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Preface

This volume includes the 25 papers presented in the Sixth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), which was co-located with the Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL) and was held on June
7, 2019 in Minneapolis, USA.

This is the first time that VarDial is co-located with NAACL and the second time that the workshop is
organized in North America. The previous five editions of the workshop were co-located with COLING
(in 2014 in Dublin, Ireland; in 2016 in Osaka, Japan; and in 2018 in Santa Fe, USA), with RANLP (in
2015 in Hissar, Bulgaria), and with EACL (in 2017 in Valencia, Spain).

VarDial continues to be the main venue dedicated to the research on similar languages, varieties, and
dialects within the CL/NLP community. We are happy to see that VarDial keeps growing, building
on the success of the previous editions. This year we received 17 regular workshop submissions, and
we accepted 10 papers, which were presented at the workshop. The accepted papers deal with various
topics related to language variation such as cross-lingual annotation projection in part-of-speech tagging,
machine translation between similar languages and dialects, and the processing of code-switched (or
mixed) data, to name a few.

Together with the sixth edition of the workshop, we organized the third edition of the VarDial
Evaluation Campaign, which featured five shared tasks. One shared task was a re-run from previous
editions, the third German Dialect Identification (GDI), and we had four new tasks: Cross-lingual
Morphological Analysis (CMA), Discriminating between Mainland and Taiwan variation of Mandarin
Chinese (DMT), Moldavian vs. Romanian Cross-dialect Topic identification (MRC), and Cuneiform
Language Identification (CLI). A total of 22 teams submitted official runs to one or more of the five
shared tasks, and 14 system description papers appear in this volume along with a shared task report by
the evaluation campaign and the task organizers.

Shared tasks have been organized since the workshop’s first edition. Most of these tasks were on language
and dialect identification, while a few others dealt with NLP tasks such as morphosyntactic tagging and
cross-lingual dependency parsing. The focus of the language and dialect identification competitions at
VarDial has always been on diatopic variation using synchronic contemporary data. This year, the CLI
shared task included historical languages for the first time at VarDial, and it was the most popular shared
task of the campaign, which demonstrates the interest of the community in this topic. To further respond
to this interest, we included topics related to the diachronic/diatopic variation interplay in the call for
papers as topics of interest for VarDial, e.g., philogenetic methods, and historical dialects.

We take this opportunity to thank the VarDial program committee for their thorough reviews. We further
thank the VarDial Evaluation Campaign shared task organizers and the participants. Finally, we thank the
workshop participants who presented regular research papers, for the valuable feedback and discussions.

The VarDial workshop organizers:

Marcos Zampieri, Preslav Nakov, Shervin Malmasi, Nikola Ljubešić, Jörg Tiedemann, and Ahmed Ali
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Abstract

In this paper, we present the findings of
the Third VarDial Evaluation Campaign or-
ganized as part of the sixth edition of the
workshop on Natural Language Processing
(NLP) for Similar Languages, Varieties and
Dialects (VarDial), co-located with NAACL
2019. This year, the campaign included
five shared tasks, including one task re-run
– German Dialect Identification (GDI) – and
four new tasks – Cross-lingual Morphologi-
cal Analysis (CMA), Discriminating between
Mainland and Taiwan variation of Mandarin
Chinese (DMT), Moldavian vs. Romanian
Cross-dialect Topic identification (MRC), and
Cuneiform Language Identification (CLI). A
total of 22 teams submitted runs across the
five shared tasks. After the end of the compe-
tition, we received 14 system description pa-
pers, which are published in the VarDial work-
shop proceedings and referred to in this report.

1 Introduction

The series of workshops on Natural Language Pro-
cessing (NLP) for Similar Languages, Varieties
and Dialects (VarDial) has reached its sixth edition
in 2019, evidencing the interest of the CL/NLP
community in this topic. The third VarDial Eval-
uation Campaign1 featuring five shared tasks, de-
scribed in detail in this report, has been organized
as part of VarDial 2019 co-located with the 2019
Annual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics (NAACL). It follows two editions of the cam-
paign organized in 2017 with four tasks (Zampieri
et al., 2017) and in 2018 with five tasks (Zampieri
et al., 2018).

Since its first edition, shared tasks have been or-
ganized as part of the VarDial, most notably the

1https://sites.google.com/view/
vardial2019/campaign

Discriminating between Similar Languages orga-
nized from 2014 to 2017 (Zampieri et al., 2014,
2015; Malmasi et al., 2016). The shared tasks
organized at VarDial helped providing evaluation
benchmarks and public datasets (e.g. (Tan et al.,
2014)) for different tasks such as dialect iden-
tification, morphosyntactic tagging, and cross-
lingual dependency parsing. Similar languages
such as Bulgarian and Macedonian, and Czech
and Slovak, along with varieties and dialects of
Arabic, German, Hindi, Portuguese, and Spanish
have been included in the competitions organized
within the scope of VarDial.

In this paper, we present the results and main
findings of the third VarDial Evaluation Cam-
paign. The five tasks organized this year were:
German Dialect Identification (GDI) presented in
Section 4, Cross-lingual Morphological Analysis
(CMA) presented in Section 5, Discriminating be-
tween Mainland and Taiwan variation of Man-
darin Chinese (DMT) presented in Section 6, Mol-
davian vs. Romanian Cross-dialect Topic iden-
tification (MRC) presented in Section 7, and fi-
nally, Cuneiform Language Identification (CLI)
presented in Section 8. In Table 1, we include ref-
erences to the 14 system description papers written
by the participants of the campaign and published
in the VarDial workshop proceedings.

2 Shared Tasks at VarDial 2019

The five shared tasks organized as part of the
VarDial Evaluation Campaign 2019 are listed
next:

Third German Dialect Identification (GDI):
After two successful editions of the (Swiss)
German Dialect Identification task, we organized
a third iteration of this task at VarDial 2019.
We focused again on four Swiss German dialect
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areas (Basel, Bern, Lucerne, and Zurich). We
provided updated speech transcripts for all dialect
areas, but also released two complementary data
sources: acoustic data in the form of iVectors,
and (predicted) word-level normalisation. In
particular, the Arabic Dialect Identification (ADI)
task organized in previous VarDial evaluation
campaigns showed that acoustic features may
substantially improve dialect identification. We
wanted to investigate whether this also holds in
the slightly different GDI setting.

Cross-lingual Morphological Analysis (CMA):
At VarDial 2019, we introduce the task of cross-
lingual morphological analysis. Given a word
in an unknown related language, for example
“navifraghju” (“shipwreck” in Corsican), a human
speaker of several related languages is able to
deduce that it is a noun in the singular by making
deductions from similar words, for example:
“naufrag” (Catalan), “naufragio” (Spanish,
Italian), “naufrágio” (Portuguese), “naufrage”
(French) and “naufragiu” (Romanian). At CMA,
we invited participants to create computational
models able to do the same. Two language
families were represented in the dataset, Romance
(fusional morphology) and Turkic (agglutinative
morphology). In the “Closed” track, participants
were given a set of word forms with all valid mor-
phological analyses in six languages and asked
to predict the valid morphological analyses for a
seventh, unseen language. In the “Semi-Closed”
track, the process was the same, only participants
were provided with additional raw data by the
organisers. This was in the form of raw text
Wikipedia dumps, bilingual dictionaries from the
Apertium project and any treebanks available
in the known languages from the Universal
Dependencies project.

Discriminating between Mainland and Taiwan
variation of Mandarin Chinese (DMT): Like
English, Mandarin has several varieties among the
speaking communities and two dominant standard
varieties (Lin et al., 2018). This task aims to dis-
criminate between these two standard varieties of
Mandarin Chinese: Putonghua (Mainland China)
and Guoyu (Taiwan). We provide a corpus of
approximately 10,000 sentences from newspapers
for each Mandarin variety. The main task is to
determine if a sentence is written in the Mandarin

variety of Mainland China or from Taiwan. It is
important to note that since a direct consequence
and the most salient feature of the variations
is the use of different orthographic systems in
China (simplified) and Taiwan (traditional), so the
task is designed to focus on the linguistic rather
than orthographic differences. Each sentence
in the corpus is tokenized and punctuations are
removed from the texts, as well as converted from
original traditional orthography to simplified,
and vice versa. Hence both the traditional and
the simplified versions of the same corpus are
available so that participant can choose either
version and won’t be able to use orthographic
cues. The results are evaluated in two separate
tracks (Simplified and Traditional).

Moldavian vs. Romanian Cross-dialect Topic
identification (MRC): In the Moldavian vs.
Romanian Cross-topic Identification shared task,
we provided participants with the MOROCO
data set (Butnaru and Ionescu, 2019) which
contains Moldavian and Romanian samples of
text collected from the news domain. The samples
belong to one of the following six topics: culture,
finance, politics, science, sports, and tech. The
samples are pre-processed in order to eliminate
named entities. For each sample, the data set
provides corresponding dialectal and category
labels. To this end, we proposed three subtasks
for the 2019 VarDial Evaluation Campaign. The
first sub-task was a binary classification by dialect
task, in which a classification model is required
to discriminate between the Moldavian and the
Romanian dialects. The second subtask was a
Moldavian to Romanian cross-dialect multi-class
classification by topic task, in which a model is
required to classify the samples written in the
Romanian dialect into six topics, using samples
written in the Moldavian dialect for training.
Finally, the third subtask was a Romanian to
Moldavian cross-dialect multi-class classification
by topic task, in which a model is required to
classify the samples written in the Moldavian
dialect into six topics, using samples written in
the Romanian dialect for training.

Cuneiform Language Identification (CLI): This
shared task focused on discriminating between
languages and dialects originally written using
the cuneiform script. The task included 2 dif-
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Team GDI CMA DMT MRC CLI System Description Papers
Adaptcenter X
BAM X (Butnaru, 2019)
dkosmajac X
DTeam X (Tudoreanu, 2019)
SharifCL X (Doostmohammadi and Nassajian, 2019)
ghpaetzold X X X
gretelliz92 X
ekh X
IUCL X (Hu et al., 2019)
HSE X (Mikhailov et al., 2019)
itsalexyang X (Yang and Xiang, 2019)
lonewolf X
MineriaUNAM X
NRC-CNRC X (Bernier-Colborne et al., 2019)
R2I LIS X (Chifu, 2019)
PZ X (Paetzold and Zampieri, 2019)
SC-UPB X (Onose and Cercel, 2019)
situx X
SUKI X X (Jauhiainen et al., 2019b)
tearsofjoy X X X X (Wu et al., 2019)
TübingenOslo X (Çöltekin and Barnes, 2019)
Twist Bytes X X (Benites et al., 2019)
Total 6 3 7 5 8 14

Table 1: The teams that participated in the Third VarDial Evaluation Campaign.

ferent languages: Sumerian and Akkadian. Fur-
thermore, the Akkadian language was divided into
six dialects: Old Babylonian, Middle Babylo-
nian peripheral, Standard Babylonian, Neo Baby-
lonian, Late Babylonian, and Neo Assyrian. These
languages and dialects were used in ancient
Mesopotamia and span a time period of 3,000
years. For training and development, we provided
the participants with varying amounts of text en-
coded in Unicode cuneiform signs for each lan-
guage or dialect.

3 Participating Teams

The Third VarDial Evaluation Campaign received
a positive response from the NLP community. A
total of 51 teams enrolled to participate in the five
shared tasks of the campaign and 22 of them sub-
mitted runs to one or more tasks. This is a sim-
ilar participation rate to VarDial 2018 when 54
teams signed up and 24 teams submitted runs to
five shared tasks, a record for the workshop.

In VarDial 2019, the participants could choose
to participate in one or more shared tasks. Table 1
lists the participating teams, the shared tasks they

took part in, and a reference to each of the 14 sys-
tem description papers published in the VarDial
workshop proceedings.

4 Third German Dialect Identification
GDI

The third edition of the (Swiss) German Dialect
Identification task was based on the same data
source and split as in 2018, but offered the par-
ticipants the possibility to make use of word-level
normalizations and/or acoustic features. The GDI
task again covered four Swiss German dialect ar-
eas, namely Basel, Bern, Lucerne, and Zurich.

4.1 Dataset

As in 2017 and 2018, we extracted the train-
ing and the test datasets from the ArchiMob cor-
pus of Spoken Swiss German (Samardžić et al.,
2016; Scherrer et al., in press). This corpus cur-
rently contains 43 oral history interviews with
informants speaking different Swiss German di-
alects. Each interview was transcribed by one
of four transcribers, using transcription guidelines
based on the writing system ”Schwyzertütschi
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Dialäktschrift“ (Dieth, 1986). The transcriptions
exclusively used lower case.

We provided the same data splits as in 2018, but
with slightly reduced sizes due to additional fil-
tering. The training set contained utterances from
at least three interviews per dialect. The develop-
ment and test sets each contained utterances from
at least one other interview per dialect. Partici-
pants were encouraged to include the development
data as additional training material in their final
systems. This year, we also provided word-level
normalizations and acoustic features.

The normalizations have been produced auto-
matically using character-level statistical machine
translation at utterance level and re-aligning the
normalizations with their source words (see Scher-
rer and Ljubešić (2016) for details on the ap-
proach). We estimated that this word-level nor-
malization format would allow participants to ex-
periment with various feature representations such
as character alignments. The normalization lan-
guage resembles Standard German, but deviates
from it in many respects.

The acoustic features, in the form of 400-
dimensional i-vectors, were extracted from the
source audio data, aligned with the text at the level
of segments whose length is between 4s and 10s.
Our extraction procedure follows closely the steps
proposed in the previous work on Arabic dialects
(Ali et al., 2016; Dehak et al., 2011). As in the pre-
vious work, we use the Kaldi collection of tools2

to perform different calculations needed for the
extraction of i-vectors. While i-vectors are ex-
pected to model the difference between individual
speakers and the general background model, the
question is open whether they offer some reliable
dialect-level information, which can be exploited
by the classification algorithms. Given that there is
no speaker overlap between training and test data
in our current GDI setup, dialect-level information
is necessary for improving over the baseline.

4.2 Participants and Approaches

Six participants submitted their systems to the
GDI task this year. In the following paragraphs,
we shortly describe the best system submitted by
each participant. Many participants also provided
alternative systems.

2https://github.com/
kaldi-asr/kaldi/blob/
08869e31da51d688ee582dc924193b19530a2d32/
egs/lre07/v1/lid/extract_ivectors.sh

tearsofjoy: This submission is based on a linear
SVM classifier using character 1–5-grams,
word 1–2-grams as well as the iVector fea-
tures. The character and word features are
weighted by BM25. Semi-supervised adap-
tation to the test data was also used.

SUKI: This submission uses the HeLI method,
which is based on relative frequencies of
character 4-gram features with smoothing.
One of its key characteristics is the semi-
supervised adaptation to the test data, as pro-
posed in 2018.

Twist Bytes: This submission relies on a SVM
meta-classifier that uses multiple tf-idf-
weighted character and word features.
Acoustic features are used in a base SVM
classifier, whose predictions serve as input
for the meta-classifier. Semi-supervised
adaptation to the test data was also used.

BAM: This system is an ensemble of three mod-
els, a character-level convolutional neural
network, a character-level LSTM, and a
string kernel model.

dkosmajac: This submission relies on a quadratic
discriminant analysis classifier for the iVec-
tors and on a random forest classifier for the
text. The output of both classifiers is fed into
a random forest meta-classifier to produce the
final predictions.

ghpaetzold: This system consists of a recurrent
neural network that learns representations of
sentences based on their words, and of words
based on their characters.

The baseline consists of a linear SVM classifier
using only word unigrams as features.

4.3 Results
Table 2 shows the performance of different meth-
ods on the GDI data in terms of macro-averaged
F1 scores. The three best models all include semi-
supervised adaptation to the test data. The impact
of the iVectors is hard to assess: on the one hand, it
was expected to be low due to the lack of speaker
overlap between training and test data, but on the
other hand semi-supervised adaptation should be
able to generalize test speaker properties from the
acoustic signal. The results do not bear out this
second hypothesis. None of the participants used
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Rank Team Transcripts iVectors Normalization Adaptation F1 (macro)
1 tearsofjoy X X X 0.7593
2 SUKI X X 0.7541
3 Twist Bytes X X X 0.7455
4 BAM X 0.6255

Baseline X 0.6078
5 dkosmajac X X 0.5616
6 ghpaetzold X 0.5575

Table 2: Results and rankings of GDI participants. The table also specifies the data formats and techniques used
by the participants.

the normalized data. As in previous years, sys-
tems based on neural networks did not reach com-
petitive scores, possibly also due to the absence of
adaptation.

4.4 Summary

In this third iteration of the GDI task, we provided
additional data formats such as acoustic data and
word-level normalizations. Six teams participated
in the GDI task. Three of them used the acous-
tic data, but results do not seem to indicate large
gains. In contrast, semi-supervised adaptation to
the test set seems to be crucial to attain state-of-
the-art results.

5 Cross-lingual Morphological Analysis
(CMA)

Morphological analysis is one of the cornerstones
of natural language processing for morphologi-
cally complex languages. Currently, rule-based
finite-state morphological analyzers represent the
state-of-the-art for this task, however, developing
rule-based analyzers is a substantial task. It entails
creation of extensive word lists and grammatical
descriptions. This requires both linguistic exper-
tise and technical expertise in the rule formalism
which is used. Hence, there exists a demand for
less labor intensive approaches especially for low-
resource languages.

Classically, rule-based analyzers have been aug-
mented with statistical guessers which provide
analyses for out-of-lexicon word forms (Lindén,
2009). Recently, purely data-driven morpho-
logical analysis has received increasing atten-
tion (Nicolai and Kondrak, 2017; Silfverberg and
Hulden, 2018; Moeller et al., 2018; Silfverberg
and Tyers, 2019). Purely data-driven systems learn
an analysis model from a data set of morphologi-
cally analyzed word forms and can then be applied

to unseen word forms.
The shared task on cross-lingual morphological

analysis (CMA) investigates a new dimension of
the morphological analysis task. The task was to
leverage data for related languages in building a
purely data-driven analyzer for a target language.
No annotated target language data was provided to
the competitors.

The CMA task investigated related-language
analysis for the Romance and Turkic language
families. Competitors were provided morphologi-
cally analyzed training data in six Romance lan-
guages (Asturian, Catalan, French, Italian, Por-
tuguese and Spanish) and six Turkic languages
(Bashkir, Crimean Tatar, Kazakh, Kyrgyz, Tatar
and Turkish). Using these datasets, they built mor-
phological analyzers for two surprise languages:
the Romance language Sardinian and the Turkic
language Karachay-Balkar. The competitors had
access to the input word forms in the Sardinian
and Karachay-Balkar test sets but, as stated above,
they did not receive any morphologically analyzed
data in either of the target languages.

5.1 Dataset

The dataset was compiled specifically for the
shared task. We used the Wikipedias in all the
languages to create a frequency list of surface to-
kens for each language. We then analysed these
lists using the morphological analysers from the
Apertium (Forcada et al., 2011) project. The lists
of analyses were trimmed to include only open-
class parts of speech (nouns, adjectives, adverbs
and verbs). We then removed any form which did
not include at least one analysis in an open class.
After this we took the top 10,000 wordforms for
each language.

The tagsets were converted from Apertium-
style to Universal Dependencies (Nivre et al.,
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Team Turkic Romance
Analysis Lemma Tag Analysis Lemma Tag

HSE 35.61 56.99 38.75 23.28 38.82 46.42
MineriaUNAM 0.00 0.56 0.00 0.33 0.44 37.76
TübingenOslo 31.53 52.74 38.93 23.67 31.36 61.33

BASELINE-I 39.46 54.94 44.18 22.94 31.56 51.88
BASELINE-II 39.44 53.82 44.29 26.51 34.65 58.54

Table 3: Results for the CMA task. Bold indicates the best scoring system, while italics indicates an ‘unofficial’
result that was submitted after the deadline. These scores are F-scores. For the Analysis column every part of the
analysis had to be correct, for the Lemma column the lemma had to be correct and for the Tag column just the
part-of-speech tag had to be correct. BASELINE-I refers to the neural system and BASELINE-II to the neural
ensemble described in Section 5.3.

2016) using a longest-match set overlap method
running on tag-lookup tables, for example, the
Apertium tag <n> was converted to the Univer-
sal Dependencies tag NOUN, while Apertium’s
<p1> was translated into Universal Dependencies
Number=Plur|Person=1.

Finally, each of the word forms was labelled
with the language it came from and the lists were
merged into language family specific lists.

5.2 Participants and Approaches
HSE This team constructed a POS specific
cross-lingual morpheme inventory using the an-
notated training data. They then predicted target
language POS tags using a bidirectional LSTM
encoder-decoder model with attention. Finally,
they used the POS specific morpheme inventory
to predict morphological features using a greedy
algorithm. Lemmatization was accomplished by
suffix stripping. To deal with language spe-
cific orthographic conventions, the team first au-
tomatically transcribed all the training data into
a joint orthographic representation: For Romance
languages, diacritics were removed and for Tur-
kic languages, all data sets were transcribed into
Cyrillic script. To build the morpheme invento-
ries, word forms were morphologically segmented
using Morfessor (Smit et al., 2014).

MinerialUNAM No system description paper
was submitted by this team.

TübingenOslo This team divided the morpho-
logical analysis task into two sub-tasks: lemma-
tization and morphological tag prediction. First,
a bidirectional GRU encoder was used to encode
the input word form into a representation vector.
This vector was fed into a GRU decoder network

which generated a lemma. A number of feed for-
ward networks were then used to predict morpho-
logical features and POS tag using the representa-
tion vector as input. Each morphological feature
type, for example number and case, was predicted
by a separate feed forward network. Additionally,
this team reports results for a linear baseline sys-
tem which delivers competitive performance for
the Turkic language family.

5.3 Baseline System
The first baseline system BASELINE-I (Silfver-
berg and Tyers, 2019) formulates the morpho-
logical analysis task as a character-level string
transduction task. It uses an LSTM encoder-
decoder model with attention (Bahdanau et al.,
2014) for performing the string transduction. To
this end, the system is trained to translate in-
put word forms like andaluza (feminine sin-
gular for the noun or adjective andaluz ‘An-
dalusian’ in Spanish) into a set of output anal-
yses: andaluz+A+Num=Sg|Gend=Fem and
andaluz+N+Number=Sg|Gend=Fem.

Since a word form may have multiple valid mor-
phological analyses with different lemmas, POS
tags and MSDs (for example, andaluza has two),
the baseline model needs to be able to gener-
ate multiple output analyses given an input word
form. This is accomplished by extracting sev-
eral output candidates from the model using beam
search and selecting the most probable candidates
as model outputs. The number of outputs is con-
trolled by a probability threshold hyperparame-
ter p. The system extracts the least number of
top scoring candidates whose combined probabil-
ity mass is greater than p. Additionally, the num-
ber of output candidates is restricted using a single
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hyperparameter N which is a firm upper bound
for the number of analyses a word may receive.
The hyperparameters p and N are tuned by treat-
ing the training set for one of the languages as
held-out data (Asturian for Romance languages
and Crimean Tatar for Turkic languages). After
tuning the hyperparameters, the model was trained
on the complete annotated training data.

The second baseline system BASELINE-II is
an ensemble of five instances of the neural base-
line systems BASELINE-I described above. Each
instance was trained identically apart from ran-
dom initialization of model parameters. We com-
pute the probability for an output analysis as the
arithmetic mean of the probabilities assigned by
each of the five component models. Output anal-
yses are generated in the same manner as for the
BASELINE-I model.

5.4 Results

Given an input word form, systems return a set of
analyses each of which consists of a lemma and
a morphological tag. Systems are evaluated for
F1-score with regard to the gold standard set of
complete analyses, lemmas and tags for each input
word form. Table 3 shows results for the CMA
task.

5.5 Summary

Three teams participated in this first iteration
of the cross-lingual analysis task. Two of the
teams employed variations of neural encoder-
decoder systems. Apart from lemmatization per-
formance, it proved to be difficult to attain con-
sistent improvements over the neural baseline sys-
tems. However, the suffix stripping approach used
by the HSE team did deliver clear improvements in
lemmatization for both Turkic and Romance lan-
guages.

6 Discriminating between Mainland and
Taiwan variation of Mandarin Chinese
(DMT)

Mandarin, with over 900 million native speakers,
is one of the ten main dialect groups of Chinese,
along with Yue, Min, Wu, and others (often also
referred to as Sinitic languages). Inside Mandarin,
there is also a variety of divergence within. Man-
darin (i.e. the language of the mandarins (the of-
ficers)) has been the official language of the gov-
ernment by convention for over a thousand years

but has also become the common language both
in spoken language and written text by constitu-
tion in the modern era, first by the Nationalists
(ROC) after 1911, and then by the Communists
PRC in 1949. In daily non-technical usage, both
Chinese or Mandarin refers to either or both of
these standard forms of Mandarin as the lingua
franca of the Chinese people, including both their
spoken and written forms (Huang and Shi, 2016).
Although the later version (called Putonghua (普
通话, common language) superseded the older
version (called Guoyu (國語, national language)
in Mainland China, and the latter version persists
in Taiwan and can be viewed to be related, impor-
tant variations arose since 1949 for several reasons
(Lin et al., 2018).

First, and most of all, the two varieties devel-
oped in relative isolation from each other and un-
der different political systems for over 50 years
during the Cold War era. Second, each has its
own regulating bodies as well as different contex-
tual influences. Third, Guoyu has more southern
influences than Putonghua, even though both are
based on Beijing Mandarin. Note that Putonghua
in China is written with simplified Chinese charac-
ters with Pinyin romanization for pedagogy; while
Guoyu in Taiwan is written in traditional charac-
ters and uses the Zhuyin system (sometimes called
bopomofo) for pedagogy. With recent more fre-
quent exchanges at different levels of China and
Taiwan, some of the differences have begun to get
absorbed.

6.1 Dataset

Texts to distinguish between the two variations
were compiled from the two existing corpora of
news: Sinica Corpus for Taiwan Mandarin (Chen
et al., 1996) and LCMC (The Lancaster Corpus
of Mandarin Chinese, (McEnery and Xiao, 2003))
for Mainland Mandarin. Both corpora are seg-
mented and tokenized. We remove the punctua-
tion and unify the orthography used to eliminate
orthographic cues. Since both corpora are bal-
anced corpora, our initial thought was to provide
genre-aware classification. However, inspection
of both corpora suggested the genres were not de-
fined in the same way and are not distributed ho-
mogeneously. In the next edition this idea may
be exploited by using some additional resources as
genre vs. regional variations which is an important
and yet under-explored issue in similar languages
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(Hou and Huang, 2019).
Thus, as input data, we got 21492

lines/sentences of LCMC corpus and 46158
lines/sentences from Sinica Corpus. The clean-up
included removing lines containing Latin char-
acters in Named Entities (as potential contextual
cues) and lines shorter than 4 tokens. The
LCMC portion is reduced to 12072 sentences
after clean-up, and Sinica Corpus data is reduced
correspondingly for balance.

The data were converted into utf-8 encoding,
and split into training, development and test sets
in the following proportions respectively for each
variety: 9385/1000/1000 lines. Each of the sets
was mixed pairwise: Taiwanese with Mainland
train/dev/test sets, and shuffled. The test set was
formed from the last 1000 lines of each of the cor-
pus to make sure there is no intersection between
training and test data.

The sets prepared as described above were then
run through a character converter to form two
tracks: Traditional and Simplified. As it was stated
in the introduction of this Section, Mainland uses
simplified characters while in Taiwan traditional
characters are used. The conversion ensures that
the DMT task is not orthography dependent and
will allow us to compare results of teams working
on both sets of data. Conversion from simplified to
traditional and from traditional to simplified char-
acters were made by opencc converter 3 (in effect,
coding sets with some lexical conversion as well).
However, conversion cannot be 100% accurate in
both directions, it will have some information lost.

6.2 Participants and Approaches

A total of seven systems participated in the shared
task, and as a result, 17 runs each were performed
for both the simplified and the traditional set. Five
of the teams performed three runs each for both
sets of data and the other two only performed once
for each. The results were given out in confusion
matrices, which calculate the number of sentences
that were identified as being labeled correctly and
incorrectly. Four of the teams that participated in
the shared task used the training and development
data exclusively in order to obtain the final result.

Here is a more detailed explanation of the ap-
proaches conducted by the teams based on the de-
scriptions provided by the participants:

Adaptcenter: A dictionary was built which

3https://github.com/BYVoid/OpenCC

contain the 5,000 high frequency words which
were assigned values. Then the convolutional neu-
ral network (CNN) method was employed to the
training and test test, which results in the CNN
model. At the end, the two methods were com-
bined, improving from either of the methods.

ghpaetzold: This system is a 2-layer compo-
sitional recurrent neural network that learns nu-
merical representations of sentences based on their
words, which were in turn based on their charac-
ters. The system receives, as input, the text from
the instance being classified only, with no other
additional features or resources. The model was
trained exclusively on the training data provided,
and was validated on the development set pro-
vided. The model was implemented in Pytorch.

gretelliz92: A simple preprocessing was carried
out to preserve all the characteristics that can be
discriminative between the two types of texts that
are analyzed, with the combination of a linguistic
feature based on tf-idf. Therefore, in this step only
the texts with fasttext word embedding for Chinese
were represented. The vectors obtained in the pre-
processing are used as input of the model which
consists of a Bidirectional long short-term mem-
ory (Bi-LSTM) layer, whose output is inputted to
a fully connected neural network of 4 dense layers
with the relu activation function, along with one
output layer with the softmax function.

IUCL (submitted as ’hezhou’): An ensemble
model was used containing the five following clas-
sifiers: 1) a pre-trained BERT model for Chinese,
2) a long short-term memory model with word-
embeddings which was trained on People Daily’s
News, one of China’s leading newspapers, 3) sup-
port vector machine (SVM) and Naive Bayes clas-
sifiers with word n-gram and context-free gram-
mar features, 4) a sequential model with a global
average pooling layer, 5) a word-based bi-LSTM
model. They were, in turn, ensembled in three dif-
ferent methods: 1) assigning the class which has
the highest probability (confidence) from any clas-
sifier, 2) assigning the class with the highest av-
erage probability, 3) using an SVM to predict the
class from the probabilities given by all of the clas-
sifiers.

itsalexyang: A multinomial Naive Bayes and
BiLSTM ensemble model was used to train the
model. For multinomial Naive Bayes, it is trained
using presence vs. absence (0 vs. 1) vectors
based on feature combinations of character-level
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bigrams and trigrams as input. For BiLSTM, the
Word2vec method was trained on the dataset to
obtain word embedding matrices, then the word
embedding sequences can be used as input sen-
tence representations. A forward and a back-
ward LSTM is used to process the sequence and
produce hidden states, which contain information
from contexts in two opposite directions. After ob-
taining the hidden state sequence, max-over-time
pooling operation is applied to form a fix-size vec-
tor as sentence representations, which will be fed
into a hidden dense layer with 256 units and a fi-
nal dense layer to predict. After training with these
base classifiers, an average of output probabilities
from all the models is then taken and used to make
the final prediction.

SUKI: A custom coded language identifier was
made using the product of relative frequencies of
character n-grams. It is a Naive Bayes classifier
that uses relative frequencies as probabilities. The
lengths of the character n-grams used ranged from
1 to 14 for the Traditional track and from 1 to 15
for the Simplified Track. Instead of multiplying
the relative frequencies, their negative logarithms
were summed up. As a smoothing value, the neg-
ative logarithm of an n-gram appearing only once
multiplied by a penalty modifier was used. In this
case, the penalty modifier was 1.3. For the Sim-
plified track, similar language model (LM) adap-
tation was used as in GDI 2018 (Jauhiainen et al.,
2018a). In addition, a separate confidence thresh-
old was used. For the Traditional track, the LM
adaptation was also used, but the results were split
in 4 parts and all the information from one part
was added to the language models at once. The
n-gram models used, penalty modifier, the confi-
dence threshold, and the number of splits in adap-
tation was optimized using the development data.

tearsofjoy: This is a linear SVM classifier
(one-vs-rest multi-class classifier) with character
n-grams ranging from the order 1 to 4 combined
with word unigrams (as the effect of word n-
grams on the development set is negligible). All
n-gram features are combined into a single fea-
ture matrix and weighted by BM25. The model is
tuned for optimum ’C’ parameter (5.8 for this ap-
proach) and maximum n-gram order on the train-
ing/development set. The data was modified by
adding the test instances that are classified with a
classifier trained on the training set with high con-
fidence to the training set, and re-training the clas-

sifier with the additional ’silver’ data from the test
set.

6.3 Results

In the Table 4 we present the results of the teams
in terms of F1-scores alongside with the summary
of the methods that they have employed in order to
train a model. One of the teams (IUCL, marked in
italics in the table) used additional resources (pre-
trained word embeddings) while training.

6.4 Summary

From the obtained results we can see that sophis-
ticated approaches involving Deep Learning mod-
els do not necessarily outperform the traditional
methods like Naive Bayes or SVM. We have man-
ually analysed the sentences that got wrong pre-
diction for most systems. Majority of those sen-
tences were of the generic themes, which suggests
the key factor for identifying the variation was top-
ical rather than grammatical.

Another observation coming from the confu-
sion matrices: for some systems the percentage
of cases when Mainland label was predicted while
Taiwanese was the True label, sometimes was half
as much than for the other way round.

Finally, comparing results from both tracks by
the same team, it is shown that differences in F1
are general quite small and performance ranking
is relatively stable and independent of the track
(i.e. orthography). This reassures robustness of
the set. It is interesting to observe though that
the better performing teams tend to have bigger
deviation than the teams with lower performance.
For instance, the smallest delta (0.001249321)
came from gretelliz92; while the higher delta
(0.035017912) came from SUKI. While SUKI’s
performance is more than 15% higher (Delta F1
roughly 0.15).

While the default hypothesis was that the more
robust system should be the one least affected by
choice of orthographic representation, the DMT
task results suggest that it would be the other way
around. That is, the system that performs bet-
ter in differentiating varieties of similar languages
should be ‘biased’ to pick up the differences hence
could be affected by representational variations.
The least biased system (i.e. seemingly ‘robust’)
in fact has the less discriminating power.
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DMT - Traditional
Rank Team Method Features used F1
1 SUKI Naive Bayes ch. n-grams 0.9084
2 IUCL ens:BERT, LSTM, SVM etc. word emb. 0.9008
3 tearsofjoy linear SVM ch. and word n-grams 0.8843
4 itsalexyang ens: Naive Bayes,BiLSTM word2vec 0.8687
5 Adaptcenter CNN freq-based value assign. 0.8317
6 ghpaetzold RNN ch. numeral representations 0.7959
7 gretelliz92 bi-LSTM , Relu tf-idf 0.7483

DMT - Simplified
Rank Team Method Features used F1
1 IUCL ens:BERT, LSTM, SVM etc. word emb. 0.8929
2 tearsofjoy linear SVM ch. and word n-grams 0.8737
3 SUKI Naive Bayes ch. n-grams 0.8734
4 itsalexyang ens:Naive Bayes, BiLSTM word2vec 0.8530
5 Adaptcenter CNN freq-based value assign. 0.8124
6 ghpaetzold RNN ch. numeral representations 0.7934
7 gretelliz92 bi-LSTM, Relu FastText word embeddings 0.7496

Table 4: The macro F1-scores for DMT-Traditional and DMT-Simplified shared task alongside with the summary
of methods and features used by the teams.

7 Moldavian vs. Romanian Cross-dialect
Topic identification (MRC)

Romanian (RO) is the language currently spoken
in Romania, which is part of the Balkan-Romance
group of languages. Besides Romanian, the group
contains three other dialects: Aromanian, Istro-
Romanian, and Megleno-Romanian. In order to
distinguish Romanian within the Balkan-Romance
group in comparative linguistics, it is referred to
as Daco-Romanian. Moldavian (MD) is a subdi-
alect of Daco-Romanian, that is spoken in the Re-
public of Moldova and in northeastern Romania.
The delimitation of the Moldavian (sub)dialect, as
with all other Romanian (sub)dialects, is mainly
based on phonetic features and only marginally by
morphological, syntactical, and lexical character-
istics. Although the spoken dialects in Romania
and the Republic of Moldova are different, the two
countries share the same literary standard (Mina-
han, 2013). Some linguists (Pavel, 2008) consider
that the border between Romania and the Republic
of Moldova does not correspond to any significant
isoglosses to justify a dialectal division. There-
fore, separating between Romanian and Molda-
vian is a challenging task. The aim of the MRC
shared task is (i) to determine to what the extent

Set #samples #tokens

Training 21,719 6,705,334
Development 11,845 3,677,795
Private Test 5,923 1,836,705

Total 39,487 12,219,834

Table 5: The number of samples (#samples) and the
number of tokens (#tokens) contained in the training,
development (public validation plus test sets) and pri-
vate test sets included in the MOROCO dataset.

the two (sub)dialects can be automatically distin-
guished and (ii) to assess the performance of ap-
plying machine learning models trained on one
dialect, e.g. Moldavian, directly (without fine-
tuning) to the other, e.g. Romanian.

7.1 Dataset

The dataset used in the MRC shared task was re-
cently introduced in (Butnaru and Ionescu, 2019).
The publicly available corpus4, released before the
MRC shared task, contains 33,564 samples col-
lected from the news domains in Romania and Re-

4https://github.com/butnaruandrei/
MOROCO
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public of Moldova. The samples belong to one
of the following six topics: culture, finance, poli-
tics, science, sports, and tech. For the competition,
we provided a distinct and private test set of 5,923
samples. The public validation and test sets we
unified into a single development set for the com-
petition. Table 5 provides the number of samples
and the number of tokens in each subset (training,
development and private test). The whole corpus
is formed of 39,487 samples with over 12 million
tokens. Since we provide both dialectal and cat-
egory labels for each sample, we proposed three
subtasks for the competition:

• Binary classification by dialect (subtask 1) –
the task is to discriminate between the Mol-
davian and the Romanian dialects.

• MD→RO cross-dialect multi-class catego-
rization by topic (subtask 2) – the task is to
classify the samples written in the Romanian
dialect into six topics, using a model trained
on samples written in the Moldavian dialect.

• RO→MD cross-dialect multi-class catego-
rization by topic (subtask 3) – the task is to
classify the samples written in the Moldavian
dialect into six topics, using a model trained
on samples written in the Romanian dialect.

7.2 Participants and Approaches

DTeam. The approach of DTeam is based on an
ensemble model that combines two character-level
convolutional neural networks (CNN) using Sup-
port Vector Machines (SVM). The first CNN is
based on a skip-gram model that is trained using
softmax loss. The second CNN is trained using
triplet loss (Schroff et al., 2015). DTeam submit-
ted a single run to each of the three MRC subtasks.
lonewolf. The lonewolf team submitted three runs
for subtask 1. The first run is based on a character-
level bigram classification model to discriminate
between Moldavian and Romanian examples us-
ing Add-One Smoothing for out-of-vocabulary
items. The second and the third runs are based
on word-level bigram classification models. The
second run uses Add-One Smoothing for out-of-
vocabulary items, while the third run uses Good-
Turing Smoothing.
R2I LIS. The R2I LIS team submitted three runs
for subtask 1. All their runs are based on a set
of 40 features that include: the average length of

a token, the average number of tokens per sen-
tence, the number of tokens inside each text doc-
ument, the number of occurrences of selected sin-
gle characters, the number of occurrences of se-
lected punctuation characters, the number of oc-
currences of the letter ‘ı̂’ inside a word (not as the
first character), the number of occurrences of se-
lected words and the number of occurrences of the
token $NE$ which replaces named entities. The
third run uses a normalized version of these fea-
tures. All runs are based on a majority voting
scheme applied on five classification models: k-
Nearest Neighbors, Logistic Regression, Support
Vector Machines, Neural Networks and Random
Forests. For the first and the third runs, the models
are trained on both training and development sets.
For the second run, the model is trained only on
the training set.
SC-UPB. The SC-UPB team first cleaned the
dataset by removing stopwords as well as special
characters. The first run submitted to each of the
three subtasks is based on a model that represents
text as the mean of word vectors given by a pre-
trained FastText model (Grave et al., 2018). The
representation is provided as input to a Recurrent
Neural Network with gated recurrent units, which
is trained using the Adam optimizer with a batch
size of 64 for 20 epochs and early stopping. The
second run submitted to each of the three subtasks
is based on a hierarchical attention network intro-
duced by Yang et al. (2016). The model is trained
using the Adam optimizer with a batch size of 64
for 20 epochs and early stopping.
tearsofjoy. The tearsofjoy team used a linear
SVM classifier with a combination of character
and word n-gram features, which are weighted
with the BM25 weighting scheme. Their model’s
parameters are tuned independently for each sub-
task, using random search and 5-fold cross-
validation. The tearsofjoy team also tried a trans-
ductive learning approach which is based on re-
training the model by adding confident predictions
from the test set to the training set, an idea previ-
ously studied in (Ionescu and Butnaru, 2018).

7.3 Results

After the submission deadline, we noticed that two
teams (tearsofjoy and SC-UPB) submitted runs
containing less than the expected number of labels
(5,923) for the test examples. Hence, their orig-
inal (unmodified) submissions could not be eval-
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Rank Team Run F1 (macro)
1 DTeam 1 0.8950
2 R2I LIS 3 0.7964
3 tearsofjoy 1 0.7573
4 lonewolf 2 0.7354
5 SC-UPB 1 0.7088

Table 6: Results on MRC subtask 1 (binary classifica-
tion by dialect).

Rank Team Run F1 (macro)
1 tearsofjoy 1 0.6115
2 SC-UPB 1 0.4813
3 DTeam 1 0.3856

Table 7: Results on MRC subtask 2 (multi-class cat-
egorization by topic of Romanian text samples using
Moldavian text samples for training).

Rank Team Run F1 (macro)
1 tearsofjoy 1 0.5533
2 SC-UPB 1 0.4808
3 DTeam 1 0.4472

Table 8: Results on MRC subtask 2 (multi-class cat-
egorization by topic of Moldavian text samples using
Romanian text samples for training).

uated. In order to evaluate their runs, we tried to
fix the problem by adding random labels using the
following options: (i) at random locations in the
submission files or (ii) at the end of the submis-
sion files. In the evaluation, we considered the op-
tion that provided better performance for the runs
submitted by tearsofjoy and SC-UPB.

The best run of each participant in MRC subtask
1 is presented in Table 6. We notice that DTeam
uses an approach based on deep learning, which
surpasses the shallow approaches of R2I LIS and
tearsofjoy teams.

Table 7 contains the F1 (macro) score of the best
run of each participant in MRC subtask 2. This
time, we notice that the winning approach is shal-
low. It surpasses the other approaches based on
deep neural networks. The ranking for subtask 2
is identical to the ranking for subtask 3, as shown
in Table 8.

7.4 Summary

We proposed three MRC subtasks for VarDial
2019. Three participants submitted runs for all
three subtasks, and another two participants sub-
mitted runs only for subtask 1. Two teams (DTeam

and SC-UPB) proposed systems based on deep
neural networks, while the other teams proposed
shallow approaches based on handcrafted features.
For subtask 1, the winning solution is a deep learn-
ing system. For subtasks 2 and 3, the winning
solution is a shallow learning system. Hence, it
remains unclear which of the two learning ap-
proaches, deep or shallow, provides better results
in Moldavian vs. Romanian Cross-dialect Topic
identification.

8 Cuneiform Language Identification
(CLI)

The first edition of the CLI shared task was a lan-
guage identification task concentrating on distin-
guishing between languages and dialects which
were originally written with cuneiform signs.
It included two completely separate languages:
Akkadian and Sumerian. We had only one va-
riety for Sumerian, but for Akkadian, we in-
cluded six separate dialects: Old Babylonian,
Middle Babylonian peripheral, Standard Babylo-
nian, Neo-Babylonian, Late Babylonian, and Neo-
Assyrian.

8.1 Dataset

The dataset used in the CLI shared task, as well
as its creation, is described in detail by Jauhi-
ainen et al. (2019a). The dataset was created
using openly available transliterations originating
from the Open Richly Annotated Cuneiform Cor-
pus (Oracc). 5 In Oracc, the texts, originally writ-
ten using the cuneiform script, are mostly stored in
transliterated form. A special conversion program
was used to transform these transliterated texts to
Unicode cuneiform encoding. The data consists of
texts originally appearing in one line of cuneiform
writing. Word boundaries were not marked in the
original script, but in the transliterations the word
boundaries were marked. In order to produce more
realistic cuneiform writing, the word boundaries
were again removed in the conversion to Unicode
cuneiform. Each line, thus, may consist of one or
more words.

The sizes of the training sets for each language
varied, and the exact number of lines in each can
be seen in Table 9. In addition to the training set,
the participants were provided with 668 lines of
development data for each language. The test set
had 985 lines for each language.

5http://oracc.museum.upenn.edu
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Language or Dialect Training

Sumerian 53,673
Old Babylonian 3,803
Middle Babylonian peripheral 5,508
Standard Babylonian 17,817
Neo-Babylonian 9,707
Late Babylonian 15,947
Neo-Assyrian 32,966

Table 9: Number of lines for each language or dialect
in the CLI training set.

8.2 Participants and Approaches

In addition to the best performing system from
each team, we have collected information about
some of their other submissions if the systems
used were clearly different. This information can
be seen together with the test results in Table 10.
The baseline methods and their results included
in the table are described by Jauhiainen et al.
(2019a).

The NRC-CNRC team submitted three runs.
Their first submission was based on SVMs us-
ing character n-grams with different weighting
schemes. Their second submission used a vot-
ing ensemble comprised of the previous SVMs
and probabilistic classifiers. Their third and win-
ning submission was based on a deep neural net-
work (modified version of the BERT model) tak-
ing characters as input. With the deep neural
network they had a second pre-training phase in
which an unsupervised method was used to learn
information from, and in a way adapt, to the test
set. For more detailed information see the descrip-
tion by Bernier-Colborne et al. (2019).

The tearsofjoy team submitted two runs using
SVMs. The better of their runs had two stages.
After the first stage, those lines claimed by only
one of the one-vs-all classifiers were added to the
training data. This functions as one iteration of
language model (LM) adaptation similar to the one
used by Jauhiainen et al. (2018b) in the 2018 Indo-
Aryan language identification (ILI) shared task.
However, using language model adaptation im-
proved their F1-score only by 1.6%. Their system
is better described by Wu et al. (2019).

The TwistBytes team submitted two runs using
SVMs. The better of their runs used tf-idf features
with binary tf values and smoothed idf for charac-
ter n-grams 1–3. Benites et al. (2019) describe the

two systems in more detail.
The PZ team used a SVM metaclassifier ensem-

ble of several linear SVM classifiers trained us-
ing character n-gram and character skip-gram fea-
tures. Paetzold and Zampieri (2019) give further
details.

The SharifCL team submitted three runs and
their best performing system was an ensemble of
a SVM and a NB classifier (Doostmohammadi and
Nassajian, 2019).

The ghpaetzold team submitted only one run
using 2-layer compositional recurrent neural net-
work that learns numerical representations of sen-
tences based on their words, and of words based
on their characters. Their system is described in
more detail by Paetzold and Zampieri (2019).

The ekh team used a sum of relative frequencies
of character bigrams together with a penalty value
for those bigrams or unigrams that were not found
from a language.

The situx team used a Random Forest classi-
fier. Their results are below a random baseline and
we suspect there might have been some processing
problems when generating the results from test set.

8.3 Results
Table 10 shows the performance of different meth-
ods on the CLI dataset. The ranked results are
bolded in the table. To the best of our knowl-
edge, this is the first time a language identification
shared task has been won using neural networks in
addition to the first MRC subtask.

8.4 Summary
We were happy to see such a widespread interest
in the CLI shared task. The NRC-CNRC team did
not participate in the other shared tasks, so we can-
not directly compare the performance of their deep
neural network between different writing systems.
The only other team using neural networks was the
ghpaetzold and the performance of their RNN is
more in line what we have used to expect from
neural networks when compared with the SVMs.

The second ranking team, tearsofjoy, used LM
adaptation on the test set. They did the same with
the GDI and the DMT tasks and were ranked very
high in them as well. The difference in F1 score
between their adaptive and non-adaptive systems
is surprisingly small in CLI, as the test data in
CLI was supposed to be out-of-domain when com-
pared with the training and the development sets
(Jauhiainen et al., 2019a).
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Rank Team Method Features used F1

1. NRC-CNRC Deep Neural Network + adapt. characters 0.7695
2. tearsofjoy Lin. SVM with LM adapt. ch. n-grams 1–5 0.7632

tearsofjoy Lin. SVM ch. n-grams 1–4 0.7511
NRC-CNRC SVM + NB ensemble ch. n-grams 1–5 0.7449

3. Twist Bytes Lin. SVM ch. n-grams 1–3 0.7433
NRC-CNRC SVM ch. n-grams 1–4 0.7414

4. PZ SVM ensemble ch. n-grams 1–5, skip-grams 0.7347
5. SharifCL SVM + NB ensemble ch. n-grams 1–4 0.7210

Baseline-3 Prod. of rel. freq. ch. n-grams 1–4 0.7206
SharifCL SVM ch. n-grams 1–4 0.7171
Baseline-4 Voting ensemble ch. n-grams 1–15 0.7163
Baseline-5 HeLI ch. n-grams 1–3 + lines 0.7061
Twist Bytes Lin. SVM ch. n-grams 1–7, words 0.6669
Baseline-1 Simple scoring ch. n-grams 1–10 0.6554
Baseline-2 Sum of rel. freq. ch. n-grams 3–15 0.6016

6. ghpaetzold RNN characters, words 0.5562
7. ekh Sum of rel. freq. + spec. penalt. ch. 2-grams 0.5501
8. situx Random Forest ch. n-grams 2–4, spec. 0.1276

Table 10: The macro F1-scores attained by the participating teams and the baseline methods with the CLI dataset.
The official ranked results are bolded.

9 Conclusion

In this paper, we presented the results and the
main findings for the five shared tasks organized
as part of the Third VarDial Evaluation Campaign.
One task was a re-run from previous years (GDI),
and four new tasks were organized: CMA, DMT,
MRC, and CLI.

A total of 22 teams submitted runs across the
five shared tasks. We included short descriptions
for each participant’s systems in this report. A
complete description is available in the system de-
scription papers, which were presented in the Var-
Dial workshop and published in the workshop pro-
ceedings. We included references to all system de-
scription papers in this report in Table 1.
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Abstract
We describe the systems developed by the
National Research Council Canada for the
Cuneiform Language Identification (CLI)
shared task at the 2019 VarDial evaluation
campaign. We compare a state-of-the-art base-
line relying on character n-grams and a tradi-
tional statistical classifier, a voting ensemble
of classifiers, and a deep learning approach us-
ing a Transformer network. We describe how
these systems were trained, and analyze the
impact of some preprocessing and model es-
timation decisions. The deep neural network
achieved 77% accuracy on the test data, which
turned out to be the best performance at the
CLI evaluation, establishing a new state-of-
the-art for cuneiform language identification.

1 Introduction

The goal of the Cuneiform Language Identifica-
tion (CLI) shared task (Zampieri et al., 2019) was
to predict the language or language variety of
a short segment of text written using cuneiform
symbols. These language varieties include Sume-
rian (SUX) and 6 different dialects of Akkadian:
Old Babylonian (OLB), Middle Babylonian pe-
ripheral (MPB), Standard Babylonian (STB), Neo
Babylonian (NEB), Late Babylonian (LTB), and
Neo Assyrian (NEA). The dataset for the shared
task was built from the Open Richly Annotated
Cuneiform Corpus,1 as described by Jauhiainen
et al. (2019).

The NRC-CNRC team submitted 3 systems to
the CLI shared task. The first one is a standard
approach using Support Vector Machines (SVM)
trained on character n-grams. The second one is
an ensemble using plurality voting among several
classifiers trained on different feature sets. This is
essentially the approach that reached state-of-the-
art on previous discriminating similar languages

1[http://oracc.museum.upenn.edu]

(DSL) shared tasks (Goutte et al., 2014, 2016).
Our last submission is a deep learning approach
based on character embeddings and a Transformer
network, similar to BERT (Devlin et al., 2018).

The following section quickly reviews related
work. We then describe the dataset and data pro-
cessing (Section 3) and the systems we built for
the shared task (Section 4), before presenting the
experimental results in Section 5.

2 Related Work

Jauhiainen et al. (2018c) provide a thorough sur-
vey of research on language identification. Re-
garding the state-of-the-art, they point out that
”generally speaking, linear-kernel SVMs have
been widely used for [language identification],
with great success across a range of shared tasks”
(Jauhiainen et al., 2018c). These SVMs usually
exploit character n-grams as features.

Given that text segments in the CLI dataset (see
Section 3) are often very short, it is worth noting
that the character-level language model-based sys-
tem of Jauhiainen et al. (2016) achieved state-of-
the-art results on texts longer than 25 characters,
according to an empirical comparison of 7 meth-
ods on 285 different language varieties (Jauhi-
ainen et al., 2017). On shorter texts containing
less than 20 characters, the method of Vatanen
et al. (2010), using a naive Bayes classifier based
on smoothed character n-gram probabilities, per-
formed better.

Jauhiainen et al. (2018c) point out that the
use of neural networks for language identifica-
tion has increased since 2016, with varying suc-
cess. Medvedeva et al. (2017) compared SVMs to
a feed-forward neural network that takes as input
the average embedding of the character n-grams
in the text, trained using multi-task learning, and
found that ”traditional models, such as SVMs, per-
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form better on this task than deep learning tech-
niques” (Medvedeva et al., 2017, p. 161). On the
other hand, Ali (2018) used character-level CNNs
and RNNs and obtained strong results at VarDial
2018 (Zampieri et al., 2018), including second
place on 2 dialect identification tasks (for Arabic
and German). To our knowledge, we are the first to
apply the recently proposed BERT method (Devlin
et al., 2018) to the language identification prob-
lem.

3 Data

As this was a closed task, the only data we used
is the Cuneiform Language Identification dataset
created for this task (Jauhiainen et al., 2019). The
training set provided is unbalanced, the number
of cases per class ranging from 3803 (OLB) to
53,673 (SUX). On the contrary, the development
set is balanced, containing 668 cases for each
class. See Table 1 for full statistics.

One challenging aspect of the data is that most
of the text segments are very short. The segments
in the training set contain only 7 characters on av-
erage. More than half of the segments contain 5
characters or less, and more than 10% contain a
single character. On the tail end of the distribution,
a dozen segments contain more than 64 characters,
and only one contains more than 128 characters.
Again, the dev set is significantly different, as all
segments with less than 3 characters were filtered
out.

Another challenging aspect of this data is the
low frequency of many of the cuneiform symbols.
The training data contains 550 unique characters.
39 of these only appear once, and 128 appear 10
times or less. If we look at the development set,
we find that it contains 365 unique characters, and
3 of these are not found in the training data.

One other important property of the training
data is that it contains many duplicates, both
within classes and between classes. The training
set contains 139,421 segments, but only 86,454 are
unique. The most frequent segment appears 3223
times, in 6 of the 7 classes. The second most fre-
quent appears 1460 times, always in the same class
(LTB).2

We processed the training and development sets
provided to create our own cross-validation folds.
Before creating the folds, we applied a dedupli-

2Note that this means that almost 10% of the examples in
the LTB class are the same text.

# segments
Class raw dedup
SUX 54,341 22,240
OLB 4,471 3,901
MPB 6,176 5,578
STB 18,485 16,327
NEB 10,375 8,595
LTB 16,615 8,665
NEA 33,634 26,614
Total 144,097 91,920

Table 1: Number of segments per class (train+dev), be-
fore (raw) and after (dedup) deduplication.

cation step to the combined training and develop-
ment data using the following strategy: we kept
only one instance of every (segment, label) pair;
for segments belonging to all 7 classes, however,
we only kept one labeled instance, where the label
is the most frequent label for that segment. The
resulting per-class statistics are provided in Table
1.

We then folded the deduplicated data (contain-
ing both the training and dev sets). Since the of-
ficial development set was balanced, and we sus-
pected the test set would be likewise, we created
our folds such that the test set (and dev set) of
each fold were balanced, containing m

k (rounded
to the nearest whole number) examples in each
class, where m is the minimum class frequency
in the combined training and development data,
and k is the number of folds. With k = 5 and
m = 3901, we obtained dev and test sets contain-
ing either 780 or 781 examples for each class. This
is larger than the official development set, and thus
the training sets are smaller than the official train-
ing set.

Note that during development of our deep learn-
ing approach, we decided to fully deduplicate the
training data, keeping only the most frequent label
for each segment.

The cross-validation folds were used as follows
to train the models: parameters were estimated on
the training part of each fold, the dev part was
used for setting extra parameters, e.g. for classi-
fier calibration (see Section 4), and the test part
was used to provide an unbiased estimate of the
resulting performance. Note that, as specifically
encouraged by the shared task organizers, the final
systems were retrained on the combined training
and development sets.
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4 Methods

In this section, we describe the systems that we
developed for the CLI task.

4.1 SVM-based models

Our SVM-based models exploit a straightforward
pipeline that provides a strong baseline for lan-
guage identification. This pipeline has three
stages:

1. n-gram extraction and counting

2. feature weighting

3. estimation of calibrated statistical classifiers

Extracting and counting character n-grams from
cuneiform text is straightforward as there is no
whitespace or punctuation requiring special pre-
processing, e.g., tokenization. This is done for un-
igrams, bigrams, trigrams, 4-grams and 5-grams.
Note that for segments smaller than the n-gram
size, the full segment is retained regardless of
its size: the trigram corresponding to a segment
of length 3 will therefore appear in the 4-gram
and 5-gram feature spaces. We apply a feature
weighting scheme combining log term frequency,
inverse document frequency and cosine normal-
ization, a.k.a. ltc in the SMART weighting
scheme.3

One binary SVM classifier is trained for each
of the seven classes in one-vs-all manner, weight-
ing the minority class examples according to the
ratio of class sizes. We then calibrate each classi-
fier in order to produce proper probabilities. This
is done using isotonic regression (Zadrozny and
Elkan, 2002), estimated on a left-out dev set. This
allows the output of the 7 classifiers to be well-
behaved probabilities that we can compare in or-
der to predict the most probable class, or use in
further post-processing in combination with other
classifier’s outputs. The best model, as estimated
by cross-validation, used n-grams of length 1 to 4,
which we denote later by char[1-4].

Note that we also tried a two-stage approach
similar to that of Goutte et al. (2014) using vari-
ous class groupings (eg. Sumerian vs. Akkadian
dialects), but this did not prove particularly help-
ful.

3[https://en.wikipedia.org/wiki/SMART_
Information_Retrieval_System]

4.1.1 Voting ensemble

Ensemble methods have proven quite successful
on language identification (Malmasi and Dras,
2018) and other language classification tasks
(Goutte and Léger, 2017). We therefore submit-
ted a system that performs plurality voting among
several classifiers. The base classifiers are ob-
tained by training calibrated SVM classifiers, as
described above, on various feature spaces com-
bining n-grams of various lengths. We also trained
probabilistic classifiers (similar to Naive Bayes)
on the same feature spaces. Although the over-
all performance of the probabilistic classifiers was
consistently lower than that of the SVMs, they
provide a valuable addition to the ensemble be-
cause their prediction patterns are different from
those of the SVMs.

The ensemble was built by adding base classi-
fiers to the ensemble, in decreasing order of over-
all performance, as long as the estimated voting
performance, using a cross-validation estimator,
increases. For our submission, the resulting vot-
ing ensemble contains 15 base classifiers, among
which 10 are SVM-based and 5 are probabilistic
classifiers. That submission is referred to below
as ‘voting ensemble’ or simply ‘Ensemble’ in ta-
bles.

4.2 BERT approach

Our second approach is a slightly modified version
of the BERT model (Devlin et al., 2018).

We train a deep neural network which takes se-
quences of characters as input, using (partially)
unsupervised pre-training, followed by supervised
fine-tuning on the CLI training data. The network
is composed of a stack of bidirectional Trans-
former modules (Vaswani et al., 2017) which en-
code the input sequence. The output of the en-
coder is fed to an output layer, which varies from
one stage of training to the next.

First, we pre-train the model on unlabeled text
using 2 pre-training tasks: a masked language
model (MLM) and sentence pair classification
(SPC).

The MLM pre-training task is exactly as de-
scribed by Devlin et al. (2018). The goal of this
task is to predict symbols chosen at random based
on all the other symbols in the segment. Note that
for this language identification task, the MLM pre-
training task might be viewed as learning a multi-
language model, that is a single model that can
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predict characters based on context for all 7 of the
cuneiform language varieties, and must therefore
learn the specific markers of each variety.

As for the SPC pre-training task proposed by
Devlin et al. (2018), we adapted it to account for
the fact that the segments in the training data are
not in sequential order and are not divided into
documents. We therefore split the training data
into 7 pseudo-documents corresponding to the 7
classes (different cuneiform language varieties),
and the task is to predict whether 2 segments be-
long to the same class. This is a very simple adap-
tation, but it introduces a supervised signal into the
pre-training task, as we use the CLI labels to split
the data into pseudo-documents. Learning to pre-
dict whether 2 segments belong to the same lan-
guage should be helpful to predict the language
variety used in a specific text, when we fine-tune
the model on this task later on.

Thus, the first phase of pre-training uses an out-
put layer (or head) for both the MLM and SPC
tasks. The first is a softmax over characters, which
takes as input the encoding of a segment, where
the characters to predict have been masked. The
second is a binary softmax, which takes as input
the joint encoding of 2 sentences, which we join
together using a special symbol that indicates the
boundary between 2 sentences.

This is followed by a second phase of pre-
training where we include the unlabeled test data
in the training data. Since we don’t know the la-
bels of the test data, it would not make sense to
use the (modified) SPC task for pre-training, so we
only use MLM, which is fully unsupervised with
respect to the CLI task. We re-train the weights of
the feature extractor (i.e. encoder) using a single
head for MLM.

Once the model is fully pre-trained, we fine-
tune it on the target task, i.e. to predict the lan-
guage variety of each text, using the labeled train-
ing and dev data. For this, we use the feature ex-
tractor learned during the 2 phases of pre-training,
and add a new head for language identification,
which is simply a softmax over the 7 language va-
rieties.

The vocabulary (or alphabet) is composed of ev-
ery character in the Unicode range for cuneiform
characters. Note that characters in the test data
which were not in the training data can still be
modeled to some extent because of the inclusion
of the unlabeled test data during the second phase

of pre-training.
Our hyperparameter settings largely resemble

those used by Devlin et al. (2018) (for their smaller
model):

• Nb Transformer layers: 12

• Nb attention heads: 12

• Hidden layer size: 768

• Feed forward/filter size: 3072

• Hidden activation: gelu

• Dropout probability: 0.1

• Max sequence length: 128

• Optimizer: Adam

• Learning rate for pre-training: 1e-4

• Batch size for pre-training: 64

• Training steps: 500K and 100K for pre-
training (phases 1 and 2 respectively), and
20K for fine-tuning

• Warmup steps: 10K for both pre-training
(phase 1 only) and fine-tuning

As for the fine-tuning stage, we do a small grid
search, over the following hyperparameter set-
tings:

• Batch size: {16, 32}

• Learning rate: {1e-5, 2e-5, 3e-5, 5e-5}
We did a few ad hoc tests on our own devel-

opment set (using one of the folds we created for
cross-validation) to assess the impact of dedupli-
cation and the various pre-training strategies (us-
ing SPC or not, doing a second phase where we in-
clude the test data), which is how we arrived at our
final model. We also tuned the number of train-
ing steps for fine-tuning on this dev set. We will
not present the results of these tests here, but will
show the results of ablation tests we conducted on
the official dev set in Section 5.3.

Note that our final model was fine-tuned on the
combined training and dev set, which we fully
deduplicated, by keeping only one instance of
each text, along with its most frequent label. The
unlabeled test set examples were also used during
the second phase of pre-training.

Our code is available at https://github.
com/gbcolborne/lang_id.
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5 Results

We discuss the results of our official submissions
in the following section. We also analyze the
impact of various high-level modelling decisions,
look at potential sources of errors, and conduct
some ablation tests.

5.1 Test results
The scores of our 3 official submissions on the
test set are shown in Table 2. Our best scores
were achieved by the deep learning approach. This
run was ranked first overall. Our voting ensemble
would have been ranked 2nd, and our single SVM
would have been ranked 3rd.

System F1 (macro) Accuracy
Jauhiainen (2019) 0.7206 -
char[1-4] 0.7414 0.7453
Ensemble 0.7449 0.7494
BERT 0.7695 0.7711

Table 2: Results of our 3 official runs on the CLI test
set. For comparison, best F-score from (Jauhiainen
et al., 2019)

The BERT model achieves an absolute gain of
almost 2.5 F-score points over the voting ensem-
ble. As for the voting ensemble, it produced an
absolute gain of 0.35 F-score points over the best
single SVM.

A detailed breakdown of our results on each
of the 7 classes (languages) is presented in Ta-
ble 3. These results show that the deep learning
approach produces the best results on all but one
of the classes, sometimes by quite a margin (e.g.
OLB).

The 3 classes on which our scores are lowest
are Standard Babylonian (STB), Neo Babylonian
(NEB), and Neo Assyrian (NEA). As we can see
in the confusion matrix for our best run, illustrated
in Figure 1, the BERT model often confuses both
NEB and STB texts as NEA, which may be partly
due to the fact that NEA is the most frequent class
in the deduplicated training data.

5.2 SVM performance anaysis
We relied on a cross-validation estimate described
in Section 3 in order to guide several high-level de-
cisions, as described in Section 4. Official shared
task results (see Table 2), however, turned out to
be significantly lower than the cross-validation es-
timate we based our decisions on. This raises the
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Figure 1: Confusion matrix for our best run (BERT) on
the CLI test set.

question of how different the estimate would have
been had we relied on the official dev set instead
of full cross-validation, and whether this may have
changed our decisions, for example with respect to
which model to submit.

Another issue is the segment duplication men-
tioned in Section 3 as well as by Jauhiainen et al.
(2019). Removing duplicated segments makes the
training data more similar to the dev and test sets,
however, it also greatly reduces the amount of seg-
ments available for training our models. We inves-
tigate this trade-off by re-training a few key mod-
els on the original training data, without perform-
ing any deduplication. For these comparisons, we
use our best single model, char[1-4], the next
best single model, char[1-3], and the voting
ensemble.

Table 4 shows the results of these experi-
ments. It turns out that the performance estimated
by cross-validation is consistently 12–13 points
higher than the performance estimated on the dev
set. Note also that contrary to Jauhiainen et al.
(2019), who report marginally better F-scores on
the dev than on the test set, we obtained 3–4 points
higher F-score on the final test set than on the dev
set.

Comparing the results obtained on raw vs.
deduplicated training data, we see that the cross-
validation estimate is about 1 point higher when
models are trained on the deduplicated data, but
the difference on the dev is much smaller (0.06–
0.22 points). For the voting ensemble, it turns
out that dev performance is actually slightly better
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System LTB MPB NEA NEB OLB STB SUX
char[1-4] 0.9317 0.8296 0.7402 0.6317 0.7681 0.5345 0.7539
Ensemble 0.9339 0.8339 0.7336 0.6316 0.7774 0.5344 0.7692
BERT 0.9565 0.8666 0.7103 0.6500 0.8373 0.5705 0.7952

Table 3: Class-wise F-score of our 3 official runs on the CLI test set.

CV Dev
System raw dedup raw dedup
Ensemble 0.8345 0.8431 0.7114 0.7092
char[1-3] 0.8226 0.8337 0.7055 0.7061
char[1-4] 0.8241 0.8347 0.7006 0.7026

Table 4: Impact of estimating model performance
(macro F1) on the cross-validation (CV) estimator vs.
dev set, and impact of deduplicating the training data
on the resulting performance. char[1-N] are single
SVM models trained on n-grams of length 1 to N .

when duplicates are not removed from the training
data.

Finally, one concern is whether these differ-
ences would have an impact on model selection or
high-level modelling choices. It turns out that ac-
cording to dev set performance, the char[1-3]
model is better than the char[1-4] model we
submitted, by about half a point. It will be interest-
ing to check whether this difference is matched on
test performance, once reference labels are avail-
able.

5.3 BERT ablation tests
We carried out a few simple ablation tests on the
BERT model, using the official development set
for validation and testing. We split this dev set
into two random subsets of equal size, which we
will call dev-A and dev-B. One half was used to
optimize the number of training epochs (i.e. to do
early stopping), and the other half was used as a
held out test set, to get an unbiased estimate of the
accuracy of the model.

These tests were meant to assess the impact of:

• Using both MLM and SPC for pre-training
(phase 1)

• Doing a second phase of pre-training (MLM
only) on both the training and dev data

• Deduplicating the training data

We pre-trained 4 models on the official training
set, one in the same manner as our official run, one

without SPC, one without deduplication, and one
without SPC nor deduplication.

We then re-trained these 4 models on the com-
bined training and dev sets (both halves). Only
MLM was used (as we are using the dev set for
evaluation, so we assume we don’t have the dev
labels). Deduplication was applied only for the
models that were initially pre-trained on dedupli-
cated data.

We then fine-tuned the 8 resulting models (4
with re-training, 4 without) on the labeled training
set. Again, we use deduplicated training data for
the models that were pre-trained on deduplicated
data.

For each of the 8 fine-tuning configurations, we
did 5 replications of the fine-tuning phase using
different seeds for the random number generators,
to assess the impact of random initialization (note
that the random initialization only affects the out-
put head since the models were pre-trained). This
is estimated by computing the 95% confidence in-
terval on the scores obtained on the 5 runs.

We did these 5 replications twice, first with dev-
A as dev set and dev-B as test set, then the other
way around. This would allow us to evaluate the
stability of the evaluation metrics over different
sets of validation and test instances, as well as the
stability of the optimal number of training epochs.
This procedure is sometimes referred to as esti-
mating “split-half reliability”. Note that our re-
sults on either half of the dev set are not exactly
comparable to results on the full dev set.

For these ablation tests, we reduced the batch
size for pre-training from 64 to 48, due to time
constraints and limited access to GPUs. For fine-
tuning, we used a learning rate of 1e-5 and a batch
size of 32.

The results are shown in Table 5. These results
show that the biggest gains were obtained by doing
a second phase of pre-training (with MLM only)
on both the training and test data. If we only do
the first pre-training phase, we lose about 5 points
of F-score (absolute). If we drop SPC for pre-
training (and use only MLM for both pre-training
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Dedup? Pretraining Retrain? Score (dev-A) Score (dev-B)

Yes
Complete

Yes 0.789 ± 0.003 0.794 ± 0.005
No 0.738 ± 0.006 0.745 ± 0.005

MLM only
Yes 0.751 ± 0.005 0.746 ± 0.005
No 0.733 ± 0.006 0.727 ± 0.007

No
Complete

Yes 0.755 ± 0.005 0.772 ± 0.007
No 0.732 ± 0.007 0.744 ± 0.008

MLM only
Yes 0.727 ± 0.002 0.740 ± 0.003
No 0.725 ± 0.004 0.730 ± 0.005

Table 5: BERT ablation test results: mean F1 (macro) with 95% confidence interval. Retrain means the 2nd phase
of pre-training (MLM only), which includes the unlabeled dev and test data.

phases), we lose 4-5 points as well. And if we
don’t deduplicate the training data (and use both
MLM and SPC for the initial pre-training), we lose
2-3 points.

It is important to note that if we optimized the
other hyperparameters (notably the learning rate),
the results we would achieve with these various
training strategies would be different.

As for the number of training epochs, under the
optimal training conditions (with dedup and full
pre-training), the dev score peaked after only 1 or
2 epochs,4 and this result was stable across both
test sets (i.e. dev-A and dev-B), the optimal num-
ber of epochs being 1.2 ± 0.555 in one case and
exactly 1.0 ± 0.0 in the other.

It would be interesting to see if the SVM-based
model can reach the same accuracy as BERT if
we adapt it to the test data, e.g. using self-
training. The team ranked second on this CLI
task used a form of self-training to adapt an SVM
to the test data, and their F-score on the test
set (0.7632) was not very far behind the score
we achieved with BERT (0.7695). Furthermore,
results of the German Dialect Identification and
Indo-Aryan Language Identification tasks at Var-
Dial 2018 (Zampieri et al., 2018) showed that
the best results were obtained by systems that
were adapted to the test data (Jauhiainen et al.,
2018a,b).

5.4 Error analysis
Using the predictions of the BERT model on dev-
A,5 we analyzed the impact of text length on the
error rate, as we suspected that the short length of
the texts would be a major source of errors. This
analysis showed that the error rate is around 32%

4This suggests we should try an even smaller learning
rate.

5Results on dev-B are similar.

for the shortest texts in dev-A (length 3), and falls
to 12% for texts containing 10 characters. 83% of
all errors were made on texts containing 9 charac-
ters or less, 9.1 characters being the average length
of the texts in dev-A.

We also looked at the impact of OOV charac-
ters, but this is not a significant source of errors, as
only 3 texts in the official dev set contain a char-
acter that was not seen during training.

Finally, we checked if any of the texts in the
official dev set were seen during training, and this
was the case for 574 of 4676 texts. Of these 574
cases, we find 49 cases where the label in the dev
set was not seen during training, and 6 additional
cases where the training labels of a text contained
not only the dev label, but others as well. Thus,
we could say that label ambiguity (in other words,
multiple class membership) was a source of errors
for a little over 1% of texts in the dev set.

6 Conclusion

In this paper, we described the systems built by the
NRC-CNRC team for the Cuneiform Language
Identification shared task at the 2019 VarDial eval-
uation campaign. We adapted the BERT model
to the language identification task, and compared
this deep learning approach to statistical classifiers
trained on character n-grams, which have long
provided a strong baseline for language identifi-
cation tasks. Our results using the BERT model
surpass those obtained with an ensemble of clas-
sifiers trained on different feature sets comprising
n-grams of varying lengths, achieving an absolute
gain of about 2.5 F-score points on the test set,
and establishing the state-of-the-art for cuneiform
language identification. This is largely due to the
ability to conduct unsupervised learning on the test
set before making predictions, as well as the mod-
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ified sentence pair classification task we use for
pre-training.

For future work, it would be interesting to
model the shape of cuneiform symbols, or their
transliterations, in order to better capture similar-
ities between symbols. We also plan on testing
BERT on other language identification datasets.
Finally, we plan on casting this problem as a multi-
label classification problem, as we believe this
could be a better approach for the CLI task, and
related tasks on discriminating similar languages.
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Cyril Goutte, Serge Léger, and Marine Carpuat. 2014.
The NRC system for discriminating similar lan-
guages. In Proceedings of the First Workshop on
Applying NLP Tools to Similar Languages, Varieties
and Dialects (VarDial), pages 139–145, Dublin, Ire-
land.
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Abstract

The conversion of romanized texts back to the
native scripts is a challenging task because
of the inconsistent romanization conventions
and non-standard language use. This prob-
lem is compounded by code-mixing, i.e., us-
ing words from more than one language within
the same discourse. In this paper, we propose
a novel approach for handling these two prob-
lems together in a single system. Our approach
combines three components: language iden-
tification, back-transliteration, and sequence
prediction. The results of our experiments on
Bengali and Hindi datasets establish the state
of the art for the task of deromanization of
code-mixed texts.

1 Introduction

Ad-hoc romanization is the practice of using the
Roman script to express messages in languages
that have their own native scripts (Figure 1). The
phenomenon is observed in informal settings, such
as social media, and is due to either unavailability
of a native-script keyboard, or the writer’s prefer-
ence for using a Roman keyboard. Rather than fol-
lowing any predefined inter-script mappings, ro-
manized texts typically constitute an idiosyncratic
mixture of phonetic spelling, ad-hoc translitera-
tions, and abbreviations. A great deal of informa-
tion is lost in the romanization process due to the
difficulty of representing native phonological dis-
tinctions in the Roman script. This makes dero-
manization of such messages a challenging task
(Irvine et al., 2012).

Another phenomenon that further complicates
the task of deromanization is code-mixing, which
occurs when words from another language (typi-
cally English) are introduced in the messages (e.g.,
the word decent in Figure 1). Code-mixing is par-
ticularly common in multi-lingual areas such as
South Asia (Bali et al., 2014). In many cases, the

(a) tomake to decent mone hoyechilo 

(b) B B E B B 

(c) ত োমোকে ত ো decent মকে হকেছিল 

(d) "you" "like" "decent" "in mind" "was" 

(e) "you seemed a decent person" 

Figure 1: An example Bengali sentence that involves
both romanization and code-mixing: (a) original mes-
sage; (b) implied language tags; (c) target deroman-
ization; (d) word-level translation; (e) sentence-level
translation.

English words have no transliterated equivalents
in the native language and script.

In this paper, we address the task of deroman-
ization of code-mixed texts. This normalization
process is necessary in order to take advantage of
NLP resources and tools that are developed and
trained on text corpora written in the standard form
of the language, which in turn can facilitate tasks
such as sentiment analysis and opinion mining in
the social media. In addition, web-search queries
are often expressed in a romanized form by speak-
ers of languages that use non-Latin scripts, such as
Arabic, Greek, and Hindi (Gupta et al., 2014b).

The task of deromanization of code-mixed texts
is related to the study of language variation. Ad-
hoc romanization represents a language variety,
which resembles the usage of multiple scripts in
some languages (e.g., Tajik). Code-mixing can
also be considered a language variety, which ex-
hibits similarities to dialects whose lexicons are
strongly influenced by a different language (e.g.,
Upper Silesian).

The individual sub-tasks of deromanization of
code-mixed texts have been investigated in prior
work, but we are the first to incorporate them in a
single system. Workshops and shared tasks have
been devoted to code-mixing, including the prob-
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lem of word-level language identification (Chit-
taranjan et al., 2014; Choudhury et al., 2014).
Transliteration and back-transliteration is a well-
understood problem, which also has been the
topic of several shared tasks (Duan et al., 2016;
Chen et al., 2018). However, unlike romanization,
transliteration is focused on names rather than dic-
tionary words, and usually performed without con-
sidering the context of the word in a sentence. Fi-
nally, a number of papers address the deromaniza-
tion of social media contents and informal texts,
but propose no effective way of handling the code-
mixing issue (Irvine et al., 2012; May et al., 2014).
We show that this limitation leads to sub-optimal
performance on deromanization.

In this paper, we propose a novel approach for
tackling the problem of romanization and code-
mixing together in a single system. Since suf-
ficiently large annotated data sets for training an
end-to-end approach are not available, we com-
bine supervised models for the three main com-
ponents of the complete task: (a) word-level lan-
guage identification, (b) back-transliteration, and
(c) word sequence prediction. These modules in-
volve several diverse techniques, including neu-
ral networks, character-level and word-level lan-
guage models, discriminative transduction, joint
n-grams, and HMMs. We perform experiments
on three datasets that represent two languages, in-
cluding a new dataset that we have collected and
annotated ourselves. The results show that our
system is substantially more accurate than Google
Translate, which is the only publicly available tool
that can be applied to this task.

Our main contributions are: (1) a novel ap-
proach to deromanization of code-mixed texts
through the combination of word-level language
identification, back-transliteration, and sequence
prediction; (2) a system that establishes the state of
the art on the task; and (3) an annotated dataset of
romanized Bengali messages. We make our code
and data publicly available.1

2 Related Work

The tasks of deromanization and word-level lan-
guage identification have been considered sepa-
rately in the majority of the previous work.

1https://github.com/x3r/deromanization

2.1 Language Identification

While the identification of language of a monolin-
gual document is a well studied problem, the task
of word-level language identification has also gar-
nered a fair amount of attention recently. A num-
ber of different approaches have been proposed
for the task. Among the unsupervised approaches,
dictionary-based and statistical language model-
ing approaches are the most common. Conditional
Random Fields (CRF) and Support Vector Ma-
chines (SVMs) are among the most used super-
vised approaches.

The unsupervised approaches require no word-
level annotation of mixed-code texts, but gener-
ally achieve low accuracy. Dictionary-based ap-
proaches make use of words and their frequen-
cies in wordlists to determine the origin of a to-
ken (Barman et al., 2014; Das and Gambäck,
2014; Verulkar et al., 2015). However, those ap-
proaches cannot handle spelling variations and
non-standard romanizations in code-mixed data.
Statistical language modeling approaches em-
ploy n-gram probabilities which are derived from
monolingual corpora. Both word and character n-
grams have been used in the literature. The ap-
proach of Yu et al. (2013), which determines the
probability of the next word being a code-switched
word based on the previous n-words, achieves
only 53% accuracy on the Sinica (Mandarin-
Taiwanese) corpus. A character n-gram based ap-
proach of Das and Gambäck (2014) achieves ap-
proximately 70% accuracy when tested on Bengali
and Hindi.

The supervised approaches for language iden-
tification generally employ hand-crafted features
such as capitalization information, character n-
gram, and lexicon presence etc. CRFs make use
of a set of features to determine the most prob-
able language labels for a token sequence (King
and Abney, 2013; Chittaranjan et al., 2014; Bar-
man et al., 2014), and achieve accuracy in the low
90% on the evaluated languages. SVMs are also
commonly employed for language classification
(Barman et al., 2014) and achieve consistent per-
formance (low 90%) on Bengali and Hindi. King
and Abney (2013) employ Hidden Markov Mod-
els (HMM) trained using Expectation Maximiza-
tion (EM) algorithm for the task, which can per-
form on par with the CRFs. Finally, supervised
approaches that use contextual features generally
outperform approaches that cannot utilize them.

27



2.2 Deromanization

Though a number of papers address the deroman-
ization of social media contents and informal texts,
they propose no effective way of handling the
code-mixing issue.

Short Message Service (SMS) is a potential
source of romanized texts due to the difficulty of
typing in the native-script keyboard. A supervised
deromanization approach of Irvine et al. (2012)
uses an HMM to combine the candidates derived
from a character-level transliteration model and
a dictionary derived from automatically aligned
words. The approach achieves 51% word-level
accuracy on a self-annotated corpus of informal
Urdu text messages.

Chakma and Das (2014) employ several su-
pervised approaches for the automatic transliter-
ation of code-mixed social media texts, which are
based on joint source channel (JSC) and Interna-
tional Phonetic Alphabet (IPA). The experiments
on Bengali-English and Hindi-English social me-
dia datasets show that the IPA-based approach out-
performs the JSC-based approaches, achieving ap-
proximately 80% accuracy.

A supervised approach for converting Dialec-
tical Arabic written in Latin script (Arabizi) to
Arabic script of Al-Badrashiny et al. (2014) em-
ploys a character-level finite state transducer that
generates transliteration candidates. A morpho-
logical analyzer is then used to filter the candi-
dates and a language model to choose the output
transliteration. The approach achieves 74% word-
level transliteration accuracy on a Egyptian Ara-
bizi SMS corpus.

A supervised approach of van der Wees
et al. (2016) uses a character-based transliteration
model which is incorporated as a component in the
pipeline for an Arabizi-to-English phrase-based
machine translation system. A contextual disam-
biguation with a character-level language model is
then used for selecting between the transliteration
candidates. When evaluated in the context of the
NIST OpenMT evaluation campaign, the approach
achieves 50% word-level accuracy on the Arabizi
to Arabic deromanization.

Hellsten et al. (2017) propose a supervised ap-
proach for transliteration of romanized keyboard
input to native scripts based on Weighted Finite
State Transducers (WFST). The approach em-
ploys target word lists and pair language mod-
els constructed from the source and target align-

ments, and incorporates several weight pushing
approaches for fast and memory-efficient decod-
ing. The experiments are conducted on manually
annotated Hindi and Tamil datasets and achieve
84% and 78% word-level accuracy, respectively.
The approach was launched in the Google Gboard
keyboard for 22 South Asian languages.

3 Methods

In this section, we present our approach for con-
verting romanized code-mixed texts to their na-
tive scripts. It consists of three main compo-
nents: language identification (Section 3.1), back-
transliteration (Section 3.2), and sequence predic-
tion (Section 3.3).

3.1 Language Identification

We approach language identification as a sequence
labeling task, in which a sequence of word to-
kens in a code-mixed text is transformed into a
sequence of the binary language tags (c.f., Fig-
ure 1b). Without loss of generality, we assume that
one of the languages is English. Depending on the
language label generated by this module, each in-
put word is either fed into our back-transliteration
module (Section 3.2) or copied unchanged to the
final output.

Our supervised language identification module
is based on the encoder-decoder model of Najafi
et al. (2018).2 On the language identification task,
the encoder-decoder model achieves higher accu-
racy than a bi-directional Long Short Term Mem-
ory (LSTM) network with a CRF layer which is
designed for sequence labeling tasks such as part-
of-speech tagging (POS) and named entity recog-
nition (NER) (Huang et al., 2015). This may be
due to the nature of the language identification
task, or the use of rich features in the encoder
RNN.

The encoder takes character-level and word-
level embedding of the input tokens as features in
a bi-directional LSTM network over the input se-
quence. The outputs of bi-directional LSTM ap-
plied to characters of each word are concatenated
and passed through a dropout layer to construct
the character-level embedding. The capitalization
pattern indicators (e.g. first letter is capital or all
letters are capital) are then concatenated to these
feature vectors. Pre-trained English word- and

2https://github.com/SaeedNajafi/ac-tagger
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character-embeddings help the model identify En-
glish words in romanized texts. A fully-connected
layer produces the final hidden vectors of the in-
put sequence. The decoder’s forward-LSTM gen-
erates output tokens incrementally from left-to-
right; the output tokens are conditioned on the hid-
den vectors and the generated tokens from the pre-
vious steps. During the test phase, beam search is
used to generate the outputs.

3.2 Back-Transliteration

Back-transliteration from romanized texts to the
native scripts is difficult because there is gener-
ally only one correct way to render the roman-
ized word to the native form (Knight and Graehl,
1998). We propose to overcome this problem by
pooling the top-n predictions from three diverse
transliteration systems: (a) Sequitur, a generative
joint n-gram transducer; (b) DTLM, a discrim-
inative string transducer; and (c) OpenNMT, a
neural machine translation tool. In addition, we
bolster the transliteration accuracy by leveraging
target word lists, character language models, as
well as synthetic training data, whenever possible.
All of the generated candidate transliterations are
then provided to the sequence prediction module,
which is described in Section 3.3.

Sequitur (Bisani and Ney, 2008) is a data-
driven transduction tool which derives a joint n-
gram model from unaligned source-target data.3

The model reflects the edit operations used in
the conversion from source to target, and allows
for the inclusion of source context in the gen-
erative model. Higher n-gram order models are
trained iteratively from the lower order models.
Sequitur was adopted as a baseline in the most re-
cent NEWS shared task on transliteration (Chen
et al., 2018).

DTLM is a new system that combines discrimi-
native transduction with character and word lan-
guage models (LM) derived from large unanno-
tated corpora (Nicolai et al., 2018).4 DTLM is
an extension of DirecTL+ (Jiampojamarn et al.,
2010). For target language modeling, which is
particularly important in low-data scenarios, Di-
recTL+ uses binary n-gram features based exclu-
sively on the forms in the parallel training data.
This limitation often results in many ill-formed
output candidates. DTLM avoids the error prop-

3https://github.com/sequitur-g2p/sequitur-g2p
4https://github.com/GarrettNicolai/DTLM

agation problem that is inherent in pipeline ap-
proaches by incorporating the LM feature sets di-
rectly into the transducer. The weights of the new
features are learned jointly with the other features
of DirecTL+.

In addition, the quality of transduction is bol-
stered by employing a novel alignment method,
which is referred to as precision alignment.5 The
idea is to allow null substrings on the source side
during the alignment of the training data, and
then apply a separate aggregation algorithm to
merge them with adjoining non-empty substrings.
This method yields precise many-to-many align-
ment links that result in substantially higher trans-
duction accuracy. DTLM was among the best-
performing systems at the recent NEWS shared
task on transliteration (Chen et al., 2018).

As our neural transliteration system, we adopt
the PyTorch variant of the OpenNMT tool (Klein
et al., 2017).6 The system employs an encoder-
decoder architecture with an attention mechanism
on top of the decoder RNN. We insert word
boundaries between all characters in the input
and output, resulting in translation models which
view characters as words and words as sentences.
We apply the default translation architecture pro-
vided by OpenNMT with the exception of using a
bidirectional-LSTM in the encoder model. We op-
tionally generate additional synthetic training data
for the neural system, using a simple romanization
table that maps each native script character to a set
of English letters.

3.3 Sequence Prediction

The transliteration systems process individual
words in isolation, and thus fail to take into ac-
count the context of a word in a sentence. How-
ever, multiple native words may have the same ro-
manized form, so the top-scoring prediction is of-
ten incorrect in the given context. To solve this
problem, we propose a sequence prediction sys-
tem that attempts to select the best prediction from
the pooled candidate list using both the transliter-
ation score and the word trigram language model
score.

We frame the task as a Hidden Markov Model,
where the romanized words are the observed
states, and the words in their original scripts are
the hidden states. The emission probabilities are

5https://github.com/GarrettNicolai/M2MP
6https://github.com/OpenNMT/OpenNMT-py
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Task Language Train Tune Test

LI Bengali 18660 † 2000 † 539 †
Hindi 15980 † 1780 † 3287 †

TL Bengali 12623 ‡ 1000 ‡ 363 †
Hindi 11937 ‡ 1000 ‡ 2465 †

Table 1: The size of the datasets used in our experi-
ments. The sets from the FIRE 2014 and NEWS 2018
shared tasks are marked with † and ‡, respectively.

based on the prediction scores from the translit-
eration systems, which are normalized to repre-
sent valid probability distributions. The transition
probabilities are based on the trigram probabili-
ties from a word language model created with the
KenLM language modeling tool.7 The candidates
and scores of all the systems are then concatenated
together. If a transliteration candidate is gener-
ated by more than one system, the best prediction
score among the systems is considered. Finally,
the combined scores are normalized again.

We use a modified Viterbi decoder to deter-
mine the most likely transliteration sequence from
the generated candidates. The scores are linearly
combined to produce the score of a hidden se-
quence, score(s). Due to the large number of n-
grams and small number of transliteration candi-
dates, the score(s) is heavily skewed towards the
emission scores. To mitigate this imbalance, we
use exponent parameters pt and pe for the tran-
sition scores T (s) and emission scores E(s), re-
spectively. These parameters are tuned on a de-
velopment set. The scoring function is computed
using the following formula:

score(s) = max
k

([log T (s)]pt + [logE(s)]pe) =

max
k

(
n∑

k=1

[T̂ (bk|bk−1bk−2)]
pt +

n∑

k=1

[Ê(ek|bk)]pe)

where T̂ represents the probability of transitioning
from state bk−2 to state bk, and Ê is the probability
of observing ek from state bk.

Both generated transliteration candidates and
foreign words in the code-mixed texts are sources
of out-of-vocabulary (OOV) tokens. Prior to
building the language model, we add a single
UNK token to the corpus. During decoding, the
identified English words and OOV transliterations
are replaced with the UNK token. This results
with OOV words being assigned very low prob-

7https://github.com/kpu/kenlm

Dataset Bengali English Hindi English
Train 48.0 52.0 46.2 53.8
Dev 87.1 12.9 - -
Test 68.3 31.7 75.0 25.0

Table 2: The language balance in the code-mixed
datasets (% of word tokens).

abilities, biasing the sequence prediction module
towards in-vocabulary words.

4 Data

In order to demonstrate the generality of our
approach, we perform experiments on two lan-
guages: Bengali and Hindi. In addition to the
datasets from the FIRE 2014 and NEWS 2018
shared tasks, we create our own annotated devel-
opment set, and generate synthetic romanization
data.

4.1 Code-mixed Data

The data for our language identification module is
from the track on transliterated search of the FIRE
2014 shared task (Choudhury et al., 2014). The
data consist of transliterated search queries, which
include a substantial number of English words,
as shown in Table 2. Search queries constitute a
very different domain from social media messages
that our system is designed for. In particular, they
are rarely composed of complete sentences, which
limits the ability of our sequence prediction mod-
ule to take advantage of the word context.

We hold out approximately 10% of the origi-
nal training data for tuning the hyper-parameters
of our language identification module (Table 1).
Since we have no access to the test sets of the
shared task, we use the development sets as our
test sets. These sets contain 100 Bengali and 500
Hindi search queries, respectively.

In order to mitigate the sparsity of annotated re-
sources, we create our own Bengali development
set. This allows us to develop and tune our system
independently from the test sets. We collect ro-
manized posts from several Facebook groups and
pages, and manually deromanize them. Our devel-
opment set contains 247 sentences and 1990 word
tokens. The percentage of English word tokens in
the development set is much smaller than in the
FIRE 2014 datasets, as shown in Table 2.
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System Bengali Hindi
Dev Test Test

Majority baseline 87.1 68.3 75.0
Word-level ID 87.0 87.5 87.4

Bi-LSTM + CRF 92.4 90.9 93.2
Encoder-decoder 95.2 92.2 95.3

Table 3: Language identification accuracy (in %).

4.2 Transliteration Data
All back-transliteration systems are trained on the
Bengali and Hindi datasets from the NEWS 2018
shared task (Chen et al., 2018). Their parame-
ters are tuned on the corresponding development
sets from the shared task. We create our back-
transliteration test sets from the FIRE 2014 devel-
opment sets by extracting romanized Bengali and
Hindi word tokens together with their correspond-
ing forms in the native scripts. As with the code-
mixed data, the transliteration training and test sets
are heterogeneous: the NEWS 2018 datasets con-
tain mostly proper names, while the FIRE 2014
datasets contain mostly dictionary words.

We derive the character language models and
target word lists for DTLM from publicly avail-
able unannotated monolingual corpora: Bengali
Wikipedia8, a Bengali news corpus9, and a Hindi
news corpus10.

While no additional data is used for the
Hindi models, we experiment with leveraging
language-specific expertise to improve Bengali
back-transliteration. First, since the training data
contains mostly named entities, we augment it
with manually-created transliterations of the most
frequent 700 Bengali words from the news corpus.
Second, since the performance of the neural sys-
tem depends strongly on the amount of training
data, we automatically generate romanizations for
50,000 Bengali words from Wikipedia.

The romanizations are generated with a context-
free mapping from Bengali characters into Latin
letters. As there are many ways to represent Ben-
gali characters to Latin letters, and some Bengali
characters have different representations based on
their position in a word, we allow multiple map-
pings. For example, the Bengali character ‘BO’ is
mapped to three English substrings: ‘b’, ‘ba’, and
‘bo’. Each Bengali character is represented using
on average 1.8, and maximum 3 Latin letters. (We

8https://bn.wikipedia.org/wiki/
9https://scdnlab.com/corpus/

10http://wortschatz.uni-leipzig.de/

System NEWS 2018 data + Annotated data
top-1 top-10 top-1 top-10

Sequitur 22.1 58.7 34.6 69.3
DTLM 29.1 43.9 40.5 61.5
NMT 35.8 52.1 45.7 63.4

Table 4: Impact of manually created transliteration data
on the Bengali development set (in % word accuracy).

make our mapping publicly available.11) In order
to estimate the quality of the mapping script, we
applied it to the Bengali-English training dataset
from the NEWS 2018 shared task, which yielded
21.7% word-level and 78.9% character-level accu-
racy.

5 Experiments

In this section, we present the results for each of
the three tasks.

5.1 Setup

We tune all parameters, including the exponents
pt and ps, of our sequence prediction module, on
the Bengali development set, and apply them un-
changed to both test sets. For the transliteration,
we set the n-gram order of Sequitur to 6. We ap-
ply a grid-search to establish the parameters for
the DTLM transducer and aligner. We set param-
eters of the OpenNMT system to the default set-
tings.

For the sequence prediction, we use pre-trained
Glove word-embeddings of 100 dimensions (Pen-
nington et al., 2014), and derive the character-
embedding of 32 dimensions from the training
data. The training is accomplished with Adam op-
timizer (Kingma and Ba, 2014), dropout regular-
ization, and batch size of 64.

5.2 Language Identification

We evaluate our encoder-decoder model against a
strong general sequence tagging system (Huang
et al., 2015). For this purpose, we adapt an im-
plementation12 of a CRF-based sequence tagging
model on top of RNNs to the language identifica-
tion task (Bi-LSTM + CRF). In addition, we com-
pare to a word-level language identification sys-
tem13 based on word frequencies and character n-
grams (Word-level ID). We also report the result

11https://github.com/x3r/deromanization
12https://github.com/guillaumegenthial/tf ner
13https://github.com/eginhard/word-level-language-id
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System Bengali Hindi
top-1 top-10 top-1 top-10

Sequitur 42.0 82.7 43.6 89.9
DTLM 48.8 70.2 42.7 82.7

OpenNMT 61.0 81.7 41.1 80.4

Table 5: Back-transliteration accuracy on the test sets.

of a majority baseline which classifies every token
as non-English.

The results are shown in Table 3. Our encoder-
decoder achieves the highest accuracy on all sets,
with the CRF system close behind. The lower re-
sults of the n-gram based approach highlight the
issue of the ambiguity introduced through roman-
ization. Because the gold tags for the FIRE 2014
test sets are not publicly available, we are unable
to directly compare to the systems that partici-
pated in that shared task; the best reported results
were 90.5% on Bengali (Banerjee et al., 2014) and
87.9% on Hindi (Gupta et al., 2014a).

5.3 Back-Transliteration

Table 4 shows the impact of enhancing the NEWS
2018 training data with manually-annotated
dataset described in Section 4.2. The result is a
substantial improvement in accuracy of all three
back-transliteration systems. The synthetic data
generated with our mapping script further boosts
the top-1 accuracy of the OpenNMT system by
4.7%, but the impact on Sequitur and DTLM is
negligible.

The results on the test sets are shown in Table 5.
All three systems obtain similar top-1 results on
Hindi. The neural system has the best top-1 accu-
racy on Bengali, which we attribute to the use of
the synthetic data for training. However, Sequitur
achieves the best accuracy among the top-10 pre-
dictions on both languages. The substantial dis-
crepancy between the results on the Bengali de-
velopment and test sets (Tables 4 and 5) are due
to their different domains. The development set is
curated from social media messages which contain
a higher degree of spelling variation that reflects
non-standard language use, while the test set con-
sists of queries from search engine logs.

5.4 Sequence Prediction

We evaluate two variants of our system: the com-
plete system that incorporates all three modules,
and a restricted variant without language identi-
fication, which indiscriminately deromanizes ev-

System
Bengali Hindi

Dev Test Test
Sequitur 47.6 51.0 49.2

Our system 78.2 79.8 84.3
w/o language ID 69.6 50.5 61.6
Google Translate 77.1 60.4 64.4

Table 6: The results on deromanization of code-mixed
texts (in % word accuracy).

ery input word. For the baseline, we concatenate
the top-1 predictions of the Sequitur system. As
we are unaware of another publicly-available sys-
tem for deromanization of code-mixed texts, we
compare to the output of Google Translate (Fig-
ure 2).14

The end results are presented in Table 6.
Our complete system substantially outperforms
Google Translate (GT) on both Bengali and Hindi
test sets. Both GT and our restricted variant un-
conditionally deromanize all tokens regardless of
their language origin. On average, 27% of errors
made by GT on the test sets are due to deroman-
ization of English words. GT outperforms our re-
stricted variant, which we attribute to their vastly
superior resources. These results highlight the im-
portance of handling the code-mixing issue in the
deromanization task.

For the reasons explained in Section 5.2, we are
unable to directly compare to the systems that par-
ticipated in the FIRE 2014 shared task. The best
reported F-score results on the deromanization of
transliterated search subtask were 7.3% for Ben-
gali (Gupta et al., 2014a) and 30.4% for Hindi
(Mukherjee et al., 2014). We attribute the supe-
rior results of our system to its ability to han-
dle spelling variations found in romanized code-
mixed texts.

5.5 Error Analysis

An example output of the proposed deromaniza-
tion system is presented in Figure 3. The errors
are marked in bold and red. Our system incor-
rectly classifies the words ‘1’ and ‘bar’ as English.
These errors can be attributed to the existence of
words with the same spelling in English, as well as
the presence of another English word ‘only’ in the
context. Google Translate avoids making these er-

14Although Google Gboard performs word-level deroman-
ization of a mobile keyboard input, it has no interface for au-
tomatically deromanizing large number of sentences.
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Figure 2: Google Translate interface. The errors are highlighted in yellow.15

(a) but amdr belay only 1 bar 

(b) E B B E B B 

(c) but আমােদর έবলায় only ১ বার 

(d) “but” “our” “case” “only” “one” “time” 

(e) “but only once in our case” 

(f) but আমার έবলায় only 1 bar 

Figure 3: An example system error: (a) original mes-
sage; (b) implied language tags; (c) gold output; (d)
word-level translation; (e) complete translation; (f) our
system output.

rors by always deromanizing all tokens; however,
this indiscriminate approach also produces bewil-
dering Bengali forms that reflect the pronunciation
of English function words ‘but’ and ‘only’ (Figure
2). In addition, both systems make deromaniza-
tion errors on ‘amdr’, which is a contracted form
of the Bengali word ‘amader’. This example il-
lustrates the inherent difficulty of the task, and the
importance of handling the code-mixing and dero-
manization together.

6 Conclusion

We have presented a joint approach for deroman-
ization of code-mixed texts. The experiments
on two languages show that our system achieves
state-of-the-art results. In the future, we plan to
apply our approach to other languages and scripts
that involve both code-mixing and romanization.
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Abstract

We explore how well a sequence labeling
approach, namely, recurrent neural net-
work, is suited for the task of resource-poor
and POS tagging free word stress detec-
tion in the Russian, Ukranian, Belarusian
languages. We present new datasets, an-
notated with the word stress, for the three
languages and compare several RNN mod-
els trained on three languages and explore
possible applications of the transfer learn-
ing for the task. We show that it is possi-
ble to train a model in a cross-lingual set-
ting and that using additional languages
improves the quality of the results.

1 Introduction

It is impossible to describe Russian (and any
other East Slavic) word stress with a set of
hand-picked rules. While the stress can be
fixed at a word base or ending along the
whole paradigm, it can also change its posi-
tion. The word stress detection task is im-
portant for text-to-speech solutions and word-
level homonymy resolving. Moreover, stress
detecting software is in demand among Rus-
sian learners.

One of the approaches to solving this prob-
lem is a dictionary-based system. It simply
keeps all the wordforms and fails at OOV-
words. The rule-based approach offers better
results; however collecting the word stress pat-
terns is a highly time consuming task. Also,
the method cannot manage words without spe-
cial morpheme markers. As shown in (Pono-
mareva et al., 2017), even simple deep learning
methods easily outperform all the approaches
described above.

In this paper we address the following re-
search questions:

1. how well does the sequence labeling ap-
proach suit the word stress detection task?

2. among the investigated RNN-based archi-
tectures, what is the best one for the task?

3. can a word detection system be trained
on one or a combination of languages and
successfully used for another language?

To tackle these questions we:

1. compare the investigated RNN-based
models for the word stress detection task
on a standard dataset in Russian and se-
lect the best one;

2. create new data sets in Russian,
Ukrainian and Belarusian and con-
duct a series of mono- and cross-lingual
experiments to study the possibility of
cross-lingual analysis.

The paper is structured as follows: we start
with the description of the datasets created.
Next, we present our major approach to the
selection of neural network architecture. Fi-
nally, we discuss the results and related work.

2 Dataset

In this project, we approach the word stress
detection problem for three East Slavic lan-
guages: Russian, Ukrainian and Belarusian,
which are said to be mutually intelligible to
some extent. Our preliminary experiments
along with the results of (Ponomareva et al.,
2017) show that using context, i.e., left and
right words to the word under consideration,
is of great help. Hence, such data sources as
dictionaries, including Wiktionary, do not sat-
isfy these requirements, because they provide
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only single words and do not provide context
words.

To our knowledge, there are no corpora, an-
notated with word stress for Ukrainian and
Belarusian, while there are available transcrip-
tions from the speech subcorpus in Russian1

of Russian National Corpus (RNC) (Grishina,
2003). Due to the lack of necessary corpora,
we decided to create them manually.

The approach to data annotation is quite
simple: we adopt texts from Universal Depen-
dencies project and use provided tokenization
and POS-tags, conduct simple filtering and use
a crowdsourcing platform, Yandex.Toloka2, for
the actual annotation.

To be more precise, we took Russian,
Ukrainian and Belarusian treebanks from Uni-
versal Dependencies project. We split each
text from these treebanks in word trigrams and
filtered out unnecessary trigrams, where cen-
ter words correspond to NUM, PUNCT, and
other non-word tokens. The next step is to
create annotation tasks for the crowdsourcing
platform. We formulate word stress annota-
tion task as a multiple choice task: given a
trigram, the annotator has to choose the word
stress position in the central word by choosing
one of the answer options. Each answer option
is the central word, where one of the vowels is
capitalized to highlight a possible word stress
position. The example of an annotation task
is provided in Fig. 1. Each task was solved
by three annotators. As the task is not com-
plicated, we decide to accept only those tasks
where all three annotators would agree. Fi-
nally, we obtained three sets of trigrams for the
Russian, Ukrainian and Belarusian languages
of approximately the following sizes 20K, 10K,
3K correspondingly. The sizes of the resulting
datasets are almost proportional to the initial
corpora from the Universal Dependencies tree-
banks.

Due to the high quality of the Universal De-
pendencies treebanks and the languages being
not confused, there are little intersections be-
tween the datasets, i.e., only around 50 words

1Word stress in spoken texts database in Russian
National Corpus [Baza dannykh aktsentologicheskoy
razmetki ustnykh tekstov v sostave Natsional’nogo kor-
pusa russkogo yazyka], http://www.ruscorpora.ru/en/
search-spoken.html

2https://toloka.yandex.ru

are shared between Ukranian and Belarusian
datasets and between Russian and Ukranian
and Belarusian datasets. The intersection
between the Ukrainian and Russian datasets
amounts around 200 words.

The structure of the dataset is straightfor-
ward: each entry consists of a word trigram
and a number, which indicates the position of
the word stress in the central word3.

Figure 1: A screenshot of the word stress detection
task from Yandex.Toloka crowdsourcing platform

3 Preprocessing

We followed a basic preprocessing strategy for
all the datasets. First, we tokenize all the texts
into words. Next, to take the previous and
next word into account we define left and right
contexts of the word as the last three charac-
ters of the previous word and last three char-
acters of the next word. The word stresses (if
any) are removed from context characters. If
the previous / next word has less than three
letters, we concatenate it with the current
word (for example, “te_oblaká” [that-Pl.Nom
cloud-Pl.Nom]). This definition of context is
used since East Slavic endings are typically
two-four letters long and derivational mor-
phemes are usually located on the right pe-
riphery of the word.

Finally, each character is annotated with one
of the two labels L = {0, 1}: it is annotated
with 0, if there is no stress, and with 1, if there
should be a stress. An example of an input
character string can be found in Table 1.

4 Model selection

We treat word stress detection as a sequence
labeling task. Each character (or syllable) is

3Datasets are avaialable at: https://github.com/
MashaPo/russtressa
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in л а я в о р о н а т и т
out 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 1: Character model input and output: each
character is annotated with either 0, or 1. A tri-
gram “белая ворона летит” (“white crow flies”) is
annotated. The central word remains unchanged,
while its left and right contexts are reduced to the
last three characters

labeled with one of the labels L = {0, 1}, indi-
cating no stress on the character (0) or a stress
(1). Given a string s = s1, . . . , sn of characters,
the task is to find the labels Y ∗ = y∗1, . . . , y

∗
n,

such that

Y ∗ = arg max
Y ∈Ln

p(Y |s).

The most probable label is assigned to each
character.

We compare two RNN-based models for the
task of word stress detection (see Fig. 2 and
Fig.3). Both models have a common input and
hidden layers but differ in output layers.

The input of both models are embeddings of
the characters. In both cases, we use bidirec-
tional LSTM of 32 units as the hidden layer.
Further, we describe the difference between the
output layers of the two models.

4.1 Local model

The decision strategy of the local model (see
Fig. 2) follows common language modeling and
NER architectures (Ma and Hovy, 2016): all
outputs are independent of each other. We de-
cide, whether there should be a stress on each
given symbol (or syllable) or not. To do this
for each character we put an own dense layer
with two units and a softmax activation func-
tion, applied to the corresponding hidden state
of the recurrent layer, to label each input char-
acter (or syllable) with L = {0, 1}.

4.2 Global model

The decision strategy of the global model (see
Fig. 3) follows common encoder-decoder archi-
tectures (Sutskever et al., 2014). We use the
hidden layer to encode the input sequence into
a vector representation. Then, we use a dense
layer of n units as a decoder to decode the rep-
resentation of the input and to generate the
desired sequence of {0, 1}. In comparison to
the local model, in this case, we try to find the

Figure 2: Local model for word stress detection

position of the stress instead of making a series
of local decisions if there should be a stress on
each character or not.

Figure 3: Global model for word stress detection

To test the approach and to compare these
models, we train two models on the subcorpus
of Russian National Corpus for Word stress
in spoken texts, which appears to be a stan-
dard dataset for the task of word stress detec-
tion. This dataset was preprocessed according
to our standard procedure, and the resulting
dataset contains approximately around 1M tri-
grams. The results of cross-validation exper-
iments, presented in Table 2, show that the
global model outperforms significantly the lo-
cal model. Hence, the global architecture is
used further on in the next experiments.

We pay special attention to homographs: as
one can see, in general, the quality of word
stress detection is significantly lower on homo-
graphs than on regular words. However, in the
majority of cases, we are still able to detect
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# vowels local global
all words

2 961 983

3 940 977

4 947 976

5 960 977

6 958 973

7 924 955

8 866 923

9 809 979

avg 952 979

homographs
2 839 810

3 774 844

4 787 847

avg 821 819

Table 2: Accuracy scores × 1000 for two models

the word stress position for a homograph, most
likely due to the understanding of the word
context.

5 Experiments and results

In these series of experiments, we tried to check
the following assumptions for various experi-
ment settings:

1. monolingual setting: the presented above
approach applies not only to the Russian
language word stress detection but also to
the other East Slavic languages

2. cross-lingual setting (1): it is possible
to train a model on one language (e.g.,
Ukrainian) and test it on another lan-
guage (e.g., Belarusian) and achieve re-
sults comparable to monolingual setting

3. cross-lingual setting (2): training on
several languages (e.g., Russian and
Ukrainian) will improve the results of test-
ing on a single language (e.g., Russian) in
comparison to the monolingual setting.

To conduct the experiments in these mono-
and cross-lingual settings, we split the anno-
tated datasets for Russian, Ukrainian and Be-
larusian randomly in the 7:3 train-test ratio
and conducted 20 runs of training and testing
with different random seeds. Afterward, the
accuracy scores of all runs were averaged. The

Table 3 presents the results of these experi-
ments.

test dataset

train dataset
Be-
laru-
sian

Rus-
sian Ukrai-

nian
Belarusian 647 326 373
Russian 495 738 516
Ukrainian 556 553 683
Ukrainian,
Belarusian 769 597 701

Russian,
Belarusian 740 740 563

Russian,
Ukrainian 627 756 700

Russian,
Ukrainian,
Belarusian

772 760 698

Table 3: Accuracy scores × 1000 for different train
and test dataset combinations

The Table 3 shows, that:

1. in monolingual setting, we can get high-
quality results. The scores are signifi-
cantly lower than the scores of the same
model on the standard dataset, due to
the smaller sizes of the training datasets.
Nevertheless, one can see, that our ap-
proach to word stress detection applies
not only to the Russian language data,
but also to the data in the Belarusian and
Ukrainian languages;

2. cross-lingual setting (1): the Belarusian
training dataset, being the smallest one
among the three datasets, is not a good
source for training word stress detec-
tion models in other languages, while the
Ukrainian dataset stands out as a good
source for training word stress detection
systems both for the Russian and Belaru-
sian languages;

3. cross-lingual setting (2): adding one or
two datasets to the other languages im-
proves the quality. For example, around
10% of accuracy is gained by adding the
Russian training dataset to the Belarusian
training dataset, while testing on Belaru-
sian.
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One possible reason for the difference of Be-
larusian from the other two languages can be
the following. After the orthography reform in
1933, the cases of vowel reduction in the un-
stressed position (common phonetic feature for
East Slavic languages) have been represented
orthographically in the Belarusian language.
However, the size of the Belarusian dataset (it
is much smaller than the other two) may affect
the quality as well.

6 Related Work

6.1 Char-RNN models

Several research groups have shown that
character-level models are an efficient way to
deal with unseen words in various NLP tasks,
such as text classification (Joulin et al., 2017),
named entity recognition (Ma and Hovy,
2016), POS-tagging (Santos and Zadrozny,
2014; Cotterell and Heigold, 2017), depen-
dency parsing (Alberti et al., 2017) or machine
translation (Chung et al.). The character-level
model is a model which either treats the text as
a sequence of characters without any tokeniza-
tion or incorporates character-level informa-
tion into word-level information. Character-
level models can capture morphological pat-
terns, such as prefixes and suffixes so that the
model can define the POS-tag or NE class of
an unknown word.

6.2 Word stress detection in East Slavic
languages

Only a few authors touch upon the problem of
automated word stress detection in Russian.
Among them, one research project, in partic-
ular, is worth mentioning (Hall and Sproat,
2013). The authors restricted the task of stress
detection to find the correct order within an
array of stress assumptions where valid stress
patterns were closer to the top of the list than
the invalid ones. Then, the first stress assump-
tion in the rearranged list was considered to be
correct. The authors used the Maximum En-
tropy Ranking method to address this problem
(Collins and Koo, 2005) and took character bi-
and trigram, suffixes and prefixes of ranked
words as features as well as suffixes and pre-
fixes represented in an “abstract” form where
most of the vowels and consonants were re-
placed with their phonetic class labels. The

study features the results obtained using the
corpus of Russian wordforms generated based
on Zaliznyak’s Dictionary (approx. 2m word-
forms). Testing the model on a randomly split
train and test samples showed the accuracy of
0.987. According to the authors, they observed
such a high accuracy because splitting the sam-
ple randomly during testing helped the algo-
rithm benefit from the lexical information, i.e.,
different wordforms of the same lexical item
often share the same stress position. The au-
thors then tried to solve a more complicated
problem and tested their solution on a small
number of wordforms for which the paradigms
were not included in the training sample. As a
result, the accuracy of 0.839 was achieved. The
evaluation technique that the authors propose
is quite far from a real-life application which
is the main disadvantage of their study. Usu-
ally, the solutions in the field of automated
stress detection are applied to real texts where
the frequency distribution of wordforms differs
drastically from the one in a bag of words ob-
tained from “unfolding” of all the items in a
dictionary.

Also, another study (Reynolds and Tyers,
2015) describes the rule-based method of au-
tomated stress detection without the help of
machine learning. The authors proposed a
system of finite-state automata imitating the
rules of Russian stress accentuation and formal
grammar that partially solved stress ambiguity
by applying syntactical restrictions. Thus, us-
ing all the above-mentioned solutions together
with wordform frequency information, the au-
thors achieved the accuracy of 0.962 on a rela-
tively small hand-tagged Russian corpus (7689
tokens) that was not found to be generally
available. We can treat the proposed method
as a baseline for the automated word stress de-
tection problem in Russian.

The global model, which is shown to be the
best RNN-based architecture for this setting
of the task, was first presented in (Ponomareva
et al., 2017), where a simple bidirectional RNN
with LSTM nodes was used to achieve the ac-
curacy of 90% or higher. The authors experi-
ment with two training datasets and show that
using the data from an annotated corpus is
much more efficient than using a dictionary
since it allows to consider word frequencies and
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the morphological context of the word. We ex-
tend the approach of (Ponomareva et al., 2017)
by training on new datasets from additional
languages and conducting cross-lingual exper-
iments.

6.3 Cross-lingual analysis

Cross-lingual analysis has received some atten-
tion in the NLP community, especially when
applied in neural systems. Among a few re-
search directions of cross-lingual analysis are
multilingual word embeddings (Ammar et al.,
2016; Hermann and Blunsom, 2013) and di-
alect identification systems (Malmasi et al.,
2016; Al-Badrashiny et al., 2015). Traditional
NLP tasks such as POS-tagging (Cotterell
and Heigold, 2017), morphological reinflection
(Kann et al., 2017) and dependency parsing
(Guo et al., 2015) benefit from cross-lingual
training too. Although the above-mentioned
tasks are quite diverse, the undergirding philo-
sophical motivation is similar: to approach a
task on a low-resource language by using ad-
ditional training data in a high-resource lan-
guage or training a model on a high-resource
language and fine-tune this model on a low-
resource language with a probably lower learn-
ing rate.

7 Conclusion

In this project, we present a neural approach
for word stress detection. We test the ap-
proach in several settings: first, we com-
pare several neural architectures on a standard
dataset for the Russian language and use the
results of this experiment to select the architec-
ture that provides the highest accuracy score.
Next, we annotated the Universal Dependen-
cies corpora for the Russian, Ukrainian and
Belarusian languages with word stress using
Yandex. Toloka crowdsourcing platform. The
experiments conducted on these datasets con-
sist of two parts: a) in the monolingual setting
we train and test the model for word stress de-
tection on the data sets separately; b) in the
cross-lingual setting: we train the model on
various combinations of the datasets and test
on all three data sets. These experiments show
that:

1. the proposed method for word stress
detection is applicable or the Russian,

Ukrainian and Belarusian languages;

2. using an additional language for training
most likely improves the quality of the re-
sults.

Future work should focus on both annotating
new datasets for other languages that possess
word stress phenomena and further develop-
ment of cross-lingual neural models based on
other sequence processing architectures, such
as transformers.
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Abstract

This paper evaluates global-scale dialect iden-
tification for 14 national varieties of English as
a means for studying syntactic variation. The
paper makes three main contributions: (i) in-
troducing data-driven language mapping as a
method for selecting the inventory of national
varieties to include in the task; (ii) producing a
large and dynamic set of syntactic features us-
ing grammar induction rather than focusing on
a few hand-selected features such as function
words; and (iii) comparing models across both
web corpora and social media corpora in order
to measure the robustness of syntactic varia-
tion across registers.

1 Syntactic Variation Around the World

This paper combines grammar induction (Dunn,
2018a, 2018b, 2019) and text classification
(Joachims, 1998) to model syntactic variation
across national varieties of English. This
classification-based approach is situated within the
task of dialect identification (Section 2) and eval-
uated against other baselines for the task (Sections
7 and 8). But the focus is modelling syntactic
variation on a global-scale using corpus data. On
the one hand, the problem is to use a model of
syntactic preferences to predict an author’s dialect
membership (Dunn, 2018c). On the other hand,
the problem is to take a spatially-generic gram-
mar of English that is itself learned from raw text
(c.f., Zeman, et al., 2017; Zeman, et al., 2018)
and adapt that grammar using dialect identification
as an optimization task: which constructions are
more likely to occur in a specific regional variety?

Because we want a complete global-scale
model, we first have to ask: how many national va-
rieties of English are there? This question, consid-
ered in Sections 3 and 4, is essential for determin-
ing the inventory of regional varieties that need to
be included in the dialect identification task. This

paper uses data-driven language mapping to find
out where English is consistently used, given web
data and Twitter data, in order to avoid the arbi-
trary selection of dialect areas. This is important
for ensuring that each construction in the grammar
receives the best regional weighting.

What syntactic features are needed to represent
variation in English? As discussed in Section 6,
this paper uses grammar induction on a large back-
ground corpus to provide a replicable and dynamic
feature space in order to avoid arbitrary limitations
(e.g., lists of function words). The other side of
this problem is to optimize grammar induction for
regional dialects by using an identification task to
learn regional weights for each part of the gram-
mar: how much does a single generic grammar of
English vary across dialects? To what degree does
it represent a single dominant dialect?

Finally, a corpus-based approach to variation is
restricted to the specific domains or registers that
are present in the corpus. To what degree is such
a model of variation limited to a specific register?
This paper uses both web-crawled corpora and so-
cial media corpora to explore the robustness of di-
alect models across domains (Section 8). Along
these same lines, how robust is a model of syn-
tactic variation to the presence of a few highly
predictive features? This paper uses unmasking,
a method from authorship verification (Koppel, et
al., 2007), to evaluate the stability of dialect mod-
els over rounds of feature pruning (Section 9).

2 Previous Work

Because of its long history as a colonial lan-
guage (Kachru, 1990), English is now used
around the world by diverse national commu-
nities. In spite of the global character of En-
glish, dialectology and sociolinguistics continue
to focus largely on sub-national dialects of En-
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glish within so-called inner-circle varieties (for
example, Labov, et al., 2016; Strelluf, 2016;
Schreier, 2016; Clark & Watson, 2016). This
paper joins recent work in taking a global ap-
proach by using geo-referenced texts to represent
national varieties (e.g., Dunn, 2018c; Tamaredo,
2018; Calle-Martin & Romero-Barranco, 2017;
Szmrecsanyi, et al., 2016; Sanders, 2010, 2007;
c.f., Davies & Fuchs, 2015). For example, this
study of dialect classification contains inner-circle
(Australia, Canada, United Kingdom, Ireland,
New Zealand, United States), outer-circle (India,
Malaysia, Nigeria, Philippines, Pakistan, South
Africa), and expanding-circle (Switzerland, Por-
tugual) varieties together in a single model.

The problem is that these more recent ap-
proaches, while they consider more varieties of
English, have arbitrarily limited the scope of vari-
ation by focusing on a relatively small number of
features (Grafmiller & Szmrecsanyi, 2018; Kruger
& van Rooy, 2018; Schilk & Schaub, 2016;
Collins, 2012). In practical terms, such work
uses a smaller range of syntactic representations
than comparable work in authorship analysis (c.f.,
Grieve, 2007; Hirst & Feiguina, 2007; Argamon
& Koppel, 2013).

From a different perspective, we could view
the modelling of dialectal variation as a classifi-
cation task with the goal of predicting which di-
alect a sample belongs to. Previous work has draw
on many representations that either directly or in-
directly capture syntactic patterns (Gamallo, et
al., 2016; Barbaresi, 2018; Kreutz & Daelemans,
2018; Kroon, et al., 2018). Given a search for
the highest-performing approach, other work has
shown that methods and features without a direct
linguistic explanation can still achieve impressive
accuracies (McNamee, 2016; Ionescu & Popescu,
2016; Belinkov & Glass, 2016; Ali, 2018).

On the other hand, there is a conceptual clash
between potentially topic-based methods for di-
alect identification and other tasks that explicitly
model place-specific language use. For example,
text-based geo-location can use place-based top-
ics to identify where a document is from (c.f.,
Wing & Baldridge, 2014; Hulden, et al., 2015;
Lourentzou, et al., 2017). And, at the same time,
place-based topics can be used for both character-
izing the functions of a location (c.f., Adams &
McKenzie, 2018; Adams, 2015) and disambiguat-
ing gazeteers (c.f., Ju, et al., 2016). This raises an

Region CC TW
Africa, North 123,859,000 85,552,000
Africa, Southern 59,075,000 87,348,000
Africa, Sub 424,753,000 254,200,000
America, Brazil 218,119,000 118,138,000
America, Cen. 886,610,000 383,812,000
America, North 236,590,000 350,125,000
America, South 1,163,008,000 402,150,000
Asia, Cen. 965,090,000 102,794,000
Asia, East 2,201,863,000 95,704,000
Asia, South 448,237,000 331,192,000
Asia, Southeast 2,011,067,000 245,181,000
Europe, East 4,553,101,000 322,460,000
Europe, Russia 101,444,000 105,045,000
Europe, West 2,422,855,000 823,807,000
Middle East 660,732,000 222,985,000
Oceania 164,025,000 213,064,000
TOTAL 16.65 billion 4.14 billion

Table 1: Background Corpus Size in Words by Region

important conceptual problem: when does predic-
tive accuracy reflect dialects as opposed to either
place-references or place-based content? While
geo-referenced corpora capture both types of in-
formation, syntactic representations focus specifi-
cally on linguistic variation while place-references
and place-based topics are part of document con-
tent rather than linguistic structure.

3 Where Is English Used?

The goal of this paper is to model syntactic varia-
tion across all major or robust varieties of English.
But how do we know which varieties should be
included? Rather than select some set of varieties
based on convenience, we take a data-driven ap-
proach by collecting global web-crawled data and
social media data to determine where English is
used. This approach is biased towards developed
countries with access to digital technologies. As
shown in Table 1, however, enough global lan-
guage data is available from both sources to de-
termine where national varieties of English exist.

Data comes from two sources of digital texts:
web pages from the Common Crawl1 and social
media from Twitter.2 Both types of data have
been used previously to study dialectal and spa-
tial variation in language. More commonly, geo-
referenced Twitter data has been taken to repre-

1http://commoncrawl.org
2http://twitter.com
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sent language-use in specific places (e.g., Eisen-
stein, et al., 2010; Roller, et al., 2012; Kondor, et
al., 2013; Mocanu, et al., 2013; Eisenstein, et al.,
2014; Graham, et al., 2014; Donoso & Sanchez,
2017); regional variation in Twitter usage was also
the subject of a shared task at PAN-17 (Rangel, et
al., 2017). Web-crawled data has also been curated
and prepared for the purpose of studying spatial
variation (Goldhahn, et al., 2012; Davies & Fuchs,
2015), including the use of country-level domains
for geo-referencing (Cook & Brinton, 2017). This
paper builds on such previous work by system-
atically collecting geo-referenced data from both
sources on a global scale. The full web corpus is
available for download.3

For the Common Crawl data (abbreviated as
CC), language samples are geo-located using
country-specific top-level domains. The assump-
tion is that a language sample from a web-site un-
der the .ca domain originated from Canada (c.f.,
Cook & Brinton, 2017). This approach to region-
alization does not assume that whoever produced
that language sample was born in Canada or repre-
sents a traditional Canadian dialect group; rather,
the assumption is only that the sample represents
someone in Canada who is producing language
data. Some countries are not available because
their top-level domains are used for other purposes
(i.e., .ai, .fm, .io, .ly, .ag, .tv). Domains that do not
contain geographic information are also removed
from consideration (e.g., .com sites). The Com-
mon Crawl dataset covers 2014 through the end of
2017, totalling 81.5 billion web pages. As shown
in Table 1, after processing this produces a corpus
of 16.65 billion words.

The basic procedure for processing the Com-
mon Crawl data is to look at text within paragraph
tags: any document with at least 40 words within
paragraph tags from a country-level domain is pro-
cessed. Noise like navigational items, boilerplate
text, and error messages is removed using heuris-
tic searches and also using deduplication: any text
that occurs multiple times on the same site or mul-
tiple times within the same month is removed. A
second round of deduplication is used over the en-
tire dataset to remove texts in the same language
that occur in the same country. Its limited scope
makes this final deduplication stage possible. For
reproducibility, the code used for collecting and

3https://labbcat.canterbury.ac.nz/
download/?jonathandunn/CGLU_v3

processing the Common Crawl data is also made
available.4

The use of country-level domains for geo-
referencing raises two questions: First, are there
many domains that are not available because they
are not used or are used for non-geographic pur-
poses? After removing irrelevant domains like .tv,
the CC dataset covers 166 countries (30 of which
are not included in the Twitter corpus) while the
Twitter corpus covers 169 countries (33 of which
are not included in the CC corpus). Thus, while
the use of domains does remove some countries
from consideration, the effect is limited. Second,
does the amount of data for each country domain
reflect the actual number of web pages from that
country? In other words, some countries like the
United States are less likely to use their top-level
codes. However, the United States is still well-
represented in the model. The bigger worry is that
regional varieties from Africa or East Asia, both
of which are under-represented in these datasets,
might be missing from the model.

For the Twitter corpus, a spatial search is used
to collect Tweets from within a 50km radius of 10k
cities.5 Such a search avoids biasing the selection
by using language-specific keywords or hashtags.
The Twitter data covers the period from May of
2017 until early 2019. This creates a corpus con-
taining 1,066,038,000 Tweets. The language iden-
tification component, however, only provides re-
liable predictions for samples containing at least
50 characters. Thus, the corpus is pruned to in-
clude only those Tweets above that length thresh-
old. As shown in Table 1, this produces a corpus
containing 4.14 billion words with a global distri-
bution. Language identification (LID) is important
here because a failure to identify some regional va-
rieties of English will ultimately bias the model.
The LID system used is available for testing.6 But
given that the focus is a major language, English,
the performance of LID is not a significant factor
in the overall model of syntactic variation.

The datasets summarized in Table 1 include
many languages other than English. The purpose
is to provide background information about where
robust varieties of English are found: where is

4https://github.com/jonathandunn/
common_crawl_corpus

5https://github.com/datasets/
world-cities

6https://github.com/jonathandunn/
idNet/
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Country CC TW
South Africa 53,447,000 57,017,000
Nigeria 113,957,000 29,390,000
Canada 149,882,000 97,835,000
United States 42,890,000 220,947,000
India 71,219,000 80,038,000
Pakistan 140,190,000 34,044,000
Malaysia 198,566,000 18,296,000
Philippines 209,476,000 19,705,000
England 62,811,000 43,376,000
Ireland 43,975,000 46,045,000
Portugual 20,960,000 23,333,000
Switzerland 15,459,000 17,788,000
Australia 29,129,000 98,955,000
New Zealand 87,951,000 37,428,000
TOTAL 1.23 billion 0.82 billion

Table 2: English Varieties by Dataset in N. Words

English discovered when the search is not biased
by looking only for English? On the one hand,
some regions may be under-represented in these
datasets; if national varieties are missing from a
region, it could be (i) that there is no national va-
riety of English or (ii) that there is not enough
data available from that region. On the other hand,
Table 1 shows that each region is relatively well-
represented, providing confidence that we are not
missing other important varieties.

4 How Many Varieties of English?

We take a simple threshold-based approach to
the question of which regional varieties to in-
clude: any national variety that has at least 15 mil-
lion words in both the Common Crawl and Twit-
ter datasets is included in the attempt to model
all global varieties of English. This threshold
is chosen in order to ensure that sufficient train-
ing/testing/development samples are available for
each variety. The inventory of national varieties in
Table 2 is entirely data-driven and does not depend
on distinctions like dialects vs. varieties, inner-
circle vs. outer-circle, or native vs. non-native.
Instead, the selection is empirical: any area with
a large amount of observed English usage is as-
sumed to represent a regional variety. Since the
regions here are based on national boundaries, we
call these national varieties. We could just as eas-
ily call them national dialects.

Nevertheless, the inventory (sorted by region)
contains within it some important combinations.

CC TW
Training Samples 327,500 308,000
Testing Samples 66,500 64,000

Table 3: Samples by Function and Dataset

There are two African varieties, two south Asian
varieties, two southeast Asian varieties, two
native-speaker European varieties and two non-
native-speaker European varieties. Taken together,
these pairings provide a rich ground for exper-
imentation. Are geographically closer varieties
more linguistically similar? Is there an empiri-
cal reality to the distinction between inner-circle
and outer-circle varieties (e.g., American English
vs. Malaysian English)? The importance of this
language-mapping approach is that it does not as-
sume the inventory of regions.

5 Data Preparation and Division

The goal of this paper is to model syntactic vari-
ation using geo-referenced documents taken from
web-crawled and social media corpora. Such geo-
referenced documents represent language use in a
particular place but, unlike traditional dialect sur-
veys, there is no assurance that individual authors
are native speakers from that place. We have to
assume that most language samples from a given
country represent the native English variety of that
country. For example, many non-local residents
live in Australia; we only have to assume that most
speakers observed in Australia are locals.

In order to average out the influence of out-of-
place samples, we use random aggregation to cre-
ate samples of exactly 1,000 words in both cor-
pora. For example, in the Twitter corpus this
means that an average of 59 individual Tweets
from a place are combined into a single sample.
First, this has the effect of providing more con-
structions per sample, making the modeling task
more approachable. Second and more importantly,
individual out-of-place Tweets are reduced in im-
portance because they are aggregated with other
Tweets presumably produced by local speakers.

The datasets are formed into training, testing,
and development sets as follows: First, 2k sam-
ples are used for development purposes regardless
of the amount of data from a given regional vari-
ety. Depending on the size of each variety, at least
12k training and 2.5k testing samples are avail-
able. Because some varieties are represented by
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much larger corpora (i.e., Tweets from American
English), a maximum of 25k training samples and
5k testing samples are allowed per variety per reg-
ister. This creates a corpus with 327,500 train-
ing and 66,500 testing samples (CC) and a corpus
with 308,000 training and 64,000 testing samples
(TW). As summarized in Table 3, these datasets
contain significantly more observations than have
been used in previous work (c.f., Dunn, 2018c).

6 Learning the Syntactic Feature Space

Past approaches to syntactic representation for this
kind of task used part-of-speech n-grams (c.f.,
Hirst & Feiguina, 2007) or lists of function words
(c.f., Argamon & Koppel, 2013) to indirectly rep-
resent grammatical patterns. Recent work (Dunn,
2018c), however, has introduced the use of a
full-scale syntactic representations based on gram-
mar induction (Dunn, 2017, 2018a, 2019) within
the Construction Grammar paradigm (CxG: Lan-
gacker, 2008; Goldberg, 2006). The idea is that
this provides a replicable syntactic representation.

A CxG, in particular, is useful for text classi-
fication tasks because it is organized around com-
plex constructions that can be quantified using fre-
quency. For example, the ditransitive construc-
tion in (1) is represented using a sequence of slot-
constraints. Some of these slots have syntactic
fillers (i.e., NOUN) and some have joint syntactic-
semantic fillers (i.e., V:transfer). Any utterance,
as in (2) or (3), that satisfies these slot-constraints
counts as an example or instance of the construc-
tion. This provides a straight-forward quantifica-
tion of a grammar as a one-hot encoding of con-
struction frequencies.

(1) [NOUN – V:transfer – N:animate – NOUN]
(2) “He mailed Mary a letter.”
(3) “She gave me a hand.”

This paper compares two learned CxGs: first,
the same grammar used in previous work (Dunn,
2018c); second, a new grammar learned with an
added association-based transition extraction al-
gorithm (Dunn, 2019). These are referred to as
CxG-1 (the frequency-based grammar in Dunn,
2019) and CxG-2 (the association-based gram-
mar), respectively. Both are learned from web-
crawled corpora separate from the corpora used
for modeling regional varieties (from Baroni, et
al., 2009; Majli̧s & Žabokrtský, 2012; Benko,

Country CxG-1 (CC) CxG-2 (CC)
South Africa +4.42% +4.62%
Nigeria -0.93% -0.78%
Canada +4.03% +5.17%
United States -0.98% -1.90%
India -3.15% -10.38%
Pakistan -4.76% -17.25%
Malaysia -3.39% -11.51%
Philippines -4.48% -17.39%
England +4.59% +13.98%
Ireland +4.26% +18.62%
Portugual -5.82% -4.70%
Switzerland +0.98% +13.96%
Australia +3.75% +8.15%
New Zealand +1.83% -0.59%

Table 4: Relative Average Feature Density

2014; and the data provided for the CoNLL 2017
Shared Task: Ginter, et al., 2017). The exact
datasets used are available.7

In both cases a large background corpus is
used to represent syntactic constructions that are
then quantified in samples from regional varieties.
The grammar induction algorithm itself operates
in folds, optimizing grammars against individual
test sets and then aggregating these fold-specific
grammars at the end. This creates, in effect,
one large umbrella-grammar that potentially over-
represents a regional dialect. From the perspec-
tive of the grammar, we can think of false positives
(the umbrella-grammar contains constructions that
a regional dialect does not use) and false nega-
tives (the umbrella-grammar is missing construc-
tions that are important to a regional dialect). For
dialect identification as a task, only missing con-
structions will reduce prediction performance.

How well do CxG-1 and CxG-2 represent the
corpora from each regional variety? While pre-
diction accuracies are the ultimate evaluation, we
can also look at the average frequency across all
constructions for each national dialect. Because
the samples are fixed in length, we would expect
the same frequencies across all dialects. On the
other hand, false positive constructions (which are
contained in the umbrella-grammar but do not oc-
cur frequently in a national dialect) will reduce the
overall feature density for that dialect. Because the

7https://labbcat.canterbury.ac.
nz/download/?jonathandunn/CxG_Data_
FixedSize
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classification results do not directly evaluate false
positive constructions, we investigate this in Ta-
ble 4 using the average feature density: the total
average frequency per sample, representing how
many syntactic constructions from the umbrella-
grammar are present in each regional dialect. This
is adjusted to show differences from the average
for each grammar (i.e., CxG-1 and CxG-2 are each
calculated independently).

First, CxG-1 has a smaller range of feature den-
sities, with the lowest variety (Portugal English)
being only 10.41% different from the highest va-
riety (UK English). This range is much higher
for CxG-2, with a 36.01% difference between the
lowest variety (Philippines English) and the high-
est variety (Irish English). One potential expla-
nation for the difference is that CxG-2 is a bet-
ter fit for the inner-circle dominated training data.
This is a question for future work. For now, both
grammars pattern together in a general sense: the
highest feature density is found in UK English
and varieties more similar to UK English (Ireland,
Australia). The lowest density is found in under-
represented varieties such as Portugal English or
Philippines English. Any grammar-adaptation
based on dialect identification will struggle to add
unknown constructions from these varieties.

7 Modeling National Varieties

The main set of experiments uses a Linear Sup-
port Vector Machine (Joachims, 1998) to classify
dialects using CxG features. Parameters are tuned
using the development data. Given the general ro-
bust performance of SVMs in the literature rela-
tive to other similar classifiers on variation tasks
(c.f., Dunn, et al., 2016), we forego a systematic
evaluation of classifiers.

We start, in Table 5, with an evaluation of
baselines by feature type and dataset. We have
two general types of features: purely syntactic
representations (CxG-1, CxG-2, Function words)
and potentially topic-based features (unigrams, bi-
grams, trigrams). The highest performing feature
on both datasets is simple lexical unigrams, at 30k
dimensions. We use a hashing vectorizer to avoid
a region-specific bias: the vectorizer does not need
to be trained or initialized against a specific dataset
so there is no chance that one of the varieties will
be over-represented in determining which n-grams
are included. But this has the side-effect of pre-
venting the inspection of individual features. Vec-

Features Prec. Recall F1
CxG-1 (CC) 0.80 0.80 0.80
CxG-1 (TW) 0.75 0.76 0.76
CxG-2 (CC) 0.96 0.96 0.96
CxG-2 (TW) 0.92 0.92 0.92
Funct. (CC) 0.65 0.65 0.65
Funct. (TW) 0.56 0.57 0.55
Unigrams (CC) 1.00 1.00 1.00
Unigrams (TW) 1.00 1.00 1.00
Bigrams (CC) 0.98 0.98 0.98
Bigrams (TW) 0.97 0.97 0.97
Trigrams (CC) 0.87 0.87 0.87
Trigrams (TW) 0.82 0.82 0.82

Table 5: Classification Performance By Feature Set

tors for all experiments are available, along with
the trained models that depend on these vectors.8

As n increases, n-grams tend to represent struc-
tural rather than topical information. In this case,
performance decreases as n increases. We sug-
gest that this decrease provides an indication that
the performance of unigrams is based on location-
specific content (e.g., “Chicago” vs. “Singapore”)
rather than on purely linguistic lexical variation
(e.g., “jeans” vs. “denim”). How do we differen-
tiate between predictions based on place-names,
those based on place-specific content, and those
based on dialectal variation? That is a question for
future work. For example, is it possible to iden-
tify and remove location-specific content terms?
Here we focus instead on using syntactic repre-
sentations that are not subject to such interference.

Within syntactic features, function words per-
form the worst on both datasets with F1s of 0.65
and 0.55. This is not surprising because function
words in English do not represent syntactic struc-
tures directly; they are instead markers of the types
of structures being used. CxG-1 comes next with
F1s of 0.80 and 0.76, a significant improvement
over the function-word baseline but not approach-
ing unigrams. Note that the experiments using this
same grammar in previous work (Dunn, 2018c)
were applied to samples of 2k words each. Fi-
nally, CxG-2 performs the best, with F1s of 0.96
and 0.92, falling behind unigrams but rivaling bi-
grams and surpassing trigrams. Because of this,
the more detailed experiments below focus only
on the CxG-2 grammar.

8https://labbcat.canterbury.ac.nz/
download/?jonathandunn/VarDial_19
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Country Prec. (CC) Recall (CC) F1 (CC) Prec. (TW) Recall (TW) F1 (TW)
South Africa 0.94 0.96 0.95 0.92 0.94 0.93
Nigeria 0.98 0.98 0.98 0.94 0.95 0.94
Canada 0.94 0.94 0.94 0.84 0.79 0.81
United States 0.93 0.95 0.94 0.85 0.89 0.87
India 0.97 0.98 0.97 0.97 0.97 0.97
Pakistan 1.00 0.99 0.99 0.98 0.98 0.98
Malaysia 0.96 0.96 0.96 0.99 0.99 0.99
Philippines 0.98 0.97 0.98 0.98 0.98 0.98
England 0.95 0.95 0.95 0.87 0.90 0.89
Ireland 0.97 0.97 0.97 0.95 0.95 0.95
Portugual 0.99 0.98 0.98 0.93 0.90 0.92
Switzerland 0.97 0.94 0.96 0.98 0.97 0.97
Australia 0.97 0.96 0.97 0.82 0.83 0.83
New Zealand 0.91 0.92 0.91 0.92 0.90 0.91
W. AVG 0.96 0.96 0.96 0.92 0.92 0.92

Table 6: Within-Domain Classification Performance (CxG-2)

A closer look at both datasets by region for
CxG-2 is given in Table 6. The two datasets (web-
crawled and social media) present some interest-
ing divergences. For example, Australian English
is among the better performing varieties on the
CC dataset (F1 = 0.97) but among the worst per-
forming varieties on Twitter (F1 = 0.83). This is
the case even though the variety we would assume
would be most-often confused with Australian En-
glish (New Zealand English) has a stable F1 across
domains (both are 0.91). An examination of the
confusion matrix (not shown), reveals that errors
between New Zealand and Australia are similar
between datasets but that the performance of Aus-
tralian English on Twitter data is reduced by con-
fusion between Australian and Canadian English.

In Table 4 we saw that the umbrella-grammar
(here, CxG-2) better represents inner-circle vari-
eties, specifically UK English and more closely
related varieties. This is probably an indication
of the relative representation of the different vari-
eties used to train the umbrella-grammar: gram-
mar induction will implicitly model the variety it
is exposed to. It is interesting, then, that less typi-
cal varieties like Pakistan English and Philippines
English (which had lower feature densities) have
higher F1s in the dialect identification task. On the
one hand, the syntactic differences between these
varieties and inner-circle varieties means that the
umbrella-grammar misses some of their unique
constructions. On the other hand, their greater
syntactic difference makes these varieties easier to

identify: they are more distinct in syntactic terms
even though they are less well represented.

Which varieties are the most similar syntacti-
cally given this model? One way to quantify simi-
larity is using errors: which varieties are the most
frequently confused? American and Canadian En-
glish have 221 misclassified samples (CC), while
Canadian and UK English are only confused 36
times. This reflects an intuition that Canadian En-
glish is much more similar to American English
than it is to UK English. New Zealand and Aus-
tralian English have 101 misclassifications (again,
on CC); but New Zealand and South African En-
glish have 266. This indicates that New Zealand
English is more syntactically similar to South
African English than to Australian English. How-
ever, more work on dialect similarity is needed to
confirm these findings across different datasets.

8 Varieties on the Web and Social Media

How robust are models of syntactic variation
across domains: in other words, does web-crawled
data provide the same patterns as social media
data? We conduct two types of experiments to
evaluate this: First, we take dialect as a cross-
domain phenomenon and train/test models on both
datasets together, ignoring the difference between
registers. Second, we evaluate models trained en-
tirely on web-crawled data against testing data
from social media (and vice-versa), evaluating a
single model across registers. The point is to eval-
uate the impact of registers on syntactic variation:
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Country Prec. (CC) Recall (CC) F1 (CC) Prec. (TW) Recall (TW) F1 (TW)
South Africa 0.88 0.06 0.10 0.68 0.31 0.43
Nigeria 0.43 0.84 0.57 0.73 0.41 0.52
Canada 0.48 0.14 0.22 0.49 0.27 0.35
United States 0.20 0.87 0.32 0.83 0.16 0.27
India 0.65 0.94 0.77 0.38 0.90 0.54
Pakistan 0.96 0.41 0.58 0.88 0.36 0.51
Malaysia 0.45 0.93 0.61 0.98 0.05 0.10
Philippines 0.73 0.61 0.66 0.87 0.22 0.35
England 0.89 0.01 0.03 0.48 0.44 0.46
Ireland 0.94 0.21 0.35 0.78 0.52 0.62
Portugual 0.02 0.00 0.00 0.22 0.17 0.19
Switzerland 0.92 0.04 0.07 0.12 0.80 0.20
Australia 0.89 0.00 0.00 0.33 0.66 0.44
New Zealand 0.27 0.53 0.36 0.64 0.40 0.49
W. AVG 0.62 0.40 0.33 0.62 0.40 0.40

Table 7: Cross-Domain Models, Trained on CC (Left) and Trained on TW (Right), CxG-2

Country Prec. Recall F1
South Africa 0.91 0.92 0.92
Nigeria 0.94 0.95 0.95
Canada 0.87 0.84 0.85
United States 0.85 0.90 0.87
India 0.96 0.97 0.97
Pakistan 0.98 0.98 0.98
Malaysia 0.97 0.96 0.96
Philippines 0.97 0.97 0.97
England 0.87 0.90 0.89
Ireland 0.94 0.95 0.95
Portugual 0.94 0.90 0.92
Switzerland 0.96 0.93 0.95
Australia 0.87 0.86 0.87
New Zealand 0.89 0.87 0.88
W. AVG 0.92 0.92 0.92

Table 8: Single-Set Classification Performance

does Australian English have the same profile on
both the web and on Twitter?

Starting with the register-agnostic experiments,
Table 8 shows the classification performance if we
lump all the samples into a single dataset (how-
ever, the same training and testing data division is
still maintained). The overall F1 is the same as
the Twitter-only results in Table 6. On the other
hand, varieties like Australian English that per-
formed poorly in Twitter perform somewhat better
under these conditions. Furthermore, the obser-
vation made above that outer-circle varieties are
more distinct remains true: the highest perform-

ing varieties are the least proto-typical (i.e., Indian
English and Philippines English).

But a single model does not perform well across
the two datasets, as shown in Table 7. The model
trained on Twitter data does perform somewhat
better than its counterpart, but in both cases there
is a significant drop in performance. On the one
hand, this is not surprising given differences in the
two registers: we expect some reduction in classi-
fication performance across domains like this. For
example, the unigram baseline suffers a similar re-
duction to F1s of 0.49 (trained on CC) and 0.55
(trained on Twitter).

On the other hand, we would have more confi-
dence in this model of syntactic variation if there
was a smaller drop in accuracy. How can we bet-
ter estimate grammars and variations in grammars
across these different registers? Is it a problem of
sampling different populations or is there a single
population that is showing different linguistic be-
haviours? These are questions for future work.

9 Unmasking Dialects

How robust are classification-based dialect models
to a small number of highly predictive features? A
high predictive accuracy may disguise a reliance
on just a few syntactic variants. Within author-
ship verification, unmasking has been used as a
meta-classification technique to measure the depth
of the difference between two text types (Koppel,
et al., 2007). The technique uses a linear classifier
to distinguish between two texts using chunks of
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Figure 1: Performance Over 100 Rounds of Unmasking (F1)

the texts as samples. Here we distinguish between
dialects with individual samples as chunks. After
each round of classification, the most predictive
features are removed. In this case, the highest pos-
itive and negative features for each regional dialect
are removed for the next classification round. Fig-
ure 1 shows the unmasking curve over 100 rounds
using the F1 score. Given that there are 14 re-
gional dialects in the model, Figure 1 represents
the removal of approximately 2,800 features.

For both datasets, the unigram baseline de-
grades less quickly than the syntactic model. On
the one hand, it has significantly more features in
total, so that there are more features to support the
classification. On the other hand, given that the
most predictive features are being removed, this
shows that the lexical model has a deeper range of
differences available to support classification than
the syntactic model. Within the syntactic mod-
els, the classifier trained on web-crawled data de-
grades less quickly than the Twitter model and
maintains a higher performance throughout.

This unmasking curve is simply a method for vi-
sualizing the robustness of a classification model.
The syntactic model is less robust to unmasking
than the lexical model. At the same time, we know
that the syntactic model does not rely on place-
names and place-based content and thus represents
a more traditional linguistic approach to variation.

10 Discussion

This paper has used data-driven language mapping
to select national dialects of English to be included

in a global dialect identification model. The main
experiments have focused on a dynamic syntac-
tic feature set, showing that it is possible to pre-
dict dialect membership within-domain with only
a small loss of performance against lexical mod-
els. This work raises two remaining problems:

First, we know that location-specific content
(i.e., place names, place references, national
events) can be used for geo-location and text-
based models of place. To what degree does a
lexical approach capture linguistic variation (i.e.,
“pop” vs. “soda”) and to what degree is it captur-
ing non-linguistic information (i.e., “Melbourne”
vs. “London”)? This is an essential problem for
dialect identification models. A purely syntactic
model does not perform as well as a lexical model,
but it does come with more guarantees.

Second, we have seen that inner-circle varieties
have higher feature densities given the grammars
used here. This implies that there are syntactic
constructions in varieties like Philippines English
that have not been modeled by the grammar induc-
tion component. While dialect identification can
be used to optimize regional weights for known
constructions, how can such missing constructions
be adapted? This remains a challenge. While the
less proto-typical dialects have higher F1s (i.e.,
Pakistan English), they also have lower feature
densities. This indicates that some of their con-
structions are missing from the grammar. Never-
theless, this paper has shown that a broader syntac-
tic feature space can be used to model the differ-
ence between many national varieties of English.
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Abstract

This paper describes the work done by team
tearsofjoy participating in the VarDial 2019
Evaluation Campaign. We developed two
systems based on Support Vector Machines:
SVM with a flat combination of features
and SVM ensembles. We participated in all
language/dialect identification tasks, as well
as the Moldavian vs. Romanian cross-dialect
topic identification (MRC) task. Our team
achieved first place in German Dialect identi-
fication (GDI) and MRC subtasks 2 and 3, sec-
ond place in the simplified variant of Discrim-
inating between Mainland and Taiwan vari-
ation of Mandarin Chinese (DMT) as well
as Cuneiform Language Identification (CLI),
and third and fifth place in DMT traditional
and MRC subtask 1 respectively. In most
cases, the SVM with a flat combination of
features performed better than SVM ensem-
bles. Besides describing the systems and the
results obtained by them, we provide a ten-
tative comparison between the feature combi-
nation methods, and present additional exper-
iments with a method of adaptation to the test
set, which may indicate potential pitfalls with
some of the data sets.

1 Introduction

Language identification is a text classification task
that has been studied extensively in the field of
Natural Language Processing. The general con-
cept and common implementations are described
in the recent survey by Jauhiainen et al. (2018c). A
more challenging task is discerning closely related
languages or dialects of the same language. In re-
cent years, the VarDial Evaluation Campaign has
organized a multitude of shared tasks on classify-
ing these with textual and spoken data (Malmasi
et al., 2016; Zampieri et al., 2017, 2018). This
year’s VarDial evaluation campaign (Zampieri
et al., 2019) featured one rerun (Swiss German di-

alect identification) and three new closely-related
language identification tasks (Mainland vs. Tai-
wan varieties of Mandarin, Romanian vs. Molda-
vian, and cuneiform language identification, with
the latter covering seven related languages within
a wide historical time frame). Our focus has been
German dialect identification (GDI) and discrimi-
nating between mainland and Taiwan varieties of
Mandarin (DMT). However, we submitted predic-
tions for all language identification tasks.

While closely-related languages (or dialects)
pose a challenge for language identification, they
also provide opportunities for cross-lingual trans-
fer where available resource and tools in one lan-
guage is adapted to another, similar language va-
riety. This year’s evaluation campaign also fea-
tures two cross-lingual transfer tasks. Namely,
cross-lingual morphological analysis (CMA), and
cross-lingual topic identification between Roma-
nian and Moldavian (MRC). The CMA is a sub-
stantially different task than language identifica-
tion. However, the MRC subtasks on cross-lingual
topic identification can be solved by the very same
text classification models used for language iden-
tification. Hence, we also participated in the cross-
lingual classification subtasks of the MRC.

Our base model is a linear support vector ma-
chine (SVM) classifier with sparse character and
word n-gram features. These models have been
found to be successful in earlier instances of Var-
Dial language identification tasks; in fact, they
were found to be more effective than more re-
cent neural classifiers (Çöltekin and Rama, 2016;
Clematide and Makarov, 2017; Medvedeva et al.,
2017). A successful variation of these linear clas-
sifiers is an ensemble of classifiers with different
n-gram orders used both for language discrimi-
nation (Malmasi and Zampieri, 2017b,a), and na-
tive language identification (Malmasi and Dras,
2018). Besides the simple, ‘flat’ concatenation of
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the overlapping n-gram features, we also used an
ensemble approach in some of the tasks, providing
a tentative comparison between these two related
methods.

An interesting result of last year’s VarDial
evaluation campaign was SUKI team’s success
on Indo-Aryan language identification (Jauhiainen
et al., 2018b) and GDI (Jauhiainen et al., 2018a)
tasks with a rather large margin, which was likely
because of the adaptation mechanism they used
at prediction time. We adopted a similar adapta-
tion approach to our SVM systems. Besides the
curious difference in the GDI data set last year,
the adaptation idea is also a good fit for the cross-
lingual topic identification task (MRC).

The remainder of this paper introduces the tasks
and data sets, describes our systems, and presents
the results obtained followed by a brief discussion.

2 Tasks and Data

2.1 CLI: Cuneiform Language Identification

The provided datasets for Cuneiform Language
Identification (Jauhiainen et al., 2019) consisted
of a training set and a development set. The
training data contained cuneiform texts written in
Sumerian (SUX) and six Akkadian dialects: Old
Babylonian (OLB), Middle Babylonian peripheral
(MPB), Standard Babylonian (STB), Neo Babylo-
nian (NEB), Late Babylonian (LTB), and Neo As-
syrian (NEA). The data for the shared task con-
tained only Unicode transcriptions of the docu-
ments without token boundaries or any other vi-
sual features. The data set exhibited a large class
imbalance, ranging from 3 803 instances for Old
Babylonian to 53 673 instances for Sumerian. The
training data contained a total of 139 421 text sam-
ples, while the development set contained 668
lines for each language or dialect.

2.2 DMT: Discriminating between Mainland
and Taiwan variation of Mandarin

The Discriminating between Mainland and Tai-
wan variation of Mandarin Chinese (DMT) task
consisted of classifying sentences extracted from
news articles into classes of two major Man-
darin variations: Putonghua (Mainland China)
and Guoyu (Taiwan). The task has two tracks: tra-
ditional and simplified.

In Mandarin Chinese, there are many mutu-
ally intelligible regional variations. Putonghua
and Guoyu are more distinguishable in spoken

language due to systematic phonetic differences,
while they are more ambiguous in written text
with no overt morphological, syntactic, and lexical
preferences in language use, especially in formal
text. It is considered challenging even for native
speakers to distinguish between them, and since
the shared task data offered only textual informa-
tion with no phonetic transcription, it was partic-
ularly interesting to explore possible solutions to
the problem.

In contemporary written Chinese, there are two
scripts: traditional and simplified. The only dis-
tinction between the two writing systems is the
visual form of the characters. As the name sug-
gests, characters in simplified Chinese usually ap-
pear simpler than their traditional counterparts,
while some are identical which may lead to per-
formance variations based on different system de-
signs. A text in traditional Chinese can always be
transformed verbatim into its simplified counter-
part without any content change and vice versa.
Two corpora, one using traditional script and one
simplified, were provided to investigate the perfor-
mance of the discrimination task on the two dif-
ferent scripts, which will be further discussed in
Section 5.

The DMT data comes from the news domain
for both varieties. The datasets contained a train-
ing and development set for both simplified Chi-
nese (McEnery and Xiao, 2003) and traditional
Chinese (Chen et al., 1996). The training set
consisted of 18 770 samples for both Chinese va-
rieties, whereas the development set contained
2 000 samples each. The texts contained no punc-
tuation and were (automatically) segmented by the
task organizers.

2.3 GDI: German Dialect Identification

As in previous years, the GDI data set is based on
the corpus introduced in Samardžić et al. (2016),
consisting of samples from four regions around
Bern (BE), Basel (BS), Lucerne (LU) and Zurich
(ZH). Besides transcriptions of the audio record-
ings, we were also provided with 400-dimensional
i-vectors representing the acoustic features of each
sample, and automatically obtained normalization
data where words are paired with their standard
German spelling. In our submissions, we used the
text transcripts and i-vectors.

There were 14 279 training and 4 530 develop-
ment instances. Both training and development
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sets included a fair amount of class imbalance.

2.4 MRC: Moldavian vs. Romanian
Cross-dialect Topic identification

The MRC task involved discrimination between
two closely written language varieties, Romanian
and Moldavian, and cross-variety topic classifica-
tion. The first subtask was a binary classification
problem, discriminating between the two language
varieties. The second and third tasks required clas-
sifying the documents in one variety using training
data from the other variety into six topics: culture,
finance, politics, science, sports and technology.
The second subtask used Moldavian as the source
language and Romanian as the target language in
the transfer task. Task 3 had the same setup, but
the source and target languages were swapped.
Topic classification tasks are formulated as multi-
class problems (in contrast to multi-label classi-
fication common in the field), where each text is
assigned to only one class. Named entities in the
data set were anonymized.

The training data for subtask 1 consisted of
21 701 texts with a slight class imbalance (11 740
Romanian, 9 961 Moldavian), with a development
set of 11 834 instances approximately following
the same class distribution. Training sets for sub-
tasks 1 and 2 included 9 961 and 11 740 texts, and
development sets included 5 432 and 6 402 texts,
respectively. All subtasks shared a test set of 5 918
texts, although subtasks 2 and 3 were evaluated on
subsets of the test set. Further information on the
data can be found in Butnaru and Ionescu (2019).

3 Methods and experimental setting

Our main submissions were based on two SVM
systems that differ in the way they combine the
n-gram features: SVM with flat feature combina-
tions and SVM ensembles. We employed both
character and word n-gram features. Depend-
ing on the task, the character n-grams varied be-
tween 1 to 9 and the word n-grams varied from
1 to 3. The features were weighted with either
tf-idf or BM25 (Robertson et al., 2009) weight-
ing schemes. The flat combination is similar to
Çöltekin and Rama (2016) and the ensemble ap-
proach is similar to Malmasi and Dras (2015).
Both methods were implemented in Python using
the scikit-learn library (Pedregosa et al., 2011).

We also experimented with recurrent neural
classifiers and considered a system similar to HeLi

(Jauhiainen et al., 2016), which was also used in
earlier VarDial evaluation campaigns. However,
we only submitted results with the SVM classi-
fiers described in more detail below, and we will
limit our discussion to the results obtained by the
SVM classifiers.

3.1 SVM with flat combinations of features

For all tasks, we submitted predictions generated
by SVM classifiers where a range of overlapping
character and word n-grams are combined into a
single feature matrix. The features are weighted
using BM25, although a plain tf-idf weighing
scheme produced similar results on the develop-
ment set. In all tasks, we optimized the model
hyperparameters through random search, using 5-
fold cross validation on combined training and de-
velopment sets. Random search was stopped af-
ter approximately 1 000 draws from the space of
random parameters, and picking the best average
F1-score over the 5 folds. This is simply the same
approach taken in a series of earlier VarDial evalu-
ation campaigns (Çöltekin and Rama, 2016; Rama
and Çöltekin, 2017; Çöltekin and Rama, 2017;
Çöltekin et al., 2018).

Following the adaptation idea used by Jauhi-
ainen et al. (2018a,b) in last year’s VarDial eval-
uation campaign, we also employed an adaptation
approach in some of the tasks. At test time, we
produced a set of first-level predictions based on
the best model tuned for the task on the train-
ing/development set, and retrained the model af-
ter adding the predictions with high-confidence
to the training set. In our case, predictions with
high-confidence means the test instances that are
farther than a threshold — in this case, 0.50 —
from the decision boundary for binary classifica-
tion, and the instances that are claimed by only
one of the one-vs-rest classifiers for the multi-class
problems. Intuitively, this is useful for the adapta-
tion subtasks of MRC, and in case the distribution
of the test instances diverge from the distribution
in the training/development sets.

All tasks we participated in involved text clas-
sification. However, the GDI data set also in-
cluded features extracted from audio samples (i-
vectors), as well as normalized spellings of the di-
alectal words. We did not make use of the nor-
malized spellings, however in our GDI contribu-
tion, we used audio features by simply concatenat-
ing the i-vectors with the n-gram vectors weighted
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by BM25, before feeding them to the SVM clas-
sifiers. As SVMs are sensitive to the scale of
the data, we introduced a weight parameter and
searched for its optimum value during tuning.

3.2 SVM ensembles

SVM ensembles are generally considered more ro-
bust than single classifiers (Oza and Tumer, 2008).
An ensemble system makes use of decisions from
multiple classifiers on every input entity. The deci-
sions are congregated through a fusion method, re-
evaluated, and a final decision is made. There are
various fusion methods (Malmasi and Dras, 2015),
but the one we chose was mean probability rule,
an approach that is considered stable and simple
(Kuncheva, 2004) as well as resistant to estima-
tion errors (Kittler, 1998). Each classifier returns
a prediction with the probability of each test in-
stance belonging to each label. The final decision
is the label with the highest average probability.

Each classifier was trained on the standard train-
ing set using single n-gram order. We performed
binary search on the DMT simplified training de-
velopment set in the range of [0, 1000] in order to
determine the ideal penalty value C. The F1-score
increased with increasing C value, and plateaued
when C≥ 100, so we adopted C = 100 as the opti-
mal value. Table 2 lists the score of each classifier
using the DMT simplified development set.

Since SVMs separate classes by maximizing
the margin from items to the hyperplane (Burges,
1998), there is no natural probabilistic interpreta-
tion of the decision function of an SVM classi-
fier. Therefore, we applied the technique of cal-
ibration suggested by Platt et al. (1999), a method
that maps the outputs of SVM to probabilities, as
implemented in the scikit-learn library.

We used grid search to find the optimal combi-
nation of n-gram features for each task. For DMT
simplified, the final ensemble system we selected
utilized five parallel classifiers, each of them gen-
erated with different parameters: character-based
bigrams, trigrams, 4-grams, 5-grams, and word-
based unigrams. For DMT traditional, the com-
bination additionally included character-based un-
igrams. For GDI, we used character-based bi-
grams, trigrams, 4-grams, 5-grams, word-based
unigrams, and the audio i-vectors.

task (model) F1-macro rank F1-diff

DMT-S (flat) 87.38 2 −1.91
DMT-S (ens.) 84.45 NA −4.84
DMT-T (flat) 88.44 3 −2.41
DMT-T (ens.) 85.61 NA −5.24
GDI (flat) 75.93 1 0.52
GDI (ens.) 65.17 NA −10.76
MRC 1 (flat) 75.73 5 −13.92
MRC 2 (flat) 61.15 1 5.26
MRC 3 (flat) 55.33 1 13.23
MRC 1 (flat)∗ 96.20 NA 6.70
MRC 2 (flat)∗ 69.08 NA 7.93
MRC 3 (flat)∗ 81.93 NA 26.60
CLI (flat) 76.32 2 −0.63

Table 1: Official results obtained by our models on
all tasks we participated. The column F1-diff indicates
the macro F1-score difference from the top score if the
result is not the top score, or the difference from the
second best scores otherwise. Our submissions in the
MRC task had an error, causing a shift of labels after
a certain index. The scores marked with ∗ are post-
evaluation results with the gold labels released by the
organizers after the evaluation period.

4 Results

We list the results obtained by our systems on the
official test sets in Table 1. The results clearly
show that the simple linear classifiers we used
are competitive with other (best) participating sys-
tems. Furthermore, in our experiments, the flat
combination often worked better than the ensem-
ble method. However, we do not provide a more
conclusive, systematic comparison at this time. In
the remainder of this section, we will first de-
scribe some of the interesting results in each task,
and also present a series of additional experiments
with the adaptation method described above.

4.1 DMT

For both DMT tasks, we submitted at least one
classifier with a combined feature matrix (flat) and
at least one model with parallel classifiers (ensem-
ble). Our submissions with a combined feature
matrix using character n-grams of order 1 to 4
combined with word unigrams and bigrams con-
sistently outperformed the parallel classifiers.

In order to improve accuracy for the ensemble,
multiple trials were conducted on the development
set to determine the best possible combination of
features. Most combinations performed similarly,
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on the order of approximately 87–89% accuracy
with no significant jump in accuracy using any
particular combination. However, the most gains
were observed when combining a large number of
character n-grams with 1 ≤ n ≤ 5 and word uni-
grams. Word bigrams already resulted in a signif-
icant loss of accuracy in the SVM ensemble (pos-
sibly overfitting due to large number of features,
and large C value selected in the earlier step).

Feature Types n F1 macro

character 1 77.41
character 2 83.77
character 3 87.19
character 4 86.99
character 5 83.75

word 1 76.63
word 2 33.33

Table 2: F1 scores achieved by SVM with single fea-
tures, tested on development set (Simplified Chinese)

During development, we observed that train-
ing and testing our model on traditional Chinese
consistently performed slightly better than training
and testing on simplified Chinese. Combining the
traditional training set with the simplified training
set did not yield any significant gains and in fact
slightly hindered the model’s performance.

Our flat SVM model placed second for simpli-
fied and third for traditional. Other teams also saw
higher F1-scores for traditional compared to sim-
plified which suggests that the traditional script
carries more information that proves useful in dis-
tinguishing between the two dialects. Despite
this, our model misidentified the Taiwanese vari-
ant roughly twice as often as its Mainland coun-
terpart using both scripts (simplified: 166 vs. 88,
traditional: 151 vs. 80).

4.2 GDI

The same models used for DMT were slightly
modified for the German Dialect Identification
task. Our flat model using character n-grams of
order 1 to 5, word unigrams and bigrams, and the
i-vector features achieved first place with an F1-
score of 75.93, which was very closely followed
by the second and third place entries.

The confusion matrix presented in Figure 1
demonstrates that Basel was most easily identified
(recall: 91.99). Lucerne was the dialect most of-

ten misclassified (recall: 62.41), usually confused
with Bern. Consequently, Bern had the lowest pre-
cision (69.39) while Basel and Zurich enjoyed the
highest (tied with 80.81). This distribution mirrors
the results of last year’s GDI task (Ciobanu et al.,
2018; Ali, 2018; Benites et al., 2018; Barbaresi,
2018).
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Figure 1: Confusion matrix for GDI. Abbreviation key:
Bern (BE), Basel (BS), Lucerne (LU), Zurich (ZH).

In the development set, the SVM ensemble with
character n-grams of 2 ≤ n ≤ 5, word unigrams,
and audio i-vectors outperformed the flat feature
combination. The ensemble system yielded an F1-
score of 65.35 in comparison to a 44.24 F1-score
obtained by the flat combination. This is likely
due to the fact that ensemble systems are partic-
ularly effective when the individual classifiers are
independent, and features from text and audio pro-
vide more independent predictions in comparison
to the overlapping n-gram features.1

4.3 CLI
We submitted predictions using only the flat fea-
ture combination for the cuneiform language iden-
tification task. Our submission with adaptation
came in a close second with an F1-score of 76.32.
Since the data did not include any word bound-
aries, our system combines only character n-grams
(of order 1 to 5). We also experimented with two
unsupervised segmentation methods (Çöltekin and
Nerbonne, 2014; Virpioja et al., 2013). However,

1Our official score on the test with the flat combination
is higher than the ensemble submission. A potential reason
for this discrepancy is an error in our submission identified
post-evaluation.
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using tokens obtained through both segmentation
methods as (additional) features did not improve
the results on the development set.

On the CLI data, the adaptation method is
highly effective. Our submission with no adapta-
tion performed much worse (53.18 F1-score). We
will present more results with adaptation in Sec-
tion 4.5 and discuss it further in Section 5.

The confusion matrix from our official submis-
sion is presented in Figure 2, which depicts some
effects of the historical proximity of the languages.
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Figure 2: Confusion matrix for CLI. Abbreviations:
Late Babylonian (LTB), Middle Babylonian peripheral
(MPB), Neo Assyrian (NEA), Neo Babylonian (NEB),
Old Babylonian (OLB), Standard Babylonian (STB),
Sumerian (SUX).

4.4 MRC

We submitted predictions with only the flat com-
bination for the MRC tasks. Our submissions in
this task had an error, causing a shift of labels af-
ter a certain index. Despite this shift (with some
effort from the organizers to guess the location
of the missing predictions) our submissions ob-
tained first rank in subtasks 2 and 3. After rectify-
ing the problem post-evaluation, F1-macro scores
increased by up to 30%, reaching 96.20 for sub-
task 1, 69.08 in subtask 2, and 81.93 in subtask 3.
The high rate of success in discriminating between
such close linguistic varieties is interesting. How-
ever, the primary objective in MRC was cross-
lingual learning in the last two subtasks which we
discuss further in Section 4.5.

4.5 Adaptation to target data

In this instance of the VarDial evaluation cam-
paign, we employed a method of adaptation to the
test data. Among the tasks in which we partici-
pated, the clear cases for adaptation are MRC sub-
tasks 2 and 3. These tasks are transfer learning
tasks, hence some sort of adaptation is expected to
help. In other cases, we do not expect substantial
gains from adaptation unless test sets diverge from
the training substantially and systematically.

Our official submissions did not always include
results from the identical models with and without
adaptation, and as such does not clearly indicate
the utility of it. Here, we present results from more
systematic experiments conducted on the develop-
ment sets using our SVM model with flat combi-
nations of features. The intuition here is that if
the distribution of the test instances diverge from
the training set, we can adapt to the test set either
by using a small amount of data with gold-labels,
or predictions with high confidence at prediction
time. The first method (adding gold target data)
is not an option during the shared task evaluation.
Therefore, we tested both options on the desig-
nated development sets. For the second method
(adaptation at prediction time), our method is sim-
ilar to, but simpler than, the method of Jauhiainen
et al. (2018a,b). We trained a base classifier on
the training data, and re-trained the system af-
ter adding the test instances predicted with high-
confidence to the training data. For binary tasks,
we picked the training instances with a distance
greater than 0.50 to the decision boundary. For
multi-class classification problems, we picked the
instances that are claimed by only one of the one-
vs-rest classifiers as confident predictions.

Figure 3 presents five sets of results on all
(sub)tasks that we worked on. The first bar in each
group represents the average F1-scores obtained
with 5-fold cross validation on each training data
set. For the rest of the experiments, we split the de-
velopment set into two equal-sized data sets (after
shuffling). The first part is treated as development
set, and the second part is treated as test set. The
second set of bars (no adapt) represents the F1-
scores on the test set (the second part of the respec-
tive development sets), after training the model on
the training set. The third bar (add) is the first case
of adaptation. We add first half of the development
set to the training data, and test on the second half.
This is compatible in the scenario where we have
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Figure 3: Results of adaptation experiments. The graph presents macro averaged F1-scores of five experiments on
each task. ‘train’ indicates average of 5-fold CV on training set; ‘no adapt.’ indicates no adaptation, train only on
the training set; ‘add’ indicates adding half of the gold-labeled data from the development set, and testing on the
other half; ‘adapt’ is adaptation during training by adding predictions with high-confidence to the training set and
re-training the model; and ‘add+adapt’ combines the last two options.

a large amount of data from the source domain,
with a small amount of data from the target do-
main. The training instances from the source and
target are equally weighted in our experiments. In
the fourth set of experiments (adapt), the base clas-
sifier is trained on the training data, and testing is
done adaptively on the second part of the develop-
ment set. The final bar (add+adapt) combines the
last two. The base system is trained with the com-
bination of the training set and the first half of the
development set, and tested on the second part of
the development set using adaptation.

The scores illustrated in Figure 3 for both DMT
tasks and MRC subtask 1 (language identification)
are as expected. The cross-validation scores on the
training set are slightly better than scores on the
test (part of official development) set, and adap-
tion options give a slight boost in most cases. In
MRC subtask 2, the F1-score on the test set is bet-
ter than the training set. This is particularly inter-
esting, as this is a language transfer task where the
test set is expected to diverge. All scores we ob-
tained in this subtask are also much higher than the
(corrected) official test set score (69.08) presented
in Table 1. Adaptation, however, seems to help if
data with gold labels are added. In MRC subtask

3, which reverses the languages in MRC subtask
2, adaptation does not seem to be useful either.

The results of CLI and, especially, GDI tasks
are particularly surprising. In these tasks, adap-
tation, and especially the addition of gold-labeled
data, seem to improve the results drastically. The
difference likely indicates a systematic difference
between the training and development sets (and
possibly test). We provide further discussion of
these results for the GDI, in Section 5.

5 Summary and Discussion

Thus far we have described our participation in the
VarDial 2019 evaluation campaign, where we par-
ticipated in all text classification tasks using two
variants of linear SVM classifiers. Our systems
ranked well among other participants, obtaining
first place in some tasks, or following the top result
with small differences in others. The results show
that simple linear classifiers work well in language
identification and cross-dialect topic classification.
In most of our experiments, a flat combination of
features performed better than ensembles. Fur-
thermore, the adaptation system we used seems
to be effective, particularly in some of the tasks.
In this section, we present our observations on the

60



DMT task, and discuss the potential reasons for
the effectiveness of adaptation methods.

Observations on the DMT task. The relation-
ship from traditional Mandarin to simplified is
generally bijective, but there are some cases where
the relation is many-to-one. Thus, a machine
is better able to predict using traditional over
simplified. Consequently, this explains why our
model always produced 1-2% better results with
the traditional script. To illustrate this, con-
sider the following example: 「雲」‘cloud’ and
「云」‘speak’ in traditional Mandarin are both
written as 「云」in simplified, which indicates
that the simplified character「云」carries the
meaning of both ‘cloud’ and ‘speak’. In other
words, simplified Mandarin has more homonyms,
which makes it more difficult for the model to
make an accurate prediction.

The texts converted from simplified to tradi-
tional are different from traditional to simpli-
fied. In traditional Mandarin, both「后」and
「後」can be converted to 「后」in simplified
Mandarin. If we convert the word「后面」‘in
the back’ from simplified to traditional, it could
be either「后面」or「後面」. Hence, we might
erroneously select「后面」‘the face of a queen’,
where「後面」would be the semantically correct
answer. Converting data from traditional to sim-
plified would prevent this type of noise.

Chinese is a language with many compound
words, whose tokenization require special atten-
tion. Some compounds are used only in Mainland
China, but not in Taiwan. However, when split,
the individual tokens might all be used in Taiwan,
but not the original compound word. Therefore,
this would be detrimental to its discrimination ac-
curacy. For example, the word ‘microeconomics’
is 「個體經濟學」in Taiwan, but 「微觀經濟
學」on the mainland. It is a compound word com-
posed of「個體」and「經濟學」in Taiwan and
「微觀」「經濟學」in Mainland China. But we
should not categorize「微觀」and「經濟學」as
Mainland Chinese, because when they are treated
as two tokens, they are two words that are com-
monly used in Taiwan. This is not a unique exam-
ple, and similar cases of segmentations of com-
pounds are likely to have detrimental effects on
identification.

Adaptation to test set. Another interesting find-
ing in this work is the impact of adaptation in the

CLI and GDI tasks, especially when using the i-
vectors. A potential explanation for this is the ex-
istence of other systematic variation in the data.
For the GDI task, our hypothesis is that the sec-
ond systematic variation is the (limited number of)
speakers. Since the data contains multiple utter-
ances from each speaker (and each speaker speaks
only one dialect), a classifier relying on speaker
specific features in the training set will also do
well on identifying his/her dialect. Such a clas-
sifier, then, will have difficulty classifying the ut-
terances from different speakers in the test set.

As a result, the scores of the models with no
adaptation in Figure 3 drop drastically when they
are trained on the training set, and tested on a test
set with utterances from different speakers. On the
GDI data, this is true of models using text-only
and text and i-vector features. However, it be-
comes more striking when i-vectors are included,
as they are well-known for their ability of speaker
identification. Although the model can achieve al-
most perfect dialect identification on the training
data, the F1-score drops to 44.24 when tested on
different speakers. The success on the training
set and the drop on the test set is less drastic for
text-only data. In both cases, the models perform
clearly better than random. Hence, the models
learn something about the dialects as well. How-
ever, the success of our (and other participants’)
adaptation methods, are likely not (only) finding
dialectal differences, but rely more on speaker-
specific features by incorporating features of oth-
erwise unknown speakers into the training set.

The experiments presented in Figure 3 also in-
dicate a likely additional source of variation in the
CLI data as well. Without more information about
the data and its division, the source of this varia-
tion is not clear. On the other hand, ineffectiveness
of the adaptation method on MRC subtasks 2 and
3 is unexpected. However, we are not able to offer
a potential explanation at this time.

Future work. Although the flat feature combi-
nation worked better in our experiments here, our
experiments are far from conclusive. We intend
to extend our work on ensemble models to cover
different combination methods and more diverse
architectures.
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Scherrer, and Noëmi Aepli. 2017. Findings of the
VarDial Evaluation Campaign 2017. In Proceedings

of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), Valencia,
Spain.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Ahmed Ali, Suwon Shuon, James Glass, Yves
Scherrer, Tanja Samardžić, Nikola Ljubešić, Jörg
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Abstract

This paper deals with the automatic identifi-
cation of literate and oral discourse in Ger-
man texts. A range of linguistic features is se-
lected and their role in distinguishing between
literate- and oral-oriented registers is investi-
gated, using a decision-tree classifier. It turns
out that all of the investigated features are re-
lated in some way to oral conceptuality. Es-
pecially simple measures of complexity (aver-
age sentence and word length) are prominent
indicators of oral and literate discourse. In ad-
dition, features of reference and deixis (real-
ized by different types of pronouns) also prove
to be very useful in determining the degree of
orality of different registers.

1 Introduction

Halliday distinguishes between two kinds of vari-
ation in language: social variation, which he
calls dialect, and functional variation, which he
calls register (e.g. Halliday, 1989, p. 44). Var-
Dial’s focus is on the first kind of variation, in
particular diatopic variation, and addresses top-
ics such as automatic identification of dialects
but also includes topics like diachronic language
variation. In this paper, we look at variation of
the second kind, namely variation between lit-
erate/written and oral/spoken language (different
registers, as Halliday would call it). However,
we assume that the phenomenon of literate/written
vs. oral/spoken language interacts with diachronic
language change, which, in turn, interacts with di-
atopic variation (e.g. one dialect becomes more
important than another one and has larger im-
pact on the further development of the language).
Hence, if we want to understand language change,
we have to take into account different kinds of
variation.

In general, human language is used in two ma-
jor forms of representation: written and spoken.

Both discourse modes place different demands on
the language user. Spoken discourse has to be pro-
cessed online by speakers and hearers and, hence,
strongly depends on the capacity of the working
memory. In contrast, written discourse proceeds
independently of production and reading speed,
and allows for a rather free and elaborate structur-
ing of texts. This discrepancy can result in quite
different utterances.

Moreover, as many linguists have noticed, there
is also a high amount of variation within writ-
ten and spoken language (Koch and Oesterreicher,
2007; Halliday, 1989; Biber and Conrad, 2009).
For example, the language used in scientific pre-
sentations is rather similar to prototypical writ-
ten language, despite its spoken realization. Chat
communication on the other hand, although real-
ized in the written medium, rather resembles spon-
taneous spoken speech. In other words, indepen-
dently of their medial realization, language can
show characteristics that are typical of the written
or spoken mode. As Halliday (1989, p.32) puts it,
“‘written’ and ‘spoken’ do not form a simple di-
chotomy; there are all sorts of writing and all sorts
of speech, many of which display features charac-
teristic of the other medium”.

In the 1980s, Koch and Oesterreicher (1985)
proposed to distinguish between medial and con-
ceptual orality and literacy. On the medial di-
mension, an utterance can be realized either pho-
netically (spoken) or graphically (written), while
the conceptual dimension forms a broad contin-
uum between the extremes of conceptual orality
and conceptual literacy. Example (1) from Halli-
day (1989, p.79) illustrates this continuum, from a
clear conceptually-literate sentence in (a) to a clear
conceptually-oral equivalent in (c).

(1) a. The use of this method of control unques-
tionably leads to safer and faster train run-
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ning in the most adverse weather condi-
tions.

b. If this method of control is used trains
will unquestionably (be able to) run more
safely and faster (even) when the weather
conditions are most adverse.

c. You can control the trains this way and
if you do that you can be quite sure that
they’ll be able to run more safely and
more quickly than they would otherwise
no matter how bad the weather gets.

The work reported here is part of a larger project
which investigates syntactic change in German
across a long period of time (1000 years). One
of the working hypotheses of the project is that
certain parts of syntactic change can be attributed
to changes in discourse mode: Early writings
showed many features of the oral mode. The
dense, complex structure which is characteristic of
many modern elaborate written texts is the product
of a long development.

Interestingly, spoken language has also devel-
oped denser structures over time. It is commonly
assumed that this is a reflex of the written lan-
guage, and is due to the increasing amount of writ-
ten language which became available after the in-
vention of printing and since then has played a
prominent role in the society. As Halliday (1989,
p.45) argues, this feedback happens “particularly
because of the prestige” of written registers.

The aim of the project is to trace these two
strands of development, by investigating and com-
paring texts that are located at different positions
of the orality scale. Of course, we do not have
records of historical spoken language. Rather, we
have to rely on written texts that are as close as
possible to the spoken language. So we need to be
able to identify conceptually-oral, i.e. spoken-like
texts.

The present paper addresses the first step in this
enterprise, namely to find means to automatically
measure the conceptual orality of a given mod-
ern text. In particular, we investigate a range of
linguistic features that can be automatically deter-
mined and seem useful for this task.

The remainder of this paper is structured as fol-
lows: Section 2 gives an overview of the related
work. In Section 3, features of orality as proposed
in the literature are presented, and the set of lin-
guistic features used in the present study is spec-

ified. Section 4 introduces the data and describes
their linguistic annotation as well as the way we
determine expected orality. In Section 5, results
from training a classifier on the linguistc features
are discussed. Finally, Section 6 summarizes the
results and gives an outlook at future investiga-
tions. An appendix provides further details of the
analysis.

2 Related Work

Nowadays, the distinction between literate and
oral language is widely recognized in linguistics.
For instance, in a register analysis of typologically
different languages Biber (1995) finds that the dis-
tinction between oral and literate language seems
to be a dimension that plays a role in all these
languages, although it can be expressed in differ-
ent ways and he could not find “any absolute di-
chotomies between speech and writing” (p.236).

In the following, we focus on work that deals
with features directly related to the difference be-
tween literate and oral language.

Koch and Oesterreicher (1985, 2007) list a num-
ber of universal characteristics, such as publicity
vs. privacy, weak vs. strong emotional involve-
ment, spatial and temporal distance vs. proxim-
ity, and monologicity vs. dialogicity. Combining
these aspects in different ways results in different
degrees of conceptual orality or literacy. Unfor-
tunately, the characteristics are rather abstract and
vague, and cannot be operationalized and applied
to concrete texts.

To remedy this weakness, Ágel and Hennig
(2006) extend the approach of Koch and Oesterre-
icher and create a framework that allows for objec-
tively measuring the conceptual orality of a given
text (in German). For this purpose, they consider a
range of diverse linguistic features, e.g. deixis, el-
lipsis, interjections, number of complete sentences
in the text, and compare the observed frequen-
cies to a prototypical conceptually-oral text. The
method as described by Ágel and Hennig (2006)
requires careful manual inspection of every indi-
vidual text, though, to determine a large number
of linguistic features. Hence, it cannot be applied
sensibly to a large amount of data.

A few approaches try to automate the process
of feature identification: Rehm (2002) focusses
on automatic identification of a small number of
features in the restricted domain of computer-
mediated communication (CMC) in German, such
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as websites, emails, etc. The analyzed features in-
clude smileys, iterations, emphasis, isolated verb
stems like grins ‘smile’, slang expressions or ab-
breviations, and a few other features like spe-
cific punctuation symbols and phonetic contrac-
tions marked with an apostrophe.

Following Biber (1995), Biber and Con-
rad (2009) conduct a register analysis based
on automatically-identified co-ocurring linguistic
features in English texts. In their analysis, the dis-
tinction of oral and literate language makes up the
first dimension along which the analyzed registers
differ. Biber (1995) showed that if this dimension
is broken down, it turns out that it consists of fine-
grained dimensions, e.g. dimensions concerning
the degree of interactiveness (dialog vs. monolog),
production circumstances (on-line vs. careful pro-
duction), stance (overt marking of personal stance
and involvement vs. non-personal/informational),
and language-specific functions (e.g. abstract vs.
non-abstract style in English, narrative vs. non-
narrative in Korean).

3 Features of Orality

The aim of this paper is to identify linguistic fea-
tures that (i) are useful predictors of the concep-
tual orality of a given text and (ii) can be recog-
nized fully automatically in texts of any length.
Previous work discusses a broad range of fea-
tures that distinguish between written and spo-
ken mode or literate and oral discourse. As ex-
plained above, the medium (written/spoken) and
conceptuality (literate/oral) concern different as-
pects of language, and go hand in hand only in
prototypical cases, e.g. edited news (written and
literate) or spontaneous colloquial communication
(spoken and oral). Researchers often investigate
only one of the aspects in their work, and most
of them focus on the medial distinction (written
vs. spoken), e.g. Chafe (1982), Drieman (1962),
Richter (1985), Tomczyk-Popińska (1987). More-
over, many of them consider prototypical cases.
As a consequenc, for many features discussed in
the literature it is not obvious whether they are in-
dicative of the medium or of conceptuality.

The following presentation does not try to dis-
tinguish systematically between the two aspects,
and, instead, makes a rough distinction between
written/literate on the one hand, and spoken/oral
on the other hand. Our study presented in Sec. 5
reveals which of the features correlate with oral

conceptuality (whereas the medial aspect is not
relevant to our purposes). The focus is on features
proposed for English and German.

Reference/deixis As a consequence of the spa-
tial and temporal co-presence of participants, spo-
ken language shows an increased use of pronouns
and demonstratives as compared to lexical nouns
(Goody, 1987; Diamante and Morlicchio, 2015;
Schwitalla and Tiittula, 2009; Tomczyk-Popińska,
1987). There are also some language-specific dif-
ferences like the use of proper names with a def-
inite article in German (Schwitalla and Tiittula,
2009) as in der Peter ‘(*the) Peter’. This construc-
tion is frequent in spoken (and oral) communica-
tion but disapproved in written (and literate) lan-
guage.

Complexity As spoken language is produced
and processed in real-time, it is largely depen-
dent on the capacity of the working memory
(Weiß, 2005). Therefore, spoken language is less
complex than written language in many respects,
e.g. it comes with shorter sentences and words
(Bader, 2002; Richter, 1985; Tomczyk-Popińska,
1987; Drieman, 1962; Rehm, 2002), less com-
plex noun phrases (Weiß, 2005), less subordi-
nation and more coordination (Ágel and Hen-
nig, 2006; Bader, 2002; Müller, 1990; Richter,
1985; Schwitalla and Tiittula, 2009; Sieber, 1998;
Speyer, 2013; Tomczyk-Popińska, 1987), which
also leads to an increase of sentence-intial use of
and and but (Chafe, 1982).

Moreover, written language shows a nominal
style with a higher number of nouns and nomi-
nalizations, while spoken language shows a ver-
bal style with a higher proportion of verbs (Bader,
2002; Chafe, 1982; Dürscheid, 2006; Goody,
1987; Halliday, 1989; Sieber, 1998). Finally, writ-
ten and spoken language differ with respect to the
information density, measured as lexical density,
i.e. the ratio of lexical vs. functional words: writ-
ten language uses more lexical words than spoken
language (Halliday, 1989).

Syntax Further syntactic features that mark spo-
ken language include a higher ratio of ellipsis
(Ágel and Hennig, 2010; Bader, 2002; Fiehler,
2011; Müller, 1990; Richter, 1985; Schwitalla
and Tiittula, 2009; Tomczyk-Popińska, 1987), and
of parentheses and anacolutha (Müller, 1990;
Richter, 1985). Similarly, spoken language shows
a clear preference for active instead of passive
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Feature Description

mean_sent Mean sentence length, without punctuation marks.
med_sent Median sentence length, without punctuation marks.
mean_word Mean word length.
med_word Median word length.
subord Ratio of subordinating conjunctions (tagged as KOUS or KOUI) to full verbs.
coordInit Proportion of sentences beginning with a coordinating conjunction.
question Proportion of interrogative sentences, based on the last punctuation mark of the sentence.
exclam Proportion of exclamative sentences, based on the last punctuation mark of the sentence.
nomCmplx Mean number of prenominal dependents for each noun in the dependency tree. This includes determiners

but not punctuation marks, prepositions and contractions of prepositions and articles.
V:N Ratio of full verbs to nouns.
lexDens Ratio of lexical items (tagged as ADJ.*, ADV, N.*, VV.*) to all words.
PRONsubj Proportion of subjects which are realized as personal pronouns, based on the head of the subject.
PRON1st Ratio of 1st person sg. and pl. pronouns with lemmas ich ‘I’ and wir ‘we’ to all words.
DEM Ratio of demonstrative pronouns (tagged as PDS) to all words.
DEMshort Proportion of demonstrative pronouns (tagged as PDS) with lemmas dies ‘this/that’ or der ‘the’ which are

realized as the short form (lemma der ‘the’).
PTC Proportion of answer particles (ja ‘yes’, nein ‘no’, bitte ‘please’, danke ‘thanks’) to all words.
INTERJ Proportion of primary, i.e. one-word interjections (e.g. ach, oh, hallo) to all words.

Table 1: Features used for classification. Tokens tagged as punctuation marks are not counted as words. The POS
tags are from the STTS tagset.

structures (Chafe, 1982; Goody, 1987; Richter,
1985), and for analytic instead of synthetic verb
forms (Müller, 1990; Richter, 1985; Sieber, 1998;
Weiß, 2005) (e.g. past perfect instead of preterite).
Finally, the am-progressive, as in Er ist am Ar-
beiten ‘he is working’, is a clear indicator of spo-
ken language (Ágel and Hennig, 2010).

Lexicon A range of differences between writ-
ten and spoken language can also be observed
by inspecting individual words. Spoken language
is characterized by frequent use of various par-
ticles, e.g. answer and modal particles in Ger-
man (Diamante and Morlicchio, 2015; Fiehler,
2011; Müller, 1990; Richter, 1985; Schwitalla
and Tiittula, 2009; Weiß, 2005), and interjections
(Fiehler, 2011; Richter, 1985; Schwitalla and Ti-
ittula, 2009). Furthermore, spoken language of-
ten contains vague expressions and hedges (Chafe,
1982).

Variation Since written texts can be carefully
planned and revised, written language generally
shows a high degree of grammatical and lexi-
cal variation, e.g. in the form of varying syn-
tactic constructions and high type-token ratios
(Drieman, 1962; Dürscheid, 2006; Müller, 1990;
Sieber, 1998). In contrast, spoken language con-
tains many repetitions (Diamante and Morlicchio,
2015; Green, 1982; Schwitalla and Tiittula, 2009).
On the other hand, spoken language often exhibits
a higher variation of sentence types, in that ques-
tions and exclamations are more frequent than in

written language (Goody, 1987; Müller, 1990).

Graphical features Written language can ex-
press features of orality with specific graph-
ical means, such as omission of characters,
word contractions, or use of ellipsis dots, em
dashes or apostrophes (Diamante and Morlic-
chio, 2015; Tomczyk-Popińska, 1987; Fiehler,
2011; Schwitalla and Tiittula, 2009; Richter, 1985;
Rehm, 2002). Especially in the context of CMC,
repetition of characters (aaah), and repetition of
(combinations of) punctuation marks (!!!, !?!?),
as well as capital letters or non-verbal symbols
like smileys are clear indicators of orality (Rehm,
2002; Schwitalla and Tiittula, 2009).

Some of these features, such as use of specific
particles, are language-dependent while others are
language-independent, such as sentence or word
length. This is also confirmed by Biber (1995),
who shows that certain linguistic features fulfill
the same functions in various languages while
others are used with a specific function just in
one language. In our analysis we mainly include
language-independent features.

Not all of the features can be determined au-
tomatically. Some features require a detailed and
reliable syntactic or semantic analysis, e.g. in the
case of anacolutha or ellipsis. The present study
only includes features that can be reliably identi-
fied based on automatically-created standard lin-
guistic annotations.

Furthermore, it is to be expected that many
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of the features correlate, which is precisely how
Biber (1995) and Biber and Conrad (2009) iden-
tify the relevant features for their register analyses.
In our study, we include various features of the dif-
ferent levels presented above, to allow for a broad
coverage of features, and leave it to the classifier
to determine the relevant ones. For an overview of
the features used in the study, see Table 1.1

4 The Data

In order to evaluate the selected features for the
task at hand, we compiled corpora from five dif-
ferent language registers, which differ with respect
to their conceptual orality: newspaper articles
(News), recited speeches (Speech), rehearsed talks
(TED), chat communication (Chat), and sponta-
neous spoken communication (Dialog).

The News register includes various kinds of
articles from two German newspapers.2 In the
Speech register, three different genres are con-
sidered: speeches and lectures3 as well as mod-
ern Christian sermons.4 The TED register con-
sists of German transcripts of English TED talks.5

For the Chat register, chat protocols were ex-
tracted from the Dortmunder Chatkorpus6, includ-
ing professional as well as informal chats. The
texts of the Dialog register were taken from three
sources: movie subtitles from the genres romance
and drama,7 subtitles of pranks filmed with a hid-
den camera from a German TV show8, and work

1Besides syntactic features, which are excluded because
they cannot be identified easily and reliably, the study also ex-
cludes graphical features, as our data includes transcriptions
of spoken language which follow different notation conven-
tions.

2We included articles from the Tüba-D/Z corpus
(http://www.sfs.uni-tuebingen.de/ascl/
ressourcen/corpora/tueba-dz.html) and the
Tiger corpus (http://www.ims.uni-stuttgart.
de/forschung/ressourcen/korpora/tiger.
html).

3The speeches and lectures were taken from Gutenberg-
DE corpus, edition 14 (http://gutenberg.spiegel.
de/), including only texts published after 1900, to allow the
use of standard annotation tools for automatic processing of
the orthographic surface forms.

4The sermons were automatically downloaded
from the SermonOnline database (http://www.
sermon-online.de).

5The transcripts were automatically downloaded from
the official TED website at https://www.ted.com/
talks?language=de.

6Release corpus from http://www.chatkorpus.
tu-dortmund.de/korpora.html.

7The movie subtitles were downloaded from the Open-
Subtitles database at http://www.opensubtitles.
org/de.

8The subtitles were automatically downloaded from

conversations.9

A random subset of texts with about 500,000
tokens was created for each of the five registers.
Table 2 gives an overview of the data.

4.1 Preprocessing

To enable automatic identification of the de-
scribed features, the data was automatically en-
riched with linguistic annotations. Except for the
pre-tokenized texts, all corpora were automati-
cally tokenized using the default NLTK tokeniz-
ers.10 NLTK sentence tokenization was only ap-
plied within corpus-specific boundaries.11

After tokenization, the texts were tagged for
part of speech (POS) with the spaCy tagger.12 The
German model uses the STTS-Tagset (Schiller
et al., 1999) and overall achieves high accuracy
scores.13 All texts were automatically lemmatized
using output from GermaLemma and the spaCy
lemmatizer.14 Finally, the texts were annotated
with syntactic dependencies by the spaCy parser.15

the YouTube channel of the show ‘Verstehen Sie Spaß?’
(https://www.youtube.com/user/VSSpass).

9From the Tüba-D/S corpus (http://www.
sfs.uni-tuebingen.de/ascl/ressourcen/
corpora/tueba-ds.html).

10Pre-tokenized texts are from Tiger, TüBa-D/Z and TüBa-
D/S. NLTK tokenizer: http://www.nltk.org/api/
nltk.tokenize.html. Some tokenizing errors were
fixed by heuristic rules, which corrected the tokenization of
repeated punctuation marks (‘!!!!’), smileys and uses of the
@-symbol.

11In particular: Movie subtitles were segmented across
frames, chat protocols within messages, and lectures and
speeches within lines, which usually correspond to para-
graphs. In tokenizing TV subtitles, TED talks and sermons,
frames or paragraph boundaries were ignored.

12https://spacy.io/api/tagger (v2.0). Certain
tagging errors were automatically corrected, using word lists
and regular expressions (e.g. ‘ha+ll+o+’, which matches all
kinds of spellings of Hallo ‘hello’). This concerned single-
word interjections (ITJ), pronominal adverbs (PAV), and dif-
ferent punctuation types ($(, $, and $.).

13An evaluation of a random subset showed accuracy val-
ues of over 90% for all registers, except for the chat corpus
with an accuracy of 85%. The most frequent confusions oc-
cur between nouns and proper names, and between adverbial
adjectives, participles and adverbs.

14https://github.com/
WZBSocialScienceCenter/germalemma, ver-
sion from February 6, 2019, and https://spacy.io/
api/lemmatizer, v2.0.
Words tagged as N.*, V.*, ADJ.* and ADV were lemmatized
with GermaLemma. Pronouns (tagged as PPER, PRF and
PPOS.*) were lemmatized using custom rules, to preserve
information about 1st, 2nd and 3rd person. For all other
words, the output of the spaCy lemmatizer was used.

15https://spacy.io/api/dependencyparser
(v2.0).
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Register #Tokens #Sentences #Docs Corpora

News 500,076 27,375 1,024 679 articles from the newspaper ‘taz’ (72%), 345 articles from the newspaper
‘Frankfurter Rundschau’ (28%)

Speech 500,475 18,833 31 11 (collections of) speeches (61%), 5 lectures (28%), 15 sermons (11%)
TED 500,035 30,809 224 224 talk subtitles (100%)
Chat 500,009 58,572 322 322 chat protocols (100%)
Dialog 500,622 66,815 140 30 movie subtitles (51%), 104 TV subtitles (26%), 6 work conversations

(23%)

Table 2: Overview of the data. The numbers in brackets after each subcorpus provide the percentage of tokens in
the register that stems from the respective subcorpus.

4.2 Expected orality

The features listed in Table 1 are designed for use
by a classifier which locates the texts of the differ-
ent registers on the continuum of conceptual oral-
ity. That means that we first have to assign an
“index of orality” to each register. Admittedly, as
Dürscheid (2006) points out, only individual texts
can sensibly be located on the literate-to-oral con-
tinuum. However, it is possible to judge the proto-
typical conceptuality of a register based on its gen-
eral characteristics. To this end, we establish four
situational characteristics which allow us to man-
ually determine the expected orality of the regis-
ters. The characteristics are based on features pro-
posed by Koch and Oesterreicher (2007), Ágel and
Hennig (2006) and Biber and Conrad (2009). The
following paragraphs describe the characteristics
in detail.

Participants: many, few The number of par-
ticipants in the communication. We only distin-
guish between many (coded as -1) and few (1)
participants, with few participants being an indi-
cator of a higher conceptual orality. The value
many refers to communications which usually in-
volve hundreds or thousands of participants, such
as public speeches or newspaper articles. In con-
trast, the value few refers to communications with
usually less than ten participants. This character-
istic is based on Koch and Oesterreicher (2007)’s
distinction of private vs. public. We do not distin-
guish between addressor(s) and addresse(s), con-
trary to Biber and Conrad (2009).

Interactiveness: monolog, dialog The commu-
nication structure which can be either monologous
(-1) or dialogous (1), with dialog being the indi-
cator for conceptual orality. Dialogous registers
show frequent changes of language producer(s)
and recipient(s) while monologous registers are
dominated by a single speaker. This characteris-

tic has also been suggested by Koch and Oester-
reicher (2007), and it is one of the “relations
among participants” described by Biber and Con-
rad (2009) (the only one that can be determined
rather easily and unambiguously).

Production circumstances: synchronous, quasi-
synchronous, asynchronous The temporal cir-
cumstances of the production of utterances, also
mentioned by Ágel and Hennig (2006) and Biber
and Conrad (2009). Language production can be
either synchronous, i.e. real-time production like
in spontaneous communication, or asynchronous,
i.e. planned production like in writing. As syn-
chronous production is highly dependent on the
working memory (Weiß, 2005), it is an indica-
tor of higher conceptual orality. The intermediate
value of quasi-synchronous language production
was introduced by Dürscheid (2003) and refers to
communication situations where the possibility of
planning and revising one’s utterances is given but
possibly not exploited by the speaker, like, e.g.,
in chat communication or in a well-rehearsed but
freely-performed presentation.

Reception circumstances: synchronous, quasi-
synchronous, asynchronous The temporal cir-
cumstances of the reception of utterances, also
emphasized by Ágel and Hennig (2006) and Biber
and Conrad (2009). Like language production, re-
ception can be either synchronous, when an ut-
terance has to be processed in real time in the
moment it is uttered, as in spontaneous commu-
nication, or asynchronous like in reading a book,
where an utterance can be read multiple times and
at any speed. Again, synchronous reception is an
indicator of higher conceptual orality. The inter-
mediate value of quasi-synchronous language re-
ception is analogous to the production and refers
to communication situations where the possibility
of reading the speakers’s utterances multiple times
is given but possibly not exploited by the partici-

69



pants, like in chat communication, where partici-
pants usually want to answer immediately.

Table 3 shows the the five registers used in this
study along with their situational characteristics.
The characteristics locate the respective registers
on a scale from highly literate (News) to highly
oral (Dialog). The sum of the individual scores
can be interpreted as an index of orality, with high
scores indicating orally-oriented registers. It turns
out that the two characteristics Participants and In-
teractiveness split the registers, as considered in
the present work, in the same way so that we treat
them as one property in the following section.

In order to validate our manual classification,
we adapt the approach by Fankhauser et al.
(2014), who compare American and British En-
glish from the 1960s and 1990s, based on uni-
gram language models. We represent each reg-
ister by POS unigram language models, which
have been smoothed with Jelinek-Mercer smooth-
ing (lambda = 0.005). We compute relative
entropy (Kullback-Leiber Divergence, KLD) be-
tween each pair of registers as a measure of
(dis)similarity of the two registers. In computing
KLD, we can use one register as the reference reg-
ister and compare it with the other four registers.16

Fig. 1 shows the results for all registers. The plots
arrange the registers according to their degree of
orality (first bar: News, last bar: Dialog). When
a reference register is compared with itself, (e.g.
“N–N”: News with News), KLD is zero and there
is no column.

The plots show that the KLD scores of the
orally-adjacent registers are systematically lower
than KLD scores of distant registers. For instance,
the first plot compares News with all other reg-
isters, and KLD is smallest with Speech (first bar)
and highest with Dialog (last bar). The second plot
compares Speech with all others, and, again, KLD
is smallest with its immediate neighbors, News
(left) and TED talks (right).17

16For probability distributions p, q, and an event space X ,
KLD is defined as: KLD(p||q) =

∑
x∈X

p(x)log2
p(x)
q(x)

.
p represents the reference register and q is compared with it.

17As mentioned in the beginning of this section, a score of
orality should be assigned to individual texts rather than reg-
isters. However, of the situational characteristics presented
here, Interactiveness is the only one that can be observed in
the data itself. All other characteristics would be part of meta-
data, which is not available. We therefore decided to pick reg-
isters with clear prototypical situational characteristics (e.g.
TED talks aim at a large number of recipients, sermons are
performed by just one speaker, etc.), so that we do not expect

5 Results

As we have seen, the five registers we established
in the previous section can be distinguished with
regard to (expected) orality, by situational charac-
teristics. The main question of this section is to
determine in which way these registers also differ
with regard to linguistics features, and which lin-
guistic features can serve as indicators of specific
registers and the degree of their conceptual orality.

In a first step, we plot the distribution of all lin-
guistic features listed in Table 1 with regard to the
different registers (cf. Fig. 2 in the appendix). The
plots show that most of the features quite clearly
distinguish between some of the registers. For
instance, the feature mean sentence length (1st
panel) clearly separates Chat and Dialog data from
TED, Speech, and News.

We next train a classifier to determine the reg-
isters and their situational characteristics. We
use J48 (Quinlan, 1993), a decision-tree classi-
fier, which allows us to inspect the features most
prominently used by the classifier.18

5.1 Classifying registers

The decision tree resulting from the full dataset is
shown in the appendix in Fig. 3.

The major split distinguishes texts with sen-
tences with a mean length of less or more than
10.5. It turns out that this split quite neatly sepa-
rates oral-oriented registers, i.e. Dialogs and Chats
(upper part, with shorter sentences in general),
from literate-oriented registers, i.e. TED, Speech,
and News (lower part, with longer sentences).

individual texts to diverge from the prototypical settings.
There are some exceptions, though. For instance, some
newspaper articles contain interviews, which are dialogous,
whereas newspaper articles in general are monologous. Some
movie sequence might feature a lecture, so that this part
would have many participants, in contrast to other typical
movie sequences (since we selected movies from the genres
romance and drama, we expect such exceptional sequences
to occur very rarely). Finally, chat data sometimes seem to
involve many participants but looking at the data in detail
shows that in fact communication takes place between small
groups of people only. Hence, we assume that the vast ma-
jority of the texts exhibit the prototypical characteristics.

18We use J48 as implemented in Weka (Witten et al.,
2011), combined with a filter that balances the size of the
different classes in the training data. The minimum number
of instances per leaf is set to 5, so that the options are set as
follows:
weka.classifiers.meta.FilteredClassifier
-F "weka.filters.supervised.instance.
ClassBalancer -num-intervals 10" -S 1
-W weka.classifiers.trees.J48 -- -C 0.25
-M 5.
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Register Participants Interactiveness Production Reception Index of Orality
value score value score value score value score score (sum)

News many -1 monolog -1 asynchronous -1 asynchronous -1 -4
Speech many -1 monolog -1 asynchronous -1 synchronous 1 -2
TED many -1 monolog -1 quasi-synchr. 0 synchronous 1 -1
Chat few 1 dialog 1 quasi-synchr. 0 quasi-synchr. 0 2
Dialog few 1 dialog 1 synchronous 1 synchronous 1 4

Table 3: Expected orality based on four situational characteristics of the registers. The characteristics rank the
registers from highly literate (News) to highly oral (Dialog).

Figure 1: KLD scores of all register pairs.

Class Precision Recall F-Measure

News 0.985 0.913 0.948
Speech 0.486 0.581 0.529
TED 0.731 0.848 0.785
Chat 0.817 0.857 0.836
Dialog 0.752 0.843 0.795

Weighted Avg. 0.894 0.883 0.886

Table 4: Results of classifying registers with the J48
decision-tree classifier.

In both partitions, the feature PRONsubj plays a
prominent role: a low rate of pronominal subjects
is indicative of News (in both partitions), and sin-
gles out certain chats (in the upper part).19

A 10-fold cross-validation results in an overall
accuracy of 88.28%. Table 4 shows that the News
register is classified with high accuracy whereas
Speech data is classified with both low precision
and low recall.

The confusion matrix in Table 5, which shows
the confusions summed over all cross-validations,
reveals that Speech data is often confused with
News or TED, but very rarely or never with Chat
or Dialog. Similarly, other confusions mainly oc-

19The relevance of the feature PRONsubj is also evidenced
by the fact that this feature contributes the largest amount
of information gain with respect to the class, as shown by
Weka’s “InfoGainAttributeEval”, cf. Table 7 in the appendix.

cur between immediate neighbors, i.e. registers
with similar levels of conceptual orality, e.g. Chat
and Dialog.

classified as→ News Speech TED Chat Dialog

News 935 6 46 31 6
Speech 4 18 9 0 0
TED 5 11 190 12 6
Chat 5 0 14 276 27
Dialog 0 2 1 19 118

Table 5: Confusion matrix for the classification of reg-
isters.

Manual inspection of confusions shows that er-
roneous classifications of the Dialog and Chat reg-
isters mainly stem from errors in the data, e.g.
missing punctuation marks, which result in long
sentences or make it impossible to recognize ques-
tions automatically. Also, some features relevant
to these registers, such as demonstratives, are not
present in very short texts.

TED and News are mostly confused with Dia-
log or Chat data if they contain shorter sentences
on average. This is also the main reason for the
confusion of Speech data with TED talks.

Confusion of News with more orally-oriented
registers (Dialog, Chat, TED) results from specific
article types like interviews or literature excerpts,
which contain more (first person) pronouns than is
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typical for standard newspaper text.

5.2 Classifying situational characteristics

Since our project ultimately aims at investigating
historical language data, we need classifiers that
are based on functional, “timeless” features rather
than features specific to modern-time registers. To
this end, we trained classifiers for the different sit-
uational characteristics (see the resulting decision
trees in the appendix, Fig. 4–Fig. 6).

Participants/Interactiveness As mentioned
above, the registers used in this study only exhibit
two combinations of these characteristics: either
they are monologs with many participants or
dialogs with few participants. Therefore, the
resulting decision trees for the two characteristics
are identical.

The most important feature for the classifi-
cation of these characteristics is, again, mean
sentence length. However, this time it does
not introduce a clear distinction in the tree
between oral- (few/dialog) and literate-oriented
(many/monolog) characteristics, as we observed it
for the registers.

Further relevant features are the ratio of first
person pronouns (PRON1st) and questions. A
large number of texts with long sentences can be
classified by the (almost complete) absence of in-
terjections (INTERJ).

The classifier achieves high scores of overall ac-
curacy (97.13%) and average F-score (0.972, for
details see Table 6 in the appendix).

Production and Reception The characteristics
of the production and reception circumstances
both have three possible values (asynchronous,
quasi-synchronous, and synchronous), which are
combined pairwise in five different ways by the
five registers (see Table 3). Still, there are some
interesting similarities between the two classifier
trees. For both characteristics, features relating
to pronouns (PRON1st for production, PRONsubj
for reception) are used as the top-level split. In
both cases, all synchronous instances fall into the
lower part of the tree, which is marked by a larger
number of these pronouns.

For reception, mean sentence length is the sec-
ond most important feature while for production
the mean word length is more discriminating.

It is interesting to note that with both charac-
teristics, binary distinctions at the leaves almost

never occur between the values asynchronous and
synchronous. Instead, the two values are con-
trasted individually with quasi-synchronous. This
seems to confirm the intermediate status of the
quasi-synchronous value. Overall F-score of both
characteristics is around 90% (see Table 6 in the
appendix). In the case of production, confusions
again occur mainly between neighbouring values.

6 Conclusion and Outlook

In this paper, we investigated a range of selected
linguistic features, with the aim of automatically
identifying conceptually oral and literate texts. It
turned out that extremely simple measures of com-
plexity, namely average sentence and word length,
are prominent indicators of conceptuality. In addi-
tion, features of reference and deixis (realized by
different types of pronouns) proved to be useful in
determining the degree of orality of different reg-
isters.

Even though some of the features did not play
major roles in the resulting decision tree, the dis-
tribution plots show that all of them are related in
some way to oral conceptuality. This is confirmed
by the fact that each feature is used at least once in
some of the four decision trees. The features oc-
curring least often in the decision trees are subord,
exclam, and med_word.

Of course, when languages other than German
are investigated, the set of linguistic features might
have to be adapted, as features can be used with
different functions in different languages (Biber,
1995).

When looking at diachronic data, one also has
to consider that the relations between registers,
their situational characteristics and the linguistic
features might have changed over time. For in-
stance, it is known that English scientific prose
used to be closer to the oral mode than it is nowa-
days (Degaetano-Ortlieb et al., 2019).
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Appendix

Property Values #Texts F-Score

Participants/ many/monolog 1,279 0.980
Interact. few/dialog 462 0.947

weighted avg. 0.972

Production asynchronous 1,055 0.942
quasi-synchronous 546 0.838
synchronous 140 0.795
weighted avg. 0.898

Reception asynchronous 1,024 0.951
quasi-synchronous 322 0.852
synchronous 395 0.849
weighted avg. 0.909

Table 6: Results for classifying situational characteris-
tics.

Information Gain Feature

0.796 PRONsubj
0.738 V.N
0.732 PRON1st
0.69 question
0.676 PTC
0.673 mean_word
0.636 med_sent
0.633 mean_sent
0.508 lexDens
0.494 INTERJ
0.448 med_word
0.442 DEM
0.425 DEMshort
0.404 exclam
0.301 coordInit
0.206 nomCmplx
0.181 subord

Table 7: Ranking of the features according to their In-
formation Gain with respect to the class of registers.
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Figure 2: Weka plots for all 17 features investigated in the present study (see Table 1 for descriptions of the
features). Registers are balanced and encoded by different colors (blue: News, red: Speech, cyan: TED, green:
Chat, pink: Dialog, see the legend at the bottom right). The graphs plot the distributions of the respective features
for each register. For example, the distribution of the feature PRON1st displays a large blue bar (News) on the left
at value 0, as most newspaper articles do not contain any first person pronouns; the other registers show higher
amounts of such pronouns, the pink bars (Dialog) achieve top values.
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mean_sent <= 10.487395
| PRONsubj <= 0.392857
| | question <= 0.066667
| | | PRON1st <= 0.012245: News (34.13/2.16)
| | | PRON1st > 0.012245: Chat (5.01/0.68)
| | question > 0.066667: Chat (59.01/1.7)
| PRONsubj > 0.392857
| | DEMshort <= 0.942308: Chat (157.32/16.74)
| | DEMshort > 0.942308
| | | V.N <= 1.659091
| | | | mean_word <= 5.123077
| | | | | coordInit <= 0
| | | | | | mean_word <= 4.742631: Dialog (12.87/5.41)
| | | | | | mean_word > 4.742631: Chat (9.73)
| | | | | coordInit > 0
| | | | | | question <= 0.277778: Dialog (319.51/13.59)
| | | | | | question > 0.277778
| | | | | | | DEM <= 0.022727: Chat (9.73)
| | | | | | | DEM > 0.022727: Dialog (9.95)
| | | | mean_word > 5.123077
| | | | | question <= 0.142395
| | | | | | med_sent <= 5.5: Chat (10.81)
| | | | | | med_sent > 5.5
| | | | | | | subord <= 0.192308: Dialog (10.63/0.68)
| | | | | | | subord > 0.192308: Chat (5.41)
| | | | | question > 0.142395: Chat (38.32/1.55)
| | | V.N > 1.659091: Chat (30.28)
mean_sent > 10.487395
| PRONsubj <= 0.232558: News (252.65)
| PRONsubj > 0.232558
| | mean_sent <= 20.653846
| | | lexDens <= 0.514085
| | | | exclam <= 0.019139
| | | | | mean_word <= 4.755344: Speech (15.42/4.19)
| | | | | mean_word > 4.755344
| | | | | | DEM <= 0.000745: News (6.58/2.16)
| | | | | | DEM > 0.000745
| | | | | | | PRON1st <= 0.00905: News (6.32/1.55)
| | | | | | | PRON1st > 0.00905: TED (298.92/16.01)
| | | | exclam > 0.019139
| | | | | question <= 0.096045
| | | | | | mean_word <= 5.284568
| | | | | | | lexDens <= 0.449857: TED (7.77)
| | | | | | | lexDens > 0.449857: Speech (139.45/4.66)
| | | | | | mean_word > 5.284568: TED (10.83/3.06)
| | | | | question > 0.096045
| | | | | | PTC <= 0.007194
| | | | | | | coordInit <= 0.033113: Chat (6.49)
| | | | | | | coordInit > 0.033113
| | | | | | | | lexDens <= 0.482862: TED (15.54)
| | | | | | | | lexDens > 0.482862: Chat (8.45/4.13)
| | | | | | PTC > 0.007194: Dialog (5.31/0.34)
| | | lexDens > 0.514085
| | | | question <= 0.118103: News (28.76/1.55)
| | | | question > 0.118103: Chat (9.27/1.7)
| | mean_sent > 20.653846
| | | question <= 0: Dialog (6.42/3.93)
| | | question > 0
| | | | question <= 0.097561: Speech (205.1/2.91)
| | | | question > 0.097561: TED (5.0/0.34)

Figure 3: Weka decision tree for classifying registers. Class labels that have been assigned at the leaves are
preceded by a colon. The first figure in parentheses states how many instances have been classified at this leaf
(the figures do not correspond to actual instances but result from balancing the data, see Footnote 18). The second
figure, after the slash, specifies how many instances were classified incorrectly, if any (because the data has missing
attribute values, the algorithm used by Weka outputs fractional figures).
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mean_sent <= 10.681818
| PRON1st <= 0.008772
| | lexDens <= 0.486486: FEW/DIALOG (29.1/2.72)
| | lexDens > 0.486486
| | | V.N <= 0.654762: MANY/MONOLOG (74.03/1.88)
| | | V.N > 0.654762: FEW/DIALOG (16.43/1.36)
| PRON1st > 0.008772
| | mean_sent <= 8.4: FEW/DIALOG (632.57/1.36)
| | mean_sent > 8.4
| | | question <= 0.204724
| | | | V.N <= 0.969466
| | | | | INTERJ <= 0.005882
| | | | | | med_word <= 4: MANY/MONOLOG (14.14/1.88)
| | | | | | med_word > 4: FEW/DIALOG (8.38/2.72)
| | | | | INTERJ > 0.005882: FEW/DIALOG (15.07)
| | | | V.N > 0.969466: FEW/DIALOG (28.26)
| | | question > 0.204724: FEW/DIALOG (101.75)
mean_sent > 10.681818
| question <= 0.181024
| | INTERJ <= 0.004198: MANY/MONOLOG (744.95/3.77)
| | INTERJ > 0.004198
| | | PRONsubj <= 0.473684: MANY/MONOLOG (20.42)
| | | PRONsubj > 0.473684: FEW/DIALOG (5.13/1.36)
| question > 0.181024
| | coordInit <= 0.086957
| | | V.N <= 0.424528: MANY/MONOLOG (5.44)
| | | V.N > 0.424528: FEW/DIALOG (37.16/1.36)
| | coordInit > 0.086957: MANY/MONOLOG (8.17)

Figure 4: Weka decision tree for classifying the situational characteristics participants or interactiveness. As the
registers in the present study are either monologous with many participants or dialogous with few participants, the
resulting decision trees for both properties are identical.
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PRON1st <= 0.011905
| question <= 0.193878
| | mean_sent <= 7.6
| | | lexDens <= 0.501439: QUASI (5.31)
| | | lexDens > 0.501439: ASYNC (12.58/2.13)
| | mean_sent > 7.6: ASYNC (499.84/5.31)
| question > 0.193878
| | mean_sent <= 10.818182: QUASI (20.23/1.1)
| | mean_sent > 10.818182: ASYNC (5.46/1.06)
PRON1st > 0.011905
| mean_word <= 5.072603
| | DEMshort <= 0.942308
| | | PTC <= 0.034483: QUASI (77.66/2.2)
| | | PTC > 0.034483: SYNC (11.48/3.19)
| | DEMshort > 0.942308
| | | V.N <= 1.662281
| | | | mean_sent <= 9.375
| | | | | coordInit <= 0
| | | | | | PRON1st <= 0.022489: SYNC (8.29)
| | | | | | PRON1st > 0.022489
| | | | | | | PTC <= 0.045455: QUASI (15.94)
| | | | | | | PTC > 0.045455: SYNC (5.21/1.06)
| | | | | coordInit > 0
| | | | | | DEM <= 0.016575
| | | | | | | question <= 0.263374: SYNC (38.51/5.35)
| | | | | | | question > 0.263374: QUASI (8.5)
| | | | | | DEM > 0.016575: SYNC (489.24/4.25)
| | | | mean_sent > 9.375
| | | | | PTC <= 0.0071
| | | | | | PRONsubj <= 0.52809
| | | | | | | INTERJ <= 0.000617: ASYNC (5.46/1.06)
| | | | | | | INTERJ > 0.000617: QUASI (5.35/1.1)
| | | | | | PRONsubj > 0.52809: QUASI (17.56/0.55)
| | | | | PTC > 0.0071: SYNC (13.5/1.06)
| | | V.N > 1.662281
| | | | med_sent <= 9.5: QUASI (24.45)
| | | | med_sent > 9.5: SYNC (5.21/1.06)
| mean_word > 5.072603
| | PRONsubj <= 0.264706
| | | PRON1st <= 0.020331: ASYNC (19.8)
| | | PRON1st > 0.020331: QUASI (5.39/2.2)
| | PRONsubj > 0.264706
| | | PTC <= 0.015456
| | | | nomCmplx <= 1.135593
| | | | | mean_sent <= 7.429577
| | | | | | nomCmplx <= 1.03125: QUASI (72.83/0.55)
| | | | | | nomCmplx > 1.03125: SYNC (10.42/2.13)
| | | | | mean_sent > 7.429577
| | | | | | question <= 0
| | | | | | | lexDens <= 0.505458: QUASI (13.34/1.65)
| | | | | | | lexDens > 0.505458: ASYNC (5.5)
| | | | | | question > 0: QUASI (260.38/14.85)
| | | | nomCmplx > 1.135593
| | | | | med_sent <= 16
| | | | | | mean_word <= 5.38497: QUASI (18.07)
| | | | | | mean_word > 5.38497
| | | | | | | DEMshort <= 0.844828: QUASI (5.86/0.55)
| | | | | | | DEMshort > 0.844828: ASYNC (9.28/2.13)
| | | | | med_sent > 16: ASYNC (8.25)
| | | PTC > 0.015456
| | | | coordInit <= 0.069565
| | | | | question <= 0.05: SYNC (5.21/1.06)
| | | | | question > 0.05: QUASI (22.32)
| | | | coordInit > 0.069565: SYNC (14.56/2.13)

Figure 5: Weka decision tree for classifying production circumstances.
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PRONsubj <= 0.232558
| mean_sent <= 6.533333
| | med_word <= 4.5: QUASI (12.62)
| | med_word > 4.5: ASYNC (5.77/1.8)
| mean_sent > 6.533333: ASYNC (467.55)
PRONsubj > 0.232558
| mean_sent <= 11.309524
| | DEM <= 0.016575
| | | question <= 0.054152
| | | | DEMshort <= 0.25
| | | | | V.N <= 0.481481: ASYNC (9.63)
| | | | | V.N > 0.481481: QUASI (24.8/3.17)
| | | | DEMshort > 0.25: SYNC (21.13/3.5)
| | | question > 0.054152
| | | | mean_word <= 4.825082
| | | | | V.N <= 1.360656
| | | | | | DEM <= 0.012663
| | | | | | | question <= 0.266667
| | | | | | | | PRON1st <= 0.053691: SYNC (7.68/1.8)
| | | | | | | | PRON1st > 0.053691: QUASI (10.48/1.47)
| | | | | | | question > 0.266667: QUASI (19.83)
| | | | | | DEM > 0.012663: SYNC (8.82)
| | | | | V.N > 1.360656: QUASI (46.86)
| | | | mean_word > 4.825082
| | | | | mean_sent <= 10.882353: QUASI (284.02/10.07)
| | | | | mean_sent > 10.882353
| | | | | | V.N <= 0.726115: QUASI (13.75/1.13)
| | | | | | V.N > 0.726115: SYNC (5.88)
| | DEM > 0.016575
| | | mean_word <= 5.072603
| | | | V.N <= 1.662281
| | | | | coordInit <= 0: QUASI (29.97/2.94)
| | | | | coordInit > 0: SYNC (194.7/9.58)
| | | | V.N > 1.662281: QUASI (27.03)
| | | mean_word > 5.072603
| | | | mean_sent <= 10.3074: QUASI (101.06/7.35)
| | | | mean_sent > 10.3074: SYNC (6.21/1.8)
| mean_sent > 11.309524
| | lexDens <= 0.511404
| | | coordInit <= 0.003795
| | | | question <= 0.169811: ASYNC (9.97/1.47)
| | | | question > 0.169811: QUASI (5.41)
| | | coordInit > 0.003795
| | | | question <= 0.189189
| | | | | PRON1st <= 0.00905
| | | | | | mean_sent <= 23.821429: ASYNC (7.37)
| | | | | | mean_sent > 23.821429: SYNC (5.88)
| | | | | PRON1st > 0.00905: SYNC (326.1/17.57)
| | | | question > 0.189189
| | | | | lexDens <= 0.480859: SYNC (11.75)
| | | | | lexDens > 0.480859: QUASI (5.97/0.57)
| | lexDens > 0.511404
| | | exclam <= 0.047297
| | | | INTERJ <= 0.000251: ASYNC (44.54/1.47)
| | | | INTERJ > 0.000251
| | | | | nomCmplx <= 1.109966: ASYNC (6.0/1.47)
| | | | | nomCmplx > 1.109966: SYNC (5.54/1.13)
| | | exclam > 0.047297
| | | | question <= 0.209459: ASYNC (7.47/1.8)
| | | | question > 0.209459: QUASI (7.21)

Figure 6: Weka decision tree for classifying reception circumstances.
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Abstract
This work explores neural machine trans-
lation between Myanmar (Burmese) and
Rakhine (Arakanese). Rakhine is a lan-
guage closely related to Myanmar, often
considered a dialect. We implemented
three prominent neural machine transla-
tion (NMT) systems: recurrent neural
networks (RNN), transformer, and con-
volutional neural networks (CNN). The
systems were evaluated on a Myanmar-
Rakhine parallel text corpus developed by
us. In addition, two types of word seg-
mentation schemes for word embeddings
were studied: Word-BPE and Syllable-
BPE segmentation. Our experimental re-
sults clearly show that the highest quality
NMT and statistical machine translation
(SMT) performances are obtained with
Syllable-BPE segmentation for both types
of translations. If we focus on NMT, we
find that the transformer with Word-BPE
segmentation outperforms CNN and RNN
for both Myanmar-Rakhine and Rakhine-
Myanmar translation. However, CNN
with Syllable-BPE segmentation obtains
a higher score than the RNN and trans-
former.

1 Introduction
The Myanmar language includes a number of
mutually intelligible Myanmar dialects, with a
largely uniform standard dialect used by most
Myanmar standard speakers. Speakers of the
standard Myanmar may find the dialects hard
to follow. The alternative phonology, mor-
phology, and regional vocabulary cause some
problems in communication. Machine trans-
lation (MT) has so far neglected the impor-
tance of properly handling the spelling, lexi-
cal, and grammar divergences among language
varieties. In the Republic of the Union of
Myanmar, there are many ethnical groups,
and dialectal varieties exist within the stan-
dard Myanmar language.

To address this problem, we are developing
a Myanmar and Rakhine dialectal corpus with
monolingual and parallel text. We conducted

statistical machine translation (SMT) experi-
ments and obtained results similar to previous
research (Oo et al., 2018).

Deep learning revolution brings rapid and
dramatic change to the field of machine trans-
lation. The main reason for moving from SMT
to neural machine translation (NMT) is that
it achieved the fluency of translation that was
a huge step forward compared with the previ-
ous models. In a trend that carries over from
SMT, the strongest NMT systems benefit from
subtle architecture modifications and hyperpa-
rameter tuning.

NMT models have advanced the state of
the art by building a single neural net-
work that can learn representations better
(Sutskever et al., 2014a). Other authors (Rik-
ters et al., 2018) conducted experiments with
different NMTs for less-resourced and mor-
phologically rich languages, such as Estonian
and Russian. They compared the multi-way
model performance to one-way model perfor-
mance, by using different NMT architectures
that allow achieving state-of-the-art transla-
tion. For the multiway model trained using
the transformer network architecture, the re-
ported improvement over the baseline meth-
ods was +3.27 bilingual evaluation understudy
(BLEU) points.

(Honnet et al., 2017) proposed solutions for
the machine translation of a family of dialects,
Swiss German, for which parallel corpora are
scarcee. The authors presented three strate-
gies for normalizing Swiss German input to
address the regional and spelling diversity.
The results show that character-based neural
machine translation was the most promising
strategy for text normalization and that in
combination with phrase-based statistical ma-
chine translation it achieved 36% BLEU score.
In their study, NMT outperformed SMT.

In our study, we performed the first compar-
ative NMT analysis of Myanmar dialectal lan-
guage with three prominent architectures: re-
current neural network (RNN), convolutional
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neural network (CNN), and transformer. We
investigated the translation quality of the
corresponding hyper-parameters (batch size,
learning rate, cell type, and activation func-
tion) in machine translation between the stan-
dard Myanmar and national varieties of the
same group of languages. In addition, we
used two types of segmentation schemes: word
byte pair encoding (Word-BPE) segmenta-
tion and syllable byte pair encoding (Syllable-
BPE) segmentation. We compared the per-
formance of this method to SMT and NMT
experiments with the RNN, transformer, and
CNN. We found that the transformer with
Word-BPE segmentation outperformed both
CNN and RNN for both Myanmar-Rakhine
and Myanmar-Rakhine translations. We also
found that CNN with Syllable-BPE segmen-
tation obtained a higher score compared with
RNN and the transformer.

2 Rakhine Language

Rakhine (Arakanese) is one of the eight
national ethnic groups in the Republic of the
Union of Myanmar. The Arakan was officially
altered to “Rakhine” in 1989 and is located
on a narrow coastal strip on the west of
Myanmar, 300 miles long and 50 to 20 miles
wide. The total population in all countries
is nearly 3 million. The Rakhine language
has been studied by researchers. L.F-Taylor’s
“The Dialects of Burmese” described compar-
ative pronunciation, sentence construction,
and grammar usage in Rakhine, Dawei,
In-tha, Taung-yoe, Danu, and Yae. Professor
Denise Bernot, in “The vowel system of
Arakanese and Tavoyan,” mainly emphasized
the vowels of standard Myanmar and Tavoyan
(Dawei) in 1965. In “Three Burmese Dialects”
(1969), the linguist John Okell studied the
spoken language of Myanmar, Dawei, and
In-tha: specifically, usage of grammar and
vowel differences (OKELL, 1995). Although
the Rakhine language used the script as
Arakanese or Rakkhawanna Akkhara before
at least the 8th century A.D., the current
Rakhine script is nearly the same as the
Myanmar script. Generally, the Arakanese
language is mutually intelligible with the
Myanmar language and has the same word
order (namely, subject-object-verb (SOV)).
Examples of parallel sentences in Myanmar
(my) and Rakhine (rk) are given as follows.

rk: ဒေယာ တစ် ထည် ဇာေလာက်ေလး ။
my: လံုချည် တစ် ထည် ဘယ်ေလာက်လဲ ။

(“How much for a longyi?” in English)

rk: ကေလေချ တိ ေဘာလံုး ေကျာက် နီေရ ။
my: ေကာင်ေလး ေတွ ေဘာလံုး ကန် ေနတယ် ။
(“Boys are playing football” in English)

rk: ဇာ ေြပာ နီချင့် ယင်းသူရုိ ့ ။
my: သူတုိ့ ဘာ ေြပာ ေနတာလဲ ။
(“What are they talking about” in English)

rk: အေဘာင်သျှင် စျးီ က သပံု ဝယ် လာတယ် ။
my: အဘွား ေစျး က ဆပ်ြပာ ဝယ် လာတယ် ။
(“The grandmother buys soap from the
market” in English)

3 Difference between the Rakhine
and standard Myanmar language

The Rakhine language is a largely monosyl-
labic and analytic language, with a SOV word
order, and it uses the Myanmar script. It
is considered by some to be a dialect of the
Myanmar language, though it differs signifi-
cantly from the standard Myanmar language
in its vocabulary and includes loan words
from Bengali, Hindi, and English. Compared
with the Myanmar language, the speech of
the Rakhine language is likely to be closer to
the written form. The Rakhine language no-
tably retains an /r/ sound that has become /j/
in the Myanmar language. Rakhine speakers
pronounce the medial " ◌ျ" as “Yapint” (i.e.,
/j/ sound) and the medial "ြ◌" as “Rayit” (i.e.,
/r/ sound). Moreover, Myanmar vowel "ေ◌"
(/e/ sound) is pronounced as "◌ီ" (/i/ sound)
in Rakhine language. Thus, for example, the
word “dog” in the Myanmar language is writ-
ten as "ေခွး" (Khwe), and in the Rakhine lan-
guage it is written as "ခီွး" (khwii). Similarly,
Rakhine pronounce "ေ◌း" (/e:/) for Myanmar
pronunciation of " ◌ဲ" (/ai/) syllable. Thus,
Myanmar word "ပဲဟင်း" (peh-hinn) (pea curry
in English) is pronounced "ေပးဟင်း" (pay-hinn)
in the Rakhine language. Some Pali words are
also used in the Rakhine language. For ex-
ample, the word “guest” of Myanmar monks
"အာဂနတု" (Agantu) is used in normal speech of
Rakhine and it is similar to the normal Myan-
mar word “guest,” "ဧည့်သည်" (Ai thay). In
summary, the most significant differences be-
tween the Rakhine and Myanmar languages
are in their pronunciation and vocabulary;
there are no grammatical differences.
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4 Segmentation

4.1 Word Segmentation

In both Myanmar and Rakhine texts, spaces
are used to separate the phrases for easier
reading. The spaces are not strictly necessary
and are rarely used in short sentences. There
are no clear rules for using spaces. Thus,
spaces may (or may not) be inserted between
words, phrases, and even between root words
and their affixes. Although Myanmar sen-
tences of ASEAN-MT corpus (Boonkwan and
Supnithi, 2013) are already segmented, we
have to consider some rules for manual word
segmentation of Rakhine sentences. We de-
fined Rakhine “word” to be a meaningful unit.
Affix, root word, and suffix (s) are separated
such as "စား ဗျာယ်", "စား ပီးဗျာယ်", "စား ဖုိ့ဗျာယ်".
Here, "စား" (“eat” in English) is a root word
and the others are suffixes for past and future
tenses. As Myanmar language, Rakhine plural
nouns are identified by the following particle.
We added a space between the noun and the
following particle: for example a Rakhine
word "ကလိန်ေ့မေချ တိ" (ladies) is segmented
as two words "ကလိန်ေ့မေချ" and the particle
"တိ". In Rakhine grammar, particles describe
the type of noun and are used after a number
or text number. For example, a Rakhine
word "အြွကီေစ့နှစ်ခတ်" (“two coins” in English)
is segmented as "အြွကီေစ့ နှစ် ခတ်". In our
manual word segmentation rules, compound
nouns are considered as one word. Thus, a
Rakhine compound word "ေဖ့သာ" + "အိတ်"
(“money” + “bag” in English) is written as
one word "ေဖ့သာအိတ်" (“wallet” in English).
Rakhine adverb words such as "အဂေယာင့် "
(“really” in English), "အြမန်" (“quickly” in
English) are also considered as one word. The
following is an example of word segmentation
for a Rakhine sentence in our corpus, and the
meaning is “Among the four air conditioners
in our room, two are out of order.”

Unsegmented sentence:
အကျွန်ရုိအ့ခန်းထဲမှာဟိေရလီအီးစက်ေလးလံုးမှာနှစ်လံုးပျက်
နီေရ ။

Segmented sentence:
အကျွန်ရုိ ့ အခန်း ထဲမှာ ဟိ ေရ လီအီးစက် ေလး လံုး မှာ
နှစ် လံုး ပျက် နီေရ ။

4.2 Syllable Segmentation
Generally, Myanmar words are composed of
multiple syllables, and most of the syllables
are composed of more than one character. Syl-
lables are also the basic units for pronuncia-
tion of Myanmar words. If we only focus on
consonant-based syllables, the structure of the
syllable can be described with Backus normal
form (BNF) as follows:

Syllable := CMW [CK][D]

Here, C stands for consonants, M for me-
dials, V for vowels, K for vowel killer char-
acter, and D for diacritic characters. Myan-
mar syllable segmentation can be done with
a rule-based approach (Maung and Makami,
2008; Thu et al., 2013), finite state automaton
(FSA) (Hlaing, 2012), or regular expressions
(RE) (https://github.com/ye-kyawthu/sylbreak).
In our experiments, we used RE-based Myan-
mar syllable segmentation tool named “syl-
break.”

4.3 Byte-Pair-Encoding
(Sennrich et al., 2016) proposed a method
to enable open-vocabulary translation of rare
and unknown words as a sequence of sub-
word units representing BPE algorithm (Gage,
1994). The input is a monolingual corpus for
a language (one side of the parallel training
data, in our case) and starts with an initial
vocabulary, the characters in the text corpus.
The vocabulary is updated using an iterative
greedy algorithm. In every iteration, the most
frequent bigram (based on the current vocabu-
lary) in the corpus is added to the vocabulary
(the merge operation). The corpus is again en-
coded using the updated vocabulary, and this
process is repeated for a predetermined num-
ber of merge operations. The number of merge
operations is the only hyperparameter of the
system that needs to be tuned. A new word
can be segmented by looking up the learnt vo-
cabulary. For instance, a new word “rocket,”
ဒံုးပျံ may be segmented as ဒ@@◌ံုး ပျံ after look-
ing up the learnt vocabulary, assuming ဒ and
◌ံုး ပျံ as BPE units learnt during the training.

5 Encoder-Decoder Models for
NMT

The core idea is to encode a variable-length
input sequence of tokens into a sequence of
vector representations, and then decode these
representations into a sequence of output to-
kens. Formally, with a given sentence X =
x1, …, xn and target sentence Y = y1, …, ym, an
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NMT system models p(Y |X) as a target lan-
guage sequence model, conditioning the prob-
ability of target word yt on target history
Y1:t−1 and source sentence X. Both xi and
yt are integer IDs given by the source and
target vocabulary mapping, Vsrc and Vtrg,
built from the training data tokens and rep-
resented as one-hot vectors xi ∈ {0, 1}|Vsrc|

and yt ∈ {0, 1}|Vtrg |. These are embed-
ded into e-dimensional vector representations
(Vaswani et al., 2017) ESxi and ET yt, us-
ing embedding matrices Re×|Vsrc| and ET ∈
Re×|Vtrg |. The target sequence is factorized
as p(Y |X; θ) =

∏m
t=1 p(yt|Y1:t−1, X; θ). The

model, parameterized by θ, consists of an en-
coder and decoder part, which vary depending
on the model architecture. p(yt|Y1:t−1, X; θ) is
parameterized via a softmax output layer over
some decoder representations S̄t:

p(yt|Y1:t−1, X; θ) = softmax(Wos̄t+bo), (1)

where Wo scales to the dimension of the target
vocabulary Vtrg.

5.1 Stacked RNN with attention
The encoder consists of a bidirectional RNN
followed by a stack of unidirectional RNNs.
An RNN at layer l produces a sequence of hid-
den states hl

1 . . . hl
n:

hl
i = fenc(hl−1

i , hl
i−1), (2)

where frnn is some non-linear function, such
as a gated recurrent unit (GRU) or long short-
term memory (LSTM) cell, and hl−1

i is the
output from the lower layer at step i. The
bidirectional RNN on the lowest layer uses em-
beddings ESxi as input and concatenates the
hidden states of a forward and a reverse RNN:
h0

i = [
−→
h0

i ;
←−
h0

i ]. With deeper networks, learn-
ing becomes increasingly difficult (Hochreiter
et al., 2001; Pascanu et al., 2012), and residual
connections of the form hl

i = hl−1
i + fenc(hl−1

i ,
hl

i−1) become essential (He et al., 2016).
The decoder consists of an RNN to predict

one target word at a time through a state vec-
tor s:

st = fdec([ET yt−1; s̄t−1], st−1), (3)
where fdec is a multilayer RNN, st−1 the

previous state vector, and s̄t−1 the source-
dependent attentional vector. Providing the
attentional vector as an input to the first de-
coder layer is also called input feeding (Lu-
ong et al., 2015). The initial decoder hidden
state is a non-linear transformation of the last

encoder hidden state: s0 = tanh(Winithn +
binit). The attentional vector s̄t combines the
decoder state with a context vector ct:

s̄t = tanh(Ws̄[st; ct]), (4)
where ct is a weighted sum of encoder hid-

den states: ct =
∑n

i=1 αtihi. The attention
vector αt is computed by an attention network
(Bahdanau et al., 2014; Luong et al., 2015):

αti = softmax(score(st, hi))

score(s, h) = v⊤
a tanh(Wus + Wvh).

(5)

5.2 Self-Attentional Transformer
The transformer model (Vaswani et al., 2017)
uses attention to replace recurrent dependen-
cies, making the representation at time step i
independent from the other time steps. This
requires the explicit encoding of positional in-
formation in the sequence by adding fixed or
learned positional embeddings to the embed-
ding vectors.

The encoder uses several identical blocks
consisting of two core sublayers: self-attention
and a feedforward network. The self-attention
mechanism is a variation of the dot-product
attention (Luong et al., 2015) generalized to
three inputs: query matrix Q ∈ Rn×d, key ma-
trix K ∈ Rn×d, and value V ∈ Rn×d, where d
denotes the number of hidden units. (Vaswani
et al., 2017) further extend attention to mul-
tiple heads, allowing for focusing on different
parts of the input. A single head u produces a
context matrix

Cu = softmax
(

QWQ
u

(
KWK

u

)T
√

du

)
VWV

u ,

(6)
where matrices WQ

u , WK
u , and WV

u are in
Rd×du . The final context matrix is given by
concatenating the heads, followed by a linear
transformation: C = [C1; . . . ; Ch]WO. The
form in Equation 6 suggests parallel computa-
tion across all time steps in a single large ma-
trix multiplication. Given a sequence of hid-
den states hi (or input embeddings), concate-
nated to H∈ Rn×d, the encoder computes self-
attention using Q = K = V = H. The second
subnetwork of an encoder block is a feedfor-
ward network with ReLU activation defined
as

FFN(x) = max(0, xW1 + b1)W2 + b2, (7)
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which is also easily parallelizable across time
steps. Each sublayer, self-attention and feed-
forward network, is followed by a postprocess-
ing stack of dropout, layer normalization, and
residual connection.

The decoder uses the same self-attention
and feedforward networks subnetworks. To
maintain auto-regressiveness of the model,
self-attention is masked out on future time
steps according to (Vaswani et al., 2017). In
addition to self-attention, a source attention
layer, which uses the encoder hidden states as
key and value inputs, is added. Given decoder
hidden states S ∈ Rm×s and the encoder hid-
den states of the final encoder layer Hl, source
attention is computed as in Equation 5 with
Q = S, K = Hl, V = Hl. As in the en-
coder, each sublayer is followed by a postpro-
cessing stack of dropout, layer normalization
(Ba et al., 2016), and residual connection.

5.3 Fully Convolutional Models
The convolutional model (Gehring et al., 2017)
uses convolutional operations and also dis-
penses with recurrence. Hence, input embed-
dings are again augmented with explicit posi-
tional encodings.

The convolutional encoder applies a set of
(stacked) convolutions that are defined as

hl
i = v(Wl[hl−1

i−⌊k/2⌋; . . . ; hl−1
i+⌊k/2⌋]+ bl)+ hl−1

i ,

(8)
where v is a non-linearity such as a gated lin-

ear unit (Gehring et al., 2017; Dauphin et al.,
2016), and Wl ∈ Rdcnn×kd are the convolu-
tional filters. To increase the context window
captured by the encoder architecture, multiple
layers of convolutions are stacked. To main-
tain sequence length across multiple stacked
convolutions, inputs are padded with zero vec-
tors.

The decoder is similar to the encoder but
adds an attention mechanism to every layer.
The output of the target side convolution

sl∗
t = v(Wl[s̄l−1

t−k+1; . . . ; s̄l−1
t ] + bl) (9)

is combined to form S∗ and then fed as an
input to the attention mechanism of Equa-
tion 6 with a single attention head and Q =
S∗, K = Hl, V = Hl, resulting in a set of
context vectors ct. The full decoder hidden
state is a residual combination with the con-
text such that

s̄l
t = sl∗

t + ct + s̄l−1
t (10)

To avoid convolving over future time steps
at time t, the input is padded to the left.

6 Experiments

6.1 Corpus Preparation and Statistics

We used 18,373 Myanmar sentences (with no
name entity tags) of the ASEAN-MT Paral-
lel Corpus (Boonkwan and Supnithi, 2013),
which is a parallel corpus in the travel do-
main. It contains six main categories: peo-
ple (greeting, introduction, and communica-
tion), survival (transportation, accommoda-
tion, and finance), food (food, beverages, and
restaurants), fun (recreation, traveling, shop-
ping, and nightlife), resource (number, time,
and accuracy), special needs (emergency and
health). Manual translation into the Rakhine
language was done by native Rakhine students
from two Myanmar universities, and the trans-
lated corpus was checked by the editor of a
Rakhine newspaper. Word segmentation for
Rakhine was done manually, and there are ex-
actly 123,018 words in total. We used 14,076
sentences for training, 2,485 sentences for de-
velopment, and 1,812 sentences for evaluation.

6.2 Moses SMT system

We used the Moses toolkit (Koehn et al.,
2007) for training the operation sequence
model (OSM) statistical machine translation
systems. We did not consider phrase-based
statistical machine translation (PBSMT) and
hierarchical phrase-based statistical machine
translation (HPBSMT), because the OSM
approach achieved the highest BLEU (Pap-
ineni et al., 2002) and RIBES (Isozaki et al.,
2010) scores among three approaches (Oo
et al., 2018) for both Myanmar-Rakhine to
Rakhine-Myanmar statistical machine trans-
lations. The word-segmented (i.e., Syllable-
BPE and Word-BPE) source language was
aligned with the word-segmented target lan-
guage using GIZA++. The alignment was
symmetrized by grow-diag-final and heuristic.
The lexicalized reordering model was trained
with the msd-bidirectional-fe option. We used
KenLM (Heafield, 2011) for training the 5-
gram language model with modified Kneser-
Ney discounting. Minimum error rate train-
ing (MERT) (Och, 2003) was used to tune
the decoder parameters, and the decoding was
done using the Moses decoder (version 2.1.1)
(Koehn et al., 2007). We used the default set-
tings of Moses for all experiments.
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Batch Size RNN Transformer CNN
my-rk rk-my my-rk rk-my my-rk rk-my

128 79.86 81.44 79.64 82.01 80.82 83.59
256 80.76 82.94 79.47 81.37 80.33 83.54
512 80.00 82.26 79.47 80.79 79.86 81.38

Table 1: BLEU scores of Syllable-BPE segmentation with different batch sizes for three NMT models

Batch Size RNN Transformer CNN
my-rk rk-my my-rk rk-my my-rk rk-my

128 60.02 44.44 72.70 72.82 69.03 72.24
256 60.31 46.47 73.39 72.45 65.61 68.26
512 42.76 34.93 73.30 72.95 67.89 71.68

Table 2: BLEU scores of Word-BPE segmentation with different batch sizes for three NMT models

Learning rate
RNN Transformer

GRU LSTM GRU LSTM
my-rk rk-my my-rk rk-my my-rk rk-my my-rk rk-my

0.0001 79.47 81.37 79.48 80.88 80.76 82.94 80.26 83.02
0.0002 79.82 81.65 82.85 82.07 80.88 81.54 80.90 82.99
0.0003 80.22 82.23 80.24 82.13 80.92 82.63 81.78 83.30
0.0004 80.65 82.66 80.85 82.33 81.25 82.54 81.92 84.06
0.0005 80.41 81.46 81.98 83.86 80.57 82.30 80.65 82.51

Table 3: BLEU scores for batch size 256 of Syllable-BPE segmentation with different learning rates and
two memory cell types on RNN and the transformer

Learning rate
Batch Size 128 Batch Size 256

ReLu Soft-ReLu ReLu Soft-ReLu
my-rk rk-my my-rk rk-my my-rk rk-my my-rk rk-my

0.0001 81.37 83.29 80.00 81.97 80.26 81.97 80.03 81.08
0.0002 81.01 82.24 79.89 82.50 80.07 82.29 80.01 81.51
0.0003 80.99 81.59 80.11 83.34 81.16 81.69 82.14 84.08
0.0004 N/A N/A N/A N/A 79.74 80.87 83.75 83.06
0.0005 N/A N/A N/A N/A 79.05 82.43 81.44 83.31

Table 4: BLEU scores for batch sizes 128 and 256 of Syllable-BPE segmentation with different learning
rates and two activation functions on CNN

Segmentation OSM RNN Transformer CNN
my-rk rk-my my-rk rk-my my-rk rk-my my-rk rk-my

Syllable-BPE 82.71 84.36 82.03 83.98 82.85 82.65 83.75 84.08
Word-BPE 77.12 75.27 60.31 46.47 73.39 72.95 69.03 72.24

Table 5: Comparison of SMT and NMT (top BLEU scores) on two segmentation schemes

6.3 Framework for NMT

An open-source sequence-to-sequence toolkit
for NMT written in Python (Hieber et al.,
2017) and built on Apache MXNET (Chen
et al., 2015), the toolkit offers scalable train-
ing and inference for the three most prominent
encoder-decoder architectures: attentional
recurrent neural network (Schwenk, 2012;

Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014b), self-attentional transformers
(Vaswani et al., 2017), and fully convolutional
networks (Gehring et al., 2017).

6.4 Training Details
We used the Sockeye toolkit, which is based
on MXNet, to train NMT models. The ini-
tial learning rate is set to 0.0001. If the per-
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formance on the validation set has improved
for 8 checkpoints, the learning rate is multi-
plied by 32 checkpoints. All the neural net-
works have eight layers. For RNN Seq2Seq,
the encoder has one bi-directional LSTM and
six stacked unidirectional LSTMs, and the en-
coder is a stack of eight unidirectional LSTMs.
The size of hidden states is 512. We apply
layer-normalization and label smoothing (0.1)
in all models. We tie the source and target em-
beddings. The dropout rate of the embeddings
and transformer blocks is set to (0.1). The
dropout rate of RNNs is (0.2). The attention
mechanism in the transformer has eight heads.

We applied three different batch sizes (128,
256, and 512) for RNN, Transformer, and
CNN network architectures. The learning rate
varies from 0.0001 to 0.0005. Two memory
cell types GRU and LSTM were used for the
RNN and transformer. Moreover, two activa-
tion functions were applied to the CNN ar-
chitecture. The comparison between Syllable-
BPE and Word-BPE segmentation schemes
was done for both SMT (i.e., OSM) and NMT
(RNN, Transformer, and CNN) techniques.
All experiments are run on NVIDIA Tesla
K80 24GB GDDR5. We trained all mod-
els for the maximum number of epochs us-
ing the AdaGrad and adaptive moment esti-
mation (Adam) optimizer. The BPE segmen-
tation models were trained with a vocabulary
of 8,000.

6.5 Evaluation
We used automatic criteria to evaluate the ma-
chine translation output. The metric BLEU
(Papineni et al., 2002) measures the adequacy
of the translation between language pairs, such
as Myanmar and English. The Higher BLEU
scores are better. Before computing BLEU,
the translations were decomposed into their
constituent syllables to ensure that the results
are cross-comparable.

7 Results and Discussion
The BLEU score results for three NMT
approaches (RNN, Transformer, and CNN)
with three batch sizes (128, 256, and 512)
for Syllable-BPE segmentation scheme are
shown in Table 1. Bold numbers indi-
cate the highest BLEU score among differ-
ent batch sizes. CNN achieved the high-
est BLEU scores for both Myanmar-Rakhine
and Rakhine-Myanmar translations. How-
ever, the transformer architecture achieved
the top BLEU scores for Word-BPE segmen-
tation schemes for both Myanmar-Rakhine

and Rakhine-Myanmar neural machine trans-
lations (see Table 2).

From the experimental results of Table 1
and Table 2, we noticed that RNN and Trans-
former NMT with Syllable-BPE have a de-
creased translation performance for batch size
512. Thus, we used batch size 256 for fur-
ther experiments with the RNN and trans-
former architectures. The NMT performance
of the RNN and transformer with Syllable-
BPE segmentation schemes together with dif-
ferent learning rates (from 0.0001 to 0.0005)
and two different memory cell types (GRU and
LSTM) can be seen in Table 3. From these
BLEU scores of the RNN and transformer ap-
proaches, LSTM gave the highest NMT per-
formance for both Myanmar-Rakhine dialect
translation and vice versa.

To observe the maximum translation per-
formance of CNN architecture, we extended
experiments by using two activation functions
(ReLu and Soft-ReLu), two batch sizes (128
and 256), and five learning rates (from 0.0001
to 0.0005) (see Table 4). Here, bold num-
bers indicate the highest BLEU scores of each
batch size. From these results, we can clearly
see that Soft-ReLu achieved the highest BLEU
scores for both Myanmar to Rakhine and
Rakhine to Myanmar translations. We found
that the training processes with learning rate
0.0004 and 0.0005 were stopped for the batch
size 128 for both ReLu and Soft-ReLu activa-
tion functions.

We also made a comparison between SMT
and NMT, and the results can be seen in Ta-
ble 5. In this study, we run only OSM ap-
proach for the SMT experiments based on the
our previous SMT work (Oo et al., 2018). The
Table 5 presents that although CNN achieved
the top BLEU score (83.75) for Myanmar
to Rakhine translation, OSM gave the best
BLEU (84.36) score for Rakhine to Myanmar
translation. Furthermore, we also found that
Syllable-BPE segmentation scheme is working
well for both SMT and NMT for Myanmar-
Rakhine dialect language pair.

As shown in the experimental results of Ta-
ble 1 to Table 5, our dialect NMT experiments
give significantly higher BLEU scores than
other SMT on different language pairs such
as Myanmar-Chinese, Myanmar-German,
Myanmar-Japanese, Myanmar-Malaysian,
Myanmar-Korean, Myanmar-Spanish,
Myanmar-Thai, Myanmar-Vietnamese (Thu
et al., 2016), and also for NMT on Myanmar-
English (Sin and Soe, 2018). As we discussed
in Section 3, Rakhine and Myanmar have the
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same word order of SOV and also share a lot
of vocabulary. For these reasons, we assume
that both SMT and NMT systems reach a
very high machine translation performance.

8 Conclusion
This paper presents the first study of the
neural machine translation between Stan-
dard Myanmar and Rakhine (a spoken Myan-
mar dialect). We implemented three promi-
nent NMT systems: RNN, transformer, and
CNN. The systems were evaluated on a
Myanmar-Rakhine parallel text corpus that
we are developing. We also investigated
two types of segmentation schemes (Word-
BPE segmentation and Syllable-BPE seg-
mentation). Our results clearly show that
the highest performance of SMT and NMT
was obtained with Syllable-BPE segmenta-
tion for both Myanmar-Rakhine and Rakhine-
Myanmar translation. If we only focus on
NMT, we find that the transformer with
Word-BPE segmentation outperforms CNN
and RNN for both Myanmar-Rakhine and
Rakhine-Myanmar. We also find that CNN
with syllable-BPE segmentation obtains a
higher BLEU score compared with the RNN
and transformer. In the near future, we plan
to conduct a further study with a focus on
NMT models with one more subword segmen-
tation scheme SentencePiece for Myanmar-
Rakhine NMT. Moreover, we intend to inves-
tigate SMT and NMT approaches for other
Myanmar dialect languages, such as Myeik
and Dawei.
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Abstract

This article introduces a corpus of cuneiform
texts from which the dataset for the use of
the Cuneiform Language Identification (CLI)
2019 shared task was derived as well as
some preliminary language identification ex-
periments conducted using that corpus. We
also describe the CLI dataset and how it was
derived from the corpus. In addition, we pro-
vide some baseline language identification re-
sults using the CLI dataset. To the best of
our knowledge, the experiments detailed here
represent the first time that automatic lan-
guage identification methods have been used
on cuneiform data.

1 Introduction

We have compiled a corpus of cuneiform texts
intended to be used in language identification
experiments. As the basis for our corpus, we
used the Open Richly Annotated Cuneiform Cor-
pus (Oracc).1 In Oracc, the texts are stored in
transliterated form. We created a tool, Nuolenna,
which can transform the transliterations back to
the cuneiform script. Selecting all monolingual
lines from Oracc and transforming the translitera-
tions into cuneiform, we created a new corpus for
Sumerian and six Akkadian dialects.

This corpus was used in the initial experiments
where the possibility of language identification in
cuneiform texts was verified. In this paper, we
report some of the results from the initial experi-
ments. To the best of our knowledge, this is the
first time that automatic language identification
methods have been used on cuneiform data. The
methods we use for language identification utilize
mainly character n-grams and their observed prob-
abilities in text.

1[http://oracc.museum.upenn.edu]

For the use of the Cuneiform Language Identi-
fication (CLI) 2019 shared task2, we extracted a
dataset from the corpus. The dataset is divided
into training, development, and test portions to
be used in the CLI shared task which is part of
the third VarDial Evaluation Campaign. We im-
plemented four baseline language identifiers and
evaluated their performance using the CLI dataset.
The results of the evaluation are presented here.

2 Related work

So far, no research into language identification
using cuneiform texts has been openly reported.
Language identification studies involving other
contemporary scripts, such as Egyptian hiero-
glyphs, also seem to be non-existent.

2.1 Cuneiform script and computational
methods

In this section, we survey some of the research
where computational methods related to language
identification have been used with the cuneiform
script.

Kataja and Koskenniemi (1988) discuss the de-
scription and computational implementation of
phonology and morphology for Akkadian. They
give examples of the rules in two-level formalism
they used with the TWOL rule compiler (Kart-
tunen et al., 1987).

Barthélemy (1998) developed and tested a mor-
phological analyzer for Akkadian verbal forms.
The analyzer works with Akkadian represented in
Latin encoding (transcription).

Tablan et al. (2006) describe their project,
which aims to create a tool for automatic morpho-
logical analysis of Sumerian.

2[https://sites.google.com/view/
vardial2019/campaign]
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Among several languages, Rao et al. (2009) an-
alyzed Sumerian written in cuneiform using con-
ditional entropy to compare it with the Indus
script. Normalized entropy of sign n-grams be-
tween the two scripts was used as further evidence
to indicate the possible linguistic content of the
texts written in the Indus script.

Ponti et al. (2013) used the K-means clustering
algorithm to cluster transliterated cuneiform texts.
The texts analyzed were 51 Old Babylonian let-
ters from Tell Harmal/Šaduppûm. Term frequency
(TF) and term frequency - inverse document fre-
quency (TF-IDF) weighted words were used as
features with the clustering methods. Each doc-
ument was depicted as a feature vector with the
length of the whole vocabulary. In K-means, the
number of clusters has to be given before the al-
gorithm is applied and Ponti et al. (2013) experi-
mented with 2 to 15 clusters.

Luo et al. (2015) describe an unsupervised
Named-Entity Recognition (NER) system for
transliterated Sumerian. They compared the use
of different lengths of transliterated word n-grams
in combination with the Decision List CoTrain al-
gorithm, and their evaluations show that word bi-
grams obtain the highest F1-score. In another ar-
ticle (Liu et al., 2015), they describe how they
managed to find unannotated personal names in
a corpus and suggest that the NER system could
be used as an automated tool for the annotation
task. Liu et al. (2016) continue the NER research
on Sumerian using a variety of supervised classifi-
cation methods to detect named entities.

Homburg and Chiarcos (2016) researched auto-
mated word segmentation of Akkadian cuneiform
script. They used a sign list to restore CDLI3

transliterations back to cuneiform (represented as
UTF-8 characters). This is the only related work
we are aware of in which cuneiform texts encoded
in Unicode cuneiform have been processed previ-
ous to our experiments.

Pagé-Perron et al. (2017) present a project ded-
icated to creating a pipeline for Sumerian texts.
The pipeline is planned to take in transliterated
Sumerian and to produce POS tag annotations and
lemmatization as well as machine translation into
English. Chiarcos et al. (2018) further describe the
work done in the project.

In order to measure inter-textual relations, Mon-

3Cuneiform Digital Library Initiative [https:
//cdli.ucla.edu]

roe (2018) calculated the cosine similarity be-
tween word vectors consisting of transliterated
Late Babylonian words.

Svärd et al. (2018) used Pointwise Mutual Infor-
mation (PMI) to find collocations and associations
between words and word2vec to highlight paradig-
matic relationships of the words of interest. They
used transliterated and lemmatized Akkadian texts
from Oracc.

2.2 Language identification in texts

Automatic language identification is the task of
determining the language of a piece of text from
the clues in the text itself. The computational
methods used in language identification vary from
simple wordlists to state-of-the-art deep learning
methods. A recent comprehensive survey on lan-
guage identification was conducted by Jauhiainen
et al. (2018c). Language identification for long
texts in well-resourced languages is not a difficult
task, but it becomes increasingly more challenging
when we target short, fragmentary, and multilin-
gual texts in languages where the amount of train-
ing material is severely restricted. A separate chal-
lenge for language identification is dealing with
closely related languages or with several dialects
of an individual language. The challenge of dis-
criminating between closely related languages has
been investigated in a series of shared tasks that
have been organized as part of VarDial workshops
(Zampieri et al., 2014, 2015; Malmasi et al., 2016;
Zampieri et al., 2017, 2018).

3 Cuneiform texts in Oracc

Our data comes from the Open Richly Annotated
Cuneiform Corpus (Oracc). Oracc is an inter-
national cooperative effort containing free online
editions of cuneiform texts from various projects.4

Oracc is one of the largest electronic corpora of
Sumerian and Akkadian texts, and it is regularly
updated. Our data is a snapshot of Oracc from
October 2016 from XML files downloaded with
the permission of the site administrators. The
data is comprised of 13,662 separate texts, most
of which were originally written on clay tablets.
Some of the texts are duplicates, and before the
language identification we removed the duplicates
of texts with identical Oracc identification num-
bers. This procedure removes modern duplicates

4[http://oracc.museum.upenn.edu/doc/
about/aboutoracc/index.html]
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which have come into existence because a sin-
gle text has been edited in several Oracc projects.
Those duplicates that have different numbers and
are thus different ancient manuscripts were not re-
moved. Cuneiform writing does not mark the end
of a sentence, and this is not indicated in the XML
files either. Our data can, hence, be divided either
into lines or texts with one or more lines. Oracc
also contains some texts or words written in lan-
guages other than Sumerian and Akkadian, such
as Hittite, Ugaritic, and Greek, but their number is
so small that they were left out of this research.

The metadata of the texts in Oracc contains in-
formation about, for example, the provenance (the
locality where the text was found), the genre, the
time period in which the text was written, and so
forth. The basic units in Oracc XML files are
the transliterations of words, which are represen-
tations of the cuneiform signs in Latin script and
which are given even if nothing else is stated about
the words. Some of the cuneiform signs have,
however, been broken off or are otherwise unread-
able on the original tablets. In those cases, the
word in question, or part of it, is replaced with an
’x’ in the transliteration. The metadata of a word
usually indicates its language, and some of the
projects have also provided the cuneiform signs
for each syllable or word of the transliteration.

The data contains many bilingual documents
written in Sumerian and Akkadian. These docu-
ments often have the same text in both languages,
sometimes on the same line.

3.1 Sumerian and Akkadian

Sumerian and Akkadian are ancient languages
which were spoken and written primarily in
Mesopotamia, present-day Iraq (Michalowski,
2004; Kouwenberg, 2011). Both languages
were written in cuneiform script, but they are
not related, Sumerian being a language isolate
and Akkadian an East Semitic language. The
cuneiform script was originally logographic in
essence, then syllabic sign values were introduced
to facilitate writing Sumerian, and only later was
the script adapted for Akkadian. Consequently,
some features of the cuneiform writing system
are not ideal for Akkadian and many logograms
are used side by side with syllabic spellings of
Akkadian words (for further information see Seri,
2010).

Sumerian was one of the first languages ever

written, and the oldest texts survive from the turn
of the fourth and third millennia before the Com-
mon Era (BCE). Akkadian replaced Sumerian as
the spoken language during the late third and early
second millennia BCE, but Sumerian was used as
a liturgical and scholarly language until the end
of the cuneiform tradition at the beginning of the
Common Era.

Written Akkadian is known from circa 2400
BCE onwards until the first century CE. The
Akkadian language had two main dialects, As-
syrian and Babylonian, both of which are present
in our data. Assyrian was used in northern
Mesopotamia and Babylonian in the south. There
is written evidence for the simultaneous use of
these dialects for 1,400 years, and both of them
changed over time. The dialects are, hence, fur-
ther divided into varieties designated as Old, Mid-
dle, and Neo-Assyrian and Old, Middle, and Neo-
Babylonian. There was also a literary variety
called Standard Babylonian which was used by
both Assyrian and Babylonian scribes to write
texts in certain genres. In Oracc, Middle-
Babylonian is, furthermore, divided into the di-
alect spoken in Mesopotamia proper and the one
spoken outside Mesopotamia. The latter, referred
to as Middle Babylonian peripheral, is not a coher-
ent dialect but varies somewhat from site to site.
After Assyrian ceased to be a written language
around 600 BCE, a variety called Late Babylonian
was written for some 700 years. The differences
between the dialects and their varieties are rela-
tively small, and after learning a variety one can
read the other dialect and varieties as well. In the
Oracc metadata, the different dialects and varieties
are given for Akkadian words in most cases.

4 Cuneiform representation in Unicode

The effort to provide a standard encoding for
cuneiform began in 1999 at Johns Hopkins Uni-
versity as the Initiative for Cuneiform Encoding
(ICE). The initiative ended up with an approved
proposal for cuneiform Unicode in 2004 (officially
accepted into Unicode 5.0 in 2006).5 The final
list of cuneiform signs included is a combination
of work done earlier at the University of Chicago,
Universität Göttingen, and the University of Cali-
fornia, Los Angeles (Cohen et al., 2004).

5The Unicode Standard Version 11.0 Core Specifi-
cation [http://www.unicode.org/versions/
Unicode11.0.0/appC.pdf]
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In the current Unicode standard, there are
three blocks of cuneiform signs for the “Sumero-
Akkadian” script. The first one is the block
covering the base cuneiform signs ranging from
U+12000 to U+123FF. The second block, from
U+12400 to U+1247F, covers the cuneiform punc-
tuation and numerals and the third, from U+12480
to U+1254F, is an extension containing additional
signs for the Early Dynastic period. Unicode has
only one character for each sign, even though the
signs evolved through the ages. The different ways
of writing the signs could be used to determine the
language or dialect used or the time period of writ-
ing.

The cuneiform texts from the Oracc corpus
we use in this research were provided primarily
as transliterations using the ASCII Transliteration
Format (ATF). ATF was first defined by CDLI and
is a standardized way of electronically transliter-
ating cuneiform, following the conventions used
by cuneiform scholars in general (Koslova and
Damerow, 2003). The data from the Oracc cor-
pus is also available as JSON files in an “XCL”
format (Tinney and Robson, 2018)6, which in-
cludes a similar XML representation of the data
as the CDLI archival XML format (Koslova and
Damerow, 2003). We extracted the individual sign
transliterations in Unicode ATF from the XML
representation and recreated the transliteration for
each line.

There was no available software to automat-
ically transform the transliterations to Unicode
cuneiform. As part of Oracc, there is a facil-
ity called “Cuneify,” which can be used online to
transform ATF into Unicode cuneiform.7 How-
ever, it is not possible to download the software
and it does not handle the Unicode ATF translit-
eration. In order to generate the original lines
in cuneiform, we implemented a program called
“Nuolenna” which takes in the transliteration gen-
erated from the XML files and re-produces the
lines in Unicode cuneiform.8 The Nuolenna pro-
gram uses a list9 of over 11,000 transliteration-
sign pairs. As the base for our sign list, we used
a JSON export from the Oracc Global Sign List

6[http://oracc.museum.upenn.edu/doc/
opendata/]

7[http://oracc.museum.upenn.edu/doc/
tools/cuneify/index.html]

8[https://github.com/tosaja/Nuolenna]
9[https://github.com/tosaja/Nuolenna/

blob/master/sign_list.txt]

(OGSL)10 provided by Niek Veldhuis, to which
we added some missing signs. In order to produce
the original cuneiform lines, the program uses ad
hoc rules to remove any additional annotations re-
lated to the signs. For example, sometimes an
older or more precise reading can be found within
parentheses directly after the reading of a sign. In
such cases, we just remove the parentheses and
anything between them.

5 Preliminary language identification
experiments

To find out to what extent identifying the language
of cuneiform text is possible, we performed initial
language identification experiments using a state-
of-the-art language identification method called
HeLI (Jauhiainen et al., 2016). The HeLI method
has recently fared well in VarDial shared tasks for
Swiss-German dialect and Indo-Aryan language
identification (Jauhiainen et al., 2018a,b). The ex-
periments were conducted on individual lines as
well as texts spanning several lines.

5.1 Corpus for the preliminary experiments

In Oracc, the transliterated words are separated by
whitespaces, which is not the case in the original
documents. In order to mimic the original docu-
ments, we removed all the whitespaces from each
line of cuneiform text. We also ignored any com-
pletely broken signs, which were marked with an
’x’.

The individual words in Oracc are tagged with
language or dialect information, and sometimes a
single line includes words in different languages
or dialects. As we set out to do language iden-
tification on monolingual texts, we used all those
lines which had words in only one language, leav-
ing out multilingual lines. The language tagging
in Oracc is not always precise, and therefore some
lines in our dataset might still include several lan-
guages.

In the preliminary experiments, we experi-
mented with the language identification of both
monolingual lines and monolingual texts span-
ning several lines with the information about line
breaks retained. Mostly, each text had the lines of
one original document, but if the document was
multilingual, it was divided into different texts ac-
cording to the languages attested.

10[http://oracc.museum.upenn.edu/ogsl/]
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We left out the Akkadian varieties of Old and
Middle Assyrian as the number of lines avail-
able for those dialects was less than 1,000. We
had datasets in the Sumerian language as well
as the Akkadian varieties of Old Babylonian,
Middle Babylonian peripheral, Standard Babylo-
nian, Neo-Babylonian, Late Babylonian, and Neo-
Assyrian. The statistics of the corpus used in the
preliminary experiments are shown in Table 1.

We were interested in experimenting in both in-
domain and out-of-domain test settings as well as
with language identification on two different lev-
els: individual lines and texts. In supervised ma-
chine learning, the testing data is in-domain if it
is similar to the training data. For example, if sen-
tences are from texts that belong to the same genre
or collection they are considered more in-domain
than if they are not. An even stronger in-domain
case is if the sentences are from the same text.
Classification of test data which is in-domain with
the training data is usually much easier than when
it is out-of-domain. The texts in the Oracc export
were in the order11 of “projects,” which are col-
lections of texts that have some common theme.
The texts in different projects can be considered to
be more out-of-domain with each other than those
from the same project. The projects from which
the texts were extracted are listed in Table 2.

From this corpus, we generated four different
test settings. For the out-of-domain experiments,
we divided the corpus so that we used the first half
of the corpus for training and the second half was
divided between development and testing. For the
in-domain experiments, we divided the corpus into
parts of 20 lines or texts and took the 10 first lines
or texts from each part for training, the next 5 for
development, and the last 5 for testing. We, thus,
ended up with four different datasets,12 two for
lines and two for texts. Each of the datasets had
50% of the material for training, 25% for develop-
ment, and 25% for testing.

5.2 Results of the preliminary experiments
The HeLI method is a supervised-learning lan-
guage identification method where the language
models are created from a correctly tagged train-
ing corpus. The language models consist of words
and sign (character) n-grams. When n-grams are
extracted from a corpus, the number of unique n-

11The projects were in the alphabetical order by their ab-
breviations.

12See Table 3.

grams is higher the longer the n-grams are. The ac-
tual number of occurrences of the longer n-grams
is lower than the shorter n-grams. The exact op-
timal value for n depends on, among many other
variables, the size of the training corpus, the length
of the text to be identified, and the repertoire of
the languages considered. Sometimes the longer
n-grams could carry important information even
though they are seldom found in the text to be
identified. The basic idea in the HeLI method is
to score individual words using the longest length
n-grams possible. For each individual language,
the words are scored first, after which the whole
text gets the average score of the individual words.
In the case of cuneiform text, as it is not divided
into words, we use just sign n-grams and consider
a line of text as a word as far as the HeLI method
is concerned.

The individual words, or in this case lines, are
scored by taking the average score of the found
n-grams. Using the notation introduced by Jauhi-
ainen et al. (2018c), the individual n-grams f
found from the line to be tested, get a score R as
in Equation 1:

RHeLI(g, f) = − log10
c(Cg, f)

lCF
g

(1)

where c(Cg, f) is the count of the feature f in the
training corpus Cg of the language g and lCF

g
is the

total number of occurrences of all the n-grams of
the same length in the training corpus. As smooth-
ing, in case the count of a feature is zero in some
languages, this version of the HeLI method uses a
score RHeLI(g, f) for the count of one multiplied
by a penalty multiplier.

Using the development sets, we optimized the
sign n-gram range and the penalty multiplier for
each setting individually. The results of these ex-
periments are presented in Table 3. As the per-
formance measure, we use the F1-score which is
the harmonic mean of precision and recall. The
results clearly show how the task of identifying a
single line is much harder than that of a complete
text. The task of out-of-domain identification is
also clearly more difficult than that of in-domain,
as was expected.

Quite many of the misclassified lines were very
short; many consisted only of one sign and were
truly ambiguous and often present in different di-
alects and even languages. Nevertheless, it was
still possible to attain reasonably good language
identification results. The hardest test setting was
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Language or Dialect (abbreviation in the CLI dataset) Texts Lines Signs
Sumerian (SUX) 5,000 107,345 c. 400,000
Old Babylonian (OLB) 527 7,605 c. 65,000
Middle Babylonian peripheral (MPB) 365 11,015 c. 95,000
Standard Babylonian (STB) 1,661 35,633 c. 390,000
Neo-Babylonian (NEB) 1,212 19,414 c. 200,000
Late Babylonian (LTB) 671 31,893 c. 260,000
Neo-Assyrian (NEA) 3,570 65,932 c. 490,000

Table 1: Number of texts, lines, and signs for each language or variety in the corpus.

Project (abbreviation used in Oracc) SUX OLB MPB STB NEB LTB NEA
Bilinguals in Late Mesopotamian Scholarship (blms) x x x
CAMS/Anzu (cams-anzu) x
CAMS/Barutu (cams-barutu) x x
CAMS/The Standard Babylonian Epic of Etana (cams-etana) x x
CAMS/Geography of Knowledge Corpus (cams-gkab) x x x x
CAMS/Ludlul (cams-ludlul) x
CAMS/Seleucid Building Inscriptions (cams-selbi) x
Cuneiform Commentaries Project on ORACC (ccpo) x x
Corpus of Kassite Sumerian Texts (ckst) x x
The Amarna Texts (contrib-amarna) x x
Cuneiform Texts Mentioning Israelites, Judeans ... (ctij) x x x
Lexical Texts in the Royal Libraries at Nineveh (dcclt-nineveh) x x
Reading the Signs (dcclt-signlists) x x
Digital Corpus of Cuneiform Lexical Texts (dcclt) x x x x
Digital Corpus of Cuneiform Mathematical Texts (dccmt) x x x
Electronic Text Corpus of Sumerian Royal Inscriptions (etcsri) x
Corpus of Glass Technological Texts (glass) x
Hellenistic Babylonia: Texts, Iconography, Names (hbtin) x
Law and Order: Cuneiform Online Sustainable Tool (lacost) x
Old Babylonian Model Contracts (obmc) x
Old Babylonian Tabular Accounts (obta) x x
The Inscr. of the Second Dynasty of Isin (ribo-babylon2) x
The Inscr. of the Period of the Uncertain Dynasties (ribo-babylon6) x
Rim-Anum: The House of Prisoners (rimanum) x x
The Correspondence of Sargon II, Part I (saao-saa01) x
Neo-Assyrian Treaties and Loyalty Oaths (saao-saa02) x x x
Court Poetry and Literary Miscellanea (saao-saa03) x x
Queries to the Sungod (saao-saa04) x
The Correspondence of Sargon II, Part II (saao-saa05) x
Legal Trns. of the Royal Court of Nineveh, Part I (saao-saa06) x
Imperial Administrative Records, Part I (saao-saa07) x
Astrological Reports to Assyrian Kings (saao-saa08) x x x
Assyrian Prophecies (saao-saa09) x
Letters from Assyrian and Babylonian Scholars (saao-saa10) x x x
Imperial Administrative Records, Part II (saao-saa11) x
Grants, Decrees and Gifts of the Neo-Assyrian Period (saao-saa12) x
Letters from Assyrian and Babylonian Priests to ... (saao-saa13) x x
Legal Trns. of the Royal Court of Nineveh, Part II (saao-saa14) x
The Correspondence of Sargon II, Part III (saao-saa15) x
The Political Correspondence of Esarhaddon (saao-saa16) x
The Neo-Babylonian Correspondence of Sargon and ... (saao-saa17) x
The Babylonian Correspondence of Esarhaddon and ... (saao-saa18) x
The Correspondence of Tiglath-Pileser III and ... (saao-saa19) x x

Table 2: The list of Oracc projects from which the texts in the corpus were collected.

where the language of individual out-of-domain
lines was to be identified. To us, this seemed to be
the most interesting and relevant setting to be used
in the CLI shared task, especially if we leave out
the extremely short and possibly ambiguous lines.

6 The CLI shared task

The CLI shared task 2019, part of the third VarDial
Evaluation Campaign, focused on discriminat-
ing between languages and dialects written with
cuneiform signs. The task included two different
languages: Sumerian and Akkadian. Furthermore,
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Type of setting n-gram range F1
Lines, out-of-domain 1–3 60
Lines, in-domain 1–3 72
Texts, out-of-domain 1–4 84
Texts, in-domain 1–3 93

Table 3: The F1-scores attained by the HeLI method
in the preliminary experiments.

Language or Dialect Training
Sumerian 53,673
Old Babylonian 3,803
Middle Babylonian peripheral 5,508
Standard Babylonian 17,817
Neo-Babylonian 9,707
Late Babylonian 15,947
Neo-Assyrian 32,966

Table 4: Number of lines for each language or dialect
in the training set provided during the VarDial 2019
Evaluation Campaign.

the Akkadian language was divided into six di-
alects: Old Babylonian, Middle Babylonian pe-
ripheral, Standard Babylonian, Neo-Babylonian,
Late Babylonian, and Neo-Assyrian. First, we
explain how the dataset for the shared task was
constructed from the corpus described earlier, and
then we present the baseline language identifiers
and the results we attained using them.

6.1 The dataset for the shared task
For the CLI task, we created a separate, especially
tailored dataset. The participants were given texts
for training and development and separate texts
were given for testing at the end of the campaign.
The training set was exactly the same as the one
we used in the preliminary experiments13 and the
number of lines in the training portion for each
language or dialect is shown in Table 4.

For the CLI development and test sets, we per-
formed some further operations. The original
datasets included duplicate lines, so we first re-
moved all duplicates. Then we filtered out all lines
shorter than three characters. After these opera-
tions, the smallest sets were those of Old Baby-
lonian including 668 lines in the development set
and 985 lines in the test set. As we wanted to
make the development and the test sets equal in
size between languages and dialects, we randomly
selected the same number of lines from the other
languages. Thus, in the CLI task, the development
sets for each language consisted of 668 lines and

13In the out-of-domain individual line identification test
setting.

the test sets of 985 lines.

6.2 Baseline experiments

We used four of the methods described in the sur-
vey by Jauhiainen et al. (2018c) to implement
baseline language identifiers for the CLI task.
As features, we used sign n-grams of different
lengths.

The first method is called simple scoring. In
simple scoring, all the n-grams generated from the
line to be identified M are compared to the lan-
guage models and for each n-gram found in a lan-
guage model dom(O(Cg)), the score R of the lan-
guage g is increased by one. The language gain-
ing the highest score is selected as the predicted
language. Jauhiainen et al. (2018c) formulate the
method as in Equation 2:

Rsimple(g,M) =

l
MF∑

i=1

{
1 , if fi ∈ dom(O(Cg))
0 , otherwise

(2)

where lMF is the number of individual features in
the line M and fi is its ith feature.

The second method is the sum of relative fre-
quencies where relative frequencies are added to
the score of the language. Jauhiainen et al. (2018c)
formulate the method as in Equation 3:

Rsum(g,M) =

l
MF∑

i=1

c(Cg, fi)

lCF
g

(3)

where c(Cg, fi) is the count of the feature fi in the
training corpus.

The third method is the product of relative fre-
quencies where the relative frequencies are multi-
plied together. Jauhiainen et al. (2018c) formulate
the method as in Equation 4:

Rprod(g,M) =

l
MF∏

i

c(Cg, fi)

lCF
g

(4)

The actual implementation adds together nega-
tive logarithms of the relative frequencies, which
produces results with the same ordering. As a
smoothing value, we used the negative logarithm
of a comparably small relative frequency. The ac-
tual value was optimized using the development
set. The product of relative frequencies differs
from the HeLI method (Equation 1) in that it al-
ways uses the full range of available feature types
(different length n-grams), as opposed to the HeLI
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Method n-gram range F1 dev F1 test
Prod. of rel. freq. 1–4 0.7263 0.7206
Voting Ensemble 0.7222 0.7163
HeLI 1–3 + lines 0.7171 0.7061
Simple scoring 1–10 0.6656 0.6554
Sum of rel. freq. 3–15 0.5984 0.6016

Table 5: The macro F1-scores attained by the baseline
methods with the CLI dataset.

method, which uses only the longest length n-
grams applicable.

The fourth method is a majority-voting-based
ensemble of the three previous methods.

The parameters and the best possible language
models are determined by training the identifier
using the training set and evaluating its perfor-
mance on the development set. Once the best pa-
rameters are decided, the texts in the development
set can also be added to the training set for the
final evaluation against the test set. We used the
macro F1-score as the measure for language iden-
tification performance. For each of the methods,
we evaluated all possible sign n-gram ranges from
1 to 15 using the development set. Table 5 shows
the results for all the methods using parameters
optimized with the development set. In the vot-
ing ensemble, we used the best parameters for the
methods from the individual experiments, and in
case of a tie, the result from the product of relative
frequencies was used.

The product of relative frequencies method is
clearly superior to the other two basic meth-
ods with an F1-score of 0.7206 using 2.0 as the
smoothing value and sign n-grams from one to
four. Adding the prediction information from the
other two methods in the form of a voting ensem-
ble also fails to improve the result. The F1-score
achieved when using the HeLI method does not
reach the one from the product of relative frequen-
cies method either. The F1-score gained by the
HeLI method is clearly higher than the score at-
tained in the preliminary experiments, which was
as expected, as we had filtered out some of the
most difficult cases.

Table 5 is a confusion matrix displaying the ex-
act number of identifications. The diagonal values
represent correct identifications. Standard Baby-
lonian and Neo-Babylonian were the most difficult
varieties to distinguish, mostly being erroneously
identified as each other. Late Babylonian was the
easiest to identify, with a recall of over 96%.

Lang. LTB MPB NEA NEB OLB STB SUX
LTB 947 6 9 34 13 25 8
MPB 3 858 51 94 84 69 55
NEA 6 26 780 185 26 148 26
NEB 4 19 81 535 30 160 30
OLB 3 22 12 16 736 47 110
STB 17 35 30 113 43 491 101
SUX 5 19 22 8 53 45 655

Table 6: Confusion matrix for the product of relative
frequencies method. The rows indicate the actual lan-
guages and the columns indicate predicted languages.
Correct identifications are emphasized.

7 Conclusions and future work

In this paper, we have shown that it is possible
to perform language and dialect identification in
cuneiform texts encoded in Unicode characters.
We have created a dataset to be used in the Var-
Dial Evaluation campaign and evaluated the per-
formance of four baseline identifiers using the
dataset.

Some sizeable Oracc projects were left out of
the corpus, for example the “Royal Inscriptions of
the Neo-Assyrian Period” project, as the exact di-
alect of the Akkadian language had not been anno-
tated. Furthermore, for the same reason, only the
lines in Sumerian could be used from the “Royal
Inscriptions of Babylonia online (RiBo)” project.
We believe that automatic dialect identification
could be useful in making the annotations more
detailed and are planning to provide this kind of
automatically deduced information as part of the
Korp version of Oracc.14

Some other avenues for further work are lan-
guage set identification for the multilingual texts,
as well as unsupervised clustering of data without
any predefined languages.
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Abstract

Linguistic Code Switching (CS) is a phe-
nomenon that occurs when multilingual speak-
ers alternate between two or more lan-
guages/dialects within a single conversation.
Processing CS data is especially challeng-
ing in intra-sentential data given state-of-the-
art monolingual NLP technologies since such
technologies are geared toward the process-
ing of one language at a time. In this paper,
we address the problem of Part-of-Speech tag-
ging (POS) in the context of linguistic code
switching (CS). We explore leveraging mul-
tiple neural network architectures to measure
the impact of different pre-trained embeddings
methods on POS tagging CS data. We in-
vestigate the landscape in four CS language
pairs, Spanish-English, Hindi-English, Mod-
ern Standard Arabic- Egyptian Arabic dialect
(MSA-EGY), and Modern Standard Arabic-
Levantine Arabic dialect (MSA-LEV). Our re-
sults show that multilingual embedding (e.g.,
MSA-EGY and MSA-LEV) helps closely re-
lated languages (EGY/LEV) but adds noise to
the languages that are distant (SPA/HIN). Fi-
nally, we show that our proposed models out-
perform state-of-the-art CS taggers for MSA-
EGY language pair.

1 Introduction

Code Switching (CS) is a common linguistic be-
havior where two or more languages/dialects are
used interchangeably in either spoken or written
form. CS is typically present at various levels
of linguistic structure: across sentence bound-
aries (i.e., inter-sentential), within the same utter-
ances, mixing two or more languages (i.e., intra-
sentential), or at the words/morphemes level. The
CS phenomenon is noticeable and common in
countries that have large immigrant groups, nat-
urally leading to bilingualism. Typically peo-
ple who code switch master two (or more) lan-

guages: a common first language (lang1) and an-
other prevalent language as a second language
(lang2). The languages could be completely dis-
tinct such as Mandarin and English, or Hindi and
English, or they can be variants of one another
such as in the case of Modern Standard Arabic
(MSA) and Arabic regional dialects (e.g. Egyptian
dialect-EGY). CS is traditionally prevalent in the
spoken modality but with the ubiquity of the In-
ternet and proliferation of social media, CS is be-
coming ubiquitous in written modalities and gen-
res (Vyas et al., 2014a; Danet and Herring, 2007;
Cárdenas-Claros and Isharyanti, 2009). This new
situation has created an unusual deluge of CS tex-
tual data on the Internet. This data brings in its
wake new opportunities, but it poses serious chal-
lenges for different NLP tasks; traditional tech-
niques trained for one language tend to break
down when the input text happens to include two
or more languages. The performance of NLP mod-
els that are currently expected to yield good results
(e.g., Part-of-Speech Tagging) would degrade at
a rate proportional to the amount and level of
mixed-language present. This is a result of out-of-
vocabulary words in one language and new hybrid
grammar structures, and in some cases shared cog-
nates or ambiguous words that exist in both lan-
guage lexicons.

POS tagging is a vital component of any Nat-
ural Language Understanding system, and one of
the first tasks researchers employ to process data.
POS tagging is an enabling technology needed by
higher-up NLP tools such as chunkers and parsers
– syntactic, semantic and discourse level process-
ing; all of which are used for such applications as
sentiment analysis and subjectivity, text summa-
rization, information extraction, automatic speech
recognition, and machine translation among oth-
ers. As such, it is crucial that POS taggers be able
to process CS textual data.

99



In this paper, we address the problem of Part-
of-Speech tagging (POS) for CS data on the intra-
sentential level for multiple language pairs. We
explore the effect of using various embeddings se-
tups and multiple neural network architectures in
order to mitigate the problem of the scarcity of CS
annotated data. We propose multiple word embed-
ding techniques that could help in tackling POS
tagging of CS data.

In order to examine the generalization of our ap-
proaches across language pairs, we conduct our
study on four different evaluation CS data sets,
covering four language pairs: Modern Standard
Arabic and the Egyptian Arabic dialect (MSA-
EGY), Modern Standard Arabic- and the Levan-
tine Arabic dialect (MSA-LEV), Spanish-English
(SPA-ENG) and Hindi-English (HIN-ENG). We
use the same POS tag sets for all language pairs,
namely, the Universal POS tag set (Petrov et al.,
2011). Our contributions are the following: a) We
use a state-of-the-art bidirectional recurrent neu-
ral networks; b) We explore different strategies
to leverage raw textual resources for creating pre-
trained embeddings for POS tagging CS data; c)
We examine the effect of language identifiers for
joint POS tagging and language identification; d)
We present the first empirical evaluation on POS
tagging with four different language pairs. All of
the previous work focused on a single or two lan-
guage pair combinations.

2 Related Work

Developing CS text processing NLP techniques
for analyzing user generated content as well as
cater for needs of multilingual societies is vital
(Vyas et al., 2014b). Previous studies that address
the problem of POS tagging of CS data first at-
tempt to identify the correct language of a word
before feeding it into an appropriate monolingual
tagger (Solorio and Liu, 2008; Vyas et al., 2014a;
AlGhamdi et al., 2016). As is typically the case
in NLP, such pipelines suffer from the problem
of error propagation; e.g., failure of the language
identification will cause problems in the POS tag
prediction. Other approaches have trained su-
pervised models on POS-annotated, CS data re-
sources which are expensive to create and unavail-
able for most language pairs. (AlGhamdi et al.,
2016; Solorio and Liu, 2008; Jamatia et al., 2015;
Barman et al., 2016) Solorio and Liu (2008), pro-
posed the first statistical approach to POS tagging

of CS data where they employ several heuristics
to combine monolingual taggers with limited suc-
cess, achieving 86% accuracy when choosing the
output of a monolingual tagger based on the dic-
tionary language ID of each token. However, an
SVM trained on the output of the monolingual
taggers performed better than their oracle, reach-
ing 93.48% accuracy. Royal Sequiera (2015) in-
troduces a ML-based approach with a number of
new features for HIN-ENG POS tagging for Twit-
ter and Facebook chat messages. The new feature
set considers the transliteration problem inherent
in social media. Their system achieves an accu-
racy of 84%. Jamatia et al. (2015) use both a fine-
grained and coarse-grained POS tag set in their
study. They introduce a comparison between the
performance of a combination of language specific
taggers and a machine learning based approach
that uses a range of different features. They con-
clude that the machine learning approach failed to
outperform the language specific combination tag-
gers. AlGhamdi et al. (2016) examine seven POS
tagging strategies to leverage the available mono-
lingual resources for CS data. They conducted
their study on two language pairs, namely MSA-
EGY and SPA-ENG. The proposed strategies are
divided into combined conditions and integrated
conditions. Three of the combined conditions con-
sist of running monolingual POS taggers and lan-
guage ID taggers in a different order and combin-
ing the outputs in a single multilingual prediction.
The fourth combined condition involved training
an SVM model using the output of the mono-
lingual taggers. The three integrated approaches
trained a monolingual state-of-the-art POS tagger
on a) CS corpus; b) the union of two monolingual
corpora of the languages included in the CS; c)
the union of the corpora used in a and b. Both
combined and integrated conditions outperformed
the baseline systems. The SVM approach con-
sistently outperformed the integrated approaches
achieving the highest accuracy results for both lan-
guage pairs. Soto and Hirschberg (2018) propose
a new approach to POS tagging for code switching
SPA-ENG language pair based on recurrent neural
network (RNN) as a way of providing better tools
for better code switching data processing, includ-
ing POS taggers. The authors use an experimen-
tal approach of POS tagging for CS utterances en-
tailing use of state-of-the-art bi-directional RNN
to extensively study effects of language identi-
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fiers. For the Boolean features, a bi-directional
Long short-term memory (BiLSTM) state-of-the-
art neural network with suffix, prefix, and word
embeddings, the results show that the neural POS
tagging model proposed by the authors performs
comparatively higher than other state of the art CS
taggers, their system yields a POS tagging accu-
racy of 96.34%, while joint POS and language ID
tagging yields an accuracy of 96.39% for POS tag-
ging and language ID accuracy of 98.78% (Soto
and Hirschberg, 2018). Language Modeling (LM)
on HIN-ENG language texts has been proposed
by (Chandu et al., 2018). (Pratapa et al., 2018)
propose the use of a computational technique to
create artificial code mixed data that is grammat-
ically valid based on the ECT (Equivalence Con-
straint Theory) to solve the challenge of scarcity
of CS training language models using an exper-
imental approach. (Pratapa et al., 2018) uses two
bilingual embedding techniques, namely Bilingual
Compositional Model (BiCVM) and Correlation
Based Embeddings (BiCCA) (Faruqui and Dyer,
2014; Blunsom and Hermann, 2014). Word em-
bedding results in improved semantic and syn-
tactic CS processing tasks. BiCVM at the sen-
tence level only yields better performance for
semantic tasks. BiCCA also only do well on
semantic tasks because they make use of word
alignments. Furthermore, g-skip embedding out-
performed BiCCA and BiCVM, performing well
across syntactic and semantic tasks. The study
by Pratapa et al. (2018) illustrates that using pre-
trained embeddings learned from CS data outper-
forms pretrained embeddings learned from stan-
dard bilingual embeddings. Bhat et al. (2018)
introduce a dependency parser developed specif-
ically for HIN-ENG CS data. They adopted the
neural stacking architecture proposed by (Zhang
and Weiss, 2016; Chen et al., 2016) for learning
POS tagging and parsing and for transferring the
knowledge from bilingual models trained on Hindi
and English UD treebanks. The stack-prop tagger,
the model proposed by (Zhang and Weiss, 2016),
achieves the highest accuracy of 90.53. To identify
the language ID, they train a multilayer perceptron
(MLP) stacked on top of a recurrent bidirectional
LSTM (Bi-LSTM) network. The results of their
system is 97.39 %.

3 Approach

Pretrained word embeddings enable models to ex-
ploit the raw textual data which is in all languages
larger than annotated data. In recent times, there
has been some interest in embedding approaches,
e.g., multilingual embeddings and bilingual word
embeddings, where two monolingual embeddings
of two languages are mapped to a shared em-
beddings space. The main advantage of bilin-
gual and multilingual embeddings is in solving
tasks involving reasoning across two languages,
such as Machine Translation (MT) (Vulić and
Moens, 2016; Zou et al., 2013), as well as enabling
transfer of models learned on a resource-rich
language onto a resource-poor language (Adams
et al., 2017). One of the potential applications of
bilingual and multilingual embeddings is in the
processing of code switching language. In this
section, we compare leveraging multiple neural
network architectures for POS tagging CS data.
Moreover, we explore different embedding setups
to investigate the optimal way of tackling the POS
tagging of CS data. First, we illustrate the tool
used for training the embeddings layer. Second,
we present the neural network models. Then we
list the embedding setups.

Pretrained Word Embedding Model Most
successful methods for learning word embeddings
(Mikolov et al., 2013c; Pennington et al., 2014;
Bojanowski et al., 2017) rely on the distributional
hypothesis (Mikolov et al., 2013b), i.e., words
occurring in similar contexts tend to have simi-
lar meanings. Among all word embedding tech-
niques, we choose the FastText tool developed by
Facebook (Bojanowski et al., 2017). Our choice of
FastText is motivated by the fact that social media
networks are the primary source of our unlabeled
data. This type of data exhibits huge variations
of spelling and misspellings. FastText takes ad-
vantage of subword (i.e., n-gram) information. It
creates vector representations for misspelling re-
placement candidates absent from the trained em-
bedding space, by summing the vectors of the
character n-grams. All word embedding tech-
niques aim to capture the relation of the words that
tend to appear in similar context. These relations
occur on the sentential level for most of the NLP
applications trained for monolingual data. How-
ever, the lack of having sufficient context in CS
data makes learning these kinds of relations a diffi-
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cult task as they occur on the sub-sentential (intra-
sentential) level. Hence, we resort to using Fast-
Text due to its principle approach of leveraging
subword (i.e., n-gram) information. The n-gram
approach resolves the problem of modeling lan-
guages with rare word inflections by using char-
acter n-grams. On the other hand, other embed-
ding techniques, e.g., word2vec and glove, lack
subword information and hence struggle with mor-
phologically rich languages such as Arabic and
noisy data such as Twitter data (Mikolov et al.,
2013a; Pennington et al., 2014).

A Model for Neural POS Tagging For our ex-
periments we use three neural networks archi-
tectures: a) a BiLSTM-CRF architecture similar
to the one proposed by (Reimers and Gurevych,
2017) for POS tagging; b) a multi-task learning
model for learning jointly POS tagging for related
language pairs; and, c) a multi-task learning model
for learning jointly POS and Language ID tagging.

• We train a BiLSTM network with a condi-
tional random field objective (Reimers and
Gurevych, 2017) that obtain the probability
distribution over all labels by jointly model-
ing the probability of the entire tag sequence
score. We initialize the embedding layer
with the pre-trained FastText word embed-
dings and feed the output sequence from this
layer to the BiLSTM layer. The BiLSTM
hidden layer has 200 units for each direction
and dropout of 0.2. We use early stopping
(Chollet et al., 2015) based on performance
on validation sets. We refer to this model as
BiLSTM-CRF POS Tagger for the rest of the
article and in our tables.

• Our second model is a multi-task learning
model that learns simultaneously POS tag-
ging for related code switching language
pairs. The architecture of this model follows
the BiLSTM-CRF architecture (Reimers and
Gurevych, 2017). We add a second CRF out-
put layer for predicting the POS tag for the re-
lated language pair (e.g., MSA-LEV), while
the first CRF output layer is for predicting the
POS tag for the other related language pair
(e.g., MSA-EGY). The two output layers of
POS tagging tasks for the two language pairs
are independent and are connected by their
weight matrices to the hidden layer, and both
loss functions are given the same weight. We

refer to this model as MTL-POS Tagger for
the rest of the article and in our tables.

• The third model is a multi-task learning
model. The model learns simultaneously
POS and language id tags with the aim of
boosting the performance of POS tagging
task. The architecture of this model follows
MTL-POS Tagger architecture. The differ-
ence is that one output layer is for predicting
the POS tagging, and the other output layer is
for predicting language id task. This model is
referred to as MTL-POS+LID Tagger.

Experimental Conditions

Monolingual embedding (baseline): We train
word embeddings using the monolingual corpora
for each language involved in the four language
pairs. The results of this approach are six separate
pre-trained embeddings, MSA, EGY, LEV, ENG,
SPA, and HIN pre-trained embeddings. For each
language, we train a BiLSTM-CRF model using
one of the six pre-trained embeddings. We con-
sider these models as baseline systems. The base-
line performance is the POS tagging accuracy of
the monolingual models with no special training
for CS data.

Merged Bilingual embeddings:

Combined filtered monolingual corpora
(CFM): To leverage the inter-sentential code
switching type, we train a model using a pre-
trained word embedding trained on monolingual
data only. The assumption is that the data in
MSA is purely MSA and that in EGY is purely
EGY. This condition yields an inter-sentential CS
pre-trained embeddings. None of the sentences
reflect intra-sentential CS data.

Pure Code switched corpora (PCS): To lever-
age the intra-sentential code switching type, we
train a model using a pre-trained word embedding
trained on CS data only. The assumption is that
the data used to train the embeddings exhibit the
CS phenomenon. This condition yields an intra-
sentential CS type. None of the sentences reflect
inter-sentential CS data.

(Pseudo) Combined monolingual and CS cor-
pora (PseudoCS): To address both code switch-
ing types, the intra-sentential and inter-sentential,
we combine the pure code switched corpora and
combined filtered monolingual corpora to form
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unified to be used to train a unified word embed-
dings.

Dataset Train Dev Test
ARZ (MSA-EGY) 133,357 21,146 20,464
LEV (MSA-LEV) 45,167 5,749 5,779

Miami Bangor (SPA-ENG) 268,464 67,114 67,114
UD-HIN-ENG 19,695 3,339 3,190

Table 1: Datasets distribution for the four lan-
guage pairs

Merged multilingual embeddings: We train a
multilingual embedding for language pairs that
have one language in common (pivot language).
To do so, we combine the corpora used to train
the word embeddings of the language pairs that
share one common language. For MSA-EGY and
MSA-LEV language pairs, we have a common
language, which is MSA, while ENG is a com-
mon language between SPA-ENG and HIN-ENG.
To leverage this commonality between each of the
two language pairs, we merge all the previous cor-
pora: PCS, Mono, and PseudoCS for each lan-
guage pair to form one corpus used to train merged
multilingual embeddings model for MSA-EGY-
LEV languages and another corpus for SPA-HIN-
ENG. The intuition of this embeddings is to cap-
ture word usage in the context of each language
and eliminates the ambiguity for the words that
have the same surface form in multiple languages.

Projected bilingual embedding Projected
bilingual embeddings are vector representations
of two languages mapped into shared space,
such that translated word pairs have similar
vectors. There are three approaches to learn
bilingual embeddings: 1) by mapping the space
of both monolingual embeddings into a single
shared space; 2) monolingual adaptation of one
language’s embedding space into another’s; 3)
Bilingual Training by bootstrapping the tar-
get representations learned from well-trained
embeddings space of a source language. We
train individual CS and monolingual embedding
models separately before mapping them into a
shared embedding space. To do so, We use MUSE
(Conneau et al., 2017), state-of-the-art model for
creating a projected bilingual embedding that uses
the monolingual adaptation technique to create
the shared space embedding. MUSE is equipped
to learn either via supervision or no supervision.
In our study, we utilize the unsupervised version

of MUSE.

4 Evaluation

4.1 Data sets

Throughout our experiments, we use one evalu-
ation dataset for each language pair and various
corpora for training the embeddings layer. Table-1
shows the distribution of the evaluation data sets.

MSA-EGY We use the LDC Egyptian Ara-
bic Treebanks 1-5 (ARZ1-5) (Maamouri et al.,
2012). The ARZ1-5 data is from the discussion
forums genre mostly in the Egyptian Arabic di-
alect (EGY). The total number of sentences in the
corpus is 13,698 while the number of words is
174,967 words.

To train pre-trained embeddings, we crawl
Egyptian tweets from some of the Egyptian pub-
lic figures’ Twitter accounts. The rest of the
Egyptian raw textual data comes from the follow-
ing sources: (Zaidan and Callison-Burch, 2011)’s
Egyptian online news commentary corpus, the
Egyptian tweets used in the CS shared tasks
(Solorio et al., 2014; Molina et al., 2016; Aguilar
et al., 2018), portion of MSA Gigaword (Parker
et al., 2011), and LDC Arabic tree bank corpora
(MSA) (Maamouri et al., 2004; Diab et al., 2013).
To identify the language id of MSA-EGY tokens,
we use the Automatic Identification of Dialectal
Arabic (AIDA2) tool (Al-Badrashiny et al., 2015)
to perform token level language identification for
the EGY and MSA tokens in context.

MSA-LEV We use the Curras Corpus of Pales-
tinian Arabic as the MSA-LEV textual CS data
(Jarrar et al., 2017). Palestinian Arabic is a sub-
dialect of Levantine Arabic. The corpus comprises
57,000 words, half of which come from transcripts
of a TV show and the rest of which comes from
various sources such as Facebook, discussing fo-
rums, Twitter, and blogs. The corpus is morpho-
logically annotated by Eskander et al. (2016) us-
ing the same guidelines utilized for annotating the
Egyptian ARZ corpus. We annotate the MSA-
LEV evaluation data set with language id using the
guidelines and tool proposed by (Diab et al., 2016;
AlGhamdi and Diab, 2018).

To train pre-trained embeddings, we crawl
tweets from Levantine public figures. Moreover,
we compile Levantine and MSA raw textual data
from multiple resources: online news commentary
corpus from (Zaidan and Callison-Burch, 2011),
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weblogs from COLABA (Diab et al., 2010), com-
mentaries and tweets from Cotterell and Callison-
Burch (2014), the Levantine portion of the PADIC
data set (Meftouh et al., 2015), portion of MSA
Gigaword (Parker et al., 2011), and LDC Arabic
tree bank corpora (MSA) (Maamouri et al., 2004;
Diab et al., 2013).

SPA-ENG The Miami Bangor (MB) corpus is a
conversational speech corpus recorded from bilin-
gual Spanish-English speakers living in Miami,
FL. It includes 56 conversations recorded from 84
speakers (Soto and Hirschberg, 2017). The cor-
pus consists of 242,475 words (333,069 includ-
ing punctuation tokens) and 35 hours of recorded
conversation. The language markers in the corpus
were manually annotated.

To train pre-trained embeddings for Spanish and
English language, we use the English Universal
Dependencies (UD) corpus (Silveira et al., 2014)
and the Spanish UD corpus (McDonald et al.,
2013). Universal Dependencies (UD) is a project
to develop cross-linguistically consistent treebank
annotations for many languages. Moreover, we
use some other English monolingual data from
various resources. The English monolingual data
contains around 250M sentences.

HIN-ENG The Hindi-English Code switching
treebank is based on CS tweets of Hindi and En-
glish multilingual speakers (mostly Indian) (Bhat
et al., 2017). The treebank is manually anno-
tated using UD scheme. The corpus contains data
from Twitter. The corpus contains 1,852 tweets
and 26,224 tokens. To train pre-trained embed-
dings for Hindi and English language, we use
the English Universal Dependencies (UD) corpus
(Silveira et al., 2014) and the Hindi UD corpus
(Bhat et al.; Palmer et al., 2009). Also, we use
some other Hindi monolingual data from various
resources. The word representations are learned
using Skip-gram model with negative sampling
which is implemented in FastText toolkit for all
language.

Baseline Results The baseline performance is
the POS tagging accuracy of the monolingual
models with no special training for CS data.
Therefore, our baselines are the neural network
models trained using the monolingual embed-
dings. If CS data do not pose any particular chal-
lenge to monolingual POS taggers, then we should
not expect a major degradation in performance.

Table-2 shows the performance of the different
baseline POS tagging systems on the test data. For
each language pair, there are two baseline systems.

For MSA-EGY, the baseline accuracies are
85.40 when the baseline system utilizes the
MSA pre-trained embeddings, and 81.06 when
BiLSTM-CRF uses the EGY pre-trained embed-
dings. Similarly, we report the baseline results for
MSA-LEV, SPA-ENG and HIN-ENG language
pairs.

4.2 Results

In this section, we present the results of our exper-
iments using the neural network models and em-
beddings approach introduced in Section 3 and the
datasets from Section 4.1. Also, we show the re-
sults of three neural network models when the em-
beddings are randomly initialized. Table-2 shows
the POS tagging accuracy results of all language
pairs, while Table-3 shows the LID accuracy re-
sults of all language pairs using MTL-POS+LID
Tagger. To evaluate the performance of our ap-
proaches we report the accuracy of each condition
by comparing the output POS tags generated from
each condition against the available gold POS tags
for each data set. We consistently apply the differ-
ent experimental conditions on the same test set
per language pair: for MSA-EGY we report re-
sults on MSA-EGY test set, for MSA-LEV we re-
port results on MSA-LEV test set, and for SPA-
ENG, we report results on Miami Bangor corpus
(SPA-ENG) test set, and finally for HIN-ENG, we
report on UD-HIN-ENG (HIN-ENG) test set. The
highest accuracy results for MSA-EGY and MSA-
LEV language pairs are 92.90% and 92.92%, re-
spectively. These results are achieved by MTL-
POS Tagger+Merged Bilingual PseudoCS embed-
dings. Our best model for MSA-EGY outperform
state-of-the-art system by ∼ 2% (AlGhamdi et al.,
2016). We could not compare our best system
for MSA-LEV language pair to any previous sys-
tems as we map the original POS tag set (Buck-
walter POS tag set) of the MSA-LEV dataset into
UD POS tag set. BiLSTM-CRF+Merged Bilin-
gual PseudoCS embeddings yield the highest ac-
curacy results for both SPA-ENG and HIN-ENG
language pairs. The SPA-ENG model’s accuracy,
96.55%, is comparable to the state-of-the-art sys-
tem, 96.63% (Soto and Hirschberg, 2018). On the
other hand, the accuracy of our best HIN-ENG
model (86.01%) underperforms the state-of-the-
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Embedding Condition MSA-EGY MSA-LEV SPA-ENG HIN-ENG
BiLSTM-CRF Tagger (1) + Random-Initi-Embed 89.12 88.90 95.33 69.87

(1) + mono (MSA/SPA/HIN) (Baseline) 85.40 83.25 50.30 63.30
(1) + mono (EGY/LEV/ENG) (Baseline) 81.06 80.21 71.21 67.11

(1)+ Merged Bilingual CFM 90.00 89.41 95.40 85.98
(1)+Merged Bilingual PCS 89.06 88.94 94.22 83.31

(1)+Merged Bilingual PseudoCS 91.96 91.92 96.55 86.01
(1)+ Merged Multilingual Embeddings(pivot) 92.81 92.91 94.81 85.87

(1)+Projected Bilingual 89.24 87.60 91.31 83.02
MTL-POS Tagger (2) + Random-Initi-Embed 89.91 90.02 92.89 79.51

(2)+Merged Bilingual PCS 90.01 90.51 93.21 84.30
(2)+Merged Bilingual PseudoCS 92.90 92.92 94.14 84.33

MTL-POS+LID Tagger (3) + Random-Initi-Embed 88.96 89.79 92.65 78.51
(3)+ Merged Bilingual CFM 90.00 89.01 95.42 84.01
(3)+Merged Bilingual PCS 90.41 90.48 95.29 84.41

(3)+Merged Bilingual PseudoCS 91.89 91.92 96.50 85.91
(3)+Projected Bilingual 88.61 88.09 92.91 82.39

State-of-the-art 90.56 – 96.63 91.90

Table 2: POS tagging accuracy (%) on the four corpora. Average over five runs with different random
seeds. Bold and italics font indicates the best result in our experiments, while bold font indicates the best
results compared to the state-of-the-art systems. We refer to BiLSTM-CRF Tagger as (1), MTL-POS
Tagger that learns POS tag for related languages as (2), and MTL-POS+LID that learns jointly POS
tagging and language identification as (3). Random-Initi-Embed refers to Random initialized embedding

Embedding Condition MSA-EGY MSA-LEV SPA-ENG HIN-ENG
MTL-POS+LID Tagger: (3) + Random-Initi-Embed 80.71 79.29 96.42 78.41

(3) + mono (MSA/SPA/HIN) (baselines) 77.41 78.08 88.11 71.46
(3) + mono (EGY/LEV/ENG) (baselines) 71.51 76.37 85.09 74.80

(3)+ Merged Bilingual CFM 80.06 78.39 95.49 92.54
(3)+Merged Bilingual PCS 81.33 79.28 95.02 93.20

(3)+Merged Bilingual PseudoCS 82.15 81.32 97.20 94.92
(3)+Projected Bilingual 78.17 79.11 90.01 87.69

State-of-the-art – – 98.78 97.39

Table 3: LID accuracy (%) on the four corpora. Average over five runs with different random seeds.
Bold and italics font indicates the best result in our experiments, while bold font indicates the best results
compared to the state-of-the-art systems. We refer to MTL-POS+LID that learns jointly POS tagging and
language identification as (3). Random-Initi-Embed refers to Random initialized embeddings

art system (91.90%) (Bhat et al., 2018). For LID
task, all our models underperform the state-of-the-
art systems. Since there are no state-of-the-art sys-
tems for MSA-EGY and MSA-LEV, we compare
the performance of our models against the baseline
systems.

5 Discussion

Multilingual embedding (e.g., MSA-EGY and
MSA-LEV) helps closely related languages
(EGY/LEV) but adds noise to the languages that
are distant (SPA/HIN). Similarly, learning jointly
POS tagging for closely related languages yields
the highest accuracy results for MSA-EGY and
MSA-LEV as opposed to the languages that are
distant (SPA/HIN). The accuracy results of MSA-
EGY and MSA-LEV language pairs are the high-
est results in all experimental setups. The im-
provement could be attributed to the significant

number of homographs some of which are cog-
nates.

The CS behavior can be different depending
on the medium of communication, topic, speak-
ers (or authors), and the languages being mixed
among other factors. Hence, we believe that
the difference in the genre of the evaluation data
sets of SPA-ENG and HIN-ENG language pairs
is one of the potential reasons that make both
language pairs not to benefit from the multilin-
gual embedding and learning jointly POS tagging
for both language pairs. On the other hand, the
MTL-POS-LID Tagger that learns simultaneously
POS and language id tags with the aim of boost-
ing the performance of POS tagging task bene-
fit distant (SPA/HIN) more than closely related
languages (EGY/LEV). We define code switching
points as the points within a sentence where the
languages of the words on the two sides are dif-
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MSA-EGY MSA-LEV SPA-ENG HIN-ENG
Error Type Percentage Error Type Percentage Error Type Percentage Error Type Percentage

ADJ >NOUN 19% ADJ >NOUN 21% NOUN >ADJ 10% NOUN >VERB 27%
VERB >NOUN 15% VERB >NOUN 19% NOUN >PRON 8% VERB >NOUN 24%
NOUN >VERB 11% NOUN >ADJ 16% VERB >NOUN 7% NOUN >ADJ 19%
NOUN >ADJ 8% NOUN >VERB 9% ADJ >PRON 5% ADJ >VERB 14%

Table 4: Most common errors for the best systems for all language pairs (Gold-POS > Predicted-POS)

ferent. We observe a sharp jump in the accuracy
for SPA-ENG corpus. We believe the major fac-
tor of this jump is the low percentage of the CS
points, ∼ 6%, while the percentage of CS points
in the MSA-EGY, MSA-LEV, and HIN-ENG
datasets are relatively high, 38.78%, 30.12%,
and 15.17%. The low percentage of CS points
in the SPA-ENG corpus leads the models that
address the inter-sentential code switching type
(BiLSTM-CRF+Merged BilingualMerged Bilin-
gual CFM and MTL+Merged BilingualMerged
Bilingual CFM) to score the second highest accu-
racy results, 95.40% and 95.42%.

The two key advantages of the Merged Bilin-
gual PseudoCS embeddings and Multilingual em-
beddings are, 1) it enables the learned embeddings
to capture the interactions between the words in
different languages; 2) It captures the word us-
age in the context of each language and eliminates
the ambiguity for the words that have the same
surface form in multiple languages. Hence, the
OOV percentage and ambiguity of words are re-
duced. Using multilingual embeddings for MSA-
EGY and MSA-LEV, reduced the percentage of
OOV of MSA-EGY and MSA-LEV from 10% and
13% to 8% and 10%, respectively. Similarly, with
SPA-ENG and HIN-ENG language pairs, the rate
of OOV is decreased from 12% and 15% to 9%
and 11%, respectively.

One of the common CS intra-sentential patterns
we notice in our data sets is insertion patterns.
This pattern involves inserting material (lexical
items, or entire constituents) from one language
into a structure from the other language (Muysken
et al., 2000). To evaluate the effect of the CS in-
sertion pattern we define the CS fragment (CSF)
of those test sentences. We define a CSF as the
minimum contiguous span of words where a CS
occurs (Soto and Hirschberg, 2018). The average
length of the CS fragments in the SPA-ENG test
set is 2.16, and 6.1 in the HIN-ENG test set. The
average length of the CS fragments is 5.1 in MSA-
LEV, and 5.8 in MSA-EGY test set. We observe
that the length of the CS fragments impacts the

overall performance of the classifiers. For exam-
ple, short CS fragments confuse the best classifiers
of almost all language pairs. We noticed that a ma-
jority of CS sentences that have one or two lexical
elements inserted had been miss-classified by al-
most all models in all language pairs.

Using bilingual embeddings outperform the
baseline systems, but it did not achieve the highest
results achieved by the other proposed models for
all language pairs. The experiment results show
a promising direction towards obtaining bilingual
embeddings for CS tasks. Our explanation for
this performance is that the sense distribution of
polysemous words can differ widely between a
monolingual (mono) corpus and Merged Bilingual
PseudoCS corpus. For instance, the word ‘bank’
in English has several meanings such as (a) the
land alongside or sloping, (b) a financial insti-
tution, and (c) a set or series of similar things.
However, in a Spanish dominant sentence or cor-
pus, ’bank’ is primarily, if not only, used in sense
(a). Our experiments show that standard bilingual
embeddings are not well suited, in general, for
CS tasks; embeddings learned from CS data yield
better results which are aligned with our findings
(Pratapa et al., 2018).

Table 4 shows the most common errors for the
best systems for each language pairs. We observe
almost the same trends across both MSA-EGY and
MSA-LEV language pairs, while the common er-
rors are relatively different between SPA-ENG and
HIN-ENG.

6 Conclusion

In this paper, we present a detailed study of var-
ious strategies for POS tagging of CS data in
four language pairs. We explore multiple strate-
gies of measuring the impact of pretrained em-
beddings on POS tagging of CS data. We find
that related language pairs, e.g., MSA-EGY and
MSA-LEV, benefit from both jointly learning POS
tagging as well as merged multilingual embed-
dings (i.e., pivot embedding), while distant lan-
guage pairs, e.g., SPA-ENG and HIN-ENG, bene-
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fit from a multi-task learning model that learns two
different tasks, e.g., POS tagging and language
identification. Furthermore, we compared our
results to the previous state-of-the-art POS tag-
ger for MSA-EGY, SPA-ENG, and HIN-ENG and
showed that our classifiers outperform the MSA-
EGY state-of-the-art system in every configura-
tion (AlGhamdi et al., 2016). The results achieved
by BiLSTM-CRF+Merged Bilingual PseudoCS
embeddings model is comparable to Soto and
Hirschberg (2018). We will explore several direc-
tions in the future. First, we will study the theo-
retical aspects of word embedding learning. Sec-
ond, we will investigate the proposed word em-
beddings on other downstream NLP applications,
such as segmentation and parsing.
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Abstract

This paper presents a new approach to disen-
tangling inter-dialectal and intra-dialectal re-
lationships within one such group, the Indo-
Aryan subgroup of Indo-European. I draw
upon admixture models and deep generative
models to tease apart historic language contact
and language-specific behavior in the over-
all patterns of sound change displayed by
Indo-Aryan languages. I show that a “deep”
model of Indo-Aryan dialectology sheds some
light on questions regarding inter-relationships
among the Indo-Aryan languages, and per-
forms better than a “shallow” model in terms
of certain qualities of the posterior distribu-
tion (e.g., entropy of posterior distributions),
and outline future pathways for model devel-
opment.

1 Introduction

At the risk of oversimplifying, quantitative mod-
els of language relationship fall into two broad
categories. At a wide, family-level scale, phylo-
genetic methods adopted from computational bi-
ology have had success in shedding light on the
histories of genetically related but significantly di-
versified speech varieties (Bouckaert et al., 2012).
At a shallower level, the subfield of dialectome-
try has used a wide variety of chiefly distance-
based methodologies to analyze variation among
closely related dialects with similar lexical and ty-
pological profiles (Nerbonne and Heeringa, 2001),
though this work also emphasizes the importance
of hierarchical linguistic relationships and the
use of abstract, historically meaningful features
(Prokić and Nerbonne, 2008; Nerbonne, 2009). It
is possible, however, that neither methodology is
completely effective for for language groups of in-
termediate size, particularly those where certain
languages have remained in contact to an extent
that blurs the phylogenetic signal, but have expe-

rienced great enough diversification that dialecto-
metric approaches are not appropriate. This pa-
per presents a new approach to disentangling inter-
dialectal and intra-dialectal relationships within
one such group, the Indo-Aryan subgroup of Indo-
European.

Indo-Aryan presents many interesting puz-
zles. Although all modern Indo-Aryan (hence-
forth NIA) languages descend from Sanskrit or
Old Indo-Aryan (henceforth OIA), their subgroup-
ing and dialectal interrelationships remain some-
what poorly understood (for surveys of assorted
problems, see Emeneau 1966; Masica 1991; Toul-
min 2009; Smith 2017; Deo 2018). This is partly
due to the fact that these languages have remained
in contact with each other, and this admixture
has complicated our understanding of the lan-
guages’ history. Furthermore, while most NIA
languages have likely gone through stages closely
resembling attested Middle Indo-Aryan (MIA)
languages such as Prakrit or Pali, no NIA language
can be taken with any certainty to be direct descen-
dants of an attested MIA variety, further shrouding
the historical picture of their development.

The primary goal of the work described in
this paper is to build, or work towards build-
ing, a model of Indo-Aryan dialectology that in-
corporates realistic assumptions regarding histor-
ical linguistics and language change. I draw
upon admixture models and deep generative mod-
els to tease apart historic language contact and
language-specific behavior in the overall patterns
of sound change displayed by Indo-Aryan lan-
guages. I show that a “deep” model of Indo-Aryan
dialectology sheds some light on questions re-
garding inter-relationships among the Indo-Aryan
languages, and performs better than a “shallow”
model in terms of certain qualities of the poste-
rior distribution (e.g., entropy of posterior distri-
butions). I provide a comparison with other met-

110



rics, and outline future pathways for model devel-
opment.

2 Sound Change

The notion that sound change proceeds in a reg-
ular and systematic fashion is a cornerstone of
the comparative method of historical linguistics.
When we consider cognates such as Greek pherō
and Sanskrit bharā(mi) ‘I carry’, we observe reg-
ular sound correspondences (e.g., ph:bh) which al-
low us to formulate sound changes that have oper-
ated during the course of each language’s develop-
ment from their shared common ancestor. Under
ideal circumstances, these are binary yes/no ques-
tions (e.g., Proto-Indo-European *bh > Greek ph).
At other times, there is some noise in the signal:
for instance, OIA ks. is realized as kh in most Ro-
mani words (e.g., aks. i- ‘eye’ > jakh), but also as
čh (ks. urikā- > čhuri ‘knife’), according to Ma-
tras (2002, 41). This is undoubtedly due to rel-
atively old language contact (namely lexical bor-
rowing) between prehistoric Indo-Aryan dialects,
as opposed to different conditioning environments
which trigger a change ks. > kh in some phono-
logical contexts but ks. > čh in others. The idea
that Indo-Aryan speech varieties borrowed forms
from one another on a large scale is well estab-
lished (Turner, 1975 [1967], 406), as is often the
case in situations where closely related dialects
have developed in close geographic proximity to
one another (cf. Bloomfield, 1933, 461–495). An
effective model of Indo-Aryan dialectology must
be able to account this sort of admixture. Phylo-
genetic methods and distance-based methods pro-
vide indirect information regarding language con-
tact (e.g., in the form of uncertain tree topologies),
but do not explicitly model intimate borrowing.

A number of studies have used mixed-
membership models such as the Structure model
(Pritchard et al., 2000) in order to explicitly model
admixture between languages (Reesink et al.,
2009; Syrjänen et al., 2016). Under this approach,
individual languages receive their linguistic fea-
tures from latent ancestral components with par-
ticular feature distributions. A key assumption of
the Structure model is the relative invariance and
stability of the features of interest (e.g., allele fre-
quencies, linguistic properties). However, sound
change is a highly recurrent process, with many
telescoped and intermediate changes, and it is not
possible to treat sound changes that have operated

as stable, highly conservative features.1

Intermediate stages between OIA and NIA
languages are key for capturing similarities in
cross-linguistic behavior, and we require a model
that teases apart dialect group-specific trends and
language-level ones. Consider the following ex-
amples:

• Assamese /x/, the reflex of OIA s, ś, s. ,
is thought to develop from intermediate *ś
(Kakati, 1941, 224). This isogloss would
unite it with languages like Bengali, which
show /S/ for OIA s, ś, s. .

• Some instances of NIA bh likely come from
an earlier *mh (Tedesco 1965, 371; Oberlies
2005, 48) (cf. Oberlies 2005:48).

• The Marathi change ch > s affects certain
words containing MIA *ch < OIA ks. as well
as OIA ch (Masica, 1991, 457); ch ∼ kh <
OIA ks. variation is of importance to MIA and
NIA dialectology (compare the Romani ex-
amples given above).

In all examples, a given NIA language shows the
effects of chronologically deep behavior which
serves as an isogloss uniting it with other NIA
languages, but this trend is masked by subse-
quent language-specific changes.2 Work on proba-
bilistic reconstruction of proto-word forms explic-
itly appeals to intermediate chronological stages
where linguistic data are unobserved (Bouchard-
Côté et al., 2007); however, unlike the work cited,
this paper does not assume a fixed phylogeny, and
hence I cannot adopt many of the simplifying con-
ventions that the authors use.

3 Data

I extracted all modern Indo-Aryan forms from
Turner’s (1962–1966) Comparative Dictionary of
the Indo-Aryan Languages (henceforth CDIAL),3

1Cathcart (to appear) circumvents this issue in a mixed-
membership model of Indo-Aryan dialectology by consider-
ing only sound changes thought a priori in the literature to be
relatively stable and of importance to dialectology.

2Some similar-looking sound changes can be shown to be
chronologically shallow. For instance, the presence of s. for
original kh in Old Braj, taken by most scholars to represent a
legitimate sound change and not just an orthographic idiosyn-
crasy, affects Persian loans such as s. aracu ‘expense’←Mod-
ern Persian xirč (McGregor, 1968, 125). This orthographic
behavior is found in Old Gujarati as well (Baumann, 1975,
9). For further discussion of this issue, see Strnad 2013, 16ff.

3Available online at http://dsal.uchicago.
edu/dictionaries/soas/
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along with the Old Indo-Aryan headwords (hence-
forth ETYMA) from which these reflexes descend.
Transcriptions of the data were normalized and
converted to the International Phonetic Alphabet
(IPA). Systematic morphological mismatches be-
tween OIA etyma and reflexes were accounted
for, including stripping the endings from all verbs,
since citation forms for OIA verbs are in the 3sg
present, while most NIA reflexes give the infini-
tive. I matched each dialect with correspond-
ing languoids in Glottolog (Hammarström et al.,
2017) containing geographic metadata, resulting
in the merger of several dialects. I excluded cog-
nate sets with fewer than 10 forms, yielding 33231
modern Indo-Aryan forms. I preprocessed the
data, first converting each segment into its respec-
tive sound class, as described by List (2012), and
subsequently aligning each converted OIA/NIA
string pair via the Needleman-Wunsch algorithm,
using the Expectation-Maximization method de-
scribed by Jäger (2014), building off of work by
Wieling et al. (2012). This yields alignments of
the following type: e.g., OIA /a:ntra/ ‘entrails’ >
Nepali /a:n∅ro/, where ∅ indicates a gap where
the “cursor” advances for the OIA string but not
the Nepali string. Gaps on the OIA side are ig-
nored, yielding a one-to-many OIA-to-NIA align-
ment; this ensures that all aligned cognate sets are
of the same length.

4 Model

The basic family of model this paper employs is a
Bayesian mixture model which assumes that each
word in each language is generated by one ofK la-
tent dialect components. Like Structure (and sim-
ilar methodologies like Latent Dirichlet Alloca-
tion), this model assumes that different elements
in the same language can be generated by differ-
ent dialect components. Unlike the most basic
type of Structure model, which assumes a two-
level data structure consisting of (1) languages and
the (2) features they contain, our model assumes a
three-level hierarchy, where (1) languages contain
(2) words, which display the operation of differ-
ent (3) sound changes; latent variable assignment
happens at the word level.

I contrast the behavior of a DEEP model with
that of a SHALLOW model. The deep model draws
inspiration from Bayesian deep generative mod-
els (Ranganath et al., 2015), which incorporate
intermediate latent variables which mimic the ar-

chitecture of a neural network. This structure al-
lows us to posit an intermediate representation
between the sound patterns in the OIA etymon
and the sound patterns in the NIA reflex, allow-
ing the model to pick up on shared dialectal sim-
ilarities between forms in languages as opposed
to language-specific idiosyncrasies. The shal-
low model, which serves as a baseline of sorts,
conflates dialect group-level and language-level
trends; it contains a flat representation of all of the
sound changes taking place between a NIA word
and its ancestral OIA etymon, and in this sense is
halfway between a Structure model and a Naı̈ve
Bayes classifier (with a language-specific rather
than global prior over component membership).

4.1 Shallow model

Here, I describe the generative process for the
shallow model, assuming W OIA etyma, L lan-
guages, K dialect components, I unique OIA in-
puts, O unique NIA outputs, and aligned OIA-
NIA word pair lengths Tw : w ∈ {1, ...,W}.
For each OIA etymon, an input xw,t at time point
t ∈ {1, ..., Tw} consists of a trigram centered at
the timepoint in question (e.g., ntr in OIA /a:ntra/
‘entrails’), and the NIA reflex’s output yw,l,t con-
tains the segment(s) aligned with timepoint t (e.g.,
Nepali ∅). xw,t : t = 0 is the left word boundary,
while xw,t : t = Tw + 1 is the right word bound-
ary. Accordingly, sound change in the model can
be viewed as a rewrite rule of the type A > B / C

D. The model has the following parameters:

• Language-level weights over dialect compo-
nents: Ul,k; l ∈ {1, ..., L}, k ∈ {1, ...,K}

• Dialect component-level weights over sound
changes: Wk,i,o; k ∈ {1, ...,K}, i ∈
{1, ..., I}, o ∈ {1, ..., O}

The generative process is as follows:

For each OIA etymon xw ∈ {1, ...,W}

For each language l ∈ {1, ..., L} in which
the etymon survives, containing a reflex
yw,l

Draw a dialect component assignment
zw,l ∼ Categorical(f(Ul,·))

For each time point t ∈ {1, ..., Tw}
Draw a NIA sound yw,l,t ∼

Categorical(f(Wzw,l,xw,t,·))
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All weights in U and W are drawn from a Normal
distribution with a mean of 0 and standard devi-
ation of 10; f(·) represents the softmax function
(throughout this paper), which transforms these
weights to probability simplices. The generative
process yields the following joint log likelihood of
the OIA etyma x and NIA reflexes y (with the dis-
crete latent variables z marginalized out:

P (x,y|U,W ) =

W∏

w=1

L∏

l=1

K∑

k=1

[
f(Ul,k)

Tw∏

t=1

f(Wk,xw,l,t,yw,l,t
)

]
(1)

As readers will note, this model weights all
sound changes equally, and makes no attempt to
distinguish between dialectologically meaningful
changes and noisy, idiosyncratic changes.

4.2 Deep model
The deep model, like the shallow model, is a mix-
ture model, and as such retains the language-level
weights over dialect component membership U .
However, unlike the shallow model, in which the
likelihood of an OIA etymon and NIA reflex un-
der a component assignment z = k is depen-
dent on a flat representation of edit probabilities
between OIA trigrams and NIA unigrams associ-
ated with dialect component k. Here, I attempt
to add some depth to this representation of sound
change by positing a hidden layer of dimension J
between each xw,t and yw,l,t. The goal here is to
mimic a “noisy” reconstruction of an intermediate
stage between OIA and NIA represented by dialect
group k. This reconstruction is not an explicit,
linguistically meaningful string (as in Bouchard-
Côté et al. 2007, 2008, 2013); furthermore, it is
re-generated for each individual reflex of each et-
ymon, and not shared across data points (such a
model would introduce deeply nested dependen-
cies between variables, and enumerating all possi-
ble reconstructions would be computationally in-
feasible).

For parsimony’s sake, I employ a simple Recur-
rent Neural Network (RNN) architecture to cap-
ture rightward dependencies (Elman, 1990). Fig-
ure 1 gives a visual representation of the net-
work, unfolded in time. This model exchangesW ,
the dialect component-level weights over sound
changes, for the following parameters:

• Dialect component-level weights governing
hidden layer unit activations by OIA sounds:

W x
k,i,j ; k ∈ {1, ...,K}, i ∈ {1, ..., I}, j ∈
{1, ..., J}

• Dialect component-level weights governing
hidden layer unit activations by previous hid-
den layers: W h

k,i,j ; k ∈ {1, ...,K}, i ∈
{1, ..., J}, j ∈ {1, ..., J}

• Language-level weights governing NIA out-
put activations by hidden layer units:
W y

l,j,o; l ∈ {1, ..., L}, j ∈ {1, ..., J}, o ∈
{1, ..., O}

For a given mixture component z = k, the activa-
tion of the hidden layer at time t, ht, depends on
two sets of parameters, each associated with com-
ponent k: the weightsW x

k,xxt ,·, associated with the
OIA input at time t; and W h

k , the weights asso-
ciated with the previous hidden layer ht−1’s acti-
vations, for all t > 1. Given a hidden layer ht,
the weights W l can be used to generate a proba-
bility distribution over possible outcomes in NIA
language l. The forward pass of this network
can be viewed as a generative process, denoted
yw,t ∼ RNN(xw,l,W

x
k ,W

h
k ,W

l) under the pa-
rameters for component k and language l; under
such a process, the likelihood of yw,l can be com-
puted as follows:

PRNN(yw,l|xw,W
x
k ,W

h
k ,W

l) =

Tw∏

t=1

f(h>
t W

l)yw,l,t (2)

where

ht =

{
f(W x

k,xw,t,·), if t = 1

f(h>t−1W
h ⊕W x

k,xw,t,·), if t > 1
(3)

The generative process for this model is nearly
identical to the process described in the previ-
ous sections; however, after the dialect compo-
nent assignment (zw,l ∼ Categorical(f(Ul,·)))
is drawn, the NIA string yw,l is sampled from
RNN(xw,W

x
zw,l

,W h
zw,l

,W l). The joint log likeli-
hood of the OIA etyma x and NIA reflexes y (with
the discrete latent variables z marginalized out is
the following:

P (x,y|U,W x,W h,W y) =

W∏

w=1

L∏

l=1

K∑

k=1

[
f(Ul,k)PRNN(yw,l|xw,W

x
k ,W

h
k ,W

l)
] (4)
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The same N (0, 10) prior as above is placed over
U,W x,W h,W y. J , the dimension of the hidden
layer, is fixed at 100. This model bears some sim-
ilarities to the mixture of RNNs described by Kim
et al. (2018).

I have employed a simple RNN (rather than a
more state-of-the art architecture) for several rea-
sons. The first is that I am interested in the conse-
quences of expanding a flat mixture model to con-
tain a simple, slightly deeper architecture. Addi-
tionally, I believe that the fact that the hidden layer
of an RNN can be activated by a softmax function
is more desirable from the perspective of repre-
senting sound change as a categorical or multi-
nomial distribution, as all layer unit activations
sum to one, as opposed to the situation with Long
Short-Term Memory (LSTM) and Gated Recur-
rent Units (GRU), which traditionally use sigmoid
or hyperbolic tangent functions to activate the hid-
den layer. Furthermore, long-distance dependen-
cies are not particularly widespread in Indo-Aryan
sound change, lessening the need for more com-
plex architectures. At the same time, the RNN
is a crude approximation to the reality of lan-
guage change. RNNs and related models draw a
single arc between a hidden layer at time t and
the corresponding output. It is perhaps not ap-
propriate to envision this single dependency un-
less the dimensionality of the hidden layer is large
enough to absorb potential contextual information
that is crucial to sound change. To put it sim-
ply, emission probabilities in sound change are
sharper than transitions common in most NLP ap-
plications (e.g., sentence prediction), and it may
not be correct to envision yt given ht′<t, ht as a
function of an additive combination of weights,
though in practice, I find it too computationally
costly to enumerate all possible value combina-
tions the hidden layer at multiple consecutive time
points. This issue requires further exploration, and
I employ what seems to be the most computation-
ally tractable approach for the moment.

5 Results

I learn each model’s MAP configuration using the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of .1.4 I run the optimizer for 10000
iterations over three random initializations, fitting
the model on mini-batches of 100 data points, and

4Code for all experiments can be found at https://
github.com/chundrac/IA_dial/VarDial2019.

xt−1 xt xt+1

ht−1 ht ht+1

yt−1 yt yt+1

. . . . . .

Figure 1: RNN representation, unfolded in time: hid-
den layers depend on OIA inputs x1, ..., xTw and previ-
ous hidden layers (for t > 1); NIA outputs y1, ..., yTw

depend on hidden layers. Hidden layer activations are
dependent on dialect component-specific parameters,
while activations of the output layer are dependent on
individual NIA language-specific parameters.

monitor convergence by observing the trace of the
log posterior (Figure 2).

The flat model fails to pick up on any major
differences between languages, finding virtually
identical posterior values of f(Ul), the language-
level distribution over dialect component member-
ship, for all l ∈ {1, ..., L}. According to the
MAP configuration, each language draws forms
from the same dialect group with > .99 proba-
bility, essentially undergoing a sort of “compo-
nent collapse” that latent variable models some-
times encounter (Bowman et al., 2015; Dinh and
Dumoulin, 2016). It is likely that bundling to-
gether sound change features leads to component-
level distributions over sound changes with high
entropy that are virtually indistinguishable from
one another.5 While this particular result is dis-
appointing in the lack of information it provides, I
observe some properties of our models’ posterior
values in order to diagnose problems that can be
addressed in future work (discussed below).

The deep model, on the other hand, infers
highly divergent language-level posterior distri-
butions over cluster membership. Since these
distributions are not identical across initializa-
tions due to the label-switching problem, I com-
pute the Jensen-Shannon divergence between the
language-level posterior distributions over cluster
membership for each pair of languages in our sam-
ple for each initialization. I then average these di-
vergences across initializations. These averaged

5I made several attempts to run this model with differ-
ent specifications, including different prior distributions, but
achieved the same result.
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Figure 2: Log posteriors for shallow model (left) and
deep model (right) for 10000 iterations over three ran-
dom initializations.

divergences are then scaled to three dimensions
using multidimensional scaling. Figure 3 gives a
visualization of these transformed values via the
red-green-blue color vector, plotted on a map; lan-
guages with similar component distributions dis-
play similar colors. With a few exceptions (that
may be artifacts of the fact that certain languages
have only a small number of data points associ-
ated with them), a noticieable divide can be seen
between languages of the main Indo-Aryan speech
region on one hand, and languages of northwest-
ern South Asia (dark blue), the Dardic languages
of Northern Pakistan, and the Pahari languages
of the Indian Himalayas, though this division is
not clear cut. Romani and other Indo-Aryan va-
rieties spoken outside of South Asia show affil-
iation with multiple groups. While Romani di-
alects are thought to have a close genetic affin-
ity with Hindi and other Central Indic languages,
it was likely in contact with languages of north-
west South Asian during the course of its speak-
ers’ journey out of South Asia (Hamp, 1987; Ma-
tras, 2002). However, this impressionistic evalua-
tion is by no means a confirmation that the deep
model has picked up on linguistically meaningful
differences between speech varieties. In the fol-
lowing sections, some comparison and evaluation
metrics and checks are deployed in order to assess
the quality of these models’ behavior.

5.1 Entropy of distributions

I measure the average entropy of the model’s pos-
terior distributions in order to gauge the extent to
which the models are able to learn sparse, informa-
tive distributions over sound changes, hidden state
activations, or other parameters concerning transi-
tions through the model architecture. Normalized
entropy is used in order to make entropies of distri-
butions of different dimension comparable; a dis-
tribution’s entropy can be normalized by dividing
by its maximum possible entropy.

As mentioned above, our data set consists of
OIA trigrams and the NIA segment corresponding
to the second segment in the trigram, representing
rewrite rules operating between OIA and the NIA
languages in our sample. It is often the case that
more than one NIA reflex is attested for a given
OIA trigram. As such, the sound changes that have
operated in an NIA language can be represented
as a collection of categorical distributions, each
summing to one. I calculate the average of the
normalized entropies of these sound change dis-
tributions as a baseline against which to compare
entropy values for the models’ parameters. The
pooled average of the normalized entropies across
all languages is .11, while the average of averages
for each language is .063.

For the shallow model, the parameter of interest
is f(V ), the dialect component-level collection of
distributions over sound changes, the mean nor-
malized entropy of which, averaged across initial-
izations but pooled across components within each
initialization, is 0.91 (raw values range from 0.003
to 1). For the deep model, the average entropy
of the dialect-level distributions over hidden-layer
activations, f(W x), is only slightly lower, at 0.86
(raw values range from close to 0 to 1).

For each k ∈ {1, ...,K}, I compute the for-
ward pass of RNN(xw,l,W

x
k ,W

h
k ,W

l) for each
etymon w and each language l in which the
etymon survives using the inferred values for
W x

k ,W
h
k ,W

l and compute the entropy of each
f(h>t W

l), yielding an average of .74 (raw val-
ues range from close to 0 to 1). While these val-
ues are still very high, it is clear that the inclu-
sion of a hidden layer has learned sparser, poten-
tially more meaningful distributions than the flat
approach, and that increasing the dimensionality
of the hidden layer will likely bring about even
sparser, more meaningful distributions. The en-
tropies cited here are considerably higher than the
average entropy of languages’ sound change dis-
tributions, but the latter distributions do little to tell
us about the internal clustering of the languages.

5.2 Comparison with other linguistic
distance metrics

Here, I compare the cluster membership inferred
by this paper’s models against other measures of
linguistic distance. Each method yields a pairwise
inter-language distance metric, which can be com-
pared against a non-linguistic measure. I measure
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Figure 3: Dialect group makeup of languages in sample under deep model

the correlation between each linguistic distance
measure as well as great circle geographic distance
and patristic distance according to the Glottolog
phylogeny using Spearman’s ρ.

5.2.1 Levenshtein distance
Borin et al. (2014) measure the normalized Lev-
enshtein distances (i.e., the edit distance between
two strings divided by the length of the longer
string) between words for the same concept in
pairs of Indo-Aryan languages, and find that av-
erage normalized Levenshtein distance correlates
significantly with patristic distances in the Ethno-
logue tree. This paper’s dataset is not organized by
semantic meaning, so for comparability, I measure
the average normalized Levenshtein distance be-
tween cognates in pairs of Indo-Aryan languages,
which picks up on phonological divergence be-
tween dialects, as opposed to both phonological
and lexical divergence.

5.2.2 Jensen-Shannon divergence
Each language in our dataset attests one or more
(due to language contact, analogy, etc.) outcomes
for a given OIA trigram, yielding a collection of
sound change distributions, as described above.
For each pair of languages, I compute the Jensen-
Shannon divergence between sound change distri-
butions for all OIA trigrams that are continued in
both languages, and average these values. This

gives a measure of pairwise average diachronic
phonological divergence between languages.

5.2.3 LSTM Autoencoder
Rama and Çöltekin (2016) and Rama et al. (2017)
develop an LSTM-based method for represent-
ing the phonological structure of individual word
forms across closely related speech varieties. Each
string is fed to a unidirectional or bidirectional
LSTM autoencoder, which learns a continuous
latent multidimensional representation of the se-
quence. This embedding is then used to recon-
struct the input sequence. The latent values in the
embedding provide information that can be used
to compute dissimilarity (in the form of cosine
or Euclidean distance) between strings or across
speech varieties (by averaging the latent values for
all strings in each dialect or language). I use the
bidirectional LSTM Autoencoder described in the
work cited in order to learn an 8-dimensional la-
tent representation for all NIA forms in the dataset,
training the model over 20 epochs on batches of 32
data points using the Adam optimizer to minimize
the categorical cross-entropy between the input se-
quence and the NIA reconstruction predicted by
the model. I use the learned model parameters to
generate a latent representation for each form. The
latent representations are averaged across forms
within each language, and pairwise linguistic Eu-
clidean distances are computed between each av-
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Geographic Genetic
Shallow JSD −0.01 −0.03
Deep JSD 0.147∗ 0.008

LDN 0.346∗ 0.013
Raw JSD 0.302∗ −0.051∗
LSTM AE 0.158∗ −0.068∗
LSTM ED 0.084∗ 0.0001

Table 1: Spearman’s ρ values for correlations between
each linguistic distance metric (JSD = Jensen-Shannon
Divergence, LDN = Levenshtein Distance Normalized,
AE = Autoencoder, ED = Encoder-Decoder) and geo-
graphic and genetic distance. Asterisks represent sig-
nificant correlations.

eraged representation.

5.2.4 LSTM Encoder-Decoder
For the sake of completeness, I use an LSTM
encoder-decoder to learn a continuous representa-
tion for every OIA-NIA string pair. This model
is very similar to the LSTM autoencoder, except
that it takes an OIA input and reconstructs an NIA
output, instead of taking an NIA form as input and
reconstructing the same string. I train the model
as described above.

5.3 Correlations

Table 1 gives correlation coefficients (Spearman’s
ρ) between linguistic distance metrics and non-
linguistic distance metrics. In general, correlations
with Glottolog patristic distance are quite poor.
This is surprising for Levenshtein Distance Nor-
malized, given the high correlation with patristic
distance reported by Borin et al. (2014). Given
that the authors measured Levenshtein distance
between identical concepts in pairs of languages,
and not cognates, as I do here, it is possible that
lexical divergence carries a stronger genetic sig-
nal than phonological divergence, at least in the
context of Indo-Aryan (it is worth noting that I
did not balance the tree, as described by the au-
thors; it is not clear that this would have yielded
any improvement). On the other hand, the Lev-
enshtein distance measured in this paper corre-
lates significantly with great circle distance, indi-
cating a strong geographic signal. Average Jensen-
Shannon divergence between pairs of languages’
sound change distributions shows a strong associ-
ation with geographic distance as well.

Divergence/distances based on the deep
model, the LSTM Autoencoder, and the LSTM

Encoder-Decoder show significant correlations
with geospatial distance, albeit lower ones. It is
not entirely clear what accounts for this disparity.
Intuitively, we expect more shallow chronological
features to correlate with geographic distance. It
is possible that the LSTM and RNN architectures
are picking up on chronologically deeper infor-
mation, and show a low geographic signal for this
reason, though this highly provisional idea is not
borne out by any genetic signal.

It is not clear how to assess the meaning of
these correlations at this stage. Nevertheless, deep
architectures provide an interesting direction for
future research into sound change and language
contact, as they have the potential to disaggregate
a great deal of information regarding interacting
forces in language change that is censored when
raw distance measures are computed directly from
the data.

6 Outlook

This paper explored the consequences of adding
hidden layers to models of dialectology where the
languages have experienced too much contact for
phylogenetic models to be appropriate, but have
diversified to the extent that traditional dialecto-
metric approaches are not applicable. While the
model requires some refinement, its results point
in a promising direction. Modifying prior distribu-
tions could potentially produce more informative
results, as could tweaking hyperparameters of the
learning algorithms employed. Additionally, it is
likely that the model will benefit from hidden lay-
ers of higher dimension J , as well as bidirectional
approaches, and despite the misgivings regard-
ing LSTM and GRUs stated above, future work
will probably benefit from incorporating these and
related architectures (e.g., attention). Addition-
ally, the models used in this paper assumed dis-
crete latent variables, attempting to be faithful to
the traditional historical linguistic notion of inti-
mate borrowing between discrete dialect groups.
However, continuous-space models may provide a
more flexible framework for addressing the ques-
tions asked in this paper (cf. Murawaki, 2015).

This paper provides a new way of looking at
dialectology and linguistic affiliation; with refine-
ment and expansion, it is hoped that this and re-
lated models can further our understanding of the
history of the Indo-Aryan speech community and
can generalize to new linguistic scenarios. It is
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hoped that methodologies of this sort can join
forces with similar tools designed to investigate
interaction of regularly conditioned sound change
and chronologically deep language contact in in-
dividual languages’ histories.
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Alexandre Bouchard-Côté, Percy S Liang, Dan Klein,
and Thomas L Griffiths. 2008. A probabilistic ap-
proach to language change. In Advances in Neural
Information Processing Systems, pages 169–176.

R. Bouckaert, P. Lemey, M. Dunn, S. J. Greenhill,
A. V. Alekseyenko, A. J. Drummond, R. D. Gray,
M. A. Suchard, and Q. D. Atkinson. 2012. Mapping
the origins and expansion of the Indo-European lan-
guage family. Science, 337(6097):957–960.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2015. Generating sentences from a continu-
ous space. Proceedings of the Twentieth Confer-
ence on Computational Natural Language Learning
(CoNLL).

Chundra Cathcart. to appear. A probabilistic assess-
ment of the Indo-Aryan Inner-Outer Hypothesis.
Journal of Historical Linguistics.

Ashwini Deo. 2018. Dialects in the Indo-Aryan land-
scape. In Charles Boberg, John Nerbonne, and Do-
minic Watt, editors, The Handbook of Dialectology,
pages 535–546. John Wiley & Sons, Oxford.

Laurent Dinh and Vincent Dumoulin. 2016. Train-
ing neural Bayesian nets. http://www.
iro.umontreal.ca/bengioy/cifar/
NCAP2014-summerschool/slides/
Laurent_dinh_cifar_presentation.
pdf.

Jeffrey Elman. 1990. Finding structure in time. Cogni-
tive Science, 14(2):179–211.

Murray B. Emeneau. 1966. The dialects of Old-
Indo-Aryan. In Jaan Puhvel, editor, Ancient Indo-
European dialects, pages 123–138. University of
California Press, Berkeley.

Harald Hammarström, Robert Forkel, and Martin
Haspelmath. 2017. Glottolog 3.3. Max Planck In-
stitute for the Science of Human History.

Eric P Hamp. 1987. On the sibilants of romani. Indo-
Iranian Journal, 30(2):103–106.
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Abstract

Automatic dialect identification is a more chal-
lenging task than language identification, as
it requires the ability to discriminate between
varieties of one language. In this paper, we
propose an ensemble based system, which
combines traditional machine learning mod-
els trained on bag of n-gram fetures, with
deep learning models trained on word em-
beddings, to solve the Discriminating between
Mainland and Taiwan Variation of Mandarin
Chinese (DMT) shared task at VarDial 2019.
Our experiments show that a character bigram-
trigram combination based Naive Bayes is a
very strong model for identifying varieties of
Mandarin Chinense. Through further ensem-
ble of Navie Bayes and BiLSTM, our sys-
tem (team: itsalexyang) achived an macro-
averaged F1 score of 0.8530 and 0.8687 in two
tracks.

1 Introduction

Dialect identification, which aims at distinguish-
ing related languages or varieties of a specific lan-
guage, is a special case of language identification.
Accurate detection of dialects is an important step
for many NLP piplines and applications, such as
automatic speech recognition, machine translation
and multilingual data acquisition. While there are
effective solutions to language identification, di-
alect identification remains a tough problem to
be tackled. As linguistic differences among re-
lated languages are less obvious than those among
different languages, dialect identification is more
subtle and complex, and therefore has become
an attractive topic for many researchers in recent
years.

Mandarin Chinese is a group of related vari-
eties of Chinese spoken across many different re-
gions. The group includes Putonghua, the offical
language of Mainland China, and Guoyu, another

Term Mainland China Taiwan
taxi 出租车 計程車

bicycle 自行车 腳踏車
software 软件 軟體
program 程序 程式

kindergarten 幼儿园 幼稚園

Table 1: Different expressions with the same meaning
used in Mainland China and Taiwan.

Mandarin variant widely spoken in Taiwan. How-
ever related they are, there are still some differ-
ence between these two varieties. First, the most
notable one is the character set they use. Mainland
Chinese uses simplified Chinese characters, as op-
posed to the traditional Chinense characters used
by Taiwanese. Take “natural language processs-
ing” for example - its simplified character form
adopted in Mainland China is “自然语言处理”,
while the traditional character form in Taiwan is
“自然語言處理”. Second, some vocabularies
differ. Although some terms are mutually intel-
ligible, they are preferred in one region. Table 1
lists some examples. Apart from character form
and vocabularies, pronunciations, especially into-
nations, are also different. But we don’t discuss
this aspect, as it is irrelevant to the task.

The DMT task, first introduced by VarDial eval-
uation campagin (Zampieri et al., 2019) this year,
aims at determining whether a sentence belongs to
news articles from Mainland China or from Tai-
wan. The organizers prepare two versions of the
same corpus, traditional and simplified, and ask
participants to predict the labels for text instances
in both tracks. For that reason, character form
can not be used to discriminate between these two
language varieties. Mainstream approach to di-
alect identification is to regard it as a text classi-
fication task and use a linear support vector ma-
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chine (SVM) with bag of n-gram features as in-
put to slove it. However, we seek to find out
what’s the best classification algorithm for DMT
task. Therefore, we experiment with serveral clas-
sical machine learning models trained on different
word or character level n-gram features and fea-
ture combinatons. Besides, deep learning meth-
ods have currently achieve remakable sucess in
many NLP tasks, including question answering,
sentiment analysis, machine translation and natu-
ral language inference. To inverstigate how much
deep neural neworks can help identify language
varieties, we test 7 different deep learning models,
including CNN based, RNN based and CNN-RNN
hybrid models. Thorough performance compari-
son to machine learning models is also conducted.
Finally, we explore different ways to ensemble the
classifiers we discuss before.

2 Related Work

A number of works have devoted to differen-
tiate between language varieties or related lan-
guages, especially since the series of VarDial eval-
uation campaigns (Zampieri et al., 2017, 2018,
2019). (Lui and Cook, 2013) studies on English
dialect identification and presents serveral classi-
fication approaches to classify Australia, British
and Caniadian English. (Zampieri and Gebre,
2012) utilizes a character n-gram and a word n-
gram language model for automatic classificaton
of two written varieties of Portuguese: European
and Brazilian. (Ciobanu and Dinu, 2016) con-
ducts an intial study on the dialects of Roma-
nian and proposes using the orthographic and pho-
netic features of the words to build a dialect clas-
sifier. (Clematide and Makarov, 2017) uses a
majority-vote ensemble of the Navie Bayes, CRF
and SVM systems for Swiss German dialects iden-
tification. (Kreutz and Daelemans, 2018) uses two
SVM classifiers: one trained on word n-grams
fewtures and one trained on Pos n-grams to deter-
mine whether a document is in Flemish Dutch or
Netherlandic Dutch. (Çöltekin et al., 2018) uses a
unified SVM model based on character and word
n-grams features with careful hyperparameter tun-
ing for 4 language/dialect identification tasks.

Methods to discriminate between varieties of
Mandarin Chinese haven’t been well studied.
(Huang and Lee, 2008) uses a top-bag-of-word
similarity based contrastive approach to reflect
distance among three varieties of Mandarin:

Mainland China, Singapore and Taiwan. (Xu
et al., 2016) deals with 6 varieties of Man-
darin: Maninland, Hong Kong, Taiwan, Macao,
Malaysia and Singapore. They discover that char-
acter bigram and word segmentation based feature
work better than traditional character unigram, and
some features such as character form, PMI-based
and word alignment-based features can help im-
prove performance. However, a thorough compar-
ison of different algorithms and architectures has
yet to be conducted.

3 Data and Methodology

3.1 Data

The DMT task is provided with labeled sentences
from news published in Mainland China or in Tai-
wan (Chen et al., 1996; McEnery and Xiao, 2003).
They are composed of 18770 instances for train-
ing set, 2000 for validation set and 2000 for test
set. As shown in Table 2, the DMT dataset has a
perfectly balanced class distribution. The avergae
sentence lengths (in word level) of two varieties
are almost the same. It’s worth mentioning that
the organizers have prepared two version of the
same dataset: traditional and simplified version,
which means we can’t utilize character form fea-
ture to discriminate between these two language
varieties. Since the sentences have been tokenized
and punctuation has been removed from the texts,
we don’t apply any preprocessing on the dataset.

3.2 Traditional Machine Learning Models

Traditional machine learning models based on fea-
ture engineering are the most common methods
for dialect identification. In this paper, we exper-
iment with 3 different classifiers: (1) logistic re-
gression (LR), (2) linear support vector machine
(SVM), and (3) multinomial Naive Bayes (MNB)
based on bag of n-gram features. We also exam-
ine other Navie Bayes models such as Gaussian
Navie Bayes and Bernoulli Naive Bayes, but they
are inferior to multinomial Naive Bayes on the val-
idation set. The bag of n-gram features include
word and character level n-grams with sizes rang-
ing from 1 to a specific number. We conduct a set
of experiments to fully explore the most contribut-
ing feature and feature combination for the DMT
task, and the results are shown in next Section.
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Variety Number of instances Sentence length
train valid test min max avg st.dev.

Mainland China 9385 1000 1000 5 66 9.63 3.73
Taiwan 9385 1000 1000 6 48 9.24 3.30

Table 2: Statistics of dataset for each variety. Sentence lengths are calculated based on word-level tokens from
training and validation set.

Figure 1: The overall framework of deep models.

3.3 Deep Learning Models

Deep neural networks (DNNs) are of growing in-
terest for their capacity to learn text representation
from data without careful engineering of features.
For short-text classification task, Convolution neu-
ral network (CNN) and recurrent neural network
(RNN) are two mainstream DNN architectures. In
this paper, we examine a number of deep learning
models based on a common framework to solve
the DMT task. Figure 1 shows a high-level view
of the framework. Vertically, the figure depicts 3
major components: (1) Input Embedding Layer.
Suppose a sentence has n tokens, we use a pre-
trained embedding method Word2vec (Mikolov
et al., 2013) trained on training data to represent
it in a sequence of word embeddings:

S = (w1,w2, · · ·wn) (1)

where wi is a vector representing a d dimentional
word embedding for the i-th word in the sen-
tence. S is thus a concatenation of all word em-
beddings. We do try using character embeddings
and other pre-trained embedding methods such as
Glove (Pennington et al., 2014) and Fasttext (Bo-
janowski et al., 2017) but observed no further im-
provement on validation set. (2) Sentence En-
coder Layer. The sentence encoder, specified by
different deep learning models, processes the in-
put word embedding sequence and outputs a high

level sentence representation:

v = encode (S) (2)

(3) Output Layer. After obtaining sentence vec-
tor, we feed it through one hidden dense layer with
256 units and a final predict dense layer:

ŷ = σ (Wpγ (Whv + bh) + bp) (3)

where Wh and bh are the parameters for hidden
layer, Wp and bp are the parameters for predict
layer, γ and σ are relu and sigmoid activation func-
tion respectively, ŷ ∈ R represents the predicted
score for postive class. During training process,
we minimize the binary cross-entropy loss defined
as follow:

L = − 1

N

N∑

i=1

(yi log ŷi + (1− yi) log (1− ŷi))

(4)
where yi is the ground-truth.

We examine 7 different deep learning models to
encode sentences into fixed-size vectors, includ-
ing CNN-based, RNN-based and CNN-RNN hy-
bird neural networks.

• CNN: First introduced by (Kim, 2014), the
convolution network applies a concolution
operation with a filter Wc ∈ Rhd to a win-
dow of h words to produce a new feature:

ci = f (Wc ·wi:i+h−1 + b) (5)

After applying this filter to each possible win-
dow of words in a sentence, a feature map can
be produced. In this paper, we use 300 filters
with window sizes ranging from 2 to 5 to ex-
tract four 300 dimensional feature maps. Af-
ter that, we apply max-over-time pooling op-
eration by taking the highest value for each
feature map to capture the most important
feature, then concatanate all the features to
represent the input sentence.
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• DCNN: (Kalchbrenner et al., 2014) use a dy-
namic convolution neural network (DCNN)
that alternates wide concolution layers and
dynamic k-Max pooling layers for sentence
modeling. Through a k-Max pooling opera-
tion, a feature graph over the sentence can be
induced, which explicitly captures both short
and long-range relations.

• DPCNN: (Johnson and Zhang, 2017) pro-
pose a deep concolutional neural network by
stacking concolution blocks (two concolution
layers and a shortcut connection) interleaved
with pooling layers with stride 2 for down-
sampling. The 2-stride downsampling re-
duces the size of the internal represenation of
each text by half, enabling efficient represen-
tation of long-range association in the text.
The shortcut connection ensures training of
deep networks. DPCNN has been shown
powerful in many text classification task.

• BiLSTM: LSTM is an effective neural net-
work for sentence modeling for its ability to
capture long-term dependencies. BiLSTM
use a forward and a backward LSTM to pro-
cess sequence, so that each produced hidden
state can contain information from context in
two opposite direction. Specifically, at each
time step t, hidden state ht is the concate-
nation of results from forward and backward
LSTM:

−→
ht =

−−−−→
LSTM (w1,w2, . . . ,wt)

←−
ht =

←−−−−
LSTM (wn,wn−1, . . . ,wt)

ht =
[−→
ht ,
←−
ht

] (6)

After obtaining hidden state squence, we ap-
ply max-over-time pooling operation to form
a fixed-size vector as sentence representation.

• Self-attentive BiLSTM: Attention mecha-
nism is most comonly used in sequence-
to-sequence models to attend to encoder
states (Bahdanau et al., 2014; Vaswani et al.,
2017). In this paper, we make use of at-
tention, more specifically, self-attention (Lin
et al., 2017) to obtain a distribution over
features learned from BiLSTM (a.k.a hidden
states). SupposeH is the output hidden states
of BiLSTM: H = (h1,h2, · · ·hn), we can
calculate the attention vector α and the final

sentence representation v as follows:

et = U>a tanh (Waht)

αt =
exp (et)∑T
i=1 exp (ei)

v = ΣT
i=1αihi

(7)

where Wa ∈ R2d×2d and Ua ∈ R2d×1 are
parameters of the attention layer (we use d
units for LSTM, thus ht being a 2d dimen-
sional vector). Using self-attention allows a
sentence to attend to itself, therefore we can
extract the most relevant information.

• CNN-BiLSTM: Similar as (Zhou et al.,
2015), we first use CNN to extract a higher-
level sequence representations from word
embedding sequences, and then feed them
into BiLSTM to obtain final sentence repre-
sentation. By combing CNN and BiLSTM,
we are able to capture both local features
of phrases and global informantion of sen-
tences.

• BiLSTM-CNN: We also use BiLSTM layer
as feature extrator first and then feed the hid-
den states to the CNN layer, which we call
BiLSTM-CNN.

3.4 Ensemble Models
Classifier ensemble is a way of combining dif-
ferent models with the goal of improving over-
all peformance through enhanced decision mak-
ing, which has been shown to achieve better re-
sults than a single classifier. In this paper, we ex-
plore 4 ensemble strategies to intergrate outputs
(predicted labels or probabilities) from models in-
troduced above and reach a final decision.

• Mean Probability: Simply take an average
of predictions from all the models and use it
to make the final prediction.

• Highest Confidence: The class label that re-
cieves vote with the highest probability is se-
lected as the final prediction.

• Majority Voting: Each classifier votes for
a single class label. The votes are summed
and the label with majority votes (over 50%)
wins. In case of a tie, the ensemble result
falls back to the prediction by the model with
highest peformance on validation set.
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• Meta-Classifier: Use the individual clas-
sifier outputs along with training labels to
train a second-level meta-classifier.The sec-
ond meta-classifier then predicts the final pre-
diction. Meta-Classifier is also refered to as
Classifier Stacking.

While the first three strategies use a simple fu-
sion method to combine models, Meta-Classifier
has parameters to train, which attempts to learn
the collective knowledge represented by base clas-
sifiers. As for choosing estimators for meta-
classfier, we test with a wide range of learning al-
gorithms including not only the ones mentioned in
Section 3.2, but also random forest, GBDT, XG-
Boost and so on. It turns out Gaussian Navie
Bayes is the most competitive model, which will
be the only meta classifer discusssed in next Sec-
tion.

4 Experiments

4.1 Experimental Setup
We use scikit-learn library1 for the implemen-
tation of the n-gram features based models and
the ensemble meta-classifier. As for deep learn-
ing models, we implement them using Keras2

library with Tensorflow backend. We used
Adam (Kingma and Ba, 2014) method as the op-
timizer, setting the first momentum to be 0.9 , the
second momentum 0.999 and the initial learning
0.001. The bacth size is 32. All hidden states
of LSTMs, feature maps of CNNs and word em-
beddings have 300 dimensions. Word embeddings
are fine tuned during training process. All mod-
els are trained separately on dataset of traditional
and simplified version, and evaluated using macro-
weighted f1 score. Our code for all experiments is
publicly available3.

4.2 Contribution of Single N-gram Feature
To find the most contributing individual n-gram
feature for discriminating between Mandarin Chi-
nese varieties. We run a number of experiments
with the three classifiers using one single n-gram
at a time, and the results are shown in Figure 2.
In terms of n-gram features, for dataset of both
simplified and traditional version, performances
of 3 models all drop sharply as n-gram size in-
creases, especially for word level n-grams. The

1https://scikit-learn.org/stable/
2https://github.com/keras-team/keras
3https://github.com/AlexYangLi/DMT

most contributing character level ngram is charac-
ter trigram, which is slightly better than character
bigram. Word unigram is the best among word
level n-grams, but no better than character bigram
or trigram. As for the 3 models, although SVM has
been the most preferred method for dialect iden-
tification, in our experiment, MNB outperforms
LR and SVM. Lastly, for all models, performance
on the traditional version dataset is slightly better
than that on the simplified version dataset.

4.3 Combination of N-gram Features
Table 3 shows the results of combining individual
feature on each dataset. The performances of indi-
vidual feature are also listed for direct comparison.
As indicated from the table, feature combination
does bring a performance gain. MNB with char-
acter bigram and trigram combination achieves the
highest macro-weighted f1 scores, 0.9080 for the
simplified version and 0.9225 for the traditional
version.

4.4 Performance of Deep Learning Models
To fully compare deep learning methods with ma-
chine learning methods for the DMT task,we eval-
uate 7 deep learning models. Results are listed in
Table 4. Among these models, BiLSTM stands out
from the others with macro-weighted f1 scores of
0.9000 and 0.9115. All deep learning models out-
perform LR and SVM, but are inferior to MNB,
which shows again MNB is a very strong classifier
for discriminating between varieties of Mandarin
Chinese.

4.5 Performance of Ensemble Models
We also try to achieve a better result by aggregat-
ing outputs of the models we have implemented.
As presented in Table 5, no single ensemble strat-
egy performs consistenly better than the others.
The best choice for ensemble model is using MNB
and BiLSTM as base classifier, and Mean Prob-
ability or Highest Confidence as fusion method.
(When there are only 2 base classifiers, results of
Mean Probability and Highest Confidence are al-
ways the same.)

4.6 Results of Shared Task
We submit 3 systems for the evalution of test set:
MNB, BiLSTM and their ensemble. The official
results of our submissons show the same pattern
observed on the validation set (see Table 6). MNB
performs better than BiLSTM, especially for the
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Figure 2: Macro-weighted f1 scores of LR (red lines), SVM (green lines), MNB (blue lines) using character (dotted
lines) or word level (solid lines) n-gram of different sizes as input, both on dataset of simplified (left) and traditional
(right) version.

Feature Simplified Traditional
LR SVM MNB LR SVM MNB

Individual feature
word uigram 0.8590 0.8384 0.8784 0.8634 0.8460 0.8860
char bigram 0.8720 0.8620 0.8935 0.8890 0.8840 0.9100
char trigram 0.8790 0.8760 0.9015 0.8840 0.8845 0.9150
char 4gram 0.8504 0.8474 0.8835 0.8570 0.8559 0.8910
Combined feature
char bigram+trigram 0.8865 0.8830 0.9080 0.8960 0.8925 0.9225
char bigram+trigram+4gram 0.8880 0.8835 0.9030 0.8945 0.8920 0.9170
char bigram+char trigram+word unigram 0.8875 0.8835 0.9055 0.8990 0.8940 0.9200

Table 3: Macro-weighted f1 scores of LR, SVM, MNB using individual or combined features as input, both on
dataset of simplified and traditional version.

Model Simplfied Traditional
CNN-based
CNN 0.8964 0.9090
DCNN 0.8970 0.9080
DPCNN 0.8925 0.9070
RNN-based
BiLSTM 0.9000 0.9115
Self-attentive BiLSTM 0.8915 0.9020
CNN-RNN hybrid
CNN-BiLSTM 0.8935 0.9080
BiLSTM-CNN 0.8950 0.9095

Table 4: Macro-weighted f1 scores of deep learning models using word embeddings as input, both on dataset of
simplified and traditional version.
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Ensemble Strategy

Simplfied Traditional

all ML∗ all DL∗
MNB

+
BiLSTM

all ML∗ all DL∗
MNB

+
BiLSTM

Mean Probability 0.9025 0.9050 0.9130 0.9170 0.9215 0.9240
Highest Confidence 0.9080 0.9015 0.9130 0.9225 0.9100 0.9240
Majority Voting 0.8880 0.9060 - 0.8985 0.9195 -
Meta-Classifier 0.8915 0.9025 0.9050 0.906 0.9130 0.9215

Table 5: Macro-weighted f1 scores of 4 ensemble strategies combining different base classifiers, both on dataset of
simplified and traditional version. “all ML” and “all DL” refer to combine all machine learning models and deep
learning models respectively. All machine learning models use character bigram-trigram combination as input.

Submission Simplified Traditional
BiLSTM 0.8118 0.8450

MNB 0.8499 0.8650
MNB + BiLSTM 0.8530 0.8687

Table 6: Macro-weighted f1 scores of 3 submissions on
test sets (team: itsalexyang).

simplified version of test data. In addition, the
MNB-BiLSTM ensemble achieves a higher score
than a single model for both versions of test data.
Overall, our models’ performance is consistently
lower on the test set than on the validation set. We
believe tuning parameters with k-fold cross valida-
tion or applying other overfitting prevention strate-
gies may help yield better results on unseen data.

5 Conclusion

In this paper, we describes our submission for
the DMT task. Our experiments show that multi-
nomial Naive Bayes is a very strong model for
discrinating between Mandarin varieties, which
works better than the most commonly used SVM
and popular deep learning models. For MNB,
character trigram is the most contributing feature.
Further performance gain can be achieved by com-
bining character trigram and bigram feature. We
also explore different ways to ensemble models,
and find that average ensemble (or highest confi-
dence ensemble) of MNB and BiLSTM is the best
model for the DMT task.

In future work, we would like to apply our
model to deal with more varieties of Mandarin
Chinese (e.g. Hong Kong, Taiwan, Macao, Sin-
gapore and Malaysia) to examine its effectiveness.
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2018. Tübingen-oslo team at the vardial 2018 eval-
uation campaign: An analysis of n-gram features in
language variety identification. In Proceedings of
the Fifth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial 2018), pages 55–65.
Association for Computational Linguistics.

Chu-Ren Huang and Lung-Hao Lee. 2008. Contrastive
approach towards text source classification based on
top-bag-of-word similarity. In Proceedings of the
22nd Pacific Asia Conference on Language, Infor-
mation and Computation.

126



Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 562–570. Association
for Computational Linguistics.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
655–665. Association for Computational Linguis-
tics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tim Kreutz and Walter Daelemans. 2018. Exploring
classifier combinations for language variety iden-
tification. In Proceedings of the Fifth Workshop
on NLP for Similar Languages, Varieties and Di-
alects (VarDial 2018), pages 191–198. Association
for Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cı́cero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. CoRR, abs/1703.03130.

Marco Lui and Paul Cook. 2013. Classifying english
documents by national dialect. In Proceedings of
the Australasian Language Technology Association
Workshop 2013 (ALTA 2013), pages 5–15.

A. M. McEnery and R. Z. Xiao. 2003. The lancaster
corpus of mandarin chinese.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Fan Xu, Mingwen Wang, and Maoxi Li. 2016.
Sentence-level dialects identification in the greater
china region. International Journal on Natural Lan-
guage Computing (IJNLC), 5(6).

Marcos Zampieri and Binyam Gebrekidan Gebre.
2012. Automatic identification of language vari-
eties: The case of portuguese. In Proceedings of
KONVENS.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
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Abstract

In this paper, we present a machine learning
approach for the German Dialect Identifica-
tion (GDI) Closed Shared Task of the DSL
2019 Challenge. The proposed approach com-
bines deep and shallow models, by applying
a voting scheme on the outputs resulted from
a Character-level Convolutional Neural Net-
works (Char-CNN), a Long Short-Term Mem-
ory (LSTM) network, and a model based on
String Kernels. The first model used is the
Char-CNN model that merges multiple con-
volutions computed with kernels of different
sizes. The second model is the LSTM net-
work which applies a global max pooling over
the returned sequences over time. Both mod-
els pass the activation maps to two fully-
connected layers. The final model is based
on String Kernels, computed on character p-
grams extracted from speech transcripts. The
model combines two blended kernel functions,
one is the presence bits kernel, and the other
is the intersection kernel. The empirical re-
sults obtained in the shared task prove that the
approach can achieve good results. The sys-
tem proposed in this paper obtained the fourth
place with a macro-F1 score of 62.55%.

1 Introduction

Being at its third edition, the 2019 VarDial Evalu-
ation Campaign (Zampieri et al., 2019) includes
two shared tasks on dialect identification which
proves that researchers are still interested in this
challenging NLP task. For example, in the 2018
GDI Shared Task (Zampieri et al., 2018), a sys-
tem (Jauhiainen et al., 2018) that uses a series
of language models based on character n-grams
achieves state-of-the-art with a macro-F1 score
near 69%, in a 4-way classification setting. For
the 2019 GDI Shared Task, the organizers have in-
cluded audio features together with speech tran-
scripts, and also provided a word-level normal-

ization for each transcript. For solving this task,
we propose a combination of deep and shallow
models, by applying a voting scheme on the out-
puts resulted from a Character-level Convolutional
Neural Networks (Char-CNN), a Long Short-Term
Memory (LSTM) network, and a model based on
String Kernels. In the 2019 GDI Shared Task, the
participants had to discriminate between four Ger-
man dialects, in a 4-way classification setting. A
number of 6 participants have submitted their re-
sults, and the model proposed in this paper ob-
tained 4th place with an accuracy of 62.95%, and
macro-F1 score of 62.55%.

The best scoring system that we submitted for
the GDI Shared Task is an ensemble that com-
bines both deep and shallow models. The sys-
tem uses features from two deep models, Char-
CNNs and LSTMs, and also from a shallow model
that combines several kernels using multiple ker-
nel learning. The Char-CNN model merges convo-
lutions computed with kernels of different sizes to
learn a first group of features. The LSTM network
learns the second group of features by applying a
global max pooling over the returned sequences
over time. For the String Kernel model, we com-
bined two kernel functions. The first kernel used
is the p-grams presence bits kernel1 which takes
into account only the presence of p-grams instead
of their frequencies. The second kernel is the his-
togram intersection kernel2, which was first used
in a text mining task by (Ionescu et al., 2014). This
kernel functions proved useful in previous dialect
identification shared tasks (Ionescu and Popescu,
2016; Ionescu and Butnaru, 2017; Butnaru and
Ionescu, 2018).

There are two steps in the learning process. In

1The p-grams presence bits kernel was computed using
the code available at http://string-kernels.herokuapp.com.

2The intersection string kernel was computed using the
code available at http://string-kernels.herokuapp.com.
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the first step, the deep models are trained indi-
vidually using the Adam optimization algorithm
(Kingma and Ba, 2015). In the second step, the
string kernel model is learned by applying Kernel
Ridge Regression (KRR) (Shawe-Taylor and Cris-
tianini, 2004). Finally, a voting schema is applied
to obtain the final class for a test sample. Before
deciding the final system, we tuned each model for
the task. First of all, we tuned the string kernels
model by trying out p-grams of various lengths, in-
cluding blended variants of string kernels as well.
Besides blended variants, we evaluated individ-
ual kernels, and also various kernel combinations.
Second of all, we tuned the Char-CNN model, by
trying out various convolution lengths, number of
filters and depths. Finally, we tuned the LSTM
model by seeking the best number of output units.

The paper is organized as follows. Work related
to German dialect identification, models based on
Character-Level Convolutional Neural Networks,
Long Short-Term Memory Networks, and meth-
ods based on string kernels is presented in Section
2. Section 3 presents Char-CNNs, LSTMs and the
string kernel models used in this approach. In this
section, we also present the ensemble model. De-
tails about the German dialect identification exper-
iments are provided in Section 4. Finally, we draw
the conclusion in Section 5.

2 Related Work

2.1 German Dialect Identificaion

German dialect identification is not a widely re-
searched task, but we can observe an increased
interest in it within recent years. In 2010, a sys-
tem for written dialect identification was proposed
(Scherrer and Rambow, 2010) , and it was based
on an automatically generated Swiss German lex-
icon that maps word forms with their geographi-
cal extensions. During test time, they split a sen-
tence into words and look up their geographical
extension in the lexicon. Another method (Hol-
lenstein and Aepli, 2015) was proposed for solv-
ing the Swiss German dialect identification task
based on trigrams. For each dialect, a language
model was trained, and each test sentence was
scored against every model. The predicted dialect
is chosen based on the lowest perplexity. In 2016,
a corpus (Samardžić et al., 2016) that can be used
for GDI was presented, which was later used to
evaluate the participants in the GDI Shared Task
of the DSL 2017 Challenge. One of the partici-

pants in the previously mentioned shared task, de-
fined a system (Ionescu and Butnaru, 2017) that is
based on multiple string kernels. The team used
a Kernel Ridge Regression classifier trained on a
kernel combination of a blended presence bits ker-
nel based on 3 − 6-grams, a blended intersection
kernel based on 3−6-grams, and a kernel based on
LRD with 3 − 5-grams. The winning team of the
GDI Shared Task of the VarDial 2018 Workshop
defined a system (Jauhiainen et al., 2018) that is
based on language models defined on character 4-
grams, and having on top the HeLI method.

2.2 String Kernels
In the past years, we can find that techniques that
approach text at the character level proved re-
markable performance levels in various text anal-
ysis tasks (Lodhi et al., 2002; Sanderson and
Guenter, 2006; Kate and Mooney, 2006; Es-
calante et al., 2011; Popescu and Grozea, 2012;
Popescu and Ionescu, 2013; Ionescu et al., 2014,
2016; Giménez-Pérez et al., 2017; Popescu et al.,
2017; Cozma et al., 2018; Ionescu and But-
naru, 2018a). String kernels are a natural way
of using character level information to gener-
ate features that are helpful in solving various
areas of tasks. They are a particular case of
the more general convolution kernels (Haussler,
1999). Since the beginning of the 21st century, re-
searchers applied string kernels on document cat-
egorization (Lodhi et al., 2002), obtaining excel-
lent results. String kernels were also success-
fully used in authorship identification (Sanderson
and Guenter, 2006; Popescu and Grozea, 2012).
For example, the first ranked team of the PAN
2012 Traditional Authorship Attribution task, used
a system (Popescu and Grozea, 2012) based on
string kernels. In recent years, various blended
string kernels reached state-of-the-art accuracy
rates for native language identification (Ionescu
et al., 2016; Ionescu and Popescu, 2017), Ara-
bic dialect identification (Ionescu and Popescu,
2016; Ionescu and Butnaru, 2017; Butnaru and
Ionescu, 2018), polarity classification (Giménez-
Pérez et al., 2017; Popescu et al., 2017), automatic
essay scoring (Cozma et al., 2018), and cross-
domain text classification (Ionescu and Butnaru,
2018a,b).

2.3 Character-Level CNN Networks
Convolutional networks (LeCun et al., 1998) have
proven to be very efficient in solving various
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computer vision tasks (Krizhevsky et al., 2012;
Szegedy et al., 2015; Ren et al., 2015). Therefore,
many researchers decided to apply CNNs in their
primary area of interest. For example, in the NLP
domain, Convolutional Neural Networks (LeCun
et al., 1998; Krizhevsky et al., 2012) were success-
fully applied on several NLP tasks such as part-
of-speech tagging (Santos and Zadrozny, 2014),
text categorization (Kim, 2014; Zhang et al., 2015;
Johnson and Zhang, 2015), dialect identification
(Belinkov and Glass, 2016; Ali, 2018), machine
translation (Gehring et al., 2017) and language
modeling (Kim et al., 2016; Dauphin et al., 2017).
Word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) had a significant impact on NLP
due to their ability to learn semantic and syntactic
latent features. Because of this, researchers devel-
oped many CNN-based methods that rely on word
embeddings. Trying to eliminate the pre-trained
word embeddings from the pipeline, some re-
searchers have tried to build end-to-end models us-
ing characters as input, in order to solve text clas-
sification (Zhang et al., 2015; Belinkov and Glass,
2016), language modeling (Kim et al., 2016) or
dialect identification (Butnaru and Ionescu, 2019)
tasks. Using characters as features can help the
model learn unusual character sequences such as
misspellings or take advantage of unseen words
during test time. Working at the character-level
can prove useful in solving the dialect identifica-
tion task, since some state-of-the-art dialect identi-
fication methods (Ionescu and Butnaru, 2017; But-
naru and Ionescu, 2018) use character n-grams as
features.

2.4 Long-Short Term Memory Networks

Recurrent Neural Networks (RNNs) (Elman,
1990) have the ability to process fixed length se-
quences and learn short-term dependencies be-
tween items from the sequence (Lin et al., 1996).
A limitation of the RNN model is that it can-
not learn long-distance correlations between items
within a sequence (Hochreiter and Schmidhuber,
1997; Hochreiter et al., 2001). Long Short-Term
Memory (LSTMs) (Hochreiter and Schmidhuber,
1997) have been proposed as a solution for the
RNNs issue, introducing a memory cell inside the
network. LSTMs have become more popular after
being successfully applied in statistical machine
translation (Sutskever et al., 2014). Besides this,
researchers employed LSTMs in various areas,

from speech recognition (Graves et al., 2013a,b;
Amodei et al., 2016), to language modelling (Kim
et al., 2016), and text classification (Zhang et al.,
2015).

2.5 Ensemble Learning

Ensemble learning combines a number of pre-
viously trained classifiers to classify new data
samples by applying a voting schema on their
predictions. Ensemble methods have been suc-
cessfully employed in various machine learning
tasks, including feature selection (Saeys et al.,
2008), sentiment analysis (Xia et al., 2011; Wang
et al., 2014), complex word identification (Mal-
masi et al., 2016), and dialect identification (Mal-
masi and Dras, 2015; Malmasi and Zampieri,
2017).

3 Method

The model presented in this paper combines the
results obtained from three different learning algo-
rithms: Kernel Ridge Regression over String Ker-
nels, Character-level Convolutional Neural Net-
works, and a Long Short-Term Memory Network.
The intuition to use three different learning al-
gorithms comes from the idea that each trained
model can discover from the same input differ-
ent discriminant features, thus combining them
will increase the accuracy of each and any model.
String Kernels uses a function to compute a sim-
ilarity matrix that carries the correlation between
all pairs of samples. Based on the similarity be-
tween the samples ( that is held in the similarity
matrix ) the KRR can learn a function that dis-
criminates between them. Character-level Con-
volutional Neural Networks can learn to discrim-
inate between samples by discovering patterns at
character-level. The intuition in using this method
comes from the idea that the same words in differ-
ent dialects can have small character differences.
Besides small character differences, there can be
connections between words within a text. Having
this in mind we propose to employ an LSTM ne-
towrk to learn patterns between words within texts
from the same dialect.

3.1 String Kernels

Kernel functions (Shawe-Taylor and Cristianini,
2004) have the ability to capture the concept of
similarity between objects within a specific do-
main. The kernel function gives kernel methods
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the power to naturally handle input data that is
not in the form of numerical vectors, for example
strings. There are many kernel functions that can
be applied on strings, with significant impact in
domains such as computational biology and com-
putational linguistics. String kernels embed the
texts in a very large feature space, given by all
the substrings of length p, and leave the job of
selecting important (discriminative) features for
the specific classification task to the learning al-
gorithm, which assigns higher weights to the im-
portant features (character p-grams). Perhaps one
of the most natural ways to measure the similar-
ity of two strings is to count how many substrings
of length p the two strings have in common. This
gives rise to the p-spectrum kernel. Formally, for
two strings over an alphabet Σ, s, t ∈ Σ∗, the p-
spectrum kernel is defined as:

kp(s, t) =
∑

v∈Σp

numv(s) · numv(t),

where numv(s) is the number of occurrences of
string v as a substring in s. The feature map de-
fined by this kernel associates to each string a vec-
tor of dimension |Σ|p containing the histogram of
frequencies of all its substrings of length p (p-
grams). A variant of this kernel can be obtained
if the embedding feature map is modified to as-
sociate to each string a vector of dimension |Σ|p
containing the presence bits (instead of frequen-
cies) of all its substrings of length p. Thus, the
character p-grams presence bits kernel is obtained:

k0/1
p (s, t) =

∑

v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring
in s, and 0 otherwise.

In computer vision, the (histogram) intersec-
tion kernel has successfully been used for object
class recognition from images (Maji et al., 2008;
Vedaldi and Zisserman, 2010). Ionescu et al.
(2014) have used the intersection kernel as a ker-
nel for strings, in the context of native language
identification. The intersection string kernel is de-
fined as follows:

k∩p (s, t) =
∑

v∈Σp

min{numv(s), numv(t)}.

For the p-spectrum kernel, the frequency of a p-
gram has a very significant contribution to the ker-
nel, since it considers the product of such frequen-
cies. On the other hand, the frequency of a p-gram

is completely disregarded in the p-grams presence
bits kernel. The intersection kernel lies some-
where in the middle between the p-grams presence
bits kernel and the p-spectrum kernel, in the sense
that the frequency of a p-gram has a moderate con-
tribution to the intersection kernel. In other words,
the intersection kernel assigns a high score to a p-
gram only if it has a high frequency in both strings,
since it considers the minimum of the two frequen-
cies. The p-spectrum kernel assigns a high score
even when the p-gram has a high frequency in only
one of the two strings. Thus, the intersection ker-
nel captures something more about the correlation
between the p-gram frequencies in the two strings.
Based on these comments, in the experiments we
use only the p-grams presence bits kernel and the
intersection string kernel.

Data normalization helps to improve machine
learning performance for various applications.
Since the value range of raw data can have large
variations, classifier objective functions will not
work properly without normalization. After nor-
malization, each feature has an approximately
equal contribution to the similarity between two
samples. To obtain a normalized kernel matrix of
pairwise similarities between samples, each com-
ponent is divided by the square root of the product
of the two corresponding diagonal components:

K̂ij =
Kij√

Kii ·Kjj

.

To ensure a fair comparison among strings of dif-
ferent lengths, normalized versions of the p-grams
presence bits kernel and the intersection kernel
were used in the experiments. Taking into ac-
count p-grams of different lengths and summing
up the corresponding kernels, new kernels, termed
blended spectrum kernels, can be obtained. Vari-
ous blended spectrum kernels were used in the ex-
periments in order to find the best combination.

3.2 Character-Level CNN

Convolutional Neural Networks can discover pat-
terns within the data. These patterns are then later
used to classify new data samples. Character-level
CNNs learn such patterns in texts by searching
through sequences of characters. The inspiration
for this model is drawn from Kim (2014), but in-
stead of using word embeddings as inputs, we use
character encodings. This means that every char-
acter from an alphabet of size t is mapped to a
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Figure 1: The architecture of the Character-level CNN
model.

one-hot vector. For example, having the alpha-
bet Σ = {a, b, c}, the encoding for character a is
[1, 0, 0], for b is [0, 1, 0], and for c is [0, 0, 1]. Each
character from the input text is encoded, and only a
fixed size l of the input is kept. In the experiments
presented in this paper, l was set to 270 charac-
ters. The documents that are under the length were
zero-padded. The alphabet was extracted from the
dataset and it contains a total of 32 characters from
which 26 are the lower case letters of the English
alphabet, plus 6 Swiss-German diacritics (such as
ã, ä, õ, ö, ü, ẽ). Characters that do not appear in
the alphabet are encoded as a blank character.

As illustrated in Figure 1, the architecture is 5
layers deep. The first layer is composed of three
different convolutional layers, each followed by a
global max-pooling layer. The third layer concate-
nates the features extracted from the global max-
pooling layers, then passes the concatenation to

two fully-connected layers. The convolutional lay-
ers are based on one-dimensional filters, one with
filter size 3, another one with filter size 4, and the
last one with filter size 5. After the concatena-
tion step, the activation maps pass through a fully-
connected layer having ReLU activation and af-
ter that, through an alpha dropout layer with the
drop probability of 0.1. The last fully-connected
layer has a softmax activation, which provides the
final output. All convolutional layers have 1024
filters, and the first fully-connected layer has 256
neurons. The network is trained with the Adam
optimizer using categorical cross-entropy as loss
function, and a learning rate of 0.001.

3.3 Long Short-Term Memory Network
Long Short-Term Memory networks (LSTMs)
have the capacity to learn long-term dependencies
from a sequence. When applied on text, LSTMs
can discover connections between words within a
sentence or a text. Those connections can help the
learning algorithm to find patterns that can later be
used to solve a specific task. For example, discov-
ering such connections can be useful to say if a
text belongs to one class or another. Based on this
idea, this paper proposes an LSTM model that can
learn to discriminate between different dialects.

The input for this model is the same as the input
used for the Char-CNN model. Characters were
chosen as input because of the idea that between
dialects, there are subtle character differences that
makes a word belong to one dialect or another.
The other reason is that there might be connec-
tions between substrings within the whole text of a
specific dialect. The LSTM model defined for the
GDI task is illustrated in Figure 2. The architec-
ture consists of an LSTM layer, with the number
of cells equal to 256, followed by a global max-
pooling layer over the hidden state of each input
character. The activation maps then pass through
a fully-connected layer with 128 neurons, having
ReLU activation. Finally, the predictions are com-
puted by another fully-connected layer. The net-
work is trained with the Adam optimizer using
categorical cross-entropy as loss function, and a
learning rate of 0.01.

3.4 Ensemble Model
Ensemble methods combine multiple learning al-
gorithms to obtain a new model that has better
performance than any individual model used in
the ensemble. In this paper, a simple ensemble
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method is employed. A voting schema is applied
over the predictions from the Char-CNN, LSTM
and String Kernel model. The vote from each
model has equal weight. The class voted by the
majority of the models is the final class for a sam-
ple data. If there is a tie, the class is chosen be-
tween the prediction of the Char-CNN model or
the LSTM model, whichever prediction has the
highest confidence among the outputs of the two
models.

4 Experiments

4.1 Data Set

The 2019 GDI Shared Task data set (Zampieri
et al., 2019) contains manually annotated tran-
scripts of Swiss German speech, acoustic features
for each transcript, and word-level normalization
for each text. The task is to discriminate be-
tween Swiss German dialects from four differ-
ent areas: Basel (BS), Bern (BE), Lucerne (LU),
Zurich (ZH). As the samples are almost evenly dis-
tributed, an accuracy of 27.10% can be obtained
with a majority class baseline on the test set. In
our experiments, we used only the text transcripts
to generate features.

4.2 Parameter and System Choices

The approach presented in this paper treats tran-
scripts as strings. Because the approach works
at the character level, there is no need to split
the texts into words or to do any NLP-specific
processing before computing the string kernels or
feed the data to the deep networks. One thing
to mention here is that for the deep networks the
characters were mapped to one-hot encodings.

In order to tune the parameters and find the best
system choices, the development set was used.
Each model used in the ensemble was tuned. For
tuning the parameters of the String Kernel method,
we carried out a set of preliminary experiments to
determine the optimal range of p-grams for each
string kernel. We fix the learning method to KRR
and evaluated all p-grams in the range 2 − 7. The
best accuracy (63.99%) is obtained with 4-grams.
Having set the optimal number of p-grams, we ex-
perimented with different blended kernels to find
out if combining p-grams of different lengths will
improve the accuracy. For both kernels, presence
and intersection, the best accuracy was obtained
by combining p-grams with the length in range
3− 5.

After determining the optimal range of p-grams
for each kernel function, we conducted further ex-
periments by combining the presence bits kernel
with the intersection kernel. When multiple ker-
nels are combined, the features are actually em-
bedded in a higher-dimensional space. As a conse-
quence, the search space of linear patterns grows,
which helps the classifier to select a better discrim-
inant function. The most natural way of combin-
ing two or more kernels is to sum them up. The
process of summing up kernels or kernel matrices
is equivalent to feature vector concatenation. The
results obtained by the individual kernels and also
with the combined version are reported in Table
1. We can notice that even the individual kernels
yield similar accuracy, when combined, the accu-
racy increases by a small amount.

After tuning the String Kernel method, we
tuned the Character-level CNN. With the informa-
tion discovered while tuning the String Kernels,
we fixed the kernel size for the convolutional lay-
ers within the same range. Having the kernel size
fixed, one convolution layer with kernel size 3, one
with kernel size 4 and one with kernel size 5, we
carried out further experiments in order to find the
optimal number of filters and fully-connected lay-
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Figure 3: Accuracy rates of the KRR based on the presence bits kernel with p-grams in the range 2− 7.

Model Accuracy
k̂
0/1
3−5 66.05%

k̂∩3−5 66.00%

k̂
0/1
3−5 + k̂∩3−5 66.09%

Char − CNN 66.09%
LSTM 65.39%

k̂
0/1
3−5 + k̂∩3−5 + Char − CNN + LSTM 67.95%

Table 1: Accuracy rates of various models used in ex-
periments. The results are obtained over the develop-
ment set.

ers. From those experiments, we discovered that
having 1024 filters on each convolutional layer,
and one fully-connected layer having 256 neurons
employs the best result (66.09%). In the exper-
iments, the model was trained using Adam op-
timizer having the learning rate set at 0.001 and
with mini-batches of 64 samples. The network
was trained for 25 epochs.

The last defined model was the LSTM model.
For this model, we fixed the length of the hidden
cell to be a number that is a power of two and
close to the maximum length of a sample. Because
the maximum length of a sample was set to 270
characters, we fixed the hidden cell number to be
256. The fully-connected layer was also fixed to
128 neurons from the beginning. For this model,
we tuned the learning rate and the mini-batch size
used for training. Through experiments, we fixed
the learning rate to 0.01 and the mini-batch size to
32. This model was also trained using Adam opti-
mizer. The best accuracy obtained with this model
was 65.39% and it was obtained after training the
model for 25 iterations.

Applying a voting schema over the three mod-

System Accuracy Macro-F1

Run 1 62.66% 62.19%
Run 2 62.83% 62.38%
Run 3 62.96% 62.55%

Table 2: Results on the test set of the 2019 GDI Shared
Task (closed training) of the method described in this
paper.

els, we observe an increase of almost 2% over the
best individual model.

4.3 Results

Table 2 presents our results for the German Di-
alect Identification Closed Shared Task for the
2019 VarDial Evaluation Campaign. The only dif-
ference between the three runs is the regulariza-
tion parameter used in training the string kernel
method. On the first run, the regularization pa-
rameter was set to 10−3, on the second one it
was set to 10−4, and on the last run it was set
to 10−5. Among the submitted systems, the best
performance is obtained when the KRR regular-
ization parameter, for the String Kernel model, is
set to 10−5. The String Kernel model used in the
three runs was trained on both training and devel-
opment set. The submitted systems were ranked
by their macro-F1 scores and among the 6 partic-
ipants, the best model that we submitted obtained
the fourth place with a macro-F1 score of 62.55%.
The confusion matrix for the model is presented
in Figure 4. The confusion matrix reveals that the
system wrongly predicted over 400 samples of the
Lucerne dialect as part of the Bern dialect. Fur-
thermore, it has some difficulties in distinguish-
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Figure 4: The confusion matrix of our best submission
(run 3).

ing the Zurich dialect from the Basel dialect on
one hand, and the Bern dialect from the Basel di-
alect on the other hand. Overall, the results look
good, as the main diagonal scores dominate the
other matrix components.

5 Conclusion

In this paper, we presented an approach for the
GDI Shared Task of the DSL 2019 Challenge
(Zampieri et al., 2019). The approach is based
on an ensemble model that combines using a
voting scheme results from three different mod-
els: Character-level Convolutional Neuronal Net-
works, Long Short-Term Memory network, and a
String Kernel model. The approach obtained the
fourth place.
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Abstract

This article presents the model that generated
the runs submitted by the R2I LIS team to
the VarDial2019 evaluation campaign, more
particularly, to the binary classification by di-
alect sub-task of the Moldavian vs. Roma-
nian Cross-dialect Topic identification (MRC)
task. The team proposed a majority vote-
based model, between five supervised machine
learning models, trained on forty manually-
crafted features. One of the three submitted
runs was ranked second at the binary classifi-
cation sub-task, with a performance of 0.7963,
in terms of macro-F1 measure. The other
two runs were ranked third and fourth, respec-
tively.

1 Introduction

The term ”dialect” is used to capture two differ-
ent types of linguistic phenomena: a variety of a
language specific to a particular group of the lan-
guage’s speakers (Oxford Living Dictionaries) and
a socially subordinated language with respect to a
regional or national standard language, but not ac-
tually derived from the standard language (Maiden
and Parry, 2006). In the case of the latter usage,
the standard language it is not considered a ”di-
alect”, since it is the dominant language in state or
a region.

The dynamics and the characteristics of the
language variations are interesting for many re-
search disciplines, Computer Science included.
The Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial) represents a series of
workshops focused on studying diatopic language
variations from a computational perspective. The
first workshop was in 2014, co-located with the
COLING conference (Zampieri et al., 2014) and
VarDial2019 is co-located with the NAACL2019
conference (Zampieri et al., 2019).

Since 2017, evaluation campaigns are proposed
for the VarDial workshops. Four or five tasks are
proposed every year. One of the VarDial2019 eval-
uation campaign (Zampieri et al., 2019) tasks is
the Moldavian vs. Romanian Cross-dialect Topic
identification (MRC) closed training shared task.

The proposed approach tackles the first sub-task
of the MRC task (binary classification between di-
alects). We show how 40 simple features can be
effective for a simple supervised machine learning
architecture. The features are fed to five learning
models and a majority vote between the decisions
of the five classifiers is charged with the final de-
cision.

The motivation behind this approach is to prove
that simple features, thus faster to compute, are ef-
fective for the discrimination task. Another point
is that the majority vote helps improving the per-
formance and also stabilizes the model, making
it more robust, with respect to various train data
splits.

The rest of the article is structured as follows.
Section 2 positions the article with respect to Var-
Dial evaluation campaigns and presents the related
work that provided the data set for the evaluation
task. Section 3 describes the method, while Sec-
tion 4 presents the implementation details and the
experimental framework. In Section 5 the results
are presented and discussed. Section 6 concludes
the paper.

2 Related Work

Our research fits in the context of the VarDial eval-
uation campaigns. As for other evaluation cam-
paigns, the tasks evolve from one edition to an-
other. While some tasks are recurrent, others are
not re-conducted, leaving place for new ones.

The 2017 campaign (Zampieri et al., 2017) had
four tasks: Arabic Dialect Identification (ADI),
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Cross-lingual Dependency Parcing (CLP), Dis-
criminating between Similar Languages (DSL)
and German Dialect Identification (GDI).

In 2018, the evaluation campaign (Zampieri
et al., 2018) had five tasks, the continuation of
the ADI and GDI tasks and the Morphosyntactic
Tagging of Tweets (MTT), the Discriminating be-
tween Dutch and Flemish in Subtitles (DFS) and
the Indo-Aryan Language Identification (ILI).

The latest evaluation campaign, VarDial2019
has also five shared tasks: the continuation of
the German Dialect Identification (GDI) task,
the Cross-lingual Morphological Analysis (CMA)
task, the Discriminating between Mainland and
Taiwan variation of Mandarin Chinese (DMT)
task, the Moldavian vs. Romanian Cross-
dialect Topic identification (MRC) task and the
Cuneiform Language Identification (CLI) task.

We participated at the MRC task, more specifi-
cally at the sub-task that focuses on the discrim-
ination between Romanian and Moldavian news
texts. To the best of our knowledge, there is
no related work for these specific dialects, ex-
cept for the MOROCO data set paper (Butnaru
and Ionescu, 2019), in which the authors describe
the collected corpus and present empirical stud-
ies on several classification tasks. Some exper-
iments using a shallow string kernels-based ap-
proach and a deep approach, based on character-
level CNNs with Squeeze-and-Excitation blocks
are conducted. The authors also present and an-
alyze the impact of the named entities. In the final
data set, the named entities are removed.

3 Method

The proposed method is based on forty manually-
crafted features that are fed to five supervised ma-
chine learning models for binary classification.
The final output represents a majority vote that de-
cides whether a text is written in Romanian or in
Moldavian (”RO/MD?”). The architecture of the
model is presented in Figure 1.

3.1 Features

The features we considered for this method are
handcrafted and meant to be straightforward, sim-
ple to understand, thus easy and fast to com-
pute. The forty features are of five types: to-
ken statistics-based, character-based, punctuation-
based, word-based and named entity-based fea-
tures, respectively. We believe that frequencies of

some characters, or words may be discriminant for
the classification between the two dialects.

3.1.1 Token Statistics Features
In order to compute these features, the text was
pre-processed. Sentences have been extracted,
based on the punctuation. In order to obtain to-
kens, the punctuation was removed and the re-
maining text was split by spaces. All tokens are
transformed to lowercase.

For a given text, we considered three such fea-
tures: the average number of tokens per sentence,
the total number of tokens and the average number
of characters of a token.

3.1.2 Character Features
The character-based features consider the text at
the character level. A character feature represents
the number of occurrences of the character in the
text. We took into account fifteen such features.
The considered characters are: all the vowels in
Romanian (a, e, i, o u, ă, â and ı̂) and some Ro-
manian consonants (b, c, d, m, n and ş and ţ). Ex-
cept for the ”ş” and ”ţ”, which are specific for the
Romanian language, the choice of the other con-
sonants was completely empirical.

Regarding the character ”ı̂”, we have considered
an extra feature that represents the number of oc-
currences of this character inside a token (not at
the beginning). For instance, the character occur-
rence in the word ”dı̂nsa” was counted, while the
occurrence in the word ”ı̂nceput” was not. This is
very specific to the Moldavian dialect, since in the
Romanian dialect, the character ”ı̂” does not gen-
erally appear (there are a few exceptions) in the
interior of words, being replaced by the character
”â”.

3.1.3 Punctuation Features
The punctuation features concern some punctua-
tion signs (space was also considered here). The
number of occurrences of a punctuation sign rep-
resents a the feature value. Five such features were
considered: space, dot, double quotes, exclama-
tion points and question marks.

3.1.4 Word Features
The word features take into account some words
that we considered as potentially discriminant,
such as prepositions, or dialect/regional words.
The number of occurrences of the selected words
represent the feature values. There are fifteen such
features: ”ci”, ”mai”, ”cu”, ”care”, ”la”, ”ı̂n”, ”o”
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Figure 1: The architecture of the majority vote-based proposed model.

(the single character between two spaces), ”un”,
”de”, ”pe”, ”şi”, ”dı̂nsa”, ”dı̂nsul”, ”dı̂nşii” and
”dı̂nsele”.

3.1.5 Named Entity Feature
In the data set for the MRC task (Butnaru and
Ionescu, 2019), the name entities are identified and
replaced by ”$NE$”. We decided to take this in-
formation into account, thus the number of occur-
rences of ”$NE$” represent the feature value for
our named entity-based feature.

3.2 Models
The features are fed to five supervised machine
learning models. We have chosen the following
models:

• a KNN classifier (called KNN here);

• a Logistic Regression classifier (called LR
here);

• a SVM Classifier (called SVM here);

• a Neural Network classifier (called NN here);

• a Random Forest classifier (called RF here).

The hyperparameters of each model are pre-
sented later, in Section 4.2.

3.3 Majority Vote
The five models output their respective classifica-
tion decisions. The final decision is made by a
simple majority vote between the five aforemen-
tioned decisions. Having an odd number of votes

will not yield any ex aequo final decisions. For
instance, if three of the models decided in favor
of Romanian and two models decided in favor of
Moldavian, the final decision is Romanian.

4 Experiments

In this section we present the data set, the model
parameters, as well as the submitted runs with
their respective particularities.

4.1 Data Set

For the VarDial2019’s (Zampieri et al., 2019)
MRC task, the MOROCO data set (Butnaru and
Ionescu, 2019) is proposed. We focus on the data
provided for the binary classification sub-task, that
is to say the first sub-task, in which a classifica-
tion model is required to discriminate between the
Moldavian and the Romanian dialects.

The data set contains Moldavian (MD) and Ro-
manian (RO) samples of text collected from the
news domain. The training set (called ”train”)
contains 21719, the development set (called
”dev”) contains 11845 samples and the test set
(called ”test”) contains 5923 samples. A summary
of the data set, containing the class distribution is
presented in Table 1.

Since the training type for this task is a closed
one, only subsets of provided train data have been
used, without any external resources.

4.1.1 Environment
The proposed architecture was implemented in
python (version 3.7.2) and the five supervised
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# samples Total RO MD
train 21719 11751 9968
dev 11845 6410 5435
test 5923 3205 2718

Table 1: MRC task data set summary.

machine learning models were implemented with
the sklearn library (version 0.20.2). The imple-
mented features have been scaled with a model
from sklearn (StandardScaler), based on training
features and then applied to both training and test-
ing feature sets.

4.2 Model Parameters

We describe here the sklearn hyperparameter set-
tings for each of the five supervised machine learn-
ing models used in the proposed architecture. We
mention that the hyperparameter settings were
chosen empirically. Most of the models are stan-
dard models with slim modifications. A more ro-
bust cross-validation is left as a perspective for the
future work.

KNN. Besides the default configuration, the
number of neighbors was set to five.

LR. Besides the default configuration, the ran-
dom state was set to zero, the solver was ”newton-
cg”, the maximum number of iterations was set to
one thousand and the multi-class parameter was
set to ”auto”.

SVM. Besides the default configuration, the
gamma parameter was set to ”scale”.

NN. Besides the default configuration, the
solver was set to ”adam”, the activation function
was set to ”tanh”, the maximum number of itera-
tions was set to one thousand, the alpha was set to
1e− 5, the size of the hidden layer was set to one
hundrend, the random state was set to one and the
warm start was set as ”True”.

RF. Besides the default configuration, the num-
ber of estimators was set to three hundred, the
maximum depth was set to two and the random
state was set to zero.

4.3 Runs

The MRC task allows three runs per sub-task. We
describe below the particularities of the three runs
that we submitted to the first sub-task.

Run1. For this run, the forty features are com-
puted as described in Section 3.1 and the training
data was represented by the ”train” and the ”dev”

texts, concatenated.
Run2. For this run, the forty features are com-

puted as described in Section 3.1 and the training
data was represented only by the ”train” texts.

Run3. For this run, the forty features are com-
puted as described in Section 3.1, with one mod-
ification: the character features, the punctuation
features and the word features were normalized
by dividing them by the total number of charac-
ters in the corresponding text. The training data
was represented by the ”train” and the ”dev” texts,
concatenated.

5 Results and Discussion

We present here the F1-score results and the con-
fusion matrices of the submitted runs. We dis-
cuss the results both with respect with train and
test data. Finally, we present the relative perfor-
mance of our runs that were ranked second, third
and fourth, with respect to the other participants to
the first sub-task of the MRC task.

5.1 F1-scores

The macro-averaged F1-score was the ranking cri-
terion for the MRC task. The values obtained by
the three submitted runs are presented in Table 2.
We present the performance both on train and on
test and with respect to the five models of the ar-
chitecture. The final decision majority vote (called
”Majority” here) performances are displayed on
the last line of the table. One can clearly notice
that the best performing run, Run3, obtains the
best performance in the case of the most models
(except for RF and test data of NN). Run1 only
gets the best performance on test data for the NN
model. Run2 has the best performance for the RF
model. However, overall, Run1 has a slightly bet-
ter performance (Majority on test: 0.7781) than
Run2 (Majority on test: 0.7762).

Run3 has the normalized features. Thus, as
expected, the normalized features are performing
better than the unnormalized features.

Run1 and Run3 are trained on the concatenated
”train” and ”dev” texts. Thus, as expected, the best
performances are achieved when training on the
most data possible.

Since there are not many differences in terms of
performance between train and test, we may hy-
pothesise that overfitting is not present. The only
exception is for the NN models, for the three runs,
where the absolute difference between train and
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Runs Run1 Run2 Run3
Model/Split train test train test train test
KNN 0.8367 0.7551 0.8318 0.7467 0.8476 0.7732
LR 0.7248 0.7204 0.7272 0.7218 0.7327 0.7315
SVM 0.7884 0.7765 0.7857 0.7718 0.8305 0.8039
NN 0.8502 0.7889 0.8727 0.7646 0.8933 0.7821
RF 0.6896 0.6973 0.7078 0.7151 0.6994 0.7049
Majority 0.8092 0.7781 0.8117 0.7762 0.8379 0.7964

Table 2: The macro-averaged F1 score for the three runs, by split (train/test) and by model. The best values per
line, for train and test, respectively, are displayed in bold.

Model/Split
train test

predicted predicted
MD RO MD RO

KNN true MD 12861 2542 2072 646
RO 2537 15624 690 2515

LR true MD 10070 5333 1805 913
RO 3467 14694 652 2553

SVM true MD 11717 3686 1991 727
RO 1889 16262 413 2792

NN true MD 13113 2290 2016 702
RO 1247 16914 575 2630

RF true MD 7738 7665 1383 1335
RO 1751 16410 297 2908

Majority true MD 11570 3833 1928 790
RO 1484 16677 389 2816

Table 3: Confusion matrices for Run3, by method and by split (train/test).

test performance is of about 0.1.

5.2 Confusion Matrices

To focus on the best submitted run, we present the
confusion matrices for Run3 in Table 3. In this ta-
ble, we present the detailed confusion matrices for
each of the five models, as well as for the Majority,
both for train and test.

One can notice that the most balanced in terms
of false positives is KNN, while the most unbal-
anced seems to be RF. Even though the examples
in the data set are quite balanced with respect to
the number of samples per class, our model has
a tendency to predict much more texts for the la-
bel ”RO”. For instance, the false positives for the
”RO” class are more than twice as many as for the
”MD” class. This occurs for Majority, both for
train and test.

In Figure 2 we display the confusion matrices
for the test data, for the three runs. One can notice
that Run2 has the most false positives for the class
”MD”. On the other hand, Run1 has the most false

positives for the class ”RO”.

5.3 Other Participants

The ranking of all participants at the first sub-task
of MRC are presented in Table 4. One can notice
that the runner-up, our Run3 is at a significant dis-
tance from the winner (about 0.1 in absolute dif-
ference between the macro-averaged F1-scores).

6 Conclusion

We presented here the approach that generated the
three runs we submitted at VarDial’s MRC task,
most specifically at the first sub-task that aims to
discriminate news texts written in Moldavian and
Romanian dialects. The architecture is based on
forty features and a majority vote between five su-
pervised machine learning models. The submitted
runs ranked second, third and fourth, respectively.
We thus showed that a simple architecture, based
on features simple to compute can still be effective
and competitive.
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Figure 2: The confusion matrices for the three submitted runs.

Rank Team Run Macro-F1 Weighted-F1 Micro-F1
(accuracy)

1 DTeam 1 0.8950 0.8960 0.8965

2
R2I LIS
(Run3) 3 0.7964 0.7989 0.8009

3
R2I LIS
(Run1) 1 0.7781 0.7813 0.7849

4
R2I LIS
(Run2) 2 0.7762 0.7792 0.7820

5 tearsofjoy 1 0.7573 0.7592 0.7596
6 lonewolf 2 0.7354 0.7332 0.7381
7 SC-UPB 1 0.7088 0.7114 0.7121
8 lonewolf 1 0.6560 0.6646 0.6877
9 lonewolf 3 0.6077 0.5997 0.6319
10 SC-UPB 2 0.5081 0.5131 0.5156

Table 4: The ranking of all participants at the MRC’s first sub-task. The runs from this paper are shown in bold.

As future work, we plan to set up a more rigor-
ous cross-validation protocol for the hyperparam-
eter setup, in order to obtain more robust models.
Another lead is to apply a feature selection method
in order to identify the most useful features.
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Abstract

The paper describes initial experiments
in data-driven cross-lingual morphological
analysis of open-category words using a
combination of unsupervised morpheme
segmentation, annotation projection
and an LSTM encoder-decoder model
with attention. Our algorithm provides
lemmatisation and morphological analysis
generation for previously unseen low-
resource language surface forms with
only annotated data on the related
languages given. Despite the inherently
lossy annotation projection, we achieved
the best lemmatisation F1-score in
the VarDial 2019 Shared Task on
Cross-Lingual Morphological Analysis
for both Karachay-Balkar (Turkic
languages, agglutinative morphology) and
Sardinian (Romance languages, fusional
morphology).

1 Introduction

This paper describes our submission to the
VarDial 2019 Shared Task on Cross-Lingual
Morphological Analysis (Zampieri et al., 2019).
It is the task of producing lemma, part-of-
speech tag and morphosyntactic annotations
for previously unseen surface forms based on
annotated data in related languages. Since
surface forms are likely to be ambiguous,
morphological analysis systems are supposed
to produce a complete list of all possible and

only valid analyses. These may represent not
only multiple sets of morphosyntactic features,
but also distinct lemmas and part-of-speech
tags. For example, given a Turkish word girdi
‘to enter, entry’, the morphological analyzer
should generate a full set of morphological
readings the word can attain. (see Table 1).
In this paper we explore the task of data-

driven cross-lingual morphological analysis.
We apply this to two relatively low-resource
languages: Karachay-Balkar and Sardinian;
the former is Turkic with agglutinative
morphology, while the latter is Romance and
has fusional morphology.
We believe that it is possible to transfer

morphology across related languages by
exploiting cross-lingual inflection patterns
despite language-specific morphological
features inventories. For example, we
can observe orthography specific common
substring in NOUN surface forms in multiple
related languages which stores the same tag
values set Case = Loc, Number = Plur,
Number[psor] = {Sing, Plur}, Person[psor] =
3 (see Table 2).
Our method is inspired by previous

approaches to neural-network based
morphological analysis using inflection
patterns for Polish (Jędrzejowicz and
Strychowski, 2005), to cross-lingual
morphological tagging for low-resource
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iso word form lemma POS MSD
tur girdi gir VERB Aspect = Perf, Number = Plur, Person = 3,

Tense = Past, Valency = 1, VerbForm = Fin
tur girdi girdi NOUN Case = Nom
tur girdi gir VERB Aspect = Perf, Number = Plur, Person = 3,

Tense = Past, Valency = 2, VerbForm = Fin
Table 1: A complete set of morphological annotations for the Turkish word form girdi, meaning
gir- ‘(to) enter’, girdi- ‘entry’.

iso word form lemma POS MSD
tur kenarlarında kenar NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
kir клеткаларында клетка NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
tat мәктәпләрендә мәктәп NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
bak далаларында дала NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
kaz аңғарларында аңғар NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
Table 2: An example of morphological grapheme level pattern for a set of NOUN tag values:
-ләрендә (tat), -larında (tur) and -ларында (kir, bak, kaz).

languages (Buys and Botha, 2016) and to
data-driven morphological analysis for Finnish
(Silfverberg and Hulden, 2018). In contrast to
these approaches, our algorithm1 produces full
morphological analyses for previously unseen
surface forms: it provides both morphological
tags and lemmas as output and it can return
multiple alternative analyses for one input
word form.
We now give a brief description of

our algorithm. First, we orthographically
normalize and automatically transliterate
both source and target language data into
a joint orthographic representation using
lookup tables. We model morpheme-to-tag
inventory for each language family employing
unsupervised morpheme segmentation with
Morfessor (Virpioja, 2013). After this, we
cluster all the target surface forms by making
predictions over only part-of-speech tag with
Morphnet (Silfverberg and Tyers, 2019), an
LSTM encoder-decoder model with attention
implemented using the OpenNMT neural
machine translation toolkit (Klein et al.,
2017). Within each cluster, we apply a
greedy annotation algorithm using the cross-

1Code available at https://github.com/
NIS-2018-CROSS-M/vardial-cma

lingual morpheme-to-tag inventory. The next
step is the annotation projection based on
string intersections between source language
data and target language data. Finally, we
transliterate the analyzed target language data
back to its non-normalized format.

2 Related works

Our method is similar to alignment-based
distant supervision approach, where the aim
is to train a morphological tagger in the
low-resource language through annotations
projected across aligned bilingual text corpora
with a high-resource language. (Buys and
Botha, 2016) propose an embedding-based
model using Wsabie, a shallow neural
network that makes predictions at each
token independently. To project annotations
onto the target language, one uses type
and token constraints across parallel text
corpora. However, we transfer morphology for
target surface forms only through the same
language family without manual constraint
implementation, and cover lemmatisation
with ambiguous annotations produced.
Another trend in cross-lingual

morphological analysis is transfer learning.
The key idea is to employ multi-task learning,
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treating each individual language as a
single task and train a joint model for all
the tasks. All learned representations are
jointly embedded into a shared vector space
to transfer morphological knowledge in a
language-to-language manner. (Cotterell and
Heigold, 2017) propose a character-level
recurrent neural morphological tagger to learn
language specific features by forcing character
embeddings for both high-resource language
and low-resource language to share the same
vector space. In contrast to the projection-
based approach, this model requires a minimal
amount of annotated data in the low-resource
target language. However, we do not use
the target language annotated data and
morphological tagging datasets provided by
the Universal Dependencies (UD) treebanks;
and our algorithm generates lemmas and
multiple sets of morphosyntactic annotations.
Our work is most closely related to the

Morphnet model in (Silfverberg and Tyers,
2019). The essential idea is to analyze
previously unseen surface forms using a corpus
of morphologically annotated data in the
related language. This can represent the
solution to low coverage inherent in rule-based
morphological analyzers. They don’t require
constant updating to keep working, but need to
be updated to cover new surface forms. In our
algorithm, we use Morphnet to cluster target
words by predicting over part-of-speech tags
and then to generate a full set of morphological
readings for words not being analyzed with
the greedy annotation algorithm. However, we
do not use the Universal Dependencies (UD)
treebanks and learn the algorithm to analyze
four open class words: nouns, verbs, adjectives
and adverbs.

3 Data

The data used in the experiments consisted of
tab separated files with five columns: language
code, surface form, lemma, part-of-speech
tag and morphosyntactic description (MSD).
We used unannotated data for two Turkic
target languages (Crimean Tatar, Karachay-
Balkar) and for two Romance target languages
(Asturian, Sardinian). We also used annotated
data for five Turkic source languages (Bashkir,
Kazakh, Kyrgyz, Tatar, Turkish) and for five
Romance source languages (Catalan, French,
Italian, Portuguese, Spanish). We compiled a

corpus of segmented target language surface
forms with Morfessor.

3.1 Normalization

We discarded all the diacritics in the
Romance languages set, e.g. a Portuguese word
seqüência ‘sequence’ becomes sequencia. In
the Turkic languages set, the Turkish data
was transliterated from Latin into Cyrillic,
e.g. gelen ‘coming’ becomes гелен. In the
Karachay-Balkar data, we discarded grapheme
‘ъ’ , e.g. чыкъгъанды ‘appeared’ becomes чык-
ганды. We also discarded all the diacritics in
the Bashkir, Kazakh, Kyrgyz and Tatar data,
e.g. Kazakh word шығармалардың ‘complete
works’ becomes шыгармалардын.

3.2 Morpheme segmentation

We employed default recursive training of the
Morfessor model. In recursive training, the
current split for the processed surface form is
removed from the model and its morphemes
are updated accordingly. After this, all possible
splits are tried by choosing one split and
running the algorithm recursively on the
created morphemes. The best split is selected
and the training continues with the next
surface form. We did not tune the Morfessor
model with the average morpheme length and
the approximate number of desired morpheme
types because we want to use the algorithm
unsupervised. To train the model, we split
the data into 80% train data and 20% test
data. Consider an example of the output for
the following input Karachay-Balkar surface
forms, where the + sign implies the morpheme
boundary:

нюзюрлеринде нюзюр+леринде
экземпляр эк+з+е+м+п+ля+р
политикасында политика+сында

4 Methodology

In this section we describe our approach
to data-driven cross-lingual morphological
analysis implemented specifically for the
Turkic languages. We refer to the source
language annotated data as Source, to the
target language unannotated data as Target
and to the corpus of segmented target surface
forms as Morf. POS is always one of NOUN ,
V ERB, ADJ , or ADV .
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Figure 1: A graphical structure for modeling
cross-lingual morpheme-to-tag inventory for
Turkic languages. Source, Target and Morf are
represented as S, T and M, respectively.

4.1 Morpheme-to-tag inventory

The key idea of modeling cross-lingual
morpheme-to-tag inventory is automatic
revealing of cross-lingual inflection patterns
using unsupervised morpheme segmentation
and string intersections between Source,
Target and Morf.
We assume the morpheme-to-tag inventory

to be specific to each part-of-speech tag
and we do not merge the inventories in
the experiments. We also do not compile
the inventory for ADJ and ADV surface
forms, since the latter do not store any
morphosyntactic description in Source, e.g.
борын ‘langsyne’ (word form), борын (lemma),
ADV (POS), ’_’ (MSD). 116 out of 4146
(2%) ADJ surface forms in Source store
only one tag value Degree=Comp which we
consider to be statistically insignificant for
model performance.
In agglutinative languages (Turkic family)

the stem is invariant across different word
forms. We generate distinct morphosyntactic
features with a single root-word and map
morphemes with morphological features,
e.g. morpheme лар stores the feature
Number=Plur for nouns and verbs. We
represent each word as a grapheme level
sequence stemi+m1i+ ...+mni, so that stemi

is a lemmai for word formi. For example,
the stem of a word нюзюрлеринде is ню-
зюр ‘promise’ and the lemma is нюзюр.
We also refer to the first morpheme m1

in each morphologically segmented word
form m1, ...,mn in Morf as the Morfessor
lemma. Consider the segmented word form
нюзюр+леринде with the Morfessor lemma
нюзюр and m2 леринде.
The overall scheme for modeling NOUN

and VERB cross-lingual morpheme-to-tag
inventories is outlined in Figure 1, where
the respective string intersections between
Source, Target and Morf are found. Here,
we first compute the word form intersection
between Source and Target, and the lemma
intersection between Source and Morf . If the
word form in Target can be found in Source
and if the respective lemma in Morf can be
found in Source, we generate the following
unit sequence: Target word form, segmented
Target word form, Morfessor lemma, Source
word form, Source lemma, Source POS and
Source MSD. Within each unit sequence in the
intersection, we project the SourceMSD of the
word form onto the second morpheme m2 in
the Target segmented word form. Finally, we
create the respective morpheme-to-tag pair.
For example, we have the following analysis

in Source: музыкада (word form), музыка
‘music’ (lemma), NOUN (POS), Case=Loc
(MSD). We can also find the same word
form музыкада in Target and the respective
segmented word form музыка+да in Morf
(the Morfessor lemma is музыка and the
segmented morpheme is да). On the basis of
the word form intersection and the lemma
intersection, we project the MSD Case=Loc
onto the morpheme да. Thus, we create the
morpheme-to-tag pair да : Case=Loc.
Since a single morpheme-to-tag pair

can represent a concatenated string of
distinct morphemes mapped with a set of
morphological tag values, we additionally
retrieve morpheme-to-tag pairs within
each cross-lingual inventory. It is achieved
by computing the difference between the
morpheme strings and the difference between
the tag values sets. For example, NOUN
morpheme-to-tag inventory stores the
following pairs:

ларын Case=Acc,
Number=Plur, Number[psor]=
{Sing, Plur}, Person[psor]=3

ын Case=Acc, Number[psor]={Sing,
Plur}, Person[psor]=3

In this case, we compute the difference
between the two morpheme-to-tag pairs, i.e.
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Figure 2: A graphical structure for morphological analysis of Karachay-Balkar surface forms.

ларын− ын→



Case = Acc,

Number = Plur,

Number[psor] =

{Sing, P lur},
P erson[psor] = 3





\





Case = Acc,

Number[psor] =

{Sing, P lur},
P erson[psor] = 3





As a result, we map previously unretrieved
morpheme лар with the tag value
Number=Plur.

4.2 A greedy annotation algorithm

We cluster all the target surface forms by
making predictions over only part-of-speech
tags with Morphnet trained through Source.
Each target surface form is processed in the
following manner (see Figure 2). Due to the
reasons described in Section 4, we consider
word formi to be lemmai and MSDi to be
’_’ for all the surface forms in ADJ and ADV
clusters.
In NOUN and V ERB clusters, we apply a

greedy annotation algorithm to inflect a lemma
and a morphosyntactic description for each
surface form, which we now describe.

All morpheme-to-tag pairs in NOUN and
V ERB cross-lingual inventories are sorted by
the morpheme length in the descending order.
First, the longest cross-lingual morpheme is
matched with a substring of the processed
surface form starting from its end. If match,
the respective inflection pattern is projected
onto the surface form. If it fails to match,
the next surface form is processed. After
this, we deinflect a lemma by computing the
difference between the surface form string and
the matched morpheme string.
For example, one of the longest morphemes

ларындан (Case=Abl, Number=Plur,
Number[psor]={Sing, Plur}, Person[psor]=3)
is matched with a target surface form
ызларындан. The respective inflection
pattern is projected onto the surface form.
The inflected lemma is the difference
ызларындан − ларындан → ыз ‘trace’.
Finally, we get a full analysis set: ызларындан
(word form), ыз (lemma), NOUN (POS),
{Case=Abl, Number=Plur, Number[psor]=
{Sing, Plur}, Person[psor]=3} (MSD).
Out-of-vocabulary cross-lingual morpheme-

to-tag pairs and ambiguous target surface
forms are the potential weak points of the
greedy algorithm. If the analysis with the
greedy algorithm fails:

148



• we consider non-analyzed NOUN surface
forms to have the following analysis.
Since a zero affix stores ‘Case=Nom’ tag
value, we assume wordform string to be
the respective lemma and MSD to be
‘Case=Nom’. For example, юг ‘South’
(word form), юг (lemma), NOUN (POS),
’_’ (MSD).

• we give non-analyzed V ERB surface
forms to Morphnet as the input. The
output is a full morphological analysis
with ambiguous annotations, merged with
the previously analyzed surface forms.

To correct the analyses acquired with the
greedy algorithm and Morphnet predictions,
we project annotations from Source across
Target on the basis of string intersection (one-
to-one orthographic match). We suppose that
the intersection keeps loan words and cognates,
which share the same set of morphological
annotations. Finally, we employ transliteration
of the analyzed target data back to its non-
normalized format.

5 Experiments and results

We present results for six experiments and
compare the performance of our algorithm on
the VarDial 2019 CMA Shared Task with the
baseline system. Since analyzed surface forms
can have multiple morphological analyses, the
results are evaluated on precision, recall and
F1-score (Silfverberg and Tyers, 2019).

5.1 Experiment on Test Data

We performed four experiments in the
orthographically non-normalized and
normalized data scenarios on each language
family.

Experiment 1. Turkic languages,
normalized data
Source: Bashkir (bak), Kazakh (kaz), Kyrgyz
(kir), Tatar (tat), Turkish (tur).
Target : Crimean Tatar (crh).

Experiment 2. Turkic languages, non-
normalized data
Source: Bashkir (bak), Kazakh (kaz), Kyrgyz
(kir), Tatar (tat), Turkish (tur).
Target : Crimean Tatar (crh).

Experiment 3. Romance languages,
normalized data
Source: Catalan (cat), French (fra), Italian

(ita), Portuguese (por), Spanish (spa).
Target : Asturian (ast).

Experiment 4. Romance languages, non-
normalized data
Source: Catalan (cat), French (fra), Italian
(ita), Portuguese (por), Spanish (spa).
Target : Asturian (ast).

5.2 Experiment on Surprise Language

In these experiments the target languages
were unknown before the data release.
We performed two experiments only
in the orthographically normalized data
scenario since the normalization improved the
performance on the test data.

Experiment 5. Turkic languages,
normalized data
Source: Bashkir (bak), Kazakh (kaz), Kyrgyz
(kir), Tatar (tat), Turkish (tur).
Target : Karachay-Balkar (krc).

Experiment 6. Romance languages,
normalized data
Source: Catalan (cat), French (fra), Italian
(ita), Portuguese (por), Spanish (spa).
Target : Sardinian (srd).
Tables 3, 4, 5, 6 show the results on

complete analyses including lemma, part-of-
speech tag and morphosyntactic description.
Our algorithm delivers the best F1-score on
lemma prediction for Karachay-Balkar and
Sardinian languages.

6 Discussion

Our approach of representing a surface form
as a grapheme level sequence of stem and
morphemes, along with retrieving cross-lingual
inflection patterns improves performance on
lemmatisation comparing to the baseline
system. Despite the fact that this approach
naively appears suitable only for agglutinative
morphology, we yet achieve the best results
for Sardinian (fusional morphology) in the
VarDial 2019 Shared Task on CMA.
We looked at the analyses for the Karachay-

Balkar language and classified the errors
into nine categories: (1) Out-of-vocabulary
morpheme-to-tag pairs; (2) Boundary
between stem and morphemes; (3) Part-of–
speech tag prediction; (4) Analysis
overgeneration; (5) Insufficient analysis
set; (6) Statistical assumption based error;
(7) Back transliteration; (8) Substandard
forms; (9) Derivational morphemes.
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A common source of first-category errors is
found in lemmatisation and morphosyntactic
description of the surface forms storing out-
of-vocabulary morphemes. For example, the
morpheme ла was not retrieved when modeling
the cross-lingual inventory. As a result, the
algorithm produced the lemma *эмиратла
and the MSD *Case=Acc of the NOUN эми-
ратланы rather than эмират ‘emirate’ and
Case=Acc, Number=Plur.
The algorithm also generated both correct

and incorrect annotations for the same input
form; this can be considered as the second
error category. For example, we get one
correct analysis for the word башланды
with the lemma башлан ‘beginning’ and the
incorrect one with the lemma *башла. It can
be explained as the overenthusiastic greedy
annotation when the cross-lingual morpheme
being a substring of the lemma string.
For the third error category consider the

VERB юлеширге ‘to divide’ analyzed with
Morphnet as *NOUN. Consequently, the
algorithm produced the lemma *юлешир and
the incorrect MSD *Case=Dat instead of
юлеш and Case=Dat, Tense=Aor, Valency=2,
VerbForm=Vnoun.
The fourth error category includes

superfluous analysis generation, e.g. we
get two analyses for the VERB эта (a form
of the auxiliary verb ‘to be’) with the correct
morphosyntactic annotation Aspect=Imp,
Valency=1, VerbForm=Conv and the
redundant one *Aspect=Imp, Valency=2,
VerbForm=Conv. This error can also occur
when one surface form is predicted with
two different part-of-speech tags, e.g. the
word къарачай-малкъар ‘Karachay-Balkar’ is
analyzed as both NOUN and *VERB.
For errors of the fifth type we have

the NOUN джолларын (lemma джол,
meaning ‘road’) given only one correct
annotation Case=Acc, Number=Plur,
Number[psor]={Sing, Plur}, Person[psor]=3
instead of two possible. Moreover, there are
ambiguous morphemes which store more than
one tag value set. Consider the compound
NOUN премьер-министрни with the lemma
премьер-министр, ‘prime-minister’ having
two correct MSDs Case=Acc and Case=Gen.
In contrast, our algorithm provided only one
correct MSD Case=Acc.
Errors of the seventh category can be

model Recall Precision F1
experiment 1 66.91 33.32 44.49
experiment 2 25.07 9.88 14.17
experiment 3 62.09 31.82 42.07
experiment 4 67.70 13.83 22.97
baseline crh 36.43 44.74 40.16
baseline ast 66.64 70.73 68.62
experiment 5 43.01 35.59 38.95
experiment 6 74.58 37.15 49.60
baseline krc 39.59 50.94 44.55
baseline srd 66.42 67.28 66.85

Table 3: Results for morphosyntactic
description prediction.

model Recall Precision F1
experiment 1 76.75 34.85 47.94
experiment 2 32.43 13.15 18.72
experiment 3 35.34 21.02 26.36
experiment 4 58.53 13.43 21.85
baseline crh 56.87 59.66 58.23
baseline ast 62.28 59.90 61.07
experiment 5 63.30 51.82 56.99
experiment 6 48.07 32.55 38.82
baseline krc 54.90 56.91 55.89
baseline srd 35.73 35.59 35.66

Table 4: Results for lemma prediction.

model Recall Precision F1
experiment 1 87.72 67.47 76.27
experiment 2 80.29 33.94 47.71
experiment 3 75.66 61.09 67.60
experiment 4 73.71 23.16 35.25
baseline crh 77.37 79.38 78.36
baseline ast 75.40 73.53 74.45
experiment 5 87.87 67.61 76.42
experiment 6 87.29 62.28 72.69
baseline krc 77.38 79.13 78.25
baseline srd 68.12 68.60 68.36

Table 5: Results for POS prediction.

model Recall Precision F1
experiment 1 58.39 25.53 35.53
experiment 2 24.93 9.13 13.36
experiment 3 26.15 12.76 17.15
experiment 4 49.22 9.54 15.99
baseline crh 29.29 36.04 32.32
baseline ast 44.56 44.26 44.41
experiment 5 39.57 32.38 35.61
experiment 6 36.54 17.08 23.28
baseline krc 34.77 44.94 39.21
baseline srd 26.85 26.10 26.47

Table 6: Results for full analysis prediction:
lemma + POS + MSD.
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found in the lemmas containing mismatched
graphemes къ and гъ. For example, the NOUN
де-факто ‘de facto’ receives the lemma *де-
факъто instead of де-факто.
The eighth error category is represented

by substandard attested word forms, e.g. the
generated lemma *энтта for the ADV энт-
та is confused with the correct lemma энтда
‘again’.
Errors of the ninth category are considered

to be the incorrect lemmas for the word forms
containing the derivational morphemes ду, ды,
and ди. These can be found specifically in
ADJ and do not store any morphosyntactic
description. The algorithm produced the
lemma *джокъду for the ADJ джокъду ‘no’
derived from the underlying stem and the
actual lemma джокъ ‘nothingness’.
We suggest that the rate of errors in the

first and the second categories can probably
be reduced by applying GBUSS algorithm
(Shalonova et al., 2009) which proved to
perform better than Morfessor. Another
approach is to include the morphological
information on lemma and suffixes into
the character-based word representations
learned by the bi-LSTMs (Özateş et al.,
2018). The errors of the third, fourth and
fifth categories might be partially resolved
with the Morphnet hyperparameters tuning,
e.g. increasing a probability threshold and
adjusting the maximal number of output
candidates specifically for each POS cluster.
Back transliteration errors can be reduced
by employing byte-pair encoding (BPE)
which allows to eliminate the orthographic
normalization. Finally, semi-supervised
learning and retrieving ADJ cross-lingual
morpheme-to-tag pairs might solve the sixth,
eighth and ninth error categories.

Future Work

In future work we are planning to experiment
with Slavic languages (fusional morphology).
Hard attention models for morphological

analysis are the object of our further
exploration since these proved to deliver
a better performance in the low-resource
language scenario (Cotterell et al., 2018).
Another direction is to make use of

cognate identification as it might improve
morphology transferring across the single
language family. Cognates tend to share the

same language knowledge, e.g. English tooth
and German Zahn have the same semantic
meaning and morphosyntactic features. This
can be achieved with applying phoneme level
Siamese convolutional networks (Rama, 2016)
or generating multilingual cognate tables by
clustering surface forms from existing lexical
resources (Wu and Yarowsky, 2018).

Conclusion

In this paper we proposed an approach
for data-driven cross-lingual morphological
analysis in a low-resource language setting
based on a combination of unsupervised
morpheme segmentation, annotation
projection and an LSTM encoder-
decoder model with attention. Despite
the morphological differences between
agglutinative and fusional languages, our
algorithm obtains the best performance
on lemmatisation for Karachay-Balkar and
Sardinian languages in the VarDial 2019
Shared Task on CMA.
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Glassman, Géraldine Walther, Ekaterina
Vylomova, Arya D McCarthy, Katharina Kann,
Sebastian Mielke, Garrett Nicolai, Miikka
Silfverberg, et al. 2018. The conll–sigmorphon
2018 shared task: Universal morphological
reinflection. arXiv preprint arXiv:1810.07125.
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Abstract
This paper describes Tübingen-Oslo team’s
participation in the cross-lingual morphologi-
cal analysis task in the VarDial 2019 evalua-
tion campaign. We participated in the shared
task with a standard neural network model.
Our model achieved analysis F1-scores of
31.48 and 23.67 on test languages Karachay-
Balkar (Turkic) and Sardinian (Romance) re-
spectively. The scores are comparable to the
scores obtained by the other participants in
both language families, and the analysis score
on the Romance data set was also the best re-
sult obtained in the shared task. Besides de-
scribing the system used in our shared task par-
ticipation, we describe another, simpler, model
based on linear classifiers, and present further
analyses using both models. Our analyses, be-
sides revealing some of the difficult cases, also
confirm that the usefulness of a source lan-
guage in this task is highly correlated with the
similarity of source and target languages.

1 Introduction

Morphological analysis is one of the basic tasks
in natural language processing (NLP). The need
for morphological analysis becomes particularly
important in processing morphologically rich lan-
guages, where analysis of words can both be chal-
lenging and fruitful. Morphological analysis can
be useful in downstream NLP tasks as well as be-
ing useful for (linguistic) research.
Traditionally, morphological analyzers have

been developed using finite state transducers
(FSTs). Finite-state morphological analyzers de-
fine a lexicon and a set of rules to specify both
morphotactics and morpho-phonological (or or-
thographic) alternations. The resulting rule-based
system is compiled into a finite state transducer
which is capable of analyzing a given word to an
underlying linguistic representation. The resulting
FSTs are fast, and can be used for a range of tasks

from stemming/lemmatization to full morpholog-
ical analysis. As well as transducing word forms
to a linguistic analysis, they can also be used in re-
verse to generate the word form(s) of a given lin-
guistic representation.
Finite-state morphological analyzers have been

used successfully for a broad range of NLP tasks,
and are available for most of the world’s major
languages. Finite-state analyzers also exist for all
of the languages that are featured in this shared
task (examples of such analyzers include, Tzouk-
ermann and Liberman, 1990; Altintas and Cicekli,
2001; Armentano-Oller et al., 2006; Çöltekin,
2010; Kessikbayeva and Cicekli, 2014; Washing-
ton et al., 2014; Forcada et al., 2011; Tyers et al.,
2010). On the downside, developing these ana-
lyzers requires substantial expert effort,1 which in
some cases may not even exist, e.g., for languages
with few speakers where experts are also hard to
find. A potential solution to aid developing mor-
phological analysis tools is to use unsupervised
methods. Earlier attempts to develop unsupervised
morphological analysis tools, mostly within Mor-
pho Challenge shared tasks (Kurimo et al., 2010),
returned rather mixed, often sub-optimal results
(see Hammarström and Borin, 2011, for a survey).
Another approach for obtaining morphological

analyses for languages without a morphological
analyzer is based on transfer learning, which has
become a widespread approach in NLP and related
disciplines rather recently (Yarowsky et al., 2001;
Faruqui and Kumar, 2015; Johnson et al., 2017;
Barnes et al., 2018). The general idea is to train
a supervised machine learning model that predicts
analyses of word forms in a target language using
gold-standard analyses that exist in other related
languages.

1Access to an analyzer for a closely-related language may
reduce the development time and effort considerably (Wash-
ington et al., 2014).
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The present shared task, cross-lingual morpho-
logical analysis, takes the second approach. Track
1 of the task that we participated in aims to an-
alyze words in a ‘surprise’ language, given gold-
standard analyses of words in languages in the
same language family. The second track included
some additional resources (see Zampieri et al.
(2019) for further details about the task).
The present task is also strongly related to the

series of SIGMORPHON (re)inflection tasks (Cot-
terell et al., 2017, 2018), where the emphasis is in
generation of the inflected forms rather than pro-
ducing an analysis. Another difference between
the present task and the inflection tasks is also the
level of ambiguity. In inflection tasks, especially
in context, ambiguity level is rather low, making
it less pressing to produce multiple results, while
dealing with ambiguity is more important in mor-
phological analysis.
We developed multiple systems for the task.

Our main system was a neural encoder–decoder
architecture, where we used a recurrent network
as encoder and lemma decoder, but unlike many
earlier examples, we do not consider POS tags
and morphological features as part of the output
sequence. Although they share the encoder, the
tags are predicted bymulti-layer feed-forward neu-
ral classifiers. The second, simpler method is a
set of linear SVM classifiers. Besides describing
both models, we report further experiments and
analyses, including a comparison of the models,
a detailed error analysis, and a set of experiments
investigating the roles of individual source lan-
guages in transfer learning.

2 Models

2.1 Linear baseline
Recently, the dominating approaches to morphol-
ogy learning tasks have been neural models, par-
ticularly recurrent neural networks. However, lin-
ear models provide surprisingly good performance
in some tasks (e.g., Çöltekin and Rama, 2016,
2018), with the added advantage that they are com-
putationally cheaper to train and tune, and often
exhibit less variance than modern neural archi-
tectures. Although our submissions were recur-
rent encoder/decoder architectures, we also imple-
mented a fully linear approach to solve the task.
Our linear model is a pipeline model with com-

ponents for predicting lemma, POS, and morpho-
logical features separately. After having exper-

imented with different orders, our final pipeline
first predicts the lemma, then POS tags, and fi-
nally the morphological features. In all parts, we
use (multi-class) linear SVM models.

Lemma prediction is a two-step process, us-
ing two separate classifiers. The first classi-
fier predicts the stem, the prefix shared by both
the word form and the lemma. Subsequently,
the second classifier predicts the possibly null
string to be added to the lemma. For example,
for the word uçağını ‘his/her/their airplane-ACC’
(Crimean Tatar), whose lemma is uçaq, the first
classifier segments the word form as uça·ğını, and
the second classifier predicts the string ‘q’ to be
appended to the stem. The features for both classi-
fiers are the overlapping character n-grams, before
and after the segmentation point.

POS tag prediction is also based on a classifier
with character n-gram features. The n-grams for
the (predicted) lemma and the suffixes after the
segmentation point are used as features for a multi-
class linear classifier.

Morphological tag prediction is similar to the
POS tag prediction. In the linear model reported
here, we treat the whole feature string as class la-
bels. We have also experimented with multiple
classifiers per feature, and a standard multi-label
approach predicting individual Feature=Value
pairs. However, in our preliminary experiments
the monolithic single classifier yielded better per-
formance on the development sets. In addition, it
also offers an easier way to obtain n-best predic-
tions during decoding.

Decoding follows the above order for the com-
plete analysis of a given word form. At each step,
we use a threshold value to pick n-best results.
All predictions with a distance from the decision
boundary larger than the threshold is produced,
and passed to the next predictor in the pipeline.

2.2 Recurrent encoder/decoder
Our neural model follows a similar pipeline ap-
proach, again, predicting lemma, POS tag and
morphological features one by one. The overall
architecture is presented in Figure 1. The order of
components are different from the linear model.2
Another notable difference from the linear model

2The choice is due to computational convenience. We did
not investigate the effects of the order of components on the
overall prediction performance.
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encoder

word form

POS classifier

feature classifier

lemma decoder

Analysis

Figure 1: Overall architecture of the neural model.

is that the neural model shares some components
during training, where components of the linear
model are all trained/tuned individually.

The encoder is a bidirectional recurrent net-
works with gated-recurrent units (GRU, Cho et al.,
2014) operating on input characters. Characters
are passed through an embedding layer before be-
ing fed to the recurrent encoder. In this study, the
embeddings are trained within the task, we do not
use pre-trained character embeddings. We do not
use intermediate representations of the input word
either. Only the final representation, concatena-
tion of forward and backward RNNs, is fed into
the other parts of the network.

ThePOS classifier is a feed-forward component
with two hidden layers with relu units followed by
a softmax classifier.

The morphological feature classifier consists
of multiple feed-forward networks for each mor-
phological feature. Similar to the POS classifier
we use two hidden layers with relu activation, fol-
lowed by a softmax classifier for each morpholog-
ical feature. The target values for each morpho-
logical feature are the feature values observed in
the training data as well as a special ‘not applica-
ble’ value. The morphological feature classifiers
are trained jointly.

The lemma decoder is a recurrent decoder with
GRU units. The initial symbol to the network is
a special ‘end of sequence symbol’ and otherwise
predictions of the previous time step are fed to the
recurrent unit as input. The hidden state of the re-
current unit is initializedwith the final output of the

encoder. Similar to the encoder, the characters are
embedded as continuous vectors before being fed
into the recurrent layer. The embedding layers of
the encoder and the lemma decoder are not shared.
The output of the encoder, along with the tag pre-
dictions are fed to a softmax classifier at each step,
which outputs the characters of the lemma.
We train the model in multiple steps. First the

model is trained to guess POS tags, then morpho-
logical features, and finally the lemmas. While
training a model further in the pipeline we ini-
tialize the encoder (and embedding) weights with
the weights from the previous step, but freeze the
weights of the classifier(s) of the previous step(s).
During decoding, we follow the same order. For

POS tags we predict all POS tags until the total
probability assigned by the softmax classifier ex-
ceeds a particular threshold. During the lemma
prediction, we predict a lemma whenever proba-
bility of end-of-sequence symbol reaches to a de-
fined threshold. We do not predict multiple values
for the morphological features.

3 Experimental setup

3.1 Data and preprocessing
The CMA task included data from two language
families, Romance (ROA) and Turkic (TRK).
Since we participate only on track 1, we only
make use of morphological analyses released by
the shared task organizers. The reader is referred
to Zampieri et al. (2019) for detailed description of
the data set. We give a brief description of the data
set here.
The Turkic (TRK) data consisted of training

samples from Bashkir (bak), Kazakh (kaz), Kyr-
gyz (kir), Tatar (tat) and Turkish (tur), Turkic de-
velopment data came from Crimean Tatar (crh),
and test data was fromKarachay-Balkar (krc). The
Romance (ROA) data consisted of training sam-
ples from Catalan (cat), French (fra), Italian (ita),
Portuguese (por) and Spanish (spa). Romance de-
velopment and test data were from Asturian (ast)
and Sardinian (srd) respectively. The number of
word forms along with the number of lemmas,
tags (POS and morphological feature combina-
tions) and analyses per word form for each lan-
guage is presented in Table 2.
For both language families, the task involves

predicting possibly multiple analyses consisting of
a lemma, a POS tag, and a set of morphological
feature–value pairs for each word form (examples
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word form lemma POS morphological features

desgaste desgaste ‘wear’ NOUN Gender=Masc|Number=Sing
desgastar ‘to wear (out)’ VERB Mood=Sub|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin

karın kar ‘snow’ NOUN Case=Gen
kar ‘snow’ NOUN Case=Nom|Number[psor]=Sing|Person[psor]=2
kar ‘snow’ VERB Mood=Imp|Number=Plur|Person=2|Valency=2|VerbForm=Fin
karı ‘wife’ NOUN Case=Nom|Number[psor]=Sing|Person[psor]=2
karın ‘stomach’ NOUN Case=Nom

Table 1: Examples taken from Spanish (ROA track) and Turkish (TRK track) training data for the morphological
prediction task.

family lcode words analysis lemma pos tag

TRK bak 9 999 1.46 1.10 1.08 1.38

kaz 9 995 1.67 1.18 1.18 1.59

kir 10 000 1.41 1.11 1.09 1.32

tat 10 000 1.42 1.10 1.08 1.37

tur 9 990 1.97 1.20 1.11 1.95

(dev) crh 999 1.25 1.05 1.03 1.23

(test) krc 8 768

ROA cat 10 000 1.44 1.15 1.28 1.43

fra 9 986 1.67 1.15 1.29 1.66

ita 9 998 1.55 1.21 1.35 1.54

por 9 999 1.41 1.08 1.11 1.41

spa 9 999 1.39 1.15 1.28 1.39

(dev) ast 1 000 1.46 1.13 1.26 1.44

(test) srd 9 998

Table 2: Statistics on individual languages of CMA
analysis data. The column ‘words’ is the number of
word forms, the other columns indicate the ambiguity,
e.g., ‘pos’ indicates number of part-of-speech tags per
word form. ‘analysis’ indicate the full-analysis ambi-
guity, ‘tag’ indicates ambiguity of full morphological
tag (combination of the POS and morphological fea-
tures).

shown in Table 1). The POS tag set used for both
languages consist of nouns, adjectives, adverbs,
and verbs. The number of unique morphological
feature–value combinations is 89 in the ROA train-
ing set, and 1 013 in the TRK training set.

3.1.1 Transliteration
The Turkic data set includes languages that use two
different scripts. Turkish and Crimean Tatar uses
the Latin script, while the other languages in this
data set are written with the Cyrillic script. To our
knowledge there are no standard way to translit-
erate between Turkic languages.3 As a result, we

3Standard/documented transliteration methods from
Cyrillic to Latin script exists for most languages. However,
these methods are often developed better readability of the

used a rather ad hoc transliteration that tries to keep
similarly-sounding letters of Cyrillic used in the
languages of the training set, and the version of the
Latin script used in Turkish and Crimean Tatar.

3.2 Evaluation

Following the official evaluation script, we report
precision, recall and F1-scores, for lemmas, tags
(combination of POS tags and morphological fea-
tures) and full analysis (combination of all) for
each word form. In some experiments we also re-
port separate scores for POS tags and morpholog-
ical features. We compare our models against the
competition baseline, which is a neural machine
translation model (Silfverberg and Tyers, 2019).

3.3 Linear model

All classifiers in our linear models are linear SVM
classifiers. For multi-class classifiers (all except
the stemmer), we use one-vs-rest multi-class strat-
egy. All models were implemented in scikit-learn
Python library (Pedregosa et al., 2011) using lib-
linear back end (Fan et al., 2008).
We tuned each classifier separately using ran-

dom search on the development set, where all
languages in the training set were used without
any weighting scheme. Tuning involved classifier
regularization parameter, maximum n-gram order
used as features and threshold parameter for each
classifier that affect the number of predictions pro-
duced during decoding. The resulting parame-
ter values are listed in Table 3. The threshold of
0.00 in Table 3 indicates a single prediction, which
means the configuration chosen by our tuning pro-
cedure produces only a single-best analysis on the
Turkic data set, and producingmultiple predictions
only for the POS tags on the Romance data.

resulting text in English, which often diverges from the
version of Latin script used in the Turkic languages.
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Classifier parameter Romance Turkic

POS C 0.08 0.70

threshold −0.50 0.00

n-grams 5 9

Lemma C (seg) 0.02 0.02

C (suffix) 3.70 0.52

seg. threshold 0.00 0.00

n-grams 5 7

Features C 0.70 4.80

threshold 0.00 0.00

n-grams 10 5

Table 3: Hyperparameter for the linear model deter-
mined with a random search through the parameter
space. A threshold value of 0.00 means only a sin-
gle prediction. Values for n-grams are the maximum
n-gram order used as features.

3.4 Neural model

For the neural model, we fixed the model archi-
tecture after initial experimentation. We used an
embedding size of 64. Both forward and back-
ward GRU layers in the encoder learned 512-
dimensional representations, resulting in 1 024

hidden units in the lemma decoder. We used a
dropout of 0.50 before the encoder (after embed-
dings) and before each classifier. We tuned the
models using random search for optimum thresh-
old values, selecting the model that resulted in the
best overall analysis F1-score on the development
set. The best scores were obtained for both lan-
guage families with a POS tag threshold of 0.70
and a lemma threshold of 0.50. The neural model
was implemented with Tensorflow (Abadi et al.,
2015) using Keras API (Chollet et al., 2015).

4 Results and discussion

4.1 Performance on test and dev sets

Official evaluation results of submitted (neural)
system in comparison to the shared-task baseline
provided by the organizers are presented in Ta-
ble 4. The system obtained good results on the
ROA test set (Sardinian) in comparison to the base-
line and the other participants. It predicted the tags
particularly well, which also lead to the best anal-
ysis score despite lower lemma scores. The results
on the TRK test set (Karachay-Balkar) are below
shared-task baseline which was the clear winner
on this language family by surpassing the scores
of the other participants as well.

family/model Analysis Lemma Tag

ROA
NN 23.67 31.36 61.33

Baseline 22.94 31.56 51.88

TRK
NN 31.53 52.74 38.93

Baseline 39.79 54.94 44.56

Table 4: Official results obtained by our neural model
in comparison to the shared-task baseline. The scores
are F1-scores.

The scores of our submitted model, the linear
baseline described in Section 2.1, and the baseline
results as reported by the organizers are presented
in Table 5 with some additional detail. Since our
models were tuned to perform well on the devel-
opment set without exploiting the similarities or
differences between the training and the test lan-
guages, it is not surprising that the test set results
are substantially lower than the scores we obtained
on the development set. However, the result on Ta-
ble 5 also offers a few interesting observations.
Our NN model obtains better scores than the

competition baseline on both language families. In
contrast to the test set, on the development set the
difference on the Turkic data is more pronounced.
Our model yields an analysis F1-score approxi-
mately 16 percentage points (pp.) higher than the
baseline on the dev set, while this difference is ap-
proximately 8 pp. in favor of the baseline on the
test set. A likely reason for the difference is the
tuning procedure. An untuned model is likely to
be more general, and hence may do better on a sur-
prise language. Another potential reason for the
difference can be related to the transliteration pro-
cess (see Section 4.2 for further discussion).
In comparison to the neural model, the linear

model performs worse on the ROA data set. How-
ever, it performs competitively on the TRK data
set, even yielding better lemma predictions than
the neural model. The linear pipeline predicts the
lemmas first, while neural model also makes use
of the earlier POS and feature predictions during
predicting lemmas. Although propagation of the
error may affect the lemma predictions of the neu-
ral model adversely, it also has more information.
The difference in performance between lin-

ear and neural models across language families
may also be due to their morphological typol-
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family Analysis Lemma Tag POS Morphology

model P R F P R F P R F P R F P R F

ROA
NN 41.14 45.12 43.04 60.07 60.82 60.44 60.61 65.62 63.01 87.58 79.70 83.45 66.56 73.78 69.99

Linear 32.99 42.54 37.16 53.00 60.00 56.29 49.38 62.84 55.30 63.05 70.34 66.50 61.86 75.33 67.94

Baseline 42.57 43.33 42.94 55.91 60.60 58.16 60.13 59.50 59.81 – – – – – –
TRK
NN 47.84 53.36 50.45 72.33 73.59 72.95 55.70 62.07 58.71 87.80 81.67 84.63 55.91 62.88 59.19

Linear 43.86 53.95 48.38 78.53 82.38 80.41 47.80 58.76 52.72 82.15 84.28 83.20 47.84 58.76 52.74

Baseline 31.24 38.44 34.47 56.30 59.06 57.65 38.52 47.35 42.48 – – – – – –

Table 5: Detailed results on the development set in comparison to the our linear baseline (Linear) as well as the
competition baseline (Baseline). Besides the F1 scores (F) we also present precision and recall. Last two groups,
‘POS’ and ‘Morphology’ columns are a breakdown of the ‘Tag’ scores to part of speech tags and morphological
features, respectively.

ogy. Predicting agglutinating morphology of Tur-
kic languages with linear models may be easier,
due to more transparent mappings between the
morph(eme)s and relevant tags. On the other hand,
the more fusional nature of Romance languages
may require combining multiple pieces of infor-
mation (possibly non-linearly) for successful pre-
dictions.

4.2 Effect of source language

In transfer learning, a natural question to ask is
how useful a particular source language, or combi-
nation of source languages can be for a given tar-
get language. To test the effects of the source lan-
guage in analyzing a target language, we used all
individual languages in the training set as source,
and tested on all training and development lan-
guages for both families. Due to computational
convenience, we performed these experiments us-
ing only the linear model. The results of this
‘cross-training’ experiments are presented in Fig-
ure 2. The presented scores are the overall best
analysis F1-scores obtained after a random search
through the space of hyperparameters listed in Ta-
ble 3. The diagonal presents the results of tests on
the training languages, hence, only useful for an
approximate upper bound achievable by the model
on the given language.
An interesting observation from Figure 2 is that

while analyzing the Romance development data
(Asturian), the score obtained using only Span-
ish (40.79) is better than the results we obtained
using the complete training set (37.16). In Tur-
kic languages, no single language is better than
the overall score we obtained. However, using
only Kazakh as training data gets close to what we

ast cat fra ita por spa
cat
fra
ita
por
spa

30.99 73.42 22.76 21.31 24.35 32.45

15.91 20.72 69.61 17.10 14.24 15.23

14.10 16.10 4.85 69.14 19.72 22.48

20.43 29.11 18.36 22.12 73.11 45.28

40.79 32.99 21.17 22.59 44.57 78.68

test

tra
in

crh bak kaz kir tat tur
bak
kaz
kir
tat
tur

28.19 75.47 34.60 26.13 48.82 19.28

44.10 39.29 67.67 38.07 40.02 25.94

35.91 29.35 35.77 82.10 36.62 27.54

31.45 38.56 28.10 24.78 78.02 20.60

31.02 18.02 19.55 21.52 25.11 59.16

tra
in

Figure 2: Analysis F1-scores for cross-training lan-
guages with another single language in the family: (top)
Romance, (bottom) Turkic. All results are obtained us-
ing the linear model.

obtained using the complete training data set. It
seems the choice of source language(s) is impor-
tant, and more data, if not appropriate, may even
hurt performance depending on the model setup.
It is also worth noting that the usefulness of a lan-
guage as a source language for another exhibits a
fair level of asymmetry. Even though the perfor-
mancematrices presented in Figure 2 (after remov-
ing the development set columns) are close to sym-
metric matrices, there are clear cases of asymmetry
as well. For example, using Italian to train a mor-
phological analyzer for French is less useful than
using French to train a morphological analyzer for
Italian.
Presumably due to distances within the family,

French and Italian seem less useful than the other
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language in the Romance data set. On Turkic data
set, the same seems to be true for Turkish. Ex-
cluding Crimean Tatar, Turkish is the least useful
language for predicting others. This may also be
part of the reason for the difference between the
shared task baseline and our systems on the de-
velopment and test set. Since the baseline system
does not transliterate the source languages, it does
not benefit from training languages except Turk-
ish. On the other hand, while predicting analy-
sis for the test language Karachay-Balkar, which
is written in Cyrillic, the baseline system does not
make use of data from Turkish. Not making use
of a rather noisy part of the input may in fact be
an advantage. Hence, our model outperforms the
baseline on the development set by benefiting from
all the data. However, for the test language, it gets
mislead by a less useful source language that the
baseline system simply ignores.
In general, however, the similarity of languages

seem to help. The cross-testing results are better
for similar languages in Figure 2 in comparison to
less-similar ones. In fact, the average performance
obtained using language pairs on Romance data
correlates highly (r = 0.83) with linguistic sim-
ilarities based on shared cognates (Dellert, 2017),
indicating, as expected, usefulness of source lan-
guages more similar to the target language.

4.3 Error analysis
In this section, we look at the errors made by the
systems on the development set more carefully. As
well as reporting the rates of some of the quantifi-
able aspects of errors, we provide some qualitative
analysis of the types of mistakes made by different
models.
Most POS tag errors are confusions between

POS tags NOUN and VERB, which may also be
largely due to the fact these are also the most fre-
quent POS classes in the data. Otherwise, for both
families major confusions are either due to missing
some of the ambiguous analyses, or, to a lesser ex-
tent, predicting additional (wrong) POS tags. We
present confusion tables of POS tags sets of the
neural model in Table 8 in Appendix. The tables
also show that POS ambiguity is more common in
Romance data set.
Given large number of morphological feature–

value pairs, a similar analysis is not easy for the
morphological features. We count true positive
(TP) and false positive (FP) errors, i.e., number of
instances of a feature–value pair in gold data miss-

Feature FP rate FN rate

Person[psor] 0.09 0.07

Number[psor] 0.14 0.11

Case 0.15 0.14

Number 0.28 0.03

Voice 0.38 0.20

Aspect 0.54 0.10

Tense 0.61 0.33

Valency 0.62 0.46

Mood 0.63 0.50

VerbForm 0.71 0.30

Person 0.76 0.19

Deriv 0.79 0.40

Missing 1.00 1.00

Polarity 1.00 0.00

Table 6: False positive (FP) and false negative (FN) er-
ror rates on feature–value pairs on Turkic development
set. The rates are aggregated over the feature label.

Feature FP rate FN rate

Number 0.03 0.04

Gender 0.12 0.13

Aspect 0.22 0.14

VerbForm 0.24 0.29

Tense 0.39 0.31

Mood 0.48 0.26

Person 0.49 0.24

Possessive 1.00 0.00

Table 7: False positive (FP) and false negative (FN)
error rates on feature–value pairs on Romance devel-
opment set. The rates are aggregated over the feature
label.

ing from the predictions and number of pairs that
are predicted but not in the gold data. We present
the rates aggregated by each feature label in Ta-
ble 6 and 7, Turkic and Romance development sets
respectively (more detailed versions, reporting er-
ror rates for each feature–value pair are presented
in Table 10 and 9 in Appendix).
In both families, the nominal features seem to

be easier to predict than verbal ones. Besides fea-
tures that are difficult to interpret, e.g., Missing
in Turkic data, very high error rates happen with
features that are observed only a few times and
those with ambiguity. For example, Possessive
occurs only twice on Asturian data. To exem-
plify a case with ambiguity of the mapping be-
tween the surface strings and the features, we look
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at Crimean Tatar suffix -me/-ma, which is ambigu-
ous between negative and infinitive markers. This
ambiguity is the likely cause of complete failure
of the model in predicting the Polarity features,
as well as being responsible for some of the errors
for VerbForm=Vnoun. We present further (mostly
qualitative) error analyses on both development
sets below.

ROA Regarding the Asturian development data,
both of our models lead to fewer overall predic-
tions than the gold data contains: 1 133 for the lin-
earmodel and 1 389 for the neuralmodel compared
to the 1 461 predictions in the development data,
suggesting that our models are conservative when
predicting POS tags. This is especially noticeable
with the linear model, where 65% of the POS tag
predictions where for NOUN. The neural approach
gives a similar distribution over POS tags as the
gold standard, which suggests that neural models
may be better at capturing the ambiguity inherent
in morphological prediction.
Both cross-lingual models fail on examples of

morphological paradigms that are not found in the
training data. An example fromAsturian is the for-
mation of the past participles, where the infinitive
ending (-ar, -er, -ir) is removed and replaced by
the participle ending (-áu, -íu). Our linear model
incorrectly predicts that these are nouns and pre-
dicts the same form as the lemma, while the neural
model is better able to predict the POS tags, but
cannot consistently predict the correct lemma, of-
ten choosing a similar lemma from Spanish.
When the POS prediction is correct, the aver-

age Levenshtein difference between the predicted
and gold lemmas is respectable (0.46 for the linear
model, 0.42 for the neural model).

TRK Similar to the ROA development set, both
our models make fewer predictions on average
than the gold standard predictions provided for
Crimean Tatar. As noted in Section 3 the (opti-
mum) linear model makes only a single prediction
for each of the 999 word forms. The linear model
predicts more with 1 196 analyses in total, close to,
but still less than 1 245 gold-standard analyses.
In Turkic development set, systematic errors in

lemmatization involve missing multiple lemmas
for a form where one of the lemmas is a derived
form of another. For example, both models miss
the alternative lemma kiriş ‘to interfere’ for the
word kirişti ‘interfered / entered (cooperatively)’,

predicting only the simpler form kir ‘to enter’.
Common prediction errors also include segment-
ing words at common suffixes. biznesi ‘his/her
business’ is lemmatized as bizne, as -si is a com-
mon allomorph of the third person singular pos-
sessive suffix across Turkic languages, while the
loan-word biznes is probably an unlikely sequence
of letters for a Turkic lemma despite a few occur-
rences in the training data. Another, possibly fix-
able, problem for the neural model is due to the
letters that do not occur in the training set. For ex-
ample, the Crimean Tatar data includes the letter â
which is always predicted as another letter that is
most probable in context.
As expected from the overall lemma prediction

scores on the Turkic data, when the POS prediction
is correct, the average edit difference between the
predicted and gold lemmas are lower for the linear
model (0.27) than the neural model (0.46).

5 Conclusions

We have presented our submission for the cross-
lingual morphological prediction task, which
achieved the best tag and analysis scores in the
Romance track. We trained both linear and neu-
ral morphological analyzers in a pipeline fashion
and demonstrated that these models can take ad-
vantage of labeled data in source languages to pre-
dict the morphological analysis in a similar target
language.
While the results presented here are competitive

with others obtained in this shared task, the analy-
sis scores are admittedly low. However, there are
multiple ways to improve the results as our models
do not incorporate much in terms of cross-lingual
signal. In the future, it would be worth integrat-
ing this cross-lingual signal in the form of pre-
trained cross-lingual word embeddings (Artetxe
et al., 2016; Lample et al., 2018) or sub-word, e.g.,
character, embeddings (Chaudhary et al., 2018;
Sofroniev andÇöltekin, 2018), as this could lead to
better generalization to new languages. Similarly,
typological distance between source and target lan-
guage often correlates with performance (Cotterell
and Heigold, 2017), which could be exploited for
weighting the contribution of source-language ex-
amples when learning a multilingual model.
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A Appendix

A J N V AN JN JV NV ANV JAN JNV

A 9 0 0 1 0 1 1 0 1 1 0
J 0 85 1 2 0 37 2 2 0 0 2
N 0 1 237 24 1 42 4 43 1 0 8
V 0 4 12 197 0 4 12 18 0 0 4
AN 0 0 0 0 0 0 0 0 0 1 0
JA 0 1 1 0 0 1 0 0 0 0 0
JN 0 14 14 2 0 102 3 3 0 0 2
JV 0 1 1 7 0 4 12 4 0 0 1
NV 0 1 13 3 0 0 0 31 0 0 0
JNV 0 0 2 3 0 4 1 7 0 0 4

A J N V AN JA JN JV NV

A 0 0 2 1 1 0 0 0 0
J 0 8 18 2 0 0 13 0 5
N 0 2 662 15 1 1 15 0 24
V 0 3 51 116 1 0 4 3 25
AN 0 0 3 0 1 0 0 0 0
JA 0 0 1 0 0 0 0 0 0
JN 0 0 2 0 1 0 0 0 0
JV 0 1 0 2 0 0 0 0 0
NV 0 0 5 2 0 0 2 0 6

Table 8: Confusion matrix for Asturian (left) and Crimean Tatar (right) data sets for all POS combinations. The
letters in the column and row labels are adverb (A) adjective (J), noun (N) and verb (V), where combination of
letters indicate words that are assigned all indicated POS tags in the gold standard (rows) or predictions (columns).
Columns and rows with all zeros were removed.

Feature=Value FP NP FP rate FN NN FN rate

VerbForm=Ger 0 22 0.00 0 22 0.00

VerbForm=Inf 0 48 0.00 4 52 0.08

Number=Plur 6 324 0.02 4 322 0.01

Number=Sing 22 619 0.04 27 624 0.04

Gender=Fem 28 326 0.09 28 326 0.09

Gender=Masc 44 363 0.12 53 372 0.14

Aspect=Perf 7 56 0.13 11 60 0.18

VerbForm=Fin 35 198 0.18 60 223 0.27

Gender=Masc,Fem 20 109 0.18 21 110 0.19

Person=3 41 161 0.25 22 142 0.15

Tense=Past 57 167 0.34 48 158 0.30

Mood=Ind 66 173 0.38 32 139 0.23

Aspect=Imp 11 27 0.41 0 16 0.00

Tense=Pres 50 108 0.46 26 84 0.31

Mood=Sub 24 50 0.48 15 41 0.37

Mood=Cnd 3 6 0.50 0 3 0.00

Number=Sing,Plur 2 4 0.50 4 6 0.67

Mood=Imp 19 36 0.53 8 25 0.32

VerbForm=Part 51 87 0.59 46 82 0.56

Person=1 23 39 0.59 2 18 0.11

Person=2 48 67 0.72 24 43 0.56

Possessive=Yes 2 2 1.00 0 0 0.00

Table 9: False positive (FP) and false negative (FN) error rates of the neural model on the Romance development
set (Asturian). NP indicate number of instance of the feature-value pair in the gold data, NN indicate the total
number of instances in the predictions.
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Feature=Value FP NP FP rate FN NN FN rate

Case=Abl 0 50 0.00 31 81 0.38

Case=Gen 0 79 0.00 0 79 0.00

Case=Loc 0 82 0.00 3 85 0.04

Case=Acc 2 79 0.03 6 83 0.07

Person[psor]=3 17 356 0.05 25 364 0.07

Number=Plur 12 225 0.05 1 214 0.00

Number[psor]=Sing,Plur 32 356 0.09 23 347 0.07

Case=Nom 76 441 0.17 76 441 0.17

Case=Dat 20 106 0.19 5 91 0.05

Case=Sim 2 6 0.33 0 4 0.00

Voice=Pass 21 56 0.38 9 44 0.20

Valency=2 54 140 0.39 74 160 0.46

Tense=Past 38 79 0.48 3 44 0.07

Aspect=Imp 14 28 0.50 1 15 0.07

Aspect=Perf 37 68 0.54 4 35 0.11

VerbForm=Fin 67 119 0.56 20 72 0.28

VerbForm=Conv 49 80 0.61 3 34 0.09

Mood=Imp 10 14 0.71 4 8 0.50

Person=3 75 102 0.74 5 32 0.16

Number=Sing 81 107 0.76 7 33 0.21

Deriv=Coop 11 14 0.79 2 5 0.40

VerbForm=Vnoun 88 110 0.80 7 29 0.24

Tense=Aor 34 42 0.81 12 20 0.60

Person[psor]=1 15 18 0.83 0 3 0.00

VerbForm=Part 37 44 0.84 2 9 0.22

Person=2 14 16 0.88 2 4 0.50

Valency=1 87 95 0.92 5 13 0.38

Aspect=Prog 2 2 1.00 0 0 0.00

Case=Ins 29 29 1.00 1 1 1.00

Missing=ger_abst 21 21 1.00 1 1 1.00

Missing=ger_fut 3 3 1.00 0 0 0.00

Number[psor]=Plur 7 7 1.00 7 7 1.00

Number[psor]=Sing 13 13 1.00 12 12 1.00

Person=1 2 2 1.00 0 0 0.00

Person[psor]=2 2 2 1.00 2 2 1.00

Polarity=Neg 22 22 1.00 0 0 0.00

Tense=Fut 5 5 1.00 0 0 0.00

Table 10: False positive (FP) and false negative (FN) error rates of the neural model on the Turkic development
set (Crimean Tatar). NP indicate number of instance of the feature-value pair in the gold data, NN indicate the total
number of instances in the predictions.

164



Proceedings of VarDial, pages 165–171
Minneapolis, MN, June 7, 2019 c©2019 Association for Computational Linguistics

Ensemble Methods to Distinguish Mainland and Taiwan Chinese

Hai Hu∗ † Wen Li∗ † He Zhou∗ † Zuoyu Tian† Yiwen Zhang† Liang Zou‡
Department of Linguistics, Indiana University†

Courant Institute of Mathematical Sciences, New York University‡

{huhai,wl9,hzh1,zuoytian,yiwezhan}@iu.edu, lz1904@nyu.edu

Abstract

This paper describes the IUCL system at Var-
Dial 2019 evaluation campaign for the task of
discriminating between Mainland and Taiwan
variation of mandarin Chinese. We first build
several base classifiers, including a Naive
Bayes classifier with word n-gram as features,
SVMs with both character and syntactic fea-
tures, and neural networks with pre-trained
character/word embeddings. Then we adopt
ensemble methods to combine output from
base classifiers to make final predictions. Our
ensemble models achieve the highest F1 score
(0.893) in simplified Chinese track and the
second highest (0.901) in traditional Chinese
track. Our results demonstrate the effective-
ness and robustness of the ensemble method.

1 Introduction

Like many other languages in the world, Mandarin
has several varieties among different speaking
communities, mainland China, Taiwan, Malaysia,
Indonesia, etc. Previous research on these vari-
eties are mainly focused on language differences
and integration (Yan-bin, 2012). Discriminating
between the Mainland and Taiwan variations of
Mandarin Chinese (DMT) is one of the shared
tasks at VarDial evaluation campaign 2019, aim-
ing to determine if a given sentence is taken from
news articles from Mainland China or Taiwan
(Zampieri et al., 2019). This task not only serves
as a platform to test various models, but also en-
courages linguists to rethink the different linguis-
tic features among those varieties.

This paper describes the IUCL (Indiana Univer-
sity Computational Linguistics) systems and sub-
missions at VarDial 2019. We first build sev-
eral base classifiers: a Naive Bayes classifier with
word n-gram as features, Support Vector Machines
(SVM) using both character and syntactic features,

∗Equal contribution

and neural networks such as LSTM and BERT.
We then build ensemble models by using the max-
imum probability among all base classifiers, or
choosing the class with maximum average prob-
ability, or training another SVM on top of the out-
put of base classifiers. We apply the three ensem-
ble models for both the simplified Chinese track
and the traditional Chinese track, which also cor-
respond to our three submissions on both tracks.
As shown in the official evaluation results, our
SVM ensemble is ranked the first place on the sim-
plified Chinese test data with a macro-averaged
F1 score of 0.893, and our ensemble model using
maximum probability from base classifiers ranked
second on the traditional Chinese test data with a
macro-averaged F1 score of 0.901.

In this paper, we will briefly review related
work in Section 2, describe our single classifiers
and three ensemble methods in Section 3, and fi-
nally present and discuss our results in Section 4,
with a conclusion in Section 5.

2 Related Work

Discriminating between similar languages (DSL)
is one of the main challenges faced by language
identification systems (Zampieri et al., 2017,
2015). Since 2014, the DSL shared task provided a
platform for researchers to evaluate language iden-
tification methods with standard dataset and evalu-
ation methodology. Previous shared tasks on DSL
have differentiated a wide range of languages, in-
cluding similar languages, such as Bosnian, Croa-
tian and Serbian, and one language spoken in dif-
ferent language societies, such as Brazilian vs. Eu-
ropean Portuguese. In these shared tasks, SVMs
are probably the most widely used classifier, while
logistic regression and naive Bayes also performed
well. More recently, Convolutional Neural Net-
works and Recurrent Neural Networks are also

165



implemented with byte-level, character-level or
word-level embeddings. Regarding features in
this task, character and word n-grams are most
frequently used (Zampieri et al., 2015; Malmasi
et al., 2016; Zampieri et al., 2017, 2018). Besides,
ensemble methods are also used widely in DSL
to improve results beyond those of the individual
base classifiers, for example, majority voting be-
tween a classifier trained with different features,
majority voting to combine several classifiers, po-
larity voting with SVMs, etc. (Jauhiainen et al.,
2018).

Like many languages studied in the literature of
DSL, Mandarin Chinese also has several varieties
among its speaking communities. Previous work
on this was done by proposing a top-bag-of-word
similarity measures for classifying texts from dif-
ferent variants of the same language (Huang and
Lee, 2008). A top-bag-of-word, similarity-based
contrastive approach was adopted to solve the text
source classification problem. That is, the classifi-
cation process adopted similar heuristics to gener-
ate determined intervals between classes. Then a
contrastive elimination algorithm is used that sim-
ple majority voting mechanism is employed for
determining the final classification results. LDC’s
Chinese Gigaword Corpus (Huang, 2009) was
used as the comparable corpora, which is com-
posed of three varieties of Chinese from Mainland
China, Singapore, and Taiwan. Experimentation
shows that the contrastive approach using similar-
ity to determine the classes is a reliable and robust
tool.

3 Methodology and Data

3.1 Base Classifiers

In this section, we describe each of the classifiers
that are included in our final ensemble model.

3.1.1 Naive Bayes Classifier (NB)
Naive Bayes is a simple yet effective probabilis-
tic model that works quite well on various text
classification tasks, including sentiment analysis
(Narayanan et al., 2013), spam detection (Kim
et al., 2006), email classification, and authorship
attribution. It has two simplifying assumptions:
bag-of-words assumption and conditional inde-
pendence assumption (Jurafsky and Martin, 2014).

This task can be considered as a binary text clas-
sification problem, since an instance is labelled
with either M or T. A sentence is treated as a se-

quence of words, and it is assumed that each word
is generated independent of each other. Here we
construct features with word unigram, bigram, and
trigram, and train a Bernoulli Naive Bayes classi-
fier. Since we have finite number of words, i.e.,
18,769 sentences in training set, the classifier is
likely to encounter unseen words in development
set, therefore smoothing is needed. We iterate the
additive smoothing parameter α in range between
0 and 1 for 100 times on training data of both
simplified Chinese and traditional Chinese, find-
ing the best α value 0.42 for simplified Chinese
and 0.51 for traditional Chinese.

3.1.2 Classifier with Syntactic Features
(SYN)

Syntactic features have been shown to be helpful
in various text classification tasks, e.g. authorship
attribution (Baayen et al., 1996; Gamon, 2004),
native language identification (Bykh and Meur-
ers, 2014), and detecting translationese (Hu et al.,
2018).

For this task, we employ two types of syntactic
features. The first is context-free grammar rules
that are not terminal rules. The second is depen-
dency triples (John ate nsubj). We use the
linear SVM classifier from scikit-learn (Pedregosa
et al., 2011). The syntactic features are obtained
using Stanford CoreNLP with their default mod-
els (Manning et al., 2014).

3.1.3 Sequential Model Classifier (SEQ)
We create a classifier based on the multi-layer neu-
tral network model using Keras (Chollet et al.,
2015).

First, we prepare the data using bag-of-words
model to generate vectors from texts. We create a
vocabulary of all the unique words in the test sen-
tences and create a feature vector representing the
count of each word. Then we preprocess the data
by padding sentences into the same input length of
50.

We build a sequential model including a linear
stack of layers. The first layer takes an integer ma-
trix of the size of the vocabulary and shapes the
output embedding as 16. The second layer is a
global average pooling layer which returns a fixed-
length output vector for each example by averag-
ing over the sequence dimension. Then the output
vector is piped through a dense layer with 16 hid-
den units. This model uses the Rectifier activation
function, which has been proven to generate good
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results. The last layer is a dense layer with a sin-
gle output node using sigmoid activation function.
Each value is transformed to a float between 0 and
1, representing probability.

To update weights and find the best parameters
in the model, we configure the learning process
using the Adam optimizer and the binary cross
entropy loss function, which are commonly used
for binary classification tasks. Then we train the
model by running the iteration for 40 epochs with
a batch size of 512.

We use the development set to evaluate the
model and make predictions on the test data.

3.1.4 Word-Level Long Short-Term Memory
(LSTM)

Long short-term memory is an efficient, gradient-
based model (Hochreiter and Schmidhuber, 1997),
which is widely used in NLP tasks. We choose
as features the most frequent 5000 words in com-
bined training and development data. We trans-
form sentences with one-hot encoder, followed by
a 128-dimension embedding layer as well as 64
hidden layers. The batch size and input length are
both 32, and we train the model with 7 epochs. To
avoid overfitting, we set the dropout rate equal to
0.5.

3.1.5 Classifier with Pretrained Chinese
Word Embeddings (EMB)

Word embeddings are dense vector representa-
tions of words (Collobert and Weston, 2008;
Mikolov et al., 2013). Compared with bag-of-
word features, word embeddings are better at cap-
turing semantic and syntactic information in the
context. In this task, we choose 300-dimension
skip-gram with negative sampling word embed-
dings trained on People’s Daily Newspaper (Li
et al., 2018).

The pre-trained embeddings are chosen for the
following reasons. First, the training data may
not be large enough for building robust word em-
bedding, since subtle semantic relations and in-
frequent phrases could be overlooked due to the
limited data size. The pre-trained embeddings are
trained on news over 70 years with 668 million to-
kens in total, covering the majority of words used
in the news genre. Second, the language of Peo-
ple’s Daily is quite similar to the Mainland Man-
darin data in this task, which also comes from a
Chinese official news agency.

We initialise the weights of the projection layer

with this 300-dimension pre-trained word embed-
dings, and keep this layer frozen during the fol-
lowing fine-tuning. Then we feed the output se-
quentially into a convolutional layer, a max pool-
ing layer and LSTM layer. Finally, two dense lay-
ers with sigmoid activation are used.

3.1.6 Bidirectional Encoder Representations
from Transformers (BERT)

Bidirectional Encoder Representations from
Transformers (Devlin et al., 2018) have shown
state-of-art performance in many NLP tasks. The
pre-trained model supports multiple languages,
and we adapt the Chinese model for classification
in this task. Since the model tends to overfit on
small dataset, during fine tuning we experiment
with 1-3 training epochs. We set the maximum
sequence length to be 32, since most of the sen-
tences in training and development data have no
more than 32 words. We train the model with two
epochs for official submission, since it performs
the best when evaluating on development data.

3.2 Ensemble Classifiers

Ensemble models have been widely adopted in
various text classification tasks and machine learn-
ing applications (e.g., Liu et al., 2016). Ensemble
learning can combine weak learners into a strong
learner to improve the performance, and it also
helps to reduce the variance of models prone to
overfitting.

Each classifier outputs the probabilities for the
input sentence to be of class M and T. These prob-
abilities are then passed on to an ensemble model
which makes the final decision. We experiment
with three ensemble models.

MaxProb The MaxProb ensemble simply looks
at the max probability of an input sentence. That
is, the classifier that is most confident of its deci-
sion will have the final say.

MaxMeanProb The MaxMeanProb ensemble
computes the average probability for the two
classes (M, T) across all classifiers and returns the
label with higher average probability.

SVM Classifier stacking is often used in ensem-
ble learning to integrate different models to pro-
duce the final output (e.g., Li and Zou, 2017).
We concatenate the probabilities produced by base
classifiers and feed them into SVM to get the final
label.
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3.3 Data

The training, development and test data all come
from two sources: Chen et al. (1996) for news
text in traditional Chinese and McEnery and Xiao
(2003) for simplified Chinese. There are 18,769
sentences for training, 2,000 sentences for devel-
opment, and 2,000 sentences for test. The datasets
are balanced across two classes.

4 Results and Discussion

We report the results of each base classifier and the
ensemble models on both the development set and
the test set.

4.1 Results on Dev Set

The results for development set are presented in
Table 1. Most of the base classifiers achieve
an F-measure between 0.87 and 0.90. In par-
ticular, a word n-gram Naive Bayes (NB) model
can reach 0.88 F-score. Using syntactic features
(SYN) produces slightly worse results, likely due
to the sentence-based nature of the task. That
is, the syntactic features are very sparse, unlike
in related tasks where the classification is on the
document level (Bykh and Meurers, 2014; Hu
et al., 2018). Models based on word level neural
networks (LSTM and SEQ) have similar results,
while adding pre-trained word embeddings im-
proves the results (EMB). BERT with pre-trained
character embeddings gives comparable results as
EMB.

The best results are achieved using our ensem-
ble models described in section 3.2. They are able
to improve the F score by 0.01-0.02 over the best
preforming base classifier, illustrating the robust-
ness of ensemble models.

4.2 Results on Test Set

For the campaign, we submit the predictions of
the three ensemble models. The results are pre-
sented in Table 2. The MaxProb and SVM en-
semble models have similar performance, with an
accuracy around 0.92. Our system is ranked as the
first place for the simplified Chinese track and sec-
ond place for the traditional Chinese track.

The confusion matrix of our best performing
models are shown in Figure 1 and Figure 2. There
seems to be a bias of predicting Taiwan sentences
as Mainland sentences, the reason for which calls
for further exploration.
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Figure 2: Sub-task DMT-traditional, Ensemble Max-
Prob

4.3 Prominent Features in Mainland and
Taiwan Text

Now we examine word unigram features of the
classes more closely. Using Information Gain de-
scribed in Liu et al. (2016), we rank all the word
unigram features. The top 20 features are shown in
Table 3. First we notice proper nouns that are un-
derstandably distinctive, e.g., the word “Taiwan”
appears more frequent in Taiwan news, while
“Shenzhen”–a city in Mainland China–shows up
only in Mainland news. Some other words have
to do with the political system in Mainland, e.g.,
“comrade” and “socialism” occur only in Main-
land news.
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BERT LSTM SEQ EMB NB SYN Ensemble
MaxProb

Ensemble
MaxMeanProb

Ensemble
SVM

Simp. 0.900 0.874 0.878 0.893 0.881 0.854 0.917 0.910 0.921
Trad. 0.905 0.879 0.891 0.907 0.888 0.884 0.924 0.920 0.934

Table 1: Macro-averaged F score on development set for simplified and traditional Chinese. BERT: classifier
using BERT pre-trained Chinese model. LSTM: word-level LSTM. SEQ: word-level sequential model classifier.
EMB: neural network using pre-trained Chinese word embeddings. NB: word-level Naive-Bayes model. SYN:
SVM with syntactic features.

System Simplified Traditional
Ensemble MaxProb 0.892 0.901
Ensemble MaxMeanProb 0.872 0.878
Ensemble SVM 0.893 0.899

Table 2: Macro-averaged F score on test set for simplified and traditional Chinese using ensemble models.

rank ig value word translation freq Mainland freq Taiwan
1 0.00237293 一个 one 290 0
2 0.00122218 学生 student 28 234
3 0.00118379 经济 economy 254 29
4 0.00094773 这个 this 116 0
5 0.00092902 台湾 Taiwan 19 172
6 0.00090684 全国 whole country 111 0
7 0.00079236 同志 comrade 97 0
8 0.0006871 网路 internet 0 77
9 0.00065798 我们 we 325 104
10 0.00061201 就是 be 82 1
11 0.00060674 资讯 information 0 68
12 0.00060137 改革 reform 102 6
13 0.00059619 深圳 Shenzhen (city) 73 0
14 0.00059442 使用 use 11 107
15 0.00058054 人们 people 106 8
16 0.00057632 记者 journalists 142 21
17 0.00054397 企业 enterprises 232 66
18 0.00053899 社会主义 socialism 66 0
19 0.00052829 人民 masses 127 18
20 0.00052387 为了 in order to 71 1

Table 3: Top 20 features selected by information gain

However, the top ranking feature一个 (one) ap-
pears to be a segmentation error. It turns out that
it is segmented as two words in Taiwan news, i.e.,
一|个, but it is one word in Mainland news. In
fact, it appears 143 times in the Taiwan training
data (still half the frequency of Mainland news).
The same goes for 这个 (this) and 全国 (whole
country), which is segmented as two words in Tai-
wan news, but one in Mainland news.

Perhaps the only interesting lexical variations
between Mainland and Taiwan in the top 20 fea-

tures are 网路 (internet) and 资讯 (information),
which are immediately recognized by the authors
as Taiwan Mandarin. In Mainland China, they
would be网络 (internet) and信息 (information).

5 Conclusion

In this paper we have described the IUCL ensem-
ble models that distinguish Mainland and Taiwan
Mandarin Chinese. We show that neural networks
using pre-trained character/word embeddings out-
perform traditional n-gram models, and ensem-
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ble models can further improve the results over
base classifiers. Although neural networks pro-
duce strong empirical results, traditional classi-
fiers like SVM still play an important role when
we need to investigate the importance of different
features.
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Abstract

This paper describes our models for the Mol-
davian vs. Romanian Cross-Topic Identifica-
tion (MRC) evaluation campaign, part of the
VarDial 2019 workshop. We focus on the
three subtasks for MRC: binary classification
between the Moldavian (MD) and the Roma-
nian (RO) dialects and two cross-dialect multi-
class classification between six news topics,
MD to RO and RO to MD. We propose several
deep learning models based on long short-term
memory cells, Bidirectional Gated Recurrent
Unit (BiGRU) and Hierarchical Attention Net-
works (HAN). We also employ three word em-
bedding models to represent the text as a low
dimensional vector. Our official submission
includes two runs of the BiGRU and HAN
models for each of the three subtasks. The
best submitted model obtained the following
macro-averaged F1 scores: 0.708 for subtask
1, 0.481 for subtask 2 and 0.480 for the last
one. Due to a read error caused by the quoting
behaviour over the test file, our final submis-
sions contained a smaller number of items than
expected. More than 50% of the submission
files were corrupted. Thus, we also present the
results obtained with the corrected labels for
which the HAN model achieves the following
results: 0.930 for subtask 1, 0.590 for subtask
2 and 0.687 for the third one.

1 Introduction

The task of discriminating between two dialects
or different languages is a popular research topic
which has attracted a lot of interest from the
research community. Specifically, the VarDial
competition proposed in recent years a num-
ber of shared tasks on different languages such
as dialect identification for Arabic or German,
Indo-Aryan language identification, distinguish
between Mainland and Taiwan Mandarin or dis-
criminating between Dutch and Flemish (Zampieri

et al., 2017, 2018). This year (Zampieri et al.,
2019), the problem of discriminating between Ro-
manian and Moldavian dialects was introduced as
a series of three subtasks. It involves the pro-
cessing of the MOROCO dataset (Butnaru and
Ionescu, 2019) to construct several language clas-
sification models. The dataset contains text sam-
ples from online news outlets in the Romanian
(RO) language or the Moldavian (MD) dialect. All
the subtasks are closed, meaning that the use of ex-
ternal datasets is not allowed. Additionally, inter-
nal data, available for the MRC subtasks, must not
be used between tasks. Thus, the first subtask is a
binary classification between the two dialects. The
second subtask involves a cross-dialect multi-class
classification between six topics. More precisely,
the classifier is trained using Moldavian dialect in
order to classify samples from the Romanian di-
alect. The third subtask is similar to the second
one, here the use of the dialects is reversed.

Generally, such tasks are approached using tra-
ditional machine learning algorithms, which un-
fortunately require handcrafted features. Recently,
deep learning methods, where features are learned
from the data, have been proposed (Ali, 2018). To
address the MRC shared task, we propose the use
of three state of the art deep learning architectures
for text classification: Long Short-Term Mem-
ory cells (LSTM) (Hochreiter and Schmidhuber,
1997), Bidirectional Gated Recurrent Unit (Bi-
GRU) (Graves and Schmidhuber, 2005) and Hier-
archical Attention Networks (HAN) (Yang et al.,
2016). The submission results are based only on
BiGRU and HAN models for each of the three
subtasks. After the competition deadline an er-
ror, caused by the quoting behaviour over the test
file, was discovered. As a result our final submis-
sions contained a smaller number of labels than
expected, with approximately 50% of the files be-
ing corrupted. Thus, we present both the official
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Subtask Training Validation Test
1 21719 11845 5923
2 9968 5435 5923
3 11751 6410 5923

Table 1: Dataset sample distribution between training,
validation and test for each of the three subtasks.

submissions as well as later work, that includes
the correction of this problem.

The study of Romanian dialects was first ap-
proached by Ciobanu and Dinu (2016). They
construct binary classifiers to distinguish between
Romanian and three dialects (Macedo-Romanian,
Megleno-Romanian and Istro-Romanian) by ex-
ploring information provided by a set of 108 word
pairs. Consequently, Butnaru and Ionescu (2019)
proposed a first Moldavian and Romanian Dialec-
tal Corpus (MOROCO) assembled from multi-
ple news websites. On top of this dataset they
construct several deep learning models for di-
alect identification: Character level Convolutional
Neural Network (CharCNN) and an improvement
CNN model using squeeze and excitation blocks
(Hu et al., 2018). Additionally, they also investi-
gate shallow string kernel methods (Ionescu et al.,
2016). They conclude that string kernels achieve
best performance among the studied methods.

The remainder of this paper is organized as
follows. In Section 2 we briefly discuss the
dataset for the three tasks. Section 3 describes the
methodology behind our solution, while the exper-
imental setup and the results are presented in Sec-
tion 4. Finally, Section 5 contains details regard-
ing our conclusions.

2 Dataset

The MOROCO dataset contains Moldavian and
Romanian samples collected from one of the fol-
lowing news categories: culture, finance, politics,
science, sports and technology. It is divided be-
tween training, validation and test for each of the
three tasks as described in Table 1. The test set is
combined for all the subtasks such that the labels
for the first task can not be inferred. This is neces-
sary because the second and the third subtasks are
based entirely on just one of the dialects.

The data samples are provided preprocessed by
replacing named entities, which could act as biases
for the classifiers, with a special identifier: $NE$.
For instance, city names or important public fig-

ures from both countries, Romania or the Republic
of Moldova, are anonymized.

Besides the default processing, we also took ex-
tra steps to clean up the dataset. Text usually con-
tains expressions which carry little to no meaning,
thus, we choose to remove the following: stop
words, special characters and punctuation marks
all except end of sentence. Additionally, we re-
move the named entity identifier as they interfere
with the text representations. Another important
aspect is given by how we deal with the diacritics.
During our experiments we analyze their impact
on the performance.

3 Deep learning models

In recent years, with the increasing availability
of computational resources, deep neural networks
became successful for classification and regres-
sion problems (LeCun et al., 2015). At first, sim-
ple feedforward networks were used. These net-
works lack loops or cycles and the information
moves only forward, from the input to the out-
put nodes. The switch to other types of rep-
resentations, namely Recurrent Neural Networks
(RNNs), was made because of the need to map in-
put and output nodes of varying types and sizes.

Recurrent neural networks. RNNs are neural
networks that form connections between nodes
along a sequence. This allows the network to
exhibit internal memory with respect to the in-
puts which in turn enables the prediction of fu-
ture steps. Due to this memory, RNNs are the pre-
ferred method for processing sequential data such
as time series, text or video. Unfortunately, RNNs
can suffer from training instability, exploding and
vanishing gradients.

Long short-term memory. Long Short-Term
Memory (LSTM) units, introduced by Hochreiter
and Schmidhuber (1997), are used in recurrent
neural networks as a way to prevent vanishing or
exploding gradients. The units allow the errors
to flow backwards through endless virtual layers
which are unfolded in space. Besides the usual in-
put and output gates, LSTM units are augmented
by recurrent gates called forget gates which regu-
late the movement of information through the cell
(Gers et al., 2000).

Gated recurrent unit. Similar to LSTM, the
Gated Recurrent Unit (GRU) was introduced by
Cho et al. (2014) as a method to solve the van-
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Name Vector size Min. word count Unique tokens Diacritics Training algorithm
CoRoLa 300 20 250942 Yes FastText
NLPL 100 10 2153518 No Word2Vec Skipgram
CC 300 - 2000000 Yes FastText

Table 2: Word embeddings: statistics regarding training methods and dataset/parameters details.

ishing gradient problem that occurs when using
standard RNNs. These types of units are closely
related to LSTM having similar performance and
design. The GRU layers are popular due their
simpler structure, which results in faster training
time. A bidirectional extension for such recurrent
layers was proposed by Graves and Schmidhuber
(2005). It connects two hidden layers of opposite
directions in a backward and forward manner to
the same output. This is useful for text process-
ing since it can encode the context present in such
structures: characters and words.

Hierarchical Attention Networks. Hierarchi-
cal Attention Networks (HAN) were introduced
for document classification by Yang et al. (2016).
They model the hierarchical structure of docu-
ments by using two levels of attention, for words
and sentences. This translates into a document
representation that differentiates between the im-
portance of the content in various parts of the text.

The model constructs a vector representation of
the raw document. They follow the two-level ar-
chitecture by first encoding sequences of words to
embeddings using bidirectional GRU units to pre-
serve context information. The second attention
level of the model encodes sequences of vectors
representing sentences received as input from the
first attention mechanism. The resulting encod-
ing, which is constructed via the two-level atten-
tion scheme, is then used for classification.

Word embeddings. Word embeddings are meth-
ods of representing text as low dimensional fixed
length numerical vectors. This representation
maintains semantic and syntactic relations such
as synonyms, antonyms as well as context. Neu-
ral network methods for training such embeddings
were first introduced by Mikolov et al. (2013).

4 Experiments and results

We aim to provide classification models for all the
subtasks from the challenge. The solutions are
based on word embeddings which are used as a
preprocessing step to create inputs for the classi-

fiers. In order to achieve this, we rely on a number
of pretrained word vector models: Romanian Lan-
guage Corpus (CoRoLa) introduced by Mititelu
et al. (2018), Nordic Language Processing Labo-
ratory (NLPL) word embedding repository (Kutu-
zov et al., 2017) and Common Crawl (CC) word
vectors (Grave et al., 2018). The relevant details
for each word vector representation model can be
viewed in Table 2.

LSTM and BiGRU Models. The input for the
RNN flavour models is computed by taking the
mean of all word embeddings present in the text.
Missing words are considered zero valued vectors.
The result is a representation of the whole news
item as a single embedding vector.

The LSTM architecture consists of a starting
LSTM layer of size 256. This is followed by a
secondary LSTM layer of 512 neurons. Next, we
use dropout as a regularization technique for re-
ducing overfitting in neural networks (Srivastava
et al., 2014). The method refers to dropping out
individual units during training with a probability
p = 0.3. We use a fully connected layer consist-
ing of 512 neurons between the recurrent layers
and the output one. All LSTM layers use the tanh
activation function while the fully connected one
uses Rectified Linear Unit (ReLU), both empiri-
cally chosen. Finally, the output consists of a soft-
max activation layer of variable size depending on
the subtask, 2 dimensions for the first and 6 for the
second and third.

The BiGRU model is similar, it uses an initial
GRU layer of 256 size followed by a bidirectional
GRU layer of size 512. For both layers we ap-
ply batch normalization to accelerate the training.
Similarly, we use an empirically chosen tanh ac-
tivation function. This connects to two fully con-
nected layers of 1024 and 512 neurons, both with
dropout mechanism with p = 0.3. The output
layer is the same as for the LSTM architecture.

HAN Model. Due to the two-level hierarchical
attention architecture, the HAN model learns the
importance of the words as a weighted sum be-
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Training F1 Evaluation F1 Test F1

Model Embeddings Macro Weighted Micro Macro Weighted Micro Macro Weighted Micro
BiGRU CC - - - - - - 0.708 0.711 0.712
HAN CC - - - - - - 0.508 0.513 0.515
LSTM CoRoLa 0.836 0.838 0.839 0.828 0.830 0.831 0.825 0.826 0.827
LSTM NLPL 0.804 0.806 0.806 0.796 0.797 0.797 0.798 0.799 0.799
LSTM CC 0.858 0.858 0.858 0.854 0.855 0.855 0.847 0.848 0.848
BiGRU CoRoLa 0.913 0.914 0.914 0.870 0.872 0.872 0.868 0.870 0.871
BiGRU NLPL 0.871 0.872 0.873 0.835 0.837 0.838 0.834 0.836 0.838
BiGRU CC 0.946 0.946 0.946 0.908 0.909 0.909 0.903 0.904 0.904
HAN CC 0.978 0.978 0.978 0.928 0.928 0.928 0.930 0.931 0.931

Training F1 Evaluation F1 Test F1

Model Embeddings Macro Weighted Micro Macro Weighted Micro Macro Weighted Micro
BiGRU CC - - - - - - 0.481 0.489 0.490
HAN CC - - - - - - 0.157 0.196 0.211
LSTM CoRoLa 0.877 0.892 0.892 0.877 0.902 0.902 0.689 0.687 0.692
LSTM NLPL 0.857 0.892 0.892 0.862 0.891 0.891 0.693 0.684 0.691
LSTM CC 0.825 0.870 0.873 0.830 0.868 0.871 0.603 0.619 0.625
BiGRU CoRoLa 0.922 0.941 0.941 0.882 0.908 0.908 0.690 0.690 0.694
BiGRU NLPL 0.925 0.943 0.943 0.879 0.906 0.906 0.701 0.692 0.699
BiGRU CC 0.934 0.945 0.945 0.882 0.903 0.903 0.649 0.652 0.658
HAN CC 0.933 0.959 0.959 0.828 0.879 0.880 0.590 0.616 0.604

Training F1 Evaluation F1 Test F1

Model Embeddings Macro Weighted Micro Macro Weighted Micro Macro Weighted Micro
BiGRU CC - - - - - - 0.480 0.562 0.560
HAN CC - - - - - - 0.138 0.196 0.224
LSTM CoRoLa 0.779 0.768 0.767 0.761 0.751 0.750 0.739 0.800 0.803
LSTM NLPL 0.775 0.762 0.763 0.764 0.751 0.751 0.787 0.834 0.834
LSTM CC 0.743 0.740 0.742 0.738 0.734 0.735 0.790 0.843 0.844
BiGRU CoRoLa 0.854 0.840 0.840 0.770 0.751 0.751 0.775 0.842 0.843
BiGRU NLPL 0.833 0.821 0.821 0.765 0.748 0.748 0.803 0.850 0.851
BiGRU CC 0.847 0.833 0.833 0.776 0.757 0.756 0.777 0.831 0.832
HAN CC 0.804 0.818 0.823 0.687 0.711 0.717 0.687 0.772 0.783

Table 3: Results obtained for: subtask 1 (top), subtask 2 (middle) and subtask 3 (bottom). The best results are
presented in bold. The first lines represent the official results, BiGRU represents the first run and HAN the second
one. All results are grouped by model type as well as the embeddings used. We include both the results for training
and evaluation datasets. Since the HAN model is computationally complex, we included only the embedding which
provided the best results with the previous architectures, namely, FastText Common Crawl (CC) word vectors.

tween the word embeddings. Thus, it can create
its own sentence and document models. For a con-
sistent input, not dependent on different document
and sentence sizes, the model requires two hyper
parameters: maximum sentence length (number of
words) and maximum document length (number
of sentences). We choose these parameters by in-
specting the statistics of the whole dataset to create
an initial estimate which was later improved via a
grid search. The best performance was achieved
with a maximum sentence length of 150 words and
a maximum document size of 20 sentences. Be-
sides these parameters, we also used a grid search
in order to choose a size of 200 neurons for the at-
tention layer as well as for the BiGRU. Similarly
to the previous architectures, the output consists of
2 or 6 neurons depending on the subtask.

Training configuration. We train the model us-

ing the Adam optimizer (Kingma and Ba, 2014)
with the default hyper parameters. For the learn-
ing rate, we use α = 0.0005 which was chosen
using a grid search as well. We work with the
training-validation split recommended by the or-
ganizers. Training is done using tensorflow (Abadi
et al., 2016) as backend and keras (Chollet et al.,
2015) as frontend, with a batch size of 50 for 30
epochs. During training we introduce an early
stopping criterion, namely, if the cost function for
the validation set does not improve for two con-
secutive epochs we stop.

Results. We test the proposed architecture in com-
bination with the three presented word embed-
dings. The results include the official submission
scores as well as the data after we corrected the
input file issue. For each subtask, we present the
extended results, expressed through the harmonic
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RO MD
RO 2517 201
MD 207 2998

CUL FIN POL SCI SPO TEC
CUL 152 6 15 9 4 1
FIN 33 562 206 20 21 59
POL 36 67 518 24 29 28
SCI 10 7 6 322 3 13
SPO 2 12 9 0 420 13
TEC 19 100 20 164 27 268

CUL FIN POL SCI SPO TEC
CUL 166 16 15 1 13 7
FIN 7 539 43 0 0 16
POL 11 87 806 1 2 3
SCI 2 10 3 96 0 44
SPO 3 11 7 2 572 12
TEC 6 38 36 7 1 135

Table 4: Confusion matrices for: subtask 1 (top), sub-
task 2 (middle) and subtask 3 (bottom) constructed us-
ing the models which obtained the best results over the
test dataset. Subtask 1 represents the classification be-
tween the Moldavian (MD) and the Romanian (RO) di-
alects. Subtask 2 and 3 are cross-dialect multi-class
classification between: culture (CUL), finance (FIN),
politics (POL), science (SCI), sports (SPO) and tech-
nology (TEC).

mean of precision and recall, F1 score, in Table
3. Overall the HAN model outperforms the others
for the first subtask and BiGRU with NLPL em-
beddings offers the best results for the second and
third subtasks.

For the official results, the best model, BiGRU
with CC embeddings, obtained macro-averaged
F1 scores as follows: 0.708 for subtask 1, 0.481
for subtask 2 and 0.480 for the third one. Af-
ter the correction, the HAN with CC embedding
model achieved 0.930 for subtask 1 while BiGRU
with NLPL obtained 0.701 for subtask 2 and 0.803
for subtask 3. Additionally, unlike the CC embed-
dings, for subtasks 2 and 3 the model that obtained
the best results uses embeddings without diacrit-
ics.

To better visualize and understand the misclas-
sification behaviour we present the confusion ma-
trices for the three subtasks in Table 4. The matri-
ces are created using the models which achieved
the best results over the test dataset. For the first
subtask the error is consistent across both classes,
RO and MD. Next, for the second subtask we ob-
serve high misclassification between the following
classes: finance (FIN) – politics (POL), technol-
ogy (TEC) – FIN and TEC – science (SCI). For
the last subtask we notice that the misclassification

errors from subtask 2 hold, as well as the addition
of a high error between the TEC – POL classes.

5 Conclusions

In this paper we tackled the task of Moldavian
vs. Romanian cross-topic identification which is
part of the VarDial 2019 evaluation campaign. We
proposed deep learning solutions for all three of
the competition subtasks: binary classification be-
tween the two dialects and two cross-dialect six
category classification from one of the dialects to
the other. The proposed architectures use state of
the art recurrent neural network layers as well as
hierarchical attention networks. To model the lan-
guages we used the following pretrained word em-
beddings: Romanian Language Corpus (CoRoLa),
Nordic Language Processing Laboratory (NLPL)
word embedding repository and Common Crawl
(CC) word vectors. We present the official com-
petition results together with additional tests since
the official submissions suffered from an input
parsing issue that corrupted 50% of the results.
All extra tests are evaluated with the official script.
The new results confirm the superior classification
performance of the HAN model with CC embed-
dings for subtask 1 and BiGRU with NLPL em-
beddings for the other subtasks.
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Abstract

This paper describes the language identifica-
tion systems used by the SUKI team in the Dis-
criminating between the Mainland and Taiwan
variation of Mandarin Chinese (DMT) and the
German Dialect Identification (GDI) shared
tasks which were held as part of the third Var-
Dial Evaluation Campaign. The DMT shared
task included two separate tracks, one for the
simplified Chinese script and one for the tradi-
tional Chinese script. We submitted three runs
on both tracks of the DMT task as well as on
the GDI task. We won the traditional Chinese
track using Naive Bayes with language model
adaptation, came second on GDI with an adap-
tive version of the HeLI 2.0 method, and third
on the simplified Chinese track using again the
adaptive Naive Bayes.

1 Introduction

The third VarDial Evaluation Campaign (Zampieri
et al., 2019) included three shared tasks on lan-
guage, dialect, and language variety identification.
The Discriminating between Mainland and Tai-
wan variation of Mandarin Chinese (DMT) con-
centrated on finding differences between the va-
rieties of Mandarin Chinese written on mainland
China and Taiwan. The task included two tracks,
one for the simplified script and another for the
traditional one. The German Dialect Identifica-
tion (GDI) task was already the third of its kind
(Zampieri et al., 2017, 2018). In GDI 2019,
the task was to distinguish between four Swiss-
German dialects. The third task was that of
Cuneiform Language Identification (CLI), but we
did not participate in that as we were partly re-
sponsible for creating its dataset (Jauhiainen et al.,
2019a).

We evaluated several language identification
methods using the development sets of the DMT
and GDI tasks. Our best submissions were created

using a similar language model (LM) adaptation
technique to the one we used in the second Var-
Dial Evaluation Campaign (Zampieri et al., 2018).
In that Evaluation Campaign, we used the HeLI
language identification method (Jauhiainen et al.,
2016) together with a new LM adaptation ap-
proach, winning the Indo-Aryan Language Identi-
fication (ILI) and the GDI 2018 shared tasks with
a wide margin (Jauhiainen et al., 2018b,c). After
the second Evaluation Campaign, we had devel-
oped a new version of the HeLI method and fur-
ther refined the LM adaptation technique (Jauhi-
ainen et al., 2019b). With the HeLI 2.0 method
and the refined adaptation technique, we came sec-
ond in the GDI 2019 shared task using only char-
acter 4-grams as features. Furthermore, we had
implemented several baseline language identifiers
for the CLI shared task (Jauhiainen et al., 2019a).
One of them was a Naive Bayes (NB) identifier us-
ing variable length character n-grams, which fared
better than the HeLI method on the CLI dataset.
We modified our LM adaptation technique to be
used with the NB classifier and this fared better
than the adaptive HeLI 2.0 method on both of the
Chinese datasets. With the adaptive NB identifier,
we won the traditional Chinese track and came
third on the simplified one.

In this paper, we first go through some related
work in Section 2, after which we introduce the
datasets and the evaluation setup used in the DMT
and the GDI shared tasks (Section 3). We then use
the training and the development sets to evaluate
our baseline methods (Sections 4.1 and 4.2) and
the HeLI 2.0 method (Section 4.3), after which we
evaluate the efficiency of our LM adaptation pro-
cedure with the HeLI 2.0 and NB methods in Sec-
tions 4.4 and 4.5. Finally we introduce and discuss
the results of our official submissions (Section 5)
as well as give some conclusions and ideas for fu-
ture work (Section 6).
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2 Related work

In this section, we introduce some background in-
formation on previous studies in language identi-
fication in general, language identification in the
context of Chinese and German languages, as well
as LM adaptation.

2.1 Language identification in texts

Language identification (LI) is the task of iden-
tifying the language of a text. The same meth-
ods which are used for LI are generally also used
for dialect and language variety identification. A
comprehensive survey of language identification
in general has been published in arXiv by Jauhi-
ainen et al. (2018d).

The series of shared tasks in language iden-
tification began in 2014 with the Discriminat-
ing Between Similar languages (DSL) shared task
(Zampieri et al., 2014) and similar tasks have been
arranged each year since (Zampieri et al., 2015;
Malmasi et al., 2016; Zampieri et al., 2017, 2018).

It is notable that, so far, deep neural net-
works have not gained an upper hand when com-
pared with the more linear classification meth-
ods (Çöltekin and Rama, 2017; Medvedeva et al.,
2017; Ali, 2018).

2.2 Chinese dialect identification

In the DMT shared task, the text material in the
dataset is UTF-8 encoded. Before the widespread
use of UTF-8, different encodings for different
scripts were widely used. Li and Momoi (2001)
discussed methods for automatically detecting the
encoding of documents for which an encoding was
unknown. They present two tables showing dis-
tributional results for Chinese characters. In their
research they had found that the 4096 most fre-
quent characters in simplified Chinese encoded in
GB2312 cover 99.93 percent of all text and they
report that earlier results of traditional Chinese in
Big5 encoding are very similar with the 4096 most
frequent characters covering 99.91% of text.

Huang and Lee (2008) used a bag of words
method to distinguish between Mainland, Sin-
gapore and Taiwan varieties of Chinese. They
reached an accuracy of 0.929.

Brown (2012) displays a confusion matrix of
four varieties of the Chinese macrolanguage as
part of his LI experiments for 923 languages. The
Gan and Wu Chinese were among the languages
with the highest error rates of all languages.

Huang et al. (2014) show how light verbs have
different distributional tendencies in Mainland and
Taiwan varieties of Mandarin Chinese. Using K-
Means clustering they show that the varieties can
be differentiated.

Xu et al. (2016) describe an approach to distin-
guish between several varieties of Mandarin Chi-
nese: Mainland, Hong Kong, Taiwan, Macao,
Malaysia, and Singapore. In another study (Xu
et al., 2018), they used support vector machines
(SVM) to distinguish between Gan Chinese di-
alects.

2.3 German dialect identification
The GDI 2019 task was already the third of its kind
(Zampieri et al., 2017, 2018). In 2017, we did not
participate in the shared task, which was won us-
ing an SVM meta-classifier ensemble with words
and character n-grams from one to six as features
(Malmasi and Zampieri, 2017). We won the 2018
edition using the HeLI method with LM adapta-
tion and character 4-grams as features (Jauhiainen
et al., 2018b). We were the only ones employing
LM adaptation and won with a wide margin to the
second system which was an SVM ensemble using
both character and word n-grams (Benites et al.,
2018).

For a more complete overview of dialect iden-
tification for the German language, we refer the
reader to our recent paper where we used LM
adaptation with the datasets from the GDI 2017
and 2018 shared tasks (Jauhiainen et al., 2019b).
Our experiments using a refined LM adaptation
scheme with the HeLI 2.0 method produced the
best published identification results for both of the
datasets.

2.4 Language model adaptation
Language model (LM) adaptation is a technique
in which the language models used by a language
identifier are modified during the identification
process. It is advantageous especially when there
is a clear domain (topic, genre, idiolect, time pe-
riod, etc.) difference between the texts used as
training data and the text being identified (Jauhi-
ainen et al., 2018a,b,c). If an adaptation technique
is successful, the language identifier learns the pe-
culiarities of the new text and is better able to clas-
sify it into the given language categories. In the
shared tasks of the VarDial Evaluation Campaigns,
we are provided with the complete test sentence
collection at once. This means, that we can addi-
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tionally choose in which order we learn from the
test data and even process the same test sentences
several times before providing the final language
labels.

The LM adaptation technique and the confi-
dence measure we use in the systems described
in this article are similar to those used earlier in
speech language identification by Chen and Liu
(2005) and Zhong et al. (2007). The adaptation
technique is an improved version of the one we
used in our winning submissions at the second
VarDial Evaluation Campaign (Jauhiainen et al.,
2018b,c). For a more complete overview of the
subject, we refer the reader to our recent article
dedicated to language model adaptation for lan-
guage and dialect identification of text, where we
also introduce the improved LM adaptation tech-
nique used in this paper (Jauhiainen et al., 2019b).

3 Test setup

In the shared tasks 2019, the participants were pro-
vided with separate training and development sets.
All the tracks were closed ones, so no external in-
formation was to be used in preparing the language
identification systems. The training and develop-
ment sets were released approximately a month
before the test set release. When the test sets were
released, the participants had two days to submit
their predictions on the tracks. The texts in the de-
velopment portions could be used as an additional
training data when processing the test sets and we
did so in each case.

The evaluation measure used in both of the
shared tasks was the macro F1-score and we used
it also when comparing the different methods we
used with the development data.

3.1 DMT datasets

The scripts commonly used in mainland China
and Taiwan are different. In Taiwan, the tradi-
tional Chinese script is commonly used whereas in
mainland China, the simplified version is the offi-
cial one (Chen et al., 1996; Huang et al., 2000;
McEnery and Xiao, 2003). In order to be able
to concentrate on the non-scriptual differences of
the two varieties of Mandarin Chinese, Putonghua
(Mainland China) and Guoyo (Taiwan), the texts
used for the DMT task had been transformed to
use the same script. In the simplified track, the
Taiwanese texts originally written in the tradi-
tional script had been converted into the simpli-

fied script and in the traditional track the texts
from mainland China originally in the simplified
script had been converted to the traditional script.
The conversion had been made using a tool called
“OpenCC”.1

The texts used as the source for the datasets
were news articles from mainland China and from
Taiwan. The participants were provided with
training and development sets for both simplified
and traditional scripts. Both datasets had been
tokenized by inserting whitespace characters be-
tween individual words. Furthermore, all punctu-
ation had been removed. The average length of
words in all DMT training sets was c. 1.7 charac-
ters. The training sets contained 9,385 sentences
and the development sets consisted of additional
1,000 sentences for each variety. The test sets had
1,000 sentences as well for each variety.

3.2 GDI dataset
The GDI dataset consisted of transcribed speech
utterances in four Swiss German dialects. More
detailed information about the source of the texts
for the GDI datasets, the ArchiMob corpus, are
provided by Samardžić et al. (2016). In 2018, the
GDI dataset included additional unknown dialects,
which were left out in 2019. The sizes of the train-
ing and the development sets can be seen in Ta-
ble 1. The average length of words in the train-
ing set was 5.5 characters. The test set contained
4,743 utterances comprising 42,699 words. As of
this writing, we are not aware of the distribution
of the dialects in the test set.

Variety (code) Training Development
Bern (BE) 27,968 7,381
Basel (BS) 26,927 9,462
Lucerne (LU) 28,979 8,650
Zurich (ZH) 28,833 8,086

Table 1: List of the Swiss German varieties used in the
datasets distributed for the 2019 GDI shared task. The
sizes are in words.

The training, development, and test sets in-
cluded two files in addition to the speech transcrip-
tions. The first file included normalized forms for
each dialectal form in the data. The second file in-
cluded 400-dimensional iVectors representing the
acoustic features of the original speech data, as the
text data was transliterated speech. We did not
use either of the two additional files in our experi-
ments.

1https://github.com/BYVoid/OpenCC

180



4 Experiments using the development
data

We set out to tackle the GDI and the DMT shared
tasks with the system based on the HeLI 2.0
method and LM adaptation that we had used for
the GDI 2017, GDI 2018 and ILI datasets between
the 2018 and 2019 VarDial Evaluation Campaigns
(Jauhiainen et al., 2019b).

For the CLI shared task, we had implemented
three new baseline identifiers, one of which, a
Naive Bayes identifier, managed to overcome the
traditional HeLI method when distinguishing be-
tween Sumerian and six Akkadian dialects (Jauhi-
ainen et al., 2019a). We were, hence, also in-
terested to see how well these baseline identifiers
would perform in the DMT and GDI tasks.

4.1 Simple scoring and the sum of relative
frequencies

The first baseline method in the CLI shared task
was the simple scoring method. In simple scor-
ing, the frequency information of individual fea-
tures in the training set is ignored and each time
a feature from a language model dom(O(Cg)) is
encountered in the text M , the language g is given
one point. The survey article by Jauhiainen et al.
(2018d) gives the following Equation 1 for simple
scoring:

Rsimple(g,M) =

l
MF∑

i=1

{
1 , if fi ∈ dom(O(Cg))
0 , otherwise

(1)

where lMF is the number of individual features in
the line M and fi is its ith feature. The language
g gaining the highest score R is selected as the
predicted language.

The second baseline implementation for the
CLI used the sum of relative frequencies of char-
acter n-grams of varying length. The method is
very similar to simple scoring but, instead of sim-
ply adding a global constant to the score each time
the feature is found in the language model, the
observed relative frequency in the respective lan-
guages training corpus is added.

In both methods, the only parameter to be de-
cided when using the development data was the
range of the character n-grams used. These char-
acter n-grams can span word boundaries and thus
long n-grams can contain several words. We ex-
perimented with a range from 1 to 20 characters

and the best attained macro F1-scores on the de-
velopment sets are listed in Tables 2, 3, and 4.

In the end, we did not submit any results using
the two first baseline methods as the third baseline
method, the product of relative frequencies, was
clearly superior to them.

4.2 Product of relative frequencies (NB)

Our third baseline method in CLI was the prod-
uct of relative frequencies. The method is ba-
sically the same as Naive Bayes using the ob-
served relative frequencies of character n-grams as
probabilities. As with the two previous methods,
these character n-grams can span word bound-
aries. Similarly to the sum of relative frequencies
method, we calculate the relative frequencies for
different n-grams from the training corpus, but in-
stead of adding them together, we multiply them
as in Equation 2:

Rprod(g,M) =

l
MF∏

i=1

c(Cg, fi)

lCF
g

(2)

The practical implementation uses the sum of
logarithms instead as computers normally cannot
handle the extremely small numbers produced by
multiplying the observed probabilities of complete
sentences. As smoothing, in case c(Cg, fi) was
equal to zero, we used 1 and multiplied the re-
sulting logarithmic value by the penalty modifier
pmod. The penalty modifier and the character n-
gram range used were optimized using the devel-
opment set. As mentioned earlier, the NB classi-
fier bested the other baseline methods as can be
seen in Tables 2, 3, and 4.

4.3 HeLI 2.0

In the HeLI method, we calculate a score for each
word using relative frequencies of words or char-
acter n-grams. The length of the character n-grams
to use or whether to use the word itself is decided
individually for each word encountered in the text
to be identified. The whole text gets the average
of the scores of the individual words, thus giving
equal value to long and short words. No informa-
tion spanning word boundaries are used.

We have recently introduced a version of HeLI
which we decided to call 2.0 as enough changes to
the HeLI method had already accumulated (Jauhi-
ainen et al., 2019b). The HeLI 2.0 differs from
the HeLI method described by Jauhiainen et al.
(2016) in three ways. Firstly, we now always use

181



Method n-gram range Smoothing Splits k Epochs CMmin F1 dev
Naive Bayes with LM adaptation 1–15 1.3 max 1 0.45 0.9225
Naive Bayes 1–15 1.3 - - - 0.9215
Simple scoring 1–15 - - - - 0.8970
HeLI 2.0 with LM adaptation 1–2 + infinite 1.01 max 1 - 0.8909
HeLI 2.0 1–2 + infinite 1.01 - - - 0.8859
Sum of rel. freq. 5–15 - - - - 0.8204

Table 2: Simplified Chinese. The macro F1-scores attained by different methods on the development set. A max
in column indicating the number of splits means that k was equal to the number of lines in the evaluation data.

Method n-gram range Smoothing Splits k Epochs CMmin F1 dev
Naive Bayes with LM adaptation 1–14 1.3 4 1 0 0.9295
Naive Bayes 1–14 1.3 - - - 0.9285
HeLI 2.0 with LM adaptation 1–2 + infinite 1.12 max 1 0.42 0.9160
HeLI 2.0 1–2 + infinite 1.12 - - - 0.9145
Simple scoring 1–6 - - - - 0.9015
Sum of rel. freq. 5–15 - - - - 0.8247

Table 3: Traditional Chinese. The macro F1-scores attained by different methods on the development set. A max
in column indicating the number of splits means that k was equal to the number of lines in the evaluation data.

Method n-gram range Smoothing Splits k Epochs CMmin F1 dev
HeLI 2.0 with LM adaptation 4 1.12 9 112 0.15 0.8657
Naive Bayes with LM adaptation 2–6 1.08 40 96 0.16 0.8442
HeLI 2.0 4 1.12 - - - 0.6658
Naive Bayes 2–6 1.08 - - - 0.6475
Simple scoring 2–7 - - - - 0.5865
Sum of rel. freq. 6–15 - - - - 0.5049

Table 4: GDI 2019. The macro F1-scores attained by different methods on the development set. A max in column
indicating the number of splits means that k was equal to the number of lines in the evaluation data.

all of the possible training material and use neither
rank- nor relative frequency-based cut-off. Sec-
ondly, we changed how we calculate the smooth-
ing value. In HeLI, we used a global penalty value
for all language models. In HeLI 2.0, we calcu-
late the penalty value relative to the size of each
individual language model using a global penalty
modifier pmod.2 Thirdly, when selecting the range
of character n-grams to use in HeLI 2.0, the mini-
mum size for n can be higher than one.

In this description, we define a word as a char-
acter n-gram of infinite size generated from an
individual word. The model sizes used are opti-
mized using a development corpus as is the possi-
ble use of n-grams of infinite size. Variable nmax

is the maximum length and the nmin the minimum
length of the used character n-grams.

The corpus derived from the training data con-
taining only the word internal3 n-grams of the size
n for the language g is called Cn

g . The values

2This is the same smoothing method which we used with
the product of relative frequencies.

3The beginning and the end of a word are marked using
whitespaces.

vCn
g
(f) for the n-gram f are calculated for each

language g, as shown in Equation 3:

vCn
g
(f) =




− log10

(
c(Cn

g ,f)

lCn
g

)
, if c(Cn

g , f) > 0

− log10

(
1

lCn
g

)
pmod , if c(Cn

g , f) = 0

(3)

where c(Cn
g , f) is the number of n-grams f in Cn

g .
The domain dom(O(Cn)) is the set of all char-

acter n-grams of length n found in the models
of any of the languages g ∈ G. Separately for
each individual word t on the line M to be iden-
tified, we determine the length n of the character
n-grams we use. The word t is divided into over-
lapping character n-grams of the length n. The
length n is the highest where at least one of the
character n-grams generated from the word t is
found in dom(O(Cn)). However, if an individual
n-gram f generated from the word t is not found
in dom(O(Cn)), it is discarded at this point. The
number of retained n-grams is ltF . The score for
individual words t on the line M is then calculated
as in Equation 4.
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vg(t) =

l
tF∑

i=1

vCn
g
(f) (4)

The whole line M is then scored as in Equa-
tion 5:

Rg(M) =

∑l
MT

i=1 vg(ti)

lMT

(5)

where lMT is the number of words in the line M .
The predicted language g of the line M is the one
having the lowest score. We optimized the penalty
modifier pmod as well as the minimum and max-
imum size of the n-grams, i.e. nmin and nmax,
using the developments set. Whether or not to use
the charcter n-grams of infinite size (words), was
also decided with the development set. The best
results attained by the HeLI 2.0 method on each
of the development sets can be seen in Tables 2, 3,
and 4.

4.4 HeLI 2.0 with adaptive language models

The fifth method we used in the experiments with
the development data was the domain-adaptive
version of HeLI 2.0. We used a similar LM adap-
tation method in the shared tasks of VarDial 2018,
clearly winning the GDI and ILI tasks. For Jauhi-
ainen et al. (2019b), we devised an improved ver-
sion of the adaptation method, which is used here.
In order to select the best material to be used in
LM adaptation, we need a confidence measure
which indicates the best identified lines. In Jauhi-
ainen et al. (2019b), we evaluated three confi-
dence measures and the score difference between
the best and the second best scoring languages,
CMBS , proved to be the best performing one. The
confidence measure is calculated as in Equation 6:

CMBS(M) = Rh(M)−Rg(M) (6)

where g is the best and h the second best scoring
language.

For the shared tasks, we get a complete set of
lines to be identified as one collection. We de-
note an individual line M , as before, and the set
of lines is denoted MC. In the adaptation algo-
rithm, we first perform a preliminary identification
using the HeLI 2.0 method for each line M of the
development or the test set MC. The number of
lines a to process simultaneously in adaptation is

the number of lines in MC divided by the num-
ber of splits k. The number of splits is optimized
using the development set. For each line, we also
calculate the confidence measure CMBS . We re-
move a most confident lines from MC and mark
them as finally identified with the given language
labels. Then we add the information from the fi-
nally identified lines to their respective language
models. Then we use the new language models to
re-identify the lines remaining in MC, again using
the a most confident lines to augment the language
models. This process is repeated until all the lines
in MC have been removed. In the iterative ver-
sion of the adaptation method, the whole adapta-
tion process is repeated several times (epochs).

For all submissions but one,4 we used a con-
fidence threshold when deciding whether the in-
formation from a line was added to the language
models, that is not all lines were always used for
adaptation. The confidence threshold, CMmin,
was also optimized for the development set.5 The
number of splits, k, and the number of epochs
were also optimized using the development set.

The best results using HeLI 2.0 with LM adap-
tation on each development set can be seen in Ta-
bles 2, 3, and 4. This was the best performing
method with the GDI development set but behind
NB with the traditional Chinese and even behind
simple scoring with the simplified Chinese.

4.5 Naive Bayes with adaptive language
models

As our NB implementation seemed to outperform
the HeLI 2.0 method in some experiments, we
implemented a method using it together with the
same LM adaptation scheme we used with HeLI
2.0 in the previous section.

The best results using the Naive Bayes with LM
adaptation on each development set can be seen in
Tables 2, 3, and 4.

5 Results and discussion

The participants were allowed to submit three sep-
arate runs to each of the two tracks of the DMT
shared task, as well as to the one track of the GDI
shared task. For each track, we submitted results
using the HeLI 2.0 with LM adaptation, the Naive

4We did not use the confidence threshold with HeLI 2.0
using LM adaptation for the simplified Chinese script.

5The confidence threshold was used with NB and LM
adaptation for the traditional Chinese script, but it got opti-
mized to zero.
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Bayes, and the NB with LM adaptation thus using
all submissions available to us. The parameters we
used with each method were the same as with the
respective development sets.

A total of seven teams provided language iden-
tification results for the DMT shared task and six
teams for the GDI shared task. Tables 5, 6, and
7 show the macro F1-scores of our submitted runs
on the test set. Additionally, the tables show the
methods and features used by the other teams to-
gether with their F1 scores. We submitted the runs
using a team name “SUKI”, which is the same we
have used in the previous years. The results of the
other participating teams were collected from the
results packages provided by the organizers after
the competition. The system description papers
of the other teams were not available at the time
of writing. The identity of other participants was
also unknown. We were, however, provided with
a short description of each system6 which we used
to provide these results.

The simplified Chinese track was won by a
team called “hezhou” by a clear margin to the
second and the third submissions. According to
their system description, the “hezhou” team used
a variety of features learned from outside sources,
such as a pretrained BERT model for Chinese
and word-embeddings trained on People’s Daily
News. Their results are interesting, but they can-
not be directly compared with the ones provided
by other teams as the track was supposed to be a
closed one.

If we discount the results of the “hezhou” team,
the two top places in all three tracks of the DMT
and GDI shared tasks were divided between our
“SUKI” team and the team ”tearsofjoy”. “tear-
sofjoy” used a two stage SVM approach in all of
their top runs. After the first stage, the most confi-
dently identified sentences were added to the train-
ing data, this step thus functioning as LM adapta-
tion scheme similar to ours. They also submitted
results using an SVM ensemble without adapta-
tion and their respective score differences are sim-
ilar to our systems with and without LM adapta-
tion.

Interestingly, the HeLI 2.0 with adaptation is
better than naive Bayes with adaptation on GDI
and vice-versa in the DMT. In DMT, the optimal
character n-gram range for NB was up to 15 char-

6As part of the submissions, the participants were asked
to provide a short description.txt file.

acters, which spans several words. In the exper-
iments with the simplified Chinese development
data, even the simple scoring method performed
better than the HeLI 2.0 method with LM adapta-
tion. The optimal maximum length of character n-
grams was 15 characters also when using the sim-
ple scoring method. In the Chinese data, 15 char-
acters span on average five words. From these re-
sults we could surmise, that the poor performance
of the HeLI method in the DMT shared task was
at least partly due to the lack of capturing features
spanning several words.

There is a notable inconsistency in our test re-
sults with the simplified Chinese. The HeLI 2.0
with LM adaptation performs almost as well as
the NB with LM adaptation. This might be due
to the fact that we had forgotten to use the con-
fidence threshold with the simplified Chinese de-
velopment set for the HeLI method and therefore
we did not use one with the test set either. It could
very well be that the use of a confidence thresh-
old was disadvantageous with both of the Chinese
test sets. Our winning submission for the tradi-
tional Chinese track used the NB with LM adapta-
tion and with a confidence threshold of 0.7

The fact that we did not come in the first place
in the GDI 2019 shared task is undoubtedly partly
due to the fact that we did not use the provided
iVector-files at all in the classification task unlike
the other top three teams. Using the information
from the iVectors together with our language iden-
tifier implementations would not have been trivial.

At the time of writing this article, the partici-
pants do not have access to the correct language
labels of the test sets, which hinders a detailed er-
ror analysis.

6 Conclusions and future work

The two varieties of Chinese used in the DMT
shared task seem to be distinguishable from each
other quite well. Whether it is due to more struc-
tural or more functional differences is left to be
determined by experts in Chinese.

We were happy to see that some of the other
teams had taken notice of the success of our LM
adaptation scheme at the ILI and the GDI 2018
shared tasks. In the GDI 2019 shared task, the use
of some sort of an LM adaptation procedure was of
paramount importance; the macro F1 scores rose

7Using a confidence threshold of 0 was the result of opti-
mization with the development set.
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Team/run Method Features F1 dev F1 test
hezhou Ensemble of BERT, LSTM, SVM, ... word-embeddings, word n-grams, ... 0.8929
tearsofjoy, run 1 SVM with LM adaptation ch. n-grams 1–4, word n-grams 1–2 0.8738
SUKI, run 1 Naive Bayes with LM adaptation ch. n-grams 1–15 0.9225 0.8735
SUKI, run 3 HeLI 2.0 with LM adaptation ch. n-grams 1–2, words 0.8909 0.8710
SUKI, run 2 Naive Bayes ch. n-grams 1–15 0.9215 0.8685
itsalexyang Ensemble of Naive Bayes and BiLSTM ch. n-grams 2–3, word embeddings 0.8530
tearsofjoy, run 2 SVM ensemble ch. n-grams 2–5, words 0.8445
Adaptcenter Ensemble of CNN and ? ? and words 0.8124
ghpaetzold RNN characters 0.7934
gretelliz92 NN with 4 dense layers TF-IDF vectors 0.7496

Table 5: Simplified Chinese. The macro F1-scores attained by submitted methods on the test set. The results of
our submissions are bolded.

Team/run Method Features F1 dev F1 test
SUKI, run 1 Naive Bayes with LM adaptation ch. n-grams 1–14 0.9295 0.9085
hezhou Ensemble of BERT, LSTM, SVM, ... word-embeddings, word n-grams, ... 0.9009
tearsofjoy, run 1 SVM with LM adaptation ch. n-grams 1–4, words 0.8844
SUKI, run 2 Naive Bayes ch. n-grams 1–14 0.9285 0.8815
SUKI, run 3 HeLI 2.0 with LM adaptation ch. n-grams 1–2, words 0.9160 0.8712
itsalexyang Ensemble of Naive Bayes and BiLSTM ch. n-grams 2–3, word embeddings 0.8687
tearsofjoy, run 2 SVM ensemble ch. n-grams 2–5, words 0.8643
Adaptcenter Ensemble of CNN and ? ? and words 0.8317
ghpaetzold RNN characters 0.7959
gretelliz92 NN with 4 dense layers TF-IDF vectors 0.7484

Table 6: Traditional Chinese. The macro F1-scores attained by different methods on the test set. The results of
our submissions are bolded.

Team/run Method Features F1 dev F1 test
tearsofjoy, run 2 SVM with LM adapt. ch. n-grams 1–5, word n-grams 1–2, iVect. 0.7593
SUKI, run 1 HeLI 2.0 with LM adapt. ch. 4-grams 0.8657 0.7541
benf SVM ens. with LM adapt. various ch. and word level TF-IDF, iVect. 0.7455
SUKI, run 3 Naive Bayes with LM adapt. ch. n-grams 2–6 0.8442 0.7451
tearsofjoy, run 3 SVM ens. ch. n-grams 2–5, words, iVect. 0.6517
SUKI, run 2 Naive Bayes ch. n-grams 2–6 0.6475 0.6460
BAM Ens. of CNN, LSTM, and KRR ? 0.6255
dkosmajac Ens. of QDA and RF textual + iVect. 0.5616
ghpaetzold RNN characters 0.5575

Table 7: GDI 2019. The macro F1-scores attained by different methods on the test set. The results of our
submissions are bolded.

to a completely different level when this was used.
The use of LM adaptation did not have such a high
importance in the DMT shared task as it did with
the GDI 2019, but it still always improved the re-
sults.

If we discount the “hezhou” submission, the re-
sults of both of the shared tasks once more indicate
that deep neural networks do not reach the same
accuracy in language identification as SVM, NB,
or the HeLI methods.

We think that the poor results of the HeLI 2.0
method on the Chinese data were partly due to the
shortness of the words and the importance of in-
formation spanning word boundaries. We would
like to experiment with giving the HeLI method
access to a larger context to verify that this indeed

is the case. We will also seek to find a way to
incorporate external information, such as that pro-
vided by the iVector-files in GDI 2019, to the task
of language identification of text.
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Çağr Çöltekin and Taraka Rama. 2017. Tübingen
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Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, Andrei Butnaru, and Tommi
Jauhiainen. 2019. A Report on the Third VarDial
Evaluation Campaign. In Proceedings of the Sixth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial). Association for Computa-
tional Linguistics.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and
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Abstract

Identification of the languages written using
cuneiform symbols is a difficult task due to the
lack of resources and the problem of tokeniza-
tion. The Cuneiform Language Identification
task in VarDial 2019 addresses the problem of
identifying seven languages and dialects writ-
ten in cuneiform; Sumerian and six dialects
of Akkadian language: Old Babylonian, Mid-
dle Babylonian Peripheral, Standard Babylo-
nian, Neo-Babylonian, Late Babylonian, and
Neo-Assyrian. This paper describes the ap-
proaches taken by SharifCL team to this
problem in VarDial 2019. The best result be-
longs to an ensemble of Support Vector Ma-
chines and a naive Bayes classifier, both work-
ing on character-level features, with macro-
averaged F1-score of 72.10%.

1 Introduction

A wide range of Natural Language Process-
ing (NLP) tasks, such as Machine Translation
(MT), speech recognition, information retrieval,
data mining, and creating text resources for low-
resource languages benefit from the upstream task
of language identification. The Cuneiform Lan-
guage Identification (CLI) task in VarDial 2019
(Zampieri et al., 2019) tries to address the prob-
lem of identifying languages and dialects of the
texts written in cuneiform symbols.

Identifying languages and dialects of the
cuneiform texts is a difficult task, since such lan-
guages lack resources and also there is the prob-
lem of tokenization. Although there are some
work addressing the problem of tokenization in
some of these languages or dialects, there is not
any universal method or tool available for tok-
enization of cuneiform texts, as such a task de-
pends on the rules of that language, simply be-
cause cuneiform writing system is a syllabic as
well as a logographic one. As a result, all the en-

deavors in this paper are based on character-level
features. This work investigates different machine
learning methods which are proven to be effective
in text classification and compares them by their
obtained F1-score, accuracy, and training time.

In this paper, we first review the literature of
language identification and the work on languages
written using cuneiform writing system in 2, in-
troduce the models used to tackle the problem of
identifying such languages and dialects in 3, de-
scribe the training data in 4, and discuss the results
in 5.

2 Related Work

The majority of research conducted in the field
of language identification has been on textual
data. However, there are some studies focusing
on speech samples, such as (Hategan et al., 2009;
Ali et al., 2015; Malmasi and Zampieri, 2016).
Language identification systems are meant to dis-
tinguish between similar languages (Goutte et al.,
2016; Williams and Dagli, 2017), language vari-
eties (Rangel et al., 2016; Castro et al., 2017), or
a set of different dialects of the same language
(Malmasi et al., 2016; El Haj et al., 2018). There
has also been the annually held VarDial workshop
since 2014, which deals with computational meth-
ods and language resources for closely related lan-
guages, language varieties, and dialects (Zampieri
et al., 2017, 2018).

Various kinds of features are used to train
these systems, including bytes and encodings
(Singh and Gorla, 2007; Brown, 2012), charac-
ters (van der Lee and van den Bosch, 2017; Samih
and Kallmeyer, 2017), morphemes (Gomez et al.,
2017; Barbaresi, 2016), and words (Duvenhage
et al., 2017; Clematide and Makarov, 2017).

The most recent studies use different language
identification methods, such as decision trees

188



(Bora and Kumar, 2018), Bayesian network clas-
sifiers (Rangel et al., 2016), similarity measures
(such as the out-of-place method (Jauhiainen et al.,
2017), local ranked distance (Franco-Salvador
et al., 2017), and cross entropy (Hanani et al.,
2017)), SVM (Alrifai et al., 2017), and neural
networks (Chang and Lin, 2014; Cazamias et al.,
2015; Jurgens et al., 2017; Kocmi and Bojar,
2017).

To the extent of our knowledge, there is no
work addressing the problem of language and
dialect identification of cuneiform texts. Such
languages, Sumerian and Akkadian for instance,
are considered low-resource languages, meaning
that there are only a few electronic resources for
cuneiform processing. Some of these datasets in-
clude (Yamauchi et al., 2018) which developed
a handwritten cuneiform character imageset, and
(Chiarcos et al., 2018) which is an annotated
cuneiform corpus with morphological, syntactic,
and semantic tags. Furthermore, there are some
early studies on rule-based morphological analyz-
ers for these languages like (Kataja and Kosken-
niemi, 1988; Barthélemy, 1998; Macks, 2002;
Barthélemy, 2009), and (Tablan et al., 2006).

Additionally, a small number of cuneiform text
processing tasks have been carried out in which
the transliterations of cuneiform characters were
considered as the base feature. For instance, (Luo
et al., 2015) adapted an unsupervised algorithm
to recognize Sumerian personal names. Having
transliterated the cuneiform corpus, they utilized
the pre-knowledge and applied limited tags to pre-
annotate the corpus. As another study, (Homburg
and Chiarcos, 2016) conducted the first research
on word segmentation on Akkadian cuneiform.
They used three types of word segmentations al-
gorithms including rule-based algorithms (such
as bigram and prefix/suffix), dictionary-based al-
gorithms (like MaxMatch, MaxMatchCombined,
LCUMatching, MinWCMatch), and statistical
and/or machine learning algorithms (such as C4.5,
CRF, HMM, k-means, k Nearest Neighbors, Max-
Ent, naive Bayes, multi-layer perceptron, and Sup-
port Vector Machines (SVM)) which work based
on transliterations of cuneiform characters. The
paper reports that the dictionary-based approaches
obtained the best results. In addition, as one of
the most recent studies on languages written in
cuneiform, (Chiarcos et al., 2017) worked on a
machine translation task. The used data consists of

unannotated raw transliterations of Sumerian texts
with their English translations. They use a mor-
phological analyzer to extract word information to
be used in the machine translation task. Moreover,
a distantly supervised Part of Speech tagger and a
dependency parser are applied to annotate data to
facilitate the machine translation task.

3 Methodology

We investigated different machine learning meth-
ods, all of them based on character-level features,
to tackle the problem. The following methods take
1- to 3-gram character TFIDF and 1- to 4-gram
character count as input features and were imple-
mented using Scikit-learn (Pedregosa et al., 2011):

• SVM: an SVM with a learning rate of 1e−6,
hinge loss, and elasticnet penalty,
trained for 5 epochs with a random state of
11.

• Naive Bayes: a multinomial naive Bayes
classifier with alpha of 0.14 and fit prior
as True.

• Ensemble of SVM and naive Bayes: a soft
voting classifier which predicts the class label
based on the argmax of the sums of the pre-
dicted probabilities of the SVM and the naive
Bayes models.

• Random Forest: a random forest classifier
with 25 estimators of depth 300.

• Logistic Regression: a logistic regression
classifier with lbfgs optimizer, trained for
100 epochs.

We also experimented with deep learning ap-
proaches. The following two methods take char-
acter embeddings of size 32 for the 256 most com-
mon characters as input, and are trained using
an Adam optimizer (Kingma and Ba, 2014) with
batch size of 64 and learning rate of 1e−4:

• Convolutional Neural Network: The con-
catenation of the output a set of parallel
Convolutional Neural Network (CNN) lay-
ers, each with 32 filters and kernel size and
stride of 2, 3, 4 and 5 which is fed to a a
dense layer that maps to an R128 space and
another one that maps to the R7 space of
the labels. We also applied dropout with 0.5
keeping rate on CNNs output and another one
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with the same keeping rate on the first dense
layer’s output.

• Recurrent Neural Network: A Recurrent
Neural Network (RNN) with Long Short-
Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) cell of size 256 and a
dense layer mapping to an R128 space and an-
other one mapping to the R7 space of the la-
bels. We also applied dropout with 0.4 keep-
ing rate on RNN’s output and another one
with 0.5 keeping rate on the first dense layer’s
output.

4 Data Description

The data of CLI shared task is described in (Jauhi-
ainen et al., 2019). This data consists of 7 classes:
Sumerian (SUX), Old Babylonian (OLB), Middle
Babylonian peripheral (MPB), Standard Babylo-
nian (STB), Neo-Babylonian (NEB), Late Baby-
lonian (LTB), and Neo-Assyrian (NEA). Figure 1
shows the number of samples for each label in the
training data. The whole training data consists of
139,421 samples. The development set comprises
668 and the test set 985 samples per label.

LTB OLBMPBNEA NEBSTBSUX
0K

10K

20K

30K

40K

50K

15.95

3.85.51

32.97

9.71

17.82

53.67

Figure 1: Number of samples for each label in the train-
ing set (in thousands).

Figure 1 shows that most of the training data
belongs to SUX and NEA classes. Table 1 con-
tains more detailed information on the data which
shows that 86.35% of the data belongs to four
classes of SUX, NEA, STB, LTB, whereas only
13.65% belongs to the other three.

5 Results and Discussion

Firstly, we trained the methods described in 3 and
evaluated the models on development set. We

Label # of samples % of all
SUX 53,673 38.49%
NEA 32,966 23.64%
STB 17,817 12.78%
LTB 15,947 11.44%
NEB 9,707 6.96%
MPB 5,508 3.95%
OLB 3,803 2.72%

Table 1: Number of samples in the training set for each
label and their percentage of a total of 139,421 samples
ordered from the highest to the lowest.

continued with the best two methods, SVM and
NB, and evaluated them on the test set. Ta-
ble 2 shows the macro-averaged F1-score, accu-
racy, and training time (in seconds) of the five
non-deep and two deep methods on the devel-
opment set. The non-deep models are trained
using an Intel(R) Core(TM) i7-7700K
CPU @ 4.20GHz CPU with 8 threads, and the
deep ones using an NVIDIA GeForce GTX
1080 Ti.

Method F1-score Accuracy T. Time
RF 0.5201 0.5615 264.14
LR 0.6861 0.6982 40.54
NB 0.7194 0.7301 0.15

SVM 0.7222 0.7309 1.67
Ens. 0.7268 0.7356 3.34
CNN 0.6192 0.6249 +4K
RNN 0.6259 0.6364 +4K

Table 2: Accuracy and F1-score on the development
set, and the training time (in seconds) of the methods
described in section 3: Random Forest (RF), Logis-
tic Regression (LR), naive Bayes (NB), Support Vector
Machine (SVM), Ensemble of the last two (Ens.), and
Convolutional and Recurrent Neural Networks (CNN
and RNN, respectively). The best result in each column
is in bold, the second best underlined, and the third best
in italics.

The ensemble method obtained the best F1-
score and a very short training time. On the other
hand, random forest model suffers from low per-
formance (as it is usually the case in NLP) and a
relatively long training time. The CNN and RNN
with embedded characters as input features per-
formed poorly, as it is usually the case in the lan-
guage identification task (Jauhiainen et al., 2018).
Deep methods see benefit from large amounts of
data, however when being trained with fewer data,
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hyperparameters play a more important role in the
results, therefore further tuning them might im-
prove the results in table 2. As of training time, the
naive Bayes method was the fastest and the RNN
and the CNN the slowest methods. We also experi-
mented with one-hot encoded characters as RNN’s
and CNN’s input features, which was not fruitful,
and therefore are not included in the results.

Table 3 shows the results of the SVM and the
ensemble of SVM and NB on the test set. The en-
semble outperforms SVM, as on the development
set.

System F1 (macro) Accuracy
SVM (T) 0.6660 0.6722

SVM (TD) 0.7171 0.7179
SVM + NB (TD) 0.7210 0.7239

Table 3: Results of the CLI task on the test set. T stands
for training and D for development data. TD means that
the model was trained on the combination of training
and development data and T, only on the training data.
The best result in each column is in bold.

Table 4 contains more detailed results of the
best performing model on the test set, i.e. the
ensemble. It shows the precision, recall, and F1-
score of the model on each class and their average.
The results are ordered based on the F1-score.

Label Precision Recall F1-score
LTB 0.8913 0.9655 0.9269
MPB 0.8109 0.8579 0.8337
OLB 0.8358 0.6924 0.7574
SUX 0.8273 0.6274 0.7136
NEA 0.5621 0.8772 0.6852
NEB 0.6775 0.5523 0.6085
STB 0.5515 0.4944 0.5214

Macro Avg. 0.7366 0.7239 0.7210

Table 4: Precision, Recall and F1-score of all the
classes and their macro average ordered from the high-
est to the lowest F1-score.

Considering the results in table 4 and the con-
fusion matrix, Late Babylonian (LTB) was the
easiest class to identify with a recall of 96.55%
and Middle Babylonian Peripheral (MPB) the sec-
ond easiest, with a recall of 85.79% (with only
5,508 (+668) training samples). Old Babylonian
(OLB) was also easy to identifiy, especially when
we consider its amount training samples, 3,803
(+668). Standard Babylonian (STB) is mainly
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Figure 2: Confusion matrix of the ensemble model’s
results on the test data.

misclassified as Sumerian, and Neo-Babylonian
as Standard Babylonian. Neo-Assyrian (NEA) is
also among the classes with low F1-score, but the
model has achieved a very high recall, 87.72%,
in this class. Neo-Assyrian (NEA) is mainly mis-
classified as Neo-Babylonian (NEB) and Standard
Babylonian (STB).

6 Conclusion

In this paper, we investigated different machine
learning methods, such as SVM and neural net-
works, and compared their performance in the task
of language and dialect identification of cuneiform
texts. The best performance was achieved by a
combination of SVM and naive Bayes, using only
character-level features. It was shown that charac-
ters are enough to obtain at least 72.10% F1-score.
However, the best model was not able to achieve a
good result classifying some of the dialects which
indicates a need for other kinds of features, such as
word-level ones, and/or embedded or transferred
knowledge of these languages and dialects to be
used in training the deep models.
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François Barthélemy. 1998. A morphological analyzer
for akkadian verbal forms with a model of phonetic
transformations. In Proceedings of the Workshop on
Computational Approaches to Semitic Languages,
pages 73–81. Association for Computational Lin-
guistics.
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Santos, and Adriano LI Oliveira. 2017. Smoothed
n-gram based models for tweet language identifica-
tion: A case study of the brazilian and european por-
tuguese national varieties. Applied Soft Computing,
61:1160–1172.

Jordan Cazamias, Chinmayi Dixit, and Martina Marek.
2015. Large-scale language classification.

Joseph Chee Chang and Chu-Cheng Lin. 2014.
Recurrent-neural-network for language detection
on twitter code-switching corpus. arXiv preprint
arXiv:1412.4314.

Christian Chiarcos, Ilya Khait, Émilie Pagé-Perron,
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Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
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Abstract

We describe our approaches for the Ger-
man Dialect Identification (GDI) and the
Cuneiform Language Identification (CLI)
tasks at the VarDial Evaluation Campaign
2019. The goal was to identify dialects of
Swiss German in GDI and Sumerian and
Akkadian in CLI.

In GDI, the system should distinguish four
dialects from the German speaking part of
Switzerland. Our system for GDI achieved
third place out of 6 teams, with a macro av-
eraged F-1 of 74.6%. In CLI, the system
should distinguish seven languages written in
cuneiform script. Our system achieved third
place out of 8 teams, with a macro averaged
F-1 of 74.7%.

1 Introduction

The 6th Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial 2019) included an
evaluation campaigns with five shared tasks with
the goal to find approaches which can differenti-
ate dialects in various languages. We describe our
solutions for two sub-tasks: German Dialect Iden-
tification (GDI) and Cuneiform Language Identi-
fication (CLI).

GDI The GDI task (Zampieri et al., 2019) had
the goal to classify sentences into four dialects
of Swiss German. Each sentence was transcribed
and annotated with the dialect area of the speaker
(Bern, Basel, Lucerne, and Zurich). No additional
information other than the task data should be used
(closed submission). The task was a continuation
of similar shared tasks in previous years (Zampieri
et al., 2018).

In the German speaking part of Switzerland,
there exist many dialects which are quite differ-
ent, and speakers of one dialect might even have
difficulty understanding dialects of regions not far

away. There is no standardized writing for Swiss
German.

The identification of dialect based on text is a
challenging task, especially if there is no standard-
ized written form of the dialects. First of all, tran-
scribing audio signals to text is highly ambiguous
and can be very subjective. Even with detailled
transcription guidelines, the resulting text can dif-
fer significantly among annotators. This subjec-
tivity of the annotations manifests in similar tasks
such as in labelling multi-label samples (Benites,
2017). Another problem is that for short sentences
there is little text which could point to a dialect.
A good example can be found in the GDI dataset,
which contains samples“jaja jaja” and “jaja ja ja”.
Both roughly translate to “yes yes“ or “indeed“,
and both mean the same for Swiss German speak-
ers. The first is labelled with Lucerne dialect,
while the second is labeled with Zurich dialect.
Therefore these samples are easily misclassified.
To cope with this issue, i-Vectors were provided
by the organizers this year (see Section 3.2.4).

CLI The CLI task (Jauhiainen et al., 2019) is
new to VarDial and consists of classifying texts
written in cuneiform script into Sumerian or one
of six dialects of Akkadian: Old Babylonian,
Middle Babylonian Peripheral, Standard Babylo-
nian, Neo-Babylonian, Late Babylonian, and Neo-
Assyrian. Cuneiform is one of the oldest known
writing systems and has been used for 3,000 years
by different cultures around Mesopotamia.

Our Solutions We describe in this paper the ap-
proaches taken by our team TwistBytes. The GDI
system is an updated version of our solution for
the previous year’s competition (Benites et al.,
2018). We improved several parameters and ex-
tended it to use semi-supervised learning and i-
Vectors. For the sake of completeness, we reca-
pitulate the base system description in Section 3.2,
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and then describe the applied modifications. This
system achieved 3rd place among 6 participants at
GDI, with a macro averaged F-1 of 74.6%.

For CLI, we use a linear SVM as classifier with
character n-gram features and include perplexities
from character n-gram language models as addi-
tional features. This system achieved 3rd place
among 8 participants at CLI, with a macro aver-
aged F-1 of 74.7%.

2 Related Work

The central focus of the evaluation campaign at
VarDial is to properly identify dialect of various
languages. For GDI, there have been two previous
editions of the shared task, which laid the basis for
dialect identification in Swiss German (Zampieri
et al., 2017, 2018). Solving this problem can have
a positive impact on many tasks, e.g. for POS-
tagging of dialectal data (Hollenstein and Aepli,
2014), for compilation of German dialect corpora
(Hollenstein and Aepli, 2015), or for automatic
speech recognition of Swiss German.

Many studies tackled the problem of language
and dialect identification for other languages, cre-
ating a noticeable amount of related work, de-
scribed in short in the evaluation campaign reports
and (Jauhiainen et al., 2018b). A typical approach
uses SVMs with different feature extraction meth-
ods. The use of character language models for
language identification has previously been stud-
ied by (Vatanen et al., 2010).

Our approach is most similar to MAZA, which
was proposed at VarDial 2017 (Malmasi and
Zampieri, 2017b). MAZA uses Term Frequency
(TF) on character-n-grams and unigrams for word
features to train several SVMs. Then it uses a
Random Forest meta-classifier with 10-fold cross-
validation on the predictions of the SVMs. We ex-
tended this approach and used Term Frequency-
Inverse Document Frequency (TF-IDF) on word
and on character level. We used an SVM as meta-
classifier, and we did not concatenate the output of
the base classifiers but summed them. Similar to
(Malmasi and Zampieri, 2017a) we used a single
SVM classifier for the i-Vectors. More details are
given in Section 3.2.

3 Data and Methodology

3.1 Task Definition
The task of GDI is to classify a transcribed sen-
tence from the ArchiMob data set (Samardžić

et al., 2016) into one of four classes of Swiss
German dialect. Each class represents a dialect
area of Swiss German: Bern (BE), Basel (BS),
Lucerne (LU) and Zurich (ZH). Since the dialects
are very different from Standard German, the sen-
tences are transcribed using the guideline book by
Dieth (Dieth and Schmid-Cadalbert, 1986). It is
a phonetics oriented transcription method but it is
orthographic and is partially adapted to standard
German spelling habits and alphabet. As such
it loses some of the precision and explicitness of
phonetic transcription methods such as the Inter-
national Phonetic Alphabet. We expected there-
fore that character-based and error tolerant meth-
ods will perform best, since different spellings of
the same word might occur.

Table 1 shows the number of sentences in the
training set, the validation set, and test set per di-
alect area. The training set was slightly changed
in comparison to the one from last year. The val-
idation set was the test set of 2018 GDI shared
task. The sentence distribution is almost evenly
balanced over all four dialect areas.

One peculiarity that occured in the data of last
year was the ambiguity of labels for identical sen-
tences, i.e. that multiple sentences with identi-
cal transcriptions had different labels. This was
not the case when looking at the training and val-
idation set in isolation1. Only when both were
merged, the sentence ”i däre ziit” was labelled
as originating from Zurich in the training set and
from Basel in the validation set. We expected that
i-Vectors would help solving these kinds of ambi-
guities.

GDI dataset information
Set BE BS LU ZH Total

Train 3750 3268 3390 3870 14278
Validation 1053 1528 1016 932 4529

Test 4742

Table 1: Number of instances per dialect area for GDI
dataset

For the Cuneiform Language Identification
task, CLI (Jauhiainen et al., 2019), we have to dis-
tinguish Sumerian (SUX) and six variants of the
Akkadian language: Old Babylonian (OLB), Mid-
dle Babylonian Peripheral (MPB), Standard Baby-
lonian (STB), Neo-Babylonian (NEB), Late Baby-

1However, some sentences were on a character level very
close, as pointed out in the Introduction.
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CLI dataset information
Train Validation Test

LTB 15947 668
MPB 5508 668
NEA 32966 668
NEB 9707 668
OLB 3803 668
STB 17817 668
SUX 53673 668
Total 139421 4676 6895

Table 2: Number of instances for CLI dataset

lonian (LTB), and Neo-Assyrian (NEA). Table 2
shows the distribution of labels per language in
the dataset. The texts are all written in cuneiform
script and provided as their Unicode representa-
tion. Since the different language variants are
spread over multiple centuries, we assumed that
the symbols in use differ across them. Table 3
shows the Jaccard Similarity (Jaccard, 1902) be-
tween the sets of unique symbols used by every
language computed on the training set. Sumerian
is the most dissimilar in its use of symbols com-
pared to the other languages. This was to be ex-
pected, as it is the only language not in the Akka-
dian language family. We expect that dialects with
lower similarity in symbol use can be easier dis-
tinguished, which was our motivation to use lan-
guage modeling as part of the classification sys-
tem.

3.2 System Definition TB-Meta for GDI

In this section, we describe our approach for
GDI in detail. One part (meta crossvalidation) is
based on the system from (Malmasi and Zampieri,
2017b) but extended in several ways. A previous
version was already described in (Benites et al.,
2018). The key improvements this year are the op-
timization of the preprocessing and and the feature
extraction, a new preprocessing step between base
classifier and meta-classifier, and using an SVM
as meta-classifier. This year we extended our
approach for GDI to also use a semi-supervised
method.

We observed that much of the recognition can
be performed on character level, where character
bigrams can provide a key insight, while demon-
strating a high efficiency. The four processing
steps of the system are: a) to preprocess the sen-
tences, b) extract features from them, c) classify

with a base classifier and d) pass the predictions
to a meta-classifier which, in turn, provides the
final prediction. This year, we were additionally
provided with i-Vectors. These represent impor-
tant new features, especially given the fact that
there are only few speakers per label set. That
means that if we can identify the speaker and the
spoken dialect at least once with high confidence,
we can easily label the other sentences spoken by
them. Here especially, we expect that the semi-
supervised approach improves the overall perfor-
mance.

3.2.1 Preprocessing
The basic preprocessing step was to split the sen-
tences in words by using white-spaces and con-
vert them to lower case. No stopword removal
or lemmatization was performed since these steps
might erase any traces of key features for differen-
tiating between the dialects (see (Maharjan et al.,
2014)). Afterwards multiple feature extraction
methods were applied, as explained in the next
section.

3.2.2 Feature Extraction
In this edition of the VarDial GDI task, we were
provided with i-Vectors in addition to textual fea-
tures. This leads to the following observation: the
textual feature vectors are very sparse, as the aver-
age word occurrence is 7.4±4.16 per sentence in
the training set, whereas the i-Vectors are dense.
This has the effect that the SVMs need to cope
with multi-modal features with different density
and that was the main reason why we used a sepa-
rate SVM for the i-Vectors.

We use Term Frequency (TF) with n-grams for
characters and words for n ranging from 1 to 7.
An additional preprocessing for the classifiers em-
ployed (see Section 3.2.3) is to normalize the TF
values, at least per sentence, which in some cases
can improve prediction quality. Also, we calcu-
lated the TF-IDF (Manning et al., 2008), which
usually gives the best single feature set for predic-
tion quality.

For the feature extraction, we mainly used the
scikit-learn2 package with one modification: We
also used a custom character bigram analyzer (re-
ferred to later as CB) in order to produce character
bigrams without spaces, since the standard imple-
mentation considers all characters in the text in-
cluding the spaces, especially at the beginning and

2http://scikit-learn.org
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LTB MPB NEA NEB OLB STB SUX
LTB 1.00 0.71 0.80 0.77 0.72 0.71 0.53
MPB 0.71 1.00 0.65 0.68 0.71 0.57 0.43
NEA 0.80 0.65 1.00 0.85 0.70 0.82 0.61
NEB 0.77 0.68 0.85 1.00 0.71 0.81 0.60
OLB 0.72 0.71 0.70 0.71 1.00 0.62 0.46
STB 0.71 0.57 0.82 0.81 0.62 1.00 0.70
SUX 0.53 0.43 0.61 0.60 0.46 0.70 1.00

Table 3: Jaccard similarities between the sets of symbols used per language in the training set of CLI

end of a word3. We employed TF-IDF not only on
word level but also on character level.

Each of the feature extraction methods from the
texts served as a separate feature set which was
processed by a base classifier. The entire list is: TF
word n-grams (TF-W), TF character n-grams (TF-
C), TF-IDF words (TF-IDF-W), custom bigrams
analyzer (CB-C), TF-C normalized to range from
0 to 1 (TF-C-N) and TF-IDF character n-grams
(TF-IDF-C).

Additionally, i-Vectors were used to extract
characteristics about the speaker from the audio
signal. These were provided by the task organiz-
ers. They are basically a simplified variant of the
joint factor analysis (Chen et al., 2014) which as-
sured the anonymity of the speakers. As in (Suh
et al., 2011), we also normalized the i-Vectors to
unit length for better performance based on experi-
ments on the validation set. We used them as input
features to a separate base classifier (along with
the extracted text features), that is each textual fea-
ture had their separate classifier and likewise the
i-Vectors, only the output of the classifiers were
merged.

3.2.3 Classifiers
Last year edition of GDI (Zampieri et al., 2018)
showed that concatenating textual features for
SVM produced worse prediction quality than the
use of ensemble classifiers. We use the ensem-
ble S-Classifier, which sums the predictions of the
base classifiers and gives as input to a linear SVM
(see Figure 1), and achieved considerably good re-
sults in GDI.

Meta Crossvalidation Classifier We used a
two-tier meta-classifier bottom-up with crossval-
idation (referred to as TB-Meta) to eliminate the

3This can also be probably implemented with sklearn set-
ting the analyzer to ”char wb” but we did not evaluate the
differences in implementations.

SVM

TF-IDF-W

SVM

TF-W

SVM

CV-C

SVM

TF-C-N

SVM

TF-IDF-C

Sentence

SVM

S-Classifier

Figure 1: TB-Meta classifier workflow, with S-
classifier and textual features

need for parameter/weighting search. The work-
flow of the system is depicted in Figure 1. First an
input sentence is preprocessed, then the features
are extracted and passed to the base classifiers, one
classifier per feature set. The predictions of the
classifiers are summed (S-Classifier output), and
these intermediate predictions are passed to a last
classifier (meta-classifier) that decides about the
final label. The second level of the procedure also
ensures that the class interdiscrimination is im-
proved. Further, each base classifier prediction is
then weighted by the meta-classifier. That means
a weighting scheme and time-consuming parame-
ter search is not needed anymore. For a detailed
description please see (Benites et al., 2018).

Semi-Supervised Learning After the training,
we augmented TB-Meta with a semi-supervised
learning similar as in (Jauhiainen et al., 2018a).
This approach consists of classifying the unla-
belled test set with a model based on the training
data, then selecting the predictions with the high-
est confidence and using them as new additional
(weak) labelled training samples. The method can
be very useful if there are few training samples and
a test set with out-of-domain data is expected. Our
approached consisted of setting a threshold for the
confidence output of the SVM (fitted with regres-
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sion) to 0.9 and in each iteration decreasing it by
i
20 where i is the number of the iteration.

3.2.4 I-Vectors

There is strong indication that the i-Vectors in the
context of dialect identification provide strong fea-
tures for Arabic dialect classification, as described
in (Bahari et al., 2014; Malmasi and Zampieri,
2017a). We used them in the context of GDI
with caution, especially, because there are only
few speakers in each set. On the one hand, if a
speaker was identified and correctly classified, the
problem would be solved. However, if there was
something off with the i-Vectors of one speaker, it
could throw the classifier off the right track. We
integrate the i-Vectors into last year’s system by
training a separate base SVM classifier with the i-
Vectors and the output is used as additional input
for the S-classifier.

3.3 System Definition TB-LM for CLI

The TB-LM system consists of TF-IDF features,
language modelling features, and a linear SVM
classifier. We do not apply any preprocessing steps
to the texts but work directly with the Unicode
codepoints.

TF-IDF We use TF-IDF features on the symbol
level for n-gram lengths from 1 to 3. Most sam-
ples in the training set are short: On average they
are 7.05 symbols long, with a median length of 5
symbols. Therefore, we use only binary term fre-
quency counts, as those tend to be more robust for
classification of short texts.

Language Modelling Additionally, we train a
3-gram language model with Kneser-Ney smooth-
ing (Kneser and Ney, 1995) for every language.
We use the language model scores as additional
features for every sample.

We again use scikit-learn for the TF-IDF fea-
tures and the SVM, as well as nltk (Natural Lan-
guage Toolkit4) for language modeling.

During experimentation, we train the system on
the training set and evaluate on the validation set.
For the final submission, we train on training and
validation set jointly.

System macro F-1
GDI validation set

Random(10) 0.2468±0.0079
SVM Char-Ngram(1,7) 0.6494
TB-Meta 0.6984
TB-Meta−iV 0.6769
TB-Meta−S 0.7516
TB-Meta−SiV 0.9028
TB-Meta−SiVp 0.9031

GDI test set
TB-Meta−iV 0.6823
TB-Meta−SiV 0.7455
TB-Meta−SiVp 0.7349

Table 4: Results for the GDI task on the validation and
test set for TB approaches.
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Figure 2: Confusion matrix of TB-Meta-SiV GDI

4 Results

4.1 GDI

Parameters For this year’s shared task, we used
a maximum of 100’000 features per subclassi-
fier/feature set for the TB-Meta approach, based
on our experimental results from last year. For the
semi-supervised method we used 10 iterations.

Results Discussion We present in Table 4 the
different approaches used in the GDI task and how
they performed on the validation set. We also
put the submitted results for comparison, which
allows to see how the submitted approaches per-
formed on the test set. TB-Meta refers to the
TwistBytes Meta classifier, the −iV suffix refers

4https://www.nltk.org/
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Team macro F-1 Place
tearsofjoy 0.7593 1
SUKI 0.7541 2
TwistBytes 0.7455 3
BAM 0.6255 4
dkosmajac 0.5616 5
ghpaetzold 0.5575 6

Table 5: Competition result of GDI with TwistBytes
approach TB-Meta-SiV

System F-1 (macro) Accuracy
TB-Meta 0.6669 0.6751
TB-LM 0.7433 0.7469

Table 6: Performance of the runs submitted for the CLI
task on the test set.

to the use of i-Vectors, the suffix −S to the semi-
supervised version, and −SiV to i-Vectors with
semi-supervised. The p index points to a different
parameter set with a maximum of 90’000 features
and C=1.5 for the SVM.

System TB-Meta-SiV shows a surprisingly
good score of 0.90 on the validation set. As stated
before, one reason could be the low numbers of
speakers in the validation set. Also with a base-
line composed by TF-IDF and SVM (SVM Char-
Ngram(1,7), see Table 4), we achieved better re-
sults as from our approach in VarDial 2018 GDI,
which was 64.6% macro F-1. This points to the
fact that the data was curated, and therefore eas-
ier to classify. The assumption that the test set
was similarly built like the validation set guided
our approach. However, the results showed clearly
that there was some difference, since the scores on
the test data were significantly lower for the TB-
Meta−SiV systems. We intend to investigate this
observation in a future study.

Figure 2 shows the confusion matrix of our sys-
tem on the test data. It shows that sentences from
Lucerne were often predicted as from Bern, and
some of Zurich were predicted as Basel. Apart
from that, error rates were mostly below 10%.

In Table 5 the results of the shared task are
shown. The best three results achieved macro F-1
scores between 74.55% and 75.93%. This pushes
forward by a considerable margin the results of
last year. One reason might be the i-Vectors fea-
tures, which were available for the first time this
year. Our system achieved 74.55% macro F-1.

Team macro F-1 Place
NRC-CNRC 0.7695 1
tearsofjoy 0.7632 2
TwistBytes 0.7433 3
PMZ 0.7387 4
ghmerti 0.7210 5
ghpaetzold 0.5562 6
ekh 0.5501 7
situx 0.1276 8

Table 7: Competition result for CLI with TwistBytes
approach TB-LM

Precision Recall F-1
LTB 0.93 0.95 0.94
MPB 0.87 0.84 0.85
NEA 0.60 0.84 0.70
NEB 0.73 0.49 0.58
OLB 0.89 0.43 0.58
STB 0.67 0.71 0.69
SUX 0.66 0.93 0.77

micro avg 0.74 0.74 0.74
macro avg 0.76 0.74 0.73

Table 8: Evaluation of TB-LM on the validation set of
CLI

4.2 CLI

Table 6 shows the performance of our submitted
systems on the test set of the CLI shared task. TB-
Meta is the same architecture as used for GDI and
described in Section 3.2.3. The TB-LM system
is described in Section 3.3. Table 7 shows how
our system performs compared to the other partic-
ipants. We achieve third place out of 8 participants
with a macro F-1 score of 0.74. Table 8 shows
the performance of TB-LM on the validation set
in more detail. The performance on the validation
set is 0.73, which is slightly lower than on the test
set.

Figure 3 shows the confusion matrix of our sys-
tem on the test set, and Figure 4 shows the confu-
sion matrix on the validation set. They are mostly
similar. Overall, LTB was the easiest language to
identify, with an F-1 score of 0.94. NEB and OLB
were the hardest to identify, OLB having overall
the lowest number of samples in the training set.
Noteworthy is that the number of samples alone is
not an indicator of how well a class can be distin-
guished. For example, MPB has the second low-
est number of samples (5508) but the second high-
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Figure 3: Confusion matrix of TB-LM for CLI on the
test set

Figure 4: Confusion matrix of TB-LM for CLI on the
validation set

est F-1 score (0.85), whereas SUX has by far the
largest number of samples (53673), but only the
third highest F-1 (0.77).

5 Conclusion

We described our dialect identification systems
that were submitted to the VarDial shared tasks
GDI and CLI. In GDI, we achieved 3rd place out
of 6, using a linear SVM as base, semi-supervised
meta crossvalidation training, multiple word and
character features, and i-Vectors. In CLI, we
achieved 3rd place among 8 teams, using a linear
SVM with character n-gram and language model
perplexity features.
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pioja. 2010. Language Identification of Short Text
Segments with N-gram Models. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
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Abstract

This paper presents the solution proposed by
DTeam in the VarDial 2019 Evaluation Cam-
paign for the Moldavian vs. Romanian cross-
topic identification task. The solution pro-
posed is a Support Vector Machines (SVM)
ensemble composed of a two character-level
neural networks. The first network is a skip-
gram classification model formed of an em-
bedding layer, three convolutional layers and
two fully-connected layers. The second net-
work has a similar architecture, but is trained
using the triplet loss function. The results ob-
tained on the test set show a macro-F1 score
of 0.89 for subtask 1 (binary classifications of
the Moldavian and Romanian dialects), which
places us on the first place among 5 teams. For
subtask 2 (classifying Romanian samples into
topics while training on Moldavian samples),
we obtained a macro-F1 of 0.39, which places
us on the third place. For subtask 3 (clas-
sifying Moldavian samples into topics while
training on Romanian samples), we obtained a
macro-F1 of 0.44, which places us once again
on the third place.

1 Introduction

The VarDial 2019 Evaluation Campaign
(Zampieri et al., 2019) proposes a Moldavian
vs. Romanian cross-topic (MRC) identification
problem, comprised of three tasks. The first task
is a binary classification by dialect, meaning that
a classifier would have to differentiate between
Romanian and Moldavian dialects. The second
and third tasks are cross-dialect multi-class
categorization by topic tasks. The second tasks is
classifying Romanian samples into topics while
training on Moldavian samples and the third is
classifying Moldavian samples into topics while
training on Romanian samples. The samples for
both training and testing are provided with the

MOROCO – Moldavian and Romanian Dialectal
Corpus – dataset (Butnaru and Ionescu, 2019).

The MOROCO dataset contains over 33k text
samples in both Romanian and Moldavian col-
lected from news domains covering six topics:
culture, finance, politics, science, sports, tech. The
samples were divided into training (21k), valida-
tion (6k), and test (6k) samples. For the VarDial
2019 Evaluation Campaign, the validation and test
sets were combined into a single development set.
The organizers provided an additional test set of
6k samples. In each text sample, proper nouns
were replaced with a token, namely “$NE$” in
order to prevent classifiers from taking decisions
based on country-specific nouns.

Our approach for the MRC shared task is
to build an ensemble model that combines two
character-level neural networks through an SVM
(Cortes and Vapnik, 1995) classifier. The first net-
work is a skip-gram classification model formed
of an embedding layer, three convolutional layers
and two fully-connected layers. The second net-
work has a similar architecture, but is trained us-
ing the triplet loss function (Schroff et al., 2015).
We participated in all three MRC subtasks and we
managed to rank on the first place in the first sub-
task (Moldavian vs. Romanian dialect identifica-
tion), with a macro-F1 score of 0.89, surpassing
the other five participants by more than 10%. Due
to the lack of time, we did not manage to prop-
erly train our models for subtasks 2 and 3. Conse-
quently, we ranked after the other two participants
in subtasks 2 and 3.

The rest of this paper is organized as follows.
Related art on dialect identification is presented in
Section 2. Our approach is presented in Section
3. The empirical results are presented in Section
2. Conclusions and future work directions are pre-
sented in Section 5.
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2 Related Work

In recent years, there have been many approaches
proposed for discriminating dialects (Ali, 2018;
Ali et al., 2016; Belinkov and Glass, 2016; But-
naru and Ionescu, 2018; Çöltekin and Rama,
2016, 2017; Goutte and Léger, 2016; Ionescu and
Popescu, 2016; Ionescu and Butnaru, 2017; Ku-
mar et al., 2018; van der Lee and van den Bosch,
2017). While some of these approaches extract
handcrafted features and apply linear classifiers
on top (Butnaru and Ionescu, 2018; Ionescu and
Popescu, 2016; Ionescu and Butnaru, 2017), other
approaches are based on deep learning techniques
(Ali, 2018). Although deep neural networks attain
top results in many NLP tasks, e.g. machine trans-
lation (Gehring et al., 2017), language modelling
(Kim et al., 2016; Dauphin et al., 2017), part-of-
speech tagging (Santos and Zadrozny, 2014), it
appears that shallow approaches attain superior re-
sults in dialect identification, at least according to
the previous VarDial evaluation campaigns (Mal-
masi et al., 2016; Zampieri et al., 2017, 2018).
Although the evidence points in this direction,
our method is based on testing new deep learn-
ing models for dialect identification, that have the
potential to improve the results. Our interest is fo-
cused on neural networks trained using triplet loss,
which has not been applied before in dialect iden-
tification, to our knowledge.

Closer to our work, Butnaru and Ionescu (2019)
proposed a dataset and several models to discrimi-
nate between Moldavian and Romanian dialects.
The authors proposed two approaches that use
character-level features, inspired by previous Var-
Dial evaluation campaigns (Malmasi et al., 2016;
Zampieri et al., 2017, 2018), in which dialect iden-
tification methods (Ali, 2018; Belinkov and Glass,
2016; Butnaru and Ionescu, 2018) based on char-
acter n-grams attained top ranks. Their first ap-
proach is a shallow model based on string ker-
nels (Butnaru and Ionescu, 2018; Cozma et al.,
2018; Ionescu and Popescu, 2016; Ionescu and
Butnaru, 2017; Ionescu et al., 2016) and Kernel
Ridge Regression. Their second approach is based
on convolutional neural networks with squeeze-
and-excitation blocks. Different from Butnaru and
Ionescu (2019), we explore only deep learning
approaches, by combining two neural networks
trained using different loss functions. Similar to
Butnaru and Ionescu (2019), our networks take as
input character encodings.

3 Methodology

3.1 Preprocessing
Each sample in the MOROCO dataset is prepro-
cessed using the same method regardless of the
subtask or the algorithm used. We have reduced
the alphabet size down to 85 characters consist-
ing of uppercase and lowercase Romanian letters,
digits and commonly used symbols. Each unused
character is replaced with a blank character and
the named entity token $NE$ is replaced with a
single character.

3.2 Feature Extraction
For the competition results, we added an embed-
ding layer consisting of a 85 ∗ 128 matrix, where
85 is the alphabet size and 128 the embedding size.
We apply a one-hot transformation to the input,
then multiply the one-hot vector with the embed-
ding layer. This layer is trained at the same time
with the neural networks.

For the post-competition results, we built a skip-
gram model (Mikolov et al., 2013) based on char-
acter n-grams. The model is trained on the top
40k 5-grams from the corpus, in order to learn
the n-gram embeddings of the most common n-
grams. The embedding size of each n-gram is set
to 150. We pre-train the skip-gram model using
sub-sampling and negative sampling techniques,
which are shown to improve accuracy and conver-
gence speed.

During pre-training, each text sample is di-
vided into contiguous substrings of 5000 charac-
ters. When a text sample has less than 5000 char-
acters, we apply 0-padding at the right. During in-
ference, we keep the first 5000 characters of each
text sample, also 0-padding the shorter strings.

In order to build our representation, we apply
the skip-gram model to each text sample, by re-
placing every 5-gram with its corresponding em-
bedding learned by the skip-gram model. If the
5-gram is not in the top 40k, it is replaced by a
zero vector of size 150. After generating the rep-
resentation corresponding to each text sample, we
provide it as input for training our two neural net-
works.

3.3 Ensemble of Neural Networks
The method used for predicting the labels on the
test is based on an SVM ensemble that combines
the predictions of two deep neural networks, a
triplet loss network and a skip-gram convolutional
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Subtask macro-F1 weighted-F1 accuracy
1 0.9296 0.9301 0.9302
2 0.6594 0.6596 0.6672
3 0.7621 0.8094 0.8114

Table 1: Results of our ensemble method on the development set of the MRC shared task comprised of three
subtasks.

Figure 1: Our processing pipeline.

network. The ensemble schema is pictured in Fig-
ure 1.

The triplet loss neural network learns an embed-
ding of size 256 for each sentence. The network is
trained using the triplet loss (Schroff et al., 2015).
The goal of a triplet loss network is to minimize
the distance in the embedding space between two
samples of the same class and maximize the dis-
tance between two samples of different classes. In
other words, we want the distance between the dif-
ferently labeled samples to be larger than the dis-
tance between same labeled samples by a margin
α.

Given a triplet composed of an anchor sample, a
positive sample, and a negative one, the triplet loss
tries to minimize the distance between the anchor
and the positive sample, while maximizing at the
same time the distance between the anchor and the
negative sample. Formally, the loss that we are
trying to minimize is:

L(θ, a, p, n) = max(d(a, p)− d(a, n) + α, 0),
(1)

where θ represents the weights learned by the neu-
ral network, a is the anchor sample, p is the pos-
itive sample, n is the negative sample and α is
the margin. In our experiments, we set the mar-
gin hyper-parameter to α = 1. As distance metric,
we use the Euclidean distance:

d(x, y) =
√
(x1 − y1)2 + ...+ (xm − ym)2,

(2)
where m is the number of features in vectors x
and y. Each iteration consists of a mini-batch of
30 triplets (a, p, n) from the training samples. The
number of iterations is 9000 on all sub-tasks and
was chosen based on the loss obtained on the de-
velopment samples. After every epochs, the train-
ing data is shuffled.

The triplet loss network has 3 convolutional lay-
ers, each one of 128 unidimensional filters. The
filter support on each convolutional layer is 7, 7,
and 3 respectively. Each convolutional layer is
followed by an unidimensional max pooling layer
of size 3. The last max pooling layer is followed
by a fully connected layer of size 512, having a
dropout rate of 0.5. The network ends with a fully
connected layer of 256 neurons, which represent
the final embedding of the input text sample. Both
the fully and the convolutional layers have a leaky
Rectified Linear Unit (ReLU) activation function.
The learning algorithm is the Adam optimizer and
the learning rate is set to 0.00005.
The skip-gram convolutional network has a simi-
lar architecture, with a extra convolutional layer.
There are 4 convolutional layers with unidimen-
sional filters of sizes 7, 7, 3, and 3, respectively.
Each convolutional layer is followed by a unidi-
mensional max pooling of size 3. This is fol-
lowed by an average global pooling layer, which
reduces the size of the representation. Two fully-
connected layers with 100 and 50 neurons, respec-
tively, come after the global pooling layer. Each
fully-connected layer has a dropout rate of 0.8. Fi-
nally, the last layer is composed of 2 neurons for
the first MRC subtask, each corresponding to one
dialect (Moldavian or Romanian). For the second
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and the third MRC substaks, the last layer is com-
posed of 6 neurons, each corresponding to one of
the six topics. The last layer is based on softmax
loss. Similarly to the triplet loss network, the lay-
ers have leaky ReLU activation functions and the
optimization algorithm is Adam. In this case, the
learning rate is 0.0001 and the mini-batch size is
120 samples. The number of iterations is 9000 for
the first sub-task, 10000 for the second and 12000
for the third, with the data being reshuffled every
epoch.

The input of the ensemble is composed of the
last layer of the triplet loss network concatenated
with the intermediate fully-connected layer of size
100 of the classification network. The final model
is represented by an SVM classifier. The hyper-
parameters of the SVM (kernel type and C) are
selected through grid search on the development
set.

4 Experiments

4.1 Dataset

The MOROCO dataset used in the MRC shared
task contains over 39k text samples in both Roma-
nian and Moldavian collected from news domains
covering six topics: culture, finance, politics, sci-
ence, sports, tech. The samples were divided into
training (21k), development (12k), and test (6k)
samples. In each text sample, proper nouns were
replaced with a token, namely “$NE$” in order to
prevent classifiers from taking decisions based on
country-specific nouns.

4.2 Parameter Tuning

We apply grid search on the development set to
tune the hyper-parameters of the final SVM en-
semble. The parameters considered are 0.1, 0.5, 1,
and 5 for the regularization parameter C, and RBF
or linear for the kernel. We use the implementa-
tion available in LibSVM (Chang and Lin, 2011).
Upon applying grid search, we found the follow-
ing optimal parameters: the regularization param-
eter C is equal to 0.5, the kernel type is RBF. The
corresponding parameter of the RBF kernel, γ, is
set to 0.001.

The accuracy of the classification model were
better than the triplet loss network in all tasks and
in some cases the ensemble did not achieve better
accuracy than the classifier, as shown in Table 1.

Figure 2: Confusion matrix of our ensemble model on
the first MRC subtask.

Figure 3: Confusion matrix of our ensemble model on
the second MRC subtask.

4.3 Results

Our results on the test set of the MRC shared task
are presented in Table 2. The results obtained on
the test set show a macro-F1 score of 0.89 for sub-
task 1 (binary classification of the Moldavian and
Romanian dialects), which places us on the first
place among 5 teams. Compared to the second
team, our performance is 0.09 higher. The corre-
sponding confusion matrix is illustrated in Figure
2. We notice that the number of misclassified Mol-
davian samples is twice the number of misclassi-
fied Romanian samples. This suggests that the al-
gorithm is slightly biased in favor of Romanian.

For subtask 2 (classifying Romanian samples
into topics while training on Moldavian samples),
we obtained a macro-F1 of 0.39, which places us
on the third place. Compared to the first team,
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Subtask macro-F1 weighted-F1 accuracy
1 0.8949 0.8960 0.8965
2 0.3856 0.4145 0.4202
3 0.4472 0.5440 0.5367

Table 2: Results of our ensemble method on the test set of the MRC shared task comprised of three subtasks.

Subtask macro-F1 weighted-F1 accuracy
1 0.9340 0.9345 0.9346
2 0.6509 0.6531 0.6620
3 0.7521 0.8004 0.8027

Table 3: Post-competition results of our ensemble method on the test set of the MRC shared task comprised of
three subtasks.

Subtask macro-F1 weighted-F1 accuracy
1 0.9334 0.9340 0.9341
2 0.6306 0.6321 0.6383
3 0.7360 0.7893 0.7895

Table 4: Post-competition results of the neural network based on softmax loss on the test set of the MRC shared
task comprised of three subtasks.

Subtask macro-F1 weighted-F1 accuracy
1 0.8690 0.8701 0.8705
2 0.6350 0.6368 0.6468
3 0.7308 0.7816 0.7855

Table 5: Post-competition results of the neural network based on triplet loss on the test set of the MRC shared task
comprised of three subtasks.

Subtask Method macro-F1 weighted-F1 accuracy

1
CNN 0.9275 0.9276 0.9271

Ensemble 0.9340 0.9345 0.9346

2
CNN 0.5504 0.5627 0.5367

Ensemble 0.6509 0.6531 0.6620

3
CNN 0.7249 0.7160 0.6270

Ensemble 0.7521 0.8004 0.8028

Table 6: Comparison between post-competition results of the ensemble and our reimplementation of the character-
level CNN of Butnaru and Ionescu (2019) on the test set of the MRC shared task.

our performance is 0.2 lower. The corresponding
confusion matrix is illustrated in Figure 3. The
confusion matrix suggests a bias towards the pol-
itics label, one of the reasons being that the num-
ber of Moldavian politics samples is six times
higher than the Romanian ones. We also notice
a strong confusion between finance and politics.
The classes best classified are politics and sports
while the worse classified are science and culture.
It seems that science is often confused for technol-
ogy.

For subtask 3 (classifying Moldavian samples
into topics while training on Romanian samples),
we obtained a macro-F1 of 0.44, which places us
once again on the third place. Compared to the
first team, our performance is 0.08 lower. The
corresponding confusion matrix is illustrated in
Figure 4. Similarly to the second subtask, our
model provides better precision in classifying pol-
itics and sports, followed closely by finance. This
time, politics is being labeled as finance more fre-
quently, as opposed to what we notice in Figure
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Figure 4: Confusion matrix of our ensemble model on
the third MRC subtask.

3. Again, culture and science are misclassified the
most, with science being labeled as technology and
culture as either finance or politics.

Given the overall results, we can conclude that
the models were better in discriminating between
dialects than in distinguishing the topics in cross-
dialect settings. A possible reason for this is the
fact that the embedding layer is trained at the
same time as the networks and it might require
more training for cross-dialect multi-class classi-
fiers. We notice that when we pre-train the skip-
gram (in post-competition) we obtain less discrep-
ancy between results.

4.4 Post-competition Results
We report post-competition results in Table 3. The
ensemble model shows a macro-F1 score of 0.93
for subtask 1, a 0.66 score for subtask 2 and a 0.80
score for subtask 3. The increased results are due
to the pre-trained skip-gram applied to the data as
opposed to the embedding layer. Results of in-
dividual models are presented in Tables 4 and 5.
Although the individual triplet loss network does
not attain good results by itself, it provides useful
information to the ensemble.

We also offer a comparison to the results of
the character-level CNN method in Butnaru and
Ionescu (2019), since it is closer to our work, in
Table 6.

5 Conclusion

We conclude that our ensemble model does a good
job for binary classification, while the results for
the last two subtasks can be further improved.

Some future work could be testing other classifi-
cation algorithms for the final ensemble, such as
Logistic Regression.
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Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
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Abstract
This paper presents methods to discriminate
between languages and dialects written in
Cuneiform script, one of the first writing sys-
tems in the world. We report the results ob-
tained by the PZ team in the Cuneiform Lan-
guage Identification (CLI) shared task orga-
nized within the scope of the VarDial Evalu-
ation Campaign 2019. The task included two
languages, Sumerian and Akkadian. The lat-
ter is divided into six dialects: Old Babylo-
nian, Middle Babylonian peripheral, Standard
Babylonian, Neo Babylonian, Late Babylo-
nian, and Neo Assyrian. We approach the task
using a meta-classifier trained on various SVM
models and we show the effectiveness of the
system for this task. Our submission achieved
0.738 F1 score in discriminating between the
seven languages and dialects and it was ranked
fourth in the competition among eight teams.

1 Introduction

As discussed in a recent survey (Jauhiainen et al.,
2018), discriminating between similar languages,
national language varieties, and dialects is an im-
portant challenge faced by state-of-the-art lan-
guage identification systems. The topic has at-
tracted more and more attention from the CL/NLP
community in recent years with publications on
similar languages of the Iberian peninsula (Zu-
biaga et al., 2016), and varieties and dialects
of several languages such as Greek (Sababa and
Stassopoulou, 2018) and Romanian (Ciobanu and
Dinu, 2016) to name a few.

As evidenced in Section 2, the focus of most
of these studies is the identification of languages
and dialects using contemporary data. A few ex-
ceptions include the work by Trieschnigg et al.
(2012) who applied language identification meth-
ods to historical varieties of Dutch and the work
by Jauhiainen et al. (2019) on languages writ-
ten in cuneiform script: Sumerian and Akkadian.

Cuneiform is an ancient writing system invented
by the Sumerians for more than three millennia.

In this paper we describe computational ap-
proaches to language identification on texts writ-
ten in cuneiform script. For this purpose we use
the dataset made available by Jauhiainen et al.
(2019) to participants of the Cuneiform Language
Identification (CLI) shared task organized at Var-
Dial 2019 (Zampieri et al., 2019). Our submis-
sion, under the team name PZ, is an adaptation
of an n-gram-based meta-classifier system which
showed very good performance in previous lan-
guage identification shared tasks (Malmasi and
Zampieri, 2017b,a). Furthermore, we compare
the performance of the meta-classifier to the sub-
missions to the CLI shared task and, in partic-
ular, to a deep learning approach submitted by
the team ghpaetzold. It has been shown in pre-
vious language identification studies (Medvedeva
et al., 2017; Kroon et al., 2018) that deep learn-
ing approaches do not outperform n-gram-based
methods and we were interested in investigating
whether this is also true for the languages and di-
alects included in CLI.

2 Related Work

Since its first edition in 2014, shared tasks on sim-
ilar language and dialect identification have been
organized together with the VarDial workshop
co-located with international conferences such as
COLING, EACL, and NAACL. The first and
most well-attended of these competitions was the
Discrminating between Similar Languages (DSL)
shared task which has been organized between
2014 and 2017 (Malmasi et al., 2016b; Zampieri
et al., 2014, 2015, 2017). The DSL provided the
first benchmark for evaluation of language identi-
fication systems developed for similar languages
and language varieties using the DSL Corpus Col-
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Language or Dialect Code Texts Lines Signs
Late Babylonian LTB 671 31,893 ca. 260,000
Middle Babylonian peripheral MPB 365 11,015 ca. 95,000
Neo-Assyrian NE 3,570 65,932 ca. 490,000
Neo-Babylonian NEB 1,212 19,414 ca. 200,000
Old Babylonian OLB 527 7,605 ca. 65,000
Standard Babylonian STB 1,661 35,633 ca. 390,000
Sumerian SUX 5,000 107,345 ca. 400,000
Total 13,006 278,837 ca. 1,900,000

Table 1: Number of texts, lines, and signs in each of the seven languages and dialects in the dataset of Jauhiainen
et al. (2019), from which the instances of the CLI datasets were taken.

lection (DSLCC) (Tan et al., 2014), a multilingual
benchmarked dataset compiled for this purpose. In
2017 and 2018, VarDial featured evaluation cam-
paigns with multiple shared tasks not only on lan-
guage and dialect identification but also on other
NLP tasks related to language and dialect variation
(e.g. morphosyntactic tagging, and cross-lingual
dependency parsing). With the exception of the
DSL, the language and dialect identification com-
petitions organized at VarDial focused on groups
of dialects from the same language such as Arabic
(ADI shared task) and German (GDI shared task).

The focus of the aforementioned language and
dialect identification competitions was diatopic
variation and thus the data made available in these
competitions was synchronic contemporary cor-
pora. In the 2019 edition of the workshop, for
the first time, a task including historical languages
was organized. The CLI shared task provided par-
ticipants with a dataset containing languages and
dialects written in cuneiform script: Sumerian and
Akkadian. Akkadian is divided into six dialects
in the dataset: Old Babylonian, Middle Babylo-
nian peripheral, Standard Babylonian, Neo Baby-
lonian, Late Babylonian, and Neo Assyrian (Jauhi-
ainen et al., 2019).

The CLI shared task is an innovative initiative
that opens new perspectives in the computational
processing of languages written in cuneiform
script. There have been a number of studies apply-
ing computational methods to process these lan-
guages (e.g. Sumerian (Chiarcos et al., 2018)), but
with the exception of Jauhiainen et al. (2019), to
the best of our knowledge, no language identifica-
tion studies have been published. CLI is the first
competition organized on cuneiform script texts in
particular and in historical language identification
in general.

3 Methodology and Data

The dataset used in the CLI shared task is de-
scribed in detail in Jauhiainen et al. (2019). All
of the data included in the dataset was collected
from the Open Richly Annotated Cuneiform Cor-
pus (Oracc)1 which contains transliterated texts.
Jauhiainen et al. (2019) created a tool to transform
the texts back to the cuneiform script. The dataset
features texts from seven languages and dialects
amounting to a little over 13,000 texts. The list of
languages and dialects is presented in Table 1.

3.1 System Description
Our submission to the CLI shared task is a system
based on a meta-classifier trained on several SVM
models. Meta-classifiers (Giraud-Carrier et al.,
2004) and ensemble learning methods have proved
to deliver competitive performance not only in
language identification (Malmasi and Zampieri,
2017b,a) but also in many other text classification
tasks (Malmasi et al., 2016a; Sulea et al., 2017).

The meta-classifier is an adaptation of previous
submissions to VarDial shared tasks described in
(Malmasi and Zampieri, 2017a). It is essentially
a bagging ensemble trained on the outputs of lin-
ear SVM classifiers. As features, the system uses
the following character n-gram and character skip-
gram features:

• character n-grams of order 1–5;

• 1-skip character bigrams and trigrams;

• 2-skip character bigrams and trigrams;

• 3-skip character bigrams and trigrams.

Each feature class is used to train a single lin-
ear SVM classifier using LIBLINEAR (Fan et al.,

1http://oracc.museum.upenn.edu/
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2008). The outputs of these SVM classifiers on
the training data are then used to train the meta-
classifier.

4 Results

Table 2 showcases the results obtained by our team
(PZ in bold) and the best submission by each of the
eight teams which participating in the CLI shared
task. Even though the competition allowed the use
of other datasets (open submission), we have used
only the dataset provided by the shared task orga-
nizers to train our model.

Our submission was ranked 4th in the shared
task, only a few percentage points below the
top-3 systems: NRC-CNRC, tearsofjoy, and
Twist Bytes. The meta-classifier achieved much
higher performance at distinguishing between
these Mesopotamian languages and dialects than
the neural model by ghpaetzold, which ranked 6th

in the competition. We present this neural model
in more detail comparing its performance to our
meta-classifier in Section 4.1.

System F1 (macro)
NRC-CNRC 0.769
tearsofjoy 0.763
Twist Bytes 0.743
PZ 0.738
ghmerti 0.721
ghpaetzold 0.556
ekh 0.550
situx 0.128

Table 2: Results for the CLI task obtained by the team
PZ (in bold) in comparison to the the best entries of
each of the eight teams in the shared task. Results re-
ported in terms of F1 (macro).

4.1 Comparison to a Neural Model

We take the opportunity to compare the perfor-
mance of our system with an entirely different
type of model submitted by team ghpaetzold. This
comparison was motivated by the lower perfor-
mance obtained by the neural models in compari-
son to traditional machine learning models in pre-
vious VarDial shared tasks (Zampieri et al., 2018).
It was made possible due to the collaboration be-
tween the ghpaetzold team and ours.2

2One of the ghpaetzold team members was also a member
of the PZ team.

As demonstrated by Ling et al. (2015), compo-
sitional recurrent neural networks can offer very
reliable performance on a variety of NLP tasks.
Previous language identification and dialect stud-
ies (Medvedeva et al., 2017; Kroon et al., 2018;
Butnaru and Ionescu, 2019) and the results of
the previous shared tasks organized at VarDial
(Zampieri et al., 2017, 2018), however, showed
that deep learning approaches do not outperform
more linear n-gram-based methods so we were in-
terested in comparing the performance of a neural
model to the meta-classifier for this dataset.

A compositional network is commonly de-
scribed as a model that builds numerical represen-
tations of words based on the sequence of charac-
ters that compose them. They are inherently more
time-consuming to train than typical neural mod-
els that use traditional word vectors because of
the added parameters, but they compensate by be-
ing able to handle any conceivable word passed as
input with very impressive robustness (Paetzold,
2018, 2019).

The model takes as input a sentence and pro-
duces a corresponding label as output. First, the
model vectorizes each character of each word in
the sentence using a typical character embedding
layer. It then passes the sequence of vectors
through a set of 2 layers of Gated Recurrent Units
(GRUs) and produces a numerical representation
for each word as a whole. This set of represen-
tations is then passed through another 2-layer set
of GRUs to produce a final vector for the sen-
tence as a whole, and then a dense layer is used to
produce a softmax distribution over the label set.
The model uses 25 dimensions for character em-
beddings, 30 nodes for each GRU layer and 50%
dropout. A version of each model was saved af-
ter each epoch so that the team could choose the
one with the lowest error on the development set
as their submission.

Inspecting the two confusion matrices depicted
in Figures 1 and 2, we found that the neural model
did not do very well at differentiating between
Standard Babylonian and Neo Assyrian, as well
as between Neo Babylonian and Neo Assyrian,
leading to many misclassifications. These two lan-
guage pairs were also the most challenging for the
meta-classifier, however, the number of missclas-
sified instances by the meta-classifier was much
lower.
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Figure 1: Confusion matrix for the meta-classifier.
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Figure 2: Confusion matrix for the neural model.

5 Conclusion and Future Work

In this paper we presented a meta-classifier sys-
tem submitted by the team PZ to the Cuneiform
Language Identification shared task organized at
VarDial 2019. Our submission is an adaptation
of a sophisticated meta-classifier which achieved
high performance in previous language and di-
alect identification shared tasks at VarDial (Mal-
masi and Zampieri, 2017a). The meta-classifier
combines the output of multiple SVM classifers
trained on character-based features. The meta-
classifier ranked 4th in the competition among
eight teams only a few percentage points below
the top-3 systems in the competition.

Finally, we compared the performance of the
meta-classifier with a compositional RNN model
that uses only the text from the instance as in-
put trained on the same dataset. The compari-
son shows that, while the neural model does of-
fer competitive performance against some of the
systems submitted to the shared task, the more
elaborate features used by the meta-classifier al-
lows it to much more proficiently distinguish be-
tween very similar language pairs, such as Neo
Babylonian and Neo Assyrian, leading to a per-
formance gain of 18.2% F-score and 2 positions
in the shared task rankings. The results obtained
by the meta-classifier in comparison to the neural
model corroborate the findings of previous stud-
ies (Medvedeva et al., 2017) in the last two Var-
Dial evaluation campaigns (Zampieri et al., 2017,
2018).

In the future we would like to analyze the results
obtained by the highest performing teams in the

CLI shared task. The top team achieved the best
performance in the competition using a neural-
based method. This is, to the best of our knowl-
edge, the first time in which a deep learning ap-
proach outperforms traditional machine learning
methods in one of the VarDial shared tasks. The
great performance obtained by the NRC-CNRC
team might be explained by the use of more suit-
able deep learning methods such as BERT (Devlin
et al., 2018).
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Abstract

When translating diglossic languages such as
Arabic, situations may arise where we would
like to translate a text but do not know which
dialect it is. A traditional approach to this
problem is to design dialect identification sys-
tems and dialect-specific machine translation
systems. However, under the recent paradigm
of neural machine translation, shared multi-
dialectal systems have become a natural alter-
native. Here we explore under which condi-
tions it is beneficial to perform dialect identi-
fication for Arabic neural machine translation
versus using a general system for all dialects.

1 Introduction

Arabic exhibits a linguistic phenomenon called
diglossia—speakers use Modern Standard Arabic
(MSA) for formal settings and local dialects for
informal settings. There are broad categories of
dialects by region, such as Levantine or Maghrebi.
However, dialects also vary at a finer-grained
level, even within individual countries. An ad-
ditional complication is that code-switching, i.e.
mixing MSA and dialect, is a common occur-
rence (Elfardy et al., 2014). To put the impor-
tance of handling Arabic dialects in perspective,
Ethnologue lists Arabic as having the 5th highest
number of L1 speakers, spread over 21 regional
dialects.1

The bulk of work on translating Arabic dialects
uses rule-based and statistical machine translation,
and much of it is translating between dialects and
MSA. Generally, this work builds systems for spe-
cific dialects, with substantial amounts of informa-
tion about the dialects themselves built in (Harrat
et al., 2017).

In the meantime, neural machine translation has
become the dominant paradigm, and with it multi-

1https://www.ethnologue.com/statistics/size

lingual systems have become a more natural pos-
sibility (Firat et al., 2016). These systems know
nothing about the specific languages involved, but
use shared embedding spaces and parameters to
yield benefits especially with lower-resource lan-
guages. It is a natural extension to apply this to the
space of Arabic dialects (Hassan et al., 2017).

There are many possibilities of what exactly a
multilingual system might look like, but we focus
on one particular decision: Suppose we want to be
able to translate a test sentence from an unknown
dialect. Is it better to perform dialect identifica-
tion and then translate with a finely tuned system
for that dialect (i.e. a pipelined approach)? Or is
it better to throw everything into one integrated,
multilingual system2 which we use for all input
regardless of dialect? And how accurate does our
dialect identification have to be for the pipeline ap-
proach to be useful?

We perform a set of exploratory experiments
quantifying this trade-off on LDC data consisting
of MSA, Levantine, and Egyptian bitexts, using a
standard Transformer architecture (Vaswani et al.,
2017). The experimental setup is illustrated in Fig-
ure 1 and described in detail in Section 4. To ex-
plore the effect of quality of dialect identification,
we perform a set of artificial experiments where
we add increasing amounts of random noise to re-
duce language identification accuracy.

Our results show that in some scenarios, de-
pending on the language identification accuracy,
there is a cross-over point where the pipelined
approach outperforms the integrated, multilingual
approach in terms of BLEU scores, and vice versa.
We then propose avenues for future work in this
direction, based on our initial observations.

2In the case of this paper, “multilingual” system refers
to a single multi-dialectal system trained on multiple Arabic
dialects.
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Figure 1: Illustration of our setup. Here, a test sentence of unknown dialect either gets run through a pipeline,
where it is classified as Egyptian and then run through an Egyptian-tuned system, or is run through an integrated,
multidialectal system.

2 Arabic Dialects

We provide here some background on Arabic di-
alectal variation for context. Modern Standard
Arabic is the formal variety of Arabic, learned
in schools and used for formal texts and news-
casts. MSA is rooted in the Classical Arabic of the
Qur’an, though there have been changes in vocab-
ulary and certain aspects of grammar over time.

However, for most speakers their native lan-
guage is a regional dialect of Arabic which di-
verges substantially. One theme among the di-
alects is the disappearance of certain grammatical
attributes of MSA, such as case and the dual form.
The dialects also display lexical and phonetic di-
vergences, with some modification of grammatical
structures such as tense markers. (Versteegh, 2014;
Watson, 2007)

One major challenge of working with dialects
in an NLP setting is that they have not been his-
torically written down. However, with the rise of
informal texts on the internet and social media, it
is more common for dialectal Arabic to appear on
the internet, but without having formalized orthog-
raphy. In fact, it is common on social media to use
Latin script including numerals to represent Ara-
bic sounds, dubbed Arabizi (Bies et al., 2014). We
work with data which is in the Arabic script only,
but Arabizi is an important phenomenon to keep
in mind for future work.

The exact regional groupings of regional di-
alects are not entirely consistent, but here are a
few major groupings (including the two which we
work with in this paper):

1. Maghrebi: spoken in Morocco, Algeria,
Tunisia, Libya, Western Sahara, and Mauri-
tania. Maghrebi has French and Berber in-

fluences, and not generally mutually intelligi-
ble with Eastern dialect groups. (Turki et al.,
2016)

2. Egyptian: unusual in the amount of media
available for NLP, such as Egyptian Arabic
Wikipedia. Egypt has produced cinema in
Egyptian Arabic that is distributed across the
Arab world, increasing the reach of the di-
alect.

3. Levantine: spoken in parts of Lebanon, Jor-
dan, Syria, Palestine, Israel, and Turkey.

4. Arabian Peninsula: includes subcategories
such as Gulf (spoken along the Persian Gulf)
and Hejazi (spoken in parts of Saudi Arabia
including Mecca).

5. Iraqi: spoken in Iraq and parts of neighbor-
ing countries, also called Mesopotamian Ara-
bic.

Zaidan and Callison-Burch (2014) detail in par-
ticular the ways in which dialectal varieties might
manifest in their written form, from an NLP per-
spective. For instance, with respect to morphol-
ogy, they note that the disappearance of grammat-
ical case in dialects mostly only appears in the ac-
cusative when a suffix is added, because case in
MSA generally are denoted by short vowels which
are usually omitted from text. The disappearance
of duals and feminine plurals is also noticeable, as
well as the addition of more complex cliticization
(such as circumfix negation). With respect to syn-
tax, they note that VSO word order is more preva-
lent in MSA than dialects. Finally, lexical differ-
ences are noticeable in text as well.
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3 Related Work

3.1 Translating Arabic Dialects
Harrat et al. (2017) provide a survey of machine
translation for Arabic dialects. There has been
a lot of work translating between dialects and
MSA, primarily rule-based (Salloum and Habash,
2012), with some statistical machine translation
approaches (Meftouh et al., 2015), which also
translates between different dialects. More re-
cently, Erdmann et al. (2017) translate between di-
alects with statistical MT, additionally modeling
morphology and syntax.

Translating between Arabic dialects and other
languages has dealt primarily with English as the
other language, as we do here. Most work on this
has been done with statistical machine translation
systems, and generally involves pivoting through
MSA or rule-based conversions to MSA. Sawaf
(2010) use a hybrid rule-based, SMT system to
translate dialectal Arabic. Zbib et al. (2012) ex-
plore the effects of different amounts of dialec-
tal bitext versus MSA for SMT and try pivoting
through MSA. Sajjad et al. (2013) adapts Egyp-
tian Arabic to look like MSA with character-level
transformations and uses SMT with phrase table
merging to incorporate MSA-to-English data. We
model our data setup after this paper, addition-
ally using the Levantine data from the LDC corpus
they use for Egyptian data (LDC2012T09). Mean-
while, Salloum et al. (2014) develop several vari-
ants of MSA and DA using SMT, and learn a Naive
Bayes Classifier to determine which system would
be best suited to translate data of unknown dialect.
This is similar to our work in considering the pos-
sibility of the dialect being unknown, though we
consider Neural Machine Translation (NMT) ap-
proaches.

As for using NMT on dialectal Arabic, Guellil
et al. (2017) try using NMT on transliterated Alge-
rian data and find that SMT outperforms it. Mean-
while, Hassan et al. (2017) generate synthetic Lev-
antine data using monolingual word embeddings
and add that to MSA-English data, briefly consid-
ering both multilingual and fine-tuning approaches
as we do. While their main focus is the generation
of synthetic data with monolingual data, we in-
stead focus on investigating multilingual and fine-
tuning approaches and how they interact with di-
alect identification when the dialect is unknown,
additionally exploring the effect of Byte-Pair En-
coding (BPE).

3.2 Neural Machine Translation for Dialects
and Varieties

While NMT for Arabic dialects has not been ex-
tensively explored, there has been some work
translating dialects and varieties with NMT re-
cently. Costa-jussà et al. (2018) find that NMT im-
proves over SMT for translating between Brazilian
and European Portuguese, though that is a higher
resource setting. Lakew et al. (2018b) use a multi-
lingual Transformer for language varieties, as we
do. However, their focus is translating into the dif-
ferent varieties rather than from an unknown vari-
ety, and they do not work with Arabic.

3.3 Arabic Dialect Identification

There has been a lot of work on Arabic di-
alect identification. Notably, Zaidan and Callison-
Burch (2014) collect crowd-sourced dialect iden-
tification annotations and train classifiers to distin-
guish between MSA, Gulf, Levantine, and Egyp-
tian varieties of Arabic, achieving accuracies rang-
ing from 69.1% to 86.5%. More recently, Salameh
and Bouamor (2018) have begun to focus on finer-
grained classification, classifying dialects across
25 different cities. They develop a system with
fine-grained accuracy of 67.9% for sentences with
an average length of 7 words, and more than
90% with 16 words. Here we analyze how
NMT is affected by dialect identification only be-
tween MSA, Egyptian, and Levantine. However,
with the upcoming release of the MADAR cor-
pus (Bouamor et al., 2018), we hope to extend this
analysis to the finer-grained case in future work.

3.4 Multilingual NMT

One of the benefits of neural machine translation
is the ease of sharing parameters across models,
lending itself well to multilingual machine trans-
lation (Firat et al., 2016; Johnson et al., 2017; Lee
et al., 2017). A multilingual approach uses all of
the training data together (possibly up-sampling
low-resource languages) to build one model with
a single set of parameters.

On the other hand, people have also found trans-
fer learning by simple fine-tuning to work well,
especially between related high-resource and low-
resource languages (Zoph et al., 2016). The mul-
tilingual approach has the benefit of not requir-
ing us to know which dialect we are translating.
Meanwhile, with enough training data in the cor-
rect dialect, we may be able to do better than
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that with the fine-tuning approach. This is the
trade-off we explore here. We use a Transformer
model (Vaswani et al., 2017), as it has seen to do
perform better in general as well as in the multi-
lingual setting (Lakew et al., 2018a).

4 Models

We use a Transformer model for all of our experi-
ments (Vaswani et al., 2017). The Transformer is a
recent alternative to recurrent neural sequence-to-
sequence models. Instead of just using attention
to connect encoder recurrent states to decoder re-
current states, the Transformer expands the func-
tion of attention to encompass the main task. It
uses self-attention, which is attention applied to
two states within the same sequence, as the foun-
dation for sequence representations, rather than an
RNN. The Transformer also increases the power
of attention with multi-head attention, which per-
forms an attention function several times in paral-
lel, concatenates, and then projects the representa-
tion.

In the Transformer, the encoder consists of sev-
eral layers of multi-head self-attention paired with
a feedforward network. The decoder is similar but
also has multi-head attention over the encoder out-
put and masks future decoder output tokens. This
model has been shown to achieve state-of-the-art
in neural machine translation, and we can use it
for multilingual or fine-tuning setups the same
way we would a sequence-to-sequence model as
in Sutskever et al. (2014).

With regards to the different ways we train the
Transformer, we describe our setup, illustrated in
Figure 1.

4.1 Multidialectal Model

One approach to being able to translate sentences
of unknown dialect is to train a system in a “mul-
tilingual,” or here multidialectal fashion. The sim-
plest variant, introduced in Johnson et al. (2017),
uses a shared wordpiece vocabulary and trains
with data from several languages, adding a tag in-
dicating the language at the beginning of each sen-
tence. We follow this approach, but removing the
tag, as in (Lee et al., 2017), and using a Trans-
former. We use a shared subword vocabulary by
applying Byte-Pair Encoding (BPE) to the data for
all variants concatenated (Sennrich et al., 2016).
However, here we are not dealing with completely
different languages, but rather variants of a lan-

guage.

4.2 Dialect ID and Dialect-Tuned Models

On the other hand, dialect identification is an ac-
tive area of research, and an alternative approach
is to design a dialect-specific model for each di-
alect. One could simply train a system on dialect
data alone. However, since dialects of Arabic are
generally far lower-resource than MSA, this is dif-
ficult for NMT. To leverage the MSA to benefit the
dialect-specific system, we follow the approach
of Zoph et al. (2016), simply continuing to train on
the low-resource dialects from the model trained
on high-resource MSA. Again, we use a shared
subword vocabulary trained on all of our training
data of all variants, to avoid problems with out-of-
vocabulary words.

5 Experiments

We perform experiments comparing multidialectal
and dialect-tuned approaches, and then focus on
the effect of misclassified dialects with a set of ex-
periments adding synthetic noise to our language
classification.

5.1 Data

For MSA training data, we use 5 million sentences
of UN Data (Ziemski et al., 2016), in addition
to GALE data, LDC2004T17, and LDC2004T18.
For MSA dev data, we used NIST OpenMT ’08,
and for MSA test data, we used NIST OpenMT
’09. For Egyptian and Levantine data, we used
LDC2012T09, reserving the last 6k sentences of
each for dev, test1, and test2 respectively. We only
show results for test1 here, and reserve test2 for
future use. We normalized the Arabic orthogra-
phy, tokenized, cleaned, and deduplicated.3 We
applied BPE with 10k, 30k, and 50k merge oper-
ations, training on the concatenation of all of the
training data. The final counts of sentences for our
data are shown in Table 2.

5.2 Implementation

We use the Sockeye (Hieber et al., 2017) imple-
mentation of a Transformer (Vaswani et al., 2017)
for all of our experiments. We used 6 layers, 512-
dimensional embeddings, 8 attention heads, and

3By normalize the orthography, we mean that we removed
diacritics and tatweels and normalized alefs and yas. For to-
kenization, we used the Moses tokenizer for English, since
it does not have one for Arabic. We did not apply Arabic-
specific tokenization that segments clitics as well.
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Multidialectal Dialect-Tuned
10k BPE 30k BPE 50k BPE 10k BPE 30k BPE 50k BPE

MSA 38.23 38.49 38.22 36.42 38.04 36.79
EGY 22.44 21.93 21.12 22.79 21.64 20.86
LEV 22.31 21.89 21.47 23.78 22.68 22.35

Table 1: Multidialectal and dialect-tuned approaches for different BPE sizes. In this experiment, we assume the
dialect of the test sentences are known so that the correct Dialect-Tuned models can be applied.

train dev test1 test2
MSA 4,266k 1.4k 1.3k N/A
EGY 32k 2k 2k 2k
LEV 129k 2k 2k 2k

Table 2: Number of sentences in dataset splits.

2048 hidden units in feed forward layers. We op-
timize with Adam (Kingma and Ba, 2014), with
an initial learning rate of 0.0002, and a learning
rate reduce factor of 0.9, applying label smooth-
ing with a smoothing parameter of 0.1. We se-
lect the model based on dev BLEU. This is from
the sockeye-recipes default medium transformer
model4, which closely but not exactly follows
the official AWS sockeye autopilot Transformer
model5

For our multidialectal experiments, we do not
do any up-sampling of the lower-resource data,
though this would be another axis to explore in fu-
ture work.

5.3 Artificially Noised Dialect Identification

With the goal of exploring the importance of di-
alect identification in this context, we examine
how the fine tuning approach suffers as we add ar-
tificial noise to to dialect identification. We do this
by some percentage of the time randomly choos-
ing one of the other models to decode with. We do
this at intervals of 10%. To be precise, we provide
pseudocode of the approach below.
D = {MSA,LEV,EGY }
for test sentence s with true dialect d ∈ D do

With probability p, switch model dialect d̂
if Switching then

Sample d̂ uniformly from D \ d
else

4https://github.com/kevinduh/
sockeye-recipes/blob/master/hpm/tm1.
hpm-template

5https://github.com/awslabs/sockeye/
blob/master/sockeye_contrib/autopilot/
models.py

d̂ = d
Translation t =decode(modeld̂, s)

6 Results

As an initial experiment, we compare the two ap-
proaches in the case where the dialect of the test
sentence is known. The test1 BLEU scores of
the multidialectal and dialect-tuned approaches for
different BPE sizes are in Table 1. We can see that
scores are pretty consistent across BPE sizes, with
10k being best for EGY and LEV while 30k is
best for MSA. As we’d expect, with complete in-
formation about dialects, the fine tuning approach
for EGY and LEV achieves the highest scores.
With LEV, which has more available training data,
this trend is clearer across BPE sizes. With EGY,
which has a much smaller amount of training data,
this gain is only achieved in the best BPE size
for EGY of 10k. Interestingly, the multidialectal
model does best for MSA, rather than the model
trained only on MSA. It is possible that the com-
paratively small amount of dialectal data provides
useful regularization for the MSA model, or that
it is benefiting from the shared aspects of the di-
alects.

Our main results are shown in Figure 2. Here,
we plot the BLEU score of each test set, MSA,
EGY, and LEV, as the amount of noise we’ve
added to dialect identification increases. It is in-
teresting to see that in all cases, it consistently
degrades as more noise is added, but ultimately
doesn’t reach a terribly low score even at 100%
noise. We include the multidialectal system’s per-
formance as a horizontal dotted line. Where the
lines intersect in the EGY and LEV case repre-
sents at what level of noise we have lost the benefit
of dialect identification. So, by 20% error in both
cases, we might as well be using the multidialectal
system.

We note that this result (crossover at 20%)
should be interpreted in light of the training data
and the models we used. The cross-over point in
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(a) Modern Standard Arabic Base Model

(b) Egyptian-Tuned Model

(c) Levantine-Tuned Model

Figure 2: Effect of noise on fine tuning models with 10k BPE. The dialect-tuned models are models fined-tuned
on specific dialects, applied with noisy dialect identification. We provide the multidialectal model performances
for comparison.
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BLEU score between multidialectal and dialect-
tuned models will depend on the relative strengths
of each model. Further, dialect identification er-
rors may be correlated (e.g. higher confusion be-
tween two close-by dialects, compared to two far-
away ones). In other words, we imagine for differ-
ent datasets and models, it will be important to re-
run this analysis. We also hypothesize the the re-
sults may vary by sentence length, as well, which
influences language identification accuracy.

To understand which combinations of test sen-
tences and models are least and most compatible,
we also present a matrix of all combinations of
model and test set in 3. We can see that EGY and
LEV test sets are much more harmed by the MSA
model than the LEV- and EGY- tuned models re-
spectively. It is possible that there is some shared
vocabulary between EGY and LEV that it is learn-
ing, or that the EGY and LEV training sets are just
a closer domain to each other than to MSA.

Finally, we use a very simple baseline for di-
alect ID to see how it performs. We train a
model for language ID with langid.py (Lui
and Baldwin, 2012), which uses naive Bayes clas-
sifier with a multinomial event model. Training
langid.py on our data does not work well for
dialect ID—in particular, the system is very sen-
sitive to data size. It would probably be better to
provide larger quantities of monolingual data for
this if avaiable. However, we report results here to
give a sense of how a very basic language ID sys-
tem might perform. We try training it in two ways:
(1) with the data proportions left as-is and (2) up-
sampling the EGY and LEV data sizes to match
the MSA data size. (1) results in predicting almost
all sentences as MSA, and (2) results in predicting
almost all sentences as EGY. As you can see in
Table 4, this results in (1) performing well only on
MSA and (2) performing well only on EGY, with
the other results being heavily degraded.

7 Discussion

While adding random noise is not necessarily re-
flective of the cases in which dialect identification
systems would be likely to make errors, it does
help us get an idea of how useful it is to tune an
NMT model to a specific Arabic dialect, in light
of faulty knowledge about which dialect it is.

Our mutidialectal approach performs competi-
tively with the tuned approaches, but at a well-
chosen BPE size and with less than 20% error, it

does seem beneficial to tune to the dialect. A cou-
ple factors seem to contribute to whether it is use-
ful, beyond error rate of dialect system:

1. BPE Merge Hyperparameter: The dialects
seem to perform best at the lowest BPE
merge hyperparameter that we tried. This is
the lower range of BPE settings usually used,
but it would be worthwhile to explore this
with even lower settings. As the merge hy-
perparameter decreases, we are getting closer
to character-level, which may be able to han-
dle the shared subwords across dialects better
in light of varied morphological inflections.

2. Amount of Training Data: There does seem
to be a difference in performance of tuned
models between EGY and LEV which lines
up with data size. There is much less EGY
training data, and the fine-tuning process
converges very quickly on the data. On the
other hand, LEV has a decent amount of
training data and shows more consistent im-
provements over the multidialectal model.

One trend we observed that is worth noting, is
that the average sentence length differs substan-
tially from MSA to EGY and LEV in our test sets,
which may make sense given the more formal con-
tent of MSA. This might have some implications
for NMT and dialect identification. Dialect iden-
tification is known to be harder on shorter sen-
tences. Meanwhile, NMT can sometimes be hard
on very long sentences. It is worth looking into
these subtleties for future work understanding how
to optimize NMT translation of unknown dialects
of Arabic.

8 Future Work

One area for future work would be further explor-
ing how this setup interacts with existing dialect
identification systems to determine their useful-
ness for Arabic NMT of unknown dialects.

Additionally, the role of morphology in this
setup with BPE would be useful to explore. It
is possible that models that incorporate characters
would be more useful at capturing shared informa-
tion between MSA and dialects.

Finally, it would be great to test this on more
dialects. We hope to do experimentation on larger
dialectal corpora in the future, such as the soon-
to-be-released MADAR corpus (Bouamor et al.,
2018).
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Test Set
MSA EGY LEV

Model
MSA 36.42 27.38 25.39
EGY 10.33 22.79 19.81
LEV 8.24 15.70 23.78

Table 3: How each model performs on each test set.

Test Set
MSA EGY LEV

No up-sampling 36.24 10.35 8.25
Up-sampling 27.56 22.79 15.71

Table 4: How well the pipelined approach does with langid.py as dialect ID.

9 Conclusion

We have done a set of preliminary experiments
exploring a couple different approaches to trans-
lating Arabic of unknown dialect. An integrated,
multi-dialectal model proved to be beneficial for
MSA. Meanwhile, with a dialect identification er-
ror rate less than 20% and with a small enough
BPE size and large enough training data, using
a pipelined approach with a dialect-tuned model
proves to be beneficial. We hope that this can be
beneficial for determining future directions trans-
lating Arabic dialects.
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Abstract

We tackle the important task of part-of-speech
tagging using a neural model in the zero-
resource scenario, where we have no access
to gold-standard POS training data. We com-
pare this scenario with the low-resource sce-
nario, where we have access to a small amount
of gold-standard POS training data. Our ex-
periments focus on Ukrainian as a represen-
tative of under-resourced languages. Russian
is highly related to Ukrainian, so we exploit
gold-standard Russian POS tags. We consider
four techniques to perform Ukrainian POS tag-
ging: zero-shot tagging and cross-lingual an-
notation projection (for the zero-resource sce-
nario), and compare these with self-training
and multilingual learning (for the low-resource
scenario). We find that cross-lingual annota-
tion projection works particularly well in the
zero-resource scenario.

1 Introduction

Little or no hand-annotated part-of-speech train-
ing data exists for the vast majority of languages
in the world. This work investigates POS-tagging
for under-resourced languages with a state-of-the-
art neural network model. We consider how
best to deal with the zero-resource scenario (i.e.,
no availability of any POS-labeled training data
for the targeted language). To better under-
stand this scenario, we compare it with the low-
resource scenario (i.e., availability of a small POS-
labeled training corpus). We thoroughly com-
pare four techniques, including: zero-shot tag-
ging and cross-lingual annotation projection from
a linguistically related higher-resource language
(for the zero-resource scenario), as well as self-
training and multilingual learning (for the low-
resource scenario).

A controlled experimental design is established
for our study. We aim for immediate compara-

bility of all tested tagging strategies of both sce-
narios, zero-resource and low-resource. We there-
fore opt to carry out both the zero-resource and the
low-resource experiments on the same language,
Ukrainian, and measure tagging accuracy on one
common test set. A small amount of manually
POS-annotated Ukrainian training data is avail-
able, which we use for supervised low-resource
training. We simulate the zero-resource sce-
nario by not using any POS-annotated Ukrainian
training data. Russian is a higher-resource lan-
guage which is linguistically closely related to
Ukrainian. We use a larger POS-annotated Rus-
sian corpus for multilingual learning and zero-shot
tagging experiments, and an unlabeled Russian–
Ukrainian parallel corpus for the cross-lingual
projection annotation experiment. To strengthen
the upper-bound result for low-resource tagging,
we consider the improvements possible through
self-training, for which we use the Ukrainian side
of the Russian–Ukrainian parallel corpus in or-
der to maintain comparability. Our experimen-
tal design allows us to directly assess whether
the tagging quality of any zero-resource strategy
is approaching the accuracies of supervised low-
resource strategies. We find that zero-shot tag-
ging does not yield satisfactory quality, even if
we operate on a higher linguistic abstraction level
with word stems, which are often very similar in
Ukrainian and Russian. But the empirical results
show that annotation projection from a closely-
related language is a very effective strategy for
training neural POS taggers.

2 Related Work

Annotation projection for POS-tagging was first
explored by Yarowsky and Ngai (2001) for cross-
lingual transfer from English to French. Our ba-
sic approach shares much of Yarowsky and Ngai’s
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original idea and reaffirms the efficacy of annota-
tion projection also with a state-of-the-art neural
sequence tagging model (Wang et al., 2015) and
on the modern universal POS-annotation scheme
(Petrov et al., 2012).

Since 2001, in addition to POS-tagging, an-
notation projection has been successfully applied
to other tasks such as named entity recognition
(Yarowsky et al., 2001; Enghoff et al., 2018), word
sense tagging (Bentivogli et al., 2004), seman-
tic role labeling (Pado and Lapata, 2005, 2009;
van der Plas et al., 2011; Aminian et al., 2017), or
dependency parsing (Hwa et al., 2005; Tiedemann,
2014; Rasooli and Collins, 2015; Agić et al., 2016;
Aufrant et al., 2016). Kim et al. (2011) presented
an integration into a full pipeline for information
extraction. Open-source software tools for anno-
tation projection are now available online (Akbik
and Vollgraf, 2018, 2017).

To avoid unnecessarily noisy data, unlike pre-
vious authors, Lacroix et al. (2016) did not apply
heuristics to fix certain word alignment links that
pose difficulties to annotation projection. They
demonstrated that it is simpler and more effec-
tive to ignore unaligned words as well as many-to-
many alignments. In our work, we likewise settle
on a simple technique based on a one-directional
word alignment.

Xi and Hwa (2005) have combined projected
POS-annotation with a small manually annotated
corpus in a low-resource scenario. Newer re-
search on annotation projection for POS-tagging
has looked at historical languages (Meyer, 2011;
Sukhareva et al., 2017) and sign language (Östling
et al., 2015). Notable exceptions are the works
of Wisniewski et al. (2014), examining annota-
tion projection for a CRF tagging model (Lavergne
et al., 2010) on living spoken languages, and of
Agić et al. (2015). Meyer (2011) tags Old Rus-
sian via annotation projection from modern Rus-
sian translations. Sukhareva et al. (2017) POS-
tag the extinct Hittite language through projec-
tion from German. Recent related work on neu-
ral POS-tagging has mostly focused on robust-
ness through character-level modeling (Heigold
et al., 2016, 2018; dos Santos and Zadrozny, 2014;
Labeau et al., 2015) or on architectural improve-
ments (Huang et al., 2015; Ma and Hovy, 2016;
Yasunaga et al., 2018). Kim et al. (2017) have
proposed an interesting neural tagging architec-
ture that allows for multilingual learning with a

language-specific component integrated with an-
other cross-lingually shared component. We are
however not aware of many prior studies that
systematically explore annotation projection for
cross-lingual transfer in neural POS-tagging of liv-
ing spoken languages. Steps in this direction have
been taken only lately by Fang and Cohn (2016),
Plank and Agić (2018) and Anastasopoulos et al.
(2018). We follow up on this line of research with
our work.

3 Methods

Research questions. We ask two central re-
search questions in this work, one for each of the
considered scenarios:

Low-resource scenario: When the amount of
hand-labeled training data is small for the tar-
geted language, how effectively can we further
improve the tagger by employing auxiliary re-
sources? Specifically, how helpful is the use of ad-
ditional unlabeled corpora (self-training) and cor-
pora in a different language (multilingual learn-
ing)?

Zero-resource scenario: When there isn’t any
hand-labeled training data available for the tar-
geted language, how effectively can we harness
knowledge from annotated corpora in a different,
but related language? Specifically, is tagging qual-
ity close to supervised low-resource conditions at-
tainable with either a plain foreign-language tag-
ging model (zero-shot tagging) or via annotation
projection from a foreign language (cross-lingual
transfer)?

Neural tagging model. Depending on the con-
text, the part-of-speech of a word may vary. E.g.,
the English word “green” takes a different POS
(adjective, noun, verb) in each of the following
three sentences:

The recipe requires green mangoes.

She took 63 shots to reach the green.

How can we green our campus?

The need to resolve such ambiguities is one of
the challenges in POS-tagging, and is the reason
why the task requires sequence labeling instead of
just a simple dictionary lookup. Another challenge
is imposed by words that are out-of-vocabulary
(OOV) to the tagger—a pressing issue especially
under low-resource conditions, where many valid
word forms of the language are not observed in
training data.
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We utilize a Bidirectional Long Short-Term
Memory (BLSTM) neural network model
(Hochreiter and Schmidhuber, 1997) to build
our sequence taggers. BLSTMs are recurrent
neural networks (RNNs) that are capable of
learning long-term dependencies, taking into
account both the previous and the following
context. RNNs generally show great results at
processing sequential data. They are widely
adopted in natural language processing, including
the POS-tagging task (Wang et al., 2015). Other
statistical sequence labeling methods, such as
maximum entropy tagging models (Ratnaparkhi,
1996) or conditional random fields (Lafferty
et al., 2001; Lavergne et al., 2010), are nowadays
often outperformed by neural network methods
(Collobert et al., 2011).

3.1 Self-Training
Given sufficient amount of labeled data, it is pos-
sible to build high-performance tools with direct
supervision, but since there are languages that do
not have enough suitable data to train a model,
it is reasonable to employ semi-supervised meth-
ods. Those include self-training, which was pre-
viously discussed by McClosky et al. (2006), inter
alia. Self-training requires labeled and unlabeled
data and can be applied to low-resource languages.
“Semi-supervised and unsupervised methods are
important because good labeled data is expensive,
whereas there is no shortage of unlabeled data”
(McClosky et al., 2006).

3.2 Multilingual Learning
The multilingual learning method is suitable for
under-resourced languages with little annotated
data. The training set is enlarged through the texts
of a related language. The idea is to shuffle origi-
nal Ukrainian training sentences with the Russian
labeled data to get more annotated texts.

3.3 Zero-shot Tagging
A zero-shot strategy can be pursued in case no an-
notated text exists for the resource-poor language.
The zero-shot approach applies a tagging model
trained for a closely related language.

There is quite some vocabulary intersection be-
tween Ukrainian and Russian (cf. Section 4.3),
and the grammatical structure and word order of
sentences are expected to be similar in the two
related languages. We will however determine
in the experimental section that these similarities

Open class words Closed class words
ADJ: adjective ADP: adposition
ADV: adverb AUX: auxiliary

INTJ: interjection CCONJ: coordinating conjunction
NOUN: noun DET: determiner

PROPN: proper noun NUM: numeral
VERB: verb PART: particle

PRON: pronoun
SCONJ: subordinating conjunction

Other
PUNCT: punctuation SYM: symbol X: other

Table 1: Universal Dependencies tags.

are not strong enough to be able to use a model
trained for Russian to tag Ukrainian sentences
(Section 5.2.4).

3.4 Cross-lingual Transfer

The cross-lingual transfer approach relies on the
availability of cross-lingual supervision and is
suitable for languages that do not have any an-
notated data, but for which there is an available
parallel corpus with a high-resource language. A
POS-tagger for the high-resource language can be
applied to automatically annotate the source side
(here: Russian) of the parallel corpus. The source
annotation is then projected to the target side
(here: Ukrainian) (Yarowsky and Ngai, 2001). Af-
ter that, a tagger for the resource-poor language
can be trained on the target side of the parallel cor-
pus with its associated projected automatic source-
side annotation. This provides another solution in
the case of a complete lack of gold-standard train-
ing data, the zero-resource scenario.

4 Corpus-linguistic Analysis

Ukrainian, as an under-resourced language, has a
relatively small amount of suitable data that can be
freely obtained from the web. There are two main
data sources that are used throughout this work:
annotated Ukrainian and Russian texts from the
Universal Dependencies project and a Russian–
Ukrainian parallel corpus of news texts. This sec-
tion provides a description of the data as well
as a quantitative comparison of the Russian and
Ukrainian data sets.

4.1 Data

Universal Dependencies. The annotated data
used to train taggers is taken from the Uni-
versal Dependencies corpora for Russian and
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Ukrainian.1 Universal Dependencies (UD) is a
project based on open collaboration that is de-
veloping cross-linguistically consistent treebank
annotation for many languages. The annotation
scheme is based on an evolution of Stanford de-
pendencies (de Marneffe et al., 2006; de Marneffe
and Manning, 2008; de Marneffe et al., 2014) and
Google universal part-of-speech tags (Petrov et al.,
2012). The 17 UD core part-of-speech categories
are listed in Table 1. Additional lexical and gram-
matical properties of words are distinguished by
extra features that are not part of the tag set.

Russian–Ukrainian parallel corpus. The
Russian–Ukrainian parallel corpus was created
by ElVisti Information Center.2 A fragment of
100,000 sentences is freely available for scientific
and educational purposes.3 The corpus consists of
web publications of news articles and was created
as a resource for building machine translation
systems (Lande and Zhygalo, 2008).

4.2 Relatedness of Ukrainian and Russian

Slavic languages descend from a common pre-
decessor, called Proto-Slavonic. Russian and
Ukrainian belong to East Slavic, one of three re-
gional subgroups of Slavic languages, which is
also the largest group as for the number of speak-
ers (Carlton, 1991).

Alphabet. Both Russian and Ukrainian use the
Cyrillic script and have 33 letters each. However,
there are differences in their alphabets. Unlike
Russian, the letters Ёё, ъ, Ыы, Ээ are not used in
Ukrainian, and Ukrainian has extra letters Ґґ, Єє,
Ii, Її, which are not found in Russian. The apos-
trophe occurs in words of both languages, but in
Russian it is not very common and mainly used in
foreign proper nouns.

Vocabulary. Despite the fact that the languages
share some of their vocabularies with similar pro-
nunciation and spelling, they often have differ-
ent semantic shades. Having a common predeces-
sor language, Russian and Ukrainian have retained
many identical word stems. Stemming techniques
will be explored in this work in order to capitalize
on such similarities between the two related lan-
guages and improve Ukrainian POS-tagging.

1http://universaldependencies.org
2http://visti.net
3http://ling.infostream.ua

Figure 1: Tag distribution in training sets.

Ambiguity Ukrainian Russian
Types Tokens Types Tokens

1 25940 65780 128082 812855
2 374 13111 2682 143338
3 46 2727 152 57793
4 13 2245 24 55035
5 3 1606 7 11489
6 – – 2 6750

Table 2: Tag ambiguity.

Morphosyntax. Russian and Ukrainian also
have similarities in their morphosyntactic features.
For example, in both languages, the adjective, par-
ticiple and possessive pronoun agree with the noun
in case, gender and number. The verb has separate
forms for different genders in the past but does not
have gender variations in other tenses. There are
three persons and two numbers.

4.3 Quantitative Comparison

Amount of data. The annotated UD data set for
the Russian language is an order of magnitude big-
ger than the Ukrainian. The Ukrainian training
corpus contains 85K annotated tokens in 5K sen-
tences, the Russian corpus 1M tokens in 61K sen-
tences.

Tag statistics. The distribution of tags in the
Ukrainian and in the Russian UD training sets is
quite similar, as can be seen in Figure 1. The
most frequent tags in both corpora are NOUN
and PUNCT, which account for nearly 25% and
20% of the tokens, respectively. Together with
VERB, ADJ and ADP, they cover over 70% of
the texts. The rank-frequency distribution of
POS-tags approximately complies with Zipf’s law
(Zipf, 1932).

The words in both Russian and Ukrainian are
mostly unambiguous. The bigger part of the train-
ing data vocabulary is always annotated with the
same tag (Table 2). Some words occur with up
to five different tags in Ukrainian and up to six in
Russian, but those are quite rare cases.
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Shared voc. Words Stems

Ukr Types
2998 / 26376

11.4 %
3442 / 15821

21.8 %

Tokens
35395 / 85469

41.4 %
47789 / 85469

55.9 %

Rus Types
2998 / 130949

2.3 %
3442 / 48652

7.1 %

Tokens
392319 / 1087260

36.1 %
550297 / 1087260

50.6 %

Table 3: Shared vocabulary before and after stemming.

Shared vocabulary. Taking into account that
Ukrainian and Russian are related, it makes sense
to examine their lexicons for common words. An
overview of the shared vocabulary is given in Ta-
ble 3 (left-hand column). There are only 2998
words appearing in lexicons of both languages.
However, when counting their actual occurrences
in the text we can see that common words are fre-
quent throughout the texts. In Ukrainian, for ex-
ample, 41% of the training texts consist of words
that can be found in both languages.

These words are also mainly tagged in the same
way. About 79% (2358 out of 2998) are tagged in
both languages with the same tag (or tags). An-
other 13% (388 out of 2998) are tagged with the
partially same tags.4 The rest of the words of the
shared vocabulary (about 8%) are annotated with
completely different tags in each language.

Stemming. Since both Russian and Ukrainian
are richly inflected languages, but closely related
to each other, many differences in their word sur-
face form vocabularies might be caused by in-
flection diversities. Table 3 (right-hand column)
provides statistics of the stemmed Russian and
Ukrainian training sets to examine whether the
amount of shared vocabulary is higher after the
words are reduced to their stem forms. Rus-
sian text is stemmed with the Snowball stemmer
(Porter, 1980) from the NLTK package.5 The
stemmer for Ukrainian is an implementation found
on GitHub posted by Kyrylo Zakharov.6

The size of the shared vocabulary rises from
2998 to 3442 types after stemming. Although this
increase in vocabulary overlap seems marginal, in
terms of the occurrences there is a more significant

4For example: the word вести can be tagged in Russian
as VERB or NOUN, in Ukrainian only as NOUN.

5http://www.nltk.org/_modules/nltk/
stem/snowball.html

6https://github.com/Amice13/ukr_
stemmer

change. After the stemming, the shared vocabu-
lary tokens in the training sets of both languages
amount to over 50%.

5 Experiments

5.1 Experimental Setup

5.1.1 BLSTM Tagger
An open-source re-implementation of Wang
et al.’s BLSTM tagging architecture is used for our
experiments.7 We configure a hidden layer size of
100, embedding dimensions of 300, a maximum
training sequence length of 100, and a batch size
of 32. We optimize with RMSprop, a variation of
RProp (Riedmiller and Braun, 1993), at a learning
rate of 0.001. A sample sized 20% of the training
data is removed and used for validation. To coun-
teract overfitting, we store model checkpoints and
do early stopping.

Word embeddings. Word embeddings help ren-
der more information regarding the word since
they carry semantic and syntactic information and
capture the meaning of words, the relationship be-
tween words, and the context of different words.
This is useful for tagging and many other tasks
in natural language processing (Plank et al., 2016;
Wiegandt et al., 2017).

Pre-trained embeddings used in this work were
downloaded from an open repository provided by
Facebook Research.8 These embeddings were
trained with fastText9 on Wikipedia using the
skip-gram model with default parameters (Bo-
janowski et al., 2017).

5.1.2 Frequency Tagger
We additionally built a simple Frequency tagger
that annotates each word in isolation with its most
frequent tag. The only calculations that are re-
quired are tag counts per word in the training data.
As soon as the occurrences are counted, the Fre-
quency tagger is ready to annotate sentences.

OOVs are tagged with the majority class, which
in both languages is NOUN. There are 3771 words
in the Ukrainian test set that are new to the Fre-
quency tagger, which means that 25.8% of the text
cannot be tagged based on evidence. In Russian,

7https://github.com/aneesh-joshi/LSTM_
POS_Tagger

8https://github.com/facebookresearch/
fastText/blob/master/docs/
pretrained-vectors.md

9https://fasttext.cc

227



Russian Test
Model Accuracy

Frequency Tagger 90.7 %
BLSTM + RE 91.3 %
BLSTM + PE 94.4 %
Stem BLSTM + RE 92.3 %

Table 4: Overview of the conducted tagging exper-
iments on Russian test data (and trained on Russian
data): PE - pre-trained embeddings; RE - randomly ini-
tialized embeddings; Stem - stemming.

Ukrainian Test
Model Accuracy

trained on Ukrainian data
Frequency Tagger 81.6 %
BLSTM + RE 80.0 %
BLSTM + PE 85.4 %
Self-trained BLSTM + PE 86.2 %
Stem BLSTM + RE 84.1 %

trained on Russian data
Zero-shot BLSTM + PE 51.5 %
Zero-shot Stem BLSTM + RE 56.1 %

trained on projected annotation
Cross-lingual Transfer 84.4 %

trained on both languages
Multilingual BLSTM + PE 86.4 %
Multilingual Stem BLSTM + RE 87.3 %

Table 5: Overview of the conducted tagging experi-
ments on Ukrainian test data.

the fraction of unknown words is smaller (9.4%).
This can be explained by the much bigger size of
the training set that covers more of the Russian vo-
cabulary.

5.2 Experimental Results

We now present the results for all the investigated
techniques. The tagging accuracies for all exper-
iments on the Ukrainian test set are collectively
shown in Table 5. Some further empirical obser-
vations, e.g. on the taggers’ ability to correctly
handle OOV words, will also be discussed be-
low. Supplementary tagging accuracies of Russian
POS-taggers measured on a Russian test set are re-
ported in Table 4.

5.2.1 Low-resource Supervision Results
The baseline taggers (Frequency and BLSTM)
for Russian and for Ukrainian are trained on
annotated UD data for the respective language.
For the BLSTM models, there are two fla-
vors: one with randomly initialized embed-
dings (BLSTM + RE) and one with pre-trained

Accuracy Tags
∼99% NOUN, PUNCT

91-99% PRON, CCONJ, SCONJ, AUX, ADP
71-90% PART, ADV, NUM, DET
51-70% –
41-50% VERB, PROPN, SYM
31-40% ADJ, INTJ
11-30% –
<10% X

Table 6: Prediction quality per part-of-speech (of the
Ukrainian BLSTM + PE tagging model).

word embeddings (BLSTM + PE). The Russian
BLSTM taggers are built with the exact same hy-
perparameters as the Ukrainian BLSTM taggers
but show better results in the evaluation. This is
because the Russian model is trained on more data.

On Ukrainian, the BLSTM with randomly ini-
tialized embeddings (RE) achieves better results
on tag prediction for OOVs than the Frequency
tagger (53% vs. 40% correct), but surprisingly
does not outperform the Frequency tagger in over-
all accuracy (BLSTM + RE: 80.0%, Frequency:
81.6%; Table 5). However, the use of pre-trained
embeddings in the BLSTM model increases the
overall accuracy by about +5% absolute (BLSTM
+ PE: 85.4%). OOV tag prediction is boosted fur-
ther to 58% of unknowns correctly labeled.

Table 6 shows the prediction quality per indi-
vidual POS of the Ukrainian BLSTM + PE model.
11 out of 17 tags are predicted with accuracies
above 70%. The most inaccurate predictions are
made for the X tag which is used for cases of code-
switching. Since the tag is used when it is not pos-
sible (or meaningful) to analyze the word, it is dif-
ficult for a neural network to learn to recognize it
without additional features.

5.2.2 Self-Training Results
In self-training, the existing model first labels un-
labeled data. We apply our BLSTM + PE model
to automatically tag the Ukrainian side of the
Russian–Ukrainian parallel corpus. This step pro-
vides us with new synthetically annotated data,
which is then treated as truth and appended to the
original training corpus to re-train the tagger.

The tagger trained with additional synthetically
annotated data improves just moderately over the
tagger trained on only the hand-labeled UD corpus
(86.2% vs. 85.4% overall accuracy; Table 5). Self-
training is thus barely effective despite the 20-
fold augmentation of training instances through
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(a) Low-resource (b) Zero-shot (c) Cross-lingual transfer

Figure 2: Confusion matrix heatmaps.

the synthetic corpus. Clark et al. (2003) have pre-
viously reported similar findings. In the litera-
ture, inefficacy of self-training is occasionally at-
tributed to a domain mismatch of the synthetically
annotated data. In our case, all corpora are from
the same domain (news text), though. The main
benefit of self-training that we observe is an in-
crease of correctly tagged OOVs (of around +5%
absolute, from 58% to 63%).

5.2.3 Multilingual Learning Results

The multilingual learning approach yields an im-
provement of one percentage point (86.4% accu-
racy) compared to the low-resource BLSTM + PE
tagger trained on only the Ukrainian data.

We oversampled the Ukrainian corpus to bal-
ance out the fraction of data from each language
and avoid a bias towards Russian. The Ukrainian
data was copied and added to the mixed training
set until it reached the size of the Russian data. We
also tried undersampling of Russian data and plain
concatenation. The differences in tagging accu-
racy were minor (undersampling: 86.0%, concate-
nation: 86.2%), but oversampling of Ukrainian
worked best.

5.2.4 Zero-shot Tagging Results

In the zero-shot tagging experiment, the BLSTM
model trained on the Russian UD corpus (with
pre-trained word embeddings) is applied to the
Ukrainian test set. The Russian model’s accu-
racy on the Russian test set had reached 94.4%
(Table 4). Yet, when being run on the related
Ukrainian language, just over 50% of Ukrainian
words are correctly annotated by the Russian tag-
ger (Table 5). This cannot be considered a satis-
factory outcome.

5.2.5 Cross-lingual Transfer Results
The idea of the cross-lingual transfer is to project
tags from the annotated part of the parallel cor-
pus to its unlabeled translation to produce training
data for the under-resourced language. The suc-
cess of cross-lingual transfer depends not only on
the quality of the source language annotation, but
also on the reliability of the annotation projection.

We rely on standard statistical word align-
ment algorithms (Brown et al., 1993) as the ba-
sis of POS annotation projection from Russian to
Ukrainian. The parallel corpus is aligned with
fast align,10 an unsupervised word aligner
introduced by Dyer et al. (2013). For phrase-
based machine translation, the two alignment di-
rections (forward and reverse) are typically com-
bined to a symmetrized alignment. But for an-
notation projection, it is more convenient to use
one-directional alignment with one Ukrainian to-
ken never being aligned to multiple tokens on the
Russian side. The annotation projection across
the alignment then becomes straightforward.11 No
disambiguation heuristics are necessary, which
could be a source of additional errors.12

The BLSTM tagger supervised with gold-
standard Ukrainian annotation (Section 5.2.1) out-
performs the cross-lingual transfer tagger by only
one percentage point (Table 5), despite the latter
not requiring and not using any manually anno-
tated Ukrainian training data. The confusion ma-
trix heatmaps in Figure 2 visually illustrate the su-

10https://github.com/clab/fast_align
11The projected label of each Ukrainian token is taken

from the single Russian-side token that it’s aligned with. Vice
versa, note that we permit 1-to-many projection from one
Russian token to multiple Ukrainian tokens in this setting.

12We experimented with other word alignment variants but
could not improve over the reported result.

229



periority of cross-lingual transfer over zero-shot
tagging, and how the two compare to the low-
resource supervision baseline BLSTM. The result
highlights that a competitive neural tagger can be
trained even under zero-resource conditions. A
parallel corpus with a related language and the ex-
istence of a tagger for that related language enable
effective cross-lingual transfer. A BLSTM model
trained on projected annotation seems to cope very
well with the language transfer.

5.2.6 Stemming Results
In Section 4.3 it was demonstrated that the num-
ber of common words grew after stemming was
applied. We now test whether stemming has a
positive impact on tagging quality. Since the
pre-trained word embeddings were trained on full
word surface forms, the embeddings for these ex-
periments are randomly initialized.

The Stem BLSTM + RE result in Table 4 shows
that compared to the previous taggers trained on
random embeddings, the accuracy for Russian
grows by about one percentage point. There are
even bigger improvement for the Ukrainian tagger,
which reaches 84.1% accuracy (Table 5).

Stemming benefits the performance of the POS-
tagger, since the number of unknown tokens in the
test data is reduced. The number of OOVs that
are tagged correctly in Ukrainian increases to 61%
from the initial 53%. The error rate among the
known vocabulary is reduced by 2% absolute com-
pared to the non-stemmed model.

Applying the Russian stem POS-tagger to the
Ukrainian stemmed test set results in a nice accu-
racy improvement (about +4%) over the previous
zero-shot attempt on full word forms. The zero-
shot tagging quality remains weak, though, even
with stemming.

In order to also examine the multilingual learn-
ing strategy over stem forms, the last model in
this series of experiments is trained on concate-
nated stemmed Ukrainian and stemmed Russian
data. The model achieves about +1% absolute
improvement compared to the previous best re-
sult for Ukrainian. Tagging accuracy is reaching
87.3%, beating the result with the model trained
on full forms of the same concatenation of cor-
pora. We found that the stem system version
is actually slightly worse at predicting tags of
known Ukrainian words, but OOVs are handled
much better (69% vs. 57% correct tags for unseen
Ukrainian words).

6 Summary of Findings

The observations that have been made in the
course of this work can be briefly summarized as
follows: 1) Pre-trained word embeddings are im-
portant for better tagging quality since they repre-
sent contextual similarities between words. 2) A
semi-supervised approach (self-training) showed
only moderate gains despite a notable increase
of the training corpus with synthetically labeled
data. 3) Mixing larger related-language annotated
data into the training corpus (multilingual learn-
ing) slightly improved the tagging accuracy for
the low-resource language. 4) Applying a Russian
tagger on Ukrainian (zero-shot) did not show sat-
isfactory results, which could be due to the rela-
tively small amount of shared vocabulary and cer-
tain differences in grammar. 5) Given a parallel
corpus, a competitive neural POS-tagger can be
trained without any initial annotated data (using
cross-lingual transfer via annotation projection),
which can be viewed as a good solution in the
zero-resource scenario. 6) Bridging words by re-
ducing them to their stems has a positive influence
since both languages are highly inflected. The
number of types is lowered and the tagger can ab-
stract from the sparsity of inflected surface forms.

The best accuracy for Ukrainian (87.3%) was
achieved when a multilingual model was trained
on both Russian and Ukrainian stemmed train-
ing corpora. Potentially, through a combination
of stemmed words and pre-trained stem embed-
dings, further improvements could be attained.
For the important zero-resource scenario, cross-
lingual projection worked best, and we achieved
an accuracy rate of 84.4%. Here there is likely to
be room for further improvement by tailoring the
word alignment more to the task.

7 Conclusion

We carried out an evaluation on Ukrainian neu-
ral POS-tagging for both low-resource and zero-
resource scenarios. For low-resource, multilingual
learning works best, suggesting that even for lan-
guages which do have some gold-standard POS
training data, multilingual learning through com-
bining the training data with data from closely
related languages is of strong interest. For
zero-resource, cross-lingual annotation projection
works best, suggesting that where parallel corpora
with a related language are available, cross-lingual
projection should be strongly considered.
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Çöltekin, Çağrı, 54, 153

DeMattos, Eric, 54
Diab, Mona, 99
Dipper, Stefanie, 64
Doostmohammadi, Ehsan, 188
Duh, Kevin, 214
Dunn, Jonathan, 42
Dutka, Diana, 223

Fraser, Alexander, 223

Goutte, Cyril, 17

Hu, Hai, 165
Huang, Chu-Ren, 1
Huck, Matthias, 223

Ionescu, Radu Tudor, 1

Jauhiainen, Heidi, 89, 178
Jauhiainen, Tommi, 1, 89, 178

Khorosheva, Anastasia, 144
Klyueva, Natalia, 1
Kondrak, Grzegorz, 26
Kyaw Thu, Ye, 80

Leger, Serge, 17
Li, Wen, 165
Lindén, Krister, 89, 178

Malmasi, Shervin, 1

Mar Soe, Khin, 80
Mikhailov, Vladislav, 144
Milintsevich, Kirill, 35
Myint Oo, Thazin, 80

Nassajian, Minoo, 188

Onose, Cristian, 172
Ortmann, Katrin, 64

Paetzold, Gustavo Henrique, 209
Pan, Tung-Le, 1
Ponomareva, Maria, 35

Riyadh, Rashed Rubby, 26

Samardzic, Tanja, 1
Scherrer, Yves, 1
Serikov, Oleg, 144
Shapiro, Pamela, 214
Silfverberg, Miikka, 1
So, Kwok Him, 54

Tian, Zuoyu, 165
Tosi, Lorenzo, 144
Trausan-Matu, Stefan, 172
Tudoreanu, Diana, 202
Tyers, Francis, 1

von Däniken, Pius, 194

Wu, Nianheng, 54

Xiang, Yang, 120

Yang, Li, 120

Zampieri, Marcos, 1, 209
Zhang, Yiwen, 165
Zhou, He, 165
Zou, Liang, 165

235


	Program
	A Report on the Third VarDial Evaluation Campaign
	Improving Cuneiform Language Identification with BERT
	Joint Approach to Deromanization of Code-mixed Texts
	Char-RNN for Word Stress Detection in East Slavic Languages
	Modeling Global Syntactic Variation in English Using Dialect Classification
	Language Discrimination and Transfer Learning for Similar Languages: Experiments with Feature Combinations and Adaptation
	Variation between Different Discourse Types: Literate vs. Oral
	Neural Machine Translation between Myanmar (Burmese) and Rakhine (Arakanese)
	Language and Dialect Identification of Cuneiform Texts
	Leveraging Pretrained Word Embeddings for Part-of-Speech Tagging of Code Switching Data
	Toward a deep dialectological representation of Indo-Aryan
	Naive Bayes and BiLSTM Ensemble for Discriminating between Mainland and Taiwan Variation of Mandarin Chinese
	BAM: A combination of deep and shallow models for German Dialect Identification.
	The R2I_LIS Team Proposes Majority Vote for VarDial's MRC Task
	Initial Experiments In Cross-Lingual Morphological Analysis Using Morpheme Segmentation
	Neural and Linear Pipeline Approaches to Cross-lingual Morphological Analysis
	Ensemble Methods to Distinguish Mainland and Taiwan Chinese
	SC-UPB at the VarDial 2019 Evaluation Campaign: Moldavian vs. Romanian Cross-Dialect Topic Identification
	Discriminating between Mandarin Chinese and Swiss-German varieties using adaptive language models
	Investigating Machine Learning Methods for Language and Dialect Identification of Cuneiform Texts
	TwistBytes - Identification of Cuneiform Languages and German Dialects at VarDial 2019
	DTeam @ VarDial 2019: Ensemble based on skip-gram and triplet loss neural networks for Moldavian vs. Romanian cross-dialect topic identification
	Experiments in Cuneiform Language Identification
	Comparing Pipelined and Integrated Approaches to Dialectal Arabic Neural Machine Translation
	Cross-lingual Annotation Projection Is Effective for Neural Part-of-Speech Tagging

