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Abstract

This paper presents a new approach to disen-
tangling inter-dialectal and intra-dialectal re-
lationships within one such group, the Indo-
Aryan subgroup of Indo-European. I draw
upon admixture models and deep generative
models to tease apart historic language contact
and language-specific behavior in the over-
all patterns of sound change displayed by
Indo-Aryan languages. I show that a “deep”
model of Indo-Aryan dialectology sheds some
light on questions regarding inter-relationships
among the Indo-Aryan languages, and per-
forms better than a “shallow” model in terms
of certain qualities of the posterior distribu-
tion (e.g., entropy of posterior distributions),
and outline future pathways for model devel-
opment.

1 Introduction

At the risk of oversimplifying, quantitative mod-
els of language relationship fall into two broad
categories. At a wide, family-level scale, phylo-
genetic methods adopted from computational bi-
ology have had success in shedding light on the
histories of genetically related but significantly di-
versified speech varieties (Bouckaert et al., 2012).
At a shallower level, the subfield of dialectome-
try has used a wide variety of chiefly distance-
based methodologies to analyze variation among
closely related dialects with similar lexical and ty-
pological profiles (Nerbonne and Heeringa, 2001),
though this work also emphasizes the importance
of hierarchical linguistic relationships and the
use of abstract, historically meaningful features
(Prokić and Nerbonne, 2008; Nerbonne, 2009). It
is possible, however, that neither methodology is
completely effective for for language groups of in-
termediate size, particularly those where certain
languages have remained in contact to an extent
that blurs the phylogenetic signal, but have expe-

rienced great enough diversification that dialecto-
metric approaches are not appropriate. This pa-
per presents a new approach to disentangling inter-
dialectal and intra-dialectal relationships within
one such group, the Indo-Aryan subgroup of Indo-
European.

Indo-Aryan presents many interesting puz-
zles. Although all modern Indo-Aryan (hence-
forth NIA) languages descend from Sanskrit or
Old Indo-Aryan (henceforth OIA), their subgroup-
ing and dialectal interrelationships remain some-
what poorly understood (for surveys of assorted
problems, see Emeneau 1966; Masica 1991; Toul-
min 2009; Smith 2017; Deo 2018). This is partly
due to the fact that these languages have remained
in contact with each other, and this admixture
has complicated our understanding of the lan-
guages’ history. Furthermore, while most NIA
languages have likely gone through stages closely
resembling attested Middle Indo-Aryan (MIA)
languages such as Prakrit or Pali, no NIA language
can be taken with any certainty to be direct descen-
dants of an attested MIA variety, further shrouding
the historical picture of their development.

The primary goal of the work described in
this paper is to build, or work towards build-
ing, a model of Indo-Aryan dialectology that in-
corporates realistic assumptions regarding histor-
ical linguistics and language change. I draw
upon admixture models and deep generative mod-
els to tease apart historic language contact and
language-specific behavior in the overall patterns
of sound change displayed by Indo-Aryan lan-
guages. I show that a “deep” model of Indo-Aryan
dialectology sheds some light on questions re-
garding inter-relationships among the Indo-Aryan
languages, and performs better than a “shallow”
model in terms of certain qualities of the poste-
rior distribution (e.g., entropy of posterior distri-
butions). I provide a comparison with other met-
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rics, and outline future pathways for model devel-
opment.

2 Sound Change

The notion that sound change proceeds in a reg-
ular and systematic fashion is a cornerstone of
the comparative method of historical linguistics.
When we consider cognates such as Greek pherō
and Sanskrit bharā(mi) ‘I carry’, we observe reg-
ular sound correspondences (e.g., ph:bh) which al-
low us to formulate sound changes that have oper-
ated during the course of each language’s develop-
ment from their shared common ancestor. Under
ideal circumstances, these are binary yes/no ques-
tions (e.g., Proto-Indo-European *bh > Greek ph).
At other times, there is some noise in the signal:
for instance, OIA ks. is realized as kh in most Ro-
mani words (e.g., aks. i- ‘eye’ > jakh), but also as
čh (ks. urikā- > čhuri ‘knife’), according to Ma-
tras (2002, 41). This is undoubtedly due to rel-
atively old language contact (namely lexical bor-
rowing) between prehistoric Indo-Aryan dialects,
as opposed to different conditioning environments
which trigger a change ks. > kh in some phono-
logical contexts but ks. > čh in others. The idea
that Indo-Aryan speech varieties borrowed forms
from one another on a large scale is well estab-
lished (Turner, 1975 [1967], 406), as is often the
case in situations where closely related dialects
have developed in close geographic proximity to
one another (cf. Bloomfield, 1933, 461–495). An
effective model of Indo-Aryan dialectology must
be able to account this sort of admixture. Phylo-
genetic methods and distance-based methods pro-
vide indirect information regarding language con-
tact (e.g., in the form of uncertain tree topologies),
but do not explicitly model intimate borrowing.

A number of studies have used mixed-
membership models such as the Structure model
(Pritchard et al., 2000) in order to explicitly model
admixture between languages (Reesink et al.,
2009; Syrjänen et al., 2016). Under this approach,
individual languages receive their linguistic fea-
tures from latent ancestral components with par-
ticular feature distributions. A key assumption of
the Structure model is the relative invariance and
stability of the features of interest (e.g., allele fre-
quencies, linguistic properties). However, sound
change is a highly recurrent process, with many
telescoped and intermediate changes, and it is not
possible to treat sound changes that have operated

as stable, highly conservative features.1

Intermediate stages between OIA and NIA
languages are key for capturing similarities in
cross-linguistic behavior, and we require a model
that teases apart dialect group-specific trends and
language-level ones. Consider the following ex-
amples:

• Assamese /x/, the reflex of OIA s, ś, s. ,
is thought to develop from intermediate *ś
(Kakati, 1941, 224). This isogloss would
unite it with languages like Bengali, which
show /S/ for OIA s, ś, s. .

• Some instances of NIA bh likely come from
an earlier *mh (Tedesco 1965, 371; Oberlies
2005, 48) (cf. Oberlies 2005:48).

• The Marathi change ch > s affects certain
words containing MIA *ch < OIA ks. as well
as OIA ch (Masica, 1991, 457); ch ∼ kh <
OIA ks. variation is of importance to MIA and
NIA dialectology (compare the Romani ex-
amples given above).

In all examples, a given NIA language shows the
effects of chronologically deep behavior which
serves as an isogloss uniting it with other NIA
languages, but this trend is masked by subse-
quent language-specific changes.2 Work on proba-
bilistic reconstruction of proto-word forms explic-
itly appeals to intermediate chronological stages
where linguistic data are unobserved (Bouchard-
Côté et al., 2007); however, unlike the work cited,
this paper does not assume a fixed phylogeny, and
hence I cannot adopt many of the simplifying con-
ventions that the authors use.

3 Data

I extracted all modern Indo-Aryan forms from
Turner’s (1962–1966) Comparative Dictionary of
the Indo-Aryan Languages (henceforth CDIAL),3

1Cathcart (to appear) circumvents this issue in a mixed-
membership model of Indo-Aryan dialectology by consider-
ing only sound changes thought a priori in the literature to be
relatively stable and of importance to dialectology.

2Some similar-looking sound changes can be shown to be
chronologically shallow. For instance, the presence of s. for
original kh in Old Braj, taken by most scholars to represent a
legitimate sound change and not just an orthographic idiosyn-
crasy, affects Persian loans such as s. aracu ‘expense’←Mod-
ern Persian xirč (McGregor, 1968, 125). This orthographic
behavior is found in Old Gujarati as well (Baumann, 1975,
9). For further discussion of this issue, see Strnad 2013, 16ff.

3Available online at http://dsal.uchicago.
edu/dictionaries/soas/

http://dsal.uchicago.edu/dictionaries/soas/
http://dsal.uchicago.edu/dictionaries/soas/
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along with the Old Indo-Aryan headwords (hence-
forth ETYMA) from which these reflexes descend.
Transcriptions of the data were normalized and
converted to the International Phonetic Alphabet
(IPA). Systematic morphological mismatches be-
tween OIA etyma and reflexes were accounted
for, including stripping the endings from all verbs,
since citation forms for OIA verbs are in the 3sg
present, while most NIA reflexes give the infini-
tive. I matched each dialect with correspond-
ing languoids in Glottolog (Hammarström et al.,
2017) containing geographic metadata, resulting
in the merger of several dialects. I excluded cog-
nate sets with fewer than 10 forms, yielding 33231
modern Indo-Aryan forms. I preprocessed the
data, first converting each segment into its respec-
tive sound class, as described by List (2012), and
subsequently aligning each converted OIA/NIA
string pair via the Needleman-Wunsch algorithm,
using the Expectation-Maximization method de-
scribed by Jäger (2014), building off of work by
Wieling et al. (2012). This yields alignments of
the following type: e.g., OIA /a:ntra/ ‘entrails’ >
Nepali /a:n∅ro/, where ∅ indicates a gap where
the “cursor” advances for the OIA string but not
the Nepali string. Gaps on the OIA side are ig-
nored, yielding a one-to-many OIA-to-NIA align-
ment; this ensures that all aligned cognate sets are
of the same length.

4 Model

The basic family of model this paper employs is a
Bayesian mixture model which assumes that each
word in each language is generated by one ofK la-
tent dialect components. Like Structure (and sim-
ilar methodologies like Latent Dirichlet Alloca-
tion), this model assumes that different elements
in the same language can be generated by differ-
ent dialect components. Unlike the most basic
type of Structure model, which assumes a two-
level data structure consisting of (1) languages and
the (2) features they contain, our model assumes a
three-level hierarchy, where (1) languages contain
(2) words, which display the operation of differ-
ent (3) sound changes; latent variable assignment
happens at the word level.

I contrast the behavior of a DEEP model with
that of a SHALLOW model. The deep model draws
inspiration from Bayesian deep generative mod-
els (Ranganath et al., 2015), which incorporate
intermediate latent variables which mimic the ar-

chitecture of a neural network. This structure al-
lows us to posit an intermediate representation
between the sound patterns in the OIA etymon
and the sound patterns in the NIA reflex, allow-
ing the model to pick up on shared dialectal sim-
ilarities between forms in languages as opposed
to language-specific idiosyncrasies. The shal-
low model, which serves as a baseline of sorts,
conflates dialect group-level and language-level
trends; it contains a flat representation of all of the
sound changes taking place between a NIA word
and its ancestral OIA etymon, and in this sense is
halfway between a Structure model and a Naı̈ve
Bayes classifier (with a language-specific rather
than global prior over component membership).

4.1 Shallow model

Here, I describe the generative process for the
shallow model, assuming W OIA etyma, L lan-
guages, K dialect components, I unique OIA in-
puts, O unique NIA outputs, and aligned OIA-
NIA word pair lengths Tw : w ∈ {1, ...,W}.
For each OIA etymon, an input xw,t at time point
t ∈ {1, ..., Tw} consists of a trigram centered at
the timepoint in question (e.g., ntr in OIA /a:ntra/
‘entrails’), and the NIA reflex’s output yw,l,t con-
tains the segment(s) aligned with timepoint t (e.g.,
Nepali ∅). xw,t : t = 0 is the left word boundary,
while xw,t : t = Tw + 1 is the right word bound-
ary. Accordingly, sound change in the model can
be viewed as a rewrite rule of the type A > B / C

D. The model has the following parameters:

• Language-level weights over dialect compo-
nents: Ul,k; l ∈ {1, ..., L}, k ∈ {1, ...,K}

• Dialect component-level weights over sound
changes: Wk,i,o; k ∈ {1, ...,K}, i ∈
{1, ..., I}, o ∈ {1, ..., O}

The generative process is as follows:

For each OIA etymon xw ∈ {1, ...,W}

For each language l ∈ {1, ..., L} in which
the etymon survives, containing a reflex
yw,l

Draw a dialect component assignment
zw,l ∼ Categorical(f(Ul,·))

For each time point t ∈ {1, ..., Tw}
Draw a NIA sound yw,l,t ∼

Categorical(f(Wzw,l,xw,t,·))
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All weights in U and W are drawn from a Normal
distribution with a mean of 0 and standard devi-
ation of 10; f(·) represents the softmax function
(throughout this paper), which transforms these
weights to probability simplices. The generative
process yields the following joint log likelihood of
the OIA etyma x and NIA reflexes y (with the dis-
crete latent variables z marginalized out:

P (x,y|U,W ) =

W∏
w=1

L∏
l=1

K∑
k=1

[
f(Ul,k)

Tw∏
t=1

f(Wk,xw,l,t,yw,l,t
)

]
(1)

As readers will note, this model weights all
sound changes equally, and makes no attempt to
distinguish between dialectologically meaningful
changes and noisy, idiosyncratic changes.

4.2 Deep model
The deep model, like the shallow model, is a mix-
ture model, and as such retains the language-level
weights over dialect component membership U .
However, unlike the shallow model, in which the
likelihood of an OIA etymon and NIA reflex un-
der a component assignment z = k is depen-
dent on a flat representation of edit probabilities
between OIA trigrams and NIA unigrams associ-
ated with dialect component k. Here, I attempt
to add some depth to this representation of sound
change by positing a hidden layer of dimension J
between each xw,t and yw,l,t. The goal here is to
mimic a “noisy” reconstruction of an intermediate
stage between OIA and NIA represented by dialect
group k. This reconstruction is not an explicit,
linguistically meaningful string (as in Bouchard-
Côté et al. 2007, 2008, 2013); furthermore, it is
re-generated for each individual reflex of each et-
ymon, and not shared across data points (such a
model would introduce deeply nested dependen-
cies between variables, and enumerating all possi-
ble reconstructions would be computationally in-
feasible).

For parsimony’s sake, I employ a simple Recur-
rent Neural Network (RNN) architecture to cap-
ture rightward dependencies (Elman, 1990). Fig-
ure 1 gives a visual representation of the net-
work, unfolded in time. This model exchangesW ,
the dialect component-level weights over sound
changes, for the following parameters:

• Dialect component-level weights governing
hidden layer unit activations by OIA sounds:

W x
k,i,j ; k ∈ {1, ...,K}, i ∈ {1, ..., I}, j ∈
{1, ..., J}

• Dialect component-level weights governing
hidden layer unit activations by previous hid-
den layers: W h

k,i,j ; k ∈ {1, ...,K}, i ∈
{1, ..., J}, j ∈ {1, ..., J}

• Language-level weights governing NIA out-
put activations by hidden layer units:
W y

l,j,o; l ∈ {1, ..., L}, j ∈ {1, ..., J}, o ∈
{1, ..., O}

For a given mixture component z = k, the activa-
tion of the hidden layer at time t, ht, depends on
two sets of parameters, each associated with com-
ponent k: the weightsW x

k,xxt ,·
, associated with the

OIA input at time t; and W h
k , the weights asso-

ciated with the previous hidden layer ht−1’s acti-
vations, for all t > 1. Given a hidden layer ht,
the weights W l can be used to generate a proba-
bility distribution over possible outcomes in NIA
language l. The forward pass of this network
can be viewed as a generative process, denoted
yw,t ∼ RNN(xw,l,W

x
k ,W

h
k ,W

l) under the pa-
rameters for component k and language l; under
such a process, the likelihood of yw,l can be com-
puted as follows:

PRNN(yw,l|xw,W
x
k ,W

h
k ,W

l) =

Tw∏
t=1

f(h>
t W

l)yw,l,t (2)

where

ht =

{
f(W x

k,xw,t,·), if t = 1

f(h>t−1W
h ⊕W x

k,xw,t,·), if t > 1
(3)

The generative process for this model is nearly
identical to the process described in the previ-
ous sections; however, after the dialect compo-
nent assignment (zw,l ∼ Categorical(f(Ul,·)))
is drawn, the NIA string yw,l is sampled from
RNN(xw,W

x
zw,l

,W h
zw,l

,W l). The joint log likeli-
hood of the OIA etyma x and NIA reflexes y (with
the discrete latent variables z marginalized out is
the following:

P (x,y|U,W x,W h,W y) =
W∏
w=1

L∏
l=1

K∑
k=1

[
f(Ul,k)PRNN(yw,l|xw,W

x
k ,W

h
k ,W

l)
] (4)
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The same N (0, 10) prior as above is placed over
U,W x,W h,W y. J , the dimension of the hidden
layer, is fixed at 100. This model bears some sim-
ilarities to the mixture of RNNs described by Kim
et al. (2018).

I have employed a simple RNN (rather than a
more state-of-the art architecture) for several rea-
sons. The first is that I am interested in the conse-
quences of expanding a flat mixture model to con-
tain a simple, slightly deeper architecture. Addi-
tionally, I believe that the fact that the hidden layer
of an RNN can be activated by a softmax function
is more desirable from the perspective of repre-
senting sound change as a categorical or multi-
nomial distribution, as all layer unit activations
sum to one, as opposed to the situation with Long
Short-Term Memory (LSTM) and Gated Recur-
rent Units (GRU), which traditionally use sigmoid
or hyperbolic tangent functions to activate the hid-
den layer. Furthermore, long-distance dependen-
cies are not particularly widespread in Indo-Aryan
sound change, lessening the need for more com-
plex architectures. At the same time, the RNN
is a crude approximation to the reality of lan-
guage change. RNNs and related models draw a
single arc between a hidden layer at time t and
the corresponding output. It is perhaps not ap-
propriate to envision this single dependency un-
less the dimensionality of the hidden layer is large
enough to absorb potential contextual information
that is crucial to sound change. To put it sim-
ply, emission probabilities in sound change are
sharper than transitions common in most NLP ap-
plications (e.g., sentence prediction), and it may
not be correct to envision yt given ht′<t, ht as a
function of an additive combination of weights,
though in practice, I find it too computationally
costly to enumerate all possible value combina-
tions the hidden layer at multiple consecutive time
points. This issue requires further exploration, and
I employ what seems to be the most computation-
ally tractable approach for the moment.

5 Results

I learn each model’s MAP configuration using the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of .1.4 I run the optimizer for 10000
iterations over three random initializations, fitting
the model on mini-batches of 100 data points, and

4Code for all experiments can be found at https://
github.com/chundrac/IA_dial/VarDial2019.

xt−1 xt xt+1

ht−1 ht ht+1

yt−1 yt yt+1

. . . . . .

Figure 1: RNN representation, unfolded in time: hid-
den layers depend on OIA inputs x1, ..., xTw and previ-
ous hidden layers (for t > 1); NIA outputs y1, ..., yTw

depend on hidden layers. Hidden layer activations are
dependent on dialect component-specific parameters,
while activations of the output layer are dependent on
individual NIA language-specific parameters.

monitor convergence by observing the trace of the
log posterior (Figure 2).

The flat model fails to pick up on any major
differences between languages, finding virtually
identical posterior values of f(Ul), the language-
level distribution over dialect component member-
ship, for all l ∈ {1, ..., L}. According to the
MAP configuration, each language draws forms
from the same dialect group with > .99 proba-
bility, essentially undergoing a sort of “compo-
nent collapse” that latent variable models some-
times encounter (Bowman et al., 2015; Dinh and
Dumoulin, 2016). It is likely that bundling to-
gether sound change features leads to component-
level distributions over sound changes with high
entropy that are virtually indistinguishable from
one another.5 While this particular result is dis-
appointing in the lack of information it provides, I
observe some properties of our models’ posterior
values in order to diagnose problems that can be
addressed in future work (discussed below).

The deep model, on the other hand, infers
highly divergent language-level posterior distri-
butions over cluster membership. Since these
distributions are not identical across initializa-
tions due to the label-switching problem, I com-
pute the Jensen-Shannon divergence between the
language-level posterior distributions over cluster
membership for each pair of languages in our sam-
ple for each initialization. I then average these di-
vergences across initializations. These averaged

5I made several attempts to run this model with differ-
ent specifications, including different prior distributions, but
achieved the same result.

https://github.com/chundrac/IA_dial/VarDial2019
https://github.com/chundrac/IA_dial/VarDial2019
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Figure 2: Log posteriors for shallow model (left) and
deep model (right) for 10000 iterations over three ran-
dom initializations.

divergences are then scaled to three dimensions
using multidimensional scaling. Figure 3 gives a
visualization of these transformed values via the
red-green-blue color vector, plotted on a map; lan-
guages with similar component distributions dis-
play similar colors. With a few exceptions (that
may be artifacts of the fact that certain languages
have only a small number of data points associ-
ated with them), a noticieable divide can be seen
between languages of the main Indo-Aryan speech
region on one hand, and languages of northwest-
ern South Asia (dark blue), the Dardic languages
of Northern Pakistan, and the Pahari languages
of the Indian Himalayas, though this division is
not clear cut. Romani and other Indo-Aryan va-
rieties spoken outside of South Asia show affil-
iation with multiple groups. While Romani di-
alects are thought to have a close genetic affin-
ity with Hindi and other Central Indic languages,
it was likely in contact with languages of north-
west South Asian during the course of its speak-
ers’ journey out of South Asia (Hamp, 1987; Ma-
tras, 2002). However, this impressionistic evalua-
tion is by no means a confirmation that the deep
model has picked up on linguistically meaningful
differences between speech varieties. In the fol-
lowing sections, some comparison and evaluation
metrics and checks are deployed in order to assess
the quality of these models’ behavior.

5.1 Entropy of distributions

I measure the average entropy of the model’s pos-
terior distributions in order to gauge the extent to
which the models are able to learn sparse, informa-
tive distributions over sound changes, hidden state
activations, or other parameters concerning transi-
tions through the model architecture. Normalized
entropy is used in order to make entropies of distri-
butions of different dimension comparable; a dis-
tribution’s entropy can be normalized by dividing
by its maximum possible entropy.

As mentioned above, our data set consists of
OIA trigrams and the NIA segment corresponding
to the second segment in the trigram, representing
rewrite rules operating between OIA and the NIA
languages in our sample. It is often the case that
more than one NIA reflex is attested for a given
OIA trigram. As such, the sound changes that have
operated in an NIA language can be represented
as a collection of categorical distributions, each
summing to one. I calculate the average of the
normalized entropies of these sound change dis-
tributions as a baseline against which to compare
entropy values for the models’ parameters. The
pooled average of the normalized entropies across
all languages is .11, while the average of averages
for each language is .063.

For the shallow model, the parameter of interest
is f(V ), the dialect component-level collection of
distributions over sound changes, the mean nor-
malized entropy of which, averaged across initial-
izations but pooled across components within each
initialization, is 0.91 (raw values range from 0.003
to 1). For the deep model, the average entropy
of the dialect-level distributions over hidden-layer
activations, f(W x), is only slightly lower, at 0.86
(raw values range from close to 0 to 1).

For each k ∈ {1, ...,K}, I compute the for-
ward pass of RNN(xw,l,W

x
k ,W

h
k ,W

l) for each
etymon w and each language l in which the
etymon survives using the inferred values for
W x

k ,W
h
k ,W

l and compute the entropy of each
f(h>t W

l), yielding an average of .74 (raw val-
ues range from close to 0 to 1). While these val-
ues are still very high, it is clear that the inclu-
sion of a hidden layer has learned sparser, poten-
tially more meaningful distributions than the flat
approach, and that increasing the dimensionality
of the hidden layer will likely bring about even
sparser, more meaningful distributions. The en-
tropies cited here are considerably higher than the
average entropy of languages’ sound change dis-
tributions, but the latter distributions do little to tell
us about the internal clustering of the languages.

5.2 Comparison with other linguistic
distance metrics

Here, I compare the cluster membership inferred
by this paper’s models against other measures of
linguistic distance. Each method yields a pairwise
inter-language distance metric, which can be com-
pared against a non-linguistic measure. I measure
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Figure 3: Dialect group makeup of languages in sample under deep model

the correlation between each linguistic distance
measure as well as great circle geographic distance
and patristic distance according to the Glottolog
phylogeny using Spearman’s ρ.

5.2.1 Levenshtein distance
Borin et al. (2014) measure the normalized Lev-
enshtein distances (i.e., the edit distance between
two strings divided by the length of the longer
string) between words for the same concept in
pairs of Indo-Aryan languages, and find that av-
erage normalized Levenshtein distance correlates
significantly with patristic distances in the Ethno-
logue tree. This paper’s dataset is not organized by
semantic meaning, so for comparability, I measure
the average normalized Levenshtein distance be-
tween cognates in pairs of Indo-Aryan languages,
which picks up on phonological divergence be-
tween dialects, as opposed to both phonological
and lexical divergence.

5.2.2 Jensen-Shannon divergence
Each language in our dataset attests one or more
(due to language contact, analogy, etc.) outcomes
for a given OIA trigram, yielding a collection of
sound change distributions, as described above.
For each pair of languages, I compute the Jensen-
Shannon divergence between sound change distri-
butions for all OIA trigrams that are continued in
both languages, and average these values. This

gives a measure of pairwise average diachronic
phonological divergence between languages.

5.2.3 LSTM Autoencoder
Rama and Çöltekin (2016) and Rama et al. (2017)
develop an LSTM-based method for represent-
ing the phonological structure of individual word
forms across closely related speech varieties. Each
string is fed to a unidirectional or bidirectional
LSTM autoencoder, which learns a continuous
latent multidimensional representation of the se-
quence. This embedding is then used to recon-
struct the input sequence. The latent values in the
embedding provide information that can be used
to compute dissimilarity (in the form of cosine
or Euclidean distance) between strings or across
speech varieties (by averaging the latent values for
all strings in each dialect or language). I use the
bidirectional LSTM Autoencoder described in the
work cited in order to learn an 8-dimensional la-
tent representation for all NIA forms in the dataset,
training the model over 20 epochs on batches of 32
data points using the Adam optimizer to minimize
the categorical cross-entropy between the input se-
quence and the NIA reconstruction predicted by
the model. I use the learned model parameters to
generate a latent representation for each form. The
latent representations are averaged across forms
within each language, and pairwise linguistic Eu-
clidean distances are computed between each av-
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Geographic Genetic
Shallow JSD −0.01 −0.03
Deep JSD 0.147∗ 0.008

LDN 0.346∗ 0.013
Raw JSD 0.302∗ −0.051∗
LSTM AE 0.158∗ −0.068∗
LSTM ED 0.084∗ 0.0001

Table 1: Spearman’s ρ values for correlations between
each linguistic distance metric (JSD = Jensen-Shannon
Divergence, LDN = Levenshtein Distance Normalized,
AE = Autoencoder, ED = Encoder-Decoder) and geo-
graphic and genetic distance. Asterisks represent sig-
nificant correlations.

eraged representation.

5.2.4 LSTM Encoder-Decoder
For the sake of completeness, I use an LSTM
encoder-decoder to learn a continuous representa-
tion for every OIA-NIA string pair. This model
is very similar to the LSTM autoencoder, except
that it takes an OIA input and reconstructs an NIA
output, instead of taking an NIA form as input and
reconstructing the same string. I train the model
as described above.

5.3 Correlations

Table 1 gives correlation coefficients (Spearman’s
ρ) between linguistic distance metrics and non-
linguistic distance metrics. In general, correlations
with Glottolog patristic distance are quite poor.
This is surprising for Levenshtein Distance Nor-
malized, given the high correlation with patristic
distance reported by Borin et al. (2014). Given
that the authors measured Levenshtein distance
between identical concepts in pairs of languages,
and not cognates, as I do here, it is possible that
lexical divergence carries a stronger genetic sig-
nal than phonological divergence, at least in the
context of Indo-Aryan (it is worth noting that I
did not balance the tree, as described by the au-
thors; it is not clear that this would have yielded
any improvement). On the other hand, the Lev-
enshtein distance measured in this paper corre-
lates significantly with great circle distance, indi-
cating a strong geographic signal. Average Jensen-
Shannon divergence between pairs of languages’
sound change distributions shows a strong associ-
ation with geographic distance as well.

Divergence/distances based on the deep
model, the LSTM Autoencoder, and the LSTM

Encoder-Decoder show significant correlations
with geospatial distance, albeit lower ones. It is
not entirely clear what accounts for this disparity.
Intuitively, we expect more shallow chronological
features to correlate with geographic distance. It
is possible that the LSTM and RNN architectures
are picking up on chronologically deeper infor-
mation, and show a low geographic signal for this
reason, though this highly provisional idea is not
borne out by any genetic signal.

It is not clear how to assess the meaning of
these correlations at this stage. Nevertheless, deep
architectures provide an interesting direction for
future research into sound change and language
contact, as they have the potential to disaggregate
a great deal of information regarding interacting
forces in language change that is censored when
raw distance measures are computed directly from
the data.

6 Outlook

This paper explored the consequences of adding
hidden layers to models of dialectology where the
languages have experienced too much contact for
phylogenetic models to be appropriate, but have
diversified to the extent that traditional dialecto-
metric approaches are not applicable. While the
model requires some refinement, its results point
in a promising direction. Modifying prior distribu-
tions could potentially produce more informative
results, as could tweaking hyperparameters of the
learning algorithms employed. Additionally, it is
likely that the model will benefit from hidden lay-
ers of higher dimension J , as well as bidirectional
approaches, and despite the misgivings regard-
ing LSTM and GRUs stated above, future work
will probably benefit from incorporating these and
related architectures (e.g., attention). Addition-
ally, the models used in this paper assumed dis-
crete latent variables, attempting to be faithful to
the traditional historical linguistic notion of inti-
mate borrowing between discrete dialect groups.
However, continuous-space models may provide a
more flexible framework for addressing the ques-
tions asked in this paper (cf. Murawaki, 2015).

This paper provides a new way of looking at
dialectology and linguistic affiliation; with refine-
ment and expansion, it is hoped that this and re-
lated models can further our understanding of the
history of the Indo-Aryan speech community and
can generalize to new linguistic scenarios. It is
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hoped that methodologies of this sort can join
forces with similar tools designed to investigate
interaction of regularly conditioned sound change
and chronologically deep language contact in in-
dividual languages’ histories.
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