
Proceedings of VarDial, pages 17–25
Minneapolis, MN, June 7, 2019 c©2019 Association for Computational Linguistics

17

Improving Cuneiform Language Identification with BERT

Gabriel Bernier-Colborne, Cyril Goutte, Serge Léger
National Research Council Canada

{Gabriel.Bernier-Colborne, Cyril.Goutte, Serge.Leger}@nrc-cnrc.gc.ca

Abstract
We describe the systems developed by the
National Research Council Canada for the
Cuneiform Language Identification (CLI)
shared task at the 2019 VarDial evaluation
campaign. We compare a state-of-the-art base-
line relying on character n-grams and a tradi-
tional statistical classifier, a voting ensemble
of classifiers, and a deep learning approach us-
ing a Transformer network. We describe how
these systems were trained, and analyze the
impact of some preprocessing and model es-
timation decisions. The deep neural network
achieved 77% accuracy on the test data, which
turned out to be the best performance at the
CLI evaluation, establishing a new state-of-
the-art for cuneiform language identification.

1 Introduction

The goal of the Cuneiform Language Identifica-
tion (CLI) shared task (Zampieri et al., 2019) was
to predict the language or language variety of
a short segment of text written using cuneiform
symbols. These language varieties include Sume-
rian (SUX) and 6 different dialects of Akkadian:
Old Babylonian (OLB), Middle Babylonian pe-
ripheral (MPB), Standard Babylonian (STB), Neo
Babylonian (NEB), Late Babylonian (LTB), and
Neo Assyrian (NEA). The dataset for the shared
task was built from the Open Richly Annotated
Cuneiform Corpus,1 as described by Jauhiainen
et al. (2019).

The NRC-CNRC team submitted 3 systems to
the CLI shared task. The first one is a standard
approach using Support Vector Machines (SVM)
trained on character n-grams. The second one is
an ensemble using plurality voting among several
classifiers trained on different feature sets. This is
essentially the approach that reached state-of-the-
art on previous discriminating similar languages

1[http://oracc.museum.upenn.edu]

(DSL) shared tasks (Goutte et al., 2014, 2016).
Our last submission is a deep learning approach
based on character embeddings and a Transformer
network, similar to BERT (Devlin et al., 2018).

The following section quickly reviews related
work. We then describe the dataset and data pro-
cessing (Section 3) and the systems we built for
the shared task (Section 4), before presenting the
experimental results in Section 5.

2 Related Work

Jauhiainen et al. (2018c) provide a thorough sur-
vey of research on language identification. Re-
garding the state-of-the-art, they point out that
”generally speaking, linear-kernel SVMs have
been widely used for [language identification],
with great success across a range of shared tasks”
(Jauhiainen et al., 2018c). These SVMs usually
exploit character n-grams as features.

Given that text segments in the CLI dataset (see
Section 3) are often very short, it is worth noting
that the character-level language model-based sys-
tem of Jauhiainen et al. (2016) achieved state-of-
the-art results on texts longer than 25 characters,
according to an empirical comparison of 7 meth-
ods on 285 different language varieties (Jauhi-
ainen et al., 2017). On shorter texts containing
less than 20 characters, the method of Vatanen
et al. (2010), using a naive Bayes classifier based
on smoothed character n-gram probabilities, per-
formed better.

Jauhiainen et al. (2018c) point out that the
use of neural networks for language identifica-
tion has increased since 2016, with varying suc-
cess. Medvedeva et al. (2017) compared SVMs to
a feed-forward neural network that takes as input
the average embedding of the character n-grams
in the text, trained using multi-task learning, and
found that ”traditional models, such as SVMs, per-

http://oracc.museum.upenn.edu

18

form better on this task than deep learning tech-
niques” (Medvedeva et al., 2017, p. 161). On the
other hand, Ali (2018) used character-level CNNs
and RNNs and obtained strong results at VarDial
2018 (Zampieri et al., 2018), including second
place on 2 dialect identification tasks (for Arabic
and German). To our knowledge, we are the first to
apply the recently proposed BERT method (Devlin
et al., 2018) to the language identification prob-
lem.

3 Data

As this was a closed task, the only data we used
is the Cuneiform Language Identification dataset
created for this task (Jauhiainen et al., 2019). The
training set provided is unbalanced, the number
of cases per class ranging from 3803 (OLB) to
53,673 (SUX). On the contrary, the development
set is balanced, containing 668 cases for each
class. See Table 1 for full statistics.

One challenging aspect of the data is that most
of the text segments are very short. The segments
in the training set contain only 7 characters on av-
erage. More than half of the segments contain 5
characters or less, and more than 10% contain a
single character. On the tail end of the distribution,
a dozen segments contain more than 64 characters,
and only one contains more than 128 characters.
Again, the dev set is significantly different, as all
segments with less than 3 characters were filtered
out.

Another challenging aspect of this data is the
low frequency of many of the cuneiform symbols.
The training data contains 550 unique characters.
39 of these only appear once, and 128 appear 10
times or less. If we look at the development set,
we find that it contains 365 unique characters, and
3 of these are not found in the training data.

One other important property of the training
data is that it contains many duplicates, both
within classes and between classes. The training
set contains 139,421 segments, but only 86,454 are
unique. The most frequent segment appears 3223
times, in 6 of the 7 classes. The second most fre-
quent appears 1460 times, always in the same class
(LTB).2

We processed the training and development sets
provided to create our own cross-validation folds.
Before creating the folds, we applied a dedupli-

2Note that this means that almost 10% of the examples in
the LTB class are the same text.

segments
Class raw dedup
SUX 54,341 22,240
OLB 4,471 3,901
MPB 6,176 5,578
STB 18,485 16,327
NEB 10,375 8,595
LTB 16,615 8,665
NEA 33,634 26,614
Total 144,097 91,920

Table 1: Number of segments per class (train+dev), be-
fore (raw) and after (dedup) deduplication.

cation step to the combined training and develop-
ment data using the following strategy: we kept
only one instance of every (segment, label) pair;
for segments belonging to all 7 classes, however,
we only kept one labeled instance, where the label
is the most frequent label for that segment. The
resulting per-class statistics are provided in Table
1.

We then folded the deduplicated data (contain-
ing both the training and dev sets). Since the of-
ficial development set was balanced, and we sus-
pected the test set would be likewise, we created
our folds such that the test set (and dev set) of
each fold were balanced, containing m

k (rounded
to the nearest whole number) examples in each
class, where m is the minimum class frequency
in the combined training and development data,
and k is the number of folds. With k = 5 and
m = 3901, we obtained dev and test sets contain-
ing either 780 or 781 examples for each class. This
is larger than the official development set, and thus
the training sets are smaller than the official train-
ing set.

Note that during development of our deep learn-
ing approach, we decided to fully deduplicate the
training data, keeping only the most frequent label
for each segment.

The cross-validation folds were used as follows
to train the models: parameters were estimated on
the training part of each fold, the dev part was
used for setting extra parameters, e.g. for classi-
fier calibration (see Section 4), and the test part
was used to provide an unbiased estimate of the
resulting performance. Note that, as specifically
encouraged by the shared task organizers, the final
systems were retrained on the combined training
and development sets.

19

4 Methods

In this section, we describe the systems that we
developed for the CLI task.

4.1 SVM-based models

Our SVM-based models exploit a straightforward
pipeline that provides a strong baseline for lan-
guage identification. This pipeline has three
stages:

1. n-gram extraction and counting

2. feature weighting

3. estimation of calibrated statistical classifiers

Extracting and counting character n-grams from
cuneiform text is straightforward as there is no
whitespace or punctuation requiring special pre-
processing, e.g., tokenization. This is done for un-
igrams, bigrams, trigrams, 4-grams and 5-grams.
Note that for segments smaller than the n-gram
size, the full segment is retained regardless of
its size: the trigram corresponding to a segment
of length 3 will therefore appear in the 4-gram
and 5-gram feature spaces. We apply a feature
weighting scheme combining log term frequency,
inverse document frequency and cosine normal-
ization, a.k.a. ltc in the SMART weighting
scheme.3

One binary SVM classifier is trained for each
of the seven classes in one-vs-all manner, weight-
ing the minority class examples according to the
ratio of class sizes. We then calibrate each classi-
fier in order to produce proper probabilities. This
is done using isotonic regression (Zadrozny and
Elkan, 2002), estimated on a left-out dev set. This
allows the output of the 7 classifiers to be well-
behaved probabilities that we can compare in or-
der to predict the most probable class, or use in
further post-processing in combination with other
classifier’s outputs. The best model, as estimated
by cross-validation, used n-grams of length 1 to 4,
which we denote later by char[1-4].

Note that we also tried a two-stage approach
similar to that of Goutte et al. (2014) using vari-
ous class groupings (eg. Sumerian vs. Akkadian
dialects), but this did not prove particularly help-
ful.

3[https://en.wikipedia.org/wiki/SMART_
Information_Retrieval_System]

4.1.1 Voting ensemble

Ensemble methods have proven quite successful
on language identification (Malmasi and Dras,
2018) and other language classification tasks
(Goutte and Léger, 2017). We therefore submit-
ted a system that performs plurality voting among
several classifiers. The base classifiers are ob-
tained by training calibrated SVM classifiers, as
described above, on various feature spaces com-
bining n-grams of various lengths. We also trained
probabilistic classifiers (similar to Naive Bayes)
on the same feature spaces. Although the over-
all performance of the probabilistic classifiers was
consistently lower than that of the SVMs, they
provide a valuable addition to the ensemble be-
cause their prediction patterns are different from
those of the SVMs.

The ensemble was built by adding base classi-
fiers to the ensemble, in decreasing order of over-
all performance, as long as the estimated voting
performance, using a cross-validation estimator,
increases. For our submission, the resulting vot-
ing ensemble contains 15 base classifiers, among
which 10 are SVM-based and 5 are probabilistic
classifiers. That submission is referred to below
as ‘voting ensemble’ or simply ‘Ensemble’ in ta-
bles.

4.2 BERT approach

Our second approach is a slightly modified version
of the BERT model (Devlin et al., 2018).

We train a deep neural network which takes se-
quences of characters as input, using (partially)
unsupervised pre-training, followed by supervised
fine-tuning on the CLI training data. The network
is composed of a stack of bidirectional Trans-
former modules (Vaswani et al., 2017) which en-
code the input sequence. The output of the en-
coder is fed to an output layer, which varies from
one stage of training to the next.

First, we pre-train the model on unlabeled text
using 2 pre-training tasks: a masked language
model (MLM) and sentence pair classification
(SPC).

The MLM pre-training task is exactly as de-
scribed by Devlin et al. (2018). The goal of this
task is to predict symbols chosen at random based
on all the other symbols in the segment. Note that
for this language identification task, the MLM pre-
training task might be viewed as learning a multi-
language model, that is a single model that can

https://en.wikipedia.org/wiki/SMART_Information_Retrieval_System
https://en.wikipedia.org/wiki/SMART_Information_Retrieval_System

20

predict characters based on context for all 7 of the
cuneiform language varieties, and must therefore
learn the specific markers of each variety.

As for the SPC pre-training task proposed by
Devlin et al. (2018), we adapted it to account for
the fact that the segments in the training data are
not in sequential order and are not divided into
documents. We therefore split the training data
into 7 pseudo-documents corresponding to the 7
classes (different cuneiform language varieties),
and the task is to predict whether 2 segments be-
long to the same class. This is a very simple adap-
tation, but it introduces a supervised signal into the
pre-training task, as we use the CLI labels to split
the data into pseudo-documents. Learning to pre-
dict whether 2 segments belong to the same lan-
guage should be helpful to predict the language
variety used in a specific text, when we fine-tune
the model on this task later on.

Thus, the first phase of pre-training uses an out-
put layer (or head) for both the MLM and SPC
tasks. The first is a softmax over characters, which
takes as input the encoding of a segment, where
the characters to predict have been masked. The
second is a binary softmax, which takes as input
the joint encoding of 2 sentences, which we join
together using a special symbol that indicates the
boundary between 2 sentences.

This is followed by a second phase of pre-
training where we include the unlabeled test data
in the training data. Since we don’t know the la-
bels of the test data, it would not make sense to
use the (modified) SPC task for pre-training, so we
only use MLM, which is fully unsupervised with
respect to the CLI task. We re-train the weights of
the feature extractor (i.e. encoder) using a single
head for MLM.

Once the model is fully pre-trained, we fine-
tune it on the target task, i.e. to predict the lan-
guage variety of each text, using the labeled train-
ing and dev data. For this, we use the feature ex-
tractor learned during the 2 phases of pre-training,
and add a new head for language identification,
which is simply a softmax over the 7 language va-
rieties.

The vocabulary (or alphabet) is composed of ev-
ery character in the Unicode range for cuneiform
characters. Note that characters in the test data
which were not in the training data can still be
modeled to some extent because of the inclusion
of the unlabeled test data during the second phase

of pre-training.
Our hyperparameter settings largely resemble

those used by Devlin et al. (2018) (for their smaller
model):

• Nb Transformer layers: 12

• Nb attention heads: 12

• Hidden layer size: 768

• Feed forward/filter size: 3072

• Hidden activation: gelu

• Dropout probability: 0.1

• Max sequence length: 128

• Optimizer: Adam

• Learning rate for pre-training: 1e-4

• Batch size for pre-training: 64

• Training steps: 500K and 100K for pre-
training (phases 1 and 2 respectively), and
20K for fine-tuning

• Warmup steps: 10K for both pre-training
(phase 1 only) and fine-tuning

As for the fine-tuning stage, we do a small grid
search, over the following hyperparameter set-
tings:

• Batch size: {16, 32}

• Learning rate: {1e-5, 2e-5, 3e-5, 5e-5}

We did a few ad hoc tests on our own devel-
opment set (using one of the folds we created for
cross-validation) to assess the impact of dedupli-
cation and the various pre-training strategies (us-
ing SPC or not, doing a second phase where we in-
clude the test data), which is how we arrived at our
final model. We also tuned the number of train-
ing steps for fine-tuning on this dev set. We will
not present the results of these tests here, but will
show the results of ablation tests we conducted on
the official dev set in Section 5.3.

Note that our final model was fine-tuned on the
combined training and dev set, which we fully
deduplicated, by keeping only one instance of
each text, along with its most frequent label. The
unlabeled test set examples were also used during
the second phase of pre-training.

Our code is available at https://github.
com/gbcolborne/lang_id.

https://github.com/gbcolborne/lang_id
https://github.com/gbcolborne/lang_id

21

5 Results

We discuss the results of our official submissions
in the following section. We also analyze the
impact of various high-level modelling decisions,
look at potential sources of errors, and conduct
some ablation tests.

5.1 Test results
The scores of our 3 official submissions on the
test set are shown in Table 2. Our best scores
were achieved by the deep learning approach. This
run was ranked first overall. Our voting ensemble
would have been ranked 2nd, and our single SVM
would have been ranked 3rd.

System F1 (macro) Accuracy
Jauhiainen (2019) 0.7206 -
char[1-4] 0.7414 0.7453
Ensemble 0.7449 0.7494
BERT 0.7695 0.7711

Table 2: Results of our 3 official runs on the CLI test
set. For comparison, best F-score from (Jauhiainen
et al., 2019)

The BERT model achieves an absolute gain of
almost 2.5 F-score points over the voting ensem-
ble. As for the voting ensemble, it produced an
absolute gain of 0.35 F-score points over the best
single SVM.

A detailed breakdown of our results on each
of the 7 classes (languages) is presented in Ta-
ble 3. These results show that the deep learning
approach produces the best results on all but one
of the classes, sometimes by quite a margin (e.g.
OLB).

The 3 classes on which our scores are lowest
are Standard Babylonian (STB), Neo Babylonian
(NEB), and Neo Assyrian (NEA). As we can see
in the confusion matrix for our best run, illustrated
in Figure 1, the BERT model often confuses both
NEB and STB texts as NEA, which may be partly
due to the fact that NEA is the most frequent class
in the deduplicated training data.

5.2 SVM performance anaysis
We relied on a cross-validation estimate described
in Section 3 in order to guide several high-level de-
cisions, as described in Section 4. Official shared
task results (see Table 2), however, turned out to
be significantly lower than the cross-validation es-
timate we based our decisions on. This raises the

LT
B

MP
B

NE
A

NE
B

OL
B

ST
B

SU
X

Predicted label

LTB

MPB

NEA

NEB

OLB

STB

SUX

Tr
ue

 la
be

l

945 10 5 1 14 10

1 825 49 16 20 37 37

3 5 901 35 4 25 12

24 16 266 573 8 80 18

8 36 44 10 785 31 71

9 27 231 137 20 500 61

1 10 51 2 52 81 788

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Confusion matrix for our best run (BERT) on
the CLI test set.

question of how different the estimate would have
been had we relied on the official dev set instead
of full cross-validation, and whether this may have
changed our decisions, for example with respect to
which model to submit.

Another issue is the segment duplication men-
tioned in Section 3 as well as by Jauhiainen et al.
(2019). Removing duplicated segments makes the
training data more similar to the dev and test sets,
however, it also greatly reduces the amount of seg-
ments available for training our models. We inves-
tigate this trade-off by re-training a few key mod-
els on the original training data, without perform-
ing any deduplication. For these comparisons, we
use our best single model, char[1-4], the next
best single model, char[1-3], and the voting
ensemble.

Table 4 shows the results of these experi-
ments. It turns out that the performance estimated
by cross-validation is consistently 12–13 points
higher than the performance estimated on the dev
set. Note also that contrary to Jauhiainen et al.
(2019), who report marginally better F-scores on
the dev than on the test set, we obtained 3–4 points
higher F-score on the final test set than on the dev
set.

Comparing the results obtained on raw vs.
deduplicated training data, we see that the cross-
validation estimate is about 1 point higher when
models are trained on the deduplicated data, but
the difference on the dev is much smaller (0.06–
0.22 points). For the voting ensemble, it turns
out that dev performance is actually slightly better

22

System LTB MPB NEA NEB OLB STB SUX
char[1-4] 0.9317 0.8296 0.7402 0.6317 0.7681 0.5345 0.7539
Ensemble 0.9339 0.8339 0.7336 0.6316 0.7774 0.5344 0.7692
BERT 0.9565 0.8666 0.7103 0.6500 0.8373 0.5705 0.7952

Table 3: Class-wise F-score of our 3 official runs on the CLI test set.

CV Dev
System raw dedup raw dedup
Ensemble 0.8345 0.8431 0.7114 0.7092
char[1-3] 0.8226 0.8337 0.7055 0.7061
char[1-4] 0.8241 0.8347 0.7006 0.7026

Table 4: Impact of estimating model performance
(macro F1) on the cross-validation (CV) estimator vs.
dev set, and impact of deduplicating the training data
on the resulting performance. char[1-N] are single
SVM models trained on n-grams of length 1 to N .

when duplicates are not removed from the training
data.

Finally, one concern is whether these differ-
ences would have an impact on model selection or
high-level modelling choices. It turns out that ac-
cording to dev set performance, the char[1-3]
model is better than the char[1-4] model we
submitted, by about half a point. It will be interest-
ing to check whether this difference is matched on
test performance, once reference labels are avail-
able.

5.3 BERT ablation tests
We carried out a few simple ablation tests on the
BERT model, using the official development set
for validation and testing. We split this dev set
into two random subsets of equal size, which we
will call dev-A and dev-B. One half was used to
optimize the number of training epochs (i.e. to do
early stopping), and the other half was used as a
held out test set, to get an unbiased estimate of the
accuracy of the model.

These tests were meant to assess the impact of:

• Using both MLM and SPC for pre-training
(phase 1)

• Doing a second phase of pre-training (MLM
only) on both the training and dev data

• Deduplicating the training data

We pre-trained 4 models on the official training
set, one in the same manner as our official run, one

without SPC, one without deduplication, and one
without SPC nor deduplication.

We then re-trained these 4 models on the com-
bined training and dev sets (both halves). Only
MLM was used (as we are using the dev set for
evaluation, so we assume we don’t have the dev
labels). Deduplication was applied only for the
models that were initially pre-trained on dedupli-
cated data.

We then fine-tuned the 8 resulting models (4
with re-training, 4 without) on the labeled training
set. Again, we use deduplicated training data for
the models that were pre-trained on deduplicated
data.

For each of the 8 fine-tuning configurations, we
did 5 replications of the fine-tuning phase using
different seeds for the random number generators,
to assess the impact of random initialization (note
that the random initialization only affects the out-
put head since the models were pre-trained). This
is estimated by computing the 95% confidence in-
terval on the scores obtained on the 5 runs.

We did these 5 replications twice, first with dev-
A as dev set and dev-B as test set, then the other
way around. This would allow us to evaluate the
stability of the evaluation metrics over different
sets of validation and test instances, as well as the
stability of the optimal number of training epochs.
This procedure is sometimes referred to as esti-
mating “split-half reliability”. Note that our re-
sults on either half of the dev set are not exactly
comparable to results on the full dev set.

For these ablation tests, we reduced the batch
size for pre-training from 64 to 48, due to time
constraints and limited access to GPUs. For fine-
tuning, we used a learning rate of 1e-5 and a batch
size of 32.

The results are shown in Table 5. These results
show that the biggest gains were obtained by doing
a second phase of pre-training (with MLM only)
on both the training and test data. If we only do
the first pre-training phase, we lose about 5 points
of F-score (absolute). If we drop SPC for pre-
training (and use only MLM for both pre-training

23

Dedup? Pretraining Retrain? Score (dev-A) Score (dev-B)

Yes
Complete

Yes 0.789 ± 0.003 0.794 ± 0.005
No 0.738 ± 0.006 0.745 ± 0.005

MLM only
Yes 0.751 ± 0.005 0.746 ± 0.005
No 0.733 ± 0.006 0.727 ± 0.007

No
Complete

Yes 0.755 ± 0.005 0.772 ± 0.007
No 0.732 ± 0.007 0.744 ± 0.008

MLM only
Yes 0.727 ± 0.002 0.740 ± 0.003
No 0.725 ± 0.004 0.730 ± 0.005

Table 5: BERT ablation test results: mean F1 (macro) with 95% confidence interval. Retrain means the 2nd phase
of pre-training (MLM only), which includes the unlabeled dev and test data.

phases), we lose 4-5 points as well. And if we
don’t deduplicate the training data (and use both
MLM and SPC for the initial pre-training), we lose
2-3 points.

It is important to note that if we optimized the
other hyperparameters (notably the learning rate),
the results we would achieve with these various
training strategies would be different.

As for the number of training epochs, under the
optimal training conditions (with dedup and full
pre-training), the dev score peaked after only 1 or
2 epochs,4 and this result was stable across both
test sets (i.e. dev-A and dev-B), the optimal num-
ber of epochs being 1.2 ± 0.555 in one case and
exactly 1.0 ± 0.0 in the other.

It would be interesting to see if the SVM-based
model can reach the same accuracy as BERT if
we adapt it to the test data, e.g. using self-
training. The team ranked second on this CLI
task used a form of self-training to adapt an SVM
to the test data, and their F-score on the test
set (0.7632) was not very far behind the score
we achieved with BERT (0.7695). Furthermore,
results of the German Dialect Identification and
Indo-Aryan Language Identification tasks at Var-
Dial 2018 (Zampieri et al., 2018) showed that
the best results were obtained by systems that
were adapted to the test data (Jauhiainen et al.,
2018a,b).

5.4 Error analysis
Using the predictions of the BERT model on dev-
A,5 we analyzed the impact of text length on the
error rate, as we suspected that the short length of
the texts would be a major source of errors. This
analysis showed that the error rate is around 32%

4This suggests we should try an even smaller learning
rate.

5Results on dev-B are similar.

for the shortest texts in dev-A (length 3), and falls
to 12% for texts containing 10 characters. 83% of
all errors were made on texts containing 9 charac-
ters or less, 9.1 characters being the average length
of the texts in dev-A.

We also looked at the impact of OOV charac-
ters, but this is not a significant source of errors, as
only 3 texts in the official dev set contain a char-
acter that was not seen during training.

Finally, we checked if any of the texts in the
official dev set were seen during training, and this
was the case for 574 of 4676 texts. Of these 574
cases, we find 49 cases where the label in the dev
set was not seen during training, and 6 additional
cases where the training labels of a text contained
not only the dev label, but others as well. Thus,
we could say that label ambiguity (in other words,
multiple class membership) was a source of errors
for a little over 1% of texts in the dev set.

6 Conclusion

In this paper, we described the systems built by the
NRC-CNRC team for the Cuneiform Language
Identification shared task at the 2019 VarDial eval-
uation campaign. We adapted the BERT model
to the language identification task, and compared
this deep learning approach to statistical classifiers
trained on character n-grams, which have long
provided a strong baseline for language identifi-
cation tasks. Our results using the BERT model
surpass those obtained with an ensemble of clas-
sifiers trained on different feature sets comprising
n-grams of varying lengths, achieving an absolute
gain of about 2.5 F-score points on the test set,
and establishing the state-of-the-art for cuneiform
language identification. This is largely due to the
ability to conduct unsupervised learning on the test
set before making predictions, as well as the mod-

24

ified sentence pair classification task we use for
pre-training.

For future work, it would be interesting to
model the shape of cuneiform symbols, or their
transliterations, in order to better capture similar-
ities between symbols. We also plan on testing
BERT on other language identification datasets.
Finally, we plan on casting this problem as a multi-
label classification problem, as we believe this
could be a better approach for the CLI task, and
related tasks on discriminating similar languages.

References
Mohamed Ali. 2018. Character level convolutional

neural network for arabic dialect identification. In
Proceedings of the Fifth Workshop on NLP for Sim-
ilar Languages, Varieties and Dialects (VarDial
2018), pages 122–127.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Cyril Goutte and Serge Léger. 2017. Exploring optimal
voting in native language identification. In Proceed-
ings of the 12th Workshop on Innovative Use of NLP
for Building Educational Applications, pages 367–
373, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Cyril Goutte, Serge Léger, and Marine Carpuat. 2014.
The NRC system for discriminating similar lan-
guages. In Proceedings of the First Workshop on
Applying NLP Tools to Similar Languages, Varieties
and Dialects (VarDial), pages 139–145, Dublin, Ire-
land.

Cyril Goutte, Serge Léger, Shervin Malmasi, and Mar-
cos Zampieri. 2016. Discriminating Similar Lan-
guages: Evaluations and Explorations. In Pro-
ceedings of the Language Resources and Evaluation
(LREC), Portoroz, Slovenia.

Tommi Jauhiainen, Heidi Jauhiainen, Tero Alstola, and
Krister Lindén. 2019. Language and Dialect Identi-
fication of Cuneiform Texts. In Proceedings of the
Sixth Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial).

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018a. HeLI-based experiments in Swiss
German dialect identification. In Proceedings of the
Fifth Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial 2018), pages 254–262.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018b. Iterative language model adapta-
tion for indo-aryan language identification. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2018),
pages 66–75.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2016. HeLI, a Word-Based Backoff Method
for Language Identification. In Proceedings of the
Third Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial3), pages 153–162, Os-
aka, Japan.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2017. Evaluation of language identification
methods using 285 languages. In Proceedings of the
21st Nordic Conference on Computational Linguis-
tics, pages 183–191. Association for Computational
Linguistics.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Tim-
othy Baldwin, and Krister Lindén. 2018c. Auto-
matic language identification in texts: A survey.
arXiv preprint arXiv:1804.08186.

Shervin Malmasi and Mark Dras. 2018. Native lan-
guage identification with classifier stacking and en-
sembles. Computational Linguistics, 44(3):403–
446.

Maria Medvedeva, Martin Kroon, and Barbara Plank.
2017. When sparse traditional models outperform
dense neural networks: the curious case of discrimi-
nating between similar languages. In Proceedings of
the Fourth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), pages 156–163.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Tommi Vatanen, Jaakko J Väyrynen, and Sami Vir-
pioja. 2010. Language identification of short text
segments with n-gram models. In Proceedings of
LREC.

B. Zadrozny and C. Elkan. 2002. Transforming clas-
sifier scores into accurate multiclass probability es-
timates. In Proceedings of the Eighth International
Conference on Knowledge Discovery and Data Min-
ing (KDD’02).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Ahmed Ali, Suwon Shuon, James Glass, Yves
Scherrer, Tanja Samardžić, Nikola Ljubešić, Jörg
Tiedemann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Antal van den Bosch, Ritesh Ku-
mar, Bornini Lahiri, and Mayank Jain. 2018. Lan-
guage Identification and Morphosyntactic Tagging:
The Second VarDial Evaluation Campaign. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial), Santa
Fe, USA.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, Andrei Butnaru, and Tommi
Jauhiainen. 2019. A Report on the Third VarDial

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/W17-5041
https://doi.org/10.18653/v1/W17-5041
http://aclweb.org/anthology/W17-0221
http://aclweb.org/anthology/W17-0221
https://doi.org/10.1162/coli_a_00323
https://doi.org/10.1162/coli_a_00323
https://doi.org/10.1162/coli_a_00323

25

Evaluation Campaign. In Proceedings of the Sixth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial). Association for Computa-
tional Linguistics.

