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Abstract

Identification of the languages written using
cuneiform symbols is a difficult task due to the
lack of resources and the problem of tokeniza-
tion. The Cuneiform Language Identification
task in VarDial 2019 addresses the problem of
identifying seven languages and dialects writ-
ten in cuneiform; Sumerian and six dialects
of Akkadian language: Old Babylonian, Mid-
dle Babylonian Peripheral, Standard Babylo-
nian, Neo-Babylonian, Late Babylonian, and
Neo-Assyrian. This paper describes the ap-
proaches taken by SharifCL team to this
problem in VarDial 2019. The best result be-
longs to an ensemble of Support Vector Ma-
chines and a naive Bayes classifier, both work-
ing on character-level features, with macro-
averaged F1-score of 72.10%.

1 Introduction

A wide range of Natural Language Process-
ing (NLP) tasks, such as Machine Translation
(MT), speech recognition, information retrieval,
data mining, and creating text resources for low-
resource languages benefit from the upstream task
of language identification. The Cuneiform Lan-
guage Identification (CLI) task in VarDial 2019
(Zampieri et al., 2019) tries to address the prob-
lem of identifying languages and dialects of the
texts written in cuneiform symbols.

Identifying languages and dialects of the
cuneiform texts is a difficult task, since such lan-
guages lack resources and also there is the prob-
lem of tokenization. Although there are some
work addressing the problem of tokenization in
some of these languages or dialects, there is not
any universal method or tool available for tok-
enization of cuneiform texts, as such a task de-
pends on the rules of that language, simply be-
cause cuneiform writing system is a syllabic as
well as a logographic one. As a result, all the en-

deavors in this paper are based on character-level
features. This work investigates different machine
learning methods which are proven to be effective
in text classification and compares them by their
obtained F1-score, accuracy, and training time.

In this paper, we first review the literature of
language identification and the work on languages
written using cuneiform writing system in 2, in-
troduce the models used to tackle the problem of
identifying such languages and dialects in 3, de-
scribe the training data in 4, and discuss the results
in 5.

2 Related Work

The majority of research conducted in the field
of language identification has been on textual
data. However, there are some studies focusing
on speech samples, such as (Hategan et al., 2009;
Ali et al., 2015; Malmasi and Zampieri, 2016).
Language identification systems are meant to dis-
tinguish between similar languages (Goutte et al.,
2016; Williams and Dagli, 2017), language vari-
eties (Rangel et al., 2016; Castro et al., 2017), or
a set of different dialects of the same language
(Malmasi et al., 2016; El Haj et al., 2018). There
has also been the annually held VarDial workshop
since 2014, which deals with computational meth-
ods and language resources for closely related lan-
guages, language varieties, and dialects (Zampieri
et al., 2017, 2018).

Various kinds of features are used to train
these systems, including bytes and encodings
(Singh and Gorla, 2007; Brown, 2012), charac-
ters (van der Lee and van den Bosch, 2017; Samih
and Kallmeyer, 2017), morphemes (Gomez et al.,
2017; Barbaresi, 2016), and words (Duvenhage
et al., 2017; Clematide and Makarov, 2017).

The most recent studies use different language
identification methods, such as decision trees
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(Bora and Kumar, 2018), Bayesian network clas-
sifiers (Rangel et al., 2016), similarity measures
(such as the out-of-place method (Jauhiainen et al.,
2017), local ranked distance (Franco-Salvador
et al., 2017), and cross entropy (Hanani et al.,
2017)), SVM (Alrifai et al., 2017), and neural
networks (Chang and Lin, 2014; Cazamias et al.,
2015; Jurgens et al., 2017; Kocmi and Bojar,
2017).

To the extent of our knowledge, there is no
work addressing the problem of language and
dialect identification of cuneiform texts. Such
languages, Sumerian and Akkadian for instance,
are considered low-resource languages, meaning
that there are only a few electronic resources for
cuneiform processing. Some of these datasets in-
clude (Yamauchi et al., 2018) which developed
a handwritten cuneiform character imageset, and
(Chiarcos et al., 2018) which is an annotated
cuneiform corpus with morphological, syntactic,
and semantic tags. Furthermore, there are some
early studies on rule-based morphological analyz-
ers for these languages like (Kataja and Kosken-
niemi, 1988; Barthélemy, 1998; Macks, 2002;
Barthélemy, 2009), and (Tablan et al., 2006).

Additionally, a small number of cuneiform text
processing tasks have been carried out in which
the transliterations of cuneiform characters were
considered as the base feature. For instance, (Luo
et al., 2015) adapted an unsupervised algorithm
to recognize Sumerian personal names. Having
transliterated the cuneiform corpus, they utilized
the pre-knowledge and applied limited tags to pre-
annotate the corpus. As another study, (Homburg
and Chiarcos, 2016) conducted the first research
on word segmentation on Akkadian cuneiform.
They used three types of word segmentations al-
gorithms including rule-based algorithms (such
as bigram and prefix/suffix), dictionary-based al-
gorithms (like MaxMatch, MaxMatchCombined,
LCUMatching, MinWCMatch), and statistical
and/or machine learning algorithms (such as C4.5,
CRF, HMM, k-means, k Nearest Neighbors, Max-
Ent, naive Bayes, multi-layer perceptron, and Sup-
port Vector Machines (SVM)) which work based
on transliterations of cuneiform characters. The
paper reports that the dictionary-based approaches
obtained the best results. In addition, as one of
the most recent studies on languages written in
cuneiform, (Chiarcos et al., 2017) worked on a
machine translation task. The used data consists of

unannotated raw transliterations of Sumerian texts
with their English translations. They use a mor-
phological analyzer to extract word information to
be used in the machine translation task. Moreover,
a distantly supervised Part of Speech tagger and a
dependency parser are applied to annotate data to
facilitate the machine translation task.

3 Methodology

We investigated different machine learning meth-
ods, all of them based on character-level features,
to tackle the problem. The following methods take
1- to 3-gram character TFIDF and 1- to 4-gram
character count as input features and were imple-
mented using Scikit-learn (Pedregosa et al., 2011):

• SVM: an SVM with a learning rate of 1e−6,
hinge loss, and elasticnet penalty,
trained for 5 epochs with a random state of
11.

• Naive Bayes: a multinomial naive Bayes
classifier with alpha of 0.14 and fit prior
as True.

• Ensemble of SVM and naive Bayes: a soft
voting classifier which predicts the class label
based on the argmax of the sums of the pre-
dicted probabilities of the SVM and the naive
Bayes models.

• Random Forest: a random forest classifier
with 25 estimators of depth 300.

• Logistic Regression: a logistic regression
classifier with lbfgs optimizer, trained for
100 epochs.

We also experimented with deep learning ap-
proaches. The following two methods take char-
acter embeddings of size 32 for the 256 most com-
mon characters as input, and are trained using
an Adam optimizer (Kingma and Ba, 2014) with
batch size of 64 and learning rate of 1e−4:

• Convolutional Neural Network: The con-
catenation of the output a set of parallel
Convolutional Neural Network (CNN) lay-
ers, each with 32 filters and kernel size and
stride of 2, 3, 4 and 5 which is fed to a a
dense layer that maps to an R128 space and
another one that maps to the R7 space of
the labels. We also applied dropout with 0.5
keeping rate on CNNs output and another one
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with the same keeping rate on the first dense
layer’s output.

• Recurrent Neural Network: A Recurrent
Neural Network (RNN) with Long Short-
Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) cell of size 256 and a
dense layer mapping to an R128 space and an-
other one mapping to the R7 space of the la-
bels. We also applied dropout with 0.4 keep-
ing rate on RNN’s output and another one
with 0.5 keeping rate on the first dense layer’s
output.

4 Data Description

The data of CLI shared task is described in (Jauhi-
ainen et al., 2019). This data consists of 7 classes:
Sumerian (SUX), Old Babylonian (OLB), Middle
Babylonian peripheral (MPB), Standard Babylo-
nian (STB), Neo-Babylonian (NEB), Late Baby-
lonian (LTB), and Neo-Assyrian (NEA). Figure 1
shows the number of samples for each label in the
training data. The whole training data consists of
139,421 samples. The development set comprises
668 and the test set 985 samples per label.
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Figure 1: Number of samples for each label in the train-
ing set (in thousands).

Figure 1 shows that most of the training data
belongs to SUX and NEA classes. Table 1 con-
tains more detailed information on the data which
shows that 86.35% of the data belongs to four
classes of SUX, NEA, STB, LTB, whereas only
13.65% belongs to the other three.

5 Results and Discussion

Firstly, we trained the methods described in 3 and
evaluated the models on development set. We

Label # of samples % of all
SUX 53,673 38.49%
NEA 32,966 23.64%
STB 17,817 12.78%
LTB 15,947 11.44%
NEB 9,707 6.96%
MPB 5,508 3.95%
OLB 3,803 2.72%

Table 1: Number of samples in the training set for each
label and their percentage of a total of 139,421 samples
ordered from the highest to the lowest.

continued with the best two methods, SVM and
NB, and evaluated them on the test set. Ta-
ble 2 shows the macro-averaged F1-score, accu-
racy, and training time (in seconds) of the five
non-deep and two deep methods on the devel-
opment set. The non-deep models are trained
using an Intel(R) Core(TM) i7-7700K
CPU @ 4.20GHz CPU with 8 threads, and the
deep ones using an NVIDIA GeForce GTX
1080 Ti.

Method F1-score Accuracy T. Time
RF 0.5201 0.5615 264.14
LR 0.6861 0.6982 40.54
NB 0.7194 0.7301 0.15

SVM 0.7222 0.7309 1.67
Ens. 0.7268 0.7356 3.34
CNN 0.6192 0.6249 +4K
RNN 0.6259 0.6364 +4K

Table 2: Accuracy and F1-score on the development
set, and the training time (in seconds) of the methods
described in section 3: Random Forest (RF), Logis-
tic Regression (LR), naive Bayes (NB), Support Vector
Machine (SVM), Ensemble of the last two (Ens.), and
Convolutional and Recurrent Neural Networks (CNN
and RNN, respectively). The best result in each column
is in bold, the second best underlined, and the third best
in italics.

The ensemble method obtained the best F1-
score and a very short training time. On the other
hand, random forest model suffers from low per-
formance (as it is usually the case in NLP) and a
relatively long training time. The CNN and RNN
with embedded characters as input features per-
formed poorly, as it is usually the case in the lan-
guage identification task (Jauhiainen et al., 2018).
Deep methods see benefit from large amounts of
data, however when being trained with fewer data,
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hyperparameters play a more important role in the
results, therefore further tuning them might im-
prove the results in table 2. As of training time, the
naive Bayes method was the fastest and the RNN
and the CNN the slowest methods. We also experi-
mented with one-hot encoded characters as RNN’s
and CNN’s input features, which was not fruitful,
and therefore are not included in the results.

Table 3 shows the results of the SVM and the
ensemble of SVM and NB on the test set. The en-
semble outperforms SVM, as on the development
set.

System F1 (macro) Accuracy
SVM (T) 0.6660 0.6722

SVM (TD) 0.7171 0.7179
SVM + NB (TD) 0.7210 0.7239

Table 3: Results of the CLI task on the test set. T stands
for training and D for development data. TD means that
the model was trained on the combination of training
and development data and T, only on the training data.
The best result in each column is in bold.

Table 4 contains more detailed results of the
best performing model on the test set, i.e. the
ensemble. It shows the precision, recall, and F1-
score of the model on each class and their average.
The results are ordered based on the F1-score.

Label Precision Recall F1-score
LTB 0.8913 0.9655 0.9269
MPB 0.8109 0.8579 0.8337
OLB 0.8358 0.6924 0.7574
SUX 0.8273 0.6274 0.7136
NEA 0.5621 0.8772 0.6852
NEB 0.6775 0.5523 0.6085
STB 0.5515 0.4944 0.5214

Macro Avg. 0.7366 0.7239 0.7210

Table 4: Precision, Recall and F1-score of all the
classes and their macro average ordered from the high-
est to the lowest F1-score.

Considering the results in table 4 and the con-
fusion matrix, Late Babylonian (LTB) was the
easiest class to identify with a recall of 96.55%
and Middle Babylonian Peripheral (MPB) the sec-
ond easiest, with a recall of 85.79% (with only
5,508 (+668) training samples). Old Babylonian
(OLB) was also easy to identifiy, especially when
we consider its amount training samples, 3,803
(+668). Standard Babylonian (STB) is mainly
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Figure 2: Confusion matrix of the ensemble model’s
results on the test data.

misclassified as Sumerian, and Neo-Babylonian
as Standard Babylonian. Neo-Assyrian (NEA) is
also among the classes with low F1-score, but the
model has achieved a very high recall, 87.72%,
in this class. Neo-Assyrian (NEA) is mainly mis-
classified as Neo-Babylonian (NEB) and Standard
Babylonian (STB).

6 Conclusion

In this paper, we investigated different machine
learning methods, such as SVM and neural net-
works, and compared their performance in the task
of language and dialect identification of cuneiform
texts. The best performance was achieved by a
combination of SVM and naive Bayes, using only
character-level features. It was shown that charac-
ters are enough to obtain at least 72.10% F1-score.
However, the best model was not able to achieve a
good result classifying some of the dialects which
indicates a need for other kinds of features, such as
word-level ones, and/or embedded or transferred
knowledge of these languages and dialects to be
used in training the deep models.
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Preslav Nakov, Ahmed Ali, and Jörg Tiedemann.
2016. Discriminating between similar languages
and arabic dialect identification: A report on the
third dsl shared task. In Proceedings of the Third
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial3), pages 1–14.
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