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Abstract

The shift to electronic medical records
(EMRs) has engendered research into machine
learning and natural language technologies to
analyze patient records, and to predict from
these clinical outcomes of interest. Two ob-
servations motivate our aims here. First, un-
structured notes contained within EMR often
contain key information, and hence should be
exploited by models. Second, while strong
predictive performance is important, inter-
pretability of models is perhaps equally so
for applications in this domain. Together,
these points suggest that neural models for
EMR may benefit from incorporation of at-
tention over notes, which one may hope will
both yield performance gains and afford trans-
parency in predictions. In this work we per-
form experiments to explore this question us-
ing two EMR corpora and four different pre-
dictive tasks, that: (i) inclusion of attention
mechanisms is critical for neural encoder mod-
ules that operate over notes fields in order to
yield competitive performance, but, (ii) unfor-
tunately, while these boost predictive perfor-
mance, it is decidedly less clear whether they
provide meaningful support for predictions.
Code to reproduce all experiments is avail-
able at https://github.com/successar/
AttentionExplanation.

1 Introduction

The adoption of electronic medical records
(EMRs) has spurred development of machine
learning (ML) and natural language processing
(NLP) methods that analyze the data these records
contain; for a recent survey of such efforts, see
(Shickel et al., 2018). Key information for down-
stream predictive tasks (e.g., forecasting whether a
patient will need to be readmitted within 30 days)
may be contained within unstructured notes fields
(Boag et al., 2018; Jin et al., 2018).

In this work we focus on the modules within
neural network architectures responsible for en-
coding text (notes) into a fixed-size representation
for consumption by downstream layers. Patient
histories are often long and may contain informa-
tion mostly irrelevant to a given target. Encoding
this may thus be difficult, and text encoder mod-
ules may benefit from attention mechanisms (Bah-
danau et al., 2014), which may be imposed to em-
phasize relevant tokens.

In addition to mitigating noise introduced by
irrelevant tokens, attention mechanisms are often
seen as providing interpretability, or insight into
model behavior. However, recent work (Jain and
Wallace, 2019) has argued that treating attention
as explanation may, at least in some cases, be mis-
guided. Interpretability is especially important for
clinical tasks, but incorrect or misleading ratio-
nales supporting predictions may be particularly
harmful in this domain; this motivates our focused
study in this space.

To summarize, our contributions are as fol-
lows. First, we empirically investigate whether
incorporating standard attention mechanisms into
RNN-based text encoders improves the perfor-
mance of predictive models learned over EMR.
We find that they do; inclusion of standard additive
attention mechanism in LSTMs consistently yields
absolute gains of∼10 points in AUC, compared to
an LSTM without attention.1 Second, we evaluate
the induced attention distributions with respect to
their ability to ‘explain’ model predictions. We
find mixed results here, similar to (Jain and Wal-
lace, 2019): attention distributions correlate only
weakly (though almost always significantly) with

1Indeed, across both corpora and all tasks considered,
inattentive LSTMs perform considerably worse than logis-
tic regression and bag-of-words (BoW); introducing attention
makes the neural variants competitive, but not decisively bet-
ter. We hope to explore this point further in future work.

https://github.com/successar/AttentionExplanation
https://github.com/successar/AttentionExplanation
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gradient measures of feature importance, and we
are often able to identify very different attention
distributions that nonetheless yield equivalent pre-
dictions. Thus, one should not in general treat at-
tention weights as meaningful explanation of pre-
dictions made using clinical notes.

2 Models

We experiment with multiple standard encoding
architectures, including: (i) a standard BiLSTM
model; (ii) a convolutional model, and (iii) an
embedding projection based model. We cou-
ple each of these with an attention layer, follow-
ing (Jain and Wallace, 2019). Concretely, each
encoder yields hidden state vectors {h1, ..., hT },
and an attention distribution {α1, ..., αT } is in-
duced over these according to a scoring function
φ: α̂ = softmax(φ(h)) ∈ RT . In this work
we consider Additive similarity functions φ(h) =
vT tanh(W1h+b) (Bahdanau et al., 2014), where
v,W1,b are model parameters. Predictions are
made on the basis of induced representations: ŷ =
σ(θ · hα) ∈ R|Y|, where hα =

∑T
t=1 α̂t · ht and θ

are top-level discriminative (e.g., softmax) param-
eters.

3 Datasets and Tasks

We consider five tasks over two independent EMR
datasets. The first EMR corpus is MIMIC-III
(Johnson et al., 2016), a publicly available set of
records from patients in the Intensive Care Unit
(ICU). We follow prior work in modeling aims and
setup on this dataset. Specifically we consider the
following predictive tasks on MIMIC.

1. Readmission. The task here is to predict pa-
tient readmission within 30 days of discharge
or transfer from the ICU. We follow the cohort
selection of (Lin et al., 2018). We assume the
model has access to all notes from patient ad-
mission up until the discharge or transfer from
the ICU (the point of prediction).

2. Retrospective 1-yr mortality. We aim to pre-
dict patient mortality within one year. In this
we follow the experimental setup of (Ghassemi
et al., 2014). The model is provided all notes up
until patient discharge (excluding the discharge
summary).

3. Phenotyping. Here we aim to predict the top
25 acute care phenotypes for patients (asso-
ciated at discharge with the admission). For

this we again rely on the framing established
in prior work (Harutyunyan et al., 2017). The
model has access to all notes from admission
up until the end of the ICU stay. Note that
this may be viewed as a multilabel classifica-
tion task, similar to (Harutyunyan et al., 2017;
Lipton et al., 2015).

The second EMR dataset we use comprises
records for 7174 patients from Mass General Hos-
pital who underwent hip or knee arthroplasty pro-
cedures. Use of this data was approved by an In-
stitutional Review Board (IRB protocol number
2016P002062) at Partners Healthcare.

1. Predicting Hip and Knee Surgery Compli-
cations. We consider patients who underwent
hip or knee arthroplasty procedure; we aim to
classify these patients with respect to whether
or not they will be readmitted within 30 days
due to surgery-related complications. We run
experiments over hip and knee surgery patients
separately.

4 Experiments

Following the analysis of (Jain and Wallace, 2019)
but focusing on clinical tasks, we perform a set
of experiments on these corpora that aim to assess
the degree to which attention mechanisms aid (or
hamper) predictive performance, and the degree
to which the induced attention weights might be
viewed as providing explanations for predictions.

The latter can be assessed in many ways, de-
pending on one’s view of interpretability. To
address the question of whether it is reason-
able to treat attention as providing interpretability
broadly, we perform experiments that interrogate
multiple properties we might expect these weights
to exhibit if so. Specifically, we: probe the de-
gree to which attention weights correlate with al-
ternative gradient-based feature importance mea-
sures, which have a more straight-forward inter-
pretation (Ross et al., 2017; Li et al., 2016); eval-
uate whether we are able to identify ‘counterfac-
tual’ attention distributions that change the atten-
tion weights (focus) but not the prediction; and,
in an exercise novel to the present work, we con-
sider replacing attention weights with log odds
scores from a logistic regression (linear) model.
We provide a web interface to interactively browse
the plots for all datasets, model variants, and
experiment types: https://successar.github.

io/AttentionExplanation/docs/.

https://successar.github.io/AttentionExplanation/docs/
https://successar.github.io/AttentionExplanation/docs/
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Figure 1: Median change in output ∆ŷmed (x) densities in relation to the max attention (max α̂) (y) ob-
tained by randomly permuting instance attention weights. Colors denote classes: negative (�) and positive (�);
phenotyping (e) is not binary. Top row shows results for BiLSTM encoders; middle for CNNs; bottom for
Embedding Projection.
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Figure 2: Densities of maximum JS divergences (ε-max JSD) (x-axis) as a function of the max attention (y-axis)
in each instance for obtained between original and adversarial attention weights. Colors are as above. Top row
shows results for BiLSTM encoders; middle for CNNs; bottom for Embedding Projection.
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Dataset Class Mean ± Std. Sig. Frac.
LSTM Encoder

Readmission 0 0.37 ± 0.04 1.00
1 0.38 ± 0.05 1.00

Mortality 0 0.33 ± 0.05 1.00
1 0.35 ± 0.06 1.00

Knee Surgery 0 0.38 ± 0.07 1.00
1 0.49 ± 0.08 1.00

Hip Surgery 0 0.24 ± 0.07 1.00
1 0.33 ± 0.09 1.00

Phenotyping Overall 0.24 ± 0.06 1.00
Projection Encoder

Readmission 0 0.65 ± 0.03 1.00
1 0.64 ± 0.03 1.00

Mortality 0 0.76 ± 0.02 1.00
1 0.76 ± 0.02 1.00

Knee Surgery 0 0.65 ± 0.05 1.00
1 0.60 ± 0.06 1.00

Hip Surgery 0 0.59 ± 0.09 1.00
1 0.55 ± 0.09 1.00

Phenotyping Overall 0.89 ± 0.02 1.00

Table 1: Mean and std. dev. of correlations between
gradient importance measures and attention weights.
Sig. Frac. columns report the fraction of instances for
which this correlation is statistically significant.

4.1 Gradient Experiments

To evaluate correlations between attention weights
and gradient based feature importance scores, we
compute Kendall-τ measure (Table 1) between at-
tention scores and gradients with respect to the to-
kens comprising documents. Across both corpora
and all tasks we observe only a modest correla-
tion between the two for BiLSTM model (the pro-
jection based model have higher correspondence,
which is expected for such simple architectures).
This may be problematic for attention as an ex-
planatory mechanism, given the explicit relation-
ship between gradients and model outputs. (Al-
though we note that gradient based methods them-
selves pose difficulty with respect to interpretation
(Feng et al., 2018)).

4.2 Counterfactual Experiments

We investigate if model predictions would have
differed, had the model attended to different words
(i.e., under counterfactual attention distributions).

We follow the two strategies from (Jain and
Wallace, 2019) for constructing counterfactual at-
tention distributions. In the first we randomly per-
mute the empirical weights obtained from the at-
tention module prior to inducing the weighted rep-
resentation hα. We repeat this process 100 times
and record the median change in output.

The second strategy is adversarial; we explic-
itly aim to identify attention weights that are max-
imally different from the observed weights, with

Model ROC AUC PR AUC
Readmission
LR + BoW 0.70 0.29
LSTM 0.63 0.22
LSTM + Additive Attention 0.71 0.30
LSTM + Additive Attention
(Log Odds at Test) 0.69 0.26
LSTM + Log Odds Attention 0.71 0.29
Mortality
LR + BoW 0.82 0.46
LSTM 0.74 0.29
LSTM + Additive Attention 0.83 0.47
LSTM + Additive Attention
(Log Odds at Test) 0.80 0.41
LSTM + Log Odds Attention 0.82 0.42
Knee Surgery Complication
LR + BoW 0.80 0.39
LSTM 0.66 0.18
LSTM + Additive Attention 0.79 0.35
LSTM + Additive Attention
(Log Odds at Test) 0.81 0.34
LSTM + Log Odds Attention 0.81 0.38
Hip Surgery Complication
LR + BoW 0.76 0.32
LSTM 0.63 0.16
LSTM + Additive Attention 0.75 0.24
LSTM + Additive Attention
(Log Odds at Test) 0.74 0.26
LSTM + Log Odds Attention 0.78 0.29
Phenotyping
LR + BoW 0.86 0.59
LSTM 0.78 0.41
LSTM + Additive Attention 0.86 0.58
LSTM + Additive Attention
(Log Odds at Test) 0.81 0.48
LSTM + Log Odds Attention 0.85 0.56

Table 2: Predictive results across all datasets and tasks
using different models and attention variants.

the constraint that this does not change the model
output by more some small value ε. In both cases,
all other model parameters are held constant.

In Figures 1 and 2, we observe that predictions
are unchanged under alternative attention config-
urations in a significant majority of cases across
all architectures. Thus, attention cannot be viewed
casually in the sense of ‘the model made these pre-
dictions because these words were attended to’.
Alternative attention distributions that yield equiv-
alent predictions would seem to be equally plausi-
ble under the view of attention as explanation.

4.3 Log Odds Experiments

As a novel exercise, we also consider swapping
log-odds scores for features (from an LR model
operating over BoW) in for attention weights in
BiLSTM model. Specifically, we induce a ‘log
odds attention’ over an input by substituting the
absolute value of log odds (as estimated via LR) of
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Original vs Adversarial Attention Difference : Sed dolorem sed adipisci ipsum dolor dolorem. Ut adipisci magnam tempora.
Modi # eius : tempora change ipsum adipisci tempora tracheobronchomalacia quaerat dolor. Numquam est dolore labore est
neque. respiratory failure Ipsum quiquia etincidunt labore modi. Dolorem aliquam dolore amet. Amet est consectetur modi
neque. Porro respiratory failure etincidunt quaerat est neque dolor quaerat. Est quaerat est adipisci ipsum. Sit dolore quisquam
ipsum non neque quiquia aliquam. Ut ipsum adipisci labore tempora quaerat tempora labore. Ipsum numquam voluptatem
consectetur. Aliquam voluptatem , eius numquam. Velit generalized ut non numquam magnam sed modi. Consectetur porro .
heart etincidunt eius consectetur , quaerat amet. Amet dolorem is difficult dolor consectetur etincidunt sed effusions quiquia
aliquam. Porro etincidunt dolore labore no dolore dolorem aliquam. Tempora etincidunt quisquam aliquam numquam eius ut.
tracheostomy Modi modi amet voluptatem
Original Output: 0.694 Adversarial Output: 0.699

Original vs Log Odds Attention Difference : Non magnam quiquia magnam magnam quaerat. Ut etincidunt magnam
voluptatem velit eius. Dolorem dolorem velit dolor porro ut etincidunt. Consectetur dolor voluptatem cystic brain mass quaerat
surgical resection est magnam etincidunt. Ipsum neque dolorem sed consectetur est. Magnam modi voluptatem dolorem tempora
sed ut. Dolore dolor tempora eius aliquam quisquam. Dolor quisquam eius sed labore dolore sit velit. Magnam aliquam
quisquam numquam. Aliquam sed sed modi neque. Dolor chronic quiquia voluptatem adipisci quaerat adipisci. . . . . . . Magnam
velit quaerat adipisci. Ut cystic brain mass adipisci velit modi. Sed aliquam astrocytoma est porro. Labore resection eius
voluptatem sit quisquam consectetur modi. Est ipsum tumor dolore
Original Output: 0.798 Log Odds Output : 0.800

Figure 3: Heatmaps showing difference in Original and counterfactual attention distributions over clinical notes
from MIMIC, where we have replaced text with lorem ipsum for all but the most relevant tokens in order to preserve
privacy (red implies counterfactual attention is higher and blue vice-versa). These show different cases where we
can significantly change the attention distribution (either adversarial (Top) or using Log Odds (Bottom) while
barely affecting the prediction.
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Figure 4: Change in output (y-axis) using original attention vs Log Odds attention during predictions against JSD
between these two distributions (x-axis). These results are for LSTM encoders.

the word present at each position and passing this
through a softmax: αLO = softmaxt({βwt}Tt=1)
where wt is the word at position t and β are log-
odds estimates.

These scores enjoy a clear interpretation under a
linear regime. We thus explore two ways of using
them with attentive neural models: (1) Swapping
in these in as attention weights place of hα at test
(prediction) time; (2) Use the (fixed) ‘log-odds at-
tention’ during training, in place of learning the
attention distribution end-to-end.

Table 2 shows that using log odds attention at
test time does not degrade the performance sig-
nificantly in most datasets (and actually improves
performance for the Knee Surgery Complications
task). Similarly, using log odds attention during
training also yields similar performance to stan-
dard attention variants. But as we see in Figure 4,
log odds attention distributions can differ consid-
erably from learned attention distributions, again
highlighting the difficulty of interpreting attention
weights.

5 Discussion and Conclusions

Across two EMR datasets and five predictive
tasks, we have shown that (i) attention mech-
anisms substantially boost the performance of
LSTM text encoders passed over clinical notes,
but, (ii) treating attention weights as ‘explana-
tions’ for predictions is unwarranted. The latter
confirms that the recent general findings of (Jain
and Wallace, 2019) hold in the clinical domain;
this is important because interpretability in this
space is critical for obvious reasons.

We hope that this paper inspires work on trans-
parent attention mechanisms for models that make
predictions on the basis of EMR.
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An Analysis of Attention over Clinical Notes for Predictive Tasks:
Appendix

A Dataset Statistics

Task |V | Avg. length Train size Test size
Readmission 36464 3865 23790 / 5499 4265 / 735
Mortality 34030 3901 21347 / 4675 4323 / 677
Hip Surgery Complications 10842 2624 3281 / 369 719 / 75
Knee Surgery Complications 10842 2586 2664 / 324 582 / 48
Phenotyping 10842 3641 31075 5000

Table 3: Dataset characteristics. For train and test size, we list the cardinality for each class, where applicable: 0/1
for binary classification and overall for multilabel. Average length is in tokens.

The Phenotypes studied in Phenotyping task are -
Acute and unspecified renal failure, Acute cerebrovascular disease, Acute myocardial infarction, Car-

diac dysrhythmias, Chronic kidney disease, Chronic obstructive pulmonary disease and bronchiectasis,
Complications of surgical procedures or medical care, Conduction disorders, Congestive heart failure
- nonhypertensive, Coronary atherosclerosis and other heart disease, Diabetes mellitus with complica-
tions, Diabetes mellitus without complication, Disorders of lipid metabolism, Essential hypertension,
Fluid and electrolyte disorders, Gastrointestinal hemorrhage, Hypertension with complications and sec-
ondary hypertension, Other liver diseases, Other lower respiratory disease, Other upper respiratory dis-
ease, Pleurisy - pneumothorax - pulmonary collapse, Pneumonia (except that caused by tuberculosis or
sexually transmitted disease), Respiratory failure - insufficiency - arrest (adult), Septicemia (except in
labor), Shock .

B Model Details

For all datasets, we use spaCy for tokenization. We map out of vocabulary words to a special <unk>
token and map any word with numeric characters to ‘qqq’. Each word in the vocabulary was initialized
using pretrained embeddings (Pyysalo et al., 2013). We initialize words not present in the vocabulary
using samples from a standard Gaussian (µ = 0, σ2 = 1).

B.1 BiLSTM
We use an embedding size of 300 and hidden size of 128 for all datasets. The model was regularized
with L2 regularization (λ = 10−5) applied to all parameters. We use a sigmoid activation function for
all binary classification tasks. We treat each phenotype classification as binary classification and take the
mean loss over labels during training. We trained the model using maximum likelihood loss function
with Adam Optimizer with default parameters in PyTorch.

B.2 CNN
We use an embedding size of 300 and 4 kernels of sizes [1, 3, 5, 7], each with 64 filters, giving a final
hidden size of 256. We use ReLU activation function on the output of the filters. All other configurations
remain same as BiLSTM.

B.3 Average
We use the embedding size of 300 and a projection size of 256 with ReLU activation on the output of the
projection matrix. All other configurations remain same as BiLSTM.

https://spacy.io/

