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Abstract
This paper describes Tübingen-Oslo team’s
participation in the cross-lingual morphologi-
cal analysis task in the VarDial 2019 evalua-
tion campaign. We participated in the shared
task with a standard neural network model.
Our model achieved analysis F1-scores of
31.48 and 23.67 on test languages Karachay-
Balkar (Turkic) and Sardinian (Romance) re-
spectively. The scores are comparable to the
scores obtained by the other participants in
both language families, and the analysis score
on the Romance data set was also the best re-
sult obtained in the shared task. Besides de-
scribing the system used in our shared task par-
ticipation, we describe another, simpler, model
based on linear classifiers, and present further
analyses using both models. Our analyses, be-
sides revealing some of the difficult cases, also
confirm that the usefulness of a source lan-
guage in this task is highly correlated with the
similarity of source and target languages.

1 Introduction

Morphological analysis is one of the basic tasks
in natural language processing (NLP). The need
for morphological analysis becomes particularly
important in processing morphologically rich lan-
guages, where analysis of words can both be chal-
lenging and fruitful. Morphological analysis can
be useful in downstream NLP tasks as well as be-
ing useful for (linguistic) research.
Traditionally, morphological analyzers have

been developed using finite state transducers
(FSTs). Finite-state morphological analyzers de-
fine a lexicon and a set of rules to specify both
morphotactics and morpho-phonological (or or-
thographic) alternations. The resulting rule-based
system is compiled into a finite state transducer
which is capable of analyzing a given word to an
underlying linguistic representation. The resulting
FSTs are fast, and can be used for a range of tasks

from stemming/lemmatization to full morpholog-
ical analysis. As well as transducing word forms
to a linguistic analysis, they can also be used in re-
verse to generate the word form(s) of a given lin-
guistic representation.
Finite-state morphological analyzers have been

used successfully for a broad range of NLP tasks,
and are available for most of the world’s major
languages. Finite-state analyzers also exist for all
of the languages that are featured in this shared
task (examples of such analyzers include, Tzouk-
ermann and Liberman, 1990; Altintas and Cicekli,
2001; Armentano-Oller et al., 2006; Çöltekin,
2010; Kessikbayeva and Cicekli, 2014; Washing-
ton et al., 2014; Forcada et al., 2011; Tyers et al.,
2010). On the downside, developing these ana-
lyzers requires substantial expert effort,1 which in
some cases may not even exist, e.g., for languages
with few speakers where experts are also hard to
find. A potential solution to aid developing mor-
phological analysis tools is to use unsupervised
methods. Earlier attempts to develop unsupervised
morphological analysis tools, mostly within Mor-
pho Challenge shared tasks (Kurimo et al., 2010),
returned rather mixed, often sub-optimal results
(see Hammarström and Borin, 2011, for a survey).
Another approach for obtaining morphological

analyses for languages without a morphological
analyzer is based on transfer learning, which has
become a widespread approach in NLP and related
disciplines rather recently (Yarowsky et al., 2001;
Faruqui and Kumar, 2015; Johnson et al., 2017;
Barnes et al., 2018). The general idea is to train
a supervised machine learning model that predicts
analyses of word forms in a target language using
gold-standard analyses that exist in other related
languages.

1Access to an analyzer for a closely-related language may
reduce the development time and effort considerably (Wash-
ington et al., 2014).
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The present shared task, cross-lingual morpho-
logical analysis, takes the second approach. Track
1 of the task that we participated in aims to an-
alyze words in a ‘surprise’ language, given gold-
standard analyses of words in languages in the
same language family. The second track included
some additional resources (see Zampieri et al.
(2019) for further details about the task).
The present task is also strongly related to the

series of SIGMORPHON (re)inflection tasks (Cot-
terell et al., 2017, 2018), where the emphasis is in
generation of the inflected forms rather than pro-
ducing an analysis. Another difference between
the present task and the inflection tasks is also the
level of ambiguity. In inflection tasks, especially
in context, ambiguity level is rather low, making
it less pressing to produce multiple results, while
dealing with ambiguity is more important in mor-
phological analysis.
We developed multiple systems for the task.

Our main system was a neural encoder–decoder
architecture, where we used a recurrent network
as encoder and lemma decoder, but unlike many
earlier examples, we do not consider POS tags
and morphological features as part of the output
sequence. Although they share the encoder, the
tags are predicted bymulti-layer feed-forward neu-
ral classifiers. The second, simpler method is a
set of linear SVM classifiers. Besides describing
both models, we report further experiments and
analyses, including a comparison of the models,
a detailed error analysis, and a set of experiments
investigating the roles of individual source lan-
guages in transfer learning.

2 Models

2.1 Linear baseline
Recently, the dominating approaches to morphol-
ogy learning tasks have been neural models, par-
ticularly recurrent neural networks. However, lin-
ear models provide surprisingly good performance
in some tasks (e.g., Çöltekin and Rama, 2016,
2018), with the added advantage that they are com-
putationally cheaper to train and tune, and often
exhibit less variance than modern neural archi-
tectures. Although our submissions were recur-
rent encoder/decoder architectures, we also imple-
mented a fully linear approach to solve the task.
Our linear model is a pipeline model with com-

ponents for predicting lemma, POS, and morpho-
logical features separately. After having exper-

imented with different orders, our final pipeline
first predicts the lemma, then POS tags, and fi-
nally the morphological features. In all parts, we
use (multi-class) linear SVM models.

Lemma prediction is a two-step process, us-
ing two separate classifiers. The first classi-
fier predicts the stem, the prefix shared by both
the word form and the lemma. Subsequently,
the second classifier predicts the possibly null
string to be added to the lemma. For example,
for the word uçağını ‘his/her/their airplane-ACC’
(Crimean Tatar), whose lemma is uçaq, the first
classifier segments the word form as uça·ğını, and
the second classifier predicts the string ‘q’ to be
appended to the stem. The features for both classi-
fiers are the overlapping character n-grams, before
and after the segmentation point.

POS tag prediction is also based on a classifier
with character n-gram features. The n-grams for
the (predicted) lemma and the suffixes after the
segmentation point are used as features for a multi-
class linear classifier.

Morphological tag prediction is similar to the
POS tag prediction. In the linear model reported
here, we treat the whole feature string as class la-
bels. We have also experimented with multiple
classifiers per feature, and a standard multi-label
approach predicting individual Feature=Value
pairs. However, in our preliminary experiments
the monolithic single classifier yielded better per-
formance on the development sets. In addition, it
also offers an easier way to obtain n-best predic-
tions during decoding.

Decoding follows the above order for the com-
plete analysis of a given word form. At each step,
we use a threshold value to pick n-best results.
All predictions with a distance from the decision
boundary larger than the threshold is produced,
and passed to the next predictor in the pipeline.

2.2 Recurrent encoder/decoder
Our neural model follows a similar pipeline ap-
proach, again, predicting lemma, POS tag and
morphological features one by one. The overall
architecture is presented in Figure 1. The order of
components are different from the linear model.2
Another notable difference from the linear model

2The choice is due to computational convenience. We did
not investigate the effects of the order of components on the
overall prediction performance.
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Figure 1: Overall architecture of the neural model.

is that the neural model shares some components
during training, where components of the linear
model are all trained/tuned individually.

The encoder is a bidirectional recurrent net-
works with gated-recurrent units (GRU, Cho et al.,
2014) operating on input characters. Characters
are passed through an embedding layer before be-
ing fed to the recurrent encoder. In this study, the
embeddings are trained within the task, we do not
use pre-trained character embeddings. We do not
use intermediate representations of the input word
either. Only the final representation, concatena-
tion of forward and backward RNNs, is fed into
the other parts of the network.

ThePOS classifier is a feed-forward component
with two hidden layers with relu units followed by
a softmax classifier.

The morphological feature classifier consists
of multiple feed-forward networks for each mor-
phological feature. Similar to the POS classifier
we use two hidden layers with relu activation, fol-
lowed by a softmax classifier for each morpholog-
ical feature. The target values for each morpho-
logical feature are the feature values observed in
the training data as well as a special ‘not applica-
ble’ value. The morphological feature classifiers
are trained jointly.

The lemma decoder is a recurrent decoder with
GRU units. The initial symbol to the network is
a special ‘end of sequence symbol’ and otherwise
predictions of the previous time step are fed to the
recurrent unit as input. The hidden state of the re-
current unit is initializedwith the final output of the

encoder. Similar to the encoder, the characters are
embedded as continuous vectors before being fed
into the recurrent layer. The embedding layers of
the encoder and the lemma decoder are not shared.
The output of the encoder, along with the tag pre-
dictions are fed to a softmax classifier at each step,
which outputs the characters of the lemma.
We train the model in multiple steps. First the

model is trained to guess POS tags, then morpho-
logical features, and finally the lemmas. While
training a model further in the pipeline we ini-
tialize the encoder (and embedding) weights with
the weights from the previous step, but freeze the
weights of the classifier(s) of the previous step(s).
During decoding, we follow the same order. For

POS tags we predict all POS tags until the total
probability assigned by the softmax classifier ex-
ceeds a particular threshold. During the lemma
prediction, we predict a lemma whenever proba-
bility of end-of-sequence symbol reaches to a de-
fined threshold. We do not predict multiple values
for the morphological features.

3 Experimental setup

3.1 Data and preprocessing
The CMA task included data from two language
families, Romance (ROA) and Turkic (TRK).
Since we participate only on track 1, we only
make use of morphological analyses released by
the shared task organizers. The reader is referred
to Zampieri et al. (2019) for detailed description of
the data set. We give a brief description of the data
set here.
The Turkic (TRK) data consisted of training

samples from Bashkir (bak), Kazakh (kaz), Kyr-
gyz (kir), Tatar (tat) and Turkish (tur), Turkic de-
velopment data came from Crimean Tatar (crh),
and test data was fromKarachay-Balkar (krc). The
Romance (ROA) data consisted of training sam-
ples from Catalan (cat), French (fra), Italian (ita),
Portuguese (por) and Spanish (spa). Romance de-
velopment and test data were from Asturian (ast)
and Sardinian (srd) respectively. The number of
word forms along with the number of lemmas,
tags (POS and morphological feature combina-
tions) and analyses per word form for each lan-
guage is presented in Table 2.
For both language families, the task involves

predicting possibly multiple analyses consisting of
a lemma, a POS tag, and a set of morphological
feature–value pairs for each word form (examples
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word form lemma POS morphological features

desgaste desgaste ‘wear’ NOUN Gender=Masc|Number=Sing
desgastar ‘to wear (out)’ VERB Mood=Sub|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin

karın kar ‘snow’ NOUN Case=Gen
kar ‘snow’ NOUN Case=Nom|Number[psor]=Sing|Person[psor]=2
kar ‘snow’ VERB Mood=Imp|Number=Plur|Person=2|Valency=2|VerbForm=Fin
karı ‘wife’ NOUN Case=Nom|Number[psor]=Sing|Person[psor]=2
karın ‘stomach’ NOUN Case=Nom

Table 1: Examples taken from Spanish (ROA track) and Turkish (TRK track) training data for the morphological
prediction task.

family lcode words analysis lemma pos tag

TRK bak 9 999 1.46 1.10 1.08 1.38

kaz 9 995 1.67 1.18 1.18 1.59

kir 10 000 1.41 1.11 1.09 1.32

tat 10 000 1.42 1.10 1.08 1.37

tur 9 990 1.97 1.20 1.11 1.95

(dev) crh 999 1.25 1.05 1.03 1.23

(test) krc 8 768

ROA cat 10 000 1.44 1.15 1.28 1.43

fra 9 986 1.67 1.15 1.29 1.66

ita 9 998 1.55 1.21 1.35 1.54

por 9 999 1.41 1.08 1.11 1.41

spa 9 999 1.39 1.15 1.28 1.39

(dev) ast 1 000 1.46 1.13 1.26 1.44

(test) srd 9 998

Table 2: Statistics on individual languages of CMA
analysis data. The column ‘words’ is the number of
word forms, the other columns indicate the ambiguity,
e.g., ‘pos’ indicates number of part-of-speech tags per
word form. ‘analysis’ indicate the full-analysis ambi-
guity, ‘tag’ indicates ambiguity of full morphological
tag (combination of the POS and morphological fea-
tures).

shown in Table 1). The POS tag set used for both
languages consist of nouns, adjectives, adverbs,
and verbs. The number of unique morphological
feature–value combinations is 89 in the ROA train-
ing set, and 1 013 in the TRK training set.

3.1.1 Transliteration
The Turkic data set includes languages that use two
different scripts. Turkish and Crimean Tatar uses
the Latin script, while the other languages in this
data set are written with the Cyrillic script. To our
knowledge there are no standard way to translit-
erate between Turkic languages.3 As a result, we

3Standard/documented transliteration methods from
Cyrillic to Latin script exists for most languages. However,
these methods are often developed better readability of the

used a rather ad hoc transliteration that tries to keep
similarly-sounding letters of Cyrillic used in the
languages of the training set, and the version of the
Latin script used in Turkish and Crimean Tatar.

3.2 Evaluation

Following the official evaluation script, we report
precision, recall and F1-scores, for lemmas, tags
(combination of POS tags and morphological fea-
tures) and full analysis (combination of all) for
each word form. In some experiments we also re-
port separate scores for POS tags and morpholog-
ical features. We compare our models against the
competition baseline, which is a neural machine
translation model (Silfverberg and Tyers, 2019).

3.3 Linear model

All classifiers in our linear models are linear SVM
classifiers. For multi-class classifiers (all except
the stemmer), we use one-vs-rest multi-class strat-
egy. All models were implemented in scikit-learn
Python library (Pedregosa et al., 2011) using lib-
linear back end (Fan et al., 2008).
We tuned each classifier separately using ran-

dom search on the development set, where all
languages in the training set were used without
any weighting scheme. Tuning involved classifier
regularization parameter, maximum n-gram order
used as features and threshold parameter for each
classifier that affect the number of predictions pro-
duced during decoding. The resulting parame-
ter values are listed in Table 3. The threshold of
0.00 in Table 3 indicates a single prediction, which
means the configuration chosen by our tuning pro-
cedure produces only a single-best analysis on the
Turkic data set, and producingmultiple predictions
only for the POS tags on the Romance data.

resulting text in English, which often diverges from the
version of Latin script used in the Turkic languages.
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Classifier parameter Romance Turkic

POS C 0.08 0.70

threshold −0.50 0.00

n-grams 5 9

Lemma C (seg) 0.02 0.02

C (suffix) 3.70 0.52

seg. threshold 0.00 0.00

n-grams 5 7

Features C 0.70 4.80

threshold 0.00 0.00

n-grams 10 5

Table 3: Hyperparameter for the linear model deter-
mined with a random search through the parameter
space. A threshold value of 0.00 means only a sin-
gle prediction. Values for n-grams are the maximum
n-gram order used as features.

3.4 Neural model

For the neural model, we fixed the model archi-
tecture after initial experimentation. We used an
embedding size of 64. Both forward and back-
ward GRU layers in the encoder learned 512-
dimensional representations, resulting in 1 024

hidden units in the lemma decoder. We used a
dropout of 0.50 before the encoder (after embed-
dings) and before each classifier. We tuned the
models using random search for optimum thresh-
old values, selecting the model that resulted in the
best overall analysis F1-score on the development
set. The best scores were obtained for both lan-
guage families with a POS tag threshold of 0.70
and a lemma threshold of 0.50. The neural model
was implemented with Tensorflow (Abadi et al.,
2015) using Keras API (Chollet et al., 2015).

4 Results and discussion

4.1 Performance on test and dev sets

Official evaluation results of submitted (neural)
system in comparison to the shared-task baseline
provided by the organizers are presented in Ta-
ble 4. The system obtained good results on the
ROA test set (Sardinian) in comparison to the base-
line and the other participants. It predicted the tags
particularly well, which also lead to the best anal-
ysis score despite lower lemma scores. The results
on the TRK test set (Karachay-Balkar) are below
shared-task baseline which was the clear winner
on this language family by surpassing the scores
of the other participants as well.

family/model Analysis Lemma Tag

ROA
NN 23.67 31.36 61.33

Baseline 22.94 31.56 51.88

TRK
NN 31.53 52.74 38.93

Baseline 39.79 54.94 44.56

Table 4: Official results obtained by our neural model
in comparison to the shared-task baseline. The scores
are F1-scores.

The scores of our submitted model, the linear
baseline described in Section 2.1, and the baseline
results as reported by the organizers are presented
in Table 5 with some additional detail. Since our
models were tuned to perform well on the devel-
opment set without exploiting the similarities or
differences between the training and the test lan-
guages, it is not surprising that the test set results
are substantially lower than the scores we obtained
on the development set. However, the result on Ta-
ble 5 also offers a few interesting observations.
Our NN model obtains better scores than the

competition baseline on both language families. In
contrast to the test set, on the development set the
difference on the Turkic data is more pronounced.
Our model yields an analysis F1-score approxi-
mately 16 percentage points (pp.) higher than the
baseline on the dev set, while this difference is ap-
proximately 8 pp. in favor of the baseline on the
test set. A likely reason for the difference is the
tuning procedure. An untuned model is likely to
be more general, and hence may do better on a sur-
prise language. Another potential reason for the
difference can be related to the transliteration pro-
cess (see Section 4.2 for further discussion).
In comparison to the neural model, the linear

model performs worse on the ROA data set. How-
ever, it performs competitively on the TRK data
set, even yielding better lemma predictions than
the neural model. The linear pipeline predicts the
lemmas first, while neural model also makes use
of the earlier POS and feature predictions during
predicting lemmas. Although propagation of the
error may affect the lemma predictions of the neu-
ral model adversely, it also has more information.
The difference in performance between lin-

ear and neural models across language families
may also be due to their morphological typol-
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family Analysis Lemma Tag POS Morphology

model P R F P R F P R F P R F P R F

ROA
NN 41.14 45.12 43.04 60.07 60.82 60.44 60.61 65.62 63.01 87.58 79.70 83.45 66.56 73.78 69.99

Linear 32.99 42.54 37.16 53.00 60.00 56.29 49.38 62.84 55.30 63.05 70.34 66.50 61.86 75.33 67.94

Baseline 42.57 43.33 42.94 55.91 60.60 58.16 60.13 59.50 59.81 – – – – – –
TRK
NN 47.84 53.36 50.45 72.33 73.59 72.95 55.70 62.07 58.71 87.80 81.67 84.63 55.91 62.88 59.19

Linear 43.86 53.95 48.38 78.53 82.38 80.41 47.80 58.76 52.72 82.15 84.28 83.20 47.84 58.76 52.74

Baseline 31.24 38.44 34.47 56.30 59.06 57.65 38.52 47.35 42.48 – – – – – –

Table 5: Detailed results on the development set in comparison to the our linear baseline (Linear) as well as the
competition baseline (Baseline). Besides the F1 scores (F) we also present precision and recall. Last two groups,
‘POS’ and ‘Morphology’ columns are a breakdown of the ‘Tag’ scores to part of speech tags and morphological
features, respectively.

ogy. Predicting agglutinating morphology of Tur-
kic languages with linear models may be easier,
due to more transparent mappings between the
morph(eme)s and relevant tags. On the other hand,
the more fusional nature of Romance languages
may require combining multiple pieces of infor-
mation (possibly non-linearly) for successful pre-
dictions.

4.2 Effect of source language

In transfer learning, a natural question to ask is
how useful a particular source language, or combi-
nation of source languages can be for a given tar-
get language. To test the effects of the source lan-
guage in analyzing a target language, we used all
individual languages in the training set as source,
and tested on all training and development lan-
guages for both families. Due to computational
convenience, we performed these experiments us-
ing only the linear model. The results of this
‘cross-training’ experiments are presented in Fig-
ure 2. The presented scores are the overall best
analysis F1-scores obtained after a random search
through the space of hyperparameters listed in Ta-
ble 3. The diagonal presents the results of tests on
the training languages, hence, only useful for an
approximate upper bound achievable by the model
on the given language.
An interesting observation from Figure 2 is that

while analyzing the Romance development data
(Asturian), the score obtained using only Span-
ish (40.79) is better than the results we obtained
using the complete training set (37.16). In Tur-
kic languages, no single language is better than
the overall score we obtained. However, using
only Kazakh as training data gets close to what we

ast cat fra ita por spa
cat
fra
ita
por
spa

30.99 73.42 22.76 21.31 24.35 32.45

15.91 20.72 69.61 17.10 14.24 15.23

14.10 16.10 4.85 69.14 19.72 22.48

20.43 29.11 18.36 22.12 73.11 45.28

40.79 32.99 21.17 22.59 44.57 78.68

test

tra
in

crh bak kaz kir tat tur
bak
kaz
kir
tat
tur

28.19 75.47 34.60 26.13 48.82 19.28

44.10 39.29 67.67 38.07 40.02 25.94

35.91 29.35 35.77 82.10 36.62 27.54

31.45 38.56 28.10 24.78 78.02 20.60

31.02 18.02 19.55 21.52 25.11 59.16

tra
in

Figure 2: Analysis F1-scores for cross-training lan-
guages with another single language in the family: (top)
Romance, (bottom) Turkic. All results are obtained us-
ing the linear model.

obtained using the complete training data set. It
seems the choice of source language(s) is impor-
tant, and more data, if not appropriate, may even
hurt performance depending on the model setup.
It is also worth noting that the usefulness of a lan-
guage as a source language for another exhibits a
fair level of asymmetry. Even though the perfor-
mancematrices presented in Figure 2 (after remov-
ing the development set columns) are close to sym-
metric matrices, there are clear cases of asymmetry
as well. For example, using Italian to train a mor-
phological analyzer for French is less useful than
using French to train a morphological analyzer for
Italian.
Presumably due to distances within the family,

French and Italian seem less useful than the other
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language in the Romance data set. On Turkic data
set, the same seems to be true for Turkish. Ex-
cluding Crimean Tatar, Turkish is the least useful
language for predicting others. This may also be
part of the reason for the difference between the
shared task baseline and our systems on the de-
velopment and test set. Since the baseline system
does not transliterate the source languages, it does
not benefit from training languages except Turk-
ish. On the other hand, while predicting analy-
sis for the test language Karachay-Balkar, which
is written in Cyrillic, the baseline system does not
make use of data from Turkish. Not making use
of a rather noisy part of the input may in fact be
an advantage. Hence, our model outperforms the
baseline on the development set by benefiting from
all the data. However, for the test language, it gets
mislead by a less useful source language that the
baseline system simply ignores.
In general, however, the similarity of languages

seem to help. The cross-testing results are better
for similar languages in Figure 2 in comparison to
less-similar ones. In fact, the average performance
obtained using language pairs on Romance data
correlates highly (r = 0.83) with linguistic sim-
ilarities based on shared cognates (Dellert, 2017),
indicating, as expected, usefulness of source lan-
guages more similar to the target language.

4.3 Error analysis
In this section, we look at the errors made by the
systems on the development set more carefully. As
well as reporting the rates of some of the quantifi-
able aspects of errors, we provide some qualitative
analysis of the types of mistakes made by different
models.
Most POS tag errors are confusions between

POS tags NOUN and VERB, which may also be
largely due to the fact these are also the most fre-
quent POS classes in the data. Otherwise, for both
families major confusions are either due to missing
some of the ambiguous analyses, or, to a lesser ex-
tent, predicting additional (wrong) POS tags. We
present confusion tables of POS tags sets of the
neural model in Table 8 in Appendix. The tables
also show that POS ambiguity is more common in
Romance data set.
Given large number of morphological feature–

value pairs, a similar analysis is not easy for the
morphological features. We count true positive
(TP) and false positive (FP) errors, i.e., number of
instances of a feature–value pair in gold data miss-

Feature FP rate FN rate

Person[psor] 0.09 0.07

Number[psor] 0.14 0.11

Case 0.15 0.14

Number 0.28 0.03

Voice 0.38 0.20

Aspect 0.54 0.10

Tense 0.61 0.33

Valency 0.62 0.46

Mood 0.63 0.50

VerbForm 0.71 0.30

Person 0.76 0.19

Deriv 0.79 0.40

Missing 1.00 1.00

Polarity 1.00 0.00

Table 6: False positive (FP) and false negative (FN) er-
ror rates on feature–value pairs on Turkic development
set. The rates are aggregated over the feature label.

Feature FP rate FN rate

Number 0.03 0.04

Gender 0.12 0.13

Aspect 0.22 0.14

VerbForm 0.24 0.29

Tense 0.39 0.31

Mood 0.48 0.26

Person 0.49 0.24

Possessive 1.00 0.00

Table 7: False positive (FP) and false negative (FN)
error rates on feature–value pairs on Romance devel-
opment set. The rates are aggregated over the feature
label.

ing from the predictions and number of pairs that
are predicted but not in the gold data. We present
the rates aggregated by each feature label in Ta-
ble 6 and 7, Turkic and Romance development sets
respectively (more detailed versions, reporting er-
ror rates for each feature–value pair are presented
in Table 10 and 9 in Appendix).
In both families, the nominal features seem to

be easier to predict than verbal ones. Besides fea-
tures that are difficult to interpret, e.g., Missing
in Turkic data, very high error rates happen with
features that are observed only a few times and
those with ambiguity. For example, Possessive
occurs only twice on Asturian data. To exem-
plify a case with ambiguity of the mapping be-
tween the surface strings and the features, we look
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at Crimean Tatar suffix -me/-ma, which is ambigu-
ous between negative and infinitive markers. This
ambiguity is the likely cause of complete failure
of the model in predicting the Polarity features,
as well as being responsible for some of the errors
for VerbForm=Vnoun. We present further (mostly
qualitative) error analyses on both development
sets below.

ROA Regarding the Asturian development data,
both of our models lead to fewer overall predic-
tions than the gold data contains: 1 133 for the lin-
earmodel and 1 389 for the neuralmodel compared
to the 1 461 predictions in the development data,
suggesting that our models are conservative when
predicting POS tags. This is especially noticeable
with the linear model, where 65% of the POS tag
predictions where for NOUN. The neural approach
gives a similar distribution over POS tags as the
gold standard, which suggests that neural models
may be better at capturing the ambiguity inherent
in morphological prediction.
Both cross-lingual models fail on examples of

morphological paradigms that are not found in the
training data. An example fromAsturian is the for-
mation of the past participles, where the infinitive
ending (-ar, -er, -ir) is removed and replaced by
the participle ending (-áu, -íu). Our linear model
incorrectly predicts that these are nouns and pre-
dicts the same form as the lemma, while the neural
model is better able to predict the POS tags, but
cannot consistently predict the correct lemma, of-
ten choosing a similar lemma from Spanish.
When the POS prediction is correct, the aver-

age Levenshtein difference between the predicted
and gold lemmas is respectable (0.46 for the linear
model, 0.42 for the neural model).

TRK Similar to the ROA development set, both
our models make fewer predictions on average
than the gold standard predictions provided for
Crimean Tatar. As noted in Section 3 the (opti-
mum) linear model makes only a single prediction
for each of the 999 word forms. The linear model
predicts more with 1 196 analyses in total, close to,
but still less than 1 245 gold-standard analyses.
In Turkic development set, systematic errors in

lemmatization involve missing multiple lemmas
for a form where one of the lemmas is a derived
form of another. For example, both models miss
the alternative lemma kiriş ‘to interfere’ for the
word kirişti ‘interfered / entered (cooperatively)’,

predicting only the simpler form kir ‘to enter’.
Common prediction errors also include segment-
ing words at common suffixes. biznesi ‘his/her
business’ is lemmatized as bizne, as -si is a com-
mon allomorph of the third person singular pos-
sessive suffix across Turkic languages, while the
loan-word biznes is probably an unlikely sequence
of letters for a Turkic lemma despite a few occur-
rences in the training data. Another, possibly fix-
able, problem for the neural model is due to the
letters that do not occur in the training set. For ex-
ample, the Crimean Tatar data includes the letter â
which is always predicted as another letter that is
most probable in context.
As expected from the overall lemma prediction

scores on the Turkic data, when the POS prediction
is correct, the average edit difference between the
predicted and gold lemmas are lower for the linear
model (0.27) than the neural model (0.46).

5 Conclusions

We have presented our submission for the cross-
lingual morphological prediction task, which
achieved the best tag and analysis scores in the
Romance track. We trained both linear and neu-
ral morphological analyzers in a pipeline fashion
and demonstrated that these models can take ad-
vantage of labeled data in source languages to pre-
dict the morphological analysis in a similar target
language.
While the results presented here are competitive

with others obtained in this shared task, the analy-
sis scores are admittedly low. However, there are
multiple ways to improve the results as our models
do not incorporate much in terms of cross-lingual
signal. In the future, it would be worth integrat-
ing this cross-lingual signal in the form of pre-
trained cross-lingual word embeddings (Artetxe
et al., 2016; Lample et al., 2018) or sub-word, e.g.,
character, embeddings (Chaudhary et al., 2018;
Sofroniev andÇöltekin, 2018), as this could lead to
better generalization to new languages. Similarly,
typological distance between source and target lan-
guage often correlates with performance (Cotterell
and Heigold, 2017), which could be exploited for
weighting the contribution of source-language ex-
amples when learning a multilingual model.
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A Appendix

A J N V AN JN JV NV ANV JAN JNV

A 9 0 0 1 0 1 1 0 1 1 0
J 0 85 1 2 0 37 2 2 0 0 2
N 0 1 237 24 1 42 4 43 1 0 8
V 0 4 12 197 0 4 12 18 0 0 4
AN 0 0 0 0 0 0 0 0 0 1 0
JA 0 1 1 0 0 1 0 0 0 0 0
JN 0 14 14 2 0 102 3 3 0 0 2
JV 0 1 1 7 0 4 12 4 0 0 1
NV 0 1 13 3 0 0 0 31 0 0 0
JNV 0 0 2 3 0 4 1 7 0 0 4

A J N V AN JA JN JV NV

A 0 0 2 1 1 0 0 0 0
J 0 8 18 2 0 0 13 0 5
N 0 2 662 15 1 1 15 0 24
V 0 3 51 116 1 0 4 3 25
AN 0 0 3 0 1 0 0 0 0
JA 0 0 1 0 0 0 0 0 0
JN 0 0 2 0 1 0 0 0 0
JV 0 1 0 2 0 0 0 0 0
NV 0 0 5 2 0 0 2 0 6

Table 8: Confusion matrix for Asturian (left) and Crimean Tatar (right) data sets for all POS combinations. The
letters in the column and row labels are adverb (A) adjective (J), noun (N) and verb (V), where combination of
letters indicate words that are assigned all indicated POS tags in the gold standard (rows) or predictions (columns).
Columns and rows with all zeros were removed.

Feature=Value FP NP FP rate FN NN FN rate

VerbForm=Ger 0 22 0.00 0 22 0.00

VerbForm=Inf 0 48 0.00 4 52 0.08

Number=Plur 6 324 0.02 4 322 0.01

Number=Sing 22 619 0.04 27 624 0.04

Gender=Fem 28 326 0.09 28 326 0.09

Gender=Masc 44 363 0.12 53 372 0.14

Aspect=Perf 7 56 0.13 11 60 0.18

VerbForm=Fin 35 198 0.18 60 223 0.27

Gender=Masc,Fem 20 109 0.18 21 110 0.19

Person=3 41 161 0.25 22 142 0.15

Tense=Past 57 167 0.34 48 158 0.30

Mood=Ind 66 173 0.38 32 139 0.23

Aspect=Imp 11 27 0.41 0 16 0.00

Tense=Pres 50 108 0.46 26 84 0.31

Mood=Sub 24 50 0.48 15 41 0.37

Mood=Cnd 3 6 0.50 0 3 0.00

Number=Sing,Plur 2 4 0.50 4 6 0.67

Mood=Imp 19 36 0.53 8 25 0.32

VerbForm=Part 51 87 0.59 46 82 0.56

Person=1 23 39 0.59 2 18 0.11

Person=2 48 67 0.72 24 43 0.56

Possessive=Yes 2 2 1.00 0 0 0.00

Table 9: False positive (FP) and false negative (FN) error rates of the neural model on the Romance development
set (Asturian). NP indicate number of instance of the feature-value pair in the gold data, NN indicate the total
number of instances in the predictions.
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Feature=Value FP NP FP rate FN NN FN rate

Case=Abl 0 50 0.00 31 81 0.38

Case=Gen 0 79 0.00 0 79 0.00

Case=Loc 0 82 0.00 3 85 0.04

Case=Acc 2 79 0.03 6 83 0.07

Person[psor]=3 17 356 0.05 25 364 0.07

Number=Plur 12 225 0.05 1 214 0.00

Number[psor]=Sing,Plur 32 356 0.09 23 347 0.07

Case=Nom 76 441 0.17 76 441 0.17

Case=Dat 20 106 0.19 5 91 0.05

Case=Sim 2 6 0.33 0 4 0.00

Voice=Pass 21 56 0.38 9 44 0.20

Valency=2 54 140 0.39 74 160 0.46

Tense=Past 38 79 0.48 3 44 0.07

Aspect=Imp 14 28 0.50 1 15 0.07

Aspect=Perf 37 68 0.54 4 35 0.11

VerbForm=Fin 67 119 0.56 20 72 0.28

VerbForm=Conv 49 80 0.61 3 34 0.09

Mood=Imp 10 14 0.71 4 8 0.50

Person=3 75 102 0.74 5 32 0.16

Number=Sing 81 107 0.76 7 33 0.21

Deriv=Coop 11 14 0.79 2 5 0.40

VerbForm=Vnoun 88 110 0.80 7 29 0.24

Tense=Aor 34 42 0.81 12 20 0.60

Person[psor]=1 15 18 0.83 0 3 0.00

VerbForm=Part 37 44 0.84 2 9 0.22

Person=2 14 16 0.88 2 4 0.50

Valency=1 87 95 0.92 5 13 0.38

Aspect=Prog 2 2 1.00 0 0 0.00

Case=Ins 29 29 1.00 1 1 1.00

Missing=ger_abst 21 21 1.00 1 1 1.00

Missing=ger_fut 3 3 1.00 0 0 0.00

Number[psor]=Plur 7 7 1.00 7 7 1.00

Number[psor]=Sing 13 13 1.00 12 12 1.00

Person=1 2 2 1.00 0 0 0.00

Person[psor]=2 2 2 1.00 2 2 1.00

Polarity=Neg 22 22 1.00 0 0 0.00

Tense=Fut 5 5 1.00 0 0 0.00

Table 10: False positive (FP) and false negative (FN) error rates of the neural model on the Turkic development
set (Crimean Tatar). NP indicate number of instance of the feature-value pair in the gold data, NN indicate the total
number of instances in the predictions.


