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Abstract

Silent speech interfaces (SSIs) are devices that
enable speech communication when audible
speech is unavailable. Articulation-to-speech
(ATS) synthesis is a software design in SSI
that directly converts articulatory movement
information into audible speech signals. Per-
manent magnetic articulograph (PMA) is a
wireless articulator motion tracking technol-
ogy that is similar to commercial, wired Elec-
tromagnetic Articulograph (EMA). PMA has
shown great potential for practical SSI ap-
plications, because it is wireless. The ATS
performance of PMA, however, is unknown
when comparing with current EMA. In this
study, we compared the performance of ATS
using a PMA we recently developed and a
commercially available EMA (NDI Wave sys-
tem). Datasets with same stimuli and size that
were collected from tongue tip were used in
the comparison. The experimental results in-
dicated the performance of PMA was close
to, although not as equally good as that of
EMA. Furthermore, in PMA, converting the
raw magnetic signals to positional signals did
not significantly affect the performance of
ATS, which support the future direction in
PMA-based ATS can be focused on the use of
positional signals to maximize the benefit of
spatial analysis.

1 Introduction

People who had a laryngectomy have their lar-
ynx surgically removed in the treatment of a con-
dition such as laryngeal cancer (Bailey et al.,
2006). The removal of the larynx, as a treat-
ment of cancer, prevents laryngectomees from
producing speech sounds and inhibit their ability
to communicate. Current approaches for improv-
ing their ability to communicate include (intra-
or extra-oral) artificial larynx (Baraff, 1994), tra-

cheoesophageal puncture (TEP) (Robbins et al.,
1984), and esophageal speech (Hyman, 1955). All
of these approaches generate abnormal speech like
hoarse voicing by tracheoesophageal speech or
robotic voicing by artificial larynx (Mau, 2010;
Mau et al., 2012). These patients may feel de-
pressed because of their health status and anxiety
during social interactions, as they think that other
people perceive them as abnormal, or they directly
experience symbolic violence (Mertl et al., 2018).
As a result, the development of communication
aids that can produce normal-sounding speech is
essential to improving the quality of life for pa-
tients in this population.

Silent speech interfaces (SSI) are devices which
convert non-audio biological signals, such as
movement of articulators, to audible speech
(Denby et al., 2010). Unlike existing methods,
SSIs are able to produce natural sounding synthe-
sized speech and even have the potential to re-
cover the patients’ own voices. There are cur-
rently two types of software designs in SSI. One
is a “recognition-and-synthesis” approach, which
is to convert articulatory movement to text, and
then drive speech output using a text-to-speech
synthesizer (Kim et al., 2017). The other de-
sign is direct articulation-to-speech (ATS) syn-
thesis, which is more promising for SSI applica-
tion, because ATS can be real-time. Currently,
the prominent methods for capturing articulatory
motion data include: electromagnetic articulo-
graph (EMA) (Schönle et al., 1987; Cao et al.,
2018; Bocquelet et al., 2016), permanent mag-
net articulograph (PMA) (Gonzalez et al., 2014;
Kim et al., 2018), ultrasound image (Csapó et al.,
2017), surface electromyography (sEMG) (Diener
et al., 2018), non-audible murmur (NAM) (Naka-
jima et al., 2003). All of these technologies have
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Figure 1: Our recently developed, head-set PMA de-
vice, where a small magnet is attached on the tongue
tip.

their own advantages and disadvantages. PMA has
recently shown its potential for SSI because it is
wireless and suitable for future practical applica-
tions.

Unlike EMA that uses wired sensors attached
on the articulators with a magnetic field generator
outside, PMA attaches (wireless) permanent mag-
nets to articulators and adopts magnetometers to
capture the changes in the magnetic field gener-
ated by the motion of the magnets. These mag-
netic readings are then fed into a localization algo-
rithm that estimates the 3D position of the magnet
in the oral cavity (Sebkhi et al., 2017). Both EMA
and PMA have been used in prior research on ATS
(Cao et al., 2018; Gonzalez et al., 2017a; Cheah
et al., 2018) with varying results. Although EMA
has been shown to yield more precise measure-
ments (Yunusova et al., 2009; Berry, 2011) com-
pared to PMA (Sebkhi et al., 2017), EMA devices
are normally cumbersome as they require wired
sensors be attached to articulators. Additionally,
EMA devices are normally expensive. In contrast,
PMA devices are mostly very light and portable,
relying on wireless tracking by using permanent
magnets as the tracers, also affordable compared
to EMA. Due to the wireless, portability and low-
cost advantages of PMA, it offers an appealing al-
ternative to EMA if it is able to achieve similar
levels of performance as EMA in ATS systems.
To our knowledge, however, no prior studies have
directly compared the performance of these two
technologies for SSI applications.

In this study, we compared the ATS perfor-

Figure 2: Wave System (EMA), where multiple sensors
are attached on the tongue and lips. Only the tongue tip
sensor data was used in the comparison with PMA.

mance of our recently developed PMA-based
wireless tongue tracking system and a commer-
cial EMA (NDI Wave system). We first examined
whether it is more effective to use raw magnetic
field signals than to use the converted magnet po-
sitional data (x, y, z coordinates) of PMA in ATS.
Second, we compared the performance of EMA
and PMA using tongue tip data only. A deep neu-
ral network (DNN)-based ATS model was used to
evaluate the ATS performance for both EMA and
PMA data. In this study, a dataset was collected
from two groups of subjects who spoke the same
stimuli using PMA or EMA, respectively. Tongue
tip is the common flesh point in the PMA and
EMA datasets, which were used for analysis in this
study.

2 Dataset

2.1 PMA Data Collection
Ten subjects (6 males and 4 females, average age:
24.1 years ± 4.84) participated in the PMA data
collection session in which they repeated a list of
132 phrases twice in their habitual speaking rate.
The first repetition is normal voiced speech, and
the second repetition is unvoiced speech. In this
study, only the voiced speech data was used. The
phrases in the list were phrases that are frequently
spoken by users of augmentative and alternative
communication (AAC) devices (Glennen and De-
Coste, 1997). The PMA data was collected at the
Georgia Institute of Technology.

The PMA data used in this study was collected
with our newly developed wearable, headset sys-
tem, which is based on the same magnetic tech-
nology in the prior benchtop version multimodal
speech capture system (MSCS) (Sebkhi et al.,
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Figure 3: Lateral view samples of tongue tip trajectory captured by PMA and EMA when saying: “That is perfect!”
(By two different subjects).

2017). Figure 1 shows the wearable, wireless
tongue tracking system, which uses PMA and a
camera for tongue and lip motion caption, respec-
tively. A microphone was used for audio record-
ing. This PMA system has an embedded array of
magnetometers that measure the change of mag-
netic field generated by a magnetic tracer attached
close to the tongue tip.

During a data collection session, a disk-shaped
magnetic tracer (diameter = 3mm, thickness =
1.5mm, D21BN52, K&J Magnetics) was attached
to about 1cm from tongue tip. An array of 24 ex-
ternal 3-axial magnetometers (LSM303D, STMi-
croelectronics) are divided into six modules, each
with 4 magnetometers, which are positioned near
the mouth, so there are two groups of 12 sensors
that are near the right cheek and left cheek. These
sensors were used for capturing the magnetic field
fluctuations generated by the tracer, which are fed
into a localization algorithm that estimates the 3D
position of the magnet every 10 ms (100 Hz). The
spatial tracking accuracy of the PMA varies from
0.44 to 2.94 mm depending upon the position and
orientation of the tracer (Sebkhi et al., 2017). The
audio data recording was sampled at 96000 Hz.

Previous studies (Gonzalez et al., 2017a; Cheah
et al., 2018) show that the combination of multiple
tracers on the tongue had better performance than
single tracer (i.e., tongue tip). However, a smaller
number of magnetic tracers on the tongue is crit-
ical for its practical use in daily life (Kim et al.,
2018). Future users of this technology likely pre-
fer to have only one permanent or semi-permanent
attached magnetic tracer on their tongue. Even for
lab experiment, attaching multiple tracers on the
tongue takes longer time and relative logistic diffi-

culty to operate. In addition, with only one tracer
on the tongue tip, the risk of accidentally biting it
is very small (Laumann et al., 2015).

To provide the best tracking performance with
one single tracer, the system relies on 24 mag-
netometers positioned outside the mount to accu-
rately track the tongue motion (Kim et al., 2018).
The six magnetometer modules are connected via
serial peripheral interface (SPI) to a sensor con-
troller module (Kim et al., 2018) that also in-
cludes a USB interface to communicate with the
PC. More technical details about the tracking tech-
nology can be found in (Sebkhi et al., 2017). In
this study, although wearable, the headset was an-
chored to a support in order to provide the best
positional accuracy (to avoid possible head motion
during recording).

2.2 EMA Data Collection

Another group of 10 gender- and age-matched
subjects (6 males and 4 females, average age: 24.3
years ± 3.50) participated in the EMA data col-
lection session. These individuals read the same
list of 132 phrases used in the PMA data collec-
tion session. The EMA dataset was collected at
the University of Texas at Dallas.

Wave system (Northern Digital Inc., Waterloo,
Canada) was used for EMA data collection (Figure
2). Four small wired sensors were attached to the
tongue tip (0.5 to 1cm from tongue apex), tongue
back (20-30mm back from TT), upper lip and
lower lip using dental glue or tape. Additionally,
a fifth (head) sensor was attached to the middle
of forehead for head correction. Finally, 3D EMA
data was sampled at 100 Hz which is same to PMA
data. The spatial precision of motion tracking is
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Figure 4: ATS using DNN.

about 0.5 mm (Berry, 2011), Figure 3(a) gives an
example of two-dimensional (2D) EMA tongue tip
movement trajectory (lateral view) when saying:
“That is perfect!”. The sampling rate of audio data
was 22050 Hz. NDI Wave system does not provide
the raw magnetic signals.

To ensure an analogous comparison with the
PMA device, only the tongue tip data collected us-
ing EMA was used in this study.

2.3 Data Preprocessing

To provide EMA and PMA consistent acoustic
features, the sampling rates of audio data in EMA
and PMA were resampled to same level. The
audio data in PMA dataset was downsampled to
48000 Hz from 96000 Hz, and the audio data in
EMA dataset was upsampled to 48000 Hz from
22050 Hz. After that, spectral envelope was ex-
tracted with Cheaptrick algorithm (Morise, 2015)
and then converted to 60-dimensional mel-cepstral
coefficients (MCCs) as the output acoustic fea-
tures of ATS model. The MCCs were extracted
at a rate of 200 frames per second, therefore, the
PMA and EMA data were upsampled to 200 Hz to
match the acoustic features.

Our PMA device captures the motion of tongue
tip with the 72-channel raw magnet signals (3 axes
24 magnetometers). In addition to raw magnet
signals, the 3D cartesian positions of the magnet
tracer were obtained by localizing the raw magnet
signals with nonlinear optimization method (Se-
bkhi et al., 2017). Figure 3(b) gives an exam-
ple of a 2D trajectory (lateral view) of magnet
tracer when saying “That is perfect!” obtained by
localizing raw magnet signals. Both raw magnet
signals and 3D-position signals were used in this
study.

3 Method

3.1 Articulation-to-Speech Synthesis (ATS)
Using Deep Neural Network (DNN)

The ATS model in this study uses a DNN to map
articulatory signals (PMA or EMA) to acoustic
features (MCCs) (Figure 4).The first and second
order derivatives of both input articulatory and the
output acoustic data frames were computed and
concatenated to the original frames for context in-
formation.

The DNN has 6 hidden layers, each layer has
512 nodes with rectified linear unit (ReLU) acti-
vation function. During the DNN training, Adam
optimizer (Kingma and Ba, 2014) was used, the
maximum number of training epochs is 50, learn-
ing rate for PMA data is 0.008 and 0.005 for EMA
data. The performances of ATS system is assessed
using EMA positional data, PMA raw data, PMA
positional data, and the combination of PMA raw
and positional data. Therefore, the input dimen-
sions of ATS in this study are: 9 (3-dim. PMA or
EMA positional + ∆ + ∆∆), 216 (72-dim. PMA
raw magnet signals + ∆ + ∆∆), and 225 (con-
catenation of 9-dim. and 216-dim.). The output
dimension is 180 (60-dim. MCCs + ∆ + ∆∆).
The DNN model in this study was implemented
with Tensorflow machine learning library (Abadi
et al., 2016).

3.2 Experimental Setup

As mentioned previously, we first compared the
ATS performance using raw PMA signals, con-
verted positional data, or both. This experiment
will help to understand the which type of PMA
data leads to the best performance. NDI Wave
is a commercial system, which does not provide
any magnetic signals that have not been localized,
thus this experiment was conducted for our PMA
system only. Second, we compared the best per-
formance in PMA with the performance in EMA.
The results will reveal which technology (PMA or
EMA) performs better.

Speaker-dependent setup was used in both ex-
periments, as speaker-independent ATS is consid-
ered challenging at this moment, due to the physi-
ological difference among different speakers. The
ATS performances on each subject were averaged
as the final performance. For the 132 phrases in
both PMA and EMA data, 110 phrases were used
for training, 10 for validating, and 12 for testing.
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Figure 5: Average MCD of 10 PMA Subjects and 10
EMA Subjects. Statistical significances between the
results using EMA and all types of PMA data on ATS
model are computed with ANOVA tests.

The ATS results were measured with mel-
cepstral distortion (MCD). MCD is calculated
by equation (1), where C and Cgen denote the
original and generated mel-cepstral coefficients
(MCCs), respectively, m is the frame step (or
time), d denotes dth dimension in frame m. D is
the dimension of MCCs, which is 60 in this study.

MCD =
10

ln10

T∑
m=1

√√√√2
D∑

d=1

(Cm,d − Cgen
m,d)2

(1)

As mentioned, lip movement information has
not been used in this study, since PMA and EMA
devices use different approaches for lip motion
caption. PMA uses a computer vision algorithm
to recognize the shape of the lips from images cap-
tured by an embedded camera, whereas EMA re-
lies on tracking the motion of attached sensors to
the vermilion borders of the lips to estimate lips
gesture. In additon, due to the relatively small data
size, the synthesized audio samples did not have
sufficiently high speech intelligibility for listen-
ing test. Therefore, the subjective/listening testing
was not conducted in this study.

4 Results and Discussion

4.1 Magnetic signals vs positional data in
PMA

Experimental results are presented in Figure 5,
where three-way ANOVA tests were used in the
statistical analysis. First, for PMA, that perfor-
mance using raw magnet data was not significantly

different to the performance using positional data
only (p < 0.85), and was also not significantly
different with that using combined raw magnetic
field signals and positional data (p < 0.76). There
was also no significance between the ATS per-
formance using positional data only and that us-
ing combined raw magnetic field signals and posi-
tional data (p < 0.60).

These findings suggest, for PMA, we could use
either raw magnetic field signals or converted po-
sitional data for a similar level of performance.
Combining these two signals together may not im-
prove the performance. This finding is inconsis-
tent with our prior study in silent speech recogni-
tion (SSR) using PMA data, where using magnetic
signals outperformed than that using converted po-
sitional data (Kim et al., 2018). Further studies
are needed to reveal why magnetic signals outper-
formed positional data in SSR, but their perfor-
mance in ATS was not significantly different.

The finding that positional data can have simi-
lar performance with that using magnetic data is
encouraging for our future development of ATS
using PMA. Although mapping the raw mag-
netic signals directly to acoustic features is more
straightforward, transforming these signals to po-
sitional signals allows the use of articulation data
processing methods, such as Procrustes matching
(Gower, 1975; Kim et al., 2017), that cannot be
easily applied to the raw data. In addition, a PMA
positional data-based ATS can be decoupled from
a device configuration, it will be easier to change
the number of sensors, their positions, their model,
and their settings. Finally, a PMA positional data-
based ATS has a potential of using EMA data for
training, since they both track the 3D motion of
articulators.

4.2 PMA vs EMA

Second, when comparing the ATS performance
using PMA data and EMA data, the results ob-
tained using PMA is not as equally good as that
obtained in EMA. The performance in EMA sig-
nificantly outperformed all the three configura-
tions in PMA (raw, positional, and raw + posi-
tional data) ( p < 0.01 also in an ANOVA test).

Although the EMA-based ATS system outper-
formed the PMA-based system in our experiment,
this finding does not negate the merits of PMA
technology. Since PMA has shown the abilities
of reaching a sufficiently good level in ATS (Gon-
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zalez et al., 2014, 2017a,b; Cheah et al., 2018).
Therefore, it is still a good fit for SSI application.

In this study, we focused on the comparison of
PMA and EMA, and only tongue tip motion was
used for ATS performance. Other studies in liter-
ature that have incorporated lip motion and other
tongue flesh point motion have achieved high per-
formance for PMA-based ATS (Gonzalez et al.,
2014, 2017a,b; Cheah et al., 2018). In addition,
this study used on MCD as the ATS performance
measure. While MCD is a widely used measure
for ATS performance, it does not fully represent
the vocal quality of the resulting speech. Other
acoustic measures including band aperiodicities
distortion (BAP) (Morise, 2016), root mean square
error of fundamental frequencies (F0-RMSE), and
voiced/unvoiced (V/UV) error rate, as well as lis-
tening tests are needed to truly assess the differ-
ences of PMA and EMA which has not been con-
ducted in the current stage of this study as ex-
plained.

Although the subjects were age- and gender-
matched in the two groups for comparison (PMA
vs EMA) with the same protocol (stimuli and data
size), they were different subjects. Indeed, the
PMA and EMA systems were located in two dif-
ferent research laboratories, and they could not be
placed at a same location for this study. Because
the data were collected by two different teams and
with different subjects for the EMA and PMA,
there could likely be variations in the outcome of
the study between the datasets. This issue will be
resolved in the future study where the same sub-
jects will use both devices and the same operators
will supervise the data collection sessions.

5 Conclusion and Future Work

In this study, we compared the ATS performance
between a PMA-based tongue motion tracking de-
vice and a commercially available EMA (NDI
Wave). We found both the raw magnetic signals
and transformed positional signals acquired from
PMA have similar ATS performance. Although
we found that PMA-based system did not perform
as well as the EMA-based system in this single-
tracer comparison, PMA still has great potential
for SSI application, because it is wireless, afford-
able, portable, and easy to use. Future work will
verify these findings using a larger data set (both
EMA and PMA) collected from the same speak-
ers, and further improve the PMA measurement

accuracy as well as the localization approach that
converts raw magnetic signals to positional data.
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