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Abstract
There has been significant interest recently in
learning multilingual word embeddings – in
which semantically similar words across lan-
guages have similar embeddings. State-of-
the-art approaches have relied on expensive
labeled data, which is unavailable for low-
resource languages, or have involved post-
hoc unification of monolingual embeddings.
In the present paper, we investigate the effi-
cacy of multilingual embeddings learned from
weakly-supervised image-text data. In particu-
lar, we propose methods for learning multilin-
gual embeddings using image-text data, by en-
forcing similarity between the representations
of the image and that of the text. Our ex-
periments reveal that even without using any
expensive labeled data, a bag-of-words-based
embedding model trained on image-text data
achieves performance comparable to the state-
of-the-art on crosslingual semantic similarity
tasks.

1 Introduction

Recent advances in learning distributed represen-
tations for words (i.e., word embeddings) have
resulted in improvements across numerous natu-
ral language understanding tasks (Mikolov et al.,
2013c; Pennington et al., 2014). These methods
use unlabeled text corpora to model the seman-
tic content of words using their co-occurring con-
text words. Key to this is the observation that
semantically similar words have similar contexts
(Sahlgren, 2008), thus leading to similar word
embeddings. A limitation of these word embed-
ding approaches is that they only produce mono-
lingual embeddings. This is because word co-
occurrences are very likely to be limited to being
within language rather than across language in text
corpora. Hence semantically similar words across
languages are unlikely to have similar word em-
beddings.

To remedy this, there has been recent work on
learning multilingual word embeddings, in which
semantically similar words within and across lan-
guages have similar word embeddings (Ruder,
2017). Multilingual embeddings are not just in-
teresting as an interlingua between multiple lan-
guages; they are useful in many downstream ap-
plications. For example, one application of mul-
tilingual embeddings is to find semantically simi-
lar words and phrases across languages (Ammar
et al., 2016). Another use of multilingual em-
beddings is in enabling zero-shot learning on un-
seen languages, just as monolingual word embed-
dings enable predictions on unseen words (Artetxe
and Schwenk, 2018). In other words, a classifier
using pretrained multilingual word embeddings
can generalize to other languages even if train-
ing data is only in English. Interestingly, multilin-
gual embeddings have also been shown to improve
monolingual task performance (Faruqui and Dyer,
2014b; Kiela et al., 2014).

Consequently, multilingual embeddings can be
very useful for low-resource languages – they al-
low us to overcome the scarcity of data in these
languages. However, as detailed in Section 2, most
work on learning multilingual word embeddings
so far has heavily relied on the availability of ex-
pensive resources such as word-aligned / sentence-
aligned parallel corpora or bilingual lexicons. Un-
fortunately, this data can be prohibitively expen-
sive to collect for many languages. Furthermore
even for languages with such data available, the
coverage of the data is a limiting factor that re-
stricts how much of the semantic space can be
aligned across languages. Overcoming this data
bottleneck is a key contribution of our work.

We investigate the use of cheaply available,
weakly-supervised image-text data for learning
multilingual embeddings. Images are a rich,
language-agnostic medium that can provide a



69

bridge across languages. For example, the En-
glish word “cat” might be found on webpages con-
taining images of cats. Similarly, the German
word “katze” (meaning cat) is likely to be found
on other webpages containing similar (or perhaps
identical) images of cats. Thus, images can be
used to learn that these words have similar seman-
tic content. Importantly, image-text data is gener-
ally available on the internet even for low-resource
languages.

As image data has proliferated on the inter-
net, tools for understanding images have ad-
vanced considerably. Convolutional neural net-
works (CNNs) have achieved roughly human-level
or better performance on vision tasks, particularly
classification (Russakovsky et al., 2014; Szegedy
et al., 2015; He et al., 2016). During classifica-
tion of an image, CNNs compute intermediate out-
puts that have been used as generic image features
that perform well across a variety of vision tasks
(Sharif Razavian et al., 2014). We use these image
features to enforce that words associated with sim-
ilar images have similar embeddings. Since words
associated with similar images are likely to have
similar semantic content, even across languages,
our learned embeddings capture crosslingual sim-
ilarity.

There has been other recent work on reducing
the amount of supervision required to learn multi-
lingual embeddings (cf. Section 2). These meth-
ods take monolingual embeddings learned using
existing methods and align them post-hoc in a
shared embedding space. A limitation with post-
hoc alignment of monolingual embeddings, first
noticed by Duong et al. (2017), is that doing train-
ing of monolingual embeddings and alignment
separately may lead to worse results than joint
training of embeddings in one step. Since the
monolingual embedding objective is distinct from
the multilingual embedding objective, monolin-
gual embeddings are not required to capture all in-
formation helpful for post-hoc multilingual align-
ment. Post-hoc alignment loses out on some in-
formation, whereas joint training does not. Duong
et al. (2017) observe improved results using a joint
training method compared to a similar post-hoc
method. Thus, a joint training approach is de-
sirable. To our knowledge, no previous method
jointly learns multilingual word embeddings using
weakly-supervised data available for low-resource
languages.

To summarize: In this paper we propose an ap-
proach for learning multilingual word embeddings
using image-text data jointly across all languages.
We demonstrate that even a bag-of-words based
embedding approach achieves performance com-
petitive with the state-of-the-art on crosslingual
semantic similarity tasks. We present experiments
for understanding the effect of using pixel data as
compared to co-occurrences alone. We also pro-
vide a method for training and making predictions
on multilingual word embeddings even when the
language of the text is unknown.

2 Related Work

Most work on producing multilingual embeddings
has relied on crosslingual human-labeled data,
such as bilingual lexicons (Mikolov et al., 2013b;
Ammar et al., 2016; Faruqui and Dyer, 2014b;
Xing et al., 2015) or parallel/aligned corpora (Kle-
mentiev et al., 2012; Ammar et al., 2016; Luong
et al., 2015; Vulić and Moens, 2015). These works
are also largely bilingual due to either limitations
of methods or the requirement for data that exists
only for a few language pairs. Bilingual embed-
dings are less desirable because they do not lever-
age the relevant resources of other languages. For
example, in learning bilingual embeddings for En-
glish and French, it may be useful to leverage re-
sources in Spanish, since French and Spanish are
closely related. Bilingual embeddings are also
limited in their applications to just one language
pair.

For instance, Luong et al. (2015) propose
BiSkip, a model that extends the skip-gram ap-
proach of Mikolov et al. (2013a) to a bilingual par-
allel corpus. The embedding for a word is trained
to predict not only its own context, but also the
contexts for corresponding words in a second cor-
pus in a different language. Ammar et al. (2016)
extend this approach further to multiple languages.
This method, called MultiSkip, is compared to our
methods in Section 5.

There has been some recent work on reducing
the amount of human-labeled data required to
learn multilingual embeddings, enabling work
on low-resource languages (Smith et al., 2017;
Artetxe et al., 2017; Conneau et al., 2017). These
methods take monolingual embeddings learned
using existing methods and align them post-hoc
in a shared embedding space, exploiting the
structural similarity of monolingual embedding
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Figure 1: Our high-level approach for constraining query and image representations to be similar. The English
query “cat with big ears” is mapped to Q, while the corresponding image example is mapped to I . We use the
cosine similarity of these representations as input to a softmax loss function. The model task can be understood as
predicting if an image is relevant to a given query.

spaces first noticed by Mikolov et al. (2013b).
As discussed in Section 1, post-hoc alignment of
monolingual embeddings is inherently subopti-
mal. For example, Smith et al. (2017) and Artetxe
et al. (2017) use human-labeled data, along with
shared surface forms across languages, to learn an
alignment in the bilingual setting. Conneau et al.
(2017) build on this for the multilingual setting,
using no human-labeled data and instead using
an adversarial approach to maximize alignment
between monolingual embedding spaces given
their structural similarities. This method (MUSE)
outperforms previous approaches and represents
the state-of-the-art. We compare it to our methods
in Section 5.

There has been other work using image-text
data to improve image and caption representa-
tions for image tasks and to learn word transla-
tions (Karpathy and Fei-Fei, 2015; Frome et al.,
2013; Gella et al., 2017; Calixto et al., 2017; He-
witt et al., 2018), but no work using images to
learn competitive multilingual word-level embed-
dings.

3 Data

We experiment using a dataset derived from
Google Images search results1. The dataset con-
sists of queries and the corresponding image
search results. For example, one (query, image)
pair might be “cat with big ears” and an image
of a cat. Each (query, image) pair also has a
weight corresponding to a relevance score of the
image for the query. The dataset includes 3 billion
(query, image, weight) triples, with 900 million

1https://images.google.com

unique images and 220 million unique queries.
The data was prepared by first taking the query-
image set, filtering to remove any personally iden-
tifiable information and adult content, and tok-
enizing the remaining queries by replacing special
characters with spaces and trimming extraneous
whitespace. Rare tokens (those that do not appear
in queries at least six times) are filtered out. Each
token in each query is given a language tag based
on the user-set home language of the user making
the search on Google Images. For example, if the
query “back pain” is made by a user with English
as her home language, then the query is stored as
“en:back en:pain”. The dataset includes queries in
about 130 languages.

Though the specific dataset we use is propri-
etary, Hewitt et al. (2018) have obtained a similar
dataset, using the Google Images search interface,
that comprises queries in 100 languages.

4 Methods

We present a series of experiments to investigate
the usefulness of multimodal image-text data in
learning multilingual embeddings. The crux of
our method involves enforcing that for each query-
image pair, the query representation (Q) is similar
to the image representation (I). The query rep-
resentation is a function of the word embeddings
for each word in a (language-tagged) query, so en-
forcing this constraint on the query representation
also has the effect of constraining the correspond-
ing multilingual word embeddings.

Given some Q and some I , we enforce that the
representations are similar by maximizing their
cosine similarity. We use a combination of co-
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sine similarity and softmax objective to produce
our loss. This high-level approach is illustrated in
Figure 1. In particular, we calculate unweighted
loss as follows for a query q and a corresponding
image i:

loss(Query q, Image i) = − log
e

QT
q Ii

|Qq ||Ii|

∑
j e

QT
q Ij

|Qq ||Ij |

where Qq is the query representation for query q;
Ii is the image representation corresponding to im-
age i; j ranges over all images in the corpus; and
QT

q Ii is the dot product of the vectors Qq and Ii.
Note that this requires that Qq and Ij have identi-
cal dimensionality. If a weight w is provided for
the (query, image) pair, the loss is multiplied by
the weight. Observe that Q and I remain unspec-
ified for now: we detail different experiments in-
volving different representations below.

In practice, given the size of our dataset, calcu-
lating the full denominator of the loss for a query,
image pair would involve iterating through each
image for each query, which is O(n2) in the num-
ber of training examples. To remedy this, we cal-
culated the loss within each batch separately. That
is, the denominator of the loss only involved sum-
ming over images in the same batch as the query.
We used a batch size of 1000 for all experiments.
In principle, the negative sampling approach used
by Mikolov et al. (2013c) could be used instead to
prevent quadratic time complexity.

We can interpret this loss function as producing
a softmax classification task for queries and im-
ages: given a query, the model needs to predict
the image relevant to that query. The cosine simi-
larity between the image representation Ii and the
query representation Qq is normalized under soft-
max to produce a “belief” that the image i is the
image relevant to the query q. This is analogous to
the skip-gram model proposed by Mikolov et al.
(2013a), although we use cosine similarity instead
of dot product. Just as the skip-gram model en-
sures the embeddings of words are predictive of
their contexts, our model ensures the embeddings
of queries (and their constituent words) are predic-
tive of images relevant to them.

4.1 Leveraging Image Understanding
Given the natural co-occurrence of images and text
on the internet and the availability of powerful
generic features, a first approach is to use generic

image features as the foundation for the image rep-
resentation I . We apply two fully-connected lay-
ers to learn a transformation from image features
to the final representation. We can compute the
image representation Ii for image i as:

Ii = ReLU(U ∗ReLU(V fi + b1) + b2)

where fi is a d-dimensional column vector repre-
senting generic image features for image i, V is a
m×dmatrix, b1 is anm-dimensional column vec-
tor,U is a n×mmatrix, and b2 is an n-dimensional
column vector. We use a rectified linear unit acti-
vation function after each fully-connected layer.

We use 64-dimensional image features derived
from image-text data using an approach similar to
that used by Juan et al. (2019), who train image
features to discriminate between fine-grained se-
mantic image labels. We run two experiments with
m and n: in the first, m = 200 and n = 100 (pro-
ducing 100-dimensional embeddings), and in the
second, m = 300 and n = 300 (producing 300-
dimensional embeddings).

For the query representation, we use a simple
approach. The query representation is just the av-
erage of its constituent multilingual embeddings.
Then, as the query representation is constrained
to be similar to corresponding image representa-
tions, the multilingual embeddings (randomly ini-
tialized) are also constrained.

Note that each word in each query is prefixed
with the language of the query. For example, the
English query “back pain” is treated as “en:back
en:pain”, and the multilingual embeddings that are
averaged are those for “en:back” and “en:pain”.
This means that words in different languages with
shared surface forms are given separate embed-
dings. We experiment with shared embeddings for
words with shared surface forms in Section 4.3.

In practice, we use a fixed multilingual vocab-
ulary for the word embeddings, given the size of
the dataset. Out-of-vocabulary words are handled
by hashing them to a fixed number of embedding
buckets (we use 1,000,000). That is, there are
1,000,000 embeddings for all out-of-vocabulary
words, and the assignment of embedding for each
word is determined by a hash function.

Our approach for leveraging image understand-
ing is shown in Figure 2.

4.2 Co-Occurrence Only
Another approach for generating query and image
representations is treating images as a black box.
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Figure 2: Our first method for calculating query and image representations, as presented in Section 4.1. To calculate
the query representation, the multilingual embeddings for each language-prefixed token are averaged. To calculate
the image representation, d-dimensional generic image features are passed through two fully-connected layers with
m and n neurons.

Without using pixel data, how well can we do?
Given the statistics of our dataset (3B query, image
pairs with 220M unique queries and 900M unique
images), we know that different queries co-occur
with the same images. Intuitively, if a query q1 co-
occurs with many of the same images as query q2,
then q1 and q2 are likely to be semantically simi-
lar, regardless of the visual content of the shared
images. Thus, we can use a method that uses only
co-occurrence statistics to better understand how
well we can capture relationships between queries.
This method serves as a baseline to our initial ap-
proach leveraging image understanding.

In this setting, we keep query representations
the same, and we modify image representations as
follows: the image representation for an image is a
randomly initialized, trainable vector (of the same
dimensionality as the query representation, to en-
sure the cosine similarity can be calculated). The
intuition for this approach is that if two queries are
both associated with an image, their query repre-
sentations will both be constrained to be similar to
the same vector, and so the query representations
themselves are constrained to be similar. This ap-
proach is a simple way to adapt our method to
make use of only co-occurrence statistics.

One concern with this approach is that many
queries may not have significant image co-
occurrences with other queries. In particular, there
are likely many images associated with only a sin-
gle query. These isolated images pull query rep-
resentations toward their respective random im-
age representations (adding noise), but do not pro-
vide any information about the relationships be-
tween queries. Additionally, even for images as-

sociated with multiple queries, if these queries
are all within language, then they may not be
very helpful for learning multilingual embeddings.
Consequently, we run two experiments: one with
the original dataset and one with a subset of the
dataset that contains only images associated with
queries in at least two different languages. This
subset of the dataset has 540 million query, image
pairs (down from 3 billion). For both experiments,
we use m = 200 and n = 100 and produce 100-
dimensional embeddings.

4.3 Language Unaware Query
Representation

In Section 4.1, our method for computing query
representations involved prepending language pre-
fixes to each token, ensuring that the multilingual
embedding for the English word “pain” is distinct
from that for the French word “pain” (meaning
bread). These query representations are language
aware, meaning that a language tag is required for
each query during both training and prediction. In
the weakly-supervised setting, we may want to re-
lax this requirement, as language-tagged data is
not always readily available.

In our language unaware setting, language tags
are not necessary. Each surface form in each
query has a distinct embedding, and words with
shared surface forms across languages (e.g., En-
glish “pain” and French “pain”) have a shared em-
bedding. In this sense, shared surface forms are
used as a bridge between languages. This is il-
lustrated in Figure 3. This may be helpful in cer-
tain cases, as for English “actor” and Spanish “ac-
tor”. The image representations leverage generic
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Figure 3: In our language unaware approach, language
tags are not prepended to each token, so the word
“pain” in English and French share an embedding.

image features, exactly as in Section 4.1. In our
language-unaware experiment, we use m = 200
and n = 100 and produce 100-dimensional em-
beddings.

4.4 Evaluation
We evaluate our learned multilingual embeddings
using six crosslingual semantic similarity tasks,
two multilingual document classification tasks,
and 13 monolingual semantic similarity tasks. We
adapt code from Ammar et al. (2016) and Faruqui
and Dyer (2014a) for evaluation.

Crosslingual Semantic Similarity This task
measures how well multilingual embeddings cap-
ture semantic similarity of words, as judged by
human raters. The task consists of a series of
crosslingual word pairs. For each word pair in the
task, human raters judge how semantically simi-
lar the words are. The model also predicts how
similar the words are, using the cosine similarity
between the embeddings. The score on the task is
the Spearman correlation between the human rat-
ings and the model predictions.

The specific six subtasks we use are part of the
Rubenstein-Goodenough dataset (Rubenstein and
Goodenough, 1965) and detailed by Ammar et al.
(2016). We also include an additional task aggre-
gating the six subtasks.

Multilingual Document Classification In this
task, a classifier built on top of learned multilin-
gual embeddings is trained on the RCV corpus of
newswire text as in Klementiev et al. (2012) and
Ammar et al. (2016). The corpus consists of doc-
uments in seven languages on four topics, and the
classifier predicts the topic. The score on the task
is test accuracy. Note that each document is mono-
lingual, so this task measures performance within

languages for multiple languages (as opposed to
crosslingual performance).

Monolingual Semantic Similarity This task is
the same as the crosslingual semantic similarity
task described above, but all word pairs are in En-
glish. We use this to understand how monolingual
performance differs across methods. We present
an average score across the 13 subtasks provided
by Faruqui and Dyer (2014a).

Coverage Evaluation tasks also report a cover-
age, which is the fraction of the test data that a set
of multilingual embeddings is able to make predic-
tions on. This is needed because not every word
in the evaluation task has a corresponding learned
multilingual embedding. Thus, if coverage is low,
scores are less likely to be reliable.

5 Results and Conclusions

We first present results on the crosslingual se-
mantic similarity and multilingual document clas-
sification for our previously described experi-
ments. We compare against the multiSkip ap-
proach by Ammar et al. (2016) and the state-of-
the-art MUSE approach by Conneau et al. (2017).
Results for crosslingual semantic similarity are
presented in Table 1, and results for multilingual
document classification are presented in Table 2.

Our experiments corresponding to Section 4.1
are titled ImageVec 100-Dim and ImageVec 300-
Dim in Tables 1 and 2. Both experiments sig-
nificantly outperform the multiSkip experiments
in all crosslingual semantic similarity subtasks,
and the 300-dimensional experiment slightly out-
performs MUSE as well. Note that coverage
scores are generally around 0.8 for these exper-
iments. In multilingual document classification,
MUSE achieves the best scores, and while our
300-dimensional experiment outperforms the mul-
tiSkip 40-dimensional experiment, it does not per-
form as well as the 512-dimensional experiment.
Note that coverage scores are lower on these tasks.

One possible explanation for the difference in
performance across the crosslingual semantic sim-
ilarity task and multilingual document classifica-
tion task is that the former measures crosslingual
performance, whereas the latter measures mono-
lingual performance in multiple languages, as de-
scribed in Section 4.4. We briefly discuss further
evidence that our models perform less well in the
monolingual context below.
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en+es en+de en+fr de+es de+fr fr+es all

ImageVec 100-Dim .75 [.87] .77 [.87] .84 [.74] .80 [.83] .76 [.77] .77 [.73] .79 [.81]

ImageVec 300-Dim .79 [.87] .81 [.87] .86 [.74] .81 [.83] .77 [.77] .80 [.73] .82 [.81]

ImageVec Baseline .10 [.87] .03 [.87] .14 [.74] -.25 [.83] .07 [.77] .15 [.73] .08 [.81]

ImageVec Baseline 2 Lang. .27 [.87] .38 [.79] .23 [.74] .26 [.75] .16 [.75] .27 [.73] .28 [.78]

ImageVec Lang. Unaware .59 [.87] .62 [.87] .79 [.74] .63 [.83] .73 [.77] .73 [.73] .67 [.81]

multiSkip 40-Dim .51 [.83] .67 [.75] .44 [.70] .39 [.63] .29 [.56] .43 [.60] .49 [.68]

multiSkip 512-Dim .43 [.83] .73 [.76] .62 [.70] .43 [.63] .24 [.56] .48 [.60] .50 [.69]

MUSE 300-Dim .76 [.87] .85 [.86] .79 [.74] .83 [.81] .73 [.77] .74 [.73] .79 [.80]

Table 1: Crosslingual semantic similarity scores (Spearman’s ρ) across six subtasks for ImageVec (our method)
and previous work. Coverage is in brackets. The last column indicates the combined score across all subtasks.
Best scores on each subtask are bolded.

en+da+it 7 Lang.

ImageVec 100-Dim .74 [.60] .79 [.52]

ImageVec 300-Dim .80 [.60] .84 [.52]

ImageVec Baseline .60 [.60] .59 [.52]

ImageVec Baseline 2 Lang. .65 [.45] .65 [.36]

ImageVec Lang. Unaware .73 [.60] .78 [.52]

multiSkip 40-Dim .77 [.45] .82 [.44]

multiSkip 512-Dim .87 [.48] .91 [.46]

MUSE 300-Dim .87 [.54] .91 [.51]

Table 2: Multilingual document classification accuracy
scores across two subtasks for ImageVec (our method)
and previous work. Coverage is in brackets. Best
scores are bolded (ties broken by coverage).

Is Image Understanding Necessary? Compar-
ing the experiments leveraging image understand-
ing to our co-occurrence-only baseline experi-
ments ImageVec Baseline and ImageVec Base-
line 2 Lang described in Section 4.2, we see
that performance is significantly degraded without
pixel data (note that both experiments use 100-
dimensional embeddings). Still, the results for
multilingual document classification, in particular,
show that we are able to learn multilingual word
embeddings using co-occurrence between queries
and images alone.

Interestingly, we can see that performance in the
experiment in which images are filtered to be as-
sociated with at least two languages appears better
than the baseline experiment on the full dataset (al-
though coverage is low for multilingual document
classification). As mentioned in Section 4.2, this
may be because images without multiple queries
degrade performance by introducing noise to the

optimization problem. We also experimented with
the same filtering on the experiments using im-
age understanding to see if this could further boost
performance (results not shown), but this reduced
performance to a similar extent as random data fil-
tering. This is likely because even isolated images
(with just one query associated with an image) are
still helpful for the task in this case, since the use
of generic image features still constrains queries
associated with similar images to have similar rep-
resentations.

Even in the filtered baseline, results for both
tasks are significantly lower than the methods
leveraging image understanding, indicating that
while co-occurrence data alone is useful, pixel
data may be needed to learn competitive multilin-
gual embeddings using our method.

Language Unaware Learning The language
unaware setting only differs from the language
aware one when words share a common surface
form. In some cases, words sharing a common sur-
face form have the same meaning across languages
(i.e., cognates). An example is “actor” in English
and Spanish. In these cases, the language unaware
setting may boost performance, as the embedding
for “actor” effectively has more training data be-
hind it. In other cases, words sharing a common
surface form have different meanings across lan-
guages (i.e., false cognates). An example is “pain”
in English and French. In these cases, we expect
language unawareness to reduce performance, es-
pecially if the meanings of false cognates are very
different.

Our results for our 100-dimensional language
unaware embeddings are presented in Tables 1
and 2 as ImageVec Lang. Unaware. We can see
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avg. score

ImageVec 100-Dim .48 [.98]

ImageVec 300-Dim .48 [.98]

ImageVec Baseline .24 [.98]

ImageVec Baseline 2 Lang. .33 [.95]

ImageVec Lang. Unaware .42 [.98]

multiSkip 40-Dim .44 [.94]

multiSkip 512-Dim .44 [.96]

MUSE 300-Dim .62 [.97]

Table 3: Average monolingual semantic similarity
score (Spearman’s ρ) across 13 subtasks for ImageVec
(our method) and previous work. Average coverage is
in brackets. Best score is bolded.

that this experiment performs worse on crosslin-
gual semantic similarity but about the same
on multilingual document classification as the
100-dimensional language aware experiment (Im-
ageVec 100-Dim). Still, on crosslingual semantic
similarity, it significantly outperforms both mul-
tiSkip experiments. Thus, in applications where
language unaware training or prediction is impor-
tant, our method produces multilingual embed-
dings competitive with other language aware ap-
proaches.

Effect of Embedding Size In these experi-
ments, embeddings with higher dimensionalities
generally perform better in both evaluation tasks.
300-dimensional embeddings produced using our
method slightly outperform 100-dimensional ones
in every subtask for both tasks.

Monolingual Embedding Quality As men-
tioned earlier in Section 5, we suspect that the dif-
ference in performance (as compared to MUSE)
on crosslingual semantic similarity and multilin-
gual document classification for our experiments
might be due to reduced monolingual perfor-
mance. After all, other methods train by leverag-
ing word contexts (and subword information, in
the case of MUSE) in a large monolingual cor-
pus, whereas we use only images as a bridge be-
tween words within and across languages. Es-
pecially for words representing abstract concepts
without obvious image associations (consider the
word “democracy”), it is likely that our method
would produce lower quality within-language em-
beddings than text-only methods. This is not un-
expected: Hewitt et al. (2018) found that word

translations learned via images are worse for more
abstract words and Kiela et al. (2014) found that
using image data is unhelpful for improving the
quality of representations for some concepts.

It stands to reason then that our method would
produce weaker monolingual performance. To
test this, we ran 13 English monolingual semantic
similarity tasks on each experiment. We present
average scores in Table 3. We can see that
300-dimensional embeddings produced using our
method fare significantly worse than MUSE em-
beddings, although they perform similarly to the
multiSkip embeddings. For comparison, competi-
tive English word embeddings achieve results sim-
ilar to MUSE. This suggests that there is signif-
icant room for improvement within language (at
least for English) in the quality of our learned
multilingual embeddings. Improving monolingual
performance would also likely boost scores across
other tasks, motivating future work in this direc-
tion.

6 Discussion

We demonstrated how to learn competitive mul-
tilingual word embeddings using image-text data
– which is available for low-resource languages.
We have presented experiments for understand-
ing the effect of using pixel data as compared to
co-occurrences alone. We have also proposed a
method for training and making predictions on
multilingual word embeddings even when lan-
guage tags for words are unavailable. Using a
simple bag-of-words approach, we achieve per-
formance competitive with the state-of-the-art on
crosslingual semantic similarity tasks.

We have also identified a direction for future
work: within language performance is weaker
than the state-of-the-art, likely because our work
leveraged only image-text data rather than a large
monolingual corpus. Fortunately, our joint train-
ing approach provides a simple extension of our
method for future work: multi-task joint training.
For example, in a triple-task setting, we can si-
multaneously (1) constrain query and relevant im-
age representations to be similar and (2) constrain
word embeddings to be predictive of context in
large monolingual corpora and (3) constrain repre-
sentations for parallel text across languages to be
similar. For the second task, implementing recent
advances in producing monolingual embeddings,
such as using subword information, is likely to
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improve results. Multilingual embeddings learned
in a multi-task setting would reap both the bene-
fits of our methods and existing methods for pro-
ducing word embeddings. For example, while our
method is likely to perform worse for more ab-
stract words, when combined with existing ap-
proaches it is likely to achieve more consistent per-
formance.

An interesting effect of our approach is that
queries and images are embedded into a shared
space through the query and image representa-
tions. This setup enables a range of future re-
search directions and applications, including bet-
ter image features, better monolingual text rep-
resentations (especially for visual tasks), nearest-
neighbor search for text or images given one
modality (or both), and joint prediction using text
and images.
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