has
long been a popular task in NLP (Zhou and Su,
2002; McDonald et al., 2005; Ratinov and Roth,
2009; Wang et al., 2013). The first contribution
on detecting nested mentions was proposed by
Shen et al. (2003); Zhang et al. (2004); GuoDong
(2004) and relied mostly on rule-based models.
Later Finkel and Manning (2009) introduced a
constituency parser as the first model-based ap-
proach for nested recognition, followed by work
of Alex et al. (2007) using models based on linear-
Conditional Random Fields (CRFs). Lu and Roth
(2015); Muis and Lu (2017) handcrafted features
to extract nested mentions without modelling their
hidden dependencies using mention hypergraphs,
that can capture nested dependencies with un-
bounded lengths.

With the success of neural based approaches for
NER (Collobert et al., 2011; Chiu and Nichols,
2016; Ma and Hovy, 2016), several work has
been done in classifying nested mentions: Ju
et al. (2018) dynamically modeled each nested
layer as a Long-Short-Term-Memory (LSTM)-
CRF layer (Lample et al., 2016), requiring the
knowledge of the number of nested overlapps to
be known a priori. Katiyar and Cardie (2018) pro-
posed a recurrent neural network to extract fea-
tures to learn an hypergraph structure of nested
mentions, using a BILOU encoding scheme.
This required the creation of additional hyperarcs
whenever a nested mention is encountered. More
recently Wang et al. (2018) used a model based
on a shift reduce parser that builds a forest struc-
ture for nested mentions. This neural approach can
only be applied to classify nested mentions of dif-
ferent spans, meaning a single span cannot corre-
spond to different mentions.

All of the proposed approaches so far, allow
nested mentions classification but have never at-
tempted to model explicit hierarchical and nested
structures. Furthermore, our proposed model ar-
chitecture is more expressive since it allows the
same sequence of words to correspond to distinct
mentions possibly with different hierarchical or
nested levels.

3 Hierarchical Nested Named Entity
Recognition (HNNER)

For a given input sequence of words {w1, w2,
. . . , wn} our model generates a sequence of ac-
tions that identifies nested and hierarchical men-
tions simultaneously.

Our transition-based model allows for several
mentions to start and end at a given location in the
sequence. We make use of an additional stack to
store temporarily the terms corresponding to each
mention, which we denote as word stack. The sys-
tem state s is represented by a stack of words S
containing all the temporary words pertaining to
a mention (the word stack), a buffer of words to
be parsed B, and a stack of actions correspond-
ing to all mentions to be parsed M (the mention
stack) and an output buffer that encode the entity
mentions and other words O. Initially, we define
the starting state as s0 = [M = ∅, S = ∅, B =
{w1, . . . , wn}], O = ∅.

At each state, we apply an action an and change
the state of the system sn: by adding elements or
resetting the word stack and moving the resulting
mention to the output buffer, popping the top most
word of the buffer and adding or popping actions
from the mention stack. We consider four types of
possible system actions a ∈ A:
• OUT pops the top element of the buffer, and

moves it to the output unaltered,
• SHIFT shifts the top element of the buffer to

the word stack,
• TRANSITION(a) indicates the start of a men-

tion, adds action label a to the mention stack,
• REDUCE(a) indicates the end of a mention and

pops all elements of the mention stack until the last
recorded transition and inserts the resulting men-
tion (encoded as the output of an LSTM) in the
output buffer. Since we only allow reductions of
actions that remain in the top of the mention stack,
we transition first to longer mentions, whenever
more than one mention starts at the same point in
the word sequence.

For each state of the system sn we consider the
subset of all possible valid actions A(an−1, sn),
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Figure 1: Transition-shift-reduce mechanism for hierarchical nested mention recognition. Transition is indicated
by arrows pointing upwards, Reduce by downward arrows, Out horizontal arrows when mention stack is empty,
and Shift action when non-empty. Different levels of the mention stack indicate the number of nested layers, while
mention color indicates the hierarchical level (darker blue for level 0 and lighter as we go up in the hierarchy).

that depends on the previous action generated and
the current parser state, in particular the mention
stack. We consider a simple set of rules: for hi-
erarchical mentions we only allow transitions to
lower levels in the hierarchy if the upper levels ex-
ist in the mention buffer, meaning transitions of
the form TRANSITION(a > b) where the symbol
> indicates that b is a lower level hierarchy of class
a and is only admitted if TRANSITION(a) exists in
the mention stack. Our model allows an arbitrary
number of hierarchies since, without knowing this
number beforehand; we only allow reductions of
the top most element in the mention stack, this
step requires an ordering of nested mentions from
longer to shorter spanning windows; we also only
allow SHIFT actions if the mention stack is non-
empty.

A mention containing a single word requires
three actions to be considered: TRANSITION(a),
SHIFT and REDUCE(a). Using this approach,
we can model consecutive transitions of different
mentions, multiple hierarchical as well as nested
mentions, as long as they remain without over-
laps.1 For modifier classes, we model each indi-
vidual modifier as a top level class. Figure 2 pro-
vides an example of a sequence of hierarchical and
nested mentions. The terminal state is achieved
when the word buffer is empty and all the elements
of the mention stack have been reduced.

1We consider only non overlapping mentions disregarding
any occurrences of the form TRANSITION(a)- SHIFT- TRAN-
SITION(b)- SHIFT- REDUCE(a)- SHIFT- REDUCE(b).

4 HNNER Model

Our transition-based model draws inspiration from
the transition based parser proposed by Dyer et al.
(2015). For a given sequence of input words W =
{w1, . . . , wN}we represent each word as a low di-
mensional vector e(wn) ∈ Rdw for each word in
the vocabulary wn ∈ [V ]. To better capture mor-
phological and orthographic features of words, we
consider each word vector the product of con-
catenating a fixed word lookup embedding l(wn)
with its learned character sequence representation
c(wn), such that e(wn) = [l(wn); c(wn)]. We
compute the character embeddings using a bidi-
rectional LSTM following work of Ma and Hovy
(2016); Lample et al. (2016). We initialize char-
acter embeddings randomly, while each word em-
bedding is retrieved from a pretrained look-up rep-
resentation. For words out-of-vocabulary we con-
sider the word’s character based representation
and we train a representation of the unknown word
embedding.

We associate an LSTM with the word stack
LSTMS({e(wj)}wj∈S) whose inputs correspond
to the words shifted from the buffer, another with
the mention stack LSTMM ({an}an∈M ) with in-
puts from mentions that the system initialized, and
a last LSTM that models the output of the sys-
tem LSTMO({e(on)}on∈O), whose inputs corre-
spond to the latest state of the word LSTM or
the word embeddings, depending on whether the
word is in the word stack or not, respectively. We
start by filling the input buffer B0 = [wn, wn −
1, . . . , w0] with the sequence of word embeddings
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Models GENIA flat NER
P R F1

Finkel et al. (2004) 71.62 68.56 70.06
GuoDong (2004) 75.99 69.42 72.55
HNNER 76.11 69.43 72.62

Table 1: Results on JNLPBA with flat mentions.

to be parsed in reverse order, and leave the first
word at the top of the buffer. For a given state of
the system si = [M,S,B,O] we compute the sys-
tem state representation pi for each action i as a
nonlinear transformation of the last LSTM state of
the word stack hw ∈ Rdw , the last LSTM state of
the mention stack hm ∈ Rdm and the top most el-
ement of the buffer bn ∈ Rdw and the last element
of the output LSTM on ∈ Rdo :

pi = tanh(W [hw;hm; bn;on] + b),

with the bias b ∈ Rk and linear weights W ∈
R(2dw+dm+do)×k.

The system state pi contains all the informa-
tion required to make predictions about the cur-
rent action of the parser ai ∈ A, according to a
set of possible valid actions that we compute with
simple rules V(an−1, sn). Namely, we consider
only as viable actions: SHIFT actions if it fol-
lows after a TRANSITION; REDUCE actions can
only be applied in the reverse order of the pre-
viously applied TRANSITIONS; OUT actions are
only allowed if there is no action to be reduced,
and hierarchies must respect their parent transi-
tions, meaning TRANSITION(a¿b) is not allowed if
TRANSITION(a) has not been created first. Modi-
fier classes are considered as a separate class of la-
bels that may be applied in any hierarchical level.

The system greedily decides the current action
based on:

p(an = a | pn) =
expα>a pn∑

a′∈V expα
>
a′pn

We train our model to maximize the log-likelihood
of each action in a batch of M sequences:

L = −
M∑
i=1

N∑
n=1

βH−L(an) log p(an | pn),

weighted by a different value for each hierarchi-
cal level β < 1, where the level of each action
L(an) = 0 for the top levels and decreases as we
go down in the hierarchy, and H denotes the total
number of levels.

Datasets GENIA MED18
train dev test train dev test

vocabulary 74,560 51,879
pretrained vocab. 23,813 49,782
sentences 13,416 3,147 1,656 73,099 4,216 4,018
mentions 35,506 8738 4,492 495,148 29,522 28,458

hier. L0 17,753 4,369 2,246 230,912 13,702 13,271
hier. L1 17,753 4,369 2,246 139,665 8,353 7,933
hier. L2 – – – 123,291 7,372 7,132
hier. L3 – – – 1,200 95 122

flat actions 5 26
hier. actions 23 531

hier. L0 5 66
hier. L1 18 126
hier. L2 – 325
hier. L3 – 14

Table 2: Dataset description: total number of mentions,
sentences, words and actions. Number of mentions and
types of actions per hierarchical layer

5 Experimental Results

Datasets: We compare our HNNER model us-
ing different nested and hierarchical scenarios.
First, we compare against standard baselines
for flat NER using the splits and the JNLPBA
dataset (Gridach, 2017), considering only flat and
the topmost entities in the GENIA dataset (Ohta
et al., 2002), following the same splits and entity
types used by Finkel and Manning (2009). We
used the GENIA dataset (Ohta et al., 2002), con-
sisting of 2000 MEDLINE abstracts with 36 fine-
grained entity categories. We also employed the
same conversion to the main 5 entity types (and
left the DNA and RNA subtypes the hierarchical
experiments). We used pretrained word embed-
dings for GENIA using PUBMED dataset.2 We
further tested on a more complex medical dataset
MED18, 3 comprising 3000 documents of anno-
tated clinical reports in Portuguese. We consider
4 levels of hierarchy and 531 fine-grained entity
categories. We trained word embeddings for this
dataset using word2vec (Mikolov et al., 2013) on
over around 10M documents of clinical records.

Table 2 in 5 shows a description of the datasets.
The MED18 dataset is larger and more complex
than GENIA, containing a total of 509869 men-
tions, 531 different hierarchical classes with 4 lev-
els of hierarchy, while GENIA altough initialy
contains 36 fine-grained classes, we only report on
23 different classes with 2 levels of hierarchy.

Models and Baselines: We evaluate our HN-
NER model against state-of-the-art models for

2Embeddings available in http://bio.nlplab.
org/#source-data

3a proprietary dataset for Portuguese Medical Diagnosis

http://bio.nlplab.org/#source-data
http://bio.nlplab.org/#source-data
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Nested Models Nested GENIA
P R F1

Finkel and Manning (2009) 75.4 65.9 70.3
Lu and Roth (2015) 72.5 65.2 68.7
Muis and Lu (2017) 75.4 66.8 70.8
Wang et al. (2018) 76.0 69.4 71.6
HNNER 74.0 72.0 73.0

Table 3: Results on GENIA with nested mentions.

nested mentions: a CRF-based constituency parser
(Finkel and Manning, 2009); a nested NER model
using mention hypergraphs (Lu and Roth, 2015);
a multigraph representation with mention sepa-
rators for overlapping mentions (Muis and Lu,
2017); a neural layered model for each nested
layer (Ju et al., 2018); and a neural shift-reduce
neural parser for nested mentions (Wang et al.,
2018). We also, evaluated HNNER against the
non-hierarchical nested version with the same
number of hierarchical levels projected as a differ-
ent independent class (HNNER+SUB). We train
our model using Adam gradient updates (Kingma
and Ba, 2014) using a learning rate of 0.001 and a
batch size of 32 sentences. We employed dropout
of 0.1 on all input layers (Srivastava et al., 2014).
We used β = 0.8 for GENIA and β = 1.0
for MED18. For higher level datasets this value
should be closer to one in order to not overshadow
the effect of lower hierarchies, which are often the
most frequent ones.

Results Our HNNER model obtains state-of-
the-art results when compared with other flat (Ta-
ble 1) and nested NER models (Table 3).

Learning hierarchical mentions explicitly using
our model (HNNER) achieves better performance
than using a set of projected subcategories inde-
pendently, (HNNER+SUB) in Table 4. The pro-
posed approach is still able to perform well when
we deal with higher levels of hierarchy and more
nested classes, which we can observe in the results
using the MED18 dataset. As we progress towards
higher level hierarchies the gap performance in-
creases between projected subclasses and explicit
hierarchical modeling. The performance of level
L3 drops when compared with lower level levels,
because of the scarce number of existing mentions
for this level (see §5).

6 Conclusions and Future Work

We propose a hierarchical model based on a
transition-based parser that is able to recognize
hierarchical and nested mentions with undefined
levels of complexity. We tested the performance

Hierarchical Models L2-GENIA L3-MED18
P R F1 P R F1

HNNER+SUB 69.3 64.5 66.8 73.2 71.7 72.5
HNNER+SUB-L0 73.5 68.4 70.9 74.4 71.3 72.8
HNNER+SUB-L1 65.1 60.6 62.8 72.7 72.7 72.7
HNNER+SUB-L2 - - - 72.1 72.1 72.1
HNNER+SUB-L3 - - - 37.5 36.9 37.2
HNNER 69.5 68.5 70.0 73.7 72.7 73.2
HNNER-L0 73.6 72.6 73.1 74.2 73.1 73.6
HNNER-L1 65.3 64.4 64.8 73.8 72.8 73.3
HNNER-L2 - - - 73.3 72.3 72.8
HNNER-L3 - - - 38.9 40.2 39.5

Table 4: Results on GENIA and MED18 with nested
mentions with all the subcategories, and performance
per hierarchical layer.

of our model using two medical datasets GENIA
and MED18, and reported state-of-the-art results
on flat, nested and hierarchical datasets. We leave
as future work extending this approach to more
general overlapping mentions with non projective
overlaps and exploiting schedule sampling tech-
niques to make the algorithm less prone to errors
during test-time.
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