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Preface

This volume contains papers from the 2nd Workshop on Clinical Natural Language Processing
(ClinicalNLP), held at NAACL 2019.

Clinical text offers unique challenges that differentiate it not only from open-domain data, but from other
types of text in the biomedical domain as well. Notably, clinical text contains a significant number of
abbreviations, medical terms, and other clinical jargon. Clinical narratives are characterized by non-
standard document structures that are often critical to overall understanding. Narrative provider notes
are designed to communicate with other experts while at the same time serving as a legal record. Finally,
clinical notes contain sensitive patient-specific information that raise privacy and security concerns
that present special challenges for natural language systems. This workshop focuses on the work that
develops methods to address the above challenges, with the goal to advance state-of-the-art in clinical
NLP.

This year, we received the total of 28 submissions, out of which 10 were accepted as oral presentations
and 10 as posters.
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Effective Feature Representation for Clinical Text Concept Extraction
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Abstract

Crucial information about the practice of
healthcare is recorded only in free-form text,
which creates an enormous opportunity for
high-impact NLP. However, annotated health-
care datasets tend to be small and expensive
to obtain, which raises the question of how to
make maximally efficient uses of the available
data. To this end, we develop an LSTM-CRF
model for combining unsupervised word rep-
resentations and hand-built feature representa-
tions derived from publicly available health-
care ontologies. We show that this com-
bined model yields superior performance on
five datasets of diverse kinds of healthcare text
(clinical, social, scientific, commercial). Each
involves the labeling of complex, multi-word
spans that pick out different healthcare con-
cepts. We also introduce a new labeled dataset
for identifying the treatment relations between
drugs and diseases.

1 Introduction

The healthcare system generates enormous quanti-
ties of data, but its tools for analytics and decision-
making rely overwhelmingly on a narrow subset of
structured fields, especially billing codes for pro-
cedures, diagnoses, and tests. The textual fields
in medical records are generally under-utilized or
completely ignored. However, these clinical texts
are our only consistent source of information on a
wide variety of crucial factors – hypotheses con-
sidered and rejected, treatment rationales, obsta-
cles to care, brand recognition, descriptions of un-
certainty, social and lifestyle factors, and so forth.
Such information is essential to gaining an accu-
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Figure 1: Model diagram. In our full model, words are
represented by pretrained ELMo embeddings, which
feed into LSTM cells, and by sparse ontology-derived
feature representations, which are fed to a dense layer
with dropout to produce a lower-dimensional represen-
tation that is concatenated with the hidden states of the
LSTM. The resulting mixed feature representation is
fed into a CRF layer that forms the basis for token-level
label predictions. We assess this full model against
variants without the LSTM or hand-built features to
motivate the full version.

rate picture of the healthcare system and the ex-
periences of individual patients, creating an enor-
mous opportunity for high-impact NLP.

However, annotated clinical text datasets are
scarce and tend to be small, for two reasons. First,
data access is usually highly limited because of
privacy considerations; the inherent richness of
language data means that de-identification is hard
or impossible (Uzuner et al., 2007). Second, be-
cause healthcare concepts are complex, the needed
annotations generally must be provided by domain
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specialists who are trained both in the practice of
healthcare and in the interpretation of healthcare
records. Such experts are in high demand, and the
annotation work they do is intellectually challeng-
ing, so the annotated datasets they produce are, by
any measure, very expensive. The result is that
even the largest annotated clinical text datasets are
small by comparison with those from other areas
of NLP, and this has profound consequences for
the kinds of models that are viable in this space.

In this paper, we define a hybrid LSTM-CRF
model that is effective for real-world clinical text
datasets. The architecture is sketched in fig-
ure 1. Its crucial property is that it synthesizes
two kinds of feature representation: dense repre-
sentations that can be trained on any large text
corpus (not necessarily using clinical text) and
sparse, high-dimensional feature representations
based on hand-built feature functions. Hand-built
feature functions are especially powerful in health-
care because they can leverage the numerous high-
quality medical lexicons and ontologies that are
publicly available. As a result, such features can
achieve impressive coverage with relatively little
additional effort.

We show that this combined model yields supe-
rior performance on five datasets of diverse kinds
of healthcare text: two clinical, one social me-
dia, one scientific, and one commercial/regulatory
(official drug labels). Each task involves the la-
beling of complex, multi-word spans that pick
out diverse healthcare concepts: the Chemical–
Disease Relation dataset (CDR; Wei et al. 2015);
the Penn Adverse Drug Reaction Twitter dataset
(ADR; Nikfarjam et al. 2015); a new disease diag-
nosis dataset; a new prescription reasons dataset
that involves identifying complex REASON spans
for drug–prescription actions; and a new dataset of
10K drug–disease treatment descriptions, which
we release with this paper.

2 Models

Our full model is depicted schematically in fig-
ure 1. Its modular structure defines a number of
variations that allow us to quantify the value of in-
cluding dense and sparse feature representations
obtained from diverse sources.

Individual words are represented in two ways
in the full model: with dense, pretrained vectors
and with sparse, high-dimensional feature repre-
sentations derived from hand-built feature func-

tions. If the dense representations are removed,
the LSTM cells are also removed, resulting in a
standard CRF (Lafferty et al., 2001; Sutton and
McCallum, 2011). If the sparse representations
are removed, the result is a standard LSTM-based
RNN (Hochreiter and Schmidhuber, 1997).

We explore two ways of initializing the dense
representations: random initialization according
to the method of Glorot and Bengio (2010) and
the ELMo embeddings released by Peters et al.
(2018). The ELMo embeddings were trained on
the 1 billion word benchmark of Chelba et al.
(2013) – general newswire text not specialized to
the healthcare space. What is special about ELMo
embeddings, as compared to more standard word
representation learning, is that they are obtained
from the parameters of a full language model, so
that each word’s representation varies by, and is
sensitive to, its linguistic context; see also Mc-
Cann et al. 2017; Radford et al. 2018.

The nature of the hand-built feature representa-
tions varies by task, so we leave most of the details
to section 3. All the models featurize each word
in part using the word and part-of-speech tag of
the current word and the preceding and following
four words. They also include features that seek
to characterize the nature of the semantic envi-
ronment: markers of negation, uncertainty, hedg-
ing, and other core task-specific contextual cues.
Finally, the feature functions make extensive use
of drug and disease lexicons to identify the types
of words. The drug lexicons are RxNorm, the
National Drug Code (NDC), FDA Drug Labels,
FDA Orange Book, and the OpenFDA fields found
in a number of public FDA datasets (e.g., Drug
Adverse Events). The disease lexicons are de-
rived from historical ICD-9 and ICD-10 code sets,
SNOMED-CT (Spackman et al., 1997), the Dis-
ease Ontology (Schriml et al., 2011; Kibbe et al.,
2014), and the Wikidata graph (Vrandečić and
Krötzsch, 2014). The wealth and diversity of these
sources is typical of healthcare and highlights the
potential for taking advantage of such resources
to help overcome the challenges of small datasets.
Table A1 shows an example of hand-built features.

In the full model, we include a dense layer that
transforms the sparse feature representations, and
we apply dropout (Hinton et al., 2012) to this
layer. These transformed representations are con-
catenated with the hidden states of the LSTM to
produce the full representations for each word.
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Dataset Example

Diagnosis Detection Asymptomatic/POSITIVE bacteriuria/POSITIVE , could be
neurogenic/CONCERN bladder/CONCERN disorder/CONCERN .

Prescription Reasons I will go ahead and place him on Clarinex/PRESCRIBED for/REASON

his/REASON seasonal/REASON allergic/REASON rhinitis/REASON .

Penn Adverse Drug
Reactions (ADR)

#TwoThingsThatDontMixWell venlafaxine and alcohol- you’ll cry/ADR
and throw/ADR chairs/ADR at your mom’s BBQ.

Chemical–Disease
Relations (CDR)

Ocular/DISEASE and/DISEASE auditory/DISEASE toxicity/DISEASE in
hemodialyzed patients receiving desferrioxamine/DRUG .

Drug–Disease
Relations

Indicated for the management of active/TREATS rheumatoid/TREATS

arthritis/TREATS and should not be used for rheumatoid/CONTRA

arthritis/CONTRA in/CONTRA pregnant/CONTRA women/CONTRA .

Table 1: Short illustrative examples from each of our five datasets, with some modifications for reasons of space.
CDR examples are typically much longer, encompassing an entire scientific title and abstract. Section 3 more fully
explicates the labels. All unlabeled tokens are labeled with OTHER.

Where the hand-built representations are left out,
the word representations are simply the hidden
states of the RNN; where the dense representations
are left out, the word representations are simply
the sparse representations, resulting in a standard
linear-chain CRF.

There is a natural variant of the model depicted
in figure 1 in which the CRF layer is replaced by a
softmax layer. In our experiments, this was always
strictly worse than the CRF layer. Another variant
feeds the compressed hand-built features together
with ELMo embeddings into the LSTM. This too
led to inferior or comparable performance. Fi-
nally, we evaluated a version that used a bidirec-
tional LSTM, but found that it did not yield im-
provements. Therefore, we do not include those
experimental results, to simplify the discussion.

3 Experiments

We report experiments on five different datasets:
two from transcribed clinical narratives, one from
social media, one from scientific publications, and
one from official FDA Drug Labels texts. For
each, the task is to label spans of text that identify
particular healthcare concepts. We are particularly
interested in the capacity of our models to identify
multi-word expressions in a way that is sensitive to
the semantics of the environment – for example, to
distinguish between a drug prescribed and a drug
discontinued, or to distinguish disease mentions as
diagnoses, diagnostic concerns, or ruled-out diag-

noses. Table 1 gives a short illustrative example
from each dataset. Table A2 gives detailed statis-
tics for each dataset.

Three of the datasets are already partitioned into
training and test sets. For these, we tune the hy-
perparameters using 5-fold cross-validation on the
training set, train the model with tuned hyperpa-
rameters on the training set, and then evaluate the
performance of the trained model on the test set.

The other two datasets do not have predefined
splits. For these, we divide them equally into
five parts. For each fold, the hyperparameters
are tuned on the training data (also using 5-fold
cross-validation), and the best model is then ap-
plied to the test data for the evaluation. These ex-
periments are repeated three times to smooth out
variation deriving from the random initialization
of the model parameters, though we use the hyper-
parameters selected for each fold in the first run in
the subsequent two experiments to save computa-
tional resources.

We use the Adam optimizer (Kingma and Ba,
2014), with β1 = 0.9 and β2 = 0.999, the train-
ing batch size set to 16, and the dropout rate set
to 0.5 for all the experiments. The step size η and
the coefficients of the `1 and `2 regularizers c1 and
c2 are tuned. The step size is first tuned by setting
both c1 = c2 = 0, and then c1 and c2 are tuned us-
ing random search (Bergstra and Bengio, 2012) for
ten settings. Table A3 provides additional details
on our hyperparameters and evaluation protocol.
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The source code for our experiments and models
is available.1

3.1 Diagnosis Detection
Our Diagnosis Detection dataset is drawn from a
larger collection clinical narratives – de-identified
transcriptions of the reports healthcare profession-
als record about their interactions with patients.
The corpus was provided to us by a healthcare
start-up. We sampled and labeled 6,042 sen-
tences for information about disease diagnoses.
The labels are POSITIVE DIAGNOSIS, CONCERN,
RULED-OUT, and OTHER. The labeling was done
by a team of domain experts. The challenging as-
pects of this task are capturing the complex, multi-
word disease names and distinguishing the seman-
tic sense of those mentions (as summarized by our
label set) based on their sentential context.

For the hand-built parts of our representations,
we extend the basic feature set described in sec-
tion 2 with cue words that help identify whether
a description is about a patient’s history or cur-
rent condition, as well as cue words for causal lan-
guage, measurements, and dates. The power these
features bring to the model, beyond what is cap-
tured in the ELMo-LSTM representations, is evi-
dent in table 2, column 1.

3.2 Prescription Reasons
Our Prescription Reasons dataset is drawn from
the same corpus of clinical narratives as our Dis-
ease Diagnosis dataset and was annotated by the
same team of domain experts. This dataset con-
tains 5,179 sentences, with labels PRESCRIBED,
DISCONTINUED, REASON, and OTHER. For the
first two labels, the majority are unigrams naming
drugs. Of special interest is the REASON category,
which captures long, highly diverse reasons for ac-
tions taken concerning prescription drugs. (The
relations are captured with additional edge annota-
tions connecting spans, but we do not model them
in this paper.) This information about the rationale
for prescription decisions is the sort of thing that
appears only in text, and it has clear value when
it comes to understanding these decisions, making
this an especially interesting task.

Our hand-built feature representations are simi-
lar to those used for Diagnosis Detection, but they
additionally contain features based in large drug

1https://github.com/roamanalytics/
roamresearch/tree/master/Papers/
Feature4Healthcare

lexicons, as discussed in section 2, as well as fea-
tures based on cue-words for different prescription
actions: switching, discontinuing, increasing, de-
creasing, and so forth. The results in table 2, col-
umn 2, clearly favor the combined model that uses
both these features and the ELMo-LSTM.

3.3 Penn Adverse Drug Reactions (ADR)
The Penn Adverse Drug Reactions (ADR; Nikfar-
jam et al. 2015) dataset is an annotated collection
of tweets giving informal adverse reactions to pre-
scription drugs. It’s thus a different kind of clinical
text than in our two previous experiments – public
self-reports by patients, rather than private techni-
cal descriptions by healthcare professionals.

The original dataset contained 1,340 labeled
tweets for training and 444 for testing. However,
due to restrictions on redistributing Twitter data,
the project team was unable to release the tweets,
but rather only a script for downloading them. Due
to tweet deletions, we were able to download only
749 train examples and 272 test examples. This
limits our ability to compare against prior work on
this dataset, but the small size further tests our hy-
pothesis that our combined model can get traction
with relatively few examples.

For our hand-built feature functions, we fol-
low the protocol specified in the ADRMine CRF
package released by Nikfarjam et al. (2015).
Key components include tokenization (Gimpel
et al., 2011), spelling correction (Cutting, 1999;
Atkinson, 2018), lemmatization, and featurization
(Loper and Bird, 2002). Thus our combined model
is a strict extension of this publicly available pack-
age (setting aside differences related to implemen-
tation and optimization). We follow Nikfarjam
et al. (2015) in using Inside/Outside/Beginning
(IOB; Ramshaw and Marcus 1995) tags.

Our test-set results, given in table 2, column 3,
show the power of our combined model. For con-
text, the best results reported by Nikfarjam et al.
are 72.1, for a CRF that includes hand-built fea-
tures as well as features based on the cluster in-
dices of distributional word representations. That
is, their model draws on similar insights to our
own. Though we only have half of the training
samples, our unified model is still able to get trac-
tion on this dataset.

3.4 Chemical–Disease Relations (CDR)
The Biocreative V Chemical Disease Relation
dataset of Wei et al. (2015) captures relationships

4



Diagnosis Prescription Penn Adverse Drug Chemical–Disease Drug–Disease
Detection Reasons Reactions (ADR) Relations (CDR) Relations

rand-LSTM-CRF 77.3 ± 0.05 69.6 ± 0.25 53.8 ± 0.88 85.1 ± 0.10 48.2 ± 1.12
HB-CRF 82.0 ± 0.05 78.5 ± 0.01 58.8 ± 0.12 86.2 ± 0.02 42.3 ± 0.30
ELMo-LSTM-CRF 83.9 ± 0.35 81.0 ± 0.20 65.7 ± 0.35 88.2 ± 0.34 50.6 ± 0.64
ELMo-LSTM-CRF-HB 85.3 ± 0.24∗∗∗ 82.0 ± 0.03∗∗∗ 68.5 ± 1.67∗ 89.9 ± 0.12∗∗∗ 51.9 ± 0.52∗∗

Table 2: Per-token macro-F1 scores. For ADR, the F1 scores are for chunks via approximate matching (Nikfarjam
et al., 2015; Tsai et al., 2006). ‘rand-LSTM’ is an LSTM with randomly initialized word vectors. ‘ELMo-LSTM’
is an LSTM initialized with pretrained ELMo embeddings. ‘HB’ signals sparse, high-dimensional feature repre-
sentations based on hand-built feature functions. The mean values and standard deviations are calculated using F1
scores of three runs of repeated experiments, as discussed in section 3. Statistical significance notation for the last
two rows (two top-performing models) is ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001.

between chemicals and diseases in the titles and
abstracts for scientific publications. It contains
1,000 training texts and 500 test texts. Its la-
bels are CHEMICAL, DISEASE, and OTHER. This
dataset is not only from a different domain than
our others, but it also involves much longer texts.

Our hand-built feature function is exactly the
one used for the Prescription Reasons experi-
ments. We report results for the standard test set.
The power of the combined model is again evident
in the results in table 2, column 4.

3.5 Drug–Disease Relations

Our final experiments are on a new annotated
dataset that we will be releasing along with this
paper.2 The underlying corpus is FDA Drug La-
bels, which contains all the official labels for all
drugs licensed for sale in the U.S. These labels in-
clude a wide range of information, including ac-
tive ingredients, warnings, and approved usages.
Our annotation project focused on capturing the
relationship between these drugs and mentioned
diseases. The resulting labels are TREATS, PRE-
VENTS, UNRELATED and CONTRAINDICATED-
FOR. Figure A1 describes the corpus-building pro-
cess in more detail.

Since FDA Drug Labels is a public dataset, we
used this as an opportunity to see whether we
could obtain good labels via crowdsourcing. This
effort proceeded in two phases. In the first, annota-
tors identified disease spans, working from an an-
notation manual that provided guidance on how to
delimit such phrases and lexical resources to help
them identify diseases. In the second phase, anno-
tators assigned the span labels from our label set,
again using an annotation manual we created to

2https://github.com/roamanalytics/
roamresearch/tree/master/BlogPosts/
Features_for_healthcare

guide their choices.
We launched our task on Figure Eight with

10,000 sentences. It was completed within a few
days. The job was done by 1,771 people from
72 countries, the majority from Venezuela. No
special qualifications were imposed. To infer a
label for each example, we applied Expectation
Maximization (EM), essentially as in Dawid and
Skene (1979). The inter-annotator agreement be-
tween these labels and those we inferred via EM
is 0.83 for both tasks. For assessment, a team of
experts independently labeled 500 examples from
the same pool of sentences, using the same criteria
and annotation manuals as the crowdworkers. The
inter-annotator agreement between the labels in-
ferred from the crowd and those from the experts is
0.82, suggesting that the inferred labels are good.

We expect the crowdsourced labels to be used
only for training. Our test set consists entirely
of non-train examples with labels assigned by ex-
perts. This allows us to train on noisy labels, to
check for robustness, while still assessing on truly
gold labels. Our results for this experiment are
given in table 2, column 5, and point to the su-
periority of our combined model.

4 Discussion

Our discussion seeks to show that the combined
model, which shows superior performance in all
tasks (table 2), is making meaningful use of both
kinds of features (hand-built and ELMo) and both
of the major model components (LSTM and CRF).

4.1 The Role of Text Length

We expect the LSTM to handle short texts very ef-
fectively, but that its performance will be degraded
for long ones. In contrast, the CRF might fall short
of the LSTM on short texts, but it should be more
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Figure 2: Text-length experiments. Along with the distribution of text lengths, per-token macro-F1 scores of words
that fall into specific bins in the sentences are shown. For the top two datasets, the ELMo-LSTM-CRF is better at
earlier positions, while the HB-CRF is better at later ones. For the bottom two datasets, the ELMo-LSTM-CRF is
always better than the HB-CRF. In all these cases, the combined model takes advantage of both models and always
outperforms the base models. ADR dataset results are given in figure A2 due to space limitations.

robust on long ones. We thus hypothesize that the
combined model will learn to take advantage of
these comparative strengths.

We find strong support for this hypothesis in our
data. Figure 2 illustrates this. These plots track the
macro-F1 scores (y-axes) of tokens in specific lin-
ear positions (x-axes). There are two major trends.

First, in the Prescription Reasons and CDR
datasets (top two panels), we see that the HB-CRF
starts to outperform the ELMo-LSTM-CRF af-
ter about word 40 in Prescription Reasons (which
contains many long texts that list patient history;
section 3.3) and after about word 160 in CDR
(which has paragraph-length texts; section 3.4).

Second, in the Diagnosis Detection and Drug–
Disease Relations datasets (bottom two panels in
figure 2), the ELMo-LSTM-CRF model outper-
forms the HB-CRF at all positions. However, there
is still evidence that our full model is leveraging
the strengths of both of its major components, as
it outperforms both in all positions.

In summary, the performance curve of the com-
bined model is roughly an upper envelope of the

two base-model curves. The combined model is
able to achieve better performance for both short
and long texts, and for words in any position, by
utilizing features from both base models.

4.2 Analysis of the CRF Potential Scores

The potential scores (also referred to as “unary
scores” or “emissions” in some work) of the CRF
provide another method for model introspection.
These scores are the direct inputs to the final CRF
layer, where the token-level label predictions are
determined. When the potential score for a spe-
cific label is high, the CRF assigns a high weight
to that label under the contraints of adjacent la-
bels. Thus, by checking the potential scores for
the feature dimensions deriving from each of our
base models, we can gain insights into the relative
importance of these models and how the combined
model leverages features from both.

The potential scores of each word in the test set
are shown in figure 3, where the left panels show
the LSTM features and the right panels show the
CRF (hand-built) features. Due to the general ef-
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fectiveness of the ELMo-LSTM, we always have
higher average potential scores from those fea-
tures. This is reflected in the mean scores at left
and in the comparatively large amount of white
(high scores) in the panels. However, the hand-
built features always make substantial contribu-
tions, especially in Diagnosis Detection, Prescrip-
tion Reasons, and CDR. We note also that, where
the performance of the two base models is very
similar (table 2), the potential scores in the com-
bined model are also more similar.

4.3 Major Improvements in Minor
Categories

One of our central motivations for this work is that
clinical datasets tend to be small due to the chal-
lenges of getting quality labels on quality data.
These size limitations impact model performance,
and the hardest hit categories tend to be the small-
est ones. Unfortunately, these are often the most
important categories, identifying rare but signif-
icant events. We are thus especially interested
in whether our combined model can address this
problem.

Table 3 suggests that the combined model does
make progress here, in that the largest gains,
across all relevant datasets, tend to be for the
smallest categories. This is very dramatically
true for the Drug–Disease Relations dataset, where
only the combined model is able to get any trac-
tion on the smallest categories; it achieves 103.5%
and 71.3% improvements in F1 score over the HB-
CRF model for the two smallest categories. It
seems clear that, in transferring compact embed-
ding representations learned from other large text
datasets, the combined model can elevate perfor-
mance on small categories to an acceptable level.

5 Prior Work

5.1 Clinical Text Labeling

Apache cTAKEs (Savova et al., 2010) extracts in-
formation from clinical text. Its labeling module
implements a dictionary look-up of concepts in the
UMLS database, and the concept is then mapped
into different semantic types (labels). Similar ex-
tractions play a role in our hand-built features, but
only as signals that our models learn to weight
against each other to make decisions.

ADRMine (Nikfarjam et al., 2015) is closer to
our own approach; it focuses on extracting ad-
verse drug reaction mentions from noisy tweets. It

combines hand-built features and word embedding
cluster features for label prediction. However, our
model is more powerful in the sense that we di-
rectly utilize the word embeddings and feed them
into the LSTM.

Habibi et al. (2017) use a combined LSTM-
CRF to achieve better NER results on 33 biomed-
ical datasets than both available NER tools and
entity-agnostic CRF methods, though they do not
incorporate hand-built features.

There are also competitions related to labeling
tasks in the context of clinical text. The i2b2 Chal-
lenge (Sun et al., 2013) includes event detection
as one of the task tracks, which is basically a la-
beling task. The best results on this task came
from a team using a simple CRF. The Biocre-
ative V Chemical–Disease relation (CDR) com-
petition (Wei et al., 2015) released a widely used
dataset for researchers to evaluate their NER tools
for biomedical text, and Verga et al. (2018) report
state-of-the-art results for a self-attention encoder,
using a dataset that extends CDR.

5.2 Efficient Annotation
Obtaining accurate annotations is expensive and
time consuming in many domains, and a rich line
of research seeks to ease this annotation burden.
Ratner et al. (2016) and Hancock et al. (2018)
propose to synthesize noisy labeling functions to
infer gold training labels, and thus make better
use of annotators’ time, by allowing them to fo-
cus on writing high-level feature functions (and
perhaps label individual examples only for evalua-
tion). These efforts are potentially complementary
to our own, and our experiments on our new Drug–
Disease dataset (section 3.5) suggest that our com-
bined model is especially robust to learning from
noisy labels compared with base models.

5.3 Related Models
A large body of work explores combined LSTM
and CRF models for text labeling. Huang et al.
(2015) use an LSTM-CRF for sequence tagging,
and Ma and Hovy (2016) propose a bi-directional
LSTM-CNNs-CRF for the same task. In addition
to word embeddings, Lample et al. (2016) utilize
character embedding information as the input to a
LSTM-CRF. Jagannatha and Yu (2016) integrate
pairwise potentials into the LSTM-CRF model,
which improves sequence-labeling performance in
clinical text. Wang et al. (2018) and Crichton et al.
(2017) use multi-task learning based on the ba-
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Figure 3: Potential score experiments. Potential scores from the ELMo-LSTM and HB modules of all five datasets
are shown. Mean potential scores of both features are calibrated in the left colorbar. Higher potential scores (lighter
cells) indicate greater importance for the feature. In all five datasets, the combined model pays more attention to
the ELMo-LSTM features, but the hand-built features always contribute. Comparing with the results in table 2, we
note that when the performance of two base models is comparable, their potential scores in the combined model
are also closer.

Diagnosis Detection Prescription Reasons
Label Support F1 score Improvement Label Support F1 score Improvement

OTHER 74888 95.3 1.4% OTHER 83618 95.8 0.9%
POSITIVE 24489 86.1 4.4% REASON 9114 64.7 8.6%

RULED-OUT 2797 86.4 3.6% PRESCRIBED 5967 84.7 4.4%
CONCERN 2780 72.1 5.6% DISCONTINUED 2754 82.7 5.6%

Chemical–Disease Relations (CDR) Drug–Disease Relations
Label Support F1 score Improvement Label Support F1 score Improvement

OTHER 104530 98.3 0.5% OTHER 10634 90.8 2.3%
DISEASE 6887 84.2 6.3% TREATS 3671 76.0 5.7%

CHEMICAL 6270 87.0 6.7% UNRELATED 1145 53.8 71.3%
PREVENTS 320 41.1 103.5%

CONTRAINDICATED-FOR 69 0 –

Table 3: Relative F1 score improvements of different labels. For each label, we give the number of supporting
examples (Support), the F1 score of our combined model, and the relative improvements over the HB-CRF model.
The F1 scores of minor labels suffer from insufficient training data, and thus have lower values. However, the
combined model shows the largest relative improvements in these categories. ADR results are shown in table A4.

sic LSTM-CRF structure to improve NER perfor-
mance in biomedical text. Our model provides
an effective method for fully utilizing the sparse
ontology-driven features left out of by the above
work, which are complementary to dense embed-
dings and therefore boost performance of clinical
concept extraction with limited training data (sec-
tion 4).

There are also a number of models that mix
dense and sparse feature representations. Gorm-
ley et al. (2015) and Cheng et al. (2016) combine
both unlexicalized hand-crafted features and word
embeddings to improve the performance of rela-
tion extraction in recommender systems. How-
ever, they focus on simple multi-layer perceptron

models, rather than considering a more expressive
LSTM structure. Similarly, Wang et al. (2019) uti-
lize both sparse UMLS features and unpretrained
word embeddings as the input to an LSTM for ge-
netic association inferences from medical litera-
ture. While their UMLS features are a single look-
up table of semantic types, our model relies on
much richer resources of medical knowledge and
includes more heterogeneous and expressive hand-
built features that capture the semantic, morpho-
logical and contextual information of words (sec-
tion 2).
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6 Conclusion

Clinical text datasets are expensive to label and
thus tend to be small, but the questions they can
answer are often very high-impact. It is thus in-
cumbent upon us to make maximally efficient use
of these resources. One way to do this is to draw
heavily on lexicons and other structured resources
to write feature functions. Another way is to lever-
age unlabeled data to create dense feature vectors.

The guiding hypothesis of this paper is that the
best models will make use of both kinds of infor-
mation. To explore this hypothesis, we defined a
new LSTM-CRF architecture that brings together
these two kinds of feature, and we showed that
this combined model yields superior performance
on five very different healthcare-related tasks. We
also used a variety of introspection techniques
to gain an understanding of how the combined
model balances its different sources of informa-
tion. These analyses show that the combined
model learns to pay attention to the most reliable
sources of information for particular contexts, and
that it is most effective, as compared to its simpler
variants, on smaller categories, which are often the
most crucial and the hardest to generalize about.

We also introduced the publicly available Drug–
Disease Relations dataset, which contains a large
training set of crowdsourced labels and a smaller
test set of gold labels assigned by experts. This
dataset can be used to learn facts about drug–
disease relationships that have medical signifi-
cance, and it shows that combined models like
ours can learn effectively in noisy settings.
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Ré. 2018. Training classifiers with natural lan-
guage explanations. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1884–
1895. Association for Computational Linguistics.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
ArXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

9



Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
ArXiv 1508.01991.

Abhyuday Jagannatha and Hong Yu. 2016. Structured
prediction models for RNN based sequence labeling
in clinical text. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 856–865. Association for Com-
putational Linguistics.

Warren A Kibbe, Cesar Arze, Victor Felix, Elvira
Mitraka, Evan Bolton, Gang Fu, Christopher J
Mungall, Janos X Binder, James Malone, Drashtti
Vasant, et al. 2014. Disease Ontology 2015 update:
An expanded and updated database of human dis-
eases for linking biomedical knowledge through dis-
ease data. Nucleic acids research, 43(D1):D1071–
D1078.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. ArXiv
1412.6980.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of ICML-01, pages
282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270. Association for Computational Lin-
guistics.

Edward Loper and Steven Bird. 2002. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin,
Germany. Association for Computational Linguis-
tics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 6294–
6305. Curran Associates, Inc.

Azadeh Nikfarjam, Abeed Sarker, Karen O’Connor,
Rachel Ginn, and Graciela Gonzalez. 2015. Phar-
macovigilance from social media: Mining adverse

drug reaction mentions using sequence labeling
with word embedding cluster features. Journal
of the American Medical Informatics Association,
22(3):671–681.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Ms, OpenAI.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data pro-
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Sentence Hand-built features of word bacteria

antiseptic
handwash
to
decrease
bacteria
on
the
skin
.

Adjacent words features:
word-4:antiseptic, word-3:handwash, word-2:to, word-1:decrease,
word:bacteria, word+1:on, word+2:the, word+3:skin, word+4:..
Adjacent POS tags features:
tag-4:JJ, tag-3:NN, tag-2:TO, tag-1:VB,
tag:NNS, tag+1:IN, tag+2:DT, tag+3:NN, tag+4:..
Semantic environment features:
bias:1, is upper:0, is title:0, is punctuation:0,
in left context of negative cues:0, in right context of negative cues:0,
in left context of prevents cues:0, in right context of prevents cues:0,
in left context of treats cues:0, in right context of treats cues:0,
in left context of treats symptoms cues:0, in right context of treats symptoms cues:0,
in left context of contraindicated cues:0, in right context of contraindicated cues:0,
in left context of affliction adj cues:0, in right context of affliction adj cues:0,
in left context of indication cues:0, in right context of indication cues:0,
in left context of details cues:0, in right context of details cues:0.

Table A1: Hand-built features of the word bacteria in a Drug–Disease Relations dataset example. These features
describe the word’s adjacent words, adjacent POS tags, and semantic environment (section 2). The detailed
meanings of hand-built features in the table are described as below: Adjacent words features: “word(±1/2/3/4)”
feature the word and adjacent words within a window size of 9. Adjacent POS tags features: “tag(±1/2/3/4)” fea-
ture the tags of word and its adjacent words within a window size of 9. Semantic environment features: “bias” is
always 1 for all words; “is upper” specifies whether the word is upper case or lower case; “is title” features whether
the word is in the title or not; “is punctuation” specifies whether the token is actually a word or a punctuation.
“in left/right context of negative/prevents/treats( symptoms)/contraindicted/afflicition adj/indication/details cues”
feature whether the word is in the left or right context (of specific window size like 4) of cue-words from specific
lexicons. Features related to 8 lexicons are shown in this example. Concrete examples: not, none and no are three
cue-words of lexicon “negative cues”, prevent and avoid are two cue-words of lexicon “prevents cues”, treat,
solve and alleviate are three cue-words of lexicon “treats cues” etc. Different semantic environments are defined
in the five datasets by carefully defining the lexicons/cue-words from various sources which possibly contain
corresponding domain knowledge, as discussed in section 2 and section 3.

Diagnosis Prescription Penn Adverse Drug Chemical–Disease Drug–Disease
Statistics Detection Reasons Reactions (ADR) Relations (CDR) Relations

# texts 6042 5179 – – –
# training texts – – 749 1000 9494

# test texts – – 272 500 500
mean text length 17 19 19 227 30
max text length 374 258 40 623 542

# labels 4 4 5 3 5

Table A2: Statistics for our five datasets. The sample size varies from around 1,000 to 10,000. The mean text
length (measured as the number of words) varies from 17 (short sentences) to 227 (full paragraphs). The number
of labels varies from 3 to 5. ADR, CDR, and Drug–Disease Relations are already partitioned into training and test
sets, while Diagnosis Detection and Prescription Reasons do not have predefined splits.
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Diagnosis Prescription Penn Adverse Drug Chemical–Disease Drug–Disease
Models Hyperparams Detection Reasons Reactions (ADR) Relations (CDR) Relations

rand-LSTM-CRF

η 1e-4 1e-4 1e-4 1e-4 1e-4
epochtune 3 3 513 10 13
epochtrain 34 40 3076 164 130

Rc1 { 0, 3e-5, 1e-4, 3e-4, 1e-3 }
Rc2 { 0, 3e-4, 1e-3, 3e-3, 1e-2 }

HB-CRF

η 1e-2 1e-2 3e-2 1e-2 1e-4
epochtune 1 1 10 2 3
epochtrain 3 4 82 10 35

Rc1 { 0, 3e-6, 1e-5, 3e-5, 1e-4 }
Rc2 { 0, 3e-5, 1e-4, 3e-4, 1e-3 }

ELMo-LSTM-CRF

η 1e-3 1e-3 1e-4 1e-3 5e-6
epochtune 1 1 10 2 3
epochtrain 3 4 82 10 35

Rc1 { 0, 3e-5, 1e-4, 3e-4, 1e-3 }
Rc2 { 0, 3e-4, 1e-3, 3e-3, 1e-2 }

ELMo-LSTM-CRF-HB

η 1e-3 1e-3 1e-4 1e-3 1e-5
epochtune 1 1 10 2 3
epochtrain 3 4 82 5 35

Rc1 { 0, 3e-7, 1e-6, 3e-6, 1e-5 }
Rc2 { 0, 3e-6, 1e-5, 3e-5, 1e-4 }

Table A3: Hyperparameters for our experiments. The step size η is first manually tuned within the training set
when the `1 and `2 regularizers are set to be zeros. The coefficients c1 and c2 of the `1 and `2 regularizers are
determined via random search (for 10 settings) from ranges Rc1 and Rc2 during tuning (Bergstra and Bengio,
2012). Epochs of tuning epochtune are set to 1∼3 to reduce tuning time for most datasets (which consumes most
of the time for the experiments). It is set to 10 for ADR since that dataset is so small that it is hard to see clear
trends after just one epoch. Epochs of training epochtrain are set to be large enough until the training converges.
The ‘rand-LSTM-CRF’ model requires many more epochs for tuning and training because of the updates to the
randomly initialized embeddings.

FDA Drug Labels
Crowdsourcing

Maximization

Expectation

Init

End

convergence
Expert annotation

Drug-Disease 
Relations Dataset

Figure A1: Procedure for building the Drug–Disease Relations dataset. 10,000 raw sentences from the FDA Drug
Labels corpus were annotated by participants from 72 countries on the Figure Eight platform (crowdsourcing).
Expectation Maximization was used to infer labels for all the annotated sentences used for training. A team of
experts independently labeled different examples for testing. The resulting dataset consists of 9,500 crowdsourced
examples and 500 expert-annotated examples.
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Figure A2: Text-length experiment for the Penn Adverse Drug Reactions (ADR) dataset. Since ADR uses the IOB
tag format, in order to calculate per-token F1 scores, we collapse test-set labels starting with ‘B-’ and ‘I-’ into the
same labels. The ELMo-LSTM-CRF always performs better than the HB-CRF, while the combined model takes
advantage of both models and always outperforms both base models. Figure 2 provides comparable plots for the
other four datasets.

Penn Adverse Drug Reactions (ADR)
Label Support F1 score Improvement

OTHER 5023 98.0 0.3%
ADR 283 57.1 17.7%

INDICATION 29 35.9 178.3%

Table A4: Relative F1 score improvements of different labels in the Penn Adverse Drug Reactions (ADR) dataset.
To bring the IOB tag format of this dataset in line with our others, ADR merges B-ADR and I-ADR, and INDI-
CATION merges B-INDICATION and I-INDICATION. Consistent with table 3, the combined model gains most in
the smallest categories.
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Abstract

The shift to electronic medical records
(EMRs) has engendered research into machine
learning and natural language technologies to
analyze patient records, and to predict from
these clinical outcomes of interest. Two ob-
servations motivate our aims here. First, un-
structured notes contained within EMR often
contain key information, and hence should be
exploited by models. Second, while strong
predictive performance is important, inter-
pretability of models is perhaps equally so
for applications in this domain. Together,
these points suggest that neural models for
EMR may benefit from incorporation of at-
tention over notes, which one may hope will
both yield performance gains and afford trans-
parency in predictions. In this work we per-
form experiments to explore this question us-
ing two EMR corpora and four different pre-
dictive tasks, that: (i) inclusion of attention
mechanisms is critical for neural encoder mod-
ules that operate over notes fields in order to
yield competitive performance, but, (ii) unfor-
tunately, while these boost predictive perfor-
mance, it is decidedly less clear whether they
provide meaningful support for predictions.
Code to reproduce all experiments is avail-
able at https://github.com/successar/
AttentionExplanation.

1 Introduction

The adoption of electronic medical records
(EMRs) has spurred development of machine
learning (ML) and natural language processing
(NLP) methods that analyze the data these records
contain; for a recent survey of such efforts, see
(Shickel et al., 2018). Key information for down-
stream predictive tasks (e.g., forecasting whether a
patient will need to be readmitted within 30 days)
may be contained within unstructured notes fields
(Boag et al., 2018; Jin et al., 2018).

In this work we focus on the modules within
neural network architectures responsible for en-
coding text (notes) into a fixed-size representation
for consumption by downstream layers. Patient
histories are often long and may contain informa-
tion mostly irrelevant to a given target. Encoding
this may thus be difficult, and text encoder mod-
ules may benefit from attention mechanisms (Bah-
danau et al., 2014), which may be imposed to em-
phasize relevant tokens.

In addition to mitigating noise introduced by
irrelevant tokens, attention mechanisms are often
seen as providing interpretability, or insight into
model behavior. However, recent work (Jain and
Wallace, 2019) has argued that treating attention
as explanation may, at least in some cases, be mis-
guided. Interpretability is especially important for
clinical tasks, but incorrect or misleading ratio-
nales supporting predictions may be particularly
harmful in this domain; this motivates our focused
study in this space.

To summarize, our contributions are as fol-
lows. First, we empirically investigate whether
incorporating standard attention mechanisms into
RNN-based text encoders improves the perfor-
mance of predictive models learned over EMR.
We find that they do; inclusion of standard additive
attention mechanism in LSTMs consistently yields
absolute gains of∼10 points in AUC, compared to
an LSTM without attention.1 Second, we evaluate
the induced attention distributions with respect to
their ability to ‘explain’ model predictions. We
find mixed results here, similar to (Jain and Wal-
lace, 2019): attention distributions correlate only
weakly (though almost always significantly) with

1Indeed, across both corpora and all tasks considered,
inattentive LSTMs perform considerably worse than logis-
tic regression and bag-of-words (BoW); introducing attention
makes the neural variants competitive, but not decisively bet-
ter. We hope to explore this point further in future work.
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gradient measures of feature importance, and we
are often able to identify very different attention
distributions that nonetheless yield equivalent pre-
dictions. Thus, one should not in general treat at-
tention weights as meaningful explanation of pre-
dictions made using clinical notes.

2 Models

We experiment with multiple standard encoding
architectures, including: (i) a standard BiLSTM
model; (ii) a convolutional model, and (iii) an
embedding projection based model. We cou-
ple each of these with an attention layer, follow-
ing (Jain and Wallace, 2019). Concretely, each
encoder yields hidden state vectors {h1, ..., hT },
and an attention distribution {α1, ..., αT } is in-
duced over these according to a scoring function
φ: α̂ = softmax(φ(h)) ∈ RT . In this work
we consider Additive similarity functions φ(h) =
vT tanh(W1h+b) (Bahdanau et al., 2014), where
v,W1,b are model parameters. Predictions are
made on the basis of induced representations: ŷ =
σ(θ · hα) ∈ R|Y|, where hα =

∑T
t=1 α̂t · ht and θ

are top-level discriminative (e.g., softmax) param-
eters.

3 Datasets and Tasks

We consider five tasks over two independent EMR
datasets. The first EMR corpus is MIMIC-III
(Johnson et al., 2016), a publicly available set of
records from patients in the Intensive Care Unit
(ICU). We follow prior work in modeling aims and
setup on this dataset. Specifically we consider the
following predictive tasks on MIMIC.

1. Readmission. The task here is to predict pa-
tient readmission within 30 days of discharge
or transfer from the ICU. We follow the cohort
selection of (Lin et al., 2018). We assume the
model has access to all notes from patient ad-
mission up until the discharge or transfer from
the ICU (the point of prediction).

2. Retrospective 1-yr mortality. We aim to pre-
dict patient mortality within one year. In this
we follow the experimental setup of (Ghassemi
et al., 2014). The model is provided all notes up
until patient discharge (excluding the discharge
summary).

3. Phenotyping. Here we aim to predict the top
25 acute care phenotypes for patients (asso-
ciated at discharge with the admission). For

this we again rely on the framing established
in prior work (Harutyunyan et al., 2017). The
model has access to all notes from admission
up until the end of the ICU stay. Note that
this may be viewed as a multilabel classifica-
tion task, similar to (Harutyunyan et al., 2017;
Lipton et al., 2015).

The second EMR dataset we use comprises
records for 7174 patients from Mass General Hos-
pital who underwent hip or knee arthroplasty pro-
cedures. Use of this data was approved by an In-
stitutional Review Board (IRB protocol number
2016P002062) at Partners Healthcare.

1. Predicting Hip and Knee Surgery Compli-
cations. We consider patients who underwent
hip or knee arthroplasty procedure; we aim to
classify these patients with respect to whether
or not they will be readmitted within 30 days
due to surgery-related complications. We run
experiments over hip and knee surgery patients
separately.

4 Experiments

Following the analysis of (Jain and Wallace, 2019)
but focusing on clinical tasks, we perform a set
of experiments on these corpora that aim to assess
the degree to which attention mechanisms aid (or
hamper) predictive performance, and the degree
to which the induced attention weights might be
viewed as providing explanations for predictions.

The latter can be assessed in many ways, de-
pending on one’s view of interpretability. To
address the question of whether it is reason-
able to treat attention as providing interpretability
broadly, we perform experiments that interrogate
multiple properties we might expect these weights
to exhibit if so. Specifically, we: probe the de-
gree to which attention weights correlate with al-
ternative gradient-based feature importance mea-
sures, which have a more straight-forward inter-
pretation (Ross et al., 2017; Li et al., 2016); eval-
uate whether we are able to identify ‘counterfac-
tual’ attention distributions that change the atten-
tion weights (focus) but not the prediction; and,
in an exercise novel to the present work, we con-
sider replacing attention weights with log odds
scores from a logistic regression (linear) model.
We provide a web interface to interactively browse
the plots for all datasets, model variants, and
experiment types: https://successar.github.

io/AttentionExplanation/docs/.
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Figure 1: Median change in output ∆ŷmed (x) densities in relation to the max attention (max α̂) (y) ob-
tained by randomly permuting instance attention weights. Colors denote classes: negative (�) and positive (�);
phenotyping (e) is not binary. Top row shows results for BiLSTM encoders; middle for CNNs; bottom for
Embedding Projection.
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Figure 2: Densities of maximum JS divergences (ε-max JSD) (x-axis) as a function of the max attention (y-axis)
in each instance for obtained between original and adversarial attention weights. Colors are as above. Top row
shows results for BiLSTM encoders; middle for CNNs; bottom for Embedding Projection.
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Dataset Class Mean ± Std. Sig. Frac.
LSTM Encoder

Readmission 0 0.37 ± 0.04 1.00
1 0.38 ± 0.05 1.00

Mortality 0 0.33 ± 0.05 1.00
1 0.35 ± 0.06 1.00

Knee Surgery 0 0.38 ± 0.07 1.00
1 0.49 ± 0.08 1.00

Hip Surgery 0 0.24 ± 0.07 1.00
1 0.33 ± 0.09 1.00

Phenotyping Overall 0.24 ± 0.06 1.00
Projection Encoder

Readmission 0 0.65 ± 0.03 1.00
1 0.64 ± 0.03 1.00

Mortality 0 0.76 ± 0.02 1.00
1 0.76 ± 0.02 1.00

Knee Surgery 0 0.65 ± 0.05 1.00
1 0.60 ± 0.06 1.00

Hip Surgery 0 0.59 ± 0.09 1.00
1 0.55 ± 0.09 1.00

Phenotyping Overall 0.89 ± 0.02 1.00

Table 1: Mean and std. dev. of correlations between
gradient importance measures and attention weights.
Sig. Frac. columns report the fraction of instances for
which this correlation is statistically significant.

4.1 Gradient Experiments

To evaluate correlations between attention weights
and gradient based feature importance scores, we
compute Kendall-τ measure (Table 1) between at-
tention scores and gradients with respect to the to-
kens comprising documents. Across both corpora
and all tasks we observe only a modest correla-
tion between the two for BiLSTM model (the pro-
jection based model have higher correspondence,
which is expected for such simple architectures).
This may be problematic for attention as an ex-
planatory mechanism, given the explicit relation-
ship between gradients and model outputs. (Al-
though we note that gradient based methods them-
selves pose difficulty with respect to interpretation
(Feng et al., 2018)).

4.2 Counterfactual Experiments

We investigate if model predictions would have
differed, had the model attended to different words
(i.e., under counterfactual attention distributions).

We follow the two strategies from (Jain and
Wallace, 2019) for constructing counterfactual at-
tention distributions. In the first we randomly per-
mute the empirical weights obtained from the at-
tention module prior to inducing the weighted rep-
resentation hα. We repeat this process 100 times
and record the median change in output.

The second strategy is adversarial; we explic-
itly aim to identify attention weights that are max-
imally different from the observed weights, with

Model ROC AUC PR AUC
Readmission
LR + BoW 0.70 0.29
LSTM 0.63 0.22
LSTM + Additive Attention 0.71 0.30
LSTM + Additive Attention
(Log Odds at Test) 0.69 0.26
LSTM + Log Odds Attention 0.71 0.29
Mortality
LR + BoW 0.82 0.46
LSTM 0.74 0.29
LSTM + Additive Attention 0.83 0.47
LSTM + Additive Attention
(Log Odds at Test) 0.80 0.41
LSTM + Log Odds Attention 0.82 0.42
Knee Surgery Complication
LR + BoW 0.80 0.39
LSTM 0.66 0.18
LSTM + Additive Attention 0.79 0.35
LSTM + Additive Attention
(Log Odds at Test) 0.81 0.34
LSTM + Log Odds Attention 0.81 0.38
Hip Surgery Complication
LR + BoW 0.76 0.32
LSTM 0.63 0.16
LSTM + Additive Attention 0.75 0.24
LSTM + Additive Attention
(Log Odds at Test) 0.74 0.26
LSTM + Log Odds Attention 0.78 0.29
Phenotyping
LR + BoW 0.86 0.59
LSTM 0.78 0.41
LSTM + Additive Attention 0.86 0.58
LSTM + Additive Attention
(Log Odds at Test) 0.81 0.48
LSTM + Log Odds Attention 0.85 0.56

Table 2: Predictive results across all datasets and tasks
using different models and attention variants.

the constraint that this does not change the model
output by more some small value ε. In both cases,
all other model parameters are held constant.

In Figures 1 and 2, we observe that predictions
are unchanged under alternative attention config-
urations in a significant majority of cases across
all architectures. Thus, attention cannot be viewed
casually in the sense of ‘the model made these pre-
dictions because these words were attended to’.
Alternative attention distributions that yield equiv-
alent predictions would seem to be equally plausi-
ble under the view of attention as explanation.

4.3 Log Odds Experiments

As a novel exercise, we also consider swapping
log-odds scores for features (from an LR model
operating over BoW) in for attention weights in
BiLSTM model. Specifically, we induce a ‘log
odds attention’ over an input by substituting the
absolute value of log odds (as estimated via LR) of
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Original vs Adversarial Attention Difference : Sed dolorem sed adipisci ipsum dolor dolorem. Ut adipisci magnam tempora.
Modi # eius : tempora change ipsum adipisci tempora tracheobronchomalacia quaerat dolor. Numquam est dolore labore est
neque. respiratory failure Ipsum quiquia etincidunt labore modi. Dolorem aliquam dolore amet. Amet est consectetur modi
neque. Porro respiratory failure etincidunt quaerat est neque dolor quaerat. Est quaerat est adipisci ipsum. Sit dolore quisquam
ipsum non neque quiquia aliquam. Ut ipsum adipisci labore tempora quaerat tempora labore. Ipsum numquam voluptatem
consectetur. Aliquam voluptatem , eius numquam. Velit generalized ut non numquam magnam sed modi. Consectetur porro .
heart etincidunt eius consectetur , quaerat amet. Amet dolorem is difficult dolor consectetur etincidunt sed effusions quiquia
aliquam. Porro etincidunt dolore labore no dolore dolorem aliquam. Tempora etincidunt quisquam aliquam numquam eius ut.
tracheostomy Modi modi amet voluptatem
Original Output: 0.694 Adversarial Output: 0.699

Original vs Log Odds Attention Difference : Non magnam quiquia magnam magnam quaerat. Ut etincidunt magnam
voluptatem velit eius. Dolorem dolorem velit dolor porro ut etincidunt. Consectetur dolor voluptatem cystic brain mass quaerat
surgical resection est magnam etincidunt. Ipsum neque dolorem sed consectetur est. Magnam modi voluptatem dolorem tempora
sed ut. Dolore dolor tempora eius aliquam quisquam. Dolor quisquam eius sed labore dolore sit velit. Magnam aliquam
quisquam numquam. Aliquam sed sed modi neque. Dolor chronic quiquia voluptatem adipisci quaerat adipisci. . . . . . . Magnam
velit quaerat adipisci. Ut cystic brain mass adipisci velit modi. Sed aliquam astrocytoma est porro. Labore resection eius
voluptatem sit quisquam consectetur modi. Est ipsum tumor dolore
Original Output: 0.798 Log Odds Output : 0.800

Figure 3: Heatmaps showing difference in Original and counterfactual attention distributions over clinical notes
from MIMIC, where we have replaced text with lorem ipsum for all but the most relevant tokens in order to preserve
privacy (red implies counterfactual attention is higher and blue vice-versa). These show different cases where we
can significantly change the attention distribution (either adversarial (Top) or using Log Odds (Bottom) while
barely affecting the prediction.
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Figure 4: Change in output (y-axis) using original attention vs Log Odds attention during predictions against JSD
between these two distributions (x-axis). These results are for LSTM encoders.

the word present at each position and passing this
through a softmax: αLO = softmaxt({βwt}Tt=1)
where wt is the word at position t and β are log-
odds estimates.

These scores enjoy a clear interpretation under a
linear regime. We thus explore two ways of using
them with attentive neural models: (1) Swapping
in these in as attention weights place of hα at test
(prediction) time; (2) Use the (fixed) ‘log-odds at-
tention’ during training, in place of learning the
attention distribution end-to-end.

Table 2 shows that using log odds attention at
test time does not degrade the performance sig-
nificantly in most datasets (and actually improves
performance for the Knee Surgery Complications
task). Similarly, using log odds attention during
training also yields similar performance to stan-
dard attention variants. But as we see in Figure 4,
log odds attention distributions can differ consid-
erably from learned attention distributions, again
highlighting the difficulty of interpreting attention
weights.

5 Discussion and Conclusions

Across two EMR datasets and five predictive
tasks, we have shown that (i) attention mech-
anisms substantially boost the performance of
LSTM text encoders passed over clinical notes,
but, (ii) treating attention weights as ‘explana-
tions’ for predictions is unwarranted. The latter
confirms that the recent general findings of (Jain
and Wallace, 2019) hold in the clinical domain;
this is important because interpretability in this
space is critical for obvious reasons.

We hope that this paper inspires work on trans-
parent attention mechanisms for models that make
predictions on the basis of EMR.
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An Analysis of Attention over Clinical Notes for Predictive Tasks:
Appendix

A Dataset Statistics

Task |V | Avg. length Train size Test size
Readmission 36464 3865 23790 / 5499 4265 / 735
Mortality 34030 3901 21347 / 4675 4323 / 677
Hip Surgery Complications 10842 2624 3281 / 369 719 / 75
Knee Surgery Complications 10842 2586 2664 / 324 582 / 48
Phenotyping 10842 3641 31075 5000

Table 3: Dataset characteristics. For train and test size, we list the cardinality for each class, where applicable: 0/1
for binary classification and overall for multilabel. Average length is in tokens.

The Phenotypes studied in Phenotyping task are -
Acute and unspecified renal failure, Acute cerebrovascular disease, Acute myocardial infarction, Car-

diac dysrhythmias, Chronic kidney disease, Chronic obstructive pulmonary disease and bronchiectasis,
Complications of surgical procedures or medical care, Conduction disorders, Congestive heart failure
- nonhypertensive, Coronary atherosclerosis and other heart disease, Diabetes mellitus with complica-
tions, Diabetes mellitus without complication, Disorders of lipid metabolism, Essential hypertension,
Fluid and electrolyte disorders, Gastrointestinal hemorrhage, Hypertension with complications and sec-
ondary hypertension, Other liver diseases, Other lower respiratory disease, Other upper respiratory dis-
ease, Pleurisy - pneumothorax - pulmonary collapse, Pneumonia (except that caused by tuberculosis or
sexually transmitted disease), Respiratory failure - insufficiency - arrest (adult), Septicemia (except in
labor), Shock .

B Model Details

For all datasets, we use spaCy for tokenization. We map out of vocabulary words to a special <unk>
token and map any word with numeric characters to ‘qqq’. Each word in the vocabulary was initialized
using pretrained embeddings (Pyysalo et al., 2013). We initialize words not present in the vocabulary
using samples from a standard Gaussian (µ = 0, σ2 = 1).

B.1 BiLSTM
We use an embedding size of 300 and hidden size of 128 for all datasets. The model was regularized
with L2 regularization (λ = 10−5) applied to all parameters. We use a sigmoid activation function for
all binary classification tasks. We treat each phenotype classification as binary classification and take the
mean loss over labels during training. We trained the model using maximum likelihood loss function
with Adam Optimizer with default parameters in PyTorch.

B.2 CNN
We use an embedding size of 300 and 4 kernels of sizes [1, 3, 5, 7], each with 64 filters, giving a final
hidden size of 256. We use ReLU activation function on the output of the filters. All other configurations
remain same as BiLSTM.

B.3 Average
We use the embedding size of 300 and a projection size of 256 with ReLU activation on the output of the
projection matrix. All other configurations remain same as BiLSTM.
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Abstract

In this paper we describe an evaluation of the
potential of classical information extraction
methods to extract drug-related attributes, in-
cluding adverse drug events, and compare to
more recently developed neural methods. We
use the 2018 N2C2 shared task data as our gold
standard data set for training. We train support
vector machine classifiers to detect drug and
drug attribute spans, and pair these detected
entities as training instances for an SVM re-
lation classifier, with both systems using stan-
dard features. We compare to baseline neu-
ral methods that use standard contextualized
embedding representations for entity and rela-
tion extraction. The SVM-based system and a
neural system obtain comparable results, with
the SVM system doing better on concepts and
the neural system performing better on rela-
tion extraction tasks. The neural system ob-
tains surprisingly strong results compared to
the system based on years of research in de-
veloping features for information extraction.

1 Introduction

Adverse drug events (ADEs) describe undesirable
signs and symptoms that occur consequent to ad-
ministration of a medication. ADEs may be iden-
tified in randomized controlled trials (RCTs), ob-
servational studies, spontaneous reports such as
those gathered in the Food and Drug Adminis-
trations (FDAs) Adverse Event Reporting System
(FAERS), or manual chart review of data in elec-
tronic health records (EHRs). RCTs have notable
limitations for pharmacoepidemiology, including
strict inclusion and exclusion criteria that limit
their generalizability, small cohort sizes that make
them under-powered for detecting rarer ADEs,
and time-limited study periods that prevent de-
tection of ADEs that occur with longer drug ad-
ministration (Sanson-Fisher et al., 2007; Sultana

et al., 2013; McMahon and Dal Pan, 2018). Al-
though drug manufacturers are required to sub-
mit postmarket adverse event reports to the FDA,
this information is not uniformly available to clin-
icians (Maxey et al., 2013). Therefore, the 21st
Century Cures Act directs the FDA to use real-
world data (RWD) in the drug approval process.

Use of RWD is particularly important for med-
ications that are commonly used off-label, for ex-
ample, those targeted for treatment of rare dis-
eases such as pulmonary hypertension in chil-
dren (Maxey et al., 2013). Electronic health
records (EHRs) provide an opportunity to cap-
ture such data reflecting real-world use of ap-
proved medications. Most studies of pharma-
covigilance using RWD are based on health care
insurance claims—for instance, the FDAs Sen-
tinel program—because claims data contains lon-
gitudinal information about medication dispensing
and clinical diagnoses (Platt et al., 2018). How-
ever, claims data may lack sensitivity for identi-
fication of ADEs, since not all signs and symp-
toms are submitted to insurers for billing pur-
poses (Nadkarni, 2010). Reliance on claims data
may also lead to incongruous results, such as a
Mini-Sentinel study that found—contrary to data
from several large RCTs—that dabigatran was
associated with a lower risk of gastrointestinal
bleeding than warfarin (Sipahi et al., 2014).

Limiting studies using RWD to structured data
alone neglects the rich data that may be found
in the unstructured, free text portion of the EHR.
However, this data is not readily available for com-
putation. Extracting this information requires nat-
ural language processing (NLP) methods. The
NLP sub-task of information extraction is con-
cerned with finding concepts in text and the rela-
tions between them (Jurafsky and Martin, 2014).
Examples of information extraction are named en-
tity recognition (e.g., finding the names of peo-
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ple, organizations, etc.) and relation extraction
(e.g., determining whether the employment rela-
tion holds between a detected person like Tim
Cook and a detected organization like Apple). A
recent National NLP Clinical Challenge (n2c2)-
hosted shared task annotated ADEs in clinical text
in a style that is amenable to an information ex-
traction approach. Specifically, annotations for
things like drug names or drug attributes, includ-
ing dosages, routes, and adverse events are entity-
like spans, while the pairing of attributes and drugs
are naturally represented as relations to be ex-
tracted. The benefit of framing the ADE task as
an information extraction task is that decades of
research in information extraction can be brought
to bear on the task, before even considering the
specifics of the domain or the task. In this work,
we sought to evaluate a number of standard infor-
mation extraction methods, including both stan-
dard clinical NLP tools and general domain meth-
ods, with the goals of setting strong baselines,
learning how much performance is dependent on
domain knowledge, and comparing classical ma-
chine learning to new deep learning approaches.

2 Methods

2.1 Data

This work describes methods for participating
in the National NLP Clinical Challenge (n2c2)
Track 2 shared task: Adverse Drug Events and
Medication Extraction in EHRs. The data con-
sists of 500 discharge summaries from the MIMIC
(Medical Information Mart for Intensive Care) III
database (Johnson et al., 2016). The n2c2 data
was labeled with eight concept types: Drugs,
Strengths, Dosages, Durations, Forms, Routes,
Reasons, and ADEs. In addition, seven relations
are labeled, between Drug mentions and the other
seven concept types.

We participated in all three tracks of the shared
task: entity recognition, relation classification
given entities, and end-to-end relation extraction.

2.2 Methods

Our methods explore how well standard informa-
tion extraction methods perform. One of our pri-
mary motivations is the prevalence of neural net-
work methods in recent work, often motivated by
their elimination of resource-intensive manual fea-
ture engineering, and thus judged superior to clas-
sical machine learning methods even if accuracy

is similar. Unfortunately, in work comparing neu-
ral networks to classical methods, baseline clas-
sical machine learning systems can appear to be
under-developed, while one is left wondering how
much effort was actually required to engineer the
network architecture and tune hyperparameters for
the neural system. We used this dataset and task
as an opportunity to invert that dynamic. We de-
sign a comparison that uses well-engineered fea-
tures in a simple linear classifier without actually
doing the engineering ourselves – we use features
engineered over years of research in information
extraction, and packaged in open source software
such as Apache cTAKES (Savova et al., 2010) and
ClearTK (Bethard et al., 2014). We then complete
the comparison by comparing against off-the-shelf
neural network tools and architectures for infor-
mation extraction.

2.2.1 Entity extraction
To classify entities, we used a BIO tagger over to-
kens with a support vector machine classifier, with
one classifier for each entity type. These clas-
sify every token in a document as the [B]eginning,
[I]nside, or [O]utside of the entity type that classi-
fier handles. We used Apache cTAKES (Savova
et al., 2010) default pipeline to pre-process the
data and the ClearTK (Bethard et al., 2014) ma-
chine learning API to extract features and train the
models with Liblinear (Fan et al., 2008). The fea-
tures used by the classifiers are standard features
from information extraction, including:

• The previous token’s BIO classification deci-
sion

• Word identity and part of speech for the cur-
rent token

• Word identities and parts of speech in the sur-
rounding context

• Sub-word character type features

• Word semantic features

For token and token context features, we represent
features in two forms, first as bags of words within
a window and also with relative positional infor-
mation. Character type features extract the charac-
ter sequence in both the target token and the con-
text tokens to model the fact that many attributes
are typically numbers, or include numbers. This
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feature maps tokens to strings representing char-
acter types inside the token—for example, lower
case characters map to l, upper case to u, punctu-
ation to p, and digits to d, so the phrase Mar 10,
2019 would map to Ull ddp dddd. Finally, we used
semantic type information of the current token,
as extracted with the cTAKES dictionary lookup
module, to create a feature representing whether a
token is a sign/symptom, disease/disorder, proce-
dure, drug mention (as detected by cTAKES), or
anatomical site, as well as the UMLS (Bodenrei-
der, 2004) Type Unique Identifier (TUI).

During development, we manually partitioned
the data so that we could empirically optimize
the value of C in the linear SVM classifier on
held out data. We tuned a single value of C
that optimized the micro-F score on the held-out
part of the training data. It may be possible to
squeeze out slightly better performance by tuning
C separately for each classifier, but the classifiers
were pretty stable in the range we experimented
with. We compare this system to an off-the-shelf
neural network-based system called Flair (Akbik
et al., 2018). This system is pre-trained using
one billion words of text (Chelba et al., 2013)
to learn a multi-layer Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) net-
work language model. Given the pre-trained net-
work, this system passes in the tokens for an in-
put sequence, and receives back the values at the
deepest hidden layer at each index of the multi-
layer LSTM, and this sequence of vectors is called
contextual embeddings. Like regular word embed-
dings (Turian et al., 2010; Mikolov et al., 2013;
Pennington et al., 2014), there is one vector per
input token, but since they are extracted from the
output layer of the pre-trained LSTM they are ex-
pected to contain more information about the sur-
rounding sentence context.

To train an entity extractor in Flair, we again
model the task as a BIO tagging task, but instead
of using linguistic features we simply pass the
contextual embeddings for each token to a stan-
dard LSTM tagger. This LSTM has a hidden
state with 256 dimensions, and is optimized with
Adam (Kingma and Ba, 2014). We train for 50
epochs, and the model that performs best on the
held out validation set during training is used to
prevent overfitting.

2.2.2 Relation Extraction

We built relation extraction classifiers relating
each extracted attribute to drug mentions. Rela-
tion candidate pairs were extracted by comparing
all drug mentions with the relevant attribute men-
tion within the same paragraph, where paragraphs
were defined to be delimited by two newline char-
acters. We use the same feature set as previous
work extracting relations to find anatomical site
modifiers (Dligach et al., 2014). In the end-to-end
version of the task, we considered drug mentions
discovered both by the BIO tagger model and by
cTAKES’s dictionary lookup module, which in-
creased our recall. Any drug mentions discovered
by cTAKES but not used in a relation were not
output as Drug entities.

Finally, during preliminary work, we found that
ADE and Reason entities actually behave more
like relations, since they typically needed a nearby
drug argument and some trigger words to be anno-
tated. Therefore, instead of trying to detect ADE
and Reason entities directly, we first train Drug-
ADE and Drug-Reason relation classifiers, where
the candidates for ADE and Reason arguments are
all signs/symptoms and disease/disorders detected
by cTAKES. If the relation classifier classifies a
candidate pair as a Drug-ADE relation, we not
only create the Drug-ADE relation but we create
an ADE entity out of the non-Drug argument (and
the Reason entity detector works the same way).

For relation extraction with the Flair neural
model, we use a representation based on previ-
ous work on extracting temporal narrative con-
tainer relations from sentences (Dligach et al.,
2017). For each relation candidate consisting of
a (Drug, Attribute) tuple, we insert xml-like start
and stop tokens into the sentence around each
of the candidate arguments indicating their posi-
tion. For example, the sentence: He does feel
episodes of hypoglycemia if he does not eat fol-
lowing insulin becomes: He does feel episodes of
<ADE> hypoglycemia </ADE> if he does not
eat following <Drug> insulin </Drug>. This
augmented sentence representation is then passed
into the pre-trained Flair bi-directional LSTM se-
quence model, and the final states in each direction
are concatenated into a feature vector. This feature
vector is then passed through a linear layer to a
softmax function over the output space to classify
the relation.

For Track 3 (end-to-end relation extraction), the
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Track 1 Precision Recall F1
SVM Neural SVM Neural SVM Neural

Drug 0.96 0.96 0.92 0.90 0.94 0.93
Strength 0.98 0.97 0.95 0.97 0.97 0.97
Duration 0.82 0.91 0.63 0.65 0.71 0.76
Route 0.96 0.95 0.91 0.83 0.94 0.89
Form 0.97 0.93 0.92 0.95 0.95 0.94
ADE 0.66 0.58 0.20 0.18 0.31 0.27
Dosage 0.94 0.92 0.88 0.92 0.91 0.92
Reason 0.78 0.71 0.38 0.56 0.51 0.63
Frequency 0.98 0.98 0.93 0.95 0.95 0.96
Average 0.95 0.94 0.86 0.87 0.91 0.90

Table 1: Results of entity recognition experiments with
SVM vs. Neural systems.

Track 2 Precision Recall F1
SVM Neural SVM Neural SVM Neural

Drug-Strength 0.93 0.99 0.96 0.98 0.94 0.98
Drug-Duration 0.81 0.93 0.83 0.86 0.82 0.89
Drug-Route 0.93 0.97 0.95 0.94 0.94 0.96
Drug-Form 0.96 0.99 0.97 0.95 0.97 0.97
Drug-ADE 0.75 0.77 0.78 0.80 0.76 0.79
Drug-Dosage 0.95 0.98 0.96 0.93 0.95 0.95
Drug-Reason 0.74 0.91 0.76 0.65 0.75 0.76
Drug-Frequency 0.90 0.98 0.92 0.94 0.91 0.96
Average 0.90 0.97 0.92 0.90 0.91 0.93

Table 2: Results of relation classification experiments
(gold standard entity arguments) with SVM vs. Neural
systems.

entity pairs found by the system in Track 1 were
used to create candidate relations during training
and testing. For Track 2, we used the gold standard
entity pairs to create the candidate relations.

Results are scored with the scoring tool
distributed by the organizers of the chal-
lenge. This tool reports scores for precision
(#TruePositives

#Predictions ), recall (#TruePositives
#GoldPositives ), and F1

score (2∗precision∗recallprecision+recall ). For concepts, true pos-
itives can be strict (the system concept span must
match a gold concept spans begin and end exactly)
or lenient (a system concept span must overlap a
gold concept span). For relations, a true positive
is one where the gold set has a relation where both
arguments match, and the relation category is the
same. For both concepts and relations, we report
micro-averaged results of the lenient evaluation,
since that was the metric used to score the shared
task.

3 Evaluation

The tables show results on the concept extrac-
tion (Table 1), relation classification (Table 2),
and end-to-end relation extraction (Table 3). In

Track 3 Precision Recall F1
SVM Neural SVM Neural SVM Neural

Drug-Strength 0.92 0.96 0.91 0.94 0.91 0.95
Drug-Duration 0.73 0.83 0.51 0.57 0.60 0.67
Drug-Route 0.92 0.94 0.86 0.77 0.89 0.85
Drug-Form 0.95 0.94 0.89 0.89 0.92 0.91
Drug-ADE 0.60 0.50 0.18 0.15 0.28 0.23
Drug-Dosage 0.92 0.92 0.84 0.84 0.88 0.88
Drug-Reason 0.66 0.65 0.31 0.46 0.42 0.54
Drug-Freq 0.90 0.96 0.86 0.87 0.88 0.92
Average 0.90 0.90 0.76 0.78 0.82 0.84

Table 3: Results of relation extraction experiments
(system-generated entity arguments) with SVM vs.
Neural systems.

the concept extraction task, the systems perform
very similarly on average, with the SVM feature-
engineered approach obtaining a micro-averaged
F-score of 0.91 and the neural system scoring 0.90
(final row). By comparison, the best performing
system at the n2c2 shared task scored 0.94 on the
concept extraction task. The middle rows of Ta-
ble 1 show the performance for different concept
types. The two systems perform similarly across
concept types, except that the SVM-based system
performs much better on Route, while the neural
system is much better at extracting Reason and
Duration concepts.

For relation classification with gold standard
concepts given as input (Table 2, top), the neu-
ral system is at least as good as the SVM-based
system for every relation type, and the micro-
averaged neural system is 0.93 compared to the
0.91 for the SVM-based system. Most improve-
ment is seen in the Drug-Duration and Drug-
Frequency categories. By comparison, the best
performing system in the n2c2 challenge scored
0.96 on Track 2.

In the end-to-end relation extraction task (Ta-
ble 3, bottom), the neural system is again two
points better than the SVM in F1 score. The SVM
performs better on Drug-Route and Drug-ADE,
while the neural system performs better in Drug-
Duration and Drug-Reason. The best performing
system in the n2c2 challenge scored 0.89 on Track
3.

4 Conclusion

Despite minimal engineering effort, neural sys-
tems pre-trained on non-medical text obtain sim-
ilar performance to feature engineered systems
with features specific to clinical text. This is per-
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haps somewhat surprising, and provides some ev-
idence that standard neural architectures for se-
quence tagging and relation extraction tasks are al-
ready quite mature. One caveat to these results is
that, while our feature-based approach used stan-
dard feature sets with history of success in the lit-
erature, one could argue that to mirror the tuning
that is done with neural networks we could have
done more extensive tuning of feature hyperpa-
rameters, by, for example, testing configurations
where certain groups of features are turned on or
off.

While the performance of the neural system in
this work is impressive, one might expect them to
perform even better if they could be pre-trained
on clinical text. Future work will investigate lan-
guage model pre-training in Flair and other neu-
ral architectures on large amounts of clinical data
from electronic health record systems. The code
developed to participate in the n2c2 challenge and
run these experiments is available open source.1
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Abstract

In the medical domain and other scientific ar-
eas, it is often important to recognize differ-
ent levels of hierarchy in entity mentions, such
as those related to specific symptoms or dis-
eases associated with different anatomical re-
gions. Unlike previous approaches, we build a
transition-based parser that explicitly models
an arbitrary number of hierarchical and nested
mentions, and propose a loss that encourages
correct predictions of higher-level mentions.
We further propose a set of modifier classes
which introduces certain concepts that change
the meaning of an entity, such as absence, or
uncertainty about a given disease. Our model
achieves state-of-the-art results in medical en-
tity recognition datasets, using both nested and
hierarchical mentions.

1 Introduction

One of the most common studied tasks in NLP lies
in extracting semantic information from unstruc-
tured text in the form of entities and detecting en-
tity mentions across a single document, in partic-
ular where the mention is located (its span) and
its corresponding classification or entity semantic
type, such as person (PER), location (LOC), orga-
nization (ORG), etc. The task of entity recogni-
tion has long been studied and applied to different
higher level tasks such as question answering (Ab-
ney et al., 2000), coreference resolution (Fragkou,
2017), relation extraction (Mintz et al., 2009;
Miwa and Bansal, 2016; Liu et al., 2017), en-
tity linking (Gupta et al., 2017; Guo and Barbosa,
2014) and event extraction (Feng et al., 2016).
Most of the existing work in Named Entity Recog-
nition and Classification focuses on flat mentions,
usually corresponding to the longest outer men-
tion (Ling and Weld, 2012; Marcinczuk, 2015;
Leaman and Lu, 2016), or using nested mentions
that can capture overlapping mentions within dif-
ferent nested levels (Finkel and Manning, 2009;

Lu and Roth, 2015; Wang et al., 2018; Ju et al.,
2018). One of the main disadvantages of using
simple independent classes to model different hi-
erarchies is that there is no information that con-
veys an explicit hierarchical nature, in a way that
lower level classes help to disambiguate the nature
of higher level classes.

The most common approach to circumvent this
issue involves projecting each lower level class to
an individual label throwing away all of the in-
herent structure of the ontology. This approach is
limited, since it does not propagate information to
higher level classes and it does not use common
information of all children in the ontology. The
ability to identify hierarchical entities is very use-
ful in many fields, in particular in the medical do-
main, where we associate medication, symptoms
and other pathological conditions with more spe-
cific subtypes giving a more refined classification.

Additionally, we introduce the concept of mod-
ifier classes that can alter the meaning of a given
class. Often, in medical records, the doctor states
either the absence or presence of a particular con-
dition, for that purpose we created a modifier level
that acts on a particular class and is associated with
the degree of relevance of that class, for example
in the medical domain it may identify the absence
or probability of certain symptoms/diseases, or re-
fer to their duration (chronic, acute), etc. This con-
cept is of particular use if we consider a hierarchi-
cal model to identify where this modifier actuates.

We test our model against other state-of-the-art
methods modelling nested mentions whose clas-
sification is defined by their projected lower lev-
els. We make use of hierarchical datasets in
the medical field, where these notions are of ex-
treme importance. We evaluate our model us-
ing the GENIA (Ohta et al., 2002) dataset, a big-
ger and more complex proprietary medical corpus
(MED18) with higher hierarchical dependencies
and modifier classes. To summarize, this paper
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makes the following contributions:
• we introduce a novel Hierarchical and Nested

Named Entity Recognition (HNNER) model
based on a neural transition based approach (Dyer
et al., 2015), that is able to handle different levels
of nested mentions and hierarchy,
• we further propose a model that can learn

from modifier classes, allowing to model more
complex and fine grained relations, such as degree
of importance/variants of each class.
• we obtain state-of-the-art performance when

compared with existing nested models with lower
level projected labels (corresponding to the same
hierarchical levels).

2 Related Work

Named entity recognition and classification has
long been a popular task in NLP (Zhou and Su,
2002; McDonald et al., 2005; Ratinov and Roth,
2009; Wang et al., 2013). The first contribution
on detecting nested mentions was proposed by
Shen et al. (2003); Zhang et al. (2004); GuoDong
(2004) and relied mostly on rule-based models.
Later Finkel and Manning (2009) introduced a
constituency parser as the first model-based ap-
proach for nested recognition, followed by work
of Alex et al. (2007) using models based on linear-
Conditional Random Fields (CRFs). Lu and Roth
(2015); Muis and Lu (2017) handcrafted features
to extract nested mentions without modelling their
hidden dependencies using mention hypergraphs,
that can capture nested dependencies with un-
bounded lengths.

With the success of neural based approaches for
NER (Collobert et al., 2011; Chiu and Nichols,
2016; Ma and Hovy, 2016), several work has
been done in classifying nested mentions: Ju
et al. (2018) dynamically modeled each nested
layer as a Long-Short-Term-Memory (LSTM)-
CRF layer (Lample et al., 2016), requiring the
knowledge of the number of nested overlapps to
be known a priori. Katiyar and Cardie (2018) pro-
posed a recurrent neural network to extract fea-
tures to learn an hypergraph structure of nested
mentions, using a BILOU encoding scheme.
This required the creation of additional hyperarcs
whenever a nested mention is encountered. More
recently Wang et al. (2018) used a model based
on a shift reduce parser that builds a forest struc-
ture for nested mentions. This neural approach can
only be applied to classify nested mentions of dif-
ferent spans, meaning a single span cannot corre-
spond to different mentions.

All of the proposed approaches so far, allow
nested mentions classification but have never at-
tempted to model explicit hierarchical and nested
structures. Furthermore, our proposed model ar-
chitecture is more expressive since it allows the
same sequence of words to correspond to distinct
mentions possibly with different hierarchical or
nested levels.

3 Hierarchical Nested Named Entity
Recognition (HNNER)

For a given input sequence of words {w1, w2,
. . . , wn} our model generates a sequence of ac-
tions that identifies nested and hierarchical men-
tions simultaneously.

Our transition-based model allows for several
mentions to start and end at a given location in the
sequence. We make use of an additional stack to
store temporarily the terms corresponding to each
mention, which we denote as word stack. The sys-
tem state s is represented by a stack of words S
containing all the temporary words pertaining to
a mention (the word stack), a buffer of words to
be parsed B, and a stack of actions correspond-
ing to all mentions to be parsed M (the mention
stack) and an output buffer that encode the entity
mentions and other words O. Initially, we define
the starting state as s0 = [M = ∅, S = ∅, B =
{w1, . . . , wn}], O = ∅.

At each state, we apply an action an and change
the state of the system sn: by adding elements or
resetting the word stack and moving the resulting
mention to the output buffer, popping the top most
word of the buffer and adding or popping actions
from the mention stack. We consider four types of
possible system actions a ∈ A:
• OUT pops the top element of the buffer, and

moves it to the output unaltered,
• SHIFT shifts the top element of the buffer to

the word stack,
• TRANSITION(a) indicates the start of a men-

tion, adds action label a to the mention stack,
• REDUCE(a) indicates the end of a mention and

pops all elements of the mention stack until the last
recorded transition and inserts the resulting men-
tion (encoded as the output of an LSTM) in the
output buffer. Since we only allow reductions of
actions that remain in the top of the mention stack,
we transition first to longer mentions, whenever
more than one mention starts at the same point in
the word sequence.

For each state of the system sn we consider the
subset of all possible valid actions A(an−1, sn),
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Figure 1: Transition-shift-reduce mechanism for hierarchical nested mention recognition. Transition is indicated
by arrows pointing upwards, Reduce by downward arrows, Out horizontal arrows when mention stack is empty,
and Shift action when non-empty. Different levels of the mention stack indicate the number of nested layers, while
mention color indicates the hierarchical level (darker blue for level 0 and lighter as we go up in the hierarchy).

that depends on the previous action generated and
the current parser state, in particular the mention
stack. We consider a simple set of rules: for hi-
erarchical mentions we only allow transitions to
lower levels in the hierarchy if the upper levels ex-
ist in the mention buffer, meaning transitions of
the form TRANSITION(a > b) where the symbol
> indicates that b is a lower level hierarchy of class
a and is only admitted if TRANSITION(a) exists in
the mention stack. Our model allows an arbitrary
number of hierarchies since, without knowing this
number beforehand; we only allow reductions of
the top most element in the mention stack, this
step requires an ordering of nested mentions from
longer to shorter spanning windows; we also only
allow SHIFT actions if the mention stack is non-
empty.

A mention containing a single word requires
three actions to be considered: TRANSITION(a),
SHIFT and REDUCE(a). Using this approach,
we can model consecutive transitions of different
mentions, multiple hierarchical as well as nested
mentions, as long as they remain without over-
laps.1 For modifier classes, we model each indi-
vidual modifier as a top level class. Figure 2 pro-
vides an example of a sequence of hierarchical and
nested mentions. The terminal state is achieved
when the word buffer is empty and all the elements
of the mention stack have been reduced.

1We consider only non overlapping mentions disregarding
any occurrences of the form TRANSITION(a)- SHIFT- TRAN-
SITION(b)- SHIFT- REDUCE(a)- SHIFT- REDUCE(b).

4 HNNER Model

Our transition-based model draws inspiration from
the transition based parser proposed by Dyer et al.
(2015). For a given sequence of input words W =
{w1, . . . , wN}we represent each word as a low di-
mensional vector e(wn) ∈ Rdw for each word in
the vocabulary wn ∈ [V ]. To better capture mor-
phological and orthographic features of words, we
consider each word vector the product of con-
catenating a fixed word lookup embedding l(wn)
with its learned character sequence representation
c(wn), such that e(wn) = [l(wn); c(wn)]. We
compute the character embeddings using a bidi-
rectional LSTM following work of Ma and Hovy
(2016); Lample et al. (2016). We initialize char-
acter embeddings randomly, while each word em-
bedding is retrieved from a pretrained look-up rep-
resentation. For words out-of-vocabulary we con-
sider the word’s character based representation
and we train a representation of the unknown word
embedding.

We associate an LSTM with the word stack
LSTMS({e(wj)}wj∈S) whose inputs correspond
to the words shifted from the buffer, another with
the mention stack LSTMM ({an}an∈M ) with in-
puts from mentions that the system initialized, and
a last LSTM that models the output of the sys-
tem LSTMO({e(on)}on∈O), whose inputs corre-
spond to the latest state of the word LSTM or
the word embeddings, depending on whether the
word is in the word stack or not, respectively. We
start by filling the input buffer B0 = [wn, wn −
1, . . . , w0] with the sequence of word embeddings
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Models GENIA flat NER
P R F1

Finkel et al. (2004) 71.62 68.56 70.06
GuoDong (2004) 75.99 69.42 72.55
HNNER 76.11 69.43 72.62

Table 1: Results on JNLPBA with flat mentions.

to be parsed in reverse order, and leave the first
word at the top of the buffer. For a given state of
the system si = [M,S,B,O] we compute the sys-
tem state representation pi for each action i as a
nonlinear transformation of the last LSTM state of
the word stack hw ∈ Rdw , the last LSTM state of
the mention stack hm ∈ Rdm and the top most el-
ement of the buffer bn ∈ Rdw and the last element
of the output LSTM on ∈ Rdo :

pi = tanh(W [hw;hm; bn;on] + b),

with the bias b ∈ Rk and linear weights W ∈
R(2dw+dm+do)×k.

The system state pi contains all the informa-
tion required to make predictions about the cur-
rent action of the parser ai ∈ A, according to a
set of possible valid actions that we compute with
simple rules V(an−1, sn). Namely, we consider
only as viable actions: SHIFT actions if it fol-
lows after a TRANSITION; REDUCE actions can
only be applied in the reverse order of the pre-
viously applied TRANSITIONS; OUT actions are
only allowed if there is no action to be reduced,
and hierarchies must respect their parent transi-
tions, meaning TRANSITION(a¿b) is not allowed if
TRANSITION(a) has not been created first. Modi-
fier classes are considered as a separate class of la-
bels that may be applied in any hierarchical level.

The system greedily decides the current action
based on:

p(an = a | pn) =
expα>a pn∑

a′∈V expα
>
a′pn

We train our model to maximize the log-likelihood
of each action in a batch of M sequences:

L = −
M∑

i=1

N∑

n=1

βH−L(an) log p(an | pn),

weighted by a different value for each hierarchi-
cal level β < 1, where the level of each action
L(an) = 0 for the top levels and decreases as we
go down in the hierarchy, and H denotes the total
number of levels.

Datasets GENIA MED18
train dev test train dev test

vocabulary 74,560 51,879
pretrained vocab. 23,813 49,782
sentences 13,416 3,147 1,656 73,099 4,216 4,018
mentions 35,506 8738 4,492 495,148 29,522 28,458

hier. L0 17,753 4,369 2,246 230,912 13,702 13,271
hier. L1 17,753 4,369 2,246 139,665 8,353 7,933
hier. L2 – – – 123,291 7,372 7,132
hier. L3 – – – 1,200 95 122

flat actions 5 26
hier. actions 23 531

hier. L0 5 66
hier. L1 18 126
hier. L2 – 325
hier. L3 – 14

Table 2: Dataset description: total number of mentions,
sentences, words and actions. Number of mentions and
types of actions per hierarchical layer

5 Experimental Results

Datasets: We compare our HNNER model us-
ing different nested and hierarchical scenarios.
First, we compare against standard baselines
for flat NER using the splits and the JNLPBA
dataset (Gridach, 2017), considering only flat and
the topmost entities in the GENIA dataset (Ohta
et al., 2002), following the same splits and entity
types used by Finkel and Manning (2009). We
used the GENIA dataset (Ohta et al., 2002), con-
sisting of 2000 MEDLINE abstracts with 36 fine-
grained entity categories. We also employed the
same conversion to the main 5 entity types (and
left the DNA and RNA subtypes the hierarchical
experiments). We used pretrained word embed-
dings for GENIA using PUBMED dataset.2 We
further tested on a more complex medical dataset
MED18, 3 comprising 3000 documents of anno-
tated clinical reports in Portuguese. We consider
4 levels of hierarchy and 531 fine-grained entity
categories. We trained word embeddings for this
dataset using word2vec (Mikolov et al., 2013) on
over around 10M documents of clinical records.

Table 2 in 5 shows a description of the datasets.
The MED18 dataset is larger and more complex
than GENIA, containing a total of 509869 men-
tions, 531 different hierarchical classes with 4 lev-
els of hierarchy, while GENIA altough initialy
contains 36 fine-grained classes, we only report on
23 different classes with 2 levels of hierarchy.

Models and Baselines: We evaluate our HN-
NER model against state-of-the-art models for

2Embeddings available in http://bio.nlplab.
org/#source-data

3a proprietary dataset for Portuguese Medical Diagnosis
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Nested Models Nested GENIA
P R F1

Finkel and Manning (2009) 75.4 65.9 70.3
Lu and Roth (2015) 72.5 65.2 68.7
Muis and Lu (2017) 75.4 66.8 70.8
Wang et al. (2018) 76.0 69.4 71.6
HNNER 74.0 72.0 73.0

Table 3: Results on GENIA with nested mentions.

nested mentions: a CRF-based constituency parser
(Finkel and Manning, 2009); a nested NER model
using mention hypergraphs (Lu and Roth, 2015);
a multigraph representation with mention sepa-
rators for overlapping mentions (Muis and Lu,
2017); a neural layered model for each nested
layer (Ju et al., 2018); and a neural shift-reduce
neural parser for nested mentions (Wang et al.,
2018). We also, evaluated HNNER against the
non-hierarchical nested version with the same
number of hierarchical levels projected as a differ-
ent independent class (HNNER+SUB). We train
our model using Adam gradient updates (Kingma
and Ba, 2014) using a learning rate of 0.001 and a
batch size of 32 sentences. We employed dropout
of 0.1 on all input layers (Srivastava et al., 2014).
We used β = 0.8 for GENIA and β = 1.0
for MED18. For higher level datasets this value
should be closer to one in order to not overshadow
the effect of lower hierarchies, which are often the
most frequent ones.

Results Our HNNER model obtains state-of-
the-art results when compared with other flat (Ta-
ble 1) and nested NER models (Table 3).

Learning hierarchical mentions explicitly using
our model (HNNER) achieves better performance
than using a set of projected subcategories inde-
pendently, (HNNER+SUB) in Table 4. The pro-
posed approach is still able to perform well when
we deal with higher levels of hierarchy and more
nested classes, which we can observe in the results
using the MED18 dataset. As we progress towards
higher level hierarchies the gap performance in-
creases between projected subclasses and explicit
hierarchical modeling. The performance of level
L3 drops when compared with lower level levels,
because of the scarce number of existing mentions
for this level (see §5).

6 Conclusions and Future Work

We propose a hierarchical model based on a
transition-based parser that is able to recognize
hierarchical and nested mentions with undefined
levels of complexity. We tested the performance

Hierarchical Models L2-GENIA L3-MED18
P R F1 P R F1

HNNER+SUB 69.3 64.5 66.8 73.2 71.7 72.5
HNNER+SUB-L0 73.5 68.4 70.9 74.4 71.3 72.8
HNNER+SUB-L1 65.1 60.6 62.8 72.7 72.7 72.7
HNNER+SUB-L2 - - - 72.1 72.1 72.1
HNNER+SUB-L3 - - - 37.5 36.9 37.2
HNNER 69.5 68.5 70.0 73.7 72.7 73.2
HNNER-L0 73.6 72.6 73.1 74.2 73.1 73.6
HNNER-L1 65.3 64.4 64.8 73.8 72.8 73.3
HNNER-L2 - - - 73.3 72.3 72.8
HNNER-L3 - - - 38.9 40.2 39.5

Table 4: Results on GENIA and MED18 with nested
mentions with all the subcategories, and performance
per hierarchical layer.

of our model using two medical datasets GENIA
and MED18, and reported state-of-the-art results
on flat, nested and hierarchical datasets. We leave
as future work extending this approach to more
general overlapping mentions with non projective
overlaps and exploiting schedule sampling tech-
niques to make the algorithm less prone to errors
during test-time.
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Abstract

Large-scale clinical data is invaluable to driv-
ing many computational scientific advances
today. However, understandable concerns re-
garding patient privacy hinder the open dis-
semination of such data and give rise to subop-
timal siloed research. De-identification meth-
ods attempt to address these concerns but were
shown to be susceptible to adversarial attacks.
In this work, we focus on the vast amounts
of unstructured natural language data stored
in clinical notes and propose to automatically
generate synthetic clinical notes that are more
amenable to sharing using generative models
trained on real de-identified records. To eval-
uate the merit of such notes, we measure both
their privacy preservation properties as well as
utility in training clinical NLP models. Ex-
periments using neural language models yield
notes whose utility is close to that of the real
ones in some clinical NLP tasks, yet leave am-
ple room for future improvements.

1 Introduction

Clinical data and clinical notes specifically, are an
important factor for the advancement of computa-
tional methods in the medical domain. Suffice to
say that the recently introduced MIMIC-III clini-
cal database alone (Johnson et al., 2016) already
has hundreds of cites on Google Scholar. How-
ever, understandable privacy concerns yield strict
restrictions on clinical data dissemination, thus in-
hibiting scientific progress. De-identification tech-
niques provide some relief (Dernoncourt et al.,
2017), but are still far from providing the privacy
guarantees required for unrestricted sharing (Ohm,
2009; Shokri et al., 2017).

In this work, we investigate the possibility of
disseminating clinical notes data by computation-
ally generating synthetic notes that are safer to
share than real ones. To this end, we introduce

a clinical notes generation task, where synthetic
notes are to be generated based on a set of real
de-identified clinical discharge summary notes,
henceforth referred to as MedText, which we ex-
tracted from MIMIC-III. The evaluation includes
a new measure of the privacy preservation proper-
ties of the synthetic notes, as well as their utility on
three clinical NLP tasks. We use neural language
models to perform this task and discuss the po-
tential and challenges of this approach. Resources
associated with this paper are available for down-
load.1

2 Background

2.1 Clinical Notes

Electronic health records contain a wealth of in-
formation about patients in the form of both struc-
tured data and unstructured text. While structured
data is critical for purposes like billing and ad-
ministration, unstructured clinical notes contain
important information entered by doctors, nurses,
and other staff associated with patient care, which
is not captured elsewhere. To this end, researchers
have found that although structured data is eas-
ily accessible, clinical notes remain indispensable
for understanding a patient record (Birman-Deych
et al., 2005; Singh et al., 2004). Rosenbloom et al.
(2011) argued that clinical notes are considered to
be more useful for identifying patients with spe-
cific disorders. A study by Köpcke et al. (2013)
found that 65% of the data required to determine
eligibility of a patient into clinical trials was not
found in structured data and required examination
of clinical notes. Similar findings were also re-
ported by Raghavan et al. (2014).

Due to their importance, it is no wonder that
clinical notes are used extensively in medical NLP

1https://github.com/orenmel/
synth-clinical-notes.
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research. Unfortunately, however, due to privacy
concerns, explained further below, it is very com-
mon that the data is exclusively available only to
researchers collaborating with or working for a
particular healthcare provider (Choi et al., 2016;
Afzal et al., 2018; Liu et al., 2018).

2.2 De-identification
Clinical notes contain sensitive personal informa-
tion required for medical investigations, which is
protected by law. For example, in the United
States, the Health Insurance Portability and Ac-
countability Act (HIPAA)2 defines 18 types of
protected health information (PHI) that needs to be
removed to de-identify clinical notes (e.g. name,
age, dates and contact details). Both manual and
automated methods for de-identification have been
investigated with varying degrees of success. Nea-
matullah et al. (2008) reported a recall ranging
from 0.63 to 0.94 between 14 clinicians for manu-
ally identifying PHI in 130 clinical notes. Since
human annotations for clinical data are costly
(Douglass et al., 2004), researchers have inves-
tigated automated and semi-automated methods
for de-identification (Gobbel et al., 2014; Hanauer
et al., 2013). Automated methods range from rule-
based systems (Morrison et al., 2009) to statistical
methods such as support vector machines and con-
ditional random fields (Stubbs et al., 2015), with
more recent use of recurrent neural networks (Liu
et al., 2017; Dernoncourt et al., 2017).

Unfortunately, despite strong results reported
for clinical data de-identification methods, it is
usually hard to determine to what extent they
are resistant to re-identification attacks on health-
care data (Ohm, 2009; El Emam et al., 2011;
Gkoulalas-Divanis et al., 2014). Therefore, in
practice, de-identified patient data is almost never
shared freely, and complementary privacy protec-
tion techniques, such as the one described in the
following section, are being actively investigated.

2.3 Differential Privacy
Collections of private individual data records are
commonly used to compute aggregated statisti-
cal information or train statistical models that are
made publicly available. Possible use cases in-
clude collections of search queries used to provide
intelligent auto-completion suggestions to users of

2Office for Civil Rights H. Standards for privacy of indi-
vidually identifiable health information. Final rule. Federal
Register. 2002;67:53181.

search engines and medical records used to train
computer-based clinical expert systems. While
this is not always transparent, providing access
to such aggregated information may be sufficient
for attackers to infer some individual private data.
One example to such well crafted attacks are the
membership inference attacks proposed by Shokri
et al. (2017). In these attacks, the adversary
has only black-box access to a machine learning
model that was trained on a collection of records,
and tries to learn how to infer whether any given
data record was part of that model’s train set or
not. Susceptibility to such attacks is an indication
that private information may be compromised.

Differential privacy (DP) is, broadly speaking,
a guarantee that the personal information of each
individual record within a collection is reasonably
protected even when the aggregated statistical in-
formation is exposed. A model that is trained on
some record collection as its input and makes its
outputs publicly available, will provide stronger
DP guarantees the less those outputs depend on the
presence of any individual record in the collection.

More formally, a randomized function K pro-
vides ε−differential privacy if for all collections
C1 and C2 differing by at most one element, and
all S ⊆ Range(K):

log p(K(C1) ∈ S)− log p(K(C2) ∈ S) ≤ ε
A mechanism K satisfying this definition ad-

dresses concerns of personal information leakage
from any individual record since the inclusion of
that record will not result in any publicly exposed
outputs becoming significantly more or less likely
(Dwork, 2008).

Differential privacy is an active research field,
with various techniques proposed to provide DP
guarantees to various machine learning models
(Abadi et al., 2016; Papernot et al., 2018). How-
ever, while DP shares some motivation with tra-
ditional machine learning techniques, such as the
need to avoid overfitting, it is unfortunately not
always easy to achieve good differential privacy
guarantees, and they typically come at the cost
of some accuracy degradation and computational
complexity.

2.4 Language Modeling
Language models (LMs) learn to estimate the
probability of a next word given a context of pre-
ceding words, i.e. P̂ (wi|w1..i−1), where wi is the

36



word in position i in the text. They were found
useful in many NLP tasks, including text classifi-
cation (Howard and Ruder, 2018), machine trans-
lation (Luong et al., 2015) and speech recognition
(Chen et al., 2015). They are also commonly used
for generating text (Sutskever et al., 2011; Radford
et al., 2018) as we do in this paper. To generate
text, a trained model is typically used to estimate
the conditional probability distribution of the next
word P̂ (wi|w1..i−1). Next, it samples a word for
position i from this distribution and then goes on
to sample the next one based on P̂ (wi+1|w1..i) and
so on. The predominant model design used to im-
plement LMs today used to be Recurrent Neural
Networks (RNNs) due to their ability to capture
long distance contexts (Jozefowicz et al., 2016),
but recently, the attention-based Transformer ar-
chitecture surpassed state of the art results (Rad-
ford et al., 2018; Dai et al., 2019).

3 The Clinical Notes Generation Task

To establish the merit of synthetic clinical notes
generated by statistical models, we propose a task
setup that consists of: (1) real de-identified clin-
ical notes datasets used to train models, which in
turn generate synthetic notes; (2) privacy measures
used to estimate the privacy preservation proper-
ties of the synthetic notes; and (3) utility bench-
marks used to estimate the usefulness of the notes.
To be considered successful, a model needs to
score well both on privacy and utility measures.

3.1 Original Clinical Notes Data

As our source for composing the real clinical
notes datasets, we used MIMIC-III (v1.4) (John-
son et al., 2016), a large de-identified database
that comprises nearly 60,000 hospital admissions
for 38,645 adult patients. Despite having been
stripped of patient identifiers, MIMIC’s records
are available to researchers only under strict terms
of use that include careful access restrictions and
completion of sensitive data training3 due to pri-
vacy concerns.

Training language models is expensive in terms
of time and compute power. It is a common
practice (Merity et al., 2017) to evaluate language
models that were trained on both a small dataset
that is relatively quick to train on and a medium-
sized dataset which can demonstrate some bene-

3https://mimic.physionet.org/
gettingstarted/access/

fits of scale while still being manageable. There-
fore, within MIMIC-III, following Dernoncourt
et al. (2017), we focused on the discharge sum-
mary notes due to their content diversity and rich-
ness in natural language text. Further, we followed
the recently introduced WikiText-2 and WikiText-
103 datasets (Merity et al., 2017) to determine
plausible size, splits and most of the preprocess-
ing of our datasets. These datasets include text
from Wikipedia articles and are commonly used to
benchmark general-domain language models. We
name our respective benchmarks, MedText-2 and
MedText-103.

To create the MedText datasets, we first ex-
tracted the full text of the discharge summary
notes from the NOTEEVENTS table available
from MIMIC-III. Since the text includes arbi-
trary line splits, presumably for formatting rea-
sons, we merged lines and then performed sen-
tence splitting and word tokenization using the
NLP toolkit spaCy.4 We then randomly sam-
pled notes to create the MedText-2 and MedText-
103 datasets. Each of these datasets was split
into train/validation/test subsets, with MedText-
2 and MedText-103 comprising approximately 2
and 103 million word train sets, respectively, and
sharing the same ∼200K-word validation and test
sets. Finally, we replaced all words with an occur-
rence count below 3 with an unk token.5

Table 1 describes more precise statistics of the
resulting MedText datasets, compared to the re-
spective WikiText datasets. As seen, compared to
the WikiText datasets, which are nearly identical
in terms of word counts, we note that MedText ex-
hibits notably smaller vocabulary sizes (24K vs.
33K and 135K vs. 267K) and Out-Of-Vocabulary
(OOV) rates (1.5% vs. 2.6% and 0.3% vs. 0.4%).
We hypothesize that this is one of the artifacts of
MedText being more domain-specific than Wiki-
Text, as it is restricted only to discharge summary
notes. To this end, we note that to the best of
our knowledge, unlike the general domain where
popular language modeling benchmarks, such as
WikiText, PTB and WMT (Chelba et al., 2014),
are commonly used, there are no equivalent bench-
marks specific to the medical domain. Therefore,
as an independent contribution, we propose Med-
Text as such a benchmark.

4https://spacy.io/
5This was done separately for MedText-2 and MedText-

103 resulting in a discrepancy between their validation/test
sets in terms of the unk tokens.
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Train Valid Test
MedText-2

Notes 1280 128 128
Words 2,259,966 228,795 219,650
Vocab 24,052
OOV 1.5%

MedText-103
Notes 59,396 128 128
Words 103,590,422 228,795 219,650
Vocab 135,220
OOV 0.3%

Train Valid Test
WikiText-2

Articles 600 60 60
Words 2,088,628 217,646 245,569
Vocab 33,278
OOV 2.6%

WikiText-103
Articles 28,475 60 60
Words 103,227,021 217,646 245,569
Vocab 267,735
OOV 0.4%

Table 1: MedText vs. WikiText dataset statistics

3.2 The Privacy Measure

As mentioned in the Background section, while
traditional de-identification methods, such as
deleting patient identifiers, are an essential pre-
requisite to protecting the privacy of patient data,
it is well understood that they are not sufficient
to provide strong privacy guarantees. To address
this, we propose to share the output of statisti-
cal models that were trained to generate synthetic
data based on real de-identified data. While this
intuitively seems to increase privacy preservation
compared to sharing the real data, it is still not
necessarily sufficient, due to potential private in-
formation leakage from such models.

To quantify the risk involved in sharing syn-
thetic clinical notes, we propose to use an empir-
ical measure of private information leakage. This
measure is meant to serve two purposes: (1) help
drive the development of synthetic clinical notes
generation methods that preserve privacy; and (2)
inform decision makers regarding the concrete risk
in releasing any given synthetic notes dataset.

Our proposed measure is adopted from the
field of Differential Privacy (DP). Recently, Long
et al. (2017) proposed an empirical differential
privacy measure, called Differential Training Pri-
vacy (DTP). Unlike DP guarantees, which are ana-
lyzed theoretically and apply only to specific mod-
els designed for DP, DTP is a local property of any
model and a concrete training set. It can be derived
by means of empirical computation to any trained
model regardless of whether it has theoretical DP
guarantees, and provides an estimate of the pri-
vacy risks associated with sharing the outputs of
that concrete trained model. In this work, we base
our privacy measures on the Pointwise Differen-
tial Training Privacy (PDTP) metric (Long et al.,

2017), a more computationally efficient variant of
DTP:

(1)PDTPM,T (t) =

max
y∈Y

(|log pM(T )(y|t)− log pM(T\{t})(y|t)|)

for a classification modelM , a set of possible class
predictions Y , a training set T , and a specific tar-
get record t ∈ T for which the risk is measured.
The rationale for this measure is that to protect the
privacy of t, the difference in the predictions of
a model trained with t versus those of a model
trained without it, should be as small as possi-
ble, and in particular when it comes to predictions
made when the model is applied to t itself.

For the purpose of measuring privacy, we make
the assumption that the model M that was trained
to generate the synthetic notes can be queried for
the conditional probability log pM(T )(w

c
i |wc

1..i−1),
where wc

i is the i-th word in clinical note c, which
is our equivalent of a record. 6 We note that unlike
in the setting of Long et al. (2017), where a single
class y is predicted for each record, for synthetic
notes, we can view every generated word wc

i in
c as a separate class prediction. Accordingly, we
propose Sequential-PDTP:

(2)

S − PDTPM,T (c)

= max
i∈1..|c|

(
|log pM(T )(w

c
i |wc

1..i−1)

− log pM(T\{c})(w
c
i |wc

1..i−1)|
)

S-PDTP estimates the privacy risk for clinical
note c as the largest absolute difference between
the conditional probability predictions made by

6If M does not disclose this information, then the syn-
thetic notes it generates could be used to train a language
model M ′ that does, as an approximation for M .
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M(T ) and M(T \ {c}) for any of the words in
c given their preceding context. Finally, our pro-
posed privacy score for notes generated by a model
M trained on a benchmark dataset T , is the ex-
pected privacy risk, where a higher score indicates
a higher expected risk:

(3)S−PDTPM,T = Ec∈T [S−PDTPM,T (c)]

Intuitively, a high S-PDTP score means that
the output of the trained model is sensitive to the
presence of at least some individual records in
its training set and therefore revealing that output
may compromise the private information in those
records. In practice, since it is challenging com-
putationally to train and test |T | different models,
we use an estimated measure based on a sample of
30 notes from T.

3.3 Utility Benchmarks
We compare the utility of synthetic vs. real clini-
cal notes by using them as training data in the fol-
lowing clinical NLP tasks.

3.3.1 Estimating lexical-semantic association
As a measure of the quality of the lexical se-
mantic information contained in clinical notes, we
use them to train word2vec embeddings (Mikolov
et al., 2013) with 300 dimensions and a 5-word
window 7. Then, we evaluate these embeddings
on the medical word similarity and relatedness
benchmarks, UMNSRS-Sim and UMNSRS-Rel
(Pakhomov et al., 2010; Chiu et al., 2016). These
benchmarks comprise 566 and 587 word pairs,
which were manually rated with a similarity and
relatedness score, respectively.

To evaluate each set of embeddings, we com-
pute its estimated similarity scores, as the cosine
similarity between the embeddings of the words in
each pair. Since our MedText datasets are domain-
specific and not huge in size, our learned embed-
dings do not include a representation for many of
the words in the UMNSRS benchmarks. There-
fore, to ensure that we do have an embedding for
every word included in the evaluation, we limit our
datasets only to pairs, whose words occur at least
20 times and 30 times in MedText-2 and MedText-
103, respectively. Accordingly, the number of
pairs we use from UMNSRS-Sim/UMNSRS-Rel
is 110/105 in the case of MedText-2 and 317/305
in the case of MedText-103. Finally, each set of

7We used default word2vec hyperparameters, except for
10 negative samples and 10 iterations.

embeddings is evaluated according to the Spear-
man’s correlation between the pair rankings in-
duced by the embeddings’ scores and the one in-
duced by the manual scores.

3.3.2 Natural language inference (NLI)
We also probe the utility of clinical notes for per-
forming natural language inference (NLI) – a sen-
tence level task. The task is to determine whether
a given hypothesis sentence can be inferred from
a given premise sentence. NLI, also known as rec-
ognizing textual entailment (RTE) (Dagan et al.,
2013), is a fundamental popular task in natural lan-
guage understanding.

For our NLI task, we use MedNLI, the first
clinical domain NLI dataset, recently released by
Romanov and Shivade (2018). The dataset in-
cludes sentence pairs with annotated relations that
are used to train evaluated models. Romanov and
Shivade (2018) report the performance of various
neural network based models that typically bene-
fit from the use of unsupervised pre-trained word
embeddings. In our benchmark, we report the ac-
curacy of their simple BOW model (also called
sum of words) with input embeddings that are pre-
trained on MedText clinical notes and kept fixed
during the training with the MedNLI sentence
pairs. The pre-trained embeddings used were the
same as the ones used for the lexical-semantic
association task. In all of our experiments, we
used the implementation of Romanov and Shivade
(2018) with its default hyperparameters .8

3.3.3 Recovering letter case information
Our third task goes beyond word embeddings, us-
ing clinical notes to train a recurrent neural net-
work model end-to-end. More specifically, we
use MedText to train letter casing (capitalization)
models. These models are trained based on par-
allel data comprising the original text and an all-
lowered-case version of the same. Then, they are
evaluated on their ability to recover casing for a
test lower-cased text. The appealing aspect of this
task is that the parallel data can be easily obtained
in various languages and domains.

We note that sequential information is impor-
tant in predicting the correct casing of words. The
simplest example in English is that the first word
of every sentence usually begins with a capital
letter, but title casing, and ambiguous words in
context (such as the word ‘bid’ that may need to

8https://github.com/jgc128/mednli
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be mapped to ‘BID’, i.e. ’twice-a-day’, in the
clinical prescription context), are other examples.
Arguably, for this reason, the state-of-the-art for
this task is achieved by sequential character-RNN
models (Susanto et al., 2016). We use their imple-
mentation9 with default hyperparameters for our
evaluation.10 We use the dev and test splits of
MedText to perform the letter case recovery task
and report F1.

4 Experiments

In this section, we describe results obtained when
using various models to perform the clinical notes
generation task. We first generate synthetic clin-
ical notes and evaluate their privacy properties.
Then, assuming these notes were shared with an-
other party we evaluate their utility to that party in
training various clinical NLP models compared to
that of the real notes.

4.1 Compared Methods
To generate the synthetic notes, we used primar-
ily a standard LSTM language model implemen-
tation by PyTorch.11 We trained 2-layer LSTM
models with 650 hidden-units on the train sets of
MedText-2 and MedText-103, and tuned their hy-
perparameters based on validation perplexity.12

To get more perspective on the efficacy of the
LSTM models, we also trained a simple unigram
baseline with Lidstone smoothing:

(4)punigram(wi = u|w1..i−1) =
count(u) + 1

N + |V |

where wi is the word at position i, N is the to-
tal number of words in the train set and |V | is the
size of the vocabulary. As can clearly be seen, this
is a very naive model that generates words based
on a smoothed unigram distribution, disregarding

9https://github.com/raymondhs/
char-rnn-truecase

10We use their ‘small’ model configuration for MedText-2
and ‘large’ model configuration for MedText-103.

11https://github.com/pytorch/examples/
tree/master/word_language_model

12For MedText-2, we trained for 20 epochs, beginning with
a learning rate of 20 and reducing it by a factor of 4 after ev-
ery epoch for which the validation loss did not go down com-
pared to the previous epoch. For the much larger MedText-
103, we trained for 2 epochs, beginning with a learning rate
of 20 and reducing it by a factor of 1.2 every 1
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epoch if the

validation loss did not go down by at least 0.1, but never go-
ing below a minimum learning rate of 0.1. In all runs, we
used SGD with gradients clipped to 0.25, back-propagation-
through-time 35 steps, a batch size of 20 and tied input and
output embeddings.

the context of the word in the note. Therefore, we
expect that the utility of notes generated with this
model would be low. However, on the other hand,
since it captures much less information about the
train data, we also expect it to have better privacy
properties.

We then used the trained models to gener-
ate synthetic MedText-2-M and MedText-103-M
datasets with identical word counts to the respec-
tive real note train datasets, and where M denotes
a generative model being used. To that end, we
iteratively sampled a next token from the model’s
predicted conditional probability distribution and
then fed that token as input back to the model. We
used an empty line as an indication of an end-of-
note, hence a collection of clinical notes is rep-
resented by the model as a seamless sequence of
text.

We study the effect that using dropout regular-
ization (Srivastava et al., 2014; Zaremba et al.,
2014) has on privacy and the tradeoffs between
privacy and utility. Dropout, like other regular-
ization methods, is a machine learning technique
commonly applied to neural networks to minimize
their prediction error on unseen data by reduc-
ing overfitting to the train data. It has also been
shown that avoiding overfitting using regulariza-
tion is helpful for protecting the privacy of the
train data (Jain et al., 2015; Shokri et al., 2017;
Yeom et al., 2017). Accordingly, we hypothesize
that the higher dropout values used in our models
are, the better the privacy scores would be. Utility,
however, typically has a dropout optimum value
over which it begins to degrade.

4.2 Qualitative Observations

We sought feedback from a clinician on the qual-
ity of the generated synthetic discharge summary
notes. A generated note comprises various rel-
evant sections indicated by plain text headers.
These sections are mostly in the right order with
a typical order being: admission details, medi-
cal history, treatment, medications and finally, dis-
charge details. The text of a section is mostly top-
ically coherent with its header. For instance, the
text generated for a medical history section often
includes sentences mentioning medical problems.
On the other hand, although local linguistic ex-
pressions and phrases typically make sense, con-
tinuity across consecutive sentences makes little
clinical sense and many sentences are unclear due
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to incorrect grammar. A simple but obvious error
is change of gender for the same patient (e.g. the
pronoun ‘he’ switches to ‘she’). A different ex-
ample for short range language modeling problem
is generation of incorrect terms like “Hepatitis C
deficiency”. The quality of a generated section is
typically much better when it is backed by a struc-
ture as in a numbered list of medications. Yet, a
notable problem here is that lists frequently have
repeated entries (e.g. same symptom listed more
than once). In conclusion, to a human eye, the syn-
thetic notes are clearly distinct from real ones, yet
from a topical and shallow linguistic perspective
they do carry genuine properties of the original
content. A sample snippet of a synthetic clinical
note is shown in Figure 1.

Admission Date :
〈 deidentified 〉
Discharge Date :
〈 deidentified 〉
Date of Birth :
〈 deidentified 〉 Sex :
F
Service :
SURGERY
Allergies :
Patient recorded as having No Known Allergies to
Drugs
Attending :
〈 deidentified 〉
Chief Complaint :
Dyspnea
Major Surgical or Invasive Procedure :
Mitral Valve Repair
History of Present Illness :
Ms. 〈 deidentified 〉 is a 53 year old female who presents
after a large bleed rhythmically lag to 2 dose but the pa-
tient was brought to the Emergency Department where
he underwent craniotomy with stenting of right foot un-
der the LUL COPD and transferred to the OSH on 〈
deidentified 〉 .
The patient will need a pigtail catheter to keep the sitter
daily .

Figure 1: Sample snippet of a synthetic clinical note

4.3 Results
Table 2 shows the results we get when training
the LSTM language models with varied dropout
values. Starting with perplexity, we see that gen-
erally we achieve notably lower (better) perplexi-
ties on MedText, compared to results with LSTM
on WikiText, which are around 100 for WikiText-
2 and 50 for WikiText-103. 13 We hypothe-

13https://www.salesforce.com/products/einstein/ai-
research/the-wikitext-dependency-language-modeling-

size that this may be due to the highly domain-
specific medical jargon and repeating note tem-
plate characteristics that are presumably more pre-
dictable. We also see that best perplexity re-
sults are achieved with dropout values around 0.3-
0.5 for MedText-2, and 0.0 (i.e. no dropout) for
MedText-103, compared to the 0.5 dropout rate
commonly used in general-domain language mod-
eling (Zaremba et al., 2014; Merity et al., 2017).
These differences reinforce our proposal of Med-
Text as an interesting language modeling bench-
mark for medical texts. As a reference for future
work, we report the perplexity results obtained on
the test set data: 12.88 on MedText-2 (dropout =
0.5), and 8.15 on MedText-103 (dropout = 0.0).

Next, looking at privacy, we see that as pre-
dicted, more aggressive (higher) dropout values
yield better (lower) privacy risk scores. We also
see that privacy scores on the large MedText-103
are generally much better than the ones on the
smaller MedText-2. This observation is intuitive
in the sense that we would expect to generally get
better privacy protection when any single personal
clinical note is mixed with more, rather than fewer,
notes in the train-set of a note-generating model.

For the utility evaluation, we chose three repre-
sentative dropout values, for which we generated
the MedText-M notes and compared them against
the real MedText on the utility benchmarks. Look-
ing at the results, we first see, as expected, that
the performance with MedText-M is consistently
lower than that with MedText, i.e. real notes are
more useful than synthetic ones. However, the
synthetic notes do seem to bear useful informa-
tion. In particular, in the case of the letter case
recovery task, they perform almost as well as the
real ones. We also see as suspected, that privacy
usually comes at some expense of utility.

Finally, looking at the unigram baseline, we see
as expected that perplexity and utility is by far
worse than that achieved by the LSTM models,
while privacy is much better. This is yet further
evidence of the utility vs. privacy trade-off. We
hope that future work could reveal better models
that can get closer to the privacy protection values
exhibited by the unigram model, while achieving
utility, which is closer to that of the real notes.

dataset/
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note generation model dropout perplexity privacy similarity relatedness nli case
MedText-2

Baseline: Real notes .459 .381 .713 .910
MedText-2-M

LSTM

0.0 15.8 11.7 .227 .125 .678 .895
0.3 12.5 11.8
0.5 12.5 9.6 .259 .160 .692 .895
0.7 15.4 7.5
0.8 20.3 6.6 .146 .016 .699 .883

unigram N/A 702.4 0.9 .027 -.072 .661 .488

note generation model dropout perplexity privacy similarity relatedness nli case
MedText-103

Baseline: Real notes .608 .489 .724 .921
MedText-103-M

LSTM
0.0 7.8 4.9 .415 .351 .697 .918
0.2 8.4 4.0 .401 .337 .702 .915
0.5 10.2 3.7 .315 .271 .713 .910

unigram N/A 803.5 0.3 .094 .170 .644 .469

Table 2: Experimental results with the real MedText and synthetic MedText-M. ‘dropout’ is the dropout value
used to train different LSTM models on MedText and then generate the respective synthetic MedText-M datasets
(0.0 means no dropout applied); ‘perplexity’ is the perplexity obtained on the real MedText validation set for
each note generation model M ; ‘privacy’ is our privacy measure (S − PDTPM,T for every M , where T is
MedText); ‘similarity’/‘relatedness’ are UMNSRS word similarity/relatedness correlation results obtained using
word embeddings trained on MedText and MedText-M; ‘nli’ is the accuracy obtained on the MedNLI test set using
different MedText pre-trained word embeddings; and ‘case’ is the case restoration F1 measure.

4.4 Analysis

To better understand the factors determining our
proposed privacy scores, we took a closer look
at two note generating models, MedText-2-0 and
MedText-103-0, which are the models trained on
MedText-2 and MedText-103, respectively, with
dropout=0.0. First, we note that in 30 out of 30
and 25 out of 30 of the notes sampled to compute
S − PDTPM,T (c) (Eq. 2) in MedText-2-0 and
MedText-103-0, respectively, we observe that

log pM(T )(w
c
j |wc

1..j−1) > log pM(T\{c})(w
c
j |wc

1..j−1)

where

j = argmaxi∈1..|c|
(
|log pM(T )(w

c
i |wc

1..i−1)

− log pM(T\{c})(w
c
i |wc

1..i−1)|
)

In other words, in the vast majority of the cases,
the maximum differences in probability predic-
tions are due to the model trained on train-set T ,
which includes note c, estimating a higher condi-
tional probability to a word in c than the one esti-
mated by the model trained on T \ {c}. This can

be expected, since M(T ) has seen all the text in c
during training, whileM(T \{c}) may or may not
have seen similar texts.

Furthermore, when looking at the actual text
positions j that determine the privacy scores, we
indeed see that the prediction differences that
contribute to the privacy risk measure, are typ-
ically due to rare words and/or sequences of
words in note c that have no similar counter-
parts in T \ {c}. More specifically, several of
the cases where log pM(T\{c})(wc

j |wc
1..j−1) �

log pM(T )(w
c
j |wc

1..j−1) occur when: (1) A partic-
ular rare word wc

j , such as cutdown, appears only
in a single clinical note c and never in T \ {c}.
This happens, for example, in p(“cutdown” | “Left
popliteal”);14 (2) The rare word is at position
j − 1 as is Ketamine in p(“gtt” | “On POD # 2
Ketamine,”); and (3) The word wc

j is not rare, but
usually does not appear right after the sequence
w1..j−1 as in p(“mouth” | “foaming at”), where in
T \ {c} there is always a determiner or pronoun
before the word mouth, or p(“pain” | “mild left

14POD stands for ‘postoperative day’
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should”), where should is a typo of shoulder.
These findings lead us to hypothesize that cases

of PHI, such as full names of patients, inadver-
tently left in de-identified notes, might desirably
increase the privacy risk measure output because
of their rarity. This would be interesting to vali-
date in future work.

For risk mitigation, we hypothesize that us-
ing pre-trained word embeddings including rare
words and even more so, pre-training the lan-
guage model on a larger public out-of-domain re-
source (Howard and Ruder, 2018), may help in re-
ducing some of the above discrepancies between
pM(T\{c}) and pM(T ) and hence improve the over-
all privacy score of the models.

5 Related Work

Recently, Choi et al. (2017) proposed medGAN,
a model for generating synthetic patient records
that are safer to share than the real ones due to
stronger privacy properties. However, unlike our
work, their study is focused on discrete variable
records and does not address the wealth of infor-
mation embedded in natural language notes.

Boag et al. (2016) created a corpus of
synthetically-identified clinical notes with the
purpose of using this resource to train de-
identification models. Unlike our synthetic
notes, their notes only populate the PHI in-
stances with synthetic data (e.g. replacing “[**Pa-
tient Name**] visited [**Hospital**]” with the
randomly sampled names “Mary Smith visited
MGH.”

6 Conclusions and Future Work

We proposed synthetic clinical notes generation as
means to promote open and collaborative medical
NLP research. To have merit, the synthetic notes
need to be useful and at the same time better pre-
serve the privacy of patients. To track progress
on this front, we suggested a privacy measure and
a few utility benchmarks. Our experiments using
neural language models demonstrate the potential
and challenges of this approach, reveal the ex-
pected trade-offs between privacy and utility, and
provide baselines for future work.

Further work is required to extend the range
of clinical NLP tasks that can benefit from the
synthetic notes as well as increase the levels of
privacy provided. McMahan et al. (2018) in-
troduced an LSTM neural language model with

differential privacy guarantees that has just been
publicly released.15 Radford et al. (2018) and
Dai et al. (2019) recently showed impressive im-
provement in language modeling performance us-
ing the novel attention-based Transformer archi-
tecture and larger model scales. These methods
are example candidates for evaluation on our pro-
posed clinical notes generation task. With suffi-
cient progress, we hope that this line of research
would lead to useful large synthetic clinical notes
datasets that would be available more freely to a
wider research community.
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Abstract

While much data within a patient’s electronic
health record (EHR) is coded, crucial infor-
mation concerning the patient’s care and man-
agement remain buried in unstructured clinical
notes, making it difficult and time-consuming
for physicians to review during their usual
clinical workflow. In this paper, we present our
clinical note processing pipeline, which ex-
tends beyond basic medical natural language
processing (NLP) with concept recognition
and relation detection to also include compo-
nents specific to EHR data, such as structured
data associated with the encounter, sentence-
level clinical aspects, and structures of the
clinical notes. We report on the use of this
pipeline in a disease-specific extractive text
summarization task on clinical notes, focus-
ing primarily on progress notes by physicians
and nurse practitioners. We show how the
addition of EHR-specific components to the
pipeline resulted in an improvement in our
overall system performance and discuss the
potential impact of EHR-specific components
on other higher-level clinical NLP tasks.

1 Introduction

EHRs are a longitudinal record of the patient’s
health information consisting of structured (e.g.
vitals, medications, labs, procedures) and unstruc-
tured (e.g. progress notes, discharge summaries,
diagnostic test reports) information. Clinical notes
within EHRs are traditionally a rich source of
data where detailed information about the patient’s
medical history and clinical care process is docu-
mented. However, physicians at the point of care
are mostly unable to review much of this unstruc-
tured information due to the abundance of notes
within a patient EHR and the time constraint inher-
ent in the clinical setting. Also, the move from pa-
per records to EHRs have unintentionally resulted
in issues of note bloat, where use of templates and

copy-paste have introduced unnecessary or redun-
dant data into clinical notes, worsening the prob-
lem of information overload and making it more
difficult for physicians to identify key clinical data
with potentially negative consequences (Shoolin
et al., 2013; Vogel, 2013).

In the clinical care process, what is considered
key clinical data within a clinical document de-
pends greatly on the user and their task; what
is important for a physician to know while diag-
nosing a patient is different from what is impor-
tant for a social worker to know when arrang-
ing post-discharge home care. Building off the
idea of a problem-oriented medical record intro-
duced by Dr. Lawrence Weed (1968), we decided
to approach this problem of information overload
within EHRs from a disease-specific perspective.
We propose an automated summarization system
that produces an extractive summary for each note
containing only the most important information
relevant for managing a patient’s hypertension or
diabetes mellitus at the point of care.

There are multiple challenges in generating a
disease-specific extractive summary on clinical
text. First of all, the abundance of domain-specific
terminology and presence of non-standard abbre-
viations and misspellings make machine compre-
hension of clinical text a much more complex
task (Demner-Fushman et al., 2009). Secondly,
the use of temporal narratives with reference to
multiple diseases and the inherent interrelatedness
of different diseases and other clinical concepts
makes it difficult to determine what is “disease-
specific” in the context of our summary. More-
over, the heavy use of templates, copy-paste, and
imported data within clinical notes (Shoolin et al.,
2013; Vogel, 2013) suggests that medical NLP at
the concept level is insufficient for differentiation
between “important” and “unimportant” informa-
tion. Last of all, due to the regulations surround-
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ing use and sharing of protected health informa-
tion, and the need for expert annotation, clinical
NLP systems typically only have access to a lim-
ited amount of labeled data. To address these con-
cerns, we leverage individual components, trained
on separate labeled datasets, that target lower level
clinical NLP tasks such as identifying note struc-
ture and specific clinical events of interest, and
chain these individual components together into
a pipeline that automatically generates disease-
specific summaries from clinical notes.

2 Related Work

EHR summarization efforts have mostly focused
on extraction of clinical variables or visualiza-
tion of structured and unstructured elements in
the EHR as a longitudinal data display (Pivovarov
and Elhadad, 2015), with the objective being to
present an overview of the entire longitudinal pa-
tient record. Savova et al. (2010) built cTAKES, an
open-source NLP system for information extrac-
tion from unstructured clinical text. Rogers et al.
(2006) developed the CLEF chronicle, which uses
a semantic network of concepts and interrelations
to represent events in a patient’s medical history,
that could serve as a building block for future sum-
marization efforts. CLAMP (Soysal et al., 2017)
allows users to more efficiently build customized
NLP pipelines and reported good performance on
named entity recognition and concept encoding in
their evaluation.

Some researchers approached EHR note sum-
marization from a problem identification perspec-
tive. Cao et al. (2004) summarized discharge sum-
maries as problem lists. Van Vleck and Elhadad
(2010) identified a list of problems relevant to a
physician seeing a new patient for a given set of
clinical notes. Our work differs from previous
published research in that our summarization sys-
tem is (1) targeted toward a single clinical en-
counter represented by a note, (2) specific to the
management of a given disease: hypertension and
diabetes mellitus, (3) generates a human readable
textual summary as opposed to a list of clinical
variables, and (4) extends beyond basic medical
NLP with concept recognition and relation detec-
tion to also include components specific to EHR
data.

3 Method

The ultimate goal of the system is to generate a co-
hesive summary of a patient, similar to a summary
written by an attending physician after reviewing
the patient’s chart. Such a system requires text
summary from individual notes, reconciliation be-
tween structured data and unstructured narratives,
temporal alignment of the clinical events, and nat-
ural language generation to produce the final ab-
stractive summary. This paper focuses entirely on
extracting informative sentences rather than cohe-
sive sentences from a single clinical note. The out-
put of the work presented here can be used as the
input for downstream components to generate co-
hesive summaries across the longitudinal patient
record.

3.1 Dataset

Our dataset consists of patient EHRs within a large
ambulatory multi-specialty medical group in the
US that contain a known diagnosis of hypertension
and/or diabetes mellitus based on their structured
encounter diagnosis list. We selected notes within
these patient EHRs authored by physicians or
nurse practitioners and manually reviewed approx-
imately half of the selected notes to ensure that
at least one of our diseases of interest, hyperten-
sion or diabetes mellitus, was addressed at the visit
documented in that note. We made the decision
to focus on physician and nurse practitioner notes
because those providers are the primary decision-
maker in the patients’ clinical care management.
Manual review was performed on approximately
half of the notes to ensure a sufficient number of
positive examples from the ground truth genera-
tion effort. The resulting corpus consisted of 3,453
outpatient clinical notes over 762 patients, with an
average length of 138 sentences per note.

The corpus was annotated by 12 internal
medicine or family medicine physicians over the
course of 6 months. Physicians were asked to
review each note and annotate information rele-
vant to the physicians’ decision-making for man-
agement of the patient’s hypertension or diabetes
mellitus, with the understanding that the anno-
tated information would be presented together as
a disease-focused summary of the note. Examples
of relevant information included in the summary
are statements about the current problem status,
any signs or symptoms experienced by the patient,
desirable and undesirable effects of current treat-
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Figure 1: Sample clinical note with extractive summaries for hypertension and diabetes mellitus. Underlined
sentences together form the extractive summary for hypertension; sentences in bold together form the extractive
summary for diabetes mellitus.

ment, and any changes to current treatment plan.
Each note was independently reviewed and anno-
tated by two physicians, and then adjudicated by
a third MD. The inter-annotator agreement is re-
ported in the “Results” section. Figure 1 shows an
example of a clinical note and its extractive sum-
maries for hypertension and diabetes mellitus.

3.2 Extractive Summarization
Current approaches of document summarization in
the clinical domain have largely been extractive
rather than abstractive, so the original text as writ-
ten by the physicians are preserved.

Given a clinical note consisting of a sequence
of sentences, N = {s1, s2, ...sn} a sentence level,
single document, extractive summarization task
can be defined as to create a summary NS by se-
lecting m sentences (m ≤ n) from N . One of the
simplest approaches is to model the task as a su-
pervised binary classification problem, where we
find a model with model parameters θ that maxi-
mize the likelihood

p(Y |N, θ) =
n∏

(i=1)

p(yi|si, θ) (1)

where Y = {y1, y2, ...yn} and yi ∈ {0, 1}.
It is obvious that in (1) each sentence is clas-

sified solely on the information contained in the

sentence itself. This rudimentary approach works
reasonably well for many sentence classification
tasks, provided the majority of the sentences are
self-contained. For clinical notes, sentences are
often short and the meaning depend heavily on the
context. One way to address this is to model the
problem as a sequence labeling task, where ad-
ditional information at the document level is also
considered,

p(Y |N, θ) =
n∏

(i=1)

p(yi|si, N, θ) (2)

A simple example of sequence model is a linear-
chain CRF (Lafferty et al., 2001), which takes the
previously labeled sentence(s) into consideration
when predicting the label of the current sentence.
Recent advances in deep neural network based ap-
proaches have shown great promises in analyzing
several types of EHR data (Shickel et al., 2018),
but their application in extractive note summa-
rization is largely unexplored (Alsentzer and Kim,
2018).

In this paper, we start by creating the baseline
using the 3 approaches discussed above, i.e., a lin-
ear SVM for sentence classification, a linear chain
CRF in which each note is modeled as a sequence,
and a simple CNN-rand (Kim, 2014) for our sum-
marization task. All 3 models used only the note
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Figure 2: Single clinical document extractive summa-
rization pipeline.

text as features: bag of n-grams for the SVM and
the CRF, and randomly initialized word embed-
dings (updated during training) for CNN-rand. We
report the F-scores for each of these models in the
“Results” section.

3.3 Clinical Note Processing Pipeline

Each clinical note is ingested by a basic NLP pro-
cessing layer that performs the standard NLP tasks
including tokenization, lemmatization, sentence
segmentation, POS tagging, and parsing, followed
by a medical concept recognition component,
where key medical concepts such as labs, proce-
dures, medications, signs and symptoms, and dis-
eases are identified. Our system used an English
Slot Grammar (ESG) parser (McCord, 1990) fol-
lowed by a proprietary medical concept annota-
tor that maps terms into unified medical language
system (UMLS) concepts (Bodenreider, 2004).
This entity linking pipeline is similar to MetaMap
(Aronson and Lang, 2010) but was optimized to
process clinical notes, where sentences are not al-
ways well structured and abbreviation expansion
and disambiguation plays an important role. These
foundational NLP analytics, although crucial to
the success of downstream components and re-
main an active research area, have become com-
modity in the recent years, for instance, CLAMP
(Soysal et al., 2017), Amazon Comprehend Medi-
cal, (Amazon, 2019), and IBM Natural Language
Understanding (IBM, 2019) and is not of interest

in this paper.
We separate the components in the next layer

into 3 categories based on how the analytics are
developed, namely, heuristics and rules, assertions
framework, and deep-learning framework (Figure
2). When labeled data is easier to obtain, data-
driven approaches, such as deep neural network
architectures, often outperform other methods due
to their ability to effectively learn representations
as well as model parameters. For instance, for
adverse drug events (ADEs), we use an existing
labeled dataset from the MADE1.01 NLP chal-
lenge to train a BiLSTM-CRF model with atten-
tion (Dandala et al., 2018). On the other hand,
ground truth for extractive summarization requires
human experts to read the entire note and is harder
to acquire. With limited ground truth, we have
learned that a hybrid system combining heuristics,
less expressive models (e.g. linear SVM), and out-
puts from deep-learning based components as fea-
tures generates better results than trying to train an
end-to-end pure neural network based system. In
the “Results” section, we will give one example
from each category that has significant contribu-
tion to the overall system.

3.4 Evaluation

Evaluating a text summary is challenging. Gen-
erally, the ways of evaluating the performance
of automatically generated summarizations can be
categorized into intrinsic and extrinsic evaluation
methods (Steinberger and Jezek, 2009). Intrinsic
evaluation directly compares the generated sum-
mary to the ground truth summary. For example,
co-selection measures calculate the precision, re-
call, and F-score at the sentence level; and content-
based measures such as ROUGE (Lin, 2004) com-
pares at word level using n-gram and/or longest
common subsequence. Intrinsic evaluation can
also be done qualitatively, by domain experts us-
ing a Likert-type scale. Extrinsic evaluation mea-
sures the quality of the automatic summaries indi-
rectly, for a given task. For example, how much
time a physician can save in their daily practice
with or without the help of such summarization.
In this work we present our results using intrin-
sic evaluation with co-selection measures. Stud-
ies using qualitative intrinsic measurements and
quantitative extrinsic evaluation are being planned

1bio-nlp.org/index.php/announcements/39-nlp-
challenges/
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Hypertension Diabetes
Precision 0.723 0.726
Recall 0.646 0.671
F-score 0.682 0.697

Table 1: Inter-annotator agreement.

Hypertension Diabetes
SVM, linear 0.524 0.516
CRF, linear-chain 0.579 0.598
CNN 0.584 0.593

Table 2: F-scores for hypertension and diabetes melli-
tus summarization using different models.

for the future; those results will be reported at a
later time and are beyond the scope of this paper.
In this work, we evaluated the system using the
co-selection measures, i.e., calculating sentence
level F-score between system-identified span and a
physician-annotated span, using 10-fold cross val-
idation.

4 Results

4.1 Inter-Annotator Agreement
Agreement was calculated at the sentence level,
meaning that if two annotators each marked a dif-
ferent span of text within the same sentence, it
was considered a match. On average, annotators
marked 4 to 5 sentences per note to be included in
the disease-specific summary. Because the num-
ber of sentences not included in a summary is
significantly larger than the number of sentences
marked by physician annotators, we use recall,
precision, and F-score as surrogates for the typical
Cohen’s Kappa in reporting inter-annotator agree-
ment. Using one annotator’s annotations as ref-
erence, we calculate the recall, precision, and F-
score of the second annotator as a measure of the
inter-annotator agreement, as shown in Table 1. In
the “Discussion’ section, we will discuss reasons
for the observed differences between annotators.

4.2 Summarization Models
Table 2 shows the results of 3 different approaches
for our summarization task: classification with
SVM, sequence labelling with CRF, and a simple
CNN with randomly initialize word embeddings.
Note that in our training corpus, notes on aver-
age have 138 sentences and only 3% of the sen-
tences are annotated as summary. Although the F-

Hypertension Diabetes
Unigram 0.555 0.581
+N-gram 0.579 0.598
+Concept 0.590 0.608
+Section 0.630 0.637
+Context 0.642 0.655
+Plan 0.646 0.662
All 0.657 0.679

Table 3: Ablation study - F-scores of disease-specific
insights.

scores are at the fifties, the accuracies (including
true-negatives) are well above high nineties.

We can see that considering the document level
information (CRF & CNN) is important for the
task, and CNN is performing reasonably well even
with limited labeled data. In this paper, our goal
is to identify useful information from the entire
EHR, in the context of producing extractive clin-
ical narrative summarization. Those document
level and patient level features can be used in
both neural network based and non-neural network
based architectures. Our current system uses CRF
at the top level to label the sentences, and sev-
eral deep learning based models at the component
level.

4.3 Impact of EHR Components

Table 3 shows the results of an ablation study on
selected components. Here we only report the
numbers using the CRF model. We started by us-
ing only bag-of-words (unigram) as features and
introduce a new type of feature in the next row.
The last row shows the final result of using all fea-
tures, including all components shown in Figure 2,
such as ADEs, goals, and medication changes.

4.4 Heuristics and Rules - Disease Context

As our summarization is disease-specific, it is in-
tuitive that knowing the disease context of each
sentence can be a useful feature. For exam-
ple, in the sample clinical note in Figure 1,
the phrase “sub-optimally controlled” appears 3
times, each under a different disease context: “DI-
ABETES MELLITUS”, “HYPERTENSION”, and
“OBESITY/OVERWEIGHT”. Depending on the
disease context, each specific instance of “sub-
optimally controlled” may or may not be an in-
sight we want to extract for a given target disease.

In practice, this disease context can be an ex-
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plicit section header (as in Figure 1), or conveyed
more implicitly, such as a disease mentioned in
the previous sentence or an encounter diagnosis
code in the structured data associated with that
note. A common example of implicit disease con-
text is in specialist notes; for example, an En-
docrinology note consulting on a patient’s newly
diagnosed diabetes mellitus. Here, the specialty
in the note metadata (“Endocrinology”) and the
reason for consult (“newly-diagnosed DM2”) both
serve as the context for the entire note.

Because the disease context can be far away
from the current sentence, especially for cases of
implicit context, heuristics are used until we have
enough labeled data to train a model with long
term memory, such as recurrent neural network
with attention mechanism. These heuristics were
developed with input from subject matter experts
familiar with how to read and interpret clinical
text. We can see from Table 3 that modeling dis-
ease context explicitly improved the overall per-
formance.

4.5 Machine Learning Framework - Note
Section

Although not required, healthcare providers of-
ten follow some common structures, for example,
SOAP (Lew and Ghassemzadeh, 2018), when doc-
umenting a patient encounter in a clinical note.
Knowing where a sentence resides with respect
to these structures or sections, will undoubtfully
help the system extract important insights from the
note.

As there are no set rules for indicating sections,
and headers and formats are not strictly enforced,
pattern matching rules using regular expression
yield mediocre results. To improve the accuracy,
we model note section classification as a super-
vised sequence labeling task using linear-chain
CRF - each sentence belongs to 1 of 14 predefined
note sections, namely, chief complaint, history of
present illness, past medical history, past surgical
history, medications, allergies, social history, fam-
ily history, review of systems, vital signs, physical
exam, diagnostic test results, assessment and plan,
and other, and both the results from regular expres-
sion (matching predefined format and headers) as
well as the words in the sentence are used as fea-
tures in the CRF model. Table 3 shows that note
section is another useful global feature in extrac-
tive summarization.

5 Discussion

5.1 Reasons for Annotator Differences
Although we placed our extractive summarization
task in the setting of a specific user (physician),
disease (hypertension and diabetes mellitus), and
task (disease management), there is still a sub-
jective component in the ground truth generation
process. Some practitioners prefer a very con-
cise summary limited to only the disease of fo-
cus, while others prefer a more informative sum-
mary that includes not only information directly
related to the disease of focus, but also to related
co-morbidities. Also, redundancy in clinical notes
means that the same information is often presented
in different ways in different parts of the same
note; for example, the patient’s presentation is de-
scribed in detail in the history of present illness
(HPI) section at the top of the note, while the same
information is summarized in a more concise way
in the assessment and plan section (AP) at the end
of the note. Some practitioners prefer the addi-
tional detail contained in the HPI section as part
of their summary, while others prefer only seeing
the more concise version in the AP section.

During the ground truth generation process, we
aligned physicians’ perspectives and preferences
the best we could through multiple discussions of
what types of information should (e.g. problem
status, home monitoring results, changes in dis-
ease management) and should not (e.g. direct im-
ports from structured data, routine labs and follow-
up instructions) be included as part of the sum-
mary. The discussions helped ensure better con-
sistency of the ground truth among different physi-
cian annotators, but still resulted in an observed
IAA of 0.682 to 0.697. This reflects the inherent
subjective nature of the task, and demonstrates the
need for a third MD to adjudicate any disagree-
ments between annotators to produce consistent
ground truth to be used by our system.

5.2 Addressing Issues of Data Scarcity
One of the challenges common in developing an-
alytics on clinical text is the limited labeled data
available for training and testing due to health in-
formation privacy concerns and the expensive cost
of expert annotations. Our automatic summariza-
tion system works around this limitation by using
individual components that can be trained using
separate ground truth. Some components, such as
note section classification, do not require annota-
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tors with the same level of domain expertise and
can more easily be done in-house by appropriately
trained non-physician annotators. Other compo-
nents, such as adverse drug events, make use of
existing labeled datasets available through vari-
ous clinical NLP challenges such as MADE1.02

and TAC3. Using separately trained components
allows our system to make the most of the limited
amount of available expert-annotated data.

5.3 Limitations in Evaluation
In this study, we use an intrinsic evaluation of our
generated summary using precision, recall, and F-
score to compare against ground truth created by
physicians. However, these metrics do not fully
capture the nuances of what should or should not
be included in a clinical summary. The wide
spectrum of what could be considered “important”
to a physician means that not all false negatives
are equivalent; some information is critical to pa-
tient management and should never be missed,
while the importance and relevance of some other
pieces of information are debatable amongst dif-
ferent physicians. Similarly, not all false posi-
tives are equivalent; some false positives are com-
pletely wrong and unrelated to the disease at hand,
while others comprise of sentences that were not
included in the ground truth but still provide rele-
vant and useful information.

Adverse drug events are an example of impor-
tant information that physicians are particularly
sensitive to. ADEs have great impact on patient
safety and is considered an important insight to ex-
tract per our annotation guidelines. These are rare
yet important events for physicians to be aware of
when managing a patient’s care. We have been
actively participating in recent ADE detection re-
lated challenges and developed our component us-
ing BiLSTM-CRF (Dandala et al., 2018). A major
task for this component is to distinguish adverse
drug events (e.g. “His cough improved off lisino-
pril”) from indication for a drug (e.g. “His hyper-
tension improved on lisinopril”), i.e., to identify
the type of relation between a drug and a sign or
symptom. This is often impossible without medi-
cal knowledge, and is an example of why a generic
summarization algorithm from other domains will
not work on clinical narratives out of the box, as
the importance of a sentence depends on medical

2bio-nlp.org/index.php/announcements/39-nlp-
challenges/

3bionlp.nlm.nih.gov/tac2017adversereactions/

knowledge from outside of the document.
Because of the importance of ADEs to clinical

care, a missed ADE by the system (false nega-
tive) or an incorrectly identified ADE (false pos-
itive) both negatively impact the overall quality of
the summary significantly more compared to other
types of information. As ADEs are rare, adding
this component does not have significant impact
to the overall summarization accuracy measure.
However, we choose to discuss this component
in this paper to demonstrate the need for a qual-
itative intrinsic evaluation that weighs each sen-
tence based on its importance in order to capture
the value that rare yet important events, such as
ADEs, bring to the overall system.

Redundant information in clinical notes pose
another challenge to the evaluation of our system.
This redundancy led to observed cases where the
ground truth has one sentence annotated while the
system has annotated a different sentence contain-
ing essentially the same content. This is judged
as a false negative (because the system missed the
physician-annotated sentence) and a false positive
(because the system-annotated sentence was not in
the physician-annotated ground truth), reflecting
negatively in the overall system evaluation without
giving the system credit for the fact that the rele-
vant information is still present in the generated
summary. This demonstrates the need for a sep-
arate extrinsic evaluation of our generated sum-
maries based on its usefulness in the clinical set-
ting, which we have planned for the future.

We are planning future evaluations of our sys-
tem using qualitative intrinsic measures to capture
the importance of different information within the
clinical summary, and quantitative extrinsic mea-
sures to evaluate the usefulness of the system-
generated summaries for practicing physicians at
the point of care.

6 Conclusions

We propose an automated system for disease-
specific extractive summarization on a single clin-
ical note. We describe our clinical note process-
ing pipeline that includes a basic NLP processing
layer as well as additional EHR-specific compo-
nents such as note section classification, disease
context identification, and adverse drug events de-
tection. We show incremental improvement in
overall system performance with addition of each
component, from F-scores of 0.555 and 0.581 for
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hypertension and diabetes mellitus, respectively,
when using only unigrams, to 0.657 and 0.679
when all components are included in the pipeline.
Our work demonstrates how analytics beyond con-
cept recognition is necessary for a complex and
higher-level clinical NLP task such as summariza-
tion. Also, until abundant labeled data in clin-
ical narratives becomes available, generic sum-
marization algorithms developed using non-EHR
data will benefit from using EHR-specific compo-
nents discussed here as global features.
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Abstract 

This paper details the development of a new 

linguistic resource designed to integrate 

aspectual values in temporal information 

extraction systems. After a brief review of 

the linguistic notion of aspect and how it 

got a place in the NLP field, we present our 

clinical data and describe the five-step 

approach adopted in this study. Then, we 

describe our French linguistic resource and 

explain how we elaborated it and which 

properties were selected for the creation of 

the tables. Finally, we evaluate the coverage 

of our resource and we present several 

prospects and improvements to foresee. 

1 Introduction  

 Being able to model the chronology of events is 

paramount in the medical field, especially in 

electronic health records. Temporal reasoning 

indeed plays an important role at different stages of 

patient care: tracking disease status, decision 

support, prevention of side effects, recognition and 

discovery of health problems, choice of the 

appropriate treatment and care quality (Botsis et al., 

2011; Chai et al., 2013; Sojic et al., 2016). Because 

this has yet to be properly implemented in clinical 

software, it is essential to keep developing NLP 

techniques and methods that efficiently extract 

temporal information and medical events found in 

patient records. 

 Temporal information extraction has been 

widely studied. Several methods have been 

developed to obtain ever more satisfactory results 

in the extraction of this information, whether by a 

statistical method (Li and Patrick, 2012) or by a 

hybrid method combining rule-based and 

machine-learning pattern (Lin et al., 2013), 

statistical and symbolic approaches (Tapi Nzali, 

Tannier and Neveol, 2015a), neural networks and 

support vector machines (Tourille et al., 2017).  

 These studies were mainly concentrated on 

English data, ‘due to the lack of publicly available 

annotated corpora’ for other languages, including 

French (Sun et al., 2013). Recently Campillos et al. 

(2018) produced a French written clinical corpus 

with the annotation of temporal entities, attributes, 

and relations, but it is not yet freely open to the 

research community. 

In this paper, assuming that consideration of 

aspect could improve the precision of temporal 

information extraction (see Fig. 1), we undertook 

to develop an innovative resource which encodes 

linguistic properties related to the French verbal 

aspect in medical language. We will test it, within 

a system of temporal information extraction, in a 

later paper.  

After a brief introduction of the concept of 

aspect from linguistic and NLP angles and a review 

of existing resources (section 2), we will define our 

corpus (section 3) and the method (section 4) used 

in this research to elaborate this linguistic resource 

(section 5). We will then assess the coverage of the 

resource (section 6) and discuss directions for 

future works (section 7). 

2 State of the art 

2.1 The aspect, a linguistic category 

In linguistics, the grammatical category of  
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Agathe PIERSON1 and Cédrick FAIRON1 

(1) CENTAL, Collège Léon Dupriez, Place Montesquieu 3, 1348 Louvain-la-Neuve 

agathe.pierson@uclouvain.be, cedrick.fairon@uclouvain.be  
  

Figure 1. Representation of temporal information extraction vs. temporal and aspectual information extraction 
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aspect refers to “the representation that the 

speaker makes of the process expressed by the 

verb (or by the action name), that is to say, the 

representation of its duration, its course or its 

completion (inchoative, progressive, resultant, 

perfective aspects, etc.)” (Dubois et al., 1994: 53).  

Aspect in French refers to three components 

that should be dissociated: grammatical aspect, 

Aktionsart (or semantic aspect) and lexical aspect. 

The grammatical aspect is “a significant variation 

of the verb related to a choice of the speaker and, 

in this respect ‘subjective’” (Confais, 2002: 202). 

It is realized morphologically through verbal 

inflections. Smith (1991) has extensively 

theorized on the viewpoint or grammatical aspect 

in which she distinguishes the perfective (1), 

imperfective and neutral aspects; after her, Caudal 

(2006) adds the resultative aspect.  

(1) J'ai rencontré cette patiente dont j'ai opéré le 

mari d'une obésité morbide par Sleeve. 

“I met this patient whose husband I performed a 

sleeve surgery on for morbid obesity.” (Perfective) 

The Aktionsart (see (2)) describes eventualities 

(Bach, 1986) according to criteria such as telicity, 

durativity, atomicity or dynamicity (Vendler, 

1957; Comrie, 1981; Moens and Steedman, 

1988). For the calculation, the verbal diathesis is 

used, i.e., the verbal kernel extended with its 

completion and its possible modifiers.  
(2) On a surveillé le patient pendant 48h.  

“We monitored the patient for 48 hours.” (Activity) 

The lexical aspect is expressed by the very 

meaning of the verb (Karolak, 2008; 

Kozareva-Levie, 2011). This aspect “isolates a 

moment of the process or specifies the place of the 

said process in an event chain” (Wilmet, 2001: 63) 

and presents it as “the result of a selection 

operation of part of the constituent time of this 

process” (Gosselin, 2011: 149). This aspect can be 

rendered either by the full verb (3) or by a semi-

auxiliary, serving as a support verb (e.g. continuer 

‘to continue to’). 
(3) J'ai préféré interrompre l'examen au niveau de 

l'angle droit. 

“I preferred to interrupt the examination at the right 

angle.” 

Our objective is not so much to end the aspectual 

controversy, but rather to identify and select the 

factual elements from this field that are best suited 

for operationalization and automatic recognition. 

In this paper, we focus on the internal lexical 

aspect (Gosselin, 2011: 149-150). Indeed, it 

seems particularly relevant to us, in a medical 

linguistics project, to identify events such as the 

onset of a disease, the performance of surgery, the 

resumption of an examination or the end of 

treatment; all essential aspectual elements to be 

placed on a patient’s timeline.  

2.2 What about the aspect in NLP? 

NLP researchers have proposed solutions for 

integrating the aspectual dimension into temporal 

information extraction system. This integration is 

made difficult by the complexity of the aspectual 

phenomenon about which “opinion is often divided 

as to the appropriate aspectual categories and their 

realizations” (Bittar, 2010: 33). Among the 

different methods listed above, we are mainly 

interested in resources that encode aspectual 

properties in order to be integrated into information 

retrieval and information extraction systems.  In the 

late twentieth century, Klavans and Chodorow 

(1992) developed an aspectual classification 

system that establishes a distinction between 

stative and non-stative events using scenario 

templates. Later, Siegel and McKeown (2001) 

finalized a statistical method for automatic 

aspectual classification by prediction on co-

occurrence frequencies between verbs and 

linguistic modifiers. 

In 2003, the TimeML specification of event and 

temporal expressions in natural language text was 

introduced (TimeML; Pustejovsky et al., 2003). 

These annotation guidelines include two aspectual 

levels: i) the aspectual attribute that concerns 

grammatical aspect; ii) the ALINK that represents 

the relationship between an aspectual event and its 

argument event (initiates, continues, culminates, 

terminates).  

The following year, the TimeML standard is 

revised under the name of ISO-TimeML (ISO, 

2008) and two aspectual values are added: 

imperfective and imperfective_progressive. This 

new standard is tested in Task B of the Shared Task 

‘TempEval-2’ (Pustejovsky and Verhagen, 2009). 

In his thesis on the adaptation to French of the 

ISO-TimeML standard, Bittar (2010) studies the 

aspectual variants of support verb construction as 

well as the automatic processing of several 

aspectual periphrases. He added value to the 

aspectual attribute, prospective, and enriched the 

ALINK set with the reinitiates label. 

In the medical field, Styler IV et al. (2014) 

presented the Thyme-TimeML that integrates 

contextual aspect attribute – which distinguishes 

between intermittent, constant and new events – 
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and permanence attribute – which differentiates 

between chronic and acute illness. Campillos et al. 

(2018) extended the notion of aspect to all that 

“encode[s] a change (or lack of change) with regard 

to an entity: Continue, decrease, Improve, Increase, 

Reccurrence, Start_Again, Start, Stop, Worsen” 

(580) when creating an annotated corpus of French 

medical records.  

2.3 Aspectual resources 

As far as we know, there are no resources in 

English or in French that are similar to ours, which 

is focused on the medical language. However, 

various resources record some aspectual verbs or 

constructions and detail their functioning. In this 

way, FrameNet (Baker et al., 1998) labels semantic 

roles of verbal arguments for English, in order to 

show the meaning and usage of verbs senses. 

FrameNet contains some aspectual nuances for 

which the possible lexical units are indicated (e.g. 

Activity_finish: complete, conclude, finish), but 

without any indication of the syntactic construction 

or type of arguments needed by the verb to take this 

meaning. The values of culmination and 

resumption are not considered here. In the French 

FrameNet (Candito et al., 2014), no aspectual 

construction is examined, not even the beginning 

or the end of an activity. 

The lexical resource VerbNet (Kipper-Schuler, 

2005) and its French equivalent Verb∋net (Danlos, 

Nakamura and Pradet, 2014) have a class of 

aspectual verbs (class 55) in which the verbs 

expressing the value of beginning, continuation or 

end could be found. For each of these values, the 

verbal valency and syntactic constructions of the 

prototypical verb (e.g. begin/commencer in ‘begin-

55.1’) are indicated. We deepen this research in 

three ways: i) by adding some aspectual subclasses, 

ii) by describing the lexical units that are 

synonymous with the verbal prototype and iii) by 

specifying the semantic class of the arguments.  

Two other resources, manually created, exist for 

French and constitute the theoretical framework of 

this research: the Lexicon-Grammar (Gross, 1975) 

and the Verbes français (Dubois and Dubois-

Charlier, 1997). The first one is based on a 

descriptive formalism, which we have tried to 

reproduce to make it automatable; the second one 

lists a series of aspectual verbs that we have 

enriched so that it takes into account the medical 

specificities related to our corpus.  

NLP research tackles the notion of aspect. 

However, there is still a substantial gap to fill, both 

in French and in the medical field. Our contribution 

lies in this vast new field of knowledge. 

3 Data 

It is admitted that the temporal information and 

how it will be presented will depend on the type of 

documents analyzed (Tapi Nzali, Tannier, Névéol, 

2015b). Clinical documents are very 

heterogeneous and time references are adapted 

accordingly. To avoid being restricted to one type 

of document, we collected a corpus which includes 

five types of clinical texts in the following 

proportions (see Table 1): 

These documents (about 54 million tokens), dating 

from 1996 to 2014, were collected and anonymized 

as part of a project with six services (abdominal and 

bariatric surgery, gastroenterology, MRI, scanners, 

and ultrasound) of a Brussels hospital (iMediate, 

2014-2016). We deemed appropriate to use such a 

considerable amount of data since we focus on a 

very specific phenomenon, i.e., the lexical aspect 

conveyed by verbs. 

4 Methodology 

We created the resource following a 5-step 

method. Firstly, we established the verbal seed 

terms list that could evoke a lexical aspect. For 

this purpose, we started from the definition of 

aspectual relationship in the ISO-TimeML 

Standard for annotation (Pustejovsky et al., 2010). 

Five aspectual relationships are considered, here 

associated with the prototypical French verb: 

Initiates (commencer), Continues (continuer), 

Terminates (terminer), Culminates (accomplir) 

and Reinitiates (recommencer) (Bittar, 2010: 80). 

Ideally, categories of verbs expressing the 

possible outcome of a hospitalization (healing, 

improvement, stability, deterioration, and death; 

DEFT, 2019) or verbs indicating the progress or 

decline of a patient should also be implemented 

(Elhadad et al., 2015). These new aspectual values 

require more manual cleaning, which is 

underway. 

Table 1. Types and number of medical texts 

Operating and Review Protocols 55,174 

Letters from Doctor to Patient 3,906 

Letters from Doctor to Doctor 70,381 

Consultation Notes 49,482 

Hospitalization Reports 7,833  

Total 186,776 
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Secondly, this list was enriched with the aid of 

two resources: the consulting of thesauri (TLFi, 

2012; Crisco, 2019) and an in-depth exploratory 

analysis of the medical corpus. At the end of this 

second step, we end up with a total of 142 verbs 

and verb phrases that can potentially express an 

aspectual nuance, as follows.  

Thirdly, on this basis, extraction grammars were 

designed in the corpus analysis software Unitex 

(Paumier, 2016) and applied to the corpus. These 

grammars enable the creation of a concordance, 

an ‘in context’ exploration tool of the aspectual 

verbs.  

Fourthly, using this concordance, we performed 

a manual vetting which applies three actions on the 

verbal occurrences: i) the deletion of verbs that 

never appear (e.g., to burst into) or never with an 

aspectual meaning (e.g., to break out) in our 

clinical language corpus; ii) the removal of non-

aspectual verbal constructions (see (4)); iii) the 

detection of verbs whose aspectual value changes 

under the negative modality (see (5)). 
(4) Par ailleurs, attaque son chir pour 

abdominoplastie trop serrée. 

(5) A arrêté de fumer. > Terminates 

“Quit smoking.” 

Malade n’arrête pas de tousser. > Continues 

“Sick person keeps coughing.”  

Fifthly, we have undertaken a linguistic analysis of 

this filtered list (Table 2) to establish verb classes 

characterized by syntactic and semantic properties 

and to produce the resource described here.  

5 Resource 

The linguistic resource presented in this paper 

consists of the description, in tabular form, of 90 

verbs and verbal phrases with an aspectual value. 

After extraction and manual analysis, these 90 

verbal expressions lead to 120 different 

constructions (see Table 2) which are then formally 

described. For example, the verb commencer 

comes in four forms:  commencer à (to start doing 

something), commencer par (to start with), 

commencer (+ article) + noun (to start something), 

commencer (to start). Each of these constructions 

possesses several syntactic and semantic 

properties. They will, therefore, fall into different 

descriptive tables.  

The ten tables resulting from this study (see 

Appendix A) allow us to summarize the syntactic 

and semantic constraints linking some elements of 

the sentence, frequently medical events.  

The structure of the table was determined based 

on the six following properties: i) aspectual nature; 

ii) passivization, iii) pronominalization of the 

complement, iv) number and type of complements; 

v) nature of the subject and vi) nature of the object. 

The first binarization of the 120 structures, based 

on aspectual nature, separates the structures which 

are always aspectual (6) from those which are only 

aspectual in certain instances, depending on the 

transitive or intransitive nature of the verb (7). 
(6) Elle se met à lire des notices pharmaceutiques. 

 “She starts reading pharmaceutical leaflets.” 

(7) Le Sulpiride coupe les vomissements vs. J’ai 

coupé le fil résorbable.   

“Sulpiride stops the vomiting.” vs. “I cut the 

absorbable thread.” 

This first binarization based on the aspectual nature 

criterion applies to the four tables (tables 2, 3, 5 and 

6) that respond identically to classification criteria, 

but differ in their aspectual dimension.  

Tests are then applied to the verbs, in the medical 

context of the corpus, with regard to certain 

syntactic and semantic properties. Performing 

these tests allows us to classify the verbs in the 

tables according to specific criteria. The tests are 

called transformations (Harris, 1957) and are 

applied to the simple form of the sentence, i.e., a 

positive assertion, in the active voice and reduced 

to the Subject-Verb-Object structure. 

In terms of syntax, three properties are evaluated 

and define the assignment of a verbal structure in 

one or the other table: 

 the existence (8) or the absence (9) of an 

equivalent form in the passive voice; 
(8) L’examen est abandonné par le médecin.  

 “The examination is given up by the doctor.” 

(9) *Le malade est prolongé par le médecin. 

*“The patient(’s life) is prolonged by the doctor.” 

 the possibility of pronominalizing the verb 

complement (10 and 11);  
(10) Le traitement relance le processus d’hépatite 

colique. → Il le relance.  

“Treatment revives the process of biliary colic.” 

→ It revives it.  

(11) Il a cessé toute consommation de bière. → *Il 

l’a cessée.  

Aspectual 

type 

# verbs 

before 

# verbs 

after 

# 

constructions 

Initiates 59 27 34 

Continues 18 16 23 

Terminates  35 25 31 

Culminates 23 16 23 

Reinitiates 10 6 9 

Total 145 90 120 

Table 2. Number of constructions and verbs by 

aspectual type before and after automatic vetting 
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 “He ceases the whole intake of beer.” → *He 

ceases it.  

 the nature of the verb and its complements: 

verb with a direct object, verb with a 

prepositional complement, verb with a 

completive subordinate clause, stative verb 

and intransitive verb. 

 Concerning semantic properties, also referred to 

as distributional (Harris, 1954), we essentially 

examine the subject type (human or thing) and the 

object type, if relevant. When the subject or the 

object is an inanimate object, it often corresponds 

to a medical event. The selection of the type(s) of 

medical event accepted by the meaning of a verb is 

indicated in the column corresponding to one of the 

eleven possible events: administration, restriction 

or effort (diet, sports, profession, addiction), 

morphological abnormality, care and treatment, 

(positive or negative) effect, step, observable 

entity, findings, surgery, disorder and illness.  

Besides, these tables also indicate the aspectual 

modification of the verb (+) or the permanence of 

the aspect (-) in the presence of the negative 

modality. These tables feature two additional 

columns: the meaning of the verb in this structure 

and the aspect taken by the structure. Finally, we 

indicate the presence of an adverbial phrase and its 

type (of time, of manner, or instrument), when it is 

recurrent for this meaning. 

This resource is available upon request and will 

shortly be expanded. For an example of the table, 

see Appendix B. 

6 Evaluation 

To evaluate our resource, we estimated its 

coverage on 100 new medical texts that serve as a 

gold standard. These texts come from a different 

genre since they are 100 post hospitalization 

reports written by doctors. This different textual 

genre, still specific to the medical language, should 

allow a greater generalization of the resource, in 

that they convey a greater variety of linguistic 

phenomena.  

 In these texts, we have identified and annotated all 

the verbs, and only the verbs, that correspond to 

one of the five aspects of our typology. We 

calculated the coverage in terms of aspectual 

lemmata (Table 3), occurrences (Table 4) and 

occurrences by aspectual values (Table 5).  

  

Results are satisfactory, but probably 

insufficient for an industrial exploitation. We, 

therefore, want to integrate the cases identified as 

missing in the analysis and do this analysis again 

until reaching coverage of 0.9 by dragging it on a 

new corpus of 100 texts. 

7  Conclusion 

The development of such a linguistic resource, 

in which the medical language is formalized 

according to the lexical aspect of certain verbs, 

serves two purposes in the NLP field. On the one 

hand, these descriptions make it possible to 

distinguish the aspectual senses from the other 

meanings of a verb. They allow, among other 

things, to make a decision in case of verbal 

ambiguity. As a result, it is easier to include the 

aspect into the clinical patient’s history, which 

would then take into account some values that were 

previously omitted. On the other hand, with the 

semantic tagging of the agent and patient of these 

verbal structures, it becomes possible to more 

accurately identify medical events, be it in a 

vacuum or with regard to their localization and 

their evolution on the patient’s timeline.  

We are now faced with two possible follow-ups. 

Firstly, an evaluation of the resource efficiency still 

needs to be done by integrating a temporal 

information extraction system to see how results 

can be increased and improved. Secondly, we need 

to extend the scope of the covered phenomena by 

listing specific aspectual and medical concepts 

such as the relapse, the chronicity or the worsening.  

  

 Absolute number Coverage Rate 

Present 34 0,74 

Missing 12 0,26 

Total 46 1 

Table 3. Coverage for aspectual lemmata 

 Absolute number Coverage Rate 

Present 104 0,76 

Missing 34 0,24 

Total 138 1 

Table 4. Coverage for occurrences 

 Init. Cont. Term. Culm. Rein. 

Present 8 11 8 3 5 

Missing 2 5 3 1 0 

Total 10 16 11 4 5 

Coverage 

Rate 

0,8 0,69 0,73 0,75 1 

Table 5. Coverage for occurrences by aspectual values 
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Abstract
Classic methods for clinical temporal rela-
tion extraction focus on relational candidates
within a sentence. On the other hand, break-
through Bidirectional Encoder Representa-
tions from Transformers (BERT) are trained
on large quantities of arbitrary spans of con-
tiguous text instead of sentences. In this study,
we aim to build a sentence-agnostic framework
for the task of CONTAINS temporal relation
extraction. We establish a new state-of-the-
art result for the task, 0.684F for in-domain
(0.055-point improvement) and 0.565F for
cross-domain (0.018-point improvement), by
fine-tuning BERT and pre-training domain-
specific BERT models on sentence-agnostic
temporal relation instances with WordPiece-
compatible encodings, and augmenting the la-
beled data with automatically generated “sil-
ver” instances.

1 Introduction

The release of BERT (Devlin et al., 2018) has
substantially advanced the state-of-the-art in sev-
eral sentence-level, inter-sentence-level, and token-
level tasks. BERT is trained on very large unlabeled
corpora to achieve good generalizability. Instead of
relying on a recurrent neural network, BERT uses a
transformer architecture to better capture long dis-
tance dependencies. BERT is able to make predic-
tions that go beyond natural sentence boundaries,
because it is trained on fragments of contiguous
text that typically span multiple sentences.

These advantages of BERT motivate us to ap-
ply it to a traditionally sentence-level task – tem-
poral relation extraction from clinical text. The
identification of temporal relations in the clinical
narrative can lead to accurate fine-grained anal-
yses of many medical phenomena (e.g., disease
progression, longitudinal effects of medications),
with a variety of clinical applications such as ques-
tion answering (Das and Musen, 1995; Kahn et al.,

1990), clinical outcomes prediction (Schmidt et al.,
2005), and recognition of temporal patterns and
timelines (Zhou and Hripcsak, 2007; Lin et al.,
2014). However, the labeled instances for this clin-
ical information extraction task are limited, so neu-
ral models trained from scratch may not be able to
learn complex linguistic phenomena. Pre-trained
models like BERT could potentially provide rich
representations as they are trained on massive data.

Classic models for clinical temporal relation ex-
traction have framed the task within a sentence
(Sun et al., 2013; Bethard et al., 2015, 2016, 2017),
making them susceptible to sentence detection er-
rors. Using BERT, on the other hand, eliminates
this sensitivity to sentence boundary errors. The
key contributions of this paper are: (1) introduc-
ing BERT to the challenging task of clinical tem-
poral relation extraction and evaluating its perfor-
mance on a widely used testbed (THYME corpus;
Styler IV et al., 2014), (2) developing a universal
processing mechanism based on a fixed, sentence-
boundary agnostic window of contiguous tokens,
(3) pre-training BERT on MIMIC-III (Medical In-
formation Mart for Intensive Care) dataset (John-
son et al., 2016) and comparing its performance
to BERT and its biomedical adaptation BioBERT
(Lee et al., 2019), (4) augmenting the labeled set
with automatically generated instances from unla-
beled data, and (5) evaluating models for in- and
cross-domain tasks on the THYME corpus.

2 Background

Recently, several pre-trained general-purposed lan-
guage encoders have been proposed, including
CoVe (McCann et al., 2017), ELMo (Peters et al.,
2018), Flair (Akbik et al., 2018), GPT (Radford
et al., 2018), GPT2 (Radford et al., 2019), and
BERT (Devlin et al., 2018). These models are
trained on vast amounts of unlabeled text to achieve
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generalizable contextualized word embeddings,
and some can be fine-tuned to fit a supervised task.

BERT is trained using a masked language model
and the next-sentence objectives. Its architec-
ture consists of stacked multi-layered transform-
ers, each implementing a self-attention mechanism
with multiple attention heads. BERT can be further
pre-trained for specific domains (Lee et al., 2019)
or serve as a backbone model to be fine-tuned with
one output layer for a wide range of tasks.

For the task of clinical temporal relation ex-
traction, recent years have seen the rise of neu-
ral approaches – structured perceptrons (Leeuwen-
berg and Moens, 2017), convolutional neural net-
works (CNNs) (Dligach et al., 2017; Lin et al.,
2017), and Long Short-Term memory (LSTM) net-
works (Tourille et al., 2017; Dligach et al., 2017;
Lin et al., 2018) – where minimally-engineered
inputs have been adopted over heavily feature-
engineered techniques (Sun et al., 2013). The
THYME corpus (Styler IV et al., 2014), which is
annotated with time expressions (TIMEX3), events
(EVENT), and temporal relations (TLINK) using
an extension of TimeML (Pustejovsky et al., 2003;
Pustejovsky and Stubbs, 2011), is a popular choice
for evaluation and was used in the Clinical Temp-
Eval series (Bethard et al., 2015, 2016, 2017).

CONTAINS relations are by far the most fre-
quent type of relation in the THYME corpus. They
signal that an EVENT occurs entirely within the
temporal bounds of a narrative container (Puste-
jovsky and Stubbs, 2011). The THYME corpus is
limited in size so models developed on it may suf-
fer from low generalizability. Recent efforts to im-
prove performance have attempted tree-structured
models (Galvan et al., 2018) or assistance from
unlabeled data (Lin et al., 2018). Years of shared
work on this problem and plateauing scores may
have suggested that performance on this task is at
its peak. However, given the successful application
of BERT on many different tasks in the general
domain, as well as more recent work in relation ex-
traction tasks (Wang et al., 2019; Lee et al., 2019),
we wanted to explore applying this new model to
the clinical temporal relation extraction task.

Conventionally, the tasks of within- and cross-
sentence relation extraction have been treated sep-
arately (Sun et al., 2013; Tourille et al., 2017)
as they call for different features. While some
methods focus on within-sentence relations (as they
are the majority), such methods are susceptible to

. A
EVENT1

surgery was
EVENT2

scheduled on
TIME

March 11, 2014.
⇓

#1: . a es surgery ee was scheduled on ts date te .
#2: . a surgery was es scheduled ee on ts date te .
#3: . a eas surgery eae was ebs scheduled ebe on march

Figure 1: Representations of three candidate relations
produced from an example token sequence.

sentence-boundary detection errors. The input se-
quences of arbitrary lengths that BERT operates
on cover both within-sentence and cross-sentence
situations, enabling us to design a universal model
that is sentence boundary agnostic.

3 Methods

3.1 Task definition
We process the THYME corpus using the segmenta-
tion and tokenization modules of Apache cTAKES
(http://ctakes.apache.org). We consume gold
standard event annotations, gold time expressions
and their classes (Styler IV et al., 2014) for gener-
ating instances of containment relation candidates.
Each instance consists of a pair of event entities,
or an event entity and a time expression entity. We
preserve the natural order of the two entities in
their original context and represent the instance
as a sequence of tokens. Depending on the order
of the entities, each instance can take one out of
three gold standard relational labels, CONTAINS,
CONTAINED-BY, and NONE.

The first line of Figure 1 is the token sequence
for three gold standard entities, of which two are
events, “surgery” and “scheduled”, and one is a
time expression, “March 11, 2014”, whose time
class is “date”. One can form three candidate rela-
tions for these three entities.

3.2 Window-based processing
We aim to build a BERT-based model for both
within- and cross-sentence relations. Figure 2
presents the distribution of the distance between
the relation arguments in the THYME colon cancer
training set expressed as tokens, e.g., 93.07% of the
relation arguments are within 50 tokens; 95.14%
are 60 tokens apart; 75% are within-sentence.

Thus, instead of looking for candidate pairs
within a sentence, we look for pairs within a win-
dow of tokens of each other. We test window sizes
of 50 or 60 tokens to balance coverage and good
positive-to-negative ratio. By using a 60-token win-
dow and closure, we derive 413,327 NONE, 10,483

66



≤20 ≤40 ≤60 ≤80 ≤100
85%

90%

95%

85.88%

90.2%

93.07%

95.14%

96.48%
97.33%

98.05%98.47%

Number of tokens between entities

Figure 2: Relation coverage per token distance

CONTAINS, and 2,802 CONTAINS-BY instances
from the THYME colon training set. Specifically,
for every pair of entities1 within a section (or if the
document is not sectioned, every pair of entities
within the document), we generate a relational can-
didate if the number of base tokens between the
entities in the pair is less than the set window size.

XML-tags are often used to mark the position
of the entities under consideration in a candidate
pair (Dligach et al., 2017), and time expressions
with their time class (Lin et al., 2017, 2018) for bet-
ter generalizability. BERT uses the WordPiece tok-
enizer which breaks the XML-style tags (especially
delimiters like angle brackets and slashes) into sub-
tags. Therefore, we use non-XML tags to mark the
positions of the entities and to encode time classes.
Such tags should not be actual words and should
not be broken into many tokens by WordPiece. Per
the case in Figure 1, the event in an event-time rela-
tion pair is marked by es (event start) and ee (event
end) and the time expression is represented by non-
XML tags (ts for time start and te for time end) and
its time class, for example ts date te. Event-event
instances are marked with eas for event A start, eae
for event A end, ebs for event B start, and ebe for
event B end, for example . a eas surgery eae is ebs
scheduled ebe on march 11.

3.3 BioBERT and BERT-MIMIC

A recent publication describes pre-training of
BERT on PubMed abstracts (PubMed) and Pub-
Med Central full-text articles (PMC) (BioBERT;
Lee et al., 2019).2 We took this approach a step fur-

1we use the term “entity” to refer to events and time ex-
pressions

2BioBERT model available at https://github.
com/naver/biobert-pretrained

ther and pre-trained BERT on clinical data from the
MIMIC-III (Medical Information Mart for Inten-
sive Care) dataset (Johnson et al., 2016). MIMIC-
III contains 879 million words of patients’ elec-
tronic medical records from Beth Israel Deaconess
Medical Center’s Intensive Care Unit. The re-
sulting BERT-MIMIC model encapsulates clinical-
domain-specific representations.

3.4 Augmenting with “silver” instances

Lin et al. (2018) describe a self-training routing
in which they applied a model trained on the la-
beled THYME data to generate predictions on a
set of unlabeled colon cancer data to create “sil-
ver” annotations. They demonstrated that adding
high confidence positive “silver” relations to the
gold training set improves the neural model perfor-
mance. We apply this technique to our BERT-based
models. The differences are 1) our unlabeled colon
cancer instances are generated through the window-
based mechanism, while their unlabeled instances
were sentence-based; 2) we use a fine-tuned BERT
model for generating “silver” instances.

3.5 Settings

We use a single NVIDIA GTX Titan Xp GPU to
pre-train BERT on MIMIC-III, and fine-tune BERT,
BioBERT, and BERT-MIMIC for our task. We use
BERTbase, as the memory requirement of BERTlarge
is too demanding. For fine-tuning, the batch size
is selected from (16,32) and the learning rate is
selected from (1e-5, 2e-5, 3e-5, 5e-5), using the
THYME colon cancer development set. The fine-
tuning is done with the Tensorflow-based BERT
API, with the hidden state of the “[CLS]” token as
the input to the classification layer. Rather than pre-
training from scratch, which requires significant
computational resources and would remove poten-
tially useful information from the model, we initial-
ize the pre-training on MIMIC data from BERT’s
final check point, with 10,000 training steps, stan-
dard warm up, and takes three hours to finish.

4 Results

All models are evaluated by the standard Clini-
cal TempEval evaluation script so that their per-
formance can be directly compared to published
results. Table 1 shows performance on the Clin-
ical TempEval colon cancer test set for the pre-
vious best systems, Lin et al. (2018) and Galvan
et al. (2018), and window-based universal models.
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Model P R F1
Lin et al. (2018) 0.692 0.576 0.629
Galvan et al. (2018) 0.983 0.462 0.629
1. bi-LSTM 0.712 0.490 0.581
2. BERT 0.699 0.625 0.660
3. BERT-T 0.735 0.613 0.669
4. BERT-TS 0.670 0.697 0.683
5. BioBERT(pmc)-TS 0.674 0.695 0.684
6. BERT-MIMIC-TS 0.673 0.686 0.679

Table 1: Model performance of CONTAINS relation
on colon cancer test set. T: using non-XML tags; S:
adding high confidence positive silver instances.

Model P R F1
Lin et al. (2018) 0.514 0.585 0.547
BERT-TS 0.456 0.704 0.553
BioBERT(pmc)-TS 0.473 0.700 0.565
BERT-MIMIC-TS 0.457 0.715 0.558

Table 2: Model performance of CONTAINS relation on
brain cancer test set.

We feed the window-based instances with XML-
tagged entities to the bidirectional LSTM model
without self-training (Lin et al., 2018) (Table 1(1))
as a comparison. Window-based instances with
XML-tagged entities (Table 1(2)) and with non-
XML tagged entities (Table 1(3)) are fed to BERT
to show the difference from tagging. Then, high-
confidence positive “silver” instances are added to
the training set, fine-tuning is performed for BERT
(Table 1(4)), BioBERT(pmc) (Table 1(5)) which
showed better results than BioBERT trained on
PubMed and PMC+PubMed, and BERT-MIMIC
(Table 1(6)) respectively.

To evaluate the generalizability of the models,
the best performing models trained on the colon
cancer data – BERT (Table 1(4)), Bio-BERT(pmc)
(Table 1(5)), and BERT-MIMIC (Table 1(6)) – are
directly tested on the Clinical TempEval THYME
brain cancer test set. Previous best cross-domain
result is reported by Lin et al. (2018) in Table 2.

Thus, we establish a new state-of-the-art result
for the task – 0.684F for within-domain (0.055
point improvement) and 0.565F for cross-domain
(0.018 point improvement).

5 Discussion

The window-based BERT-fine-tuned model, even
with the XML-tags (Table 1(2)), works for both
within- and cross-sentence relations. Its perfor-

#1:
TIME

Today Mr. A
EVENT1

states that he feels well.

#2: The
EVENT

colonoscopy
EVENT

revealed a low rectal
EVENT

mass that

was noncircumferential. It was
EVENT

fungating ,
EVENT

infiltrative ,

EVENT

ulcerated , and about 4-cm in diameter. It
EVENT

involved ...

Figure 3: Relations picked up by the universal model.

Category P R F1
within-sentence 0.621 0.712 0.663
cross-sentence 0.359 0.310 0.333

Table 3: Within- vs. cross-sentence results on colon
cancer development set.

mance (0.660F) is better than enhanced within-
sentence models (Lin et al., 2018; Galvan et al.,
2018) (0.629F), and the combination of two sepa-
rate within- and cross-sentence models (Tourille
et al., 2017) (0.613F). The improvement comes
from 1) the window-based processing mechanism
that bypasses the errors generated by a sentence
boundary detector (for example, the sentence split-
ter creates two sentences for Figure 3(1) by incor-
rectly disambiguating the period after Mr); 2) the
superb long-distance reasoning ability of BERT
(Figure 3(2) shows relations we now can pick up
from a three-sentence span). As a comparison,
the same window-based approach does not work
well with bidirectional LSTM model (Table 1(1)).
One reason could be that because the bi-LSTM
model is not pre-trained on a large corpus, it is
likely affected by the limited number of gold an-
notations especially for large window sizes (like
50 or 60 tokens) which leads to skewing the posi-
tive/negative instance ratio further towards the neg-
ative labels, thus making fewer positive predictions
(0.490 recall). Another explanation could be the
different ways the bi-LSTM and BERT implement
bidirectionality; each pass of the bi-LSTM is bi-
ased towards its nearby information thus favoring
short-distance relations within a sentence.

The THYME corpus distribution does not pro-
vide gold sentence annotations. The BERT results
we present in Table 1 are derived using a 60-token
window. This window size produced superior re-
sults compared to a 50-token window (0.660F and
0.651F respectively).

Non-XML tags work better with BERT as they

68



Figure 4: Distribution of 100 Errors

are not split into sub-tags but better preserved (Ta-
ble 1(2)) vs. (Table 1(3)). We experimented with
adding entity tags into BERT’s vocabulary, instead
of relying on strings (i.e. ”es”, ”ee”) that could
possibly be confused with real tokens, but did not
observe improved performance. We hypothesize
that the BERT model needs to be re-trained with the
added tags to contextualize their representations.
Currently, we are limited by our computational re-
sources to undertake such an endeavor.

Adding high quality silver instances is helpful
as they alleviate the skewed positive to negative
instance ratio, (Table 1(3)) vs. (Table 1(4)).

BERT-TS and its domain-specific versions
(BioBERT(pmc)-TS, BERT-MIMIC-TS) work on
par with each other (Table 1(4-5)) for in-domain
tasks, and BioBERT(pms)-TS performs better
when it is tested for generalizability on the the
brain cancer Clinical TempEval test set (Table 2).
The clinical-domain specific representation BERT-
MIMIC-TS shows slight cross-domain advantage
(0.558F) over BERT-TS (0.553F).

We performed error analysis on the output of the
best performing model – BioBERT(pmc)-TS – on
the THYME colon cancer development set. Ap-
plying this model results in 7.0k within-sentence
CONTAINS predictions (4.3k correct) and 1.6k
cross-sentence predictions (0.6k correct). Table 3
shows the within- and cross-sentence results of the
best model on the colon cancer development set.
However, these results should not be taken literally
but as only an overall trend because closure over
the entire set of relations needs to be factored, mak-

ing it hard to isolate the performance of specific
subtypes. For that reason, we did not subtype the
results into event-event and event-time instances.

We sampled 100 errors evenly distributed over
four categories: within-sentence false positives
(FP), within-sentence false negatives (FN), cross-
sentence FPs, and cross-sentence FNs. The sources
of errors are summarized in fig. 4. 1) “Annotation
error” (46%) – errors in the gold annotations; 2)
“Wrong scope of timex” (12%) – the main reason
for FP predictions, especially for cross-sentence
ones (10%). The system fails to identify the subtle
change of the timex scope and incorrectly links an
event to it; 3) “Confusing timex in between” (9%) –
there is another time expression occurring between
the two arguments, thus the system incorrectly in-
fers the scope of the time expression; 4) “Closure
error” (9%); 5) “Unknown” (7%) – errors for which
we could not provide a plausable explanation ; 6)
“Entities are too close” (7%) – the two entities in
question are too close to each other, thus limiting
the context for correct reasoning. Prior knowledge
would be helpful for these short-distance relations;
7) “Time-time” (4%) – the system generates time-
time relations which are oftentimes FPs because
gold time-time annotations are scarce ; 8) “Dis-
tance > window” (4%) – the distance between the
two entities in question is bigger than the window
size, resulting in cross-sentence FNs ; 9) “Order”
(2%) – the system incorrectly extracts the order of
the relation arguments, e.g. predicts CONTAINS
instead of CONTAINS-BY .

One path for future research is pre-training
BERT on a much larger clinical corpus (for which
large scale computational resources are needed).
The PMC set may not be clinical enough and the
size of MIMIC corpus (0.9B) is too small compared
to the other corpora (PubMed 4.5B, PMC 13.5B)
to provide sufficient representations.
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Abstract

Contextual word embedding models such as
ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018) have dramatically improved
performance for many natural language pro-
cessing (NLP) tasks in recent months. How-
ever, these models have been minimally ex-
plored on specialty corpora, such as clini-
cal text; moreover, in the clinical domain, no
publicly-available pre-trained BERT models
yet exist. In this work, we address this need
by exploring and releasing BERT models for
clinical text: one for generic clinical text and
another for discharge summaries specifically.
We demonstrate that using a domain-specific
model yields performance improvements on
three common clinical NLP tasks as compared
to nonspecific embeddings. These domain-
specific models are not as performant on two
clinical de-identification tasks, and argue that
this is a natural consequence of the differences
between de-identified source text and synthet-
ically non de-identified task text.

1 Introduction

Natural language processing (NLP) has been
shaken in recent months with the dramatic suc-
cesses enabled by transfer learning and contextual
word embedding models, such as ELMo (Peters
et al., 2018), ULMFiT (Howard and Ruder, 2018),
and BERT (Devlin et al., 2018).

These models have been primarily explored for
general domain text, and, recently, biomedical text
with BioBERT (Lee et al., 2019). However, clin-
ical narratives (e.g., physician notes) have known
differences in linguistic characteristics from both
general text and non-clinical biomedical text, mo-
tivating the need for specialized clinical BERT
models.

In this work, we build and publicly release ex-
actly such an embedding model.1 Furthermore,
we demonstrate on several clinical NLP tasks the
improvements this system offers over traditional
BERT and BioBERT alike.

In particular, we make the following contribu-
tions:

1. We train and publicly release BERT-Base and
BioBERT-finetuned models trained on both
all clinical notes and only discharge sum-
maries.2

2. We demonstrate that using clinical specific
contextual embeddings improves both upon
general domain results and BioBERT results
across 2 well established clinical NER tasks
and one medical natural language inference
task (i2b2 2010 (Uzuner et al., 2011), i2b2
2012 (Sun et al., 2013a,b), and MedNLI
(Romanov and Shivade, 2018)). On 2
de-identification (de-ID) tasks, i2b2 2006
(Uzuner et al., 2007) and i2b2 2014 (Stubbs
et al., 2015; Stubbs and Uzuner, 2015), gen-
eral BERT and BioBERT outperform clinical
BERT and we argue that fundamental facets
of the de-ID context motivate this lack of per-
formance.

2 Related Work

Contextual Embeddings in General Tradi-
tional word-level vector representations, such as
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and fastText (Bojanowski et al.,

1github.com/EmilyAlsentzer/clinicalBERT
2Discharge summaries are commonly used in downstream

tasks.
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2017), express all possible meanings of a word as
a single vector representation and cannot disam-
biguate the word senses based on the surround-
ing context. Over the last two years, ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018)
present strong solutions that can provide contex-
tualized word representations. By pre-training on
a large text corpus as a language model, ELMo
can create a context-sensitive embedding for each
word in a given sentence, which will be fed into
downstream tasks. Compared to ELMo, BERT is
deeper and contains much more parameters, thus
possessing greater representation power. More im-
portantly, rather than simply providing word em-
beddings as features, BERT can be incorporated
into a downstream task and gets fine-tuned as an
integrated task-specific architecture.

BERT has, in general, been found to be supe-
rior to ELMo and far superior to non-contextual
embeddings on a variety of tasks, including those
in the clinical domain (Si et al., 2019). For
this reason, we only examine BERT here, rather
than including ELMo or non-contextual embed-
ding methods.

Contextual Clinical & Biomedical Embeddings
Several works have explored the utility of con-
textual models in the clinical and biomedical do-
mains. BioBERT (Lee et al., 2019) trains a BERT
model over a corpus of biomedical research arti-
cles sourced from PubMed3 article abstracts and
PubMed Central4 article full texts. They find
the specificity offered by biomedical texts trans-
lated to improved performance on several biomed-
ical NLP tasks, and fully release their pre-trained
BERT model.

On clinical text, (Khin et al., 2018) uses a
general-domain pretrained ELMo model towards
the task of clinical text de-identification, report-
ing near state-of-the-art performance on the i2b2
2014 task (Stubbs and Uzuner, 2015; Stubbs et al.,
2015) and state of the art performance on several
axes of the HIPAA PHI dataset.

Two works that we know of train contextual em-
bedding models on clinical corpora.

(Zhu et al., 2018) trains an ELMo model over
a corpus of mixed clinical discharge summaries,
clinical radiology notes and medically oriented
wikipedia articles, then demonstrates improved
performance on the i2b2 2010 task (Uzuner et al.,

3https://www.ncbi.nlm.nih.gov/pubmed/
4https://www.ncbi.nlm.nih.gov/pmc/

2011). They release a pre-trained ELMo model
along with their work, enabling further clinical
NLP research to work with these powerful con-
textual embeddings.

(Si et al., 2019), released in late February 2019,
train a clinical note corpus BERT language model
and uses complex task-specific models to yield im-
provements over both traditional embeddings and
ELMo embeddings on the i2b2 2010 and 2012
tasks (Sun et al., 2013b,a) and the SemEval 2014
task 7 (Pradhan et al., 2014) and 2015 task 14 (El-
hadad et al.) tasks, establishing new state-of-the-
art results on all four corpora. However, this work
neither releases their embeddings for the larger
community nor examines the performance oppor-
tunities offered by fine-tuning BioBERT with clin-
ical text or by training note-type specific embed-
ding models, as we do.

3 Methods

In this section, we first describe our clinical text
dataset, the details of the BERT training proce-
dure, and finally the specific tasks we examine.

3.1 Data

We use clinical text from the approximately 2 mil-
lion notes in the MIMIC-III v1.4 database (John-
son et al., 2016). Details of our text pre-processing
procedure can be found in Appendix A. Note that
while some of our tasks use a small subset of
MIMIC notes in their corpora, we do not try to fil-
ter these notes out of our BERT pre-training proce-
dure. We expect the bias this induces is negligible
given the relative sizes of the two corpora.

We train two varieties of BERT on MIMIC
notes: Clinical BERT, which uses text from all
note types, and Discharge Summary BERT, which
uses only discharge summaries in an effort to tai-
lor the corpus to downstream tasks (which often
largely use discharge summaries).

Note that we train our clinical BERT instantia-
tions on all notes of the appropriate type(s), with-
out regard for whether or not any individual note
appeared in any of the train/test sets for the vari-
ous tasks we use (two of which use a small subset
of MIMIC notes either partially or completely as
their backing corpora). We feel this has a negligi-
ble impact given the dramatically larger size of the
entire MIMIC corpus relative to the various task
corpora.
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3.2 BERT Training
In this work, we aim to provide the pre-trained
embeddings as a community resource, rather than
demonstrate technical novelty in the training pro-
cedure, and accordingly our BERT training pro-
cedure is completely standard. As such, we have
relegated specifics of the training procedure to Ap-
pendix B.

We trained two BERT models on clinical
text: 1) Clinical BERT, initialized from BERT-
Base, and 2) Clinical BioBERT, initialized from
BioBERT. For all downstream tasks, BERT mod-
els were allowed to be fine-tuned, then the out-
put BERT embedding was passed through a single
linear layer for classification, either at a per-token
level for NER or de-ID tasks or applied to the sen-
tinel “begin sentence” token for MedNLI. Note
that this is a substantially lower capacity model
than, for example, the Bi-LSTM layer used in (Si
et al., 2019). This reduced capacity potentially
limits performance on downstream tasks, but is in
line with our goal of demonstrating the efficacy of
clinical-specific embeddings and releasing a pre-
trained BERT model for these embeddings. We
did not experiment with more complex representa-
tions as our goal is not to necessarily surpass state-
of-the-art performances on these tasks.

Computational Cost Pre-processing and train-
ing BERT on MIMIC notes took significant com-
putational resources. We estimate that our en-
tire embedding model procedure took roughly 17
- 18 days of computational runtime using a single
GeForce GTX TITAN X 12 GB GPU (and signifi-
cant CPU power and memory for pre-processing
tasks). This is not including any time required
to download or setup MIMIC or to train any fi-
nal downstream tasks. 18 days of continuous run-
time is a significant investment and may be be-
yond the reach of some labs or institutions. This
is precisely why we believe that releasing our pre-
trained model will be useful to the community.

3.3 Tasks
The Clinical BERT and Clinical BioBERT mod-
els were applied to the MedNLI natural lan-
guage inference task (Romanov and Shivade,
2018) and four i2b2 named entity recognition
(NER) tasks, all in IOB format (Ramshaw and
Marcus, 1995): i2b2 2006 1B de-identification
(Uzuner et al., 2007), i2b2 2010 concept extrac-
tion (Uzuner et al., 2011), i2b2 2012 entity extrac-

Dataset Metric Dim
# Sentences

Train Dev Test

MedNLI Accuracy 3 11232 1395 1422
i2b2 2006 Exact F1 17 44392 5547 18095
i2b2 2010 Exact F1 7 14504 1809 27624
i2b2 2012 Exact F1 13 6624 820 5664
i2b2 2014 Exact F1 43 45232 5648 32586

Table 1: Task dataset evaluation metrics, output dimen-
sionality, and train/dev/test dataset sizes (in number of
sentences). Exact F1 requires that the text span and la-
bel be an exact match to be considered correct.

tion challenge (Sun et al., 2013a,b), i2b2 2014 7A
de-identification challenge (Stubbs and Uzuner,
2015; Stubbs et al., 2015). Details of the IOB for-
mat can be seen in the appendix, section C. All
task dataset sizes, evaluation metrics, and number
of classes are shown in Table 1.

Note that our two de-identification (de-ID)
datasets present synthetically-masked PHI in their
texts—e.g., they replace instances of real names,
hospitals, etc., with synthetic, but consistent and
realistic, names, hospitals, etc. As a result,
they present significantly different text distribu-
tions than traditionally de-identified text (such as
MIMIC notes) which will instead present sentinel
“PHI” symbols at locations where PHI was re-
moved.

4 Results & Discussions

In this section, we will first describe quantitative
comparisons of the various BERT models on the
clinical NLP tasks we considered, and second de-
scribe qualitative evaluations of the differences be-
tween Clinical- and Bio- BERT.

Clinical NLP Tasks Full results are shown in
Table 2. On three of the five tasks (MedNLI,
i2b2 2010, and i2b2 2012), clinically fine-tuned
BioBERT shows improvements over BioBERT
or general BERT. Notably, on MedNLI, clinical
BERT actually yields a new state of the art, yield-
ing a performance of 85.4% accuracy as compared
to the prior state of the art of 73.5% (Romanov and
Shivade, 2018) obtained via the InferSent model
(Conneau et al., 2017). However, on our two
de-ID tasks, i2b2 2006 and i2b2 2014, clinical
BERT offers no improvements over Bio- or gen-
eral BERT. This is actually not surprising, and is
instead, we argue, a direct consequence of the na-
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Model MedNLI i2b2 2006 i2b2 2010 i2b2 2012 i2b2 2014

BERT 77.6% 93.9 83.5 75.9 92.8
BioBERT 80.8% 94.8 86.5 78.9 93.0
Clinical BERT 80.8% 91.5 86.4 78.5 92.6
Discharge Summary BERT 80.6% 91.9 86.4 78.4 92.8
Bio+Clinical BERT 82.7% 94.7 87.2 78.9 92.5
Bio+Discharge Summary BERT 82.7% 94.8 87.8 78.9 92.7

Table 2: Accuracy (MedNLI) and Exact F1 score (i2b2) across various clinical NLP tasks.

Model Disease Operations Generic
Glucose Seizure Pneumonia Transfer Admitted Discharge Beach Newspaper Table

BioBERT
insulin episode vaccine drainage admission admission coast news tables
exhaustion appetite infection division sinking wave rock official row
dioxide attack plague transplant hospital sight reef industry dinner

Clinical
potassium headache consolidation transferred admission disposition shore publication scenario
sodium stroke tuberculosis admitted transferred transfer ocean organization compilation
sugar agitation infection arrival admit transferred land publicity technology

Table 3: Nearest neighbors for 3 sentinel words for each of 3 categories. In the Disease and operations
categories, clinical BERT appears to show greater cohesion within the clinical domain than BioBERT,
whereas for generic words, the methods do not differ much, as expected.

ture of de-ID challenges.
De-ID challenge data presents a different data

distribution than MIMIC text. In MIMIC, PHI is
identified and replaced with sentinel PHI mark-
ers, whereas in the de-ID task, PHI is masked with
synthetic, but realistic PHI. This data drift would
be problematic for any embedding model, but will
be especially damaging to contextual embedding
models like BERT because the underlying sen-
tence structure will have changed: in raw MIMIC,
sentences with PHI will universally have a sentinel
PHI token. In contrast, in the de-ID corpus, all
such sentences will have different synthetic masks,
meaning that a canonical, nearly constant sentence
structure present during BERT’s training will be
non-existent at task-time. For these reasons, we
think it is sensible that clinical BERT is not suc-
cessful on the de-ID corpora. Furthermore, this
is a good example for the community given how
prevalent the assumption is that contextual embed-
ding models trained on task-like corpora will offer
dramatic improvements.

Overall, we feel our results demonstrates the
utility of using domain-specific contextual embed-
dings for non de-ID clinical NLP tasks. Addition-
ally, on one task Discharge Summary BERT offers
performance improvements over Clinical BERT,
so it may be that adding greater specificity to the
underlying corpus is helpful in some cases. We
release both models with this work for public use.

Qualitative Embedding Comparisons Table 3
shows the nearest neighbors for 3 words each
from 3 categories under BioBERT and Clinical
BERT. These lists suggest that Clinical BERT re-
tains greater cohesion around medical or clinic-
operations relevant terms than does BioBERT. For
example, the word “Discharge” is most closely
associated with “admission,” “wave,” and “sight”
under BioBERT, yet only the former seems rele-
vant to clinical operations. In contrast, under Clin-
ical BERT, the associated words all are meaningful
in a clinical operations context.

Limitations & Future Work This work has
several notable limitations. First, we do not ex-
periment with any more advanced model architec-
tures atop our embeddings. This likely hurts our
performance. Second, MIMIC only contains notes
from the intensive care unit of a single healthcare
institution (BIDMC). Differences in care practices
across institutions are significant, and using notes
from multiple institutions could offer significant
gains. Lastly, our model shows no improvements
for either de-ID task we explored. If our hypoth-
esis is correct as to its cause, a possible solution
could entail introducing synthetic de-ID into the
source clinical text and using that as the source for
de-ID tasks going forward.
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5 Conclusion

In this work, we pretrain and release clinically ori-
ented BERT models, some trained solely on clini-
cal text, and others fine-tuned atop BioBERT. We
find robust evidence that our clinical embeddings
are superior to general domain or BioBERT spe-
cific embeddings for non de-ID tasks, and that us-
ing note-type specific corpora can induce further
selective performance benefits. To the best of our
knowledge, our work is the first to release clini-
cally trained BERT models. Our hope is that all
clinical NLP researchers will be able to benefit
from these embeddings without the necessity of
the significant computational resources required to
train these models over the MIMIC corpus.
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A MIMIC Notes

MIMIC notes are distributed among 15 note types
(Figure 1). Many note types are semi-structured,
with section headers separating free text para-
graphs. To process these notes, we split all notes
into sections, then used Scispacy (Neumann et al.,
2019) (specifically, the en core sci md tok-
enizer) to perform sentence extraction. The sen-
tences are input into the BERT-Base and BioBERT
models for additional pre-training on clinical text.
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Figure 1: Relative prevalence of MIMIC notes types.

B BERT Training Details

For all pre-training experiments, we leverage the
tensorflow implementation of BERT (Devlin et al.,
2018).5

B.1 Pre-training
We used a batch size of 32, a maximum sequence
length of 128, and a learning rate of 5 · 10−5 for
pre-training our models. Models were trained for
150,000 steps. We experimented with models pre-
trained for 300,000 steps, but we found no signif-
icant differences in downstream task performance
with these models. The dup factor for duplicat-
ing input data with different masks was set to 5.
All other default parameters were used (specifi-
cally, masked language model probability = 0.15
and max predictions per sequence = 20).

B.2 Fine-tuning
For all downstream tasks, we explored the follow-
ing hyperparameters: learning rate ∈ {2 · 10−5, 3 ·

5https://github.com/google-research/bert

10−5, 5 ·10−5}, batch size ∈ {16, 32}, and epochs
∈ {3, 4}. For the NER tasks, we also tried epoch
∈ {2}. The maximum sequence length was 150
across all tasks. Due to time constraints, only 2
epochs were run for the i2b2 2014 task.

C IOB Format

The IOB (Inside-Outside-Beginning) for-
mat (Ramshaw and Marcus, 1995) is a method
of encoding span-based NER tasks to add more
granularity to the label space over span positions,
specifically re-classifying each class as having
three subclasses:

Inside (I-) This label is used to specify words
within a span for this class.

Outside (O) This label is used to specify words
outside any span for this class. This label
will be shared across all classes and will re-
place the “no class” label applied to extrane-
ous words.

Beginning (B-) This label is used to specify
words at the beginning of a span for this
class.

For example, if the input text, with span labels
is given as
“The patient is very sick.”
with NER labels
“Null Null Null Problem Problem”
we could convert this into IOB format via
“O O O B-Problem I-Problem”
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Abstract

Knowledge discovery from text in natural lan-
guage is a task usually aided by the manual
construction of annotated corpora. Specifi-
cally in the clinical domain, several annotation
models are used depending on the character-
istics of the task to solve (e.g., named entity
recognition, relation extraction, etc.). How-
ever, few general-purpose annotation models
exist, that can support a broad range of knowl-
edge extraction tasks. This paper presents an
annotation model designed to capture a large
portion of the semantics of natural language
text. The structure of the annotation model
is presented, with examples of annotated sen-
tences and a brief description of each seman-
tic role and relation defined. This research
focuses on an application to clinical texts in
the Spanish language. Nevertheless, the pre-
sented annotation model is extensible to other
domains and languages. An example of anno-
tated sentences, guidelines, and suitable con-
figuration files for an annotation tool are also
provided for the research community.

1 Introduction

Knowledge discovery is a field of computer sci-
ence that shows an accelerated growth in the past
three decades. Advances in this area have been
applied in many domains, from databases (Fayyad
et al., 1996; Stahl et al.) to images (Lu et al., 2016)
and natural language text (Carlson et al., 2010).
Specifically in natural language text, this field
is highly relevant in the biomedical and health
domains, where it is used for performing tasks
such as Named Entity Recognition (NER), Re-
lationship Extraction and Hypothesis Generation,
among others. (Simpson and Demner-Fushman,
2012). These tasks generally use annotated cor-
pora for learning the characteristics that appear in
the text and mapping them to knowledge struc-
tures. For each task, specific annotation models

have been designed that focus on specific elements
of the text. For example, in NER tasks is more
important to focus on nominal phrases than other
grammatical constructions.

Despite that these domain-specific tasks are dif-
ferent, most of them share common characteris-
tics. For example, most tasks deal with the detec-
tion of relevant entities and their relations. Hence,
promoting general-purpose annotation models
would allow the design of reusable and cross-
domain knowledge discovery techniques. In this
line, several domain-independent semantic repre-
sentations have been developed (e.g., AMR (Ba-
narescu et al., 2013), PropBank (Palmer et al.,
2005), FrameNet (Baker et al., 1998)). How-
ever, these representations rely heavily on fine-
grained lexicons that define specific semantic roles
for each word meaning. Therefore, developing
knowledge discovery systems with this level of de-
tail supposes great challenges. Using more coarse-
grained semantic representation, even with the
loss of some representational capacity, would sim-
plify the creation of automatic techniques based on
machine learning. This representation could also
be used as the first stage in a pipeline for a domain-
specific task, thus reusing resources and tech-
niques in domains with few available resources.

This paper presents a general-purpose annota-
tion model specifically designed to enable knowl-
edge discovery techniques in biomedical text. This
model represents the most relevant aspects of the
semantic meaning of sentences in natural lan-
guage, that allows the representation of the ba-
sic knowledge contained in a sentence. Even
though this model is language-agnostic, we focus
on Spanish text because is a less pervasive lan-
guage than English in terms of computational re-
sources available. However, this model can be ap-
plied to several western languages (e.g., English,
French, Spanish, Portuguese) without change, be-
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cause it doesn’t rely heavily on the grammatical
structure of the sentence. At the moment of writ-
ing, this model is being used to annotate a Span-
ish corpus of clinical text for a shared evaluation
task1. Relevant configuration files and example
annotated sentences are also published online2.

The remainder of the paper is organized as fol-
lows: Section 2 presents a brief review of anno-
tation models and related corpora in the health
domain. Section 3 describes our proposal for a
general-purpose annotation model with examples
and highlights its key design decisions. Section 4
proposes a methodology for the annotation, nor-
malization, agreement and evaluation of a corpus
based on this annotation model. Finally, Section 5
provides preliminary conclusions and prospects of
our proposal.

2 Annotation models for knowledge
discovery

In this section we present a review of relevant an-
notation models from which we draw inspiration.
We focus general-purpose annotation models 2.1
as well as on annotation models that have been ap-
plied to the health domain 2.2.

2.1 General-purpose annotation models
Several general-purpose semantic annotation
models have been developed, that attempt to
represent the semantics of a sentence beyond the
syntactic structure. These models are loosely
based on the Subject-Verb-Object grammatical
structure that is pervasive in human language.

PropBank (Palmer et al., 2005) proposes a gen-
eral purpose annotation schema, based on annotat-
ing predicates (verbs) as the main semantic con-
stituents of a sentence. ProbBank’s annotation
schema is able to represent several semantic re-
lations, including the agent that causes an action,
the receiver of the effects of an action, time and
location modifiers, and causal relationships. One
key characteristic of PropBank is that every pred-
icate defines custom semantic roles, i.e., the pred-
icate “accept” defines roles for the agent who ac-
cepts (ARG0), the object that is accepted (ARG1),
and the agent from whom that object is accepted.

FrameNet (Baker et al., 1998) is a lexical
database and an annotated corpus that models

1https://knowledge-learning.github.io/
ehealthkd-2019/

2https://github.com/
knowledge-learning/satr-ann

the semantic roles and relations in a natural
language sentence through conceptual structures
named frames. Frames represent general-purpose
concepts, or events, that define the possible se-
mantic relations in which those concepts can be
realized in natural language.

VerbNet (Schuler, 2005) is a verb lexicon that
also defines specific semantic roles for each verb.
In VerbNet, verbs are organized in a hierarchy, and
linked through different thematic roles, such as
agents, cause, source, or topic. These elements al-
low to capture the semantic representation of sen-
tences.

PropBank semantic roles are similar to the the-
matic roles defined in VerbNet and frame elements
in FrameNet. As such, there are resources that link
these semantic structures (Palmer, 2009).

A more recent proposal is Abstract Mean-
ing Representation (Banarescu et al., 2013,
ARM). AMR constitutes a semantic representa-
tion schema for English sentences that also at-
tempts to cover a wide range of semantic rela-
tions with a general-purpose model. AMR in-
cludes PropBank semantic roles, as well as coref-
erence resolution within the same sentence, named
entities and types, negation, and other modifiers in
a graph structure that represents the meaning of a
natural language sentence. However, even though
AMR captures the full semantic meaning of a sen-
tence, for the purpose of knowledge discovery it is
still considerably abstract, and additional process-
ing is necessary to extract concrete structures of
knowledge (Rao et al., 2017).

The annotation model proposed in this research
shares similarities from general-purpose semantic
annotation models such as AMR and PropBank.
In contrast to these resources, our model makes
no distinction between different types of actions,
which are loosely related to verbs, as explained in
Section 3. Instead, we define two general-purpose
roles, the agent that performs and action, and the
receiver of the effects of the action. These roles
roughly correspond to ARG0 and ARG1 respec-
tively in PropBank, although in specific cases their
semantic meaning might differ. This simplifica-
tion is directed towards enabling the automation
of the annotation process with the use of machine
learning techniques. Another key difference of
our model is the inclusion of general-purpose tax-
onomic relations (e.g, hypernomy/hyponomy and
meronym/holonym) that are inferred from the sen-
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tence. These relations are directed towards easing
the automatic construction of knowledge bases.

2.2 Annotations models in the health domain

Knowledge discovery tasks in the health do-
main are often supported by the construction of
manually-annotated corpora. Several task-specific
annotation models have been developed for this
purpose. One example is the DrugSemantics cor-
pus (Moreno et al., 2017) where product charac-
teristics are annotated, and BARR2 (Intxaurrondo
et al., 2018) which is concerned with biomedi-
cal abbreviations. Many corpora include specific
types of named entities relevant to the medical
domain, such as DDI (Herrero-Zazo et al., 2013)
which annotates drugs and other substances. Other
examples include i2b2 (Uzuner et al., 2010) which
annotates medications, dosages and other details
of drug administration and CLEF (Roberts et al.,
2009) which annotate different types of condi-
tions, devices and their results in specific clinical
cases. Given the specificity of the annotated con-
cepts, most of these resources are built by biomed-
ical experts.

The previous examples are corpora helpful
in designing techniques oriented towards narrow
tasks, where the annotation model is specifically
designed to only consider portions of the text rel-
evant to the concepts of interests (i.e., medical
entities, genes, etc.). An alternative approach
that attempts to model a wide range of the se-
mantics of a document is Bio-AMR (May and
Priyadarshi, 2017). This corpus contains health-
related sentences annotated with their AMR struc-
ture, a general-purpose semantic representation
of natural text. Another relevant resource is
BioFrameNet (Dolbey et al., 2006), an extension
to FrameNet with specific semantic roles for the
biomedical domain. A positive consequence of us-
ing general-purpose semantic annotations is that it
doesn’t necessarily require experts in biomedical
areas to participate in the annotation process.

The eHealth-KD corpus (Martı́nez Cámara
et al., 2018) attempts to achieve a middle ground
by representing a broad range of knowledge with a
simple annotation model based on Subject-Action-
Target triplets and 4 additional semantic rela-
tions. However, after the annotation process sev-
eral shortcomings were identified. One example
is the necessity for including causality and entail-
ment as explicit relations, rather than representing

them through actions, given the importance of this
type of assertions in medical texts. Likewise, the
annotation lacks the ability to represent corefer-
ences (“this”, “that”), and for this reason many
sentences cannot be fully annotated. Also, com-
plex linguistic constructions that represent com-
posite concepts (e.g., “the patients that received
treatment”) are difficult to annotate, especially
when they participate in other relations. This
paper extends the annotation model used by the
eHealth-KD corpus with semantic elements used
in general-purpose annotation models, such as
AMR and PropBank. This extension allows solv-
ing the aforementioned issues and increases its
representational power without adding an overly
complex set of new semantic roles and relations.

3 Annotation model

In this section, we define an annotation model
that attempts to represent the most relevant seman-
tic relations in a natural language sentence. This
model should avoid ambiguities as much as possi-
ble, such that different human annotators can agree
with a high probability. The model needs to be ex-
pressive enough to capture relevant domain con-
cepts and their interactions. It must also be able
to represent complex concepts that are built by the
combination of simpler concepts. This model is
designed to aid in the construction of knowledge
discovery systems. For this reason, it is neces-
sary to detach the model representation as much
as possible from the grammatical structure of sen-
tences, and instead attempt to represent its seman-
tic meaning.

With these objectives in mind, the annota-
tion model proposed in this research is based
on the Subject-Verb-Object grammatical structure
present in western languages. However, since we
are interested in annotating fragments of knowl-
edge, the semantic role of annotated entities does
not necessarily match the grammatical role. The
main semantic roles of this model are Concept
and Action, which are used to represent factual
information about what is being done, by who,
to whom. These structures can be contextual-
ized with time, location, and other general cir-
cumstances. An additional semantic role named
Predicate is used to build more complex con-
ceptualizations from simpler ones. Finally, 6
specific semantic relations are used to represent
general-purpose knowledge. The relations is-a,
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Figure 1: Conceptual schema for the annotation model. Each of the semantic roles defined in the annotation model
are represented as circles. The possible relations defined between each pair of roles are represented in rectangles.

same-as, has-property and part-of are
taken from taxonomic and ontologic representa-
tions, while the relations causes and entails
are taken from the domain of text comprehension.

In contrast with AMR and PropBank, our an-
notation model does not yet specifies the seman-
tic meaning of each Concept and Action. The
actual meaning must be inferred from the text of
the annotated entities. Likewise, the exact mean-
ing of each semantic role (e.g, the receiver in “ac-
cept”) is also inferred from the text, and must be
resolver in a later stage. The taxonomic relations
allow the capture of domain-specific definitions,
that more in fine-grained task would be repre-
sented with specific entity types and relations. The
domain-specific knowledge is thus represented by
the semantic meaning of the annotated words, and
not explicitly represented by specific entity types
or relations.

The following sections explain each semantic
role and relation in details and provide examples
of its use in natural text sentences. Figure 1 shows
a graphic representation of our annotation model.

3.1 Concepts

A Concept role is used to annotate fragments of
text that represent a single unit of information in
the domain. It can be a named entity, or a com-
mon noun, adjective or verb, that represents a con-
cept relevant in the textual domain. Hence, almost
every word or phrase that carries a singular mean-
ing is annotated as Concept (or one of its deriva-

tives, as explained next). Tokens such as articles,
prepositions and conjunctions which only carry a
grammatical function but not a semantic meaning
are not annotated.

As an example, consider the sentence: “El
asma afecta las vı́as respiratorias”3. In this sen-
tence, the word asma is a clearly distinguishable
concept in the health domain, whose meaning is
independent of its grammatical role in the sen-
tence. Some concepts such as vı́as respiratorias
are multi-word, either because the single words
that compose it are meaningless by themselves, or
because the concept formed by their union is dif-
ferent from the individual meanings. In this case,
even though vı́as and respiratorias by themselves
have individual well-defined meanings, the con-
cept vı́as respiratorias has a very definite meaning
in the health domain that makes it a single unit of
information, i.e., an specialist in the domain can
clearly identify it.

3.2 Actions

An Action is a specific type of Concept which
indicates a process or event, that some other con-
cept can perform or receive the effects of, or an
interaction between concepts. In the previous
example, afecta is an action. An Action can
be linked to relevant concepts by two semantic
roles: subject and target. The subject
is the concept that produces the action, while
the target is the concept that receives the ef-

3In English: Asthma affects the respiratory tract.
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fect of the action. In the previous example, the
subject of afecta is asma, and the target
is vı́as respiratorias. An Action can have zero
or more subjects and/or targets. Figure 2
shows a graphical representation of the previ-
ous sentence with the corresponding Concepts
and Actions, and the respective subject and
target annotations.

Figure 2: Annotation of Concepts and Actions in
an example sentence.

In the previous example the Action is indi-
cated by a word with the grammatical role of verb,
which is intuitively the most common case. How-
ever, an action can also be indicated by a word
with another grammatical role, such as nouns. For
example, in the phrase “...el empeoramiento de
los sı́ntomas...”4, the word empeoramiento is still
considered an action even though it is not a verb,
since it describes a process or event that happens
to some other concept. Thus, the semantic role
Action describes the intended meaning of a con-
cept in the semantic domain, rather than its gram-
matical function in any specific sentence. If a
domain concept expresses a process or event that
produces effects on other Concepts, then it is an
Action, even if it can be used in different gram-
matical functions.

3.3 References

A Reference is a type of Concept that has no
specific semantic meaning, but it is necessary for
grammatical reasons. It is used to annotate pro-
nouns (e.g., este, aquel, etc.) and other referential
elements when necessary, such as when they play
the role of subject or target.

3.4 Predicates

A Predicate is used to form more complex
concepts by combining, filtering or modifying
other Concepts in a sentence. A common use
case is for defining a subset of a Concept given
some properties. For example, in the phrase
“...afecta a las personas mayores de 60 años...”5,
the word mayores is annotated as a Predicate

4In English: ... the worsening of symptoms...
5In English: ...affects people older than 60 years...

that filters some of the people. In conjunction with
Predicates, any concept can play two addi-
tional roles: the domain or an argument of the
predicate. In the previous example the domain is
played with the Concept personas, and the only
argument is 60 años.

This construction gives rise to a new concept,
that of people older than 60 years, which can be
understood as the application of the filter may-
ores on a set of elements defined by the Concept
personas, of whom those with the argument 60
años are selected. The new complex concept
built this way is represented in the sentence by
the Predicate itself. Hence, to continue with
the previous example, if we want these “older
people” to play the target role then the corre-
sponding annotation goes from the Action to the
Predicate, as shown in Figure 3. It would be a
mistake to say the subject of afecta is personas
because this concept represents all people. Hence,
the Predicate is used to represented not the fil-
tering operation itself, but actually the filtered con-
cept.

Figure 3: Annotation of Predicates and Actions
in an example sentence.

3.5 Composing concepts

Just as Predicates can be used to define com-
posite concepts, this can also be accomplished
by considering an Action as the subject or
target of another. For example, in the sen-
tence “Los empleados dedicados al cuidado de la
salud están expuestos a riesgos laborales”6, there
is complex concept involving empleados, cuidado
and salud. This concept then acts as the target
of expuestos, since it is not all employees that are
exposed to hazards, but only those dedicated to
health care (see Figure 4). This strategy can also
be used to represent nominalizations, where the
nominalized verb can be annotated as an Action
and the corresponding subject and target
construct the complex concept.

6In English: Employees dedicated to health care are ex-
posed to occupational hazards.
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Figure 4: Annotation of composite concepts formed when an Action is subject of another.

3.6 Taxonomic relations
Actions and Concepts allow the capture of a
large part of the semantic meaning of a sentence,
by annotating as actions all the concepts that indi-
cate any interaction between other concepts. How-
ever, some specific types of interactions are so
common, that they are considered in many knowl-
edge domains as building blocks for ontological of
taxonomic representations. Such is the case of hy-
pernymy/hyonymy pairs (i.e., is-a relations) and
meronym/holonym pairs (e.g. part-of relations),
which form the core of several knowledge bases.

These two types of relations are very common
in most knowledge domains, and there many dif-
ferent textual variants to express these ideas. Ar-
guably, it is better to explicitly represent them as
relations between concepts, rather than resorting
to annotate as an Action forms of the verb to
be. Furthermore, an explicit annotation of these
relations enables automatic knowledge discovery
systems trained on these annotations to extract
more compact and concise structures of knowl-
edge, since there is no additional interpretation
necessary.

The relations is-a and part-of can be explicitely
indicated in the text by the appereance of com-
mon textual patterns (e.g., Hearst patterns (Hearst,
1992)). However, we also consider their an-
notation even when no explicit textual cues ap-
pear. For example, in the phrase “...el corazón y
otros órganos...”7 it is implicitly begin stated that
corazón is-a órganos. A similar case is the ex-
ample “...el corazón y otras partes del cuerpo...”8

that implicitly indicates that the heart is a part of
the body.

The relation same-as is used to indicate syn-
onyms, or concepts that are considered equal in
the document’s domain. It can also be used
when some simple concept is defined by describ-
ing it as another more complex concept, such as
in the following example: “Una ampolla es la
piel que cubre una herida”9. In this example,

7In English: ...the heart and other organs...
8In English: ...the heart and other parts of the body...
9In English: A blister is the skin that covers a wound.

the Concept ampolla is being defined as another
complex concept, formed by the Action cubre
with subject piel and target herida. Hence,
in this example the sentence is annotated as shown
in Figure 5.

Figure 5: Annotation of a same-as relation in a defi-
nition.

The relation has-property is used to spec-
ify that a concept has a property or character-
istic, or can be described by another concept.
The simplest example is “...el asma es peli-
grosa...”10, in which the Concept asma is related
by has-property to the Concept peligrosa.

For all the taxonomic relations, we only con-
sider the annotation when the sentence actually
implies the existence of such relation, even if the
implication is implicit. In no case we consider
their annotation based solely on external or do-
main knowledge.

3.7 Causation and entailment
The previous 4 semantic relations are useful for
capturing the taxonomic structure of the knowl-
edge expressed in natural text. Two additional re-
lations are defined for capturing logical connec-
tions between concepts: causes and entails.
The relation causes is used to express that some
event (identified in general as a Concept) is a
possible cause for another event. An example is
“El asma provoca que las vı́as respiratorias se in-
flamen”11, annotated as shown in Figure 6. This
relation indicates causation, not correlation or log-
ical implication. Hence, it must be clearly stated
in a sentence that there is a direct causation link
between events. There is also a degree of uncer-
tainty implied in the causation, which means that
if A causes B, it doesn’t necessarily imply that

10In English: ...asthma is dangerous...
11In English: Asthma causes the respiratory tract to be-

come inflamed.
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every time A happens B will follow, or that any-
time B happens, is due to A.

Figure 6: Annotation of the relation causes.

In contrast, the relation entails is used to de-
note a logical implication. In this case, it is not
necessary for events to be related by causation at
all; what must hold is that when some assertion A
is true then it is always the case that assertion B is
true. The annotation of causation and entailment
avoids annotating several words and phrases that
share the same semantic meaning. For example,
in Figure 6 we refrain from annotating “provoca”,
since the actual meaning is already represented by
causes.

3.8 Contextualization

Sometimes concepts only participate in certain re-
lations with a precondition, such as during a spe-
cific period of time, in a specific location, or with
some additional properties. An example is the
sentence “El dengue en estado avanzado es peli-
groso”12. In this sentence the annotation dengue
has-property peligroso fails to capture the
whole semantic of the message, since dengue is
not necessarily always dangerous (according to
the sentence), but only in the specific situation
when it is in advanced stage. For these situa-
tions, our model includes three contextual rela-
tions: in-time, in-place and the more gen-
eral in-context. The previous sentence is an-
notated as shown in Figure 7.

Figure 7: Annotation of the relation in-context.

The difference between contextual relations and
the rest is that they do not define an assertion,
but are only useful for building more complex
concepts. For example, the annotation dengue
in-context avanzado does not say that dengue
always has the quality of being advanced. It is
only when linked by has-property (or another

12In English: Dengue in advanced stage is dangerous.

relation) to other concepts, that this construction is
meaningful. For this reason it is not correct to in-
terchange in-context with has-property,
since a has-property relation does state a spe-
cific assertion by its own.

3.9 Attributes
Four additional Boolean attributes can be attached
to any concept to further qualify or describe
it: negated, uncertain, diminished and
emphasized. These attributes are used to avoid
annotating stopwords such as no, mucho, poco,
puede, and instead directly attaching the corre-
sponding qualifier to the concept itself. These at-
tributes also capture the intended negation, uncer-
tainty or emphasis even when it is implied and not
explicitly indicated by another word. An example
is the phrase: “...en ocasiones cura...”13 in which
there is an implied uncertainty in the Action
cura.

4 Annotation methodology

In this section, we briefly describe a methodol-
ogy for creating a corpus based in this annota-
tion model. At the moment of writing this pro-
cess is being applied to the annotation of a corpus
of 1000 Spanish sentences in the clinical text do-
main. This corpus is the main evaluation scenario
for the eHealth-KD challenge to be hosted at Iber-
LEF 201914. The partial annotations and corpus
statistics are available online15.

The annotation process begins with the creation
of a small collection of annotated sentences (i.e., a
trial corpus) by a group of expert annotators. The
selected sentences should cover all the important
annotation patterns, and ideally, the most signifi-
cant sources of ambiguity. From this trial corpus,
an annotation guide can be constructed, that con-
tains example annotations of all the semantic roles
and relations defined. This guide defines the anno-
tation protocol and also how to disambiguate con-
flicting patterns. The annotation guide is used as
reference by the rest of the annotators during the
whole process. For the annotation process we pro-
pose the following stages:

1. Manually tagging a set sentences indepen-
dently by different non-biomedical experts.

13In English: ...ocassionally it heals...
14https://knowledge-learning.github.io/

ehealthkd-2019
15https://github.com/

knowledge-learning/satr-ann
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Each sentence is tagged by two different an-
notators. Annotators are allowed to discuss
general strategies, but should not discuss the
specific sentences they are assigned. When in
doubt, they will refer to the annotation guide
and the trial examples.

2. Merging and normalization of tagging sen-
tences between two annotators. In this case,
another annotator selects the best annotations
when contradictions exist. This stage can be
aided by merging scripts that automatically
detect and highlight conflicts.

3. The normalized sentences are verified and
agreed upon by a committee of expert re-
searchers in natural language processing, that
decide which sentences are finally included
in the corpus. Alternatively, if all members
of the committee agree than a different anno-
tation improves a specific sentence, it can be
changed, but this situation should be the ex-
ception rather than the norm.

After the three stages, the set of manually an-
notated and revised sentences constitute the new
corpus. These sentences should be then evaluated
as described in Section 4.1.

4.1 Annotation evaluation
To evaluate the manual annotation agreement in
the corpus, we propose to compute a micro-
average of all the matches between every pair of
annotations of the same sentences. This compar-
ison can be performed in two stages. First, when
the non-expert annotators label all the original sen-
tences, each sentence receives annotations from
two different people. Second, after the sentences
are combined and revised by the expert committee,
they can be compared to the original sentences,
to understand how much the corpus changed be-
tween non-expert annotations in the review pro-
cess. Since the annotation task involves select-
ing subsets of text and labelling them with differ-
ent tags, we propose to use an F1 metric (as op-
posed to the most common Kappa metric), such
as the one used by Moreno et al. (2017) for the
DrugSemantics corpus. Since the annotation in-
volves fragments of text, it is important to con-
sider partial agreement between annotators. For
this purpose, we propose to score partially match-
ing spans of texts proportionally to the length of
their intersection.

Another important evaluation metric is the hu-
man performance in this task, since corpora cre-
ated with this annotation models are frequently
used for machine learning tasks. We propose that
after the corpus is built an additional annotator
performs a manual labelling of a predefined sub-
set of the sentences. This annotator can be trained
with the same annotation guidelines, but should
not have been exposed to this specific subset of
sentences before. This can be used as a base-
line for human performance and can be compared
to the performance of different algorithms trained
in the corpus. In the eHealth-KD challenge, this
strategy will be applied to provide a human per-
formance metric for comparative purposes.

4.2 Annotation guidelines
The most relevant characteristic of the annotation
model presented in this research is that it intends
to represent the semantic, rather than the syn-
tax of sentences. For this purpose, it is neces-
sary to avoid in annotators incorrect mindsets that
fix semantic roles to grammatical functions (e.g.,
considering that verbs are almost always actions).
The correct process is understanding the seman-
tic meaning of a sentence first, and then represent-
ing it using the annotations. A useful heuristic is
to attempt to reconstruct a sentence from the an-
notations, possibly with a different wording than
the original, but with the same meaning. It is
also important to annotate all the concepts that ap-
pear in the sentence even if they cannot be eventu-
ally interrelated. Finally, we prefer annotating the
most explicit relation possible; for example, using
cause instead of using an Action such as “pro-
duce” or “provoca”, if cause accurately captures
the semantic meaning of the corresponding phrase.

4.3 Annotation tools
The tool proposed for all the manual annotation
process is BRAT (Stenetorp et al., 2012). This
tool makes it possible to visually select text por-
tions, assign labels and connect them by relations,
through a simple web interface that requires little
to no previous training. Even though BRAT allows
a limited form of collaborative annotation, we ac-
tually prefer that different annotators work in dif-
ferent copies of the text (Stage 1), and afterwards
perform an automatic merging process using cus-
tom scripts that output a BRAT-compatible result.
Then, in Stage 2, the expert who performs the nor-
malization can continue to use BRAT to correct
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mistakes. Furthermore, the web interface of BRAT
enables online collaboration between annotators
that are not physically close. For our model, we
provide relevant configuration files for BRAT and
50 annotated examples sentences online16.

5 Conclusions and future work

This research proposes a general-purpose anno-
tation model that captures a broad range of se-
mantic information from textual content, based on
Subject-Action-Target triplets plus additional se-
mantic relations. This model extends the annota-
tion model used by the eHealth-KD corpus, with
the addition of two semantic roles (Predicate
and Reference), the representation of causation
and entailment, and the possibility of identifying
contextual qualifiers. Theses additions allow cap-
turing more complex semantic information than
the previous model. Our ongoing efforts focus on
annotating a large corpus of clinical text in Span-
ish for supporting shared evaluation campaigns.

The semantic roles and relations defined map
to common concepts and relations used in knowl-
edge bases and ontologies, which simplifies the
task of building semantic networks from the anno-
tated text. In the future we will focus on this map-
ping stage, which will also require linking these
concepts to entities hosted at shared knowledge
bases, such as DBpedia (Auer et al., 2007) and
UMLS (Bodenreider, 2004). In addition, we also
plan to pursue the annotation of clinical text, and
extending to additional languages and other do-
mains, such as news, scientific papers, encyclope-
dic articles and others.
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Cultura i Esport) through the projects PROME-
TEO/2018/089, PROMETEU/2018/089; Social-
Univ 2.0 (ENCARGO-INTERNOOMNI-1); and
PINGVALUE3-18Y.

The authors would like to thank the team of an-
notators from the School of Math and Computer

16https://github.com/
knowledge-learning/satr-ann/tree/master/
data/v1

Science, at the University of Havana.
This version of the paper takes into account

helpful comments provided by the anonymous re-
viewers.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceed-
ings of the 17th international conference on Compu-
tational linguistics-Volume 1, pages 86–90. Associ-
ation for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl 1):D267–
D270.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka, Jr., and Tom M.
Mitchell. 2010. Toward an architecture for never-
ending language learning. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI’10, pages 1306–1313. AAAI Press.

Andrew Dolbey, Michael Ellsworth, and Jan Schef-
fczyk. 2006. Bioframenet: A domain-specific
framenet extension with links to biomedical ontolo-
gies. KR-MED 2006, page 87.

Usama Fayyad, Gregory Piatetsky-Shapiro, and
Padhraic Smyth. 1996. From data mining to knowl-
edge discovery in databases. AI magazine, 17(3):37.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Compu-
tational Linguistics.

Marı́a Herrero-Zazo, Isabel Segura-Bedmar, Paloma
Martı́nez, and Thierry Declerck. 2013. The ddi
corpus: An annotated corpus with pharmacological
substances and drug–drug interactions. Journal of
biomedical informatics, 46(5):914–920.

A Intxaurrondo, JC de la Torre, H Rodriguez Betanco,
M Marimon, JA Lopez-Martin, A Gonzalez-Agirre,
J Santamarıa, M Villegas, and M Krallinger. 2018.

87



Resources, guidelines and annotations for the recog-
nition, definition resolution and concept normaliza-
tion of spanish clinical abbreviations: the barr2 cor-
pus. SEPLN.

Cewu Lu, Ranjay Krishna, Michael Bernstein, and
Li Fei-Fei. 2016. Visual relationship detection with
language priors. In Computer Vision – ECCV 2016,
pages 852–869. Springer International Publishing.
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Abstract

We explore the use of real-time clinical infor-
mation, i.e., text messages sent between nurses
and doctors regarding patient conditions in or-
der to predict transfer to the intensive care unit
(ICU). Preliminary results, in data from five
hospitals, indicate that, despite being short and
full of noise, text messages can augment other
visit information to improve the performance
of ICU transfer prediction.

1 Introduction

‘Failure to rescue’ is an important aspect of patient
safety and can be caused by poor communication,
or a lack of situational awareness, in the care team
(Brady and Goldenhar, 2014). There has been in-
creased recognition of the importance of acting on
deteriorating patients by escalating their care via
rapid response and emergency medical teams (De-
Vita et al., 2006). Established criteria, such as the
Modified Early Warning Score (MEWS) (Subbe
et al., 2001), identify patients at risk of deteri-
oration. Recently, machine learning approaches
have employed electronic patient record data, vi-
tal signs, and laboratory results (Zhou et al., 2016;
Futoma et al., 2015; Che et al., 2016; Frost et al.,
2017), and have typically performed better than
MEWS (Churpek et al., 2016; Zhai et al., 2014).

Related work in intensive care unit (ICU) trans-
fer prediction often relies on structured data (i.e.,
lab results and vitals) taken from the patient’s elec-
tronic health record. For instance, Tabak et al.
(2017) developed a measure that relied on both
clinical and administrative data (e.g., diagnosis,
length of stay, number of previous discharges) and
predicted hospital readmission with c-statistics up
to 0.722. Similarly, Genevès et al. (2018) focused
on drug prescription data on the day of admis-
sion, and predicted various forms of risk, includ-
ing ICU admissions (≥65% AUC). By contrast,

Escudié et al. (2018) represented the text of elec-
tronic health records based on the Fast Healthcare
Interoperability Resources format1 and used word
embedding and random forests to predict disease
codes at the time of discharge, with a wide range in
accuracies. Miotto et al. (2016) embedded medi-
cations, diagnoses, procedures, lab tests, and other
structured information in a deep neural net and
were able to predict various diseases with an aver-
age AUC-ROC of 0.773. Crucially, none of these
systems used dynamic real-time data on a patient.

Real-time clinical information, especially com-
munication between nurses and doctors, may be
useful in improving the accuracy of detecting de-
teriorating patients (Rajkomar et al., 2018). In par-
ticular, this information may hold vital data not
included in other fields, including changes in con-
sciousness, pain, and other symptoms. Often, ur-
gent communication in the hospital still occurs
through pagers, limiting analysis of this commu-
nication (De Meester et al., 2013; Wu et al., 2013;
Johnston et al., 2014). In some hospitals, how-
ever, communication occurs through text messag-
ing. This transition from unrecorded messages to
text allows for deeper analysis of these potentially
crucial information. In this work, we evaluate the
impact of using text messages between physicians
and nurses to predict ICU transfer.

2 Data

Our data consist of 38,373 patients across 49,224
visits, between 2011 and 2017, divided into five
groups according to different institutional codes.
Messages from 2011 to 2015 are in a different
format (from an older system), so we focus our
analysis on messages from 2015 to 2017. We also
exclude all patients who have missing institutional

1https://www.hl7.org/fhir/overview.
html

89



Group A Group B Group C Group D Group E
Patient info.
# Patients (M/F) 4,536 / 4,031 3488 / 3363 206 / 202 21 / 19 17 / 10
Age at admission 63.45 (18.55) 70.01 (18.86) 72.75 (14.45) 72.59 (17.35) 72.66 (12.07)
# mheaders/patient 13.86 (23.07) 15.54 (24.96) 21.81 (38.58) 15.07 (19.68) 11.82 (9.17)
# mreplies/patient 14.27 (23.52) 16.46 (26.49) 22.68 (40.86) 21.61 (23.39) 12.32 (8.74)
Visit info.
# Visits 10,001 8,586 527 57 30
# visits/patient 1.35 (0.89) 1.41 (1.02) 1.37 (0.86) 1.48 (0.85) 1.29 (0.60)
# days/visit 9.80 (19.01) 9.91 (21.47) 15.22 (19.87) 12.76 (14.75) 9.22 (6.47)
# mheaders/visit 9.85 (16.58) 10.64 (17.84) 15.48 (27.02) 14.40 (18.14) 8.67 (7.97)
# mreplies/visit 10.18 (16.98) 11.31 (18.95) 16.18 (28.46) 15.07 (19.68) 9.03 (7.99)
Messages info.
# mheaders 98,468 91,330 8,159 821 260
# mreply 99,456 95,654 8,395 844 271
ICU% 16.75% 0.36% 35.86% 22.12% 2.01%
# tokens/mheader 22.31 (14.22) 22.90 (14.28) 22.68 (14.62) 22.38 (13.47) 23.70 (13.84)
# tokens/mreply 7.34 (7.97) 7.55 (8.07) 7.47 (7.89) 7.05 (7.22) 7.42 (7.17)

Table 1: Patient, visit, and messages information of data between years 2015 and 2017 used to train models for
predicting ICU transfer. We indicate standard deviation in parentheses. ICU % is the ratio of mheaders resulting
in ICU transfer within 3 days of the message send date.

code in their record. Data include patient and visit
information, and text messages.
Patient information includes patient ID, date
of birth, gender, date admitted, most recent
medication, and most recent diagnosis.
Visit information includes visit number, dis-
charge date time, diagnosis made during the
visit2, visit type (“Emergency” or “Inpatient”),
doctors’ notes, lab results, institutional code, and
an Admission/Discharge/Transfer (ADT) code
indicating to where the patient was admitted,
discharged, or transferred to. Of the 539 ADT
values, 19 correspond to an ICU transfer.
Text messages are collected from the hospital net-
work system and split into message headers and
message replies. Message headers consist of text
messages sent from nurses to physicians. These
messages include information such as medication
and status of patient. Some message headers have
a corresponding message reply, which consists of
text responses from doctors. The database system
in which these text messages are stored only
allows for replies from doctor but not a reply back
from nurse. If a nurse replies back, it is considered
a new message header, making it difficult to track
a “conversation thread”. Sometimes the message

2This is not the same as the diagnosis in the patient infor-
mation.

reply gets sent more than one time and many
other times it is empty. In our experiments, we
only look at the message header, as most message
replies are short and uninformative. The top most
frequent replies are: “thanks”, “ok” and “noted”
across all groups. We split the data by institutional
code and report a summary of the demographics,
visits, and messages in Table 1.

mheader:“hb=65, cr=123 & more lab res up
from last nights bldwork. Ping if anything you
want me to follow up.”
mreply: “informed.”
mheader: “dc hep drip on epr. Pls see chart or-
der. Thnx.”
mreply: “done thanks”
mheader: “hey are icu recommends to be
cosigned. thx.”
mreply: “Ok. Pls run one l of ringers wide & then
one more”

Table 2: Examples of message header (mheader) and
message reply (mreply) pairs. Modified for anonymity.

Text messages can be challenging to analyze,
given spelling mistakes, abbreviations specific to
the medical domain, missing punctuation, and
other challenges. Open-source spelling correction
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Group A Group C
−− +Ling −− +Ling

V isit 0.47 ± (0.01) 0.50 ± (0.01) 0.44 ± (0.02) 0.53 ± (0.02)
V isit+ TFIDF 0.51 ± (0.01) 0.48 ± (0.01) 0.56 ± (0.04) 0.56 ± (0.04)
V isit+ w2vSMS 0.51 ± (0.02) 0.48 ± (0.01) 0.57 ± (0.05) 0.57 ± (0.04)
V isit+ w2vPubmed 0.51 ± (0.01) 0.49± (0.01) 0.54 ± (0.04) 0.54 ± (0.04)
V isit+ TFIDF + w2vSMS 0.51± (0.01) 0.48 ± (0.01) 0.56 ± (0.04) 0.56 ± (0.04)
V isit+ TFIDF + w2vPubmed 0.49± (0.01) 0.47± (0.01) 0.54± (0.03) 0.51 ± (0.04)

Table 3: Macro F1- scores on the logistic regression model for Group A and C. We report the macro F1 metric
averaged over 5-fold cross-validation (with standard deviations in parentheses).

software3 provides little improvement, due to the
domain-specific nature of the words. E.g., the
message ‘pls add prn pain med, not PO. thx’ gets
corrected to ‘ls add pr pain mod, not PO. tax’. We
provide examples of message header and message
reply pairs in Table 2.

We focus our experiments on Group A since
it has the most amount of data, and on Group
C since it has the most number of messages per
visit and the longest messages. We use the ADT
(Admission/Discharge/Transfer) code in the pa-
tients’ records to determine transfer to the ICU. A
mheader is determined to have the outcome if an
ICU transfer occurs within the next 3 days of the
message send date (Table 1).

3 Methods

For each text message, we include the patient’s age
and gender, the total number of days spent in hos-
pital at the time the message is sent4, their pre-
scribed medication at the time of the message, and
their diagnosis. The medication and diagnosis are
encoded with one-word TF-IDF.

We then look at the following representations of
text messages. For each representation, we use at
most 20 words and zero-pad if necessary:
TF-IDF: We represent each text message with
its TF-IDF representation. We experiment with
word, n-gram, and character-level TF-IDF, as well
as combinations. We use n-gram TF-IDF (n =
1, 2, 3) in our final models.
Word2Vec: We use 1) pre-trained word embed-
dings (Mikolov et al., 2013) trained on publicly
available PubMed articles (Moen and Ananiadou,
2013), as well as 2) our own word embeddings,
trained on the text messages data. We train word

3 https://github.com/rfk/pyenchant
4this includes the number of days spent in the hospital

from previous visits

embeddings of dimension size 100, with a con-
text window equal to 5 for training (Bojanowski
et al., 2017). We explore different combinations
of the text message word embeddings through
concatenation, summing, and averaging. We re-
port results using a combination of all three types.
More specifically, we concatenate twenty 100-
dimensional word embeddings (2000 dimensions),
a sum of the word embeddings (100 dimensions),
and an average of the 20 words (100 dimensions),
for a total of 2200-dimensional feature vector.
Linguistic features: We represent each text mes-
sage as a vector containing 9 linguistic features.
We compute lexical features (character and word
count, word density5), syntactic features (counts
of nouns, verbs, adjectives, and adverbs), and pos-
itive and negative polarity extracted from nltk’s
sentiment analyzer (Loper and Bird, 2002).

We use an ANOVA-based feature selection (Pe-
dregosa et al., 2011), and we train a logistic re-
gression model. We report the macro F1 metric
averaged across 5-fold cross-validation.

4 Results

We experiment with Visit (i.e., age, gender, total
number of days spend in hospital, medication, and
diagnosis), TFIDF, Ling (i.e., linguistic), w2vSMS

(i.e., word vectors trained on text messages), and
w2vPubmed (i.e., pre-trained word vectors from
PubMed) features. When multiple text represen-
tations are used (e.g., TF-IDF and w2v), we con-
catenate them together. Typically, the addition of
linguistic features does not seem to improve per-
formance.

We then look at performance across data and
report results in Table 4 on the logistic regres-
sion model using visit information only, visit fea-

5Word density is the number of words in a message di-
vided by the number of characters in a message.
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tures augmented with text message representations
(w2vSMS , and TFIDF ).

visit visit + wsms visit + tfidf

A 0.47 (0.01) 0.51 (0.02) 0.51 (0.01)
B 0.48 (0.01) 0.46 (0.07) 0.50 (0.01)
C 0.44 (0.02) 0.57 (0.05) 0.56 (0.04)
D 0.44 (0.03) 0.46 (0.07) 0.44 (0.04)
E 0.69 (0.28) 0.69 (0.28) 0.69 (0.28)

Table 4: Model performance across the different data.
F1 macro results on a logistic regression model using
1) visit features only, and 2) visit features, word2vec
embeddings (i.e., w2vSMS) and 3) visit features, TF-
IDF features.

Our results indicate that the addition of informa-
tion from text messages improves results in ICU
transfer prediction three days before the event hap-
pens. Our best results are in the model consisting
of visit and word2vec features trained on our data
(i.e., w2vSMS). We look more closely at the per-
formance of this model with this subset of features
in Table 5. As expected, the model does better on
messages that don’t result in ICU transfer. We ob-
tain recall of 0.22 and 0.43 in ICU transfer mes-
sages for Groups A and C, respectively.

Group A Group C

No ICU transfer P 0.86 (0.01) 0.78 (0.05)
R 0.80 (0.05) 0.73 (0.07)

ICU transfer P 0.16 (0.02) 0.36 (0.06)
R 0.22 (0.06) 0.43 (0.13)

Micro F1 0.72 (0.04) 0.65 (0.05)
Macro F1 0.51 (0.02) 0.57 (0.05)
Weighted F1 0.74 (0.03) 0.66 (0.05)

Table 5: Results for logistic regression model using
Visit and w2vSMS .

5 Discussion

Table 4 shows that the addition of text message
representations yields to improvements in Groups
A, B, C, and D. The greatest improvement in in
Group C. The proportion of messages which are
followed by an ICU transfer three days later is
much higher in Group C, which could reasonably
explain the difference in performance. However,
we also note that text messages in Group C tend
to be longer than other data, and that nurses in
Group C send more messages per visit. Across
all data, the best model performance is for Group

E but no improvement after adding text messages.
However, it consists of the smallest number of
messages and the highest variance in performance
across validation folds. The ratio of messages
which are followed by an ICU transfer in the next
3 days are 16.75%, 0.36%, 35.86%, 22.12% and
2.01% for Groups A, B, C, D, and E, respectively
(Table 2). The differences in performance could
be attributed to the number of messages.

Word w2vSMS w2vPubmed

dr dr., doctor, md,
resident, oncolo-
gist

99:1, diastereos-
electivities, ee,
=98:2, 98:2

bld blood, bloood,
blod , frozen,
pt.iv

whi, bldB,
EPS-deficient,
transposon-
generated, A-
factor-deficient

med medication,
pill, lactulose,
risperidone,
hypoglycemics

Nicolae, Delores,
Dres, habil., CSc.

bp b/p, bp=, bp-,
bpm, pulse

nt, bps, nts, bp-
long, bp-long

icu msicu, emerg, er,
cvicu, gim

bag/mask, Patient-
initiated, extra-
hospital, patient-
cycled, airway-
management

Table 6: Comparison of word embeddings. Top five
similar words for common abbreviated medical terms.
w2vSMS denotes the word embeddings trained on our
text message data and w2vPubmed denotes the word
embeddings trained on publicly available PubMed arti-
cles.

Using word embeddings trained on our data per-
forms better than the pre-trained ones. We dig
deeper and report the top 5 similar words of some
common medical terms in Table 6. Word embed-
dings trained on text messages do a much bet-
ter job of capturing different spellings (e.g., “bp”
and “b/p”) as well as common misspellings (e.g.,
“bloood” and “blod”). These results further high-
light the need for context-specific word embed-
dings (Chiu et al., 2016).

6 Conclusion & Future Work

In this work, we look at the added value of text
messages sent from nurses to doctors in predicting
transfer to the ICU within three days of the mes-
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sage send date. We find that including messages
from information - through linguistic features, TF-
IDF features, and word vector representations -
improves performance. This finding is consistent
in 4 of the 5 datasets divided by institutional codes.
The best performance was observed in the data
with the most ICU transfers, the longest text mes-
sages and the most text messages per visit and per
patient. We find that using word vectors trained on
the text messages results in the best model perfor-
mance, and a closer look shows that the embed-
dings do a better job at capturing misspellings and
abbreviations unique to text messages.

In future work, we want to investigate differ-
ences across the data, and hope to identify key
features of the text messages that are relevant in
identifying ICU transfer. Other than that, we will
also investigate the utility of adding the message
replies, along with the message headers, as fea-
tures. In this work, we have only looked at predic-
tions for a given text message. Exploring how the
prediction probabilities change over time would
also be of interest. We will also consider differ-
ent word embeddings (Peters et al., 2018), as we
hypothesize that character-level word embeddings
could better capture the unique vocabulary of text
messages. To address class imbalance, we will ex-
plore undersampling/oversampling methods such
as SMOTE (Chawla et al., 2002). Furthermore, we
want to look at the added value of text messages
in a more complex set of features (i.e., lab results
and vitals), as we believe that this would provide a
complete picture of the patient’s visit profile.
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Abstract

Entity linking (or Normalization) is an essen-
tial task in text mining that maps the entity
mentions in the medical text to standard en-
tities in a given Knowledge Base (KB). This
task is of great importance in the medical do-
main. It can also be used for merging different
medical and clinical ontologies. In this paper,
we center around the problem of disease link-
ing or normalization. This task is executed in
two phases: candidate generation and candi-
date scoring. In this paper, we present an ap-
proach to rank the candidate Knowledge Base
entries based on their similarity with disease
mention. We make use of the Triplet Net-
work for candidate ranking. While the existing
methods have used carefully generated sieves
and external resources for candidate genera-
tion, we introduce a robust and portable can-
didate generation scheme that does not make
use of the hand-crafted rules. Experimental
results on the standard benchmark NCBI dis-
ease dataset demonstrate that our system out-
performs the prior methods by a significant
margin.

1 Introduction

A disease is an abnormal medical condition that
poses a negative impact on the organisms and en-
abling access to disease information is the goal
of various information extraction as well as text
mining tasks. The task of disease normalization
consists of assigning a unique concept identifier
to the disease names occurring in the clinical text.
However, this task is challenging as the diseases
mentioned in the text may display morphological
or orthographical variations, may utilize different
word orderings or equivalent words. Consider the
following examples:

Example 1: “..characteristics of the disor-
der include a short trunk and extremities...”
Source : (PMID:7874117)
Example 2: “Renal amyloidosis, prevented by
colchicine, is the most severe complication of
FMF ...” Source : (PMID:10364520)

In Example 1, the disease mention short trunk
and extremities should be mapped to a candidate
Knowledge Base entry(D006130) containing syn-
onyms like Growth Disorder. In Example 2, Re-
nal amyloidosis should be assigned to Knowledge
Base ID (C538249) which has synonyms such as,
Amyloidosis 8.

Based on our studies and analysis of the med-
ical literature, it has been observed that the
same disease name may occur in multiple variant
forms such as. synonyms replacement (e.g.“lung
cancer”, “lung carcinoma”), spelling variation
(“Acetolysis”, “acetolisis”), a short description
modifier precedes the disease name (e.g. “mas-
sive heart attack”), different word orderings (eg.
“alpha-galactosidase deficiency”, “deficiency of
alpha-galactosidase”).

In this paper, we have formulated the task of
learning mention-candidate pair similarity using
Triplet Networks (Hoffer and Ailon, 2015). Fur-
thermore, we have explored in-domain word1 and
subword embeddings (Bojanowski et al., 2017) as
input representations. We find that sub-word infor-
mation boosts up the performance due to gained
information for out-of-vocabulary terms and word
compositionality of the disease mentions.

The primary contributions of this paper are
three-fold: 1) By identifying positive and neg-
ative candidates concerning a disease mention,
we optimize the Triplet Network with a loss
function that influences the relative distance con-
straint 2) We have explored the capability of in-

1http://evexdb.org/pmresources/vec-space-models/
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Dataset Abstracts Total Unique
Training set 692 5932 1538
Test set 100 960 427
Total 792 6892 1965

Table 1: NCBI Disease Corpus Statistics

domain sub-word level information2 in solving the
task of disease normalization. 3) Unlike exist-
ing systems (D’Souza and Ng, 2015), (Li et al.,
2017), we present a robust and portable candi-
date generation approach without making use of
external resources or hand-engineered sieves to
deal with morphological variations. Our system
achieves state-of-the-art performance on NCBI
disease dataset (Dogan et al., 2014)

2 Dataset

The NCBI disease corpus (Dogan et al., 2014)
contains 792 Pubmed abstracts with disorder con-
cepts manually annotated. In this dataset, disorder
mentions in each abstract are manually annotated
with the identifier of the concept in the reference
ontology to which it refers. It uses MEDIC lexi-
con (Davis et al., 2012) as the reference ontology.
(See Table 1 for dataset statistics)

3 Methodology

The dataset consists of a certain number of abbre-
viations, in order to identify these cases, we have
considered the mentions composed of all upper-
case letters as abbreviations. We find the disease
mentions immediately preceding the abbreviated
terms and substitute all the occurrences of the ab-
breviated words in that document with the corre-
sponding expanded disease mentions. Our system
primarily consists of two modules: 1) Candidate
generation: (See section 3.1) Generate potential
candidates from the Knowledge Base correspond-
ing to a disease mention. 2) Candidate ranking:
(See section 3.2) Rank those potential candidates
corresponding to a disease mention.

3.1 Candidate generation

In this section, we discuss the algorithm which
generates the potential candidates to which the dis-
ease mentions might be referring. In this study,
the Knowledge Base entries were sampled from

2https://github.com/ncbi-nlp/BioSentVec.git

the entire MEDIC Lexicon, but not limited to only
annotations in the NCBI Disease Corpus.

For a given disease mention, the candidate gen-
eration algorithm generates candidates from the
Knowledge Base entries. Suppose, the Knowledge
Base consists of k entries, each having a certain
number of synonyms. Each multi-word synonym
represented by the sum of its word embeddings.
For a given mention m consisting of l words rep-
resented by {m1,m2, . . . ,ml}, we represent m as
the sum of its word embeddings. The steps for the
candidate generation algorithm are as follows:

• Step 1: Candidate Set 1, {C1} : Calculate
the cosine similarity between vector repre-
sentation of each synonym (candidate) of the
KBIDs and the mention. Identify the top k1
ids whose candidates have cosine similarity
greater than or equal to threshold t1.

• Step 2: Candidate Set 2, {C2}: Calculate the
Jaccard overlap of the mention and the can-
didates of each KBID. Identify the top k2 ids
having Jaccard overlap score greater than or
equal to threshold t2.

Note: min (| C1 |,| C2 |)≤| C1 ∪ C2 | ≤(k1+k2)
In our experiments, we choose t1 = 0.7, t2 = 0.1,
k1 = 3 and k2 = 7.

We provide examples of candidates generated
from our proposed algorithm below.

Mention: “bacteremic infections due to Neis-
seria”
Candidate Set 1, {C1} = {“bacterial neisseria
infections”}
Candidate Set 2, {C2} = {“bacterial neisseria
infections” , “DNA-virus infections” , “Screw-
Worm Infections” }

3.2 Candidate Ranking

Assume that there are n candidates represented
by {c1, c2, . . . , cn} for an entity mention m, we
use a Triplet Network which has proven to per-
form well in many Computer Vision (Hoffer and
Ailon, 2015) as well as Natural Language Process-
ing tasks (Clark and Manning, 2016) . As such
given a triplet, the idea is to leverage the notion
of reducing the distance between the mention and
its positive candidate while increasing the distance
between the mention and its negative candidate.
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Figure 1: Pictorial Representation of the training Data Generation Process

3.2.1 Triplet data generation
In order to learn better semantic representations
between a disease mention and its correspond-
ing candidates, we have generated training data in
the form of triplets consisting of disease mention
m, positive candidate qp, negative candidate qn.
The triplet is represented as (qp, m, qni) where i
∈ {1 . . . [|k1 ∪k2| −1]}.

An example of the triplet data is given below:

Disease Mention: “bacteremic infections due
to Neisseria”
Positive Candidate: “bacterial neisseria infec-
tions”
Negative Candidates: “DNA-virus infec-
tions”, “Screw-Worm Infections”.
The triplets are as follows:

• (“bacterial neisseria infections”, “bac-
teremic infections due to Neisseria”,
“DNA-virus infections”)

• (“bacterial neisseria infections”, “bac-
teremic infections due to Neisseria”,
“Screw-Worm Infections”)

3.2.2 Model Architecture
The Triplet Network architecture as proposed by
(Hoffer and Ailon, 2015) has been adopted for the
task of entity normalization. To train the model,
each triplet consisting of mentions and its candi-
dates are fed into the parameter-shared network
(Conv), as a sequence of word embeddings. For
a triplet, (qp, m, qni) the layer outputs their rep-
resentations Conv(qp), Conv(m) and Conv(qni)
respectively. Our objective is to make the repre-

Figure 2: The word and sub-word embeddings of triplet
(‘bacterial neisseria infections’, ‘bacteremic infections
due to Neisseria’, ’Screw-Worm Infections’) are fed as
batches into the Triplet Network.

sentations of m and qp closer than the represen-
tations of m and qni . Thus the next layer uses a
distance function, denoted by dis, to compute the
distances as follows:

dp = dis(Conv(m), Conv(qp))

dni = dis(Conv(m), Conv(qni))

Here dp specifies the distance between target
disease mention m and qp while dni specifies the
distance between target disease mention m and
qni . The triplet loss function (L) used for achiev-
ing this goal has been formulated as follows:

L = max (dp − dni + α, 0)

Another variable α, a hyperparameter is added
to the loss equation which defines how far away
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the dissimilarities should be. Thereafter, by us-
ing this loss function, we calculate the gradients
and update the parameters of the network based on
these gradient values. For training the network, we
take mention m and randomly sample qp and qni

and compute their loss function and update their
gradients.

We use 200-dimensional word2vec (Mikolov
et al., 2013) embeddings trained on Wikipedia and
Pubmed PMC-Corpus (Pyysalo et al., 2013) as in-
put to Conv. To deal with the huge number of
out-of- vocabulary terms in the medical domain,
we have used the fastText based sub-word em-
beddings (Galea et al., 2018). fastText (Bo-
janowski et al., 2017) has been applied on PubMed
and MIMIC-III (Johnson et al., 2016) to generate
200- dimensional word embeddings, the window
size being 20, learning rate 0.05, sampling thresh-
old 1e-4, and negative examples 10 (yijia zhang
et al., 2018).

3.2.3 Training Details
Conv is composed of one convolutional and max-
pooling layer. ReLU non-linearity (Maas, 2013)
is applied between two consecutive layers. The
final embedding of Conv is a fixed-length(128)
vector. For dis and the loss function we use the
L2 distance (Danielsson, 1980). The triplet loss
has been applied. For training we use Adam Opti-
mizer (Kingma and Ba, 2015) with an initial learn-
ing rate of 0.001. Training has been done for
50 epochs, and early stopping has been employed
on the basis of the accuracy of the validation set.
After hyperparameter tuning, several experiments
have been performed, and the results on the best
hyperparameter settings have been reported.

3.2.4 Evaluation
After the model has been trained, we evaluate the
rank of each of the disease mentions in the test set.
For each of the disease mention m in the test set,
we run the candidate generation algorithm to find
out the maximum cosine similar candidates for the
potential KnowledgeBaseIDs. The positive candi-
date is labelled as 1 while the rest has been labelled
as 0. During the process of evaluation, we calcu-
late the similarity score between the disease men-
tion and its candidates. The similarity scores are
then sorted in descending manner in order to rank
the candidates based on its similarity. We choose
the candidate with the maximum similarity score
for each of the disease mentions.

Model Name Accuracy
(D’Souza and Ng, 2015) 84.65
(Li et al., 2017) 86.10
Triplet CNN + static word2vec 86.09
Triplet CNN + dynamic word2vec 87.85
Triplet CNN + subword 89.65
Triplet CNN + subword + abb 90.01

Table 2: The table shows the accuracy of our system in
comparison with the baseline systems.

We choose the evaluation measure as accuracy.
Since, the highest similar candidate is of primary
interest in the task of entity linking, so we choose
the top-K ( Where K = 1).
TP = It signifies that the highest ranked candi-

date for disease mention m is the actual referent
KnowledgebaseID.
FP = It signifies that the highest ranked candi-

date for disease mention m is not the actual refer-
ent KnowledgebaseID.

Accuracy =
TP

TP + FP

4 Results

We report accuracy for our system in finding the
correct Knowledge Base ID corresponding to a
disease mention in the text. Table 2 shows that
in comparison with the existing baseline systems,
Subword information as input to the Triplet Net-
work and abbreviation expansion from the doc-
ument context (Triplet CNN+subword+abb) per-
forms the best. From the feature ablation, it is
clear that the in-domain word embeddings((Triplet
CNN + dynamic word2vec) and (Triplet CNN +
static word2vec)) are essential for capturing better
semantic representations.

5 Analysis

In this section, we throw some light on both the
merits and demerits of the proposed system with
respect to the baseline models.

5.1 Merit Analysis

We compare our results with other rule-based and
neural network based methods known to perform
well on this standard dataset. To gain more in-
sights into our proposed model, in particular, the
importance of the domain-specific word and sub-
word representation to capture the semantic and
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syntactic similarity using Triplet Network, we se-
lect some examples from the labeled test set. In
figure 2, two different cases have been shown
which demonstrate the performance gap between
our and the existing baseline systems.

In Example 1, the disease mention “inherited
neurodegeneration” was not mapped with “here-
dodegenerative disorders” ( D020271) by the ex-
isting methods, because of their incapability to
capture the semantic similarity. In contrast to this,
our system obtains additional semantic and syn-
tactic information from the domain-specific sub-
word embeddings and thereby maps to the correct
concept ID.

In Example 2, the abbreviation “AS” is poly-
semous in nature as it can either be mapped to
the concepts like “Angelman Syndrome” (PMID
: 9585605 ) and “Ankolysing Spondylitis” ( PMID
: 9336417). Due to the lack of contextual infor-
mation in the existing models, they were not able
to handle the polysemous nature of the abbrevia-
tions; but abbreviation expansion from the docu-
ment level context in our system handles this sce-
nario.

Figure 3: The NER tags as input are shown in pur-
ple, the gold standard conceptID is shown in green,
the predictions from the baseline systems are shown in
red, whereas the prediction from the proposed system
is shown in blue.

5.2 Demerit Analysis

The error types incurred by the proposed system
have been explained in detail as follows:

1) Ambiguous distribution of importance to
the disease name: The system fails to under-
stand which part of disease mention to provide
more attention while performing normalization.
Suppose the disease mention is “colorectal ade-
noma”, during normalization, the system mistak-

enly normalizes the disease to the concept ID pre-
dominated by “colorectal”. Automatic identifica-
tion of such semantic attention is challenging and
deserves a significant spot in the future research.

2) Incorrect mapping of certain ambiguous
disease names: Suppose the disease mention dys-
morphic features in “..loss of MAGEL2 may be
critical to abnormalities in brain development and
dysmorphic features in individuals with PWS..” (
PMID: 10915770 ) has been mapped to D057215
whereas the same disease mention in “..She had
minor dysmorphic features consistent with those
of..” ( PMID: 8071957 ) has been assigned to
D000013. Since, in these two examples, the dis-
ease mention in these two examples have been as-
signed as ”diseaseClass” and ”Modifier” features
respectively. It happens due to different NER fea-
tures of the mention annotated in the dataset. But
incorporating this NER feature in our proposed
model unnecessarily generates huge number of
false positives.

6 Conclusion

In this paper, we have formulated the task of en-
tity linking as a candidate ranking approach. Us-
ing a Triplet Network, we learn high-quality rep-
resentations of candidates, tailored to reveal rela-
tive distances between the disease mention and its
positive and negative candidates. Furthermore, we
take a step towards eliminating the need to gener-
ate candidates based on hand-crafted rules and ex-
ternal knowledge resources. Though our method
outperforms the existing systems by a strong mar-
gin, there is a scope for improvement in terms of
attention-based disease similarity (viz, “Neisseric
infections” imply the importance of “Neisseric”
during its similarity computation with the “bac-
terial neisseria infections”). An intriguing course
for future work is to further explore the robustness
and scalability of this approach to other clinical
datasets for entity normalization.
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Abstract 

Many clinical information needs can be 
stated as why-questions. The answers to 
them represent important clinical reasoning 
and justification. Clinical notes are a rich 
source for such why-question answering 
(why-QA). However, there are few 
dedicated corpora, and little is known 
about the characteristics of clinical why-
QA narratives. To address this gap, the 
study performed manual annotation of 277 
sentences containing explicit why-QA cues 
and summarized their quantitative and 
qualitative properties. The contributions 
are: 1) sharing a seed corpus that can be 
used for various QA-related training 
purposes, 2) adding to our knowledge 
about the diversity and distribution of 
clinical why-QA contents. 

1 Introduction 

The thought process involved in clinical 
reasoning and decision-making can be naturally 
framed into a series of questions and answers. In 
addition to the tangible value as handy assistance, 
making computers handle question-answering 
(QA) is considered a remarkable achievement in 
artificial intelligence. Accordingly, there has been 
vital interest in developing clinical QA systems, 
e.g., AskHERMES (Cao et al., 2011), MiPACQ 
(Cairns et al., 2011), and MEANS (Abacha & 
Zweigenbaum, 2015). Among the targets, why-
QA represents a special category that deals with 
cause, motivation, circumstance, and purpose 
(Verberne, 2006). Within the top ten question 
types asked by family doctors (Ely et al., 1999), 
20% of them can actually be paraphrased into a 
why-question. Besides the sizable presence, 
clinical why-QA is both semantically and 
pragmatically rich because: 1) toward the deep 
explanatory end the task almost resembles 
expert-level synthesis and inference, 2) toward 

the shallower end it usually involves identifying 
the documented reason that a decision was made. 

It is worth clarifying here two different 
scenarios that QA tasks are defined. The first 
aligns more along consulting knowledge sources 
to answer a question that is not patient-specific, 
e.g., Why do phenobarbital and Dilantin 
counteract each other? This is also the scenario 
that most of the existing clinical QA systems 
handle. The second scenario (focus of this study) 
is to find the answer within a given document 
(a.k.a. reading comprehension), which can 
especially benefit patient-specific QA based on 
information mentioned in clinical notes. In the 
general domain such reading comprehension QA 
has more than a decade of research, with widely 
used corpora such as the SQuAD (Rajpurkar, 
Zhang, Lopyrev, & Liang, 2016) and that by 
Verberne, Boves, Oostdijk, & Coppen (2006). 
There have not been comparable resources in the 
clinical domain until a couple of works in 2018 
(see Related work section). 

The recently developed corpora in clinical 
reading comprehension QA are extremely 
valuable, but also limited with regard to why-QA 
research because 1) their coverage and analysis 
did not emphasize on why-questions, 2) the 
annotation methods could have missed many 
representative why-QA targets. Therefore, the 
current study aims to compensate for these 
oversights through systematic inspection into 
clinical sentences that contain the intuitive cues 
“because” and “due to”. The rationale is: we 
might never know what can be missed by diving 
right into complex cases, unless the low-hanging 
offers are well understood first. In fact, the results 
revealed many informative clinical topics and 
patterns involved in why-QA. Along with the 
diverse topics, the well-formed linguistic 
constructs based on the two unambiguous cues 
make this small corpus an ideal seed training set 
to stabilize models or to bootstrap other solutions.  
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2 Related work 

There has been considerable annotation research 
for why-QA in non-medical domains. As part of 
developing a why-QA system, Higashinaka & 
Isozaki (2008) used information retrieval to 
search documents possibly relevant to each why-
question, followed by manual validation of 
qualified QA pairs. Mrozinski, Whittaker, & Furui 
(2008) used Mechanical Turk to recruit annotators 
for reading Wikipedia articles and generating 
why-questions based on the contents. Dulceanu et 
al. (2018) applied web scraping over community 
forums to collect why-QAs about Adobe 
Photoshop usage. The answer quality was backed 
either by questioner feedback or by community 
votes. Prasad & Joshi (2008) proposed leveraging 
causal relations in the richly annotated Penn 
Discourse Treebank to derive why-QAs.  

In the clinical domain there were two corpora 
developed for reading comprehension QA based 
on electronic medical records (EMR), and both 
had broad coverage not limited to only why-QAs. 
In Raghavan, Patwardhan, Liang, & Devarakonda 
(2018), medical students were presented with 
structured and unstructured EMR information of 
each patient and were instructed to come up with 
realistic questions for a hypothetical office 
encounter. The patient’s notes were then loaded 
into an annotation tool for them to mark answer 
text spans. Pampari, Raghavan, Liang, & Peng 
(2018) developed emrQA, a large clinical QA 
corpus generated through template-based 
semantic extraction from the i2b2 NLP challenge 
datasets.* The emrQA contains 7.5% of why-QAs, 
but they mainly ask about why the patient 
received a test or treatment, due to the partial 
interest of the original challenge annotations.  

3 Methods  

The study notes were from the 2010 i2b2/VA NLP 
challenge (Uzuner, South, Shen, & DuVall, 2011), 
obtained through an academic data use 
agreement.† The corpus consists of 426 discharge 
summaries from Partners Healthcare and Beth 
Israel Deaconess Medical Center. The two 
considerations in choosing this dataset were: 1) 
the sentences were pre-chunked that made the 
                                                           
* https://www.i2b2.org/NLP/DataSets/ 
† Complying with the i2b2 NLP data use agreement, 
examples in this paper have been modified and differ from 
the original text. 

downstream analysis easier, 2) it overlapped with 
the emrQA corpus and thus allowed comparison 
of coverage, etc. 

Case-insensitive word search was performed 
using “because” and “due to” into the 426 notes. 
To avoid massive false positives, highly 
ambiguous cues such as “for” were avoided in 
this pilot study. The author then manually 
reviewed the 280 hit sentences, of which 79 were 
from “because” and 201 from “due to”. The 
review involved two tasks: 1) generate a QA pair 
from the sentence, and 2) categorize the question 
anchor and the answer. Using the following 
sentence as an example: 

The patient had urinary tract infection and 
received Bactrim, which was stopped later 
because of diarrhea. 

The generated QA pair was: 
    Q: Why was the Bactrim for urinary tract 
infection stopped? 

A: diarrhea 

It was required that each answer must come 
from a substring of the source sentence. For each 
annotation, the line number and character offset of 
the answer were preserved so as to facilitate 
computable reuses. The types of question anchors 
and their answers were induced and consolidated 
throughout the entire review process. For 
example, the categorization for the specific QA 
pair above was: 
    Question anchor: medication avoidance 
    Answer reason: adverse effect 

Upon completing the annotation, descriptive 
statistics were derived to show notable properties: 

• Sentence coverage of the annotated why-
QAs as compared to that of emrQA 
(Figure 1). 

• Distribution of clinical notes with respect 
to the number of sentences that contain 
either of the why-cues (Table 1). 

• Distribution of the categorized why-
question anchors and answer types 
(Tables 2, 3, and 4). 

4 Results 

As a simple comparison of the question sources, 
sentence coverage of the annotated why-QAs 
versus the emrQA why-associated entries is
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Figure 1: Venn diagram comparing the # (%) of the 

annotated sentences to that of emrQA 

 

 
Why-question anchor Answer reason type # of QAs (%) 
abnormal manifestation disease-caused 51 (20.8) 
abnormal manifestation adverse effect 19 (7.8) 
abnormal manifestation manifestation elaborated 6 (2.4) 
abnormal manifestation disease interaction 3 (1.2) 
abnormal manifestation environment factor 2 (0.8) 
procedure disposition clinical indication 39 (15.9) 
procedure disposition patient preference 1 (0.4) 

consultation, admission, discharge, or transfer event clinical indication 34 (13.9) 
consultation, admission, discharge, or transfer event patient preference 2 (0.8) 
consultation, admission, discharge, or transfer event environment factor 1 (0.4) 

medication avoidance adverse effect 14 (5.7) 
medication avoidance disease interaction 8 (3.3) 
medication avoidance patient preference 2 (0.8) 
medication avoidance disease attribute 1 (0.4) 
medication avoidance procedure interaction 1 (0.4) 
procedure avoidance disease interaction 12 (4.9) 
procedure avoidance patient preference 3 (1.2) 
procedure avoidance procedure interaction 3 (1.2) 
procedure avoidance adverse effect 2 (0.8) 
procedure avoidance disease attribute 2 (0.8) 
procedure avoidance patient attribute 2 (0.8) 

procedure unsuccessful patient attribute 9 (3.7) 
procedure unsuccessful disease interaction 6 (2.4) 
procedure unsuccessful environment factor 2 (0.8) 
procedure unsuccessful disease attribute 1 (0.4) 
procedure unsuccessful disease-caused 1 (0.4) 
procedure unsuccessful procedure interaction 1 (0.4) 

medication administered clinical indication 12 (4.9) 
medication administered patient attribute 1 (0.4) 

patient interpretation patient assessment 1 (0.4) 
procedure effective patient attribute 1 (0.4) 
social background family factor 1 (0.4) 
nonmedical treat patient preference 1 (0.4) 

Table 2:  Detailed distribution of QA pairs by type  

 

 

# of cue-containing 
sentences in the note  # (%) of notes 

0 280 (65.7) 
1 74 (17.4) 
2 39 (9.2) 
3 16 (3.8) 
4 12 (2.8) 
5 2 (0.5) 
6 2 (0.5) 
7 1 (0.2) 

Table 1:  Distribution of notes containing the 
“because” or “due to” cue 
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illustrated in Figure 1. There were a total of 
43,751 sentences (including those short section 
headers) in the study corpus of 426 clinical notes. 
The emrQA used 2,057 sentences in generating its 
QA pairs, which were basically all about reasons 
for ordering a test or treatment. The cue-based 
annotation used 242 sentences, yet the derived 
why-QAs were much more diverse (see Table 2). 
There were 60 sentences used by both.  

Two reasons that the original 280 hit sentences 
dropped to the 242 distinct annotated sentences 
were: 1) there were 3 sentences actually 
containing both cues, 2) 35 of the sentences were 
not usable to generate a QA pair because of 
anaphora. Note that it is possible for a double-cue 
sentence to generate two separate questions 
because of different why-anchors. As for the 
prevalence of the two cues, Table 1 shows that 
more than 30% (100% – 65.7%) of the study 
notes had at least one cue, with as many as 7 cue-
containing sentences within one note. 

The full categorization and distribution of the 
annotated why-QAs are shown in Table 2, while 
the distributions aggregated by the question 
anchors and answer reason types are in Table 3 
and Table 4 respectively.   

Example contexts of some noteworthy why-QA 
categories as follows: 
[ abnormal manifestation  disease-caused ] 
>> Why did his arm show poor motor movement? 
 loss of sensation 
[ procedure disposition  clinical indication ] 
>> Why was ultrafiltration fluid removal done at 
each dialysis session?  volume overload 
[ medication administered  clinical indication ] 
>> Why was he given levofloxacin?  gram-
positive cocci 
[ consultation/admission, discharge, or transfer 
event  clinical indication ] 
>> Why was she admitted?  cholangitis 
[ procedure avoidance  disease interaction ] 
>> Why was the dobutamine stress test deferred? 
 patient having fever and hypotension 
[ procedure unsuccessful  patient attribute ] 
>> Why the GI PEG placement failed?  
difficult anatomy 
[ procedure avoidance  patient preference ] 
>> Why the patient refused transesophageal echo? 
 did not want to swallow the probe 
[ medication avoidance  procedure interaction ] 
>> Why was metformin held temporarily?  CT 
with contrast 

5 Discussion 

Although the explicit cues contributed a relatively 
small set of why-QAs, they exhibit a wealth of 
subject contours for further investigation. The 
majority of the emrQA why-questions correspond 
to the two anchor categories procedure disposition 
and medication administered, together covering 
only 21.6% among the various anchors in Table 3. 
Notably, the top anchor category abnormal 
manifestation (33.1%) concurs with the most 
commonly asked why-equivalent questions 
surveyed by (Ely et al., 1999), i.e., What is the 
cause of a symptom or finding? This concordance 
implies clinicians tend to explicitly document 
reasons on certain topics they feel like inquiring 
in practice as well. Moreover, annotations of 
medication avoidance and procedure avoidance 
(together making 20.4% of the anchors) host rich 
knowledge that is worth capturing systematically. 

Why-question anchor # of QAs (%) 
abnormal manifestation 81 (33.1) 
procedure disposition 40 (16.3) 

consultation, admission, 
discharge, or transfer event 37 (15.1) 

medication avoidance 26 (10.6) 
procedure avoidance 24 (9.8) 

procedure unsuccessful 20 (8.2) 
medication administered 13 (5.3) 

patient interpretation 1 (0.4) 
procedure effective 1 (0.4) 
social background 1 (0.4) 
nonmedical treat 1 (0.4) 

Table 3:  Distribution of QA pairs aggregated by 
the why-question anchor types 

 

 

Answer reason type # of QAs (%) 
clinical indication 85 (34.7) 

disease-caused 52 (21.2) 
adverse effect 35 (14.3) 

disease interaction 29 (11.8) 
patient attribute 13 (5.3) 

patient preference 9 (3.7) 
manifestation elaborated 6 (2.4) 

environment factor 5 (2.0) 
procedure interaction 5 (2.0) 

disease attribute 4 (1.6) 
patient assessment 1 (0.4) 

family factor 1 (0.4) 

Table 4:  Distribution of QA pairs aggregated by 
the answer reason types 
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For example, procedure interaction and disease 
interaction (e.g., risk from comorbidity) are 
typical reasons in avoiding certain intervention. 

Even though the annotations involve only 
simple cues and single-sentence contexts, they 
should benefit the training of QA systems. It is 
known that such instances of atomic and regular 
structure can help stabilize/smooth the behavior 
of statistical models. The other possible route is to 
use the annotations as seed examples and train a 
question-generation model that automatically asks 
why-questions as additional training data. 
Although the study was short of resource to 
include experimental validation, it is hoped that at 
least as a self-contained descriptive analysis the 
results can be informative to the clinical NLP 
community. 

The representativeness of the study was limited 
by using only discharge summaries and the two 
specific cues. The annotations with the complete 
answer available within one sentence do not touch 
upon complex scenarios that require synthesizing 
cross-sentence information. The questions from 
rephrasing sentences may lack natural intent and 
diversity, which was a limitation likely shared by 
repurposing NLP challenge annotations as done in 
emrQA. This study used only one annotator, 
which would introduce subjectivity especially in 
categorizing the QAs. 

The annotations by this study are available at 
https://github.com/Jung-wei/ClinicalWhyQA  
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Yufang Hou1, Debasis Ganguly1, Léa A. Deleris2, Francesca Bonin1

1IBM Research, Ireland
{yhou,debasga1,fbonin}@ie.ibm.com

2BNP Paribas
lea.deleris@bnpparibas.com

Abstract

Population age information is an essential
characteristic of clinical trials. In this paper,
we focus on extracting minimum and maxi-
mum (min/max) age values for the study sam-
ples from clinical research articles. Specifi-
cally, we investigate the use of a neural net-
work model for question answering to address
this information extraction task. The min/max
age QA model is trained on the massive struc-
tured clinical study records from ClinicalTri-
als.gov. For each article, based on multiple
min and max age values extracted from the
QA model, we predict both actual min/max
age values for the study samples and filter out
non-factual age expressions. Our system im-
proves the results over (i) a passage retrieval
based IE system and (ii) a CRF-based system
by a large margin when evaluated on an anno-
tated dataset consisting of 50 research papers
on smoking cessation.

1 Introduction

Clinical trials are an important source of scien-
tific evidence for guiding the practice of evidence-
based medicine. However, many characteristics
of clinical trials are only reported in the pub-
lished research articles. The health service com-
munity could benefit from knowledge bases pop-
ulated with detailed information from clinical tri-
als reported in research articles. With this in mind,
clinical information extraction aims to extract such
information from journal articles that report ran-
domized controlled trials (Kiritchenko et al., 2010;
Wallace et al., 2016).

Relevant information about clinical trials can be
categorised along: (i) trial’s population charac-
teristics (e.g. minimum and maximum age of the
participants, education level, marital status, health
status), (ii) intervention methods, both what is be-
ing done (e.g. specific drug and dosage, planning

sessions, use of an app for daily reporting) and
how it is being administered (e.g., where, how of-
ten and by whom), and (iii) outcome of the study
(e.g., 30% of the population stopped smoking after
6 months).

In this paper, we focus on extracting popula-
tion characteristics and in particular minimum and
maximum (min/max) age values associated with
the study samples from clinical trials research ar-
ticles.

Unlike (Summerscales, 2013), our aim is to ex-
tract information from the full article, rather than
only from the abstract, as we have observed that
age information is not always described in the ab-
stracts. In our testing dataset consisting of 50
research papers, only nine papers describe the
min/max age information in their abstracts.

Naturally, analysing the entire article presents
many challenges. Our goal is to identify the fac-
tual min/max age value information for the per-
sons who actually participated in the clinical trial
(see Example 1 and Example 2 below). This
should be distinguished from non-factual min/max
age information (Example 3 and Example 4) and
also from min/max age information which is not
related to the participants in the study (Example 5
and Example 6).

(1) Participants were 83 smokers, who were 18-
23 years old and undergraduate students . . .

(2) participants aged 18-24 years were random-
ized to a brief office intervention (n=99) or to an
expressive writing plus brief office intervention
(n=97).

(3) To be included in the study, smokers had to be
between the ages of 18 and 60 years . . .

(4) The subjects were eligible for inclusion if they
were at least 18 years of age, reported smoking 10
or more cigarettes per day, . . .
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(5) An estimated 23.6% of young adults aged 18-
24 years are current smokers.

(6) Smoking Dutch youths had in many cases
tried their first cigarette at the age of 11-12 years.

Our proposed system extracts factual min/max
age values of the study samples directly from
research articles in PDF format. We leverage
the massive structured clinical study records from
ClinicalTrials.gov to provide distant supervision
for min/max age value extraction. Furthermore,
inspired by the work on hedging detection on Bio-
science domain (Light et al., 2004; Kilicoglu and
Bergler, 2008; Farkas et al., 2010), we explore a
list of “speculation cues” to filter out non-factual
min/max age expressions. Our system improves
the results over (i) a passage retrieval based IE sys-
tem and (ii) a CRF-based system by a large margin
when evaluated on an annotated dataset consisting
of 50 research papers on smoking cessation.

2 Related Work

2.1 Clinical Information Extraction

In general, research on information extraction
from medical literature is still in its infancy involv-
ing a number of limitations, such as lack of com-
mon benchmarking datasets, and a lack of general
consensus on the class of approaches that are re-
ported to work well on such benchmarks.

Some work has been conducted on supervised
approaches for medical information extraction.
Multiple studies have concentrated their efforts on
medical abstract. In (Kim et al., 2011), the authors
propose a conditional random filed (CRF) clas-
sification method for labelling medical abstract
sentences according to medical categories, such
as outcome, intervention, population. Hansen et
al., 2008 (Hansen et al., 2008) developed a Sup-
port Vector Machine algorithm for extracting the
number of trials participants from medical ab-
stracts, while in (Hassanzadeh et al., 2014), the
authors use a machine learning approach for clas-
sifying abstract sentences according to the PICO
(Population, Intervention, Comparison, Outcome)
scheme.

Other studies have exploited the entire article,
for the extraction of papers’ metadata as (Lin et al.,
2010): the authors propose a preliminary system
based on CRF for extracting formulaic text (au-
thors names, email and institution) as well as some

key study parameters as free text, from PubMed-
Central articles. They reach promising results for
the formulaic text, but only moderate success for
the free text attributes. The study in (Luan et al.,
2017) involves finding key-phrases from scientific
articles and then classifying them. However, these
categories are much broader (coarse-grained), e.g.
‘process’, ‘task’ etc., than the fine-grained cate-
gories in our task (min/max age).

A few studies have tackled the min/max age
extraction problem. Most research work on ex-
tracting information from clinical trial literature
considers “eligibility criteria” as a target element,
which often contains min/max age information
(de Bruijn et al., 2008; Kiritchenko et al., 2010).

However, min/max age information contained
in the eligibility criteria refers to the planned
min/max age and may be different from the actual
min/max age values of the study samples (for ex-
ample: the researchers could decide to test a pop-
ulation of women between 20-30 years, but realis-
tically they could gather participants only between
22 and 28 years old). (Summerscales, 2013) care-
fully designed a number of heuristic rules to ex-
tract min/max age values of the study population
from the abstracts. We differ from this latter work
as we (a) extract such information from the full ar-
ticles and (b) use a machine learning approach. In
addition, we integrate the rules designed by (Sum-
merscales, 2013) into our passage retrieval based
IE system as a baseline.

Generally, in contrast to previous work, in this
paper we a) concentrate on the extraction of pop-
ulation characteristics, b) use the entire article for
detecting the min/max age and c) compare an un-
supervised approach with a QA-based approach.

2.2 Question Answering

Most recently, reading comprehension or question
answering based on context has gained popular-
ity within the NLP community, in particular since
(Rajpurkar et al., 2016) released a large-scale
dataset (SQuAD) consisting of 100,000+ ques-
tions on a set of Wikipedia articles. In the medical
domain, (S̆uster and Daelemans, 2018) created a
dataset of clinical case reports for machine read-
ing comprehension (CliCR). The dataset contains
around 100,000 gap-filling queries on 12,000 case
reports. These queries are created by blanking out
medical entities in the learning points sections us-
ing some heuristics.
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Figure 1: Proposed QA based factual min/max age
value extraction framework.

We explore the QA framework for min/max age
value extraction. Various neural network models
have been proposed for question answering but
these models trained on SQuAD or CliCR do not
work well in our scenario because these datasets
do not contain the queries targeting the specific
min/max age values expressed in the text. There-
fore, we leverage instead the massive structured
clinical study records on ClinicalTrials.gov and
create the training data for our min/max age value
extraction component.

2.3 Non-factual Information Detection

There has been a significant amount of research
in detecting speculative language in scientific
research articles (Hyland, 1998; Light et al.,
2004; Kilicoglu and Bergler, 2008; Medlock and
Briscoe, 2007; Farkas et al., 2010; Morante and
Sporleder, 2012). Our task requires to extract in-
formation from definite statements, therefore we
use a list of speculation cues to filter out sen-
tences where min/max age information are ex-
pressed speculatively.

3 Approach

We develop a pipeline to extract factual min/max
age information from clinical trial studies. We di-
vide the task in two steps: 1) finding sentences
containing min/max age information; 2) extracting
the value from those sentences. For the first we de-
velop Min/Max age Sentence Classifier and for
the second we propose a QA approach and develop
the module Min/Max Age QA Model.

Figure 1 illustrated the process associated with
our proposed system. In the following sections,
we describe how we create training data from
ClinicalTrials.gov as well as each component of
our system in detail.

3.1 Creating Training Data Using Clinical
Study Records

We leverage the massive structured clinical study
records on ClinicalTrials.gov to create training
data for Min/Max Age Sentence classifier and
Min/Max Age QA Model. ClinicalTrials.gov is
one of the largest database of clinical studies con-
ducted around the world. It currently holds reg-
istrations around 273,000 trials from 204 coun-
tries. Each trial registration record contains a col-
umn called “Eligibility Criteria”, additionally min
and/or max age values are indicated if they are
present in the description text of the eligibility cri-
teria. Figure 2 shows an example of a clinical
study record from ClinicalTrials.gov.

Note that most min/age expressions in eligibil-
ity criteria are speculative (e.g., at least 21 years
of age, or child must be ages 6-12 years old), nev-
ertheless they are still reflective of various linguis-
tic forms for factual min/max age (e.g., aged 6-12
years old or age ≥ 18 years ). Therefore we ex-
pect that the models trained on this “noisy” dataset
can still (1) identify sentences containing min/max
age information and (2) predict the min/max age
values.

3.2 Pre-processing

Given a research article in PDF format, we first
extract clean text from the PDF file using GRO-
BID (Lopez, 2009). We associate each paragraph
to one of the five main sections: abstract, intro-
duction, method, result and discussion. This step
may introduce some noise (e.g., including the con-
tent from the table as the main body text) because
parsing PDF file in different styles is a challenging
task in itself.
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Figure 2: An example of a clinical study record from ClinicalTrials.gov.

3.3 Identifying Sentences Containing
Min/Max Age Information:Min/Max age
Sentence Classifier

After pre-processing, we identify sentences that
contain min/max age information. At the in-
ference stage, we first split paragraphs to sen-
tences using Stanford CoreNLP Toolkit (Man-
ning et al., 2014), then apply a classifier (Min-
MaxAgeSentFinder) to predict sentences contain-
ing min/max age information among all sen-
tences containing the word “age/ages/aged” or
“year/years”.

To train our MinMaxAgeSentFinder classifier,
we create the training data using the eligibility
criteria of the structured clinical study records
from ClinicalTrials.gov. Text in eligibility crite-
ria can be quite long (for instance, some crite-
ria contain more than 10 clauses/sentences), so
we only keep the clause/sentence which contains
the annotated min/max age value(s). More specif-
ically, we first split the eligibility criteria into
sentences/clauses using the delimiter “-”, then
choose the clauses/sentences which contain the
annotated min/max age values as well as the word
“age/ages/aged” or “year/years”. For instance, in
the example shown in Figure 2, we will keep the
sentence “Women and men at least 21 years of
age with suspected NSCLC to be confirmed after
surgery.” as the positive training instance and fil-
ter out other sentences/clauses.

We randomly choose 20,000 such sen-
tences/clauses (10,000 for min age and 10,000 for
max age) as positive training instances. Negative
training instances are sentences which do not
contain the word “age/ages/aged” or “year/years”
from 60 clinical research articles. Note that
these articles are different from the articles in
the testing dataset. We use MaxEnt classifier to
train MinMaxAgeSentFinder with the following
features: adjacent word n-grams (n=1-4) and
adjacent letter n-grams within words.

3.4 Predicting Min/Max Age Values for Each
Sentence: Min/Max Age QA Model

We approach the problem of extracting values of
min/max age from a question-answering perspec-
tive. Specifically, our system first reads a sentence,
then answers the questions “what is the min/max
age of the participants?”.

Various neural network models have been pro-
posed for this task but these models trained on
SQuAD do not work well in our scenario, because
SQuAD does not contain this type of question-
answer pairs. Therefore we create training data
for max/min age value extraction by leveraging
the massive structured clinical study records from
ClinicalTrials.gov The training data are 10,000
<eligibility criteria–min age> pairs and 10,000
<eligibility criteria–max age> pairs described
previously. Note that we use the whole eligibil-
ity criteria instead of choosing the specific sen-
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tence/clause which contain the min/max age value.
We believe that with the additional min/max age
information, the question-answering module can
locate the position of the min/max age value and
learn various patterns for the target question.

We train our min/max age question-answering
module (MinMaxAgeQA) using the Bi-Directional
Attention Flow (BiDAF) Network (Seo et al.,
2017). BiDAF uses attention mechanisms in both
directions (i.e., question-to-context and context-
to-question) to find a sub-phrase from the input
text to answer the question.

BiDAF includes both character-level and word-
level embeddings. Most word tokenization models
are not robust for numeric expressions in scientific
literature. For instance, the Stanford CoreNLP
tokenizer tokenizes the clause: “aged 6-12 years
old” as ”{aged, 6-12, years, old}” - it does not
recognize 6 and 12 as two different tokens. The
character-level embeddings in BiDAF can over-
come this problem and the module correctly pre-
dicts 6 is the value of min age for this example.

3.5 Predicting Min/Max Age Values for Each
Article

To predict min/max age values of the study sam-
ples for each article, we apply MinMaxAgeQA to
each predicted sentence containing min/max age
information from the abstract, method, and result
sections on both questions (i.e., what is the min
age of the participants? and what is the max age
of the participants?). Answers that do not repre-
sent a valid integer number or answers whose con-
fidence score are less than 0.5 are discarded. For
each question, we keep the answer with the high-
est confidence score.

We do not include sentences from the introduc-
tion section because it may include other min/max
age information which is not related to the study
samples (see Example 5 and Example 6). We leave
filtering out unrelated min/max age information
from introductions as future work.

Finally, if both min and max age values are pre-
dicted for an article, we check whether the min
age value is smaller than the max age value. Oth-
erwise we keep the answer with the higher con-
fidence score and discard the other one. For in-
stance, as shown in Figure 3, the number 16 is
predicted as both the min age value (with the prob-
ability of 0.956) and the max age value (with the
probability of 0.624) for an article, we keep 16 as

Figure 3: Conflicting min/max age values.

the prediction for the min age value and set the
prediction of the max age to ”Null“.

3.6 Non-factual Age Expression Filter
In this component, we filter out a min/max age
value prediction if it is expressed speculatively.
We first extract the clause which contains the
prediction, then check whether a speculation cue
word/phrase is present in the clause using the spec-
ulation cues from (Light et al., 2004). These cue
words are: {if, at least, must, had to, has to, have
to, need, needs}.

4 Evaluation

4.1 Testing Dataset
The ground-truth dataset used for evaluation com-
prises a set of 50 published journal articles in PDF
format on smoking cessation. The dataset con-
tains around 432k tokens and 18k sentences. Table
1 shows some statistics about the testing dataset.
Overall, we have 843 sentences containing the
word “age/ages/aged” or “year/years” and these
sentences contain 2,226 numeric tokens.

The articles were annotated by a team of four
behaviour science domain experts in the context
of a broader project focused on leveraging the
scientific literature in behaviour change (Michie
et al., 2017). Annotation for a particular document
was performed by two human annotators using the
EPPI tool1. The annotation process involved high-
lighting relevant pieces of text and then assigning
them to the corresponding min/max age attribute.
Additionally, in order to disambiguate the high-
lighted text, the annotators were asked to anno-
tate the entire sentence containing the highlighted
piece as the additional context. Conflicts in the
annotation process were resolved through discus-
sions. Note that not every document contains a
min/max age annotation. This is because not ev-
ery article reports the min/max age of the overall

1http://eppi.ioe.ac.uk/CMS/
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Testing Dataset
# of articles 50
# of sentences 18,417
# of tokens (main text) 432,056
# of sentences containing 843
“age/ages/aged” or “year/years”
# of numeric tokens in sentences containing 2,226
“age/ages/aged” or “year/years”

Table 1: Statistics for the testing dataset.

study samples. In the testing dataset, 35 papers
have min age annotations and 25 papers have max
age annotations.

4.2 Evaluation Metric

We use recall, precision and F-score for evalua-
tion. Recall is calculated as the number of arti-
cles where the min/max age values are correctly
predicted divided by the number of articles where
min/max age values are annotated. Precision is
calculated as the number of articles where the
min/max age values are correctly predicted di-
vided by the number of articles where the system
makes a min/max age value prediction. F-score is
the harmonic average of the precision and recall.

4.3 Baseline 1: PassageRetrievalBasedMin-
MaxAgeExtractor

We developed a passage retrieval based IE sys-
tem to extract min/max age values (Ganguly et al.,
2018). The first step is to retrieve the passages
containing 10, 20, and 30 words using the query
“(age OR ages OR aged OR year OR years)”. The
intention of retrieving passages is to restrict ex-
traction of factoid answers to potentially relevant
small semantic units of text rather than the text of
the whole document.

The next step is to use validation criteria to
select the likely answer candidates. We use the
min/max age patterns from (Summerscales, 2013)
as the validation criteria to choose the likely an-
swer candidates from each retrieved passage for
min age and max age respectively. These pat-
terns can be viewed as rules which are carefully
designed by humans to extract min/max age val-
ues. For instance, a rule can be: if a passage con-
tains the phrase “greater than X” or “older than
X” and X is an integer number between 10 to 100,
then choose X as an answer candidate. It is worth
noting that (Summerscales, 2013) is the only pre-

vious work targeting the same task according to
our best knowledge. We integrate all the heuristic
rules for min/max age value extraction from (Sum-
merscales, 2013) into our passage retrieval based
IE system.

Finally, we score the answer candidates by a
term proximity function that takes into account the
differences in position between the query terms
and the candidate answers (Zhao and Yun, 2009).
The function is formally defined in the following
Equation:

sim(c,Q) =
1

|Q|
∑

q∈Q
exp(−(pc − pq)2/σ) (1)

Equation 1 describes the proximity based ranking
function between a candidate answer c and a query
Q, denoted by sim(c,Q). Practically, for each
word in the passage that matches the query terms
(q), the similarity function increases the score of
that candidate by an amount that depends on the
distance between that matched word and the can-
didate answer (pc − pq). Specifically, we use a
Gaussian function centered at each query term to
determine the increase in similarity score. The pa-
rameter σ controls the bandwidth of the Gaussians
and is set to 1 in our experiments.

4.4 Baseline 2:
CRFBasedMinMaxAgeExtractor

We also developed the second baseline using
CRF (Sutton and McCallum, 2012). The training
dataset contains the clauses/sentences which con-
tains the annotated min/max age value(s) from the
eligibility criteria of the clinical studies registered
in ClinicalTrials.gov. For each clause/sentence,
we use Stanford CoreNLP Toolkit (Manning et al.,
2014) to obtain the tokens as well as the POS tags,
then we create the corresponding training instance
using BIO labels (i.e., Beginning/Inside/Outside
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of a min/max age). Table 2 shows the training in-
stance for the example illustrated in Figure 2.

Token POS tag MinAgeAnnotation
Women NNS O
and CC O
men NNS O
at IN O
least JJS O
21 CD B
years NNS O
of IN O
age NN O
with IN O
suspected VBN O
NSCLC NNP O
. . . . . . . . .

Table 2: A training instance for the min age extraction
CRF model.

We train two CRF models for min age and max
age extraction respectively, using 10,000 training
instances for each model. We use words as well
as POS tags as features. More specifically, for the
word type features, we consider the current word
wi, the surrounding words (wi−2, wi−1, wi+1,
wi+2), as well as bi-grams (wi−1 + wi, wi + wi+1)
and tri-grams (wi−2 + wi−1 + wi, wi−1 + wi +
wi+1, wi + wi+1 + wi+2) created from words. We
create similar unigram, bi-gram and tri-gram fea-
tures using the automatically predicted POS tags
as well. We also include the combinations of the
previous prediction and the current prediction as
bi-gram features.

At the inference stage, for each article, we
first extract all sentences containing the word
“age/ages/aged” or “year/years”. We then apply
the min/max age CRF model on these sentences
and extract all tokens with the predicted label “B”.
In the end, among all predicted words, we choose
the word which represents a valid integer number
and has the highest confidence score as the pre-
dicted min/max age value for the article.

4.5 Results and Discussion

Table 3 shows the performance of the base-
lines (PassageRetrievalBasedMinMaxAgeExtrac-
tor and CRFBasedMinMaxAgeExtractor) as well
as our system (QABasedMinMaxAgeExtractor,
described in Section 3) for extracting min/max age
values of the study samples.

For MinAge, the first baseline (PassageRe-
trievalBasedMinMaxAgeExtractor) achieves a
very high precision score (90.9%) but suffers
from low recall (28.6%). The second baseline
(CRFBasedMinMaxAgeExtractor) improves the
recall by 21.4 points but only achieves a precision
score of 42.5%. Compared to the first baseline,
our system manages to improve recall by 37.1
points and still achieves a reasonable level of
precision (79.3%). Overall, our system improves
the results over the two baselines by a large
margin regarding F-score (71.9% vs. 43.5%, and
71.9% vs. 45.9%).

The similar pattern is also observed for Max-
Age: Our system improves the results over the first
baseline by a substantial margin on recall (60.0%
vs. 32.0%) and F-score (66.7% vs. 44.4%) respec-
tively.

It might seem surprising that CRFBasedMin-
MaxAgeExtractor performs much worse than
PassageRetrievalBasedMinMaxAgeExtractor for
MaxAge. This is because many max age values in
scientific articles are not correctly recognized as
a single token by Stanford CoreNLP Toolkit. For
instance, the tokenization model predicts that “18-
60” or “<=60” as single tokens. In contrast, our
system is more robust for parsing such numeric ex-
pressions.

In addition, it seems that the carefully designed
min/max age patterns in the first baseline only
cover a few forms of min/max age expressions. On
the contrary, our min/max age question-answering
module (MinMaxAgeQA, Section 3.4) trained over
a large-scale dataset can capture various linguistic
expressions of min/max age in natural language,
for instance, “≥ 18 years of age” or “age >= 18
years”.

4.6 Analysis
To better understand the roles of different compo-
nents in our system, we carried out a few experi-
ments:

• —WO MinMaxAgeSentFinder: instead of us-
ing MinMaxAgeSentFinder to find the sen-
tences containing min/max age information,
we pass all sentences containing the word
“age/ages/aged” or “year/years” from the ab-
stract, method, and result sections to the next
component MinMaxAgeQA.

• —WO MinMaxAgeQA: we use the most com-
mon min/max age expression pattern in clini-
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MinAge MaxAge
R P F R P F

Baseline 1: PassageRetrievalBasedMinMaxAgeExtractor 28.6 90.9 43.5 32.0 72.7 44.4
Baseline 2: CRFBasedMinMaxAgeExtractor 50.0 42.5 45.9 25.0 18.2 21.1
This work: QABasedMinMaxAgeExtractor 65.7 79.3 71.9 60.0 75.0 66.7

Table 3: Experimental results. Bold indicates statistically significant differences over the baseline using random-
ization test (p < 0.01).

MinAge MaxAge
R P F R P F

This work: QABasedMinMaxAgeExtractor 65.7 79.3 71.9 60.0 75.0 66.7
—WO MinMaxAgeSentFinder 68.6 68.6 68.6 52.0 56.5 54.2
—WO MinMaxAgeQA 31.4 84.6 45.8 40.0 71.4 51.3
—WO Non-factualSentFilter 68.6 70.6 69.6 60.0 71.4 65.2

Table 4: Contribution of each component to the overall system performance.

cal trial studies “X-Y” (e.g., 18-23 years old)
to predict min and max age values from the
first sentence contain such a pattern.

• —WO Non-factualSentFilter: Non-factual
age expression filter is not used.

The results of these experiments are shown
in Table 4. It seems that MinMaxAgeQA has
the most impact on the performance while Non-
factualSentFilter has less of an impact. In addi-
tion, MinMaxAgeSentFinder has more impact on
the results of MaxAge compared to MinAge.

We also performed some error analysis on our
full system. We noticed that the noise introduced
in the pre-processing step (e.g., missing some
paragraphs) is the main reason to cause our system
to predict “Null” for articles with min/max age an-
notation. For cases where a wrong min/max age
value is predicted, they are often embedded in the
speculative expressions which are not captured by
our current Non-factualSentFilter. For instance,
the system predicts 24 as the max age for one ar-
ticle in which 24 appears in a speculative sentence
(see speculative expression in Example 7). For this
article, the annotation for max age is 23 (see fac-
tual expression in Example 7).

(7) (speculative expression) Eligibility for this
study included being a student (full or part time),
smoking at least 1 cigarette/day in each of the past
7 days, being aged 18-24 years, and being inter-
ested in quitting smoking in the next 6 months.
(factual expression) Participants were 83 smok-

ers, who were 18-23 years old and undergraduate
students at a university.

5 Conclusions

This paper aims to extract factual min/max age
values of the study samples from clinical research
papers. We leverage the large-scale records from
the ClinicalTrials.gov database to provide dis-
tant supervision for our system. We also ex-
plore “speculative cues” and the structure of the
scientific papers to extract information from fac-
tual statements about the target study. We show
that our approach outperforms a passage retrieval
based IE system and a CRF-based model by a
large margin on a testing dataset consisting of 50
journal articles and around 18,000 sentences.

In the future, we plan to extend our framework
to extract other types of numeric values from the
clinical research papers, such as the outcome val-
ues of the different intervention groups and the
control group (e.g., 40% of PP abstinence rates),
as well as the time frame of the follow up (e.g., 52
weeks or 6 months).
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Byron C. Wallace, Joël Kuiper, Aakash Sharma,
Mingxi (Brian) Zhu, and Iain J. Marshall. 2016. Ex-
tracting PICO sentences from clinical trial reports
using supervised distant supervision. Journal of
Machine Learning Research, 17(132):1–25.

Jinglei Zhao and Yeogirl Yun. 2009. A proximity lan-
guage model for information retrieval. In Proceed-
ings of the 32nd Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval Boston, Mass., 19–23 July 2009,
pages 291–298.

116



Proceedings of the 2nd Clinical Natural Language Processing Workshop, pages 117–123
Minneapolis, Minnesota, June 7, 2019. c©2019 Association for Computational Linguistics

Distinguishing Clinical Sentiment: The Importance of Domain
Adaptation in Psychiatric Patient Health Records

Eben Holderness1,2, Philip Cawkwell1, Kirsten Bolton1,
James Pustejovsky2 and Mei-Hua Hall1

1Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School
2Department of Computer Science, Brandeis University
{eholderness, mhall}@mclean.harvard.edu

{pcawkwell, kbolton}@partners.org
jamesp@cs.brandeis.edu

Abstract

Recently natural language processing (NLP)
tools have been developed to identify and ex-
tract salient risk indicators in electronic health
records (EHRs). Sentiment analysis, although
widely used in non-medical areas for improv-
ing decision making, has been studied mini-
mally in the clinical setting. In this study, we
undertook, to our knowledge, the first domain
adaptation of sentiment analysis to psychiatric
EHRs by defining psychiatric clinical senti-
ment, performing an annotation project, and
evaluating multiple sentence-level sentiment
machine learning (ML) models. Results indi-
cate that off-the-shelf sentiment analysis tools
fail in identifying clinically positive or nega-
tive polarity, and that the definition of clinical
sentiment that we provide is learnable with rel-
atively small amounts of training data. This
project is an initial step towards further re-
fining sentiment analysis methods for clinical
use. Our long-term objective is to incorporate
the results of this project as part of a machine
learning model that predicts inpatient readmis-
sion risk. We hope that this work will initiate
a discussion concerning domain adaptation of
sentiment analysis to the clinical setting.

1 Introduction

Psychotic disorders typically emerge in late ado-
lescence or early adulthood (Kessler et al., 2007;
Thomsen, 1996) and affect approximately 2.5-4%
of the population (Perälä et al., 2007; Bogren et al.,
2009), making them one of the leading causes of
disability worldwide (Vos et al., 2015). A sub-
stantial proportion of psychiatric inpatients are
readmitted after discharge (Wiersma et al., 1998).
Readmissions are disruptive for both patients and
families, and are a key driver of rising health-
care costs (Mangalore and Knapp, 2007; Wu et al.,
2005). Reducing readmission risk is therefore a
major unmet need of psychiatric care. Developing

clinically implementable ML tools to enable accu-
rate assessment of readmission risk factors offers
opportunities to inform the selection of treatment
interventions and to subsequently implement ap-
propriate preventive measures.

Sentiment analysis (also known as opinion min-
ing) has been used for capturing the subjective
“feeling” (e.g. positive, negative, or neutral va-
lence) of reviews and has recently been expanded
to include other domains such as reactions to stock
market prediction or political trends (Mäntylä
et al., 2018). With the rise of social media and
other user-generated web content, sentiment anal-
ysis has been adopted by many industries as a way
of monitoring opinions towards their products,
reputations, and for identifying opportunities for
improvement. Traditionally, sentiment analysis
has been approached with a lexicon-based major-
ity vote approach, where a dictionary of terms and
their associated sentiments (e.g. SentiWordnet,
Pattern, SO-CAL, VADER) are queried to deter-
mine the sentiment of a given text (Taboada et al.,
2011). However, this approach fails to account
for many associated linguistic challenges such as
negation handling, scope, sarcasm, qualified state-
ments, and out-of-vocabulary terms. As such, re-
search groups have moved towards approaching
the problem from a corpus-based machine learn-
ing perspective. This approach has the added ben-
efit of model flexibility depending on the training
data and can capture more syntactic nuance. Most
state-of-the-art performances on sentiment analy-
sis benchmarks are currently achieved with deep
learning sequence models that are trained on syn-
tactically parsed corpora such as the Stanford Sen-
timent Treebank (Socher et al., 2013).

In clinical and medical domains, however, sen-
timent analysis has not yet been well studied. Yet
retrieving subjective clinical attitudes (sentiment)
from EHR narratives has the potential to facili-
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tate identification of a patient’s symptomatologi-
cal worsening or increased readmission risk.

The concept of medical sentiment is complex
and vocabularies differ from general-domain sen-
timent. In the field of psychiatry, this is especially
true. Therefore, there is a need for domain adap-
tation of sentiment analysis that includes a richer
array of attributes than can typically be found in
off-the-shelf tools. In this work, we established
an annotation scheme to characterize sentiment-
related features in EHRs, and used this to carry
out, to our knowledge, the first psychiatry-specific
sentiment annotation project on EHRs. The result-
ing datasets are used to train and evaluate a clas-
sifier to predict clinical sentiment at the sentence
level. This classifier, which in future works will be
integrated in a pipeline for predicting readmission
risk, is clinically useful for targeting treatments
and aiding in decision making.

2 Related Works

Although there has been some work on clinical
adaptation of sentiment analysis using healthcare-
related data extracted from web forums, biomedi-
cal texts, or social media postings (See for exam-
ple (Smith and Lee, 2012; Niu et al., 2005; Salas-
Zárate et al., 2017; Nguyen et al., 2014)), there has
been minimal work on sentiment analysis when
applied to actual EHR data.

McCoy et al. (2015) used a corpus of psychosis
patient discharge summaries and the 3,000 word
Pattern lexical opinion mining dictionary (Smedt
and Daelemans, 2012) to classify the associated
sentiment of documents using a majority vote clas-
sifier. Results of their Cox regression models
showed that greater positive sentiment was associ-
ated with a reduction in inpatient readmission risk.
Waudby-Smith et al. (2018) applied the same Pat-
tern sentiment lexicon to a corpus of ICU nursing
notes to predict 30-day mortality risk. They found
that stronger negative sentiment polarity was as-
sociated with an increased 30-day mortality risk.
One of the limitations in both studies is that Pat-
tern is a general-domain sentiment lexicon that
contains few informative medical or psychiatry-
specific terminology. Also, the authors did not
manually annotate the datasets they worked with.
As a result, they were not able to confirm that
the predicted sentiment aligned with the sentiment
from a clinical perspective.

(Deng et al., 2014) and (Denecke and Deng,

2015) systematically compared word usage and
sentiment distribution between clinical narratives
(nurse letters, discharge summary, and radiology
reports) and medical social media (MedBlog, drug
reviews). They concluded that off-the-shelf senti-
ment tools were not ideal for analyzing sentiment
in medical documents and that EHRs were sig-
nificantly more difficult in predicting sentiment,
in particular neutral sentiment (Neutral F1=0.216
and 0.080 for nurse letters and radiology reports,
respectively). They developed annotation guide-
lines and undertook a span-level annotation task
on 300 ICU nurse letters to identify words related
to clinical sentiment (Deng et al., 2016). Results
of applying ML algorithms to these data are not
available yet.

3 Methods

In this work, we define psychiatric clinical sen-
timent as a clinician’s attitudes (positive, neg-
ative, or neutral) towards a patient’s prognosis
with regards to seven readmission risk factor do-
mains (appearance, mood, interpersonal relations,
substance use, thought content, thought process,
and occupation) that were identified in prior work
(Holderness et al., 2018). The scope of our cur-
rent definition is intentionally narrow such that the
sentiment of a given sentence is considered in iso-
lation without any prior knowledge.

Three clinicians participated in an annotation
project that focused on identifying the clinical sen-
timent associated with psychiatric EHR texts at
the sentence level. In total, two corpora of clin-
ical narratives from institutional EHRs, one con-
taining 3,500 sentences (training dataset) and the
other 1,650 (test dataset) were annotated using the
definition established in the annotation scheme.

The training dataset consisted exclusively of
sentence-length sequences that involved only one
risk factor domain in each example. The exam-
ples in the dataset were identified from a large
corpus of unannotated psychosis patient EHR
data sourced from the psychiatric units of several
Boston-area hospitals in the Partners HealthCare
network, including Massachusetts General Hospi-
tal and Brigham & Women’s Hospital. We used
our risk factor domain topic extraction model to
automatically identify relevant sentences, which
were then manually validated by one of the clin-
icians involved in this project to ensure they did
not involve multiple domains in the same exam-
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Domain Positive Example Neutral Example Negative Example
Appearance Presents on time, dressed and

groomed nicely, good hygiene.
Casually dressed and wearing
knit vest and belt.

Notes that he wears the same
clothes 2-3 days at a time, he
doesn’t care for his appearance–
which is atypical for him.

Mood Her depression and anxiety have
improved immensely.

Mood is largely euthymic al-
though he stated he gets de-
pressed occasionally.

Tearful, presented very depressed
with sad affect.

Interpersonal Continues to be happy in her re-
lationship with her boyfriend and
school friends are stable as well.

She voiced no complaints about
her primary relationship or other
social relationships.

Poor social supports, abusive re-
lationship.

Substance
Use

Denies substance use or alcohol
other than an occasional glass of
wine.

Remote history of cocaine
(smoked), marijuana and mesca-
line use many years ago.

He reports daily k2 use in addi-
tion to using crack cocaine about
once a week.

Occupation Pt reports having taken further
steps toward employment – ap-
plied for two jobs and has inter-
view lined up for Saturday.

Discusses new job as part time
substitute teacher.

Recently has a new job that she
hates and took a paycut.

Thought
Content

She never had auditory halluci-
nations or delusions of thought
broadcasting and thought inser-
tion.

No overt hallucinations or delu-
sions but expansive thinking.

Delusions and hallucinations con-
tinue.

Thought
Process

Stable, slow speech with fewer
word finding difficulties today,
linear thought process, coopera-
tive,attentive.

Slightly pressured speech but not
as bad as some past visits.

Speech spontaneous and de-
creased in volume, rate, and
rhythm; hard to understand at
times because she barely opens
her mouth when she talks.

Table 1: Example EHR sentences reflecting sentiment polarity for each risk factor domain.

ple. See Table 1 for example sentences for each
domain.

The test dataset is an extension of the corpus
used previously to evaluate our risk factor domain
topic extraction model and is non-overlapping
with the training data, consisting of discharge
summaries, admission notes, individual encounter
notes, and other clinical notes from 220 patients
in the OnTrackTM program at McLean Hospital.
OnTrackTM is an outpatient program, focusing on
treating adults ages 18 to 30 who are experienc-
ing their first episodes of psychosis. Because we
are interested in identifying the clinical sentiment
associated with each risk factor domain individu-
ally, the test dataset consists of examples that were
intentionally selected to be challenging for our
model: they are variable in length, wide-ranging
in vocabulary, and can involve multiple risk factor
domains (e.g. “Work functioning is impaired, but
pt has good relationship w/ his girlfriend and is not
engaging in substance use.”).

These corpora are available to other researchers
upon request. Table 2 details the distribution of
the training and test data. The imbalance of train-
ing examples across the three sentiment classes re-
flects the natural distribution of sentiment reflected
in EHRs, as certain risk factor domains (e.g. sub-
stance use) will rarely be reflected in a neutral or

Positive Negative Neutral
Appearance 290 69 141
Mood 100 322 77
Interpersonal 205 165 130
Substance Use 181 261 58
Occupation 250 143 150
Thought Process 150 266 84
Thought Content 183 253 64

Table 2: Distribution of training and test examples.

positive sense.

We evaluated three classification models. Our
baseline model is a majority vote approach using
the Pattern sentiment lexicon employed by Mc-
Coy (2015) and Waudby-Smith (2018). The sec-
ond and third models use fully supervised and
semi-supervised multilayer perceptron (MLP) ar-
chitectures, respectively. Since positive and neg-
ative clinical sentiment can differ across each do-
main, we train a suite of seven models, one for
each risk factor domain. The training and test
data were vectorized at the sentence level using the
pretrained Universal Sentence Encoder (USE) em-
bedding module (Cer et al., 2018) that is available
through TensorFlow Hub and is designed specifi-
cally for transfer learning tasks. Although USE is
trained on a large volume of web-based, general-
domain data, we have found in prior work that
the embeddings lead to higher accuracy on down-
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Model Domain Pos P Pos R Pos F1 Neg P Neg R Neg F1 Neu P Neu R Neu F1
Baseline (Pattern) All 0.612 0.231 0.319 0.552 0.245 0.337 0.234 0.736 0.348

Interpersonal 0.8 0.222 0.348 0.429 0.103 0.167 0.413 0.929 0.571
Mood 0.511 0.233 0.32 0.558 0.352 0.432 0.266 0.672 0.381
Occupation 0.75 0.129 0.22 0.328 0.188 0.265 0.329 0.917 0.484
Substance Use 0.429 0.067 0.115 0.593 0.241 0.342 0.222 0.74 0.341
Appearance 0.781 0.424 0.549 0.556 0.309 0.397 0.174 0.552 0.265
Thought Content 0.556 0.19 0.283 0.723 0.29 0.414 0.055 0.6 0.101
Thought Process 0.459 0.354 0.4 0.677 0.231 0.344 0.181 0.739 0.291

Fully Supervised MLP All 0.62 0.416 0.478 0.67 0.652 0.658 0.289 0.437 0.329
Interpersonal 0.632 0.667 0.649 0.731 0.656 0.691 0.567 0.607 0.558
Mood 0.717 0.32 0.443 0.597 0.73 0.657 0.286 0.418 0.339
Occupation 0.645 0.571 0.606 0.558 0.604 0.58 0.346 0.375 0.36
Substance Use 0.423 0.244 0.31 0.674 0.714 0.693 0.344 0.42 0.378
Appearance 0.705 0.525 0.602 0.69 0.605 0.645 0.241 0.448 0.313
Thought Content 0.59 0.127 0.209 0.667 0.654 0.66 0.078 0.4 0.13
Thought Process 0.629 0.458 0.53 0.775 0.604 0.679 0.161 0.391 0.228

Semi-Supervised MLP
(Self-Training) All 0.588 0.4 0.46 0.611 0.733 0.658 0.285 0.291 0.259

Interpersonal 0.632 0.667 0.649 0.625 0.69 0.656 0.583 0.5 0.539
Mood 0.645 0.301 0.411 0.502 0.885 0.641 0.233 0.105 0.144
Occupation 0.671 0.671 0.671 0.539 0.583 0.56 0.364 0.333 0.348
Substance Use 0.394 0.289 0.333 0.617 0.835 0.709 0.333 0.1 0.154
Appearance 0.722 0.441 0.547 0.653 0.605 0.628 0.224 0.448 0.299
Thought Content 0.5 0.139 0.218 0.689 0.753 0.72 0.088 0.333 0.139
Thought Process 0.583 0.292 0.389 0.651 0.78 0.685 0.172 0.217 0.192

Table 3: Results of the clinical sentiment extraction task.

stream classification tasks than embedding mod-
els (e.g. ELMo, Doc2Vec, FastText) trained on
smaller volumes of EHR data (Holderness et al.,
2019).

Hyperparameters were tuned using grid search
with 5-fold cross-validation on the training dataset
and are specified in Table 4. Due to the rela-
tively small amount of labeled training data, our
proposed model architecture is designed to pre-
vent overfitting by using a restricted view of the
training data via a high rate of dropout in the hid-
den layers. Additionally, we use two hidden lay-
ers to extract a more abstracted form of the input.
Additionally, because neutral sentiment is much
broader in scope and has fewer training examples,
resulting in covariate shift, we compute a thresh-
old for classifying positive and negative sentiment
using the formula min=avg(sim)+*(sim), where is
standard deviation and is a constant, which we set
to 0.2. If a given test sentence does not have posi-
tive or negative outputs that exceed this threshold,
the sentence is classified as neutral even if neutral
is not the maximal output.

We experimented with two semi-supervised
learning configurations, Self-Training and K-
Nearest Neighbors (KNN). The self-training ap-
proach involved first training our model on the la-
beled training data and then using this model to
identify unlabeled examples from a large prepro-

Parameter Value
Batch Size 28
Iterations 100
Hidden Units Per Layer 300
Dropout 0.75
Kernel Initializer Uniform
Optimizer Adam
Input/Hidden Layer Activations ReLU
Output Layer Activations Sigmoid

Table 4: Hyperparameters for sentiment model.

cessed corpus of unlabeled EHR data (2,100,000
sentences, 85,000,000 tokens). For the KNN ap-
proach, we projected all of the labeled and un-
labeled examples into vector space and treated
the labeled examples as centroids. For each cen-
troid, we then used Euclidean distance to compute
the five nearest unlabeled examples. Both mod-
els were trained using a 20:80 combination of the
original labeled data and the additional unlabeled
data.

4 Results and Discussion

Inter-annotator agreement (IAA) was substan-
tial on the first corpus (Scott’s Pi=0.691, Co-
hen’s Kappa=0.693) and higher on the second
(Pi=0.768, Kappa=0.768) (Fleiss, 1971; Davies
and Fleiss, 1982). This is expected as the first
corpus contains many sentences involving multi-
ple readmission risk factor domains and annota-
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tors were instructed to provide clinical sentiment
labels for each, whereas the second corpus con-
sists entirely of single domain sentences. In both
cases, IAA surpasses that reported by Denecke
and Deng (2016), primarily because of the clinical
expertise of the annotators involved in this project.

Results of the three classifiers are shown in
Table 3, with the highest score on each perfor-
mance metric in bold. The ‘All’ row for each
model configuration was computed by averaging
the scores of the sentiment models for each risk
factor domain. Applying the Pattern sentiment
lexicon to our test corpus showed a strong trend
towards underclassification of positive and neg-
ative examples, which led to poor recall scores
while maintaining moderate precision. Neutral ex-
amples, however, were correctly classified signif-
icantly more often. This confirms that many of
the most informative words in terms of clinical
sentiment (e.g. ‘hallucination’, ‘depressed’, ‘em-
ployed’, etc.) do not hold significance in general-
domain sentiment and are therefore not part of the
Pattern lexicon.

Despite the relatively small size of the train-
ing corpus, the EHR data used for training cap-
tured much of the domain-specific vocabulary re-
lated to clinical sentiment and our suite of models
achieved F-measures on classifying positive and
negative sentiment that exceed those reported in
prior literature (Deng et al., 2014). Although di-
rect comparison between our EHR dataset and the
EHR datasets used by other researchers is limited
due to HIPAA restrictions, our training EHR data
is sourced from the same EHR database as McCoy
(2015). Therefore, a better performance of our
models indirectly supports that our model can bet-
ter capture the underlying clinical sentiment em-
bedded in EHRs.

Because clinical documents are written for a
specific purpose such as assessing the outcome of
treatment, they contain less neutral content and as
a result sentiment distributions are intrinsically bi-
ased to either positive or negative polarity. Thus,
identifying training examples with neutral senti-
ment was challenging and consequently both the
fully and semi-supervised models were poor at
identifying neutral sentiment across all seven do-
mains. In addition, unless the patient is markedly
improved, clinicians tend to document continuing
unresolved symptoms. leading to a greater amount
of negative content. We hypothesize that this may

be one reason for the lower overall F1 perfor-
mance on positive versus negative sentiment.

We observed that per-domain performance of
our models aligned with the natural distribution of
positive vs. negative clinical sentiment in EHRs.
Substance use, for example, had low positive F1
scores as the majority of references to substance
use in EHRs involve negative sentiment unless the
patient is noted to be abstaining from substance
use. We also observed that sentiment distribution
towards negative polarity is more evident in mood
and thought content, which include, for example,
delusions, depression, anxiety, and hallucinations.

When applying semi-supervised learning meth-
ods, we found self-training to marginally improve
performance on negative clinical sentiment but the
overall F1 score was not better than the fully su-
pervised model due to lower precision. We ob-
served minimal change in performance when us-
ing a k-nearest neighbors approach.

5 Conclusion and Future Work

We focused in this study on the clinical sentiment
associated with readmission for seven risk factor
domains identified in prior work by undertaking
an annotation project and using the resultant gold
standard to train semi-supervised ML algorithms
to automatically infer this sentiment. Our results
indicate that domain adaptation of sentiment anal-
ysis is necessary for aligning with clinician opin-
ions.

We intend to improve our clinical sentiment
classifier in future work by increasing the size of
the annotated training corpus (in particular neutral
examples) and by changing the model input to a
sequence model as opposed to a full sentence vec-
tor representation. We also intend to modify our
definition of clinical sentiment to include tempo-
ral linking of elements that involve clinical senti-
ment in an EHR to establish gradients of changes
in patient status over time. Finally, we will incor-
porate our sentiment analysis model in a classifier
that predicts inpatient readmission risk.
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Partonen, Annamari Tuulio-Henriksson, Jukka Hin-
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Abstract

Word embeddings are representations of
words in a dense vector space. Although
they are not recent phenomena in Natural Lan-
guage Processing (NLP), they have gained
momentum after the recent developments of
neural methods and Word2Vec. Regarding
their applications in medical and clinical NLP,
they are invaluable resources when training
in-domain named entity recognition systems,
classifiers or taggers, for instance. Thus, the
development of tailored word embeddings for
medical NLP is of great interest. However,
we identified a gap in the literature which we
aim to fill in this paper: the availability of
embeddings for medical NLP in Spanish, as
well as a standardized form of intrinsic eval-
uation. Since most work has been done for
English, some established datasets for intrinsic
evaluation are already available. In this paper,
we show the steps we employed to adapt such
datasets for the first time to Spanish, of partic-
ular relevance due to the considerable volume
of EHRs in this language, as well as the cre-
ation of in-domain medical word embeddings
for the Spanish using the state-of-the-art Fast-
Text model. We performed intrinsic evalua-
tion with our adapted datasets, as well as ex-
trinsic evaluation with a named entity recog-
nition systems using a baseline embedding of
general-domain. Both experiments proved that
our embeddings are suitable for use in medical
NLP in the Spanish language, and are more ac-
curate than general-domain ones.

1 Introduction

Representation of words in vector space, or word
embedding, is not a new concept in Natural Lan-
guage Processing (NLP) and are used in a several
number of statistical and neural models (Ghannay
et al., 2016). Word embeddings (WE) can include
semantic information and are based on the general
idea of an association of elements (words) with
certain contexts and the similarity in word mean-
ings. In more recent neural networks, embeddings
are used to encode words in a space that is subse-
quently used as input for many possible models.

1.1 Background

In the work of Mikolov et al. (2013a), they intro-
duced two new architectures for estimating con-
tinuous representations of words using log-linear
models, called continuous bag-of-word (CBOW)
and continuous skip-gram (skip-gram). CBOW
calculates the projection for the current word
given the context words in the particular sen-
tence, while skip-gram, following its name, skip
the word being processed and evaluates projec-
tions of the context words. Further works gave
more insights about this method called Word2Vec
(Mikolov et al., 2013b,c). Since its appearance,
Word2Vec has been used and adapted for a wide
range of applications, including sentiment analy-
sis (Nakov et al., 2016; Yu et al., 2017), named
entity recognition (Chiu and Nichols, 2016), clas-
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sification (Zhang et al., 2015), clustering (Kim
et al., 2017), word sense disambiguation (Ia-
cobacci et al., 2016) and many others. More re-
cently, Mikolov et al. (2018) presented the combi-
nation of various ”tricks” in training word embed-
dings that are rarely used together, but that out-
performs the previous state-of-the-art vector rep-
resentations.

1.2 Pre-trained embeddings
Pre-trained word embeddings are widely avail-
able for a plethora of languages and methods.
Google, for instance, makes available Word2Vec
models pre-trained on about 100 billion words
from Google News corpus in English1. Regard-
ing other languages, on FastText website2 one
can download pre-trained embeddings for 157 lan-
guages based on Common Crawl and Wikipedia.
For the specific case of Spanish, the University
of Chile NLP group makes available FasText and
Word2Vec embeddings3 using the Spanish Billion
Word Corpus (SBWCE)4.

1.3 Biomedical embeddings
As pointed out by Chiu et al. (2016), most of
the studies and available embeddings are focused
on general-domain texts and general evaluation
datasets. Thus, their results not necessarily ap-
ply well to medical and biomedical text analysis.
Their study, in English, demonstrates that bigger
corpora do not necessarily produce better biomed-
ical word embeddings. They also made their re-
sulting embeddings available for download.

In another work, Chen et al. (2018) created
sentence embeddings for clinical and biomedi-
cal texts, called BioSentVec trained on PubMed
and clinical notes from the MIMIC-III Clini-
cal Database(Johnson et al., 2016). Similarly,
Sahu and Anand (2015) used the PubMed Cen-
tral Open Access subset (PMC) and PubMed ab-
stracts to train word embeddings for English using
CBOW. They evaluate embeddings performance
using similarity and relatedness datasets, which
will be presented in Section 3.1. However, they
do not compare the trained models with a general-
domain one.

1https://code.google.com/archive/p/
word2vec/

2https://fasttext.cc/docs/en/
crawl-vectors.html

3https://github.com/uchile-nlp/
spanish-word-embeddings

4http://crscardellino.github.io/SBWCE/

In a more fine-grained application, Zhang et al.
(2018) adapted word embeddings to recognize
symptoms in the target domain of psychiatry.
As a source for their embeddings, they used
four corpora: intensive care, biomedical litera-
ture, Wikipedia and Psychiatric Forum. Ling
et al. (2017) developed a method to integrate extra
knowledge into word embeddings for biomedical
NLP tasks via graph regularization.

More related to our work, Santiso et al. (2018)
developed word embeddings tailored for negation
detection in health records written in Spanish. As
corpora, they used both in-domain and general-
domain data. For in-domain, they used unanno-
tated Electronic Health Records (EHRs) from a
hospital in Spain. For the general-domain, they
used the SBWCE corpus. However, they did not
perform any intrinsic evaluation of the generated
embeddings; neither made them available for use
or compared general-domain and in-domain per-
formance.

Also regarding Spanish biomedical embed-
dings, the work of Segura-Bedmar and Martı́nez
(2017) shows the use of pre-trained word em-
beddings with SBWCE for simplification of drug
package leaflets so that they are more friendly to
the patients. However, they do not use in-domain
embeddings for such task. Also, Villegas et al.
(2018) collected a census of Spanish texts that can
be of use in text mining, however, they did not pro-
vide any sort of word embeddings.

1.4 Contributions and Structure

Given that very little attention has been given to
producing and evaluating quality word embed-
dings in Spanish for the biomedical domain, we
propose to develop embeddings based on the state-
of-the-art FastText model with in-domain data.
In addition, only works aiming the English lan-
guage provide a comprehensive performance eval-
uation of in-domain embeddings when compared
to general-domain ones. For that, we will adapt
them to Spanish. We claim as relevant the follow-
ing contributions:

• Development of Spanish embeddings for the
Biomedical domain;

• Intrinsic and extrinsic evaluation of per-
formance using established datasets and a
Named Entity Recognition (NER) task;
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• Comparison of in-domain and general-
domain performance;

• Adaptation of established biomedical intrin-
sic evaluation datasets for the Spanish lan-
guage;

• Embeddings are public available5 and li-
censed under CC-BY 4.

We expect that the developed word embeddings
will to be used in several clinical NLP applica-
tions, such as for the identification of sections in
clinical documents since the embedddings can be
used to create phrase and paragraph embeddings.
Also, for text summarization based on neural net-
works, our embeddings can be used as a resource
during training.

The rest of the paper is organized as follows. In
Section 2, we explain the methods and the materi-
als used in our experiments, including corpora and
the training procedure. In Section 3, we detail the
intrinsic and extrinsic evaluations, with the steps
we employed to adapt English datasets to Spanish.
In Section 4, we show the experiments and their
results, while in Section 5 we perform a brief dis-
cussion and conclusion.

2 Material and Methods

In this Section, we present the corpora, the word
embedding model used in our study and the train-
ing procedure.

2.1 FastText

The FastText model (Mikolov et al., 2018) uses
the combination of various subcomponents to pro-
duce high-quality embeddings. It uses a stan-
dard CBOW or skip-gram models, with position-
dependent weighting, phrase representations, and
subword information in a combined manner. The
CBOW and skip-gram models is the same as pro-
posed in Mikolov et al. (2013a).

The position-dependent weighting introduces
information regarding the position of the word be-
ing evaluated. As stated by the authors, the ex-
plicit encoding of the word and its position would
lead to overfitting. The solution was to learn posi-
tion representations and use them to reweight the
word vectors at a minimum computational cost us-
ing linear combination of both representations.

5http://doi.org/10.5281/zenodo.2542722

The original Word2Vec is insensitive to word
order, since it is only based on unigrams. To cap-
ture word order information in a phrase represen-
tation, the authors merge words with high mutual
information in a single token. One example can
be ”brain” and ”dead”, which could be merged
as ”brain dead”. This process of merging tokens
can be repeated several times to produce longer
tokens.

To avoid the fact that standard word vectors ig-
nore word-internal structure, which may contain
useful information, the authors enrich the vectors
with subword information. Each word is decom-
posed into its character n-grams which are then
learned. After that, the final word vector is the
simple sum of the word vector and their n-grams
representations.

2.2 Corpora
To develop our in-domain embeddings, we used
two sources of data: (i) the SciELO database,
which contains full-text articles primarily in En-
glish, Spanish and Portuguese, and (ii) the
Wikipedia, with a subset which we call Wikipedia
Health, comprised by the categories of Pharma-
cology, Pharmacy, Medicine and Biology. This
method of combining large corpora (i.e. SciELO)
and smaller focused (i.e. Wikipedia) was shown
to be an adequate approach to produce quality em-
beddings for clinical NLP (Roberts, 2016). The
choice of SciELO is that this database is the
most comprehensive in term of number of arti-
cles and abstracts available in Spanish. As for the
Wikipedia, it can be a source of information for
specific terms, which can benefit our models.

From Scielo.org, all documents in Spanish were
downloaded, language checked and processed into
sentences. For language check, we used the
langdetect library6 for Python. The scielo.org
node contains all Spanish articles, regardless if
they are from European or Latin American Span-
ish. In the database, articles from the health do-
main correspond to approximately 50% of the re-
sults.

Using the Wikipedia API for Python7, we re-
trieved all articles that are from the aforemen-
tioned categories. We also performed language
checking, to ensure that all sentences were in
Spanish.

6https://github.com/fedelopez77/
langdetect

7https://pypi.org/project/wikipedia/
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In Table 1, one can see the statistics regard-
ing the gathered corpora. Sentences were pro-
duced using the sentence tokenizer from the NLTK
package. The SciELO corpus is relatively smaller
than the Wikipedia one regarding number of sen-
tences. However, as for number of tokens, Sci-
ELO contains almost 22% more than Wikipedia.
This is probably due to the fact that scientific arti-
cle sentences are longer than the ones available in
Wikipedia.

Table 1: Statistics for the gathered corpora

Corpus Sentences Tokens
SciELO Full-Text 3.3M 100M
Wikipedia Health 4M 82M

2.3 Training

We used the FastText implementation available in
https://fasttext.cc to train our word em-
beddings. The following setup was used:

• Minimum number of word occurrences: 5

• Phrase representation: No (i.e. length of
word n-gram = 1)

• Minimum length of character n-gram: 3

• Maximum length of character n-gram: 6

• Size of word vectors: 300

• Epochs: 20

3 Evaluation

For the evaluation of our embeddings, we use both
intrinsic and extrinsic evaluation, which are now
detailed, as well as the baseline word embedding.

3.1 Intrinsic

In the intrinsic evaluation, the performances are
measured regarding specific tasks that are only re-
lated to the embedding itself, such as syntactic of
semantic relationships between words. The most
common examples are similarity, relatedness and
analogy evaluations (Schnabel et al., 2015).

For the biomedical domain, some standard
datasets are available for the evaluation of seman-
tic similarity and relatedness. The UMNSRS sim-
ilarity (UMNSRS-sim) and UMNSRS relatedness
(UMNSRS-rel) are datasets consisting of pairs of

UMLS (Unified Medical Language System) con-
cepts manually annotated for similarity and relat-
edness. Details about the original datasets can be
found in Pakhomov et al. (2010). The UMNSRS-
sim contains 566 pairs of concepts, while the
UMNSRS-rel contains 587 pairs.

Another well-known dataset for intrinsic evalu-
ation in biomedical embeddings is the MayoSRS
(Pakhomov et al., 2011), which is used for simi-
larity evaluation and is comprised of 101 UMLS
pairs and their respective manual scores.

The aforementioned datasets, however, are only
available in English. For the best of our knowl-
edge, no standard Spanish dataset is available for
the biomedical domain. Thus, in order to be able
to evaluate our embeddings, we adapted the afore-
mentioned datasets for Spanish.

In Figure 1, we depict the steps employed to
adapt the datasets. In step 1, the datasets are trans-
lated to Spanish using Google Translate8. How-
ever, due to the possible polysemy and translation
errors, we employed additional checking steps.

In step 2, the translated terms are queried
against the already available translations for
that specific CUI (Concept Unique Identifier) in
UMLS. If the translated term is already in the
UMLS translations, we assign such term as a valid
translation.

In step 3, if the translated term is not found in
UMLS, we perform manual evaluation of possible
translations using UMLS browser. The assigned
translations were then revised by a medical doctor
and corrected when needed. Also, at this point all
other assignd terms were also revised.

We must notice that we did not include the con-
cepts that were originally referring to commer-
cial drug names (which are not in the UMLS,
just their pharmacological substance), since this
may vary depending on the country and also de-
pending on regional medical protocols. The fi-
nal number of pairs of terms for UMNSRS-rel is
384, that is, 65.41% of the original in English.
As for UMNSRS-sim, the final number is 380, or
67.14% of the original dataset in English. For the
MayoSRS, all 101 pairs are included in the final
dataset in Spanish, since no drug is included in the
original data.

8https://translate.google.com/
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Figure 1: Steps performed to translate the UMNSRS-
sim, UMNSRS-rel and MayoSRS datasets to Spanish

3.2 Extrinsic

As for the extrinsic evaluation, we employed our
embeddings in an NER task to identify pharma-
cological substances, compounds and proteins in
clinical texts.

3.2.1 Data
The data for this experiment comprehends manu-
ally classified collection of clinical case sections
derived from Open access Spanish medical publi-
cations, named the Spanish Clinical Case Corpus
(SPACCC). All clinical case records derived from
various databases were gathered in a first step, pre-
processed and the actual clinical case section was
extracted removing embedded figure references or
citations. These records where classified manually
using the MyMiner9 file labeling online applica-
tion by a practicing oncologist and revised by a
clinical documentalist in order to assure that these
records were related to the medical domain and
they resembled the kind of structure and content
that is relevant to process clinical content.

The final collection of 1000 clinical cases that
make up the corpus had a total of 16504 sentences,
with an average of 16.5 sentences per clinical case.

9http://myminer.armi.monash.edu.au

The SPACCC corpus contains a total of 396,988
words, with an average of 396.2 words per clini-
cal case. It is noteworthy to say that this kind of
narrative shows properties of both, the biomedical
and medical literature as well as clinical records.
Moreover, the clinical cases were not restricted to
a single medical discipline, and thus cover a va-
riety of medical topics, including oncology, urol-
ogy, cardiology, pneumology or infectious dis-
eases, which is key in order to cover a diverse col-
lection of chemicals and drugs.

We must notice that this corpus will not be
available at this point since it is currently being
used as evaluation in a shared task track. However,
in the future, users will be able to access the cor-
pus from the same link to the word embeddings.

3.2.2 Software
As for the NER system, we employed an off-the-
shelf framework called NeuroNER(Dernoncourt
et al., 2017)10. The engine is based on artificial
neural networks, relying on long short-term mem-
ory (LSTM) to predict the label of a sequence of
tokens. The network contains three main layers:
(i) the character-enhanced token-embedding layer,
(ii) the label prediction layer, and (iii) the label se-
quence optimization layer. The word embeddings
are fed to the first layer (i.e token-embedding).

3.2.3 Baseline Word Embedding
As a baseline for our comparisons, we decided
to use the embeddings available from the Univer-
sity of Chile NLP Group11. The embeddings are
trained based on the SBWC corpus and the train-
ing settings are the same we have shown in Section
2.3, thus making our comparisons fair.

One big difference between our training process
is related to the corpora used. SBWC is a general-
domain corpus, comprised of approximately 1.4
billion words, while our combined corpora con-
tain roughly 1.2 million words. Thus, the general-
domain corpus is approximately one order of mag-
nitude larger than ours.

4 Experiments and Results

In this section, we detail how the experiments
were carried out and the results we obtained for
both intrinsic and extrinsic evaluation methods, as

10http://neuroner.com/
11https://github.com/uchile-nlp/

spanish-word-embeddings
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well as the comparisons with the baseline embed-
ding presented in Section 3.2.3 and our embed-
dings, which we now call Spanish Health Embed-
ding (SHE).

4.1 Intrinsic

In the intrinsic experiment, for the sake of a fair
comparison between our proposed embedding and
the baseline, we made sure that all the pairs be-
ing compared were available both in SHE and in
the SBWC. For this, we checked for each pair of
translated CUIs (explained in Section 3.1) if the
words were present in both embeddings vocabu-
laries. For multi-word terms, we averaged individ-
ual word vectors to compose the final term vector.
The final number of compared pairs for each trans-
lated dataset are: UMNSRS-sim(322), UMNSRS-
rel(252) and MayoSRS(101).

Regarding the evaluation, we calculated the co-
sine distance for each pair of terms and later com-
pared those values with the human annotated ones
in the datasets by means of Pearson correlation co-
efficient (ρ).

In Table 2, we depict the results for the compar-
ison for each dataset regarding the Pearson corre-
lation coefficient. One can notice that SHE pre-
sented the highest coefficient for the three used
datasets by a large margin, being such statistically
significant for all of them, except to SBWC with
the MayoSRS dataset. Thus, as for intrinsic evalu-
ation, we can assume that our embeddings are bet-
ter than the general-domain embedding trained on
SBWC.

Table 2: Comparison of the intrinsic evaluation
between the proposed embeddings (SHE) and the
general-domain ones (SBWC). Bold numbers represent
the best results for each dataset, while asterisc means
that such coefficient was statistically significant.

SHE (our) SBWC
Dataset ρ ρ

UMNSRS-sim 0.5826* 0.4319*
UMNSRS-rel 0.5239* 0.3947*
MayoSRS 0.3174* 0.1237

4.2 Extrinsic

For the extrinsic evaluation, we used the Neu-
roNER framework, which was described in Sec-
tion 3.2.2, with a biomedical corpus of clinical
notes described in Section 3.2.1. The corpus has 4

entity labels: Proteins, Normalizable Chemicals,
No-Normalizable Chemicals, and Unclear men-
tions. The reason for such lables is that they can be
normalized to a fixed ontology, in the case of Pro-
teins and Chemicals, while some chemicals cannot
be normalzied or are unclear. Since the number
of ”No-Normalizable” mentions is very low com-
pared to all labels, we did not include them in our
evaluation.

We trained NeuroNER with the following stan-
dard parameters using our embeddings and the
SBWC one:

• Data splitting: 80% training, 10% validation,
10% test. Stratified and fixed for both embed-
dings;

• Character-embedding dimension: 25

• Charater LSTM hidden state dimension : 25

• Token LSTM hidden state dimension: 300

• Patience: 10

• Maximum number of epochs: 100

• Optimizer: SGD

• Learning rate: 0.005

• Dropout rate: 0.5

In Table 3 we show the results of our embed-
dings compared to the SBWC trained with the
same parameters as detailed in Section 2.3. One
can notice that our proposed embedding achieved
the best results in the validation set for all the
named entity labels. As for the test set, we
achieved the best scores in 8 out of 13 possible
evaluations. But we must notice that as overall
performance, our system achieved an F1 score of
88.18%, while the baseline achieved only 87.76%.
Thus, our embeddings showed to be superior to
general-domain one in this extrinsic evaluation.

4.3 Visual Evaluation
In Figures 2 and 3, we show the PCA (Principal
Component Analysis) projections of our embed-
dings and the SBWC, respectively. We tried to
follow the standards of Pakhomov et al. (2010) to
categorize the terms using UMLS semantic types
in the following categories: symptoms, diseases
and drugs. Better quality and larger figures can be
accessed online12

12http://doi.org/10.5281/zenodo.2542722
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Table 3: Comparison of the extrinsic evaluation
between the proposed embeddings (SHE) and the
general-domain ones (SBWC). Bold numbers represent
the best results for each metric and data parition, with
Val meaning validation set.

SHE (our) SBWC
Val Test Val Test

Overall
Accuracy 99.51 99.62 99.45 99.57
Precision 90.63 90.42 90.30 90.87
Recall 88.25 86.03 86.12 84.45
F1 89.42 88.17 88.16 87.76

Normalizables
Precision 92.82 93.18 91.87 93.93
Recall 89.81 88.09 88.89 88.34
F1 91.29 90.56 90.35 91.05

Proteins
Precision 87.86 86.94 88.22 86.19
Recall 87.86 84.52 84.39 81.75
F1 87.86 85.71 86.26 83.91

Unclear
Precision 100 84.21 92.86 88.24
Recall 81.25 84.21 81.25 78.95
F1 89.66 84.21 86.67 83.33

One can notice that in Figure 2, there is some
overlapping between the disease and symptoms
categories, but they are not as much overlapped
as shown in Figure 3. In addition, in our embed-
dings, on the top of the drugs cluster, one can see
that most of the antibiotics are clustered together
(e.g. penicilina, eritromicina, cefazolina, doxici-
clina). However, in the SBWC projection, such
drugs are spread inside the cluster. Interestingly,
for both embeddings, the words hierro, calamina,
ajo, alcohol are the ones that are more closer to
the other two clusters.

5 Discussion and Conclusion

By the intrinsic and extrinsic experiments per-
formed in Sections 4.1 and 4.2 we were able
to show that our proposed embeddings can pro-
vide better performance than a general-domain
one, even being trained in a corpus one or-
der of magnitude smaller. We made our em-
beddings available in http://doi.org/10.
5281/zenodo.2542722.

By performing a visual evaluation of the PCA
projections of our embeddings and a general-
domain one, we also provided strong evidence that

the ones trained in a in-domain corpus can provide
better-defined clusters of words.

We oversee that the embeddings we provide can
be used in many different applications that require
them as a resource, especially the ones which em-
ploy artificial neural networks. For instance, we
studied the application in a named entity recogni-
tion example, but they can be used for sentence
similarity evaluation, text classification, machine
translation, clustering, relation extraction, for in-
stance.
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Figure 2: PCA projection of the UMNSRS concepts using our embeddings. Black means symptoms-related
terms, red means disease-related terms, while green means drug-related terms.
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Figure 3: PCA projection of the UMNSRS concepts using the SBWC embeddings. Black means symptoms-
related terms, red means disease-related terms, while green means drug-related terms.
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Abstract

Neural network models have shown promise
in the temporal relation extraction task. In this
paper, we present the attention based neural
network model to extract the containment rela-
tions within sentences from clinical narratives.
The attention mechanism used on top of GRU
model outperforms the existing state-of-the-art
neural network models on THYME corpus in
intra-sentence temporal relation extraction.

1 Introduction

A well-known challenge in leveraging electronic
health records (EHRs) for research is to extract the
information embedded in clinical texts. The recent
progress in Natural Language Processing (NLP)
techniques has facilitated the use of information in
text for various clinical applications (Wang et al.,
2017). One important NLP task in the clinical
domain is to extract temporal relations between
events and time expressions from clinical text for
various EHR-based applications, such as clinical
decision support and predictive modeling.

Along with studies in modeling clinical tempo-
ral events using structured EHR data (Zhao et al.,
2017; Che et al., 2018), a series of temporal in-
formation extraction share tasks have been orga-
nized to encourage community efforts on the tem-
poral relation extraction on unstructured clinical
texts from EHR, such as i2b2 (Informatics for
Integrating Biology and the Bedside) 2012 chal-
lenge (Sun et al., 2013) and Clinical TempEval
shared tasks (Bethard et al., 2014, 2015, 2016).
While both corpora are based on de-identified clin-
ical notes, the major differences between i2b2 and
TempEval are the evaluation and temporal event
modeling. The i2b2 challenge evaluation enumer-
ates all possible entity pairs from a clinical docu-
ment into the evaluation, while the TempEval tasks
leverage the concept of narrative containers which

will enhance conventional temporal relations. In
this study, we focus on the containment informa-
tion extraction in TempEval.

In addition to the feature-based machine learn-
ing approaches such as Support Vector Machines
(SVM) and conditional random field from top-
performing TempEval 2016 systems (Lee et al.,
2016; Abdulsalam et al., 2016; Tourille et al.,
2016), there are several machine learning sys-
tems proposed after the shared task. Leeuwen-
berg and Moens (2017) used a structured learn-
ing method to predict temporal relations: Dligach
et al. (2017) proposed an XML tag representa-
tion neural models such as Convolutional Neural
Network (CNN) and Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
mark the positions of the entities and achieved bet-
ter performance compared to token position em-
beddings. They also evaluated the contains rela-
tions solely on medical events. Lin et al. (2016)
experimented on different representations of XML
tags proposed in (Dligach et al., 2017), and the
results indicated that the input representation is
an importance factor for the performance of neu-
ral models. A bidirectional LSTM (BiLSTM) ap-
proach has also been proposed in (Tourille et al.,
2017). Their model utilized character embeddings
to create a hierarchical LSTM model with cor-
pus entities attributes as input into the embed-
ding layer of their neural architecture. Recent re-
lated works using self-training (Lin et al., 2018)
and human-like temporal reasoning via tree-based
LSTM-RNN (Galvan et al., 2018) also achieved
good performance in various evaluation scenarios,
but direct comparisons are challenging due to dif-
ferences in evaluation.

Inspired by visual attention models for object
recognition in computer vision (Xu et al., 2015;
Mnih et al., 2014), attention mechanism has also
been successfully applied in several NLP tasks
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such as machine translation (Luong et al., 2015),
machine reading (Cheng et al., 2016), document
classification (Yang et al., 2016) and relation ex-
traction (Lin et al., 2016), to obtain state-of-the-art
performance. The attention layer oversees the en-
tire sequence of recurrent neural network (RNN)
units and is trained to pay more “attention” to
salient units.

In this paper, we present an attention neural
model to identify containment relations from clin-
ical narratives with annotated medical events and
temporal information. The model achieves state-
of-the-art performance in intra-sentence temporal
relation extraction while using minimal entity fea-
tures and external knowledge.

2 Materials

We use the THYME (Temporal Histories of Your
Medical Event) corpus (Styler IV et al., 2014) to
evaluate our proposed models. THYME corpus
is extracted from Mayo Clinic colon cancer data,
which contains clinical notes from 200 patients.
The corpus is manually de-identified to remove
patient identification, and is fully annotated into
two types of entities: Timex3 and Event. Timex3
contains temporal information like event dates and
timestamps. The definition of event is a broad con-
cept of patient health related conditions and men-
tions.

All the Event entities contain 5 attributes,
“Modality”, “Degree”, “Polarity”, “Type” and
“DocTimeRel”. The Document Time Relations
(DocTimeRel) specifies the temporal relation of
the event to the time of service. In this study,
we focused on the temporal relations between
two different entities within one sentence, namely
intra-sentence relations as referred in (Tourille
et al., 2017). Therefore, we did not include Doc-
TimeRel, which is an event attribute, into our
model and evaluation.

3 Methods

We define the temporal relation extraction prob-
lem as a relation classification problem among re-
lation candidates generated from annotated enti-
ties. Specifically, for all the events within one sen-
tence, we enumerate all possible entity pairs as re-
lation candidates. Then, we assign relation labels
based on the gold standard annotations provided
with the corpora. In THYME corpus, the gold
standard annotations consist of relation between

two entities and its relation type. When we pre-
pare the dataset for relation classification, for each
combination of entities, we have three potential
labels: 1) the first entity “CONTAINS” the sec-
ond entity in temporal; 2) the first entity is “CON-
TAINED” by the second entity; 3) the two entities
do not have a containment temporal relation, i.e.
“NA”.

3.1 Input Representation
Given clinical narratives with annotated entities,
we first use the Punkt sentence tokenizer1 to sepa-
rate the sectionized raw text into section titles and
sentences. Then an associated encoding of enti-
ties into XML tags are constructed, following the
work of Lin et al (Lin et al., 2017). The event
entities are surrounded by “<e>” and “</e>”.
The temporal entities are replaced by the special
XML tags from time class provided with the entity
annotations, e.g. “<time>”, “<date>”, “<dura-
tion>” and “<prepostexp>”, and surrounded by
“<t>” and “</t>”. In our preliminary experi-
ments, this entity representation also leads to bet-
ter results than position embeddings, which use
relative distances between two entities as index
to compute the high-dimensional embeddings of
each word (Zeng et al., 2014).

3.2 Attention Neural Models
To improve the system performance of neural
network models, we would like to leverage the
emerging attention mechanism. Attention based
RNN uses an attention layer to capture the salient
units of a sequence by maintaining a context vec-
tor for the sequence models. Word-level attention
weights can be interpreted as importance measure
in given contexts, i.e. temporal relation indicators
for each relation instance of a sentence. The ar-
chitecture of our proposed model is shown in Fig-
ure 1. In the example, the entities “monitored”
and “three months” are surrounded by the XML
tags introduced above. The Timex3 entity “three
months” is replaced by the entity type “<dura-
tion>” when feeding into the word embedding
layer. Ideally, a high attention weight will be given
to the preposition “in”, as it is the word expressing
the containment relations between the event and
the time. Besides, the entity and the tags may also
need to contribute to the discrimination of differ-
ent relation types.

1https://www.nltk.org/_modules/nltk/
tokenize/punkt.html
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Figure 1: The architecture of attention based RNN for
temporal relation extraction.

The vectors of RNN units are denoted as hi,
where i is the index of the input tokens in the gen-
erated relation instances. Similar to (Yang et al.,
2016), we would like to obtain a word-level at-
tention weights ai for each entity pair, which is
calculated based on the sequence of RNN outputs,
either LSTM or Gated Recurrent Unit (GRU) pro-
posed in (Cho et al., 2014). To reward the salient
units for relation classification, a trainable context
vector uv is used to retrieve the attention weights
ai, and it is computed from trainable parameters
Wv and bv from the attention layer. The word-
level attention weight ai is calculated using a soft-
max function. Afterwards, the sentence vector s is
computed as the weighted sum of ai. Specifically,
the sentence vector can be computed as:

ui = tanh(Wvhi + bv),

ai =
exp(uTi uv)∑
i exp(u

T
i uv)

,

s =
∑

i

aihi.

The word embedding, RNN and attention layers
combined can be regarded as an instance encoder.
For each relation instance generated as described
in Section 3.1, those layers together encode the in-
stance into a multi-dimensional vector s. The en-
coded relation instance vector s is then fed into
a fully connected layer. The output dimension of
the fully connected layer is set to the number of
potential labels, which is 3 in this study.

Then, a softmax function normalizes the out-
puts into a predicted probability of 3 labels, where

the sparse cross entropy loss is calculated and min-
imized during training. We take the maximum
probability as the relation label for the evalua-
tion of closure-enhanced precision, recall and F1-
score.

3.3 Evaluation

The official evaluation scripts of TempEval2 use
the concept of “narrative containers” (Miller et al.,
2013) to validate the results. Narrative contain-
ers is a set of events that contains multiple tempo-
ral relations. The official evaluation uses narrative
container to evaluate the system performance, in-
stead of evaluating directly from the relation clas-
sification results by instances. The usage of clo-
sure is intended to reduce the penalty caused by
extracting the implicit relations that can be in-
ferred between events but are not included in the
annotation.

Following the shared task of TempEval 2016
and recent related work on the THYME corpus,
we focus on the extraction of temporal contain-
ment relations. This is because the prevalence of
contains relations is much higher than other tem-
poral relations.

4 Experiments and Discussion

We ran our experiments on similar settings as (Dli-
gach et al., 2017). The cross sentence relations are
excluded in our evaluation.

The models are implemented in Keras with Ten-
sorflow backend. The experiments are done on a
computing server with NVIDIA Tesla P40 GPU.
Each epoch of attention based LSTM took approx-
imately 300 seconds while GRU will take approxi-
mately 250 seconds, due to fewer trainable param-
eters needed for each unit.

The 300-dimension word embeddings from
Glove-6B3 are selected as the input based on our
preliminary experiments on trained embeddings
from biomedical domain (Wang et al., 2018) as
well as the THYME corpus. The embedding of
out-of-vocabulary words, including special XML
tags, are determined by random sampling from
unit distribution in [-0.1, 0.1]. The hyperparam-
eters are selected based on the optimal combina-
tion from the development set when training on

2https://github.com/bethard/
anaforatools

3https://nlp.stanford.edu/projects/
glove/
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Model
Event-Time Event-Event

P R F1 P R F1
THYME (Dligach et al., 2017) 0.577 0.845 0.685 0.595 0.572 0.584
CNN tokens (Dligach et al., 2017) 0.683 0.717 0.700 0.688 0.412 0.515
ATT-LSTM 0.770 0.722 0.744 0.535 0.582 0.558
ATT-GRU 0.765 0.737 0.750 0.617 0.550 0.579

Table 1: Performance comparison in Event-Time and Event-Event containment relations on test set

Model P R F1
BiLSTM (Tourille et al., 2017) 0.670 0.681 0.675
BiLSTM + cTAKES (Tourille et al., 2017) 0.663 0.704 0.683
ATT-LSTM 0.687 0.666 0.676
ATT-GRU 0.698 0.684 0.690

Table 2: Performance comparison in intra-sentence containment relations on test set

the training set. To avoid potential overfitting dur-
ing the training phase, we apply drop out tech-
nique (Srivastava et al., 2014) with the drop out
rate of 0.5. Adam optimizer (Kingma and Ba,
2014) is used with learning rate 0.001 to train
the model and sparse categorical cross entropy as
the loss function. We apply early stopping dur-
ing training to avoid overfitting by terminating the
training process if there is no validation accuracy
increase in consecutive 4 epochs. Then the train-
ing and development set are combined to train the
model while tested on the testing set. The batch
size of training is 64, and the unit size for RNN
units is set 128 based on hyperparameter tuning.

The evaluation results on Event-Time and
Event-Event relation extraction in closure-
enhanced precision (P), recall (R) and F1-score
are shown in Table 1. “ATT-” denotes our atten-
tion based RNN models. The results in Table 1
are directly comparable with the work in (Dligach
et al., 2017), since the models of Event-Time
Event-Event relations are trained separately. The
most significant improvement is from the Event-
Time relation extraction, where the ATT-GRU
(0.750) outperforms the CNN model by 0.050.
In the Event-Event relations, ATT-GRU model
outperforms the CNN model, but is not as good
as the feature based SVM model in the THYME
system (-0.05). One potential reason for the
performance gain is that the ATT models oversee
all units from the RNN layer rather than focusing
on the max pooling of local features as CNN.

When we combined both Event-Time and
Event-Event relations together, Table 2 shows the

results for all temporal relations within each sen-
tence. Compared to other neural network mod-
els, our proposed ATT-GRU (0.690 F1) is favor-
ably comparable to the BiLSTM model incorpo-
rating cTAKES outputs4 (BiLSTM+cTAKES) and
character embeddings (+0.007). We only use the
raw text and annotated entity types, while BiL-
STM+cTAKES requires finer granularity of the
UMLS5 entity types and semantic types as inputs.
It is our future perspective to utilize character-level
information and entity attributes as the input to
further improve our system. ATT-GRU performs
better than LSTM in all the three evaluation sce-
narios. One potential reason is that GRU has less
trainable parameters compared to LSTM, thus it
may converge better in a corpus with relatively
limited positive relational instances.

One challenge for neural models in the tempo-
ral relation extraction task is class imbalance. The
majority of the errors are caused by the confusion
between negative (“NA”) and positive (“CON-
TAINS”+“CONTAINED”) instances, while very
few of the errors are from the confusion of “CON-
TAINS” and “CONTAINED” relations. The ratios
between positive and negative relations of Event-
Event, Event-Time and those combined are 1:3.4,
1:12.7 and 1:8.4, respectively. The class weights
are tuned in the feature-based THYME system to
improve the balance of precision and recall, but
there is no such effort on other neural models in
both our work and (Dligach et al., 2017).

4https://ctakes.apache.org/
5Unified Medical Language System: https://www.

nlm.nih.gov/research/umls/
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Lin et al. (2017) analyzed the impact of differ-
ent XML tags for the temporal entities as inputs.
The one-token tag representation for multi-word
temporal repressions (e.g. replacing the Timex3
mention “March 11, 2014” by “<date>”) shows
improvements on the classification, which is also
used in our study. Compared to Lin’s method, our
model is a single neural model instead of a com-
bined model of CNN and SVM for Event-Event
and Event-Time relations, respectively. Leeuwen-
berg and Moens (Leeuwenberg and Moens, 2017)
used structured learning on all relations within to-
ken distance of 30. The framework can also be ex-
tended to model inter-sentence relations by adding
such relation instances into the training and test-
ing, but fine-tuned down-sampling needs to be
done to optimize its performance.

5 Conclusion and Future Work

In this paper, we presented the attention-based
neural networks on temporal relation extrac-
tion. The proposed attention based GRU model
achieved state-of-the-art performance in intra-
sentence containment temporal relation extraction
on THYME corpus.

In future, we would like to adopt the hierar-
chical model with character embeddings in the
word-level representation into our attention based
neural networks. We would also like to ex-
plore the comparison between different varia-
tions of the attention mechanisms such as multi-
head attention (Vaswani et al., 2017) and self-
attention (Cheng et al., 2016; Verga et al., 2018).
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Abstract

Electronic health records (EHRs) are notori-
ous for reducing the face-to-face time with
patients while increasing the screen-time for
clinicians leading to burnout. This is espe-
cially problematic for psychiatry care in which
maintaining consistent eye-contact and non-
verbal cues are just as important as the spoken
words. In this ongoing work, we explore the
feasibility of automatically generating psychi-
atric EHR case notes from digital transcripts
of doctor-patient conversation using a two-step
approach: (1) predicting semantic topics for
segments of transcripts using supervised ma-
chine learning, and (2) generating formal text
of those segments using natural language pro-
cessing. Through a series of preliminary ex-
perimental results obtained through a collec-
tion of synthetic and real-life transcripts, we
demonstrate the viability of this approach.

1 Introduction

An electronic health record (EHR) is a digital ver-
sion of a patient’s health record. EHRs were in-
troduced as a means to improve the health care
system. EHRs are real-time and store patient’s
records in one place and can be shared with other
clinicians, researchers and authorized personals
instantly and securely. The use and implementa-
tion of EHRs were spurred by the 2009 US Health
Information Technology for Economic and Clin-
ical Health (HITECH) Act and 78% office-based
clinicians reported using some form of EHR by
2013 (Hsiao and Hing, 2014).

Presently, all clinicians are required to digitally
document their interactions with their patients us-
ing EHRs. These digital documents are called case
notes. Manually typing case notes is time con-
suming (Payne et al., 2015) and limits the face-
to-face time with their patients, which leads to
both patient dis-satisfaction and clinician burnout.

Limited face-to-face time is especially disadvan-
tageous for working with mental health patients
where the psychiatrist could easily miss a non-
verbal cue highly important for the correct diag-
nosis. Moreover, EHR’s usability related prob-
lems lead to unstructured and incomplete case
notes (Kaufman et al., 2016) which are difficult
to search and access.

Due to the above-mentioned downsides of
EHRs, there have been recent attempts for de-
veloping novel methods for incorporating vari-
ous techniques and technologies such as natu-
ral language processing (NLP) for improving the
EHR documentation process. In 2015, American
Medical Informatics Association reported time-
consuming data entry is one of the major prob-
lems in EHRs and recommended to improve EHRs
by allowing multiple modes of data entry such
as audio recording and handwritten notes (Payne
et al., 2015). Nagy et al. (2008) developed a
voice-controlled EHR system for dentists, called
DentVoice, that enables dentists to control the
EHR and take notes over voice and without taking
off their gloves while working with their patients.
Kaufman et al. (2016) also developed an NLP-
enabled dictation-based data entry where clini-
cians can write case notes over voice and able to
reduce the time by more than 60%.

Psychiatrists mostly collect information from
their patients through conversations and these con-
versations are the primary source of their case
notes. In a long-term project in collaboration with
National Alliance of Mental illness (NAMI) Mon-
tana and the Center for Mental Health Research
and Recovery (CMHRR) at Montana State Uni-
versity, we envision a pipeline that automatically
records a doctor-patient conversation, generates
the corresponding digital transcript of the conver-
sation using speech-to-text API and uses natural
language processing and machine learning tech-
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niques to predict and/ or extract important pieces
of information from the text. This relevant text is
then converted to a more formal written version of
the text and are used for auto-populating the dif-
ferent sections of the EHR form.

In this work, we focus on the back-end of the
above mentioned pipeline, i.e. we explore the fea-
sibility of populating sections of EHR form us-
ing the information extracted from a digital tran-
script of a doctor-patient conversation. In order
to gather gold-standard data, we develop a hu-
man powered digital transcript annotator and ac-
quire annotated versions of digital transcripts of
doctor-patient conversations with the help domain
experts. As the first step in our two-step approach,
we develop a machine learning model that can pre-
dict the semantic topics of segments of conversa-
tions. Then we develop natural language process-
ing techniques to generate a formal written text us-
ing the corresponding segments. In this paper, we
present our preliminary findings from these two
tasks; Figure 1 depicts the high-level overview of
our two-step approach.

Previous studies most related to our work are
(1) Lacson et al. (2006) predicting semantic topics
for medical dialogue turns in the home hemodial-
ysis, and (2) Wallace et al. (2014) automati-
cally annotating topics in transcripts of patient-
provider interactions regarding antiretroviral ad-
herence. While both studies successfully use ma-
chine learning for predicting semantic topics (al-
beit different topics to ours) they do not focus on
the development of NLP models for text summa-
rization (i.e. formal text generation).

The rest of the paper is structured as follows.
We describe our two-step approach, data collec-
tion and processing, machine learning models and
natural language processing methods in chapter 2.
In chapter 3, we report and discuss the perfor-
mance of our methods. We summarize our find-
ings, discuss limitations and potential future work
in chapter 4.

2 Methods

2.1 Approach

As depicted in Figure 1, we divide the task of
generating case notes from digital transcripts of
doctor-patient conversations into two sub tasks:
(1) using supervised learning models to predict se-
mantic topics for segments of the transcripts and
then (2) using natural language processing models

to generate a more formal (i.e. written) version of
the text which goes in to the corresponding section
of the EHR form.

These semantic topics are suggested by the do-
main experts from NAMI Montana and corre-
spond to the main sections of a typical EHR form.
They are (1) Client details: personal information
of a patient, such as name, age, birth date etc., (2)
Chief complaint: refers to the information regard-
ing a patient’s primary problem for which the pa-
tient is seeking medical attention., (3) Medical his-
tory: any past medical condition(s), treatment(s)
and record(s), (4) Family history: indicates medi-
cal history of a family member of the patient, and
(5) Social history: refers to information about pa-
tient’s social interactions, e.g. friends, work, fam-
ily dinner etc. We call these semantic categories
“EHR categories” interchangeably. The formal
text is essentially the summary text that the clini-
cian would write or type into the EHR form based
on the interaction with the patient.

Figure 1: High-level overview of our approach. Task1:
Predicting EHR categories. Task 2: Formal text gen-
eration. ML: Machine Learning. EHR: Electronic
Heallth Record.

2.2 Transcripts of doctor-patient dialogue

Our raw dataset is composed of 18 digital tran-
scripts of doctor-patient conversations and covers
11 presenting conditions. The presenting condi-
tions are Attention-deficit/ hyperactivity disorder
(ADHD), Alzheimer’s disease, Anger, Anorexia,
Anxiety, Bipolar, Borderline Personality Disor-
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der (BPD), Depression, Obsessive Compulsive
Disorder (OCD), Post Traumatic Stress Disorder
(PTSD) and Schizophrenia. All transcripts are la-
beled with speaker tags “Doctor:” and “Patient:”
to indicate the words uttered by each individual.

Thirteen of these transcripts are synthetic in that
they are handwritten (i.e. typed) by a domain
expert from NAMI Montana who has years of
experience working with mental illness patients.
Hence, each synthetic transcript represents a real
case scenario of conversation between a patient
(suffering from one of the presenting conditions
mentioned above) and a psychiatric doctor/ clin-
ician who verbally interviews the patient in a 2-
person dialogue set up. Table 1 reports summary
statistics.

Rest of the five transcripts are part of Coun-
seling & Therapy database1 from the Alexander
Street website. Hence, we refer to them as AS
transcripts for the rest of the paper. Each of these
AS transcripts is generated from a real-life conver-
sation between a patient and a clinician. Majority
of these transcripts cover multiple mental condi-
tions.

In order to annotate transcripts using seman-
tic topics mentioned above, we develop a human-
powered transcript annotator as shown in Figure
2, a responsive web application, that takes digital
transcripts as input, breaks down each transcript
into segments where each segment starts with a
speaker tag (Doctor: or Patient:) and generates
samples by pairing each doctor segment with the
followed by patient segment. The application dis-
plays the generated samples, from one transcript at
a time, in the same order as they appear in the tran-
script and allows the user to annotate them with
one of the six semantic topics.

A group of three annotators including two
domain-experts from NAMI Montana use the
above annotator tool to single-annotate (through
collaboration) all 18 transcripts. As highlighted
in Figure 2, annotations are added at the con-
versation pair level. We define the conversation
pair as the entire text associated with a consecu-
tive pair of “Doctor:” and “Patient:” speaker tags.
Each conversation pair is annotated with one of
the five topics (i.e. EHR categories). These la-
bels are based on the main focus/ subject/ topic of
the corresponding conversation pair as judged by

1https://search.alexanderstreet.com/health-
sciences/counseling-therapy

Figure 2: Screen shot of the human-powered transcript
annotator. Left panel displays an example transcript
while the semantic concepts are shown on the right.

the expert annotators. Any conversation pair that
was found to be irrelevant to the five categories
is annotated with a new category called “Others”.
Conversation pair level annotations eliminated the
challenges in annotating a question or an answer
on their own without the proper context provided
by the preceding/ following sentences.

2.3 Task 1: Predicting EHR categories
In this task, we use the annotated digital tran-
scripts to generate the training data to train super-
vised classification models using two different ap-
proaches. These two approaches mainly differ in
how the transcripts were segmented into examples
(i.e. training instances) for generating the train-
ing datasets as described in the sections 2.3.1 and
2.3.2. Regardless of the approach, we label the
examples with one of the six class labels analogs
to the semantic topics (EHR categories): Client
Details, Chief Complaint, Family History, Social
History, Medical History and Others.

2.3.1 Training data - Model 1
In this approach, we build a training dataset by tak-
ing a conversation pair as a single example (i.e.
instance). Each example contains at least two sen-
tences where the first sentence is spoken by the
doctor and the second sentence is spoken by the
patient. The class label for each example is the
corresponding annotation from the original tran-
script; this results in six class labels. A short ex-
amples of the training dataset and distribution of
class labels are reported in Tables 2 and 3.
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Property
Synthetic Transcripts AS Transcripts

Total Mean STDEV Total Mean STDEV
No. Sentences 1930 148.4 55.6 1390 278.0 74.9
No. Questions 513 39.4 19.8 188 37.6 7.1
No. Dialogue turns 861 66.2 40.0 684 136.8 55.0
No. Sentences spoken by the Doctor 751 57.7 30.0 581 116.2 44.3
No. Sentences spoken by the Patient 1179 90.6 33.2 809 161.8 60.5

Table 1: Summary statistics on 13 synthetic transcripts vs. 5 (AS) Alexander Street transcripts.

No. Example Class Label
1 Doctor: How many voices do you hear?

Chief Complaint
Patient: Two. They talk all the time.

2 Doctor: Your record shows that you take antidepressants pills regularly.
Do you hang out with your parents, co-workers or friends? Do
you talk to them?

Social History

Patient: Sometimes I hang out with my mom. Yes, I talk to my co-
workers but only for work. I used to have a friend who moved
couple months ago and we don’t talk anymore.

Table 2: Examples in Model 1 training data.

Class Label
Synthetic

All
Model 1 Model 2

Chief Complaint 309 870 1746
Client Details 32 88 198
Family History 28 101 149
Medical History 34 74 85
Others 12 174 264
Social History 19 51 110
Total 434 1358 2552

Table 3: Distribution of class labels in training data.
All: represents Model 2 training data with all 18 tran-
scripts.

Segmenting the transcripts into training exam-
ples in this fashion is convenient because there is
a one-to-one mapping between the semantic topics
in the original annotated transcripts and the class
labels of the examples; additional reconciliation is
not needed. However, sometimes, the doctor or the
patient talks about more than one topic (inside the
same conversation pair). For example, although
example 2 in Table 2 is labeled with Social His-
tory, the conversation pair is composed of infor-
mation relevant to both the medical history and so-
cial history. Therefore, segmenting the transcript
to smaller pieces could be more beneficial for im-
proved overall performance. This is the motivation
for the second approach mentioned in the next sec-

tion.

2.3.2 Training data - Model 2

In this approach, we use a finer-level granularity
(than conversation pairs) for segmenting the tran-
scripts for generating training examples. We start
with the Model 1 training data and tokenize the
text of each example at the sentence level by iden-
tifying the sentence boundaries using sentence to-
kenizer in NLTK2. We first assign labels to each
sentence based on the class label of the original
source (i.e. conversation pair). Then, one of the
human annotators manually reviewed the class la-
bels and makes corrections if needed.

However, labeling at the sentence-level is also
challenging because the information that defines
the topic (class label) lies in the question and is
sometimes followed by a short answer, e.g. Table
4 example 1. We also observe the opposite sce-
nario where the answer holds the context, e.g. Ta-
ble 4 example 2, and scenarios where the informa-
tion lies in both the question and the answer, e.g.
Table 4 example 3. So, it is understood that with-
out pairing the questions with their corresponding
answers (or being aware of the context provided
by the question or the answer), it is challenging
even for human annotators to label these sentences
individually. However, We also observe that a

2https://www.nltk.org/
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question is commonly followed by its correspond-
ing answer in the form of a non-interrogative sen-
tence. Therefore, we use the following approach
to overcome the above challenge.

We first combine the grammatical rules of the
English language in forming a question (British
Council, 2019) and spaCy3, an industrial-strength
natural language processing API, to identify the
questions in the transcript. Then, to preserve the
context, we pair each question with the following
non-interrogative sentence and combine them into
a single example. In other words, Model 2 training
instances can be single sentences or a conversation
pair or anything in between. Several examples of
Model 2 dataset is shown in Table 5. These exam-
ples correspond to the Model 1 examples depicted
in Table 2.

# Question-answer pair Class Label
1 Doctor: How old are you? Client

Patient: 23. Details
2 Doctor: Who do you take? Medical

Patient: I take Ibuprofen. History
3 Doctor: What is your name? Chief

Patient: Name is a game. Compliant

Table 4: Question-answer pair dependency.

2.3.3 Machine learning models

To explore the feasibility of classifying informa-
tion from digital transcripts, we train separate su-
pervised learning classifiers using both training
datasets (i.e. Model 1 and Model 2). Specifically,
since each instance is annotated with exactly one
class label (out of six), we model this as a multi-
class problem and use the one-vs-rest (Bishop,
2006) classification strategy.

We apply Support Vector Machines (SVMs)
as our machine learning algorithm (which was
found to be the best performer in an initial study
in comparison with a few other popular ma-
chine learning algorithms: k-Nearest Neighbors,
Naı̈ve Bayes, Decision Tree, Neural Networks
– data not shown). We use stop word removal
and lemmatization for pre-processing and Bag-of-
Words model for feature extraction. We use sci-
kit learn (Pedregosa et al., 2011) python machine
learning library for implementing these models.
For our preliminary experiments reported in this

3https://spacy.io/

paper, we do not use any model checking or pa-
rameter tuning and use default settings.

2.3.4 Task 2: Formal text generation
Due to the error-prone nature of Model 1 training
data described above, we exclusively use Model 2
training data for the formal text generation. The
high-level idea is that in order to generate a case
note for an unseen transcript, we first segment
the transcript at the Model 2 granularity and pre-
dict the EHR categories using the Model 2 clas-
sifier. Then instances are grouped based on their
predicted EHR categories. Generating case notes
with sentences as they appear in the transcripts
(i.e. verbatim) will result in redundant case notes
that will be difficult to search for important in-
formation. An assertive sentence generated by
gathering information from a question-answer pair
will be easier to read and concise. Therefore, for
each category, a formal written version of the text
is generated using the method described below.
We ignore ‘Others’ category in our current setup
because they represent irrelevant information and
any information under this class is likely not im-
portant for case note.

In order to generate formal text from an in-
stance, the entire text needs to be rewritten using
an assertive sentence, subject in third person sin-
gular form, correct tense, verb form and sentence
structure. We concatenate each piece of formal
text within the category to form a paragraph. Thus,
our method results in generating a case note com-
posed of five paragraphs corresponding to the first
five EHR categories.

As illustrated in Figure 3, our method generates
formal text in several steps. As mentioned above,
a sample can be either a sentence or a question-
answer pair (as depicted in Table 5). First, we
identify the number of sentences in the example
text. Examples composed of a single sentence
(e.g. Table 7, examples 1-3) requires minimal
processing to generate formal text. We use part-
of-speech tagging from python module spaCy to
identify the subject, main verb and the auxiliary
verb(s) of the sentences. If the subject is a first
(I) or second person (you), the subject is replaced
with the third person singular form (he/she). Clin-
icians typically collect personal information, such
as name, gender and contact information, prior to
their conversation or appointment and so they can
be fed into our model as input to generate accurate
case notes.
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No. Example Class Label
1 How many voices do you hear? Two. Chief Complaint
2 They talk all the time. Chief Complaint
3 Your record shows that you take antidepressants pills regularly. Medical History
4 Do you hang out with your parents, co-workers or friends? Do you talk to

them? Sometimes I hang out with my mom.
Social History

5 Yes, I talk to my co-workers but only for work. Social History
6 I used to have a friend who moved couple months ago and we don’t talk

anymore.
Social History

Table 5: Examples in Model 2 training data.

Figure 3: An overview of formal text generation steps.

If the sentence contains auxiliary verb(s), the
first auxiliary verb is replaced with its third per-
son singular form, e.g. am with is, and the sec-
ond auxiliary verb, if any, and the main verb are
kept as they are. If the sentence does not contain
any auxiliary verbs, the proper form of the main
verb depends on the tense of the sentence. If the
sentence is in the present tense, the main verb is
replaced with its third person singular form, e.g.
run with runs. For sentences in the past tense, the
main verb is kept unchanged since the form of the
verb is the same for all persons, e.g. took. A sen-
tence in future tense contains at least one auxil-
iary verb, shall or will, and therefore our method
processes the sentence as a sentence in the present
tense; there is no need to add any additional func-

tionality to cover this tense.

If an instance is composed of multiple sen-
tences, the last sentence is always a non-
interrogative sentence and is the answer to the
question posed in the very first sentence. In this
case, the formal text depends on both the ques-
tion and the answer. If the answer starts with an
affirmation or negation word (e.g. yes, no, yeah,
never), the question is changed to an affirmative or
negative sentence, respectively, and the assertive
sentence is added as a separate sentence after re-
moving the leading affirmation or negation word
(e.g. Table 7, examples 4-5). If the answer does
not start with any affirmation or negation word,
the answer is further analyzed to see whether it is
a short answer. If not, the question text is ignored
and the answer text is returned as the formal text
(e.g. Table 7, example 6).

In the case of short answers, an answer alone
does not provide the full context to construct the
formal text and we need to rely on both the ques-
tion and the answer. For e.g. the wh- questions
(e.g. when, who) are usually followed by a rela-
tively short answer that requires context from the
question text as well. This required more sophisti-
cated rules and we are presently working on gen-
erating formal text for this scenario. Examples and
the intended “ideal” formal text for them are given
in Table 8.

While generating formal text, all first and sec-
ond person pronouns, regardless their position, are
replaced with their third person singular form and
the verbs are also replaced with its third person
singular form, where applicable. Regular expres-
sions are used to remove leading words (e.g. ok,
right, yes, and, but, hmm) from the assertive sen-
tences that have no importance to be included in
the formal texts. This functionality was imple-
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mented using NodeBox4 Python library.

2.4 Experimental setup and metrics

In terms of Task 1, we evaluate our supervised ma-
chine learning models using 5 fold stratified cross-
validation and the performance is reported using
the AUROC (Area Under the ROC Curve) scale
(Bewick et al., 2004). A score of 1 corresponds
to the performance of an ideal classifier whereas
a score of 0.5 relates to the performance of a ran-
dom classifier. Because Task 2 (formal text gener-
ation aspect) of the project is a work-in-progress,
we highlight the scenarios that our model is able
to handle and mention the more challenging sce-
narios in future work.

3 Results and Discussion

In an initial experiment, we assessed the perfor-
mance of Model 1 and Model 2 training data us-
ing the 13 synthetic transcripts. According to
our preliminary results, SVMs with linear kernel
performs the best with a macro-average AUROC
score of 79% for Model 1. For Model 2, the SVMs
classifier achieves a macro-average AUROC score
of 81%. However, note that these numbers are not
directly comparable because Model 1 training in-
stances are different from that of Model 2. Still,
this suggested that Model 2 is superior in perfor-
mance. This is intuitive because Model 2 training
data is a more refined dataset as described previ-
ously. This observation, coupled with the fact that
Model 2 data are more conducive to formal text
generation, we used Model 2 training data for the
rest of the experiments.

Next, we assessed the performance of Model 2
using all the transcripts (i.e. 13 synthetic and 5 AS
transcripts). There is a clear performance dip (0.81
vs. 0.76) when the AS transcripts are added to the
training data. This is intuitive because we believe
the AS transcripts may have lead to data that is
harder to generalize for the classifiers. The reason
is that the majority of them is associated with mul-
tiple presenting conditions and hence the content
of the questions and answers may be broader than
synthetic transcripts. Also, the language charac-
teristics between the synthetic and AS transcripts
have a noticeable difference according to Table 1.
However, this provides valuable insight into the
importance of the robustness of the classifier. In

4https://www.nodebox.net/code/index.php/Linguistics

other words, caution must be exercised when syn-
thetic data are used for training machine learning
models. Note that we did not conduct a sepa-
rate experiment with only the AS transcripts be-
cause the number of examples for some of the ill-
represented classes were deemed inadequate.

Class Label AUROC STDEV

Chief Complaint 0.74 0.02
Client Details 0.73 0.04
Family History 0.77 0.04
Medical History 0.78 0.07
Others 0.84 0.03
Social History 0.67 0.06

Macro-average 0.76

Table 6: Performance of Model 2 training data using
all transcripts (13 artificial and 5 AS). Performance
collected through 5-fold cross validation, repeated 10
times.

We observe that the performance for the indi-
vidual semantic topics (EHR categories) fall in the
range of 0.67 (Social History) and 0.84 (Others) as
depicted in Table 6. But there is no correlation be-
tween the class distribution and the performance
as evident from Table 3. Overall, these numbers
suggest that the words of the transcript are rea-
sonably informative for differentiating EHR cat-
egories but there is definitely room for improve-
ment. One such improvement may come from fo-
cusing on the type of the words in addition to their
lexical value. This view is supported by the top 5
tokens identified by the classifier as the most im-
portant tokens for each category (Table 9). For ex-
ample, many of the top words for Family History
are names of family members. We also empha-
size that the performance reported is from models
that work with BoW features and default param-
eter values, suggesting that the use of a compre-
hensive feature/ model selection procedure would
likely yield better results.

As mentioned above, our formal text generation
module is able to handle the scenarios listed in Ta-
ble 7. However, instances in which the context
lies in both the question and the answer (e.g. Ta-
ble 4 example 3) are clearly more challenging and
hence would require sophisticated rules. In such
cases, the challenge is to extract information from
both the question as well as the answer and to form
an assertive sentence using the combined informa-
tion. We are currently working on this scenario.
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No. Example Generated Formal Text
1 I do not seem to be coping with things. He does not seem to be coping with things.
2 I woke up about 4 am last night. He woke up about 4 am last night.
3 My sister said I should come. His sister said he should come.
4 Do you have any sort of hallucination and

delusion? No.
He does not have any sort of hallucination and
delusion.

5 Has this been going on for some time? Yeah,
a few months really.

This has been going on for some time. A few
months really.

6 Ok, so what is brought you here today? My
sister’s noticed, I am just a bit fed up really
with some mood swings.

His sister’s noticed, he is just a bit fed up re-
ally with some mood swings.

Table 7: Formal Text Generation: example inputs and the generated text.

No. Example Ideal Formal Text
1 Where do you work? A shop near the mall. He works in a shop near the mall.
2 When did you wake up last night? It was be-

fore 4.
He woke up before 4 last night.

3 When did that happen? Then I was 10. That happened when he was 10.
4 How often do you exercise? Not that much, I

play basketball on Mondays and go for a run
on Wednesdays and Saturdays.

He does not exercises much. He plays bas-
ketball on Mondays and goes for a run on
Wednesdays and Saturdays.

5 Which color shall we use? Red, use red. We shall use red.
6 In what way does he push her? Not like with

hands, just ignores her to make her mad.
He does not push her with hands, just ignores
her to make her mad.

Table 8: Formal Text Generation: challenging examples (requiring sophisticated rules) and their ideal formal text.

Class Label Top five features
Chief Complaint percent, stuff, feeling, num-

ber, feel
Client Details meet, learned, write, pack,

style
Family History cousin, supportive, dad,

married, family
Medical History teen, asthma, dr., prozac,

advair
Others lab, ok, let, right, thank
Social History comment, wellbutrin,

racist, share, friend

Table 9: List of top five features per category used by
the machine learning classifier.

Table 8 depicts examples from this scenario and
the ideal formal text that must be generated.

4 Conclusion and Future Work

In this work, we focus on the problem of automati-
cally generating case notes from digital transcripts
of doctor-patient conversations, using a two-step

approach: (1) predicting EHR categories and (2)
generating formal text. On the task of predict-
ing semantic topics for segments of the transcripts,
we develop a supervised learning model while for
the subsequent task of generating a formal ver-
sion of the text from those segments, we develop
a natural language processing model. Accord-
ing to preliminary experimental results obtained
using a set of annotated synthetic and real-life
transcripts, we demonstrate that our two-step ap-
proach is a viable option for automatically gener-
ating case notes from digital transcripts of doctor-
patient conversations.

However, as noted previously, this is an ongoing
project. The immediate attention is paid to han-
dling the case of generating case notes for exam-
ples related to short answers given in Table 8. Due
to the complexity of this scenario, sophisticated
rules that make use for entities identified in the text
must be utilized. We plan to transcribe authentic
doctor-patient interactions and train a new classi-
fication model using these transcripts. We also in-
tend to build a prototype and send it to clinicians
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for testing using PDQI-9 (Stetson et al., 2012) to
check the quality of our generated case notes.
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Abstract

Past prescriptions constitute a central element
in patient records. These are often written
in an unstructured and brief form. Extract-
ing information from such prescriptions en-
ables the development of automated processes
in the medical data mining field. This paper
presents a Conditional Random Fields (CRFs)
based approach to extract relevant information
from prescriptions. We focus on Finnish lan-
guage prescriptions and make use of Finnish
language specific features. Our labeling ac-
curacy is 95%, which compares favorably to
the current state-of-the-art in English language
prescriptions. This, to the best of our knowl-
edge, is the first such work for the Finnish lan-
guage.

1 Introduction

Processing and mining unstructured data is a ma-
jor contemporary challenge. Automated methods
reduce human labor and increase accuracy and
proficiency. Application of such methods revo-
lutionized many processes in the healthcare sec-
tor by eliminating huge amounts of manual work
needed to process archive files. Automated pro-
cessing of past patient data, such as prescriptions,
allows easy digital access to patient records and
allows healthcare practitioners to quickly inquire
about family history, past medication usage, and
other important data.

A large number of medical archives are in text
format. Prescriptions, clinical reports, and other
clinical texts are widely available but the prob-
lem with most of these texts is that they are un-
structured and cannot be processed into a struc-
tured database directly. Extracting information
from these is an important data mining problem
called clinical text analysis.

In this paper, we will introduce an approach to
extract entities from prescriptions. These entities

are dosage, dosage unit and frequency. All pre-
scriptions are in the Finnish language. Finnish
is an agglutinative language with rich derivational
and inflectional morphology. Morphemes mostly
come afterword stem as suffixes and phonetics
may also change depending on the morphemes.
Finnish has complex vowel harmony and conso-
nant gradation processes which causes large vari-
ations in each word stem.

This paper is organized as follows: In Section
2 we briefly introduce some important works as
related works. Section 3 is about data that we used
for training and also is about prepossessing step.
In Section 4 we give information about the model
and approach that we used in the paper. In Section
5 we present experimental results and we discuss
over different tests. In Section 6 we describe post-
processing step for mapping extracted information
from prescriptions to the standardized master table
data. Finally in Section 7 we conclude this paper.

2 Related work

CRFs are widely used in agglutinative language
processing and have good accuracy when linguis-
tic features are used (Yıldız et al., 2015), (Ehsani
et al., 2012).

Here we list some of the existing tools in med-
ication extraction. MedLEE (Friedman, 2000)
is one which uses handwritten rules for extract-
ing and encoding and structuring clinical infor-
mation using free-form texts like patient reports.
MetaMap (Aronson and Lang, 2010) also is a rule-
based tool which extracts medication names by
querying in the Unified Medical Language System
(UMLS) Metathesaurus (Bodenreider, 2004).

Patrik et.al. (Patrick and Li, 2009) uses CRFs
and also rule based approach to extract informa-
tion form i2b2 data (Uzuner et al., 2011). Halgrim
et.al. (Li et al., 2010) uses CRFs with simple fea-
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tures like n-grams and length of words over a small
dataset from i2b2 task. They use a rule-based al-
gorithm to improve the accuracy of CRF classifi-
cation.

Another work (Tao et al., 2017) is also related
to the same i2b2 shared task. They use CRFs to
extract dosage unit, dosage and frequency. They
show that CRFs performs better than other clas-
sifiers. They also try adding word embedding to
their model but there is no significant improve-
ment in dosage, dosage unit and frequency label-
ing. They employ POS tags of tokens besides
some categorical features.

3 Data and preprocessing

Our training data contains 9692 prescriptions. We
annotate these prescriptions to 4 categories: i)
Dosage, which shows the amount of dosage of
medication ii) Dosage unit gives the unit of medi-
cation, like ”tablet” iii) Frequency of using dosage
can be more than one token and iv) Comments cat-
egory is for all other tokens in prescription. We an-
notated data manually by Finnish native speakers
and with the supervision of healthcare profession-
als.

As mentioned before, working with the Finnish
language brings its own challenges, we now dis-
cuss these in more detail. Beside compound
words, rich morphology and phonology of Finnish
language means that the same root word can ap-
pear in vastly different forms in texts. In addition
to that, the colloquial patient-friendly language of
the prescriptions means that they don’t perfectly
follow grammatical rules or spelling.

For example, the word “tabletti”, (tablet in En-
glish), can appear like “tbl”, “tabl”, “tablettia”
or “tb” and word “annos” (dose in English) can
appear in different compound words like “annos-
pussi” (dosage bag in English), “annosruisku” (sy-
ringe in English) ,“annossuihke” (dosage spray in
English), “annosmitta” (measurement cup) when
word “annosmitta” itself can appear in differ-
ent grammatical forms like : “annosmitallinen”
(a measuring cup’s worth in English), “annos-
mitallista” (partitive form of “annosmitallinen”),
“annosmittaa” (partitive from), “annospussillista”
(partitive form of annospussi) and “annostelu-
mitallinen” (portioning measurement unit in En-
glish). In many cases, we also have “dosage” and
“unit name” joined together without space charac-
ter in between. For example, most doctors write

“1 tabletti” as “1tabletti”. All these listed difficul-
ties necessitate a robust prepossessing step before
the actual labeling.

4 Model and feature extraction

This section is about model creation using CRFs
and feature extraction steps.

4.1 Model

Conditional random fields (CRFs) (Lafferty et al.,
2001) is a powerful method to solve labeling prob-
lem in a sequence of input word tokens. CRF mod-
els the conditional probability of a sequence of la-
bels with respect to the input sequence. It takes
into account the sequential relations between la-
bels as well as the relations between a label and its
corresponding input token. The inference is done
by finding the most probable label sequence given
input features, this holistic nature implies consis-
tency, as opposed to the case where one would la-
bel each word (or n-gram) individually and sepa-
rately. Here we use it to model prescription enti-
ties (dosage, dosage unit, frequency) using various
linguistic and categorical features. We use Crf-
suite C++ library for the implementation of our
method (Okazaki, 2007). Crfsuite provides fast
training and labeling and uses the standard feature
templates.

4.2 Features

We make use of both linguistic as well as cate-
gorical features for the modeling problem. Ta-
ble 1 lists defined feature templates that we use.
Categorical features are created using two lists,
first is the list of dosage unit while second is the
list of frequency identifier names. Both lists are
taken from a predefined list in the health care sys-
tem for regular prescriptions. Naturally, these lists
do not contain all possible form of dosage unit or
frequencies, as we mentioned in previous section,
dosages and frequencies can appear in different
grammatical forms or as abbreviations or even ty-
pos.

Due to the rich morphology of the Finnish lan-
guage, there is a relation between morphological
categories and label output. We need the mor-
phological analysis of prescription text to make
use of this relation. In order to obtain this mor-
phological analysis, we used Turku dependency
parser (Kanerva et al., 2018). Turku dependency
parser is a neural parsing pipeline for segmenta-
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Identifier Feature Definition
F0 pi Current POS
F1 pi+1 Next POS
F2 pi−1 Previous POS
F3 ci Current case
F6 gi Current is a number, binary
F7 gi+1 Next is a number, binary
F8 si Current is in dosage unit list, binary
F9 si+1 Next is in dosage unit list, binary
F10 si Current is in frequency list, binary
F11 ri+1 Next is in frequency list
F12 ri Current root
F13 ri+1 Next root
F14 ri−1 Previous root
F15 ri+2 Second next root

Table 1: List of features templates

tion, morphological tagging, dependency parsing
and lemmatization for the Finnish language. We
use morphological tagging outputs of Turku de-
pendency parser in this work. There is a relation
between output labels and morphemes. For ex-
ample, dosage are numbers and POS tag “NUM”
(number) refers to being number. Feature IsNum-
ber is a binary feature in cases that POS tag is not
“NUM” but token includes numbers like ranges.
The Finnish language has very rich noun cases.
Often there is a relation between the case of a
token in prescription and its output label. Table
2 shows the percentage of tokens in prescriptions
that have a specific case for each label. In Finnish,
cases indicate the syntactic function of a noun in
the sentence. The case markings are suffixed to
the end of the token. Thus, the presence of a case
marking in the token can give information about
the label like frequency. Because frequency is
mostly related to time or duration, when the token
has “Adessive” case. Adessive case corresponds
to prepositions “on” or “at” in English. Second in-
formative feature for label frequency is “Inessive”
which corresponds to “in” in English. Case “Alla-
tive” (“onto”) has very small relation with being
frequency.

5 Experimental Results

In this section, we show the experimental results
for our proposed CRFs based tagging method. We
tested the model using 10-fold cross-validation.
In order to assess the importance of different ele-
ments of our proposed model, we train a sequence

of classifiers of increasing complexity. We start
with a memorization classifier, where each token
is labeled individually by looking up the most fre-
quent label it is associated with in the training
data. This baseline method corresponds to a 0-
order CRF with the word surface forms as the only
feature. The results of this baseline classifier are
shown in Table 3. Next, we try a CRF with order
1 and surface forms as features. This allows us to
measure the effect of enforcing label order consis-
tency. As seen in Table 4, the effect varies for each
label, e.g. dosage labeling shows the biggest im-
provement over the simple memorization method.
In particular, numeric tokens are hard to distin-
guish individually since they can be a frequency
or a dosage, but when taken in the context of the
token sequence they are much easier to classify.
Without other more complicated features, F1 mea-
sure is over 90%, this shows that CRFs are very
powerful in sequential tagging just by enforcing
labeling consistency.

Precision recall F1
Dosage 0.6677 0.8460 0.7464
Dosage unit 0.9562 0.9707 0.9634
Frequency 0.8361 0.9006 0.8672
Comments 0.9541 0.8337 0.8898
Macro-average 0.8535 0.8877 0.8667

Table 3: Baseline results

151



Case Dosage Dosage unit Frequency Comments
Adessive 0 0 84.4 15.3
Inessive 0 0 81.7 18.2
Instructive 0 0 78.5 21.4
Partitive 0 21.5 62.3 16.1
Translative 0 0 55.8 44.1
Essive 0 0.8 8.8 90.35
Genitive 0 0.7 8.5 90.63
Nominative 0 20.5 5.9 72.85
Elative 0 1.1 5.8 89.53
Illative 0 0 19 98.0
Allative 0 0 12 97.4

Table 2: Percentage of cases in labels

Precision recall F1
Dosage 0.9686 0.9546 0.9616
Dosage unit 0.9642 0.9601 0.9622
Frequency 0.8909 0.9071 0.8989
Comments 0.9350 0.9303 0.9326
Macro-average 0.9396 0.9380 0.9388

Table 4: CRFs Baseline results

In Table 5 we show results of tagging for each
label when we use just categorical features and the
surface form of current token. As before, dosage
unit benefits the most from the inclusion of cate-
gorical features.

Table 6 shows the result for tagging when we
use linguistic features and surface form of the cur-
rent token. F1 measure of label frequency com-
pared to baseline and categorical feature exhibits a
clear improvement. The relation between linguis-
tic features and the tags can be observed simply
by counting the associated cases. In Table 2 we
show the percentage of certain grammatical cases
being labeled with a given tag. It is immediately
observed that most of the cases are highly infor-
mative for the labels, for example “Adessive” case
strongly suggests the label frequency while elimi-
nating the possibilities of dosage and dosage unit.
On the other hand, “Translative” case is much less
informative in distinguishing between a frequency
and a comment; hence we require additional fea-
tures and the label sequence consistency provided
by CRFs to correctly identify them. It is also seen
that these cases only provide negative information
about the dosage label, instead, the POS tag value
of “NUM” is positively associated with that label
(not shown in the table).

Precision recall F1
Dosage 0.9677 0.9588 0.9632
Dosage unit 0.9733 0.9849 0.9791
Frequency 0.8951 0.9128 0.903
Comments 0.9453 0.9341 0.9397
Macro-average 0.9453 0.9476 0.9464

Table 5: Categorical features results

Precision recall F1
Dosage 0.9780 0.9619 0.9699
Dosage unit 0.9764 0.9806 0.9785
Frequency 0.9219 0.9444 0.9331
Comments 0.9609 0.9510 0.9559
Macro-average 0.9593 0.9594 0.9593

Table 6: Linguistic features results

In Table 7 we show results for the final model
with all features. Using previous and next token
information has a positive impact on F1 measure.

Precision recall F1
Dosage 0.9822 0.9680 0.9751
Dosage unit 0.9819 0.9924 0.9871
Frequency 0.9253 0.9460 0.9356
Comments 0.9653 0.9542 0.9597
Macro-average 0.9636 0.9651 0.9643

Table 7: All features results

Table 8 show the accuracy for different tests.
Item accuracy refers to accuracy of each token’s
label in prescriptions. Adding more linguistic fea-
tures clearly improves the accuracy. Instance ac-
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curacy is accuracy of all tokens in one prescrip-
tion that are labeled correctly, i.e. even a single
labeling error is counted as an error for the whole
prescription. In instance accuracy we observe a
remarkable improvement when we add linguistic
features.

6 Post processing

In attaining this preferred state of data quality, we
would be required to further classify our model re-
sults into a set of known categories found in this
target information system that are defined as the
subsets of natural classes of “dosage frequency”
and “dosage unit”, an action which we would be
calling as conducting the database mapping.

For testing the accuracy of database mapping
we developed an automated testing solution that
would perform full end-to-end integration testing
of the complete solution and simulate possible nat-
ural world usage such as concurrent and batch pro-
cessing of unstructured prescriptions. The auto-
mated testing solution would use a set of 3694
hand-labeled prescriptions provided by a third-
party actor as the ground-truth with guaranteed la-
beling accuracy of over 98% if the prescription in
question had all classes labeled.

This sequential classification event creates a
compound probability problem where the actual
model performance can be considered as a priori
probability for conducting the database mapping
as its performance directly affects the results of
database mapping. As a result, post-processing
encounters two primary challenges: model label-
ing error and variance in language-specific syntax
as well as semantics.

Language variance was solved by a combina-
tion of three different solutions: First we intro-
duced internal orthography for the system by im-
plementing robust rule-based heuristics in pre-
processing that would perform spell-correction on
input strings by transforming them into a more
standardized language e.g. prescription string
“tarv 1 1/2 -2 3/4x3 -5 pv:ssä” would be trans-
formed into “1.5-2.75 tablettia 3-5 kertaa päivässä
tarvittaessa” (In English, 1.5-2.75 tablets 3-5
times per day if required), thus reducing language
complexity with negligible data loss (less than
0.5% in all categories combined). Improvement
is seen in Figure 1 as iteration 2 from baseline it-
eration of 1.

Second, we analyzed results for string fre-

quencies and created stemmed versions of
object-relational-mapping (ORM) pair dictionar-
ies, where the key was a stemmed class name e.g.
“3 kerta päivä” and the value was in a code rep-
resentation e.g. ”100056” based on string occur-
rences. Stemming was performed on the same
Turku neural parsing pipeline that is used for
model generation. By matching stemmed versions
of classes and model results we were able to fur-
ther reduce complexity as demonstrated in Figure
1 as iteration 3.

The third solution was the implementation of
approximate string matching, colloquially known
as fuzzy matching, based on Levenshtein distance
(Yujian and Bo, 2007) between the stemmed input
string and stemmed class name. As we can see
from Figure 1 iteration 4 this improved our results
in “frequency” substantially. This solution had
outstanding performance when the class names are
relatively short e.g. unit “ml” (in English, ml, ab-
breviation of milliliter) compared to frequency “3
kertaa päivässä tarvittaessa” (In English, 3 times
per day if required). In longer class names we
experienced challenges in Hamming distance (Xu
and Xia, 2011) conditions, where strings had equal
length, but semantically different, class names.
For example ”2 times per day” and “8 times per
day” have a Hamming distance of 1, but this dif-
ference has a high risk of the detrimental outcome
in a clinical setting from potential under or over-
dose. Separability of classes was increased by
writing out numbers, thus increasing their Leven-
shtein distance and minimizing the possible occur-
rences of equal length strings i.e. Hamming dis-
tance conditions.

Further on we implemented rule-based heuris-
tics based on observed standard errors from model
inference and database mapping functionality to
increase our overall accuracy. This was imple-
mented in a form of stepped funnel process, where
the incorrectly mapped code representations were
gathered in a list that would be processed by a set
of heuristics. As a step result average of the sys-
tem error would be reduced and a new list of in-
correctly mapped code representations would be
gathered and the process would be repeated recur-
sively until required levels of accuracy would be
attained.

For future work we will try semantic based
search to solve frequency mapping problem. This
can be an ontology based semantic search.
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Baseline Categorical features Linguistic features All features
Item accuracy 0.9312 0.9383 0.9545 0.9588
Instance accuracy 0.6863 0.7100 0.78740 0.7998

Table 8: Item and instance accuracy for different feature sets

Figure 1: Mapping accuracy

7 Conclusion

In this paper, we used CRFs to model conditional
probability between tokens in prescriptions and
output labels, dosage, dosage unit, frequency, and
comments. This model is for Finnish prescrip-
tions. Since Finnish is an agglutinative language
and has rich morphology we define two types of
features. First, are categorical features which are
binary features of belonging to a certain list of to-
kens. Second features are linguistic features which
are based on the morphological analysis. In previ-
ous works, linguistic features were under-utilized.
We show that linguistic features are more infor-
mative than categorical features. This model is
the state of art for prescription extraction prob-
lem in the Finnish language. We are using 9692
prescriptions and our reported results are based on
10-fold cross-validation. We show that a robust
pre-processing step followed by a CRF based clas-
sifier using a combination of linguistic and cate-
gorical features yield an excellent labeling accu-
racy. Finally by implementing heuristics in post-
processing based on observed standard errors in
the system we were able to reach clinical standard
in classification results.
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