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Preface

These workshop proceedings conclude the first shared task on DRS parsing, launched in October, 2018.
The workshop was collocated with the 13th International Conference on Computational Semantics (IWCS
2019), held at the University of Gothenburg, Sweden. The goal of the shared task was to produce Dis-
course Representation Structures (DRSs) for English sentences. Given that DRSs originated from Dis-
course Representation Theory, a classic theory for studying formal semantics of natural language text, it
is difficult to imagine a more suitable topic hosted at IWCS.

DRS parsing is a challenging task, as systems are expected to produce scoped meaning represen-
tations involving negation, modals, quantification, and presupposition triggers. Additionally, concepts
and event participants in DRSs are described with WordNet synsets and the thematic roles from Verb-
Net. In this first episode of DRS parsing we tested systems mainly on short, open-domain sentences,
to make the threshold for participation as low as possible. We received four system submissions and
three system description papers out of 32 registered participants. One system was not described in the
workshop paper in order to prevent violating the anonymity clause of the ACL policy for submission.
Each system description paper was reviewed by three members of the organising committee – all papers
were accepted.

The first shared task on DRS parsing was successful. Despite a small number of submissions, the
state-of-the-art results in DRS parsing was moved to a higher level. The variety in methods used (models
based on recursive neural networks, transformer models, models based on transition-based parsing, graph
decoders) gives inspiration for future series of the shared task.

This is the first time that IWCS hosts a shared task, and we would like to thank the IWCS organizers,
the shared task participants and the authors for making this shared task and workshop a successful story!

Shared task page: https://competitions.codalab.org/competitions/20220

Workshop page: https://sites.google.com/view/iwcs2019/shared-task

Sponsors:

Groningen, 21 May 2019

Lasha Abzianidze
Rik van Noord

Hessel Haagsma
Johan Bos
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The First Shared Task on
Discourse Representation Structure Parsing

Lasha Abzianidze Rik van Noord Hessel Haagsma Johan Bos
CLCG, University of Groningen

{l.abzianidze,r.i.k.van.noord,hessel.haagsma,johan.bos}@rug.nl

Abstract

The paper presents the IWCS 2019 shared task on semantic parsing where the goal is to produce
Discourse Representation Structures (DRSs) for English sentences. DRSs originate from Discourse
Representation Theory and represent scoped meaning representations that capture the semantics of
negation, modals, quantification, and presupposition triggers. Additionally, concepts and event-
participants in DRSs are described with WordNet synsets and the thematic roles from VerbNet. To
measure similarity between two DRSs, they are represented in a clausal form, i.e. as a set of tuples.
Participant systems were expected to produce DRSs in this clausal form. Taking into account the rich
lexical information, explicit scope marking, a high number of shared variables among clauses, and
highly-constrained format of valid DRSs, all these makes the DRS parsing a challenging NLP task.
The results of the shared task displayed improvements over the existing state-of-the-art parser.

1 Introduction

Semantic parsing has been gaining in popularity in the last few years. There have been a series of shared
tasks in semantic parsing organized, where each task requires to generate meaning representations of
specific types: Broad-Coverage Broad-coverage Semantic Dependencies (Oepen et al., 2014, 2015),
Abstract Meaning Representation (May, 2016; May and Priyadarshi, 2017), or Universal Conceptual
Cognitive Annotation (Hershcovich et al., 2019).

The Discourse Representation Structure (DRS) parsing task extends this development by aiming at
producing meaning representations that (i) come with more expressive power than existing ones and (ii)
are easily translatable into formal logic, thereby opening the door to applications that require automated
forms of inference (Blackburn and Bos, 2005; Dagan et al., 2013). DRSs are meaning representations
employed by Discourse Representation Theory (DRT, Kamp and Reyle, 1993). They have been success-
fully applied for wide-coverage semantic representations (Bos et al., 2004; Bos, 2008), Natural Language
Inference (Bos and Markert, 2005; Bjerva et al., 2014), and Natural Language Generation (Basile and
Bos, 2013). To the best of our knowledge, there has never been a shared task on scoped meaning repre-
sentations.

The aim of the task is to compare semantic parsing methods and the performance of systems that
take as input an English text and provide as output the scoped meaning representation of that text Since
a DRS combines logical (negation, quantification and modals), pragmatic (presuppositions) and lexical
(word senses and thematic roles) components of semantics in a single meaning representation, the DRS
parsing task shares parts of the following NLP tasks: semantic role labeling, reference resolution, scope
detection, named entity tagging, word sense disambiguation, predicate-argument structure prediction,
and presupposition projection.

There are only a few previous approaches to DRS parsing. Traditionally, due to the complexity of the
task, it has been the domain of symbolic and statistical approaches (Bos, 2008; Le and Zuidema, 2012;
Bos, 2015). Recently, however, neural sequence-to-sequence systems achieved impressive performance
on the task (Liu et al., 2018; Van Noord et al., 2018), without relying on any external linguistic resources.



SYSTEM INPUT:
Tom isn’t afraid of anything.

SYSTEM OUTPUT:
b1 REF x1
b1 male "n.02" x1
b1 Name x1 "tom"
b2 REF t1
b2 EQU t1 "now"
b2 time "n.08" t1
b2 NOT b3
b3 REF s1
b3 Time s1 t1
b3 Experiencer s1 x1
b3 afraid "a.01" s1
b3 Stimulus s1 x2
b3 REF x2
b3 entity "n.01" x2

BOX FORMAT:
t1 b0

¬

s1 x2 b3

afraid.a.01(s1)
Time(s1, t1)
Stimulus(s1, x2)
Experiencer(s1, x1)

entity.n.01(x2)

time.n.08(t1)
t1 = now

x1 b1

male.n.02(x1)
Name(x1, tom)

Figure 1: The DRS parsing task: the sys-
tem input is a short text (the PMB document
99/2308), and the expected output is a DRS
in clausal form. Its standard visualisation in
box-notation, following DRT, is presented
below.

00/3008: He played the piano and she sang.

b6 DRS b1 b6 DRS b4
b2 REF x1 b5 REF x3
b2 male "n.02" x1 b5 female "n.02" x3
b1 REF e1 b4 REF e2
b1 play "v.03" e1 b4 sing "v.01" e2
b1 Agent e1 x1 b4 Agent e2 x3
b1 Theme e1 x2 b4 Time e2 t2
b3 REF x2 b4 REF t2
b3 piano "n.01" x2 b4 TPR t2 "now"

b1 REF t1 b4 time "n.08" t2
b1 time "n.08" t1 b6 CONTINUATION b1 b4
b1 TPR t1 "now" b1 Time e1 t1

b6

e1 t1 b1

play.v.03(e1)
Time(e1, t1)
Theme(e1, x2)
Agent(e1, x1)

time.n.08(t1)
t1 ≺ now

e2 t2 b4

sing.v.01(e2)
Time(e2, t2)
Agent(e2, x3)

time.n.08(t2)
t2 ≺ now

CONTINUATION(b1, b4)

x1 b2

male.n.02(x1)

x2 b3

piano.n.01(x2)

x3 b5

female.n.02(x3)

Figure 2: The segmented box b6 consists of a set of
labelled boxes, i.e. the discourse segments b1 and b2,
and a single discourse condition. In the condition, dis-
course relation holds between two discourse segments
and is formatted in uppercase. The definite noun phrase
and the pronouns are presupposition (b2, b3, and b5)
triggers.

In the first shared task on DRS parsing, taking into account the information-rich and complex struc-
ture of the target meaning representation, we tested participant systems mainly on short, open-domain
English texts. In this way, we lowered the threshold for participation to encourage higher results in the
shared task and mitigate challenges associated to semantic parsing long texts. In total five systems par-
ticipated in the shared task. The top-ranked systems outperformed the existing state-of-the-art system in
DRS parsing. The shared task was hosted on CodaLab.1.

2 Task Description

The DRS parsing in a nutshell is presented in Figure 1. Here, the input, a short English sentence, needs
to be mapped to the output, a scoped meaning representation in clausal form. Concepts, states and events
are represented by the word senses (male.n.02, entity.n.01, afraid.a.01) from WordNet 3.0 (Fellbaum,
1998) and relations are modeled with thematic roles (Name, Experiencer, Stimulus) drawn from an
extended version of VerbNet (Bonial et al., 2011).

Each entity needs to introduce a discourse referent, i.e. a variable, in the right scope, form an in-
stance of the right concepts, and be connected to other entities via thematic roles or comparison oper-
ators. For example, in Figure 1, anything introduces a discourse referent x2 in the scope b3 with the
help of the clause 〈b3 REF x2〉. The clause 〈b3 entity "n.01" x2〉 makes x2 an instance of

1https://competitions.codalab.org/competitions/20220

http://pmb.let.rug.nl/explorer/explore.php?part=99&doc_id=2308&type=der.xml
http://pmb.let.rug.nl/explorer/explore.php?part=00&doc_id=3008&type=der.xml
https://competitions.codalab.org/competitions/20220


entity.n.01. Finally, the clause 〈b3 Stimulus s1 x2〉 connects x2 to the event entity s1 of afraid
via the Stimulus thematic role.

The scopes of negation, implication, modal operators or propositional arguments need to be correctly
identified. Proper names, pronouns, definite descriptions and possessives are treated as presuppositions
and get their own box if they cannot be resolved by the local context. Tense is locally accommodated.
For example, Figure 1 shows how the negation operator introduces the scope (b3) and how the named
entity Tom gives rise to the presupposition (b1). Figure 2 demonstrates how discourse segments get their
own scope (b1 and b4) and how definite noun phrases and pronouns trigger presuppositions (b2, b3,
and b5). Finally, Figure 3 depicts an implication with two scopes (b3 and b5), modeling semantics of a
universal quantifier, and nested presuppositions (b1 and b4) due to a possessive pronoun.

Given the aforementioned nuances of the fine-grained scoped meaning representations, the DRS
parsing task represents a challenge for machine learning methods.

3 Discourse Representation Structure

The meaning representations used in this shared task are based on the DRSs put forward in DRT (Kamp
and Reyle, 1993) and derived from the Parallel Meaning Bank (Abzianidze et al., 2017). There are
some important extensions to the theory, though. First, the DRSs are language-neutral, and all non-
logical symbols are disambiguated to WordNet synsets or VerbNet roles. Furthermore, presuppositions
are explicitly represented following (Van der Sandt, 1992) and Porjective DRT (Venhuizen et al., 2018).
Discourse structure is analysed following by Segmented DRT (Asher and Lascarides, 2003). As in the
original DRT, DRSs are displayed in box format for reading convenience (presuppositional DRSs are
displayed with outgoing arrows of the boxes that triggered them). DRSs are recursive structures, and for
the purpose of evaluation, they are translated into clauses, flattening down the recursion by reification.

A DRS always contains a main labelled box along with an optional set of presupposition DRSs (see
Definition 1). For example, the main labelled box in Figure 1 is b0 while b0 is a presupposition. A box
can be simple (e.g., the box labelled with b0 in Figure 1) or segmented (e.g., the box labelled with b6 in
Figure 2). A simple box consists of a set of discourse referents and a set of conditions. Conditions can
be basic or complex. Basic conditions are concept predicates or relations over discourse referents and
constants. Indexicals are treated as constants, not as discourse referents Bos (2017), for example, now
is one of such indexicals (see Figure 1). Complex conditions are those involving labelled boxes. The
examples of complex conditions are ¬b3 in Figure 1 and b3 ⇒ b5 in Figure 3. Finally, a segmented box
contains a set of labelled boxes (b1 and 4 in Figure 2) and discourse conditions. A discourse condition
is a discourse relations over box labels, e.g., CONTINUATION(b1, b4) in Figure 2.

Definition 1: A BNF of DRSs: (possibly empty) sets are denoted with curly brackets as {〈 element〉}.
The string elements for operators and punctuation are in red.

〈DRS〉 ::= {〈DRS〉} 〈labelled BOX〉
〈labelled BOX〉 ::= 〈label〉 〈BOX〉
〈BOX〉 ::= 〈simple BOX〉 | 〈segmented BOX〉
〈simple BOX〉 ::= {〈discourse referent〉} {〈condition〉}
〈condition〉 ::= 〈basic condition〉 | 〈complex condition〉
〈term〉 ::= 〈discourse referent〉 | 〈constant〉
〈basic condition〉 ::= 〈semantic role〉 (〈term〉, 〈term〉)

| 〈term〉 〈comparison operator〉 〈term〉
| 〈concept〉.〈pos sense number〉(〈term〉)

〈complex condition〉 ::= ¬〈labelled BOX〉 | ♦♦♦〈labelled BOX〉 | ���〈labelled BOX〉
| 〈labelled BOX〉⇒〈labelled BOX〉
| 〈discourse referent〉:〈labelled BOX〉

〈segmented BOX〉 ::= {〈labelled BOX〉} {〈discourse condition〉}
〈discourse condition〉 ::= 〈discourse relation〉 (〈label〉, 〈label〉)



01/2312: He put all his money in the box.

b1 REF x1 % He [0...2] his [11...14] b2 IMP b3 b5 % all [7...10]
b1 male "n.02" x1 % He [0...2] his [11...14] b3 REF x2 % all [7...10]
b2 REF t1 % put [3...6] b3 PartOf x2 x3 % all [7...10]
b2 TPR t1 "now" % put [3...6] b3 entity "n.01" x2 % all [7...10]
b2 time "n.08" t1 % put [3...6] b4 REF x3 % his [11...14]
b5 REF e1 % put [3...6] b4 Owner x3 x1 % his [11...14]
b5 Agent e1 x1 % put [3...6] b4 money "n.01" x3 % money [15...20]
b5 Theme e1 x2 % put [3...6] b5 Destination e1 x4 % in [21...23]
b5 Time e1 t1 % put [3...6] b6 REF x4 % the [24...27]
b5 put "v.01" e1 % put [3...6] b6 box "n.01" x4 % box [28...31]

t1 b2

time.n.08(t1)
t1 ≺ now

x2 b3

entity.n.01(x2)
PartOf(x2, x3)

⇒ e1 b5

put.v.01(e1)
Time(e1, t1)
Agent(e1, x1)
Theme(e1, x2)
Destination(e1, x4)

x3 b4

money.n.01(x3)
Owner(x3, x1)

x1 b1

male.n.02(x1)

x4 b6

box.n.01(x4)

Figure 3: The DRS contains the example of nested presuppositions triggered by the possessive pronoun
his. The main box b2 of the DRS presupposes a set of two DRSs. At the same time, one of the pre-
supposed DRSs, namely 〈{b1},b4〉, itself carries the presupposition b1. Note that the presuppositions
about a male discourse referent, triggered by he and his separately, are merged into a single presupposi-
tion box b1. The clauses are accompanied with aligned tokens.

The clausal form and the box-notation are two different forms of displaying scoped meaning repre-
sentations van Noord, Abzianidze, Haagsma, and Bos (2018). We consider the clausal form a machine-
readable format that is suitable for the evaluation with a continuous score between 0 and 1 (see Section 5).
On the other hand, the box-notation is a human-readable format and originates from Discourse Repre-
sentation Theory. Conversion from the box-notation to the clausal form and vice versa is transparent:
each box gets a label, and discourse referents and conditions in the clausal form are preceded by the label
of the box they occur in.

4 Data

4.1 Released Data

For the shared task we released the training, development, and test data, taken from the Parallel Meaning
Bank (PMB, Abzianidze et al. 2017). The PMB is a parallel corpus annotated with formal meaning repre-
sentations.2 These representations capture the most probable interpretation of a sentence; no ambiguities
or under-specification techniques are employed. The formal meaning representations are automatically
constructed and manually corrected. Completely correct representations are flagged as gold. Represen-
tations that are partly manually corrected are marked as silver, while the rest is marked bronze.

The PMB release number used for the shared task is 2.2.03, of which some statistics are shown in
Table 1. Note that MWE tokens and types are underrepresented in the silver and bronze data compared
to the gold data. This is because the gold data contains more manual corrections on the token level than
the silver and bronze data. For the example of multi-word expressions see Figure 4. In the shared task,
participants were allowed to use the silver and bronze data, this would especially make sense in the case
of data-hungry neural models, though there is no guarantee that those representations resemble the gold

2A part of the corpus can be viewed online via the PMB explorer: http://pmb.let.rug.nl/explorer
3https://pmb.let.rug.nl/data.php

https://pmb.let.rug.nl/explorer/explore.php?part=01&doc_id=2312&type=der.xml
http://pmb.let.rug.nl/explorer
https://pmb.let.rug.nl/data.php


Table 1: Statistics for the PMB release 2.2.0 and the shared task evaluation set.

Data splits Docs Tokens Word types MWE tokens MWE types

PMB 2.2.0 gold train 4,597 29,195 4,431 789 494
PMB 2.2.0 gold dev 682 4,067 1,251 71 61
PMB 2.2.0 gold test 650 4,072 1,240 108 100
PMB 2.2.0 silver 67,965 583,835 19,432 4,495 1,902
PMB 2.2.0 bronze 120,662 919,247 23,354 2,054 699

Evaluation set 600 4,066 1,237 92 79

standard.
The data provided to the shared task participants consists of pairs of a raw natural language text

and its corresponding scoped meaning representation in clausal form.4 Whether the meaning represen-
tation is of gold, silver or bronze standard is explicitly indicated. To facilitate automatic learning of
scoped meaning representations, we also provided automatically induced alignments between clauses
and tokens, where token positions are provided with character offsets. The examples of clause-token
alignments are give in Figure 2 and Figure 4. The latter represents an exact formatting of the text and
clausal form pair provided in the shared task.

Nick Leeson was arrested for collapse of Barings Bank PLC.

b1 REF x1 % Nick∼Leeson [0...11]
b1 Name x1 "nick∼leeson" % Nick∼Leeson [0...11]
b1 male "n.02" x1 % Nick∼Leeson [0...11]
b2 REF t1 % was [12...15]
b2 TPR t1 "now" % was [12...15]
b2 Time e1 t1 % was [12...15]
b2 time "n.08" t1 % was [12...15]
b2 REF e1 % arrested [16...24]
b2 Patient e1 x1 % arrested [16...24]
b2 arrest "v.01" e1 % arrested [16...24]
b2 Theme e1 x2 % for [25...28]
b2 REF x2 % collapse [29...37]
b2 collapse "n.04" x2 % collapse [29...37]
b2 Patient x2 x3 % of [38...40]
b3 REF x3 %
b3 Name x3 "barings∼bank∼plc" % Barings∼Bank∼PLC [41...57]
b3 company "n.01" x3 % Barings∼Bank∼PLC [41...57]

% . [57...58]

Figure 4: A sample of a training document (57/0762). For each document there is a pair of raw text and
the corresponding clausal form. Clausal forms incorporate automatically induced clause-token align-
ment.

4.2 Evaluation set

The official evaluation set contains 600 instances that were not released previously. They will not be
released publicly, but are still available for (blind) scoring via the shared task website.5 However, during
the evaluation phase, we asked the participants to provide DRSs for a set of 12,606 short texts. In addition
to the raw texts (600) from the evaluation split, this set contained the train (4,597), development (682),

4https://github.com/RikVN/DRS_parsing/tree/master/data/pmb-2.2.0
5https://competitions.codalab.org/competitions/20220

http://pmb.let.rug.nl/explorer/explore.php?part=57&doc_id=0762
https://github.com/RikVN/DRS_parsing/tree/master/data/pmb-2.2.0
https://competitions.codalab.org/competitions/20220


and test (650) data from the PMB-2.2.0 release and the sentences (6,077) from the SICK dataset (Marelli
et al., 2014). The reason for providing the inflated set of raw texts was three-fold: (i) Disguise the raw
texts of the evaluation set to make it hard to tune models on them; (ii) Obtain the complete information
about the performance of the systems on the provided training, development and test sets; (iii) Carry out
extrinsic evaluation of the participant systems on the natural language inference task.

5 Evaluation Metrics and Baselines

Before comparing a system produced clausal form to the gold one, the produced form is checked on
validity—whether it represents a DRS. If the clausal form is invalid, it is replaced by a single non-
matching clause. In the shared task, we include three baseline systems. The evaluation and validation
scripts and the baselines are publicly available.6

5.1 Validation

Not all sets of clauses correspond to a well-formed DRS, e.g., discourse referents found in the conditions
should be explicitly introduced in the boxes, or there should exist labelled boxes for the labels used in
the discourse conditions. We employ the validator REFEREE (Van Noord et al., 2018) to automatically
check a set of clauses on well-formedness. REFEREE does several checks for validity checking. For
example, first it scans each clause separately in a clausal form and identifies the types of variables based
on the operators. For each discourse referent variable, it checks the existence of the binding discourse
referent. During this procedure, REFEREE also detects positions of the boxes in the DRS (i.e., so-called
the subordinate relation). Based on this information, it is checked that nested boxes do not create loops
and there is a unique main box in the DRS.

All the released clausal forms of the DRSs are valid. We provided the participants with REFEREE in
order to help them identify the ill-formed clausal forms produced by their systems.

5.2 Evaluation

The evaluation defines to what degree a system output clausal form is similar to the corresponding gold
one. To compare the system output and gold representations, we compute the F1-score over the clauses,
following Allen et al. (2008). We use the tool COUNTER (van Noord, Abzianidze, Haagsma, and Bos,
2018), which is specifically designed to evaluate DRSs. It is based on the SMATCH Cai and Knight (2013)
tool that is used to evaluate AMR parsers. It is essentially a hill-climbing algorithm that finds the best
variable mapping between the produced DRS and the gold standard. To avoid local optima, we restart
the procedure 10 times. In order to prevent an inflated F-score, before searching the maximal matching,
COUNTER discards those REF-clauses which are deemed redundant. A REF-clause 〈b REF x〉 is re-
dundant if and only if its discourse referent x occurs with a concept predicate in a basic condition of the
same box b – in other words, there exists a clause of the form 〈b concept "pos.nn" x〉.7

An example of comparing the clausal forms of two scoped meaning representations is shown in
Figure 5. With respect to the optimal mapping, both, the sample system output and gold clauses, include
three clauses that could not be matched with each other while four clauses are matched. The optimal
mapping gives us a precision and recall of 3/7, resulting in an F-score of 42.9. Similarly to AMR, we use
micro-averaged F-score when evaluating a set of DRSs.

An aspect that is different from the AMR evaluation system is that we generalize over synonyms. In
a preprocessing step of the evaluation, all word senses are converted to its WordNet 3.0 synset ID. For
example, fox.n.02 and dodger.n.01 both get normalized to dodger.n.01 and are thus able to match.

6http://github.com/RikVN/DRS_parsing
7In Figure 5 redundant REF-clauses are stricken through.

http://github.com/RikVN/DRS_parsing


Sample system output Optimal mapping Gold representation

b3 IMP b2 b1
b2 REF x1
b2 every "n.01" x1
b1 REF x2
b1 Agent x2 x1
b1 new "a.01" x2
b1 Time x2 x3
b0 REF x3
b0 time "n.08" x3
b3 REF x0

b3 7→ b0

b2 7→ b1

b1 7→ b2

b0 7→ b3

x1 7→ x1

x2 7→ s1

x3 7→ t1

x0 7→ N/A

b0 IMP b1 b2
b1 REF x1
b1 entity "n.01" x1
b2 REF s1
b2 Theme s1 x1
b2 new "a.01" s1
b2 Time s1 t1
b3 REF t1
b0 time "n.08" t1
b0 EQU t1 "now"

x0 b3

x1 b2

every.n.01(x1)
⇒ x2 b1

new.a.01(x2)
Time(x2, x3)
Agent(x2, x1)

x3 b0

time.n.08(x3)

t1 b0

time.n.08(t1)
t1 = now

x1 b1

entity.n.01(x1)
⇒ s1 b2

new.a.01(s1)
Time(s1, t1)
Theme(s1, x1)

Figure 5: An optimal mapping of variables which maximizes overlap between the system output and
gold clausal forms for the sentence (PMB document 00/2302) Everything is new. The maximal overlap
yields an F-score of 42.9. Matching, non-matching and redundant clauses are in green, red, and stricken
through, respectively. The box-notation of scoped meaning representations is not available during the
comparison of clausal forms.

To calculate whether two systems differ significantly, we perform approximate randomization Noreen
(1989), with α = 0.05, R = 1000 and F (model1) > F (model2) as test statistic for each individual DRS
pair.

5.3 Baselines

We provide three baseline parsers: SPAR, SIM-SPAR and AMR2DRS. SPAR simply outputs a default DRS,
which is a DRS that is the most similar to the DRSs in our training set.8 SIM-SPAR outputs the DRS of
the most similar sentence in the training set, based on the cosine distance of the average word-embedding
vector, calculated using GloVe (Pennington et al., 2014). AMR2DRS is a script that converts the output
of an AMR parser to a valid DRS by applying a set of rules, described in Bos (2016) and van Noord,
Abzianidze, Haagsma, and Bos (2018). We will provide scores on the development, test and evaluation
sets by using the AMR parser of van Noord and Bos (2017).

6 Participating Systems

We received a total of five submissions in the shared task out of 32 registered participants. Three out
of five submitted a system paper. The general characteristics of the participating systems are give in
Table 2. Following Nissim et al. (2017), we explicitly encouraged the participants to include ablation
experiments and negative results (if any). Note that the authors of the systems NOORD ET AL.18 and
NOORD ET AL.19 are from the organizers. Below, we provide a short description of each system.

6.1 Van Noord et al. (2018)

NOORD ET AL.18, the parser described in Van Noord et al. (2018), uses a character-level neural sequence-
to-sequence model to produce DRSs. They apply a number of methods to improve performance, such as

8For PMB release 2.2.0 this is the DRS for Tom voted for himself.

http://pmb.let.rug.nl/explorer/explore.php?part=00&doc_id=2302&type=der.xml


Table 2: Overview of the participating systems

Model Input Embeddings Silver Bronze

LIU ET AL. Transformer char 6 4 4

NOORD ET AL.19 seq2seq char 6 4 6

NOORD ET AL.18 seq2seq char 6 4 6

EVANG stack-LSTMs word 4 6 6

FANCELLU ET AL. bi-LSTM word 4 6 6

rewriting the variables to a more general format, introducing a feature for uppercase letters and not using
character-level representation for DRS roles and operators. Moreover, they show that performance can
be substantially improved by first pre-training on gold and silver data, after which the parser is fine-tuned
on only the gold standard data.

6.2 Van Noord (2019)

The system of NOORD ET AL.19 is the parser described in Van Noord et al. (2019) and Van Noord
(2019), which follows up on their work previously described in Van Noord et al. (2018). They improve
on this work in two ways: (i) by switching their sequence-to-sequence framework from OpenNMT (Klein
et al., 2017) to Marian (Junczys-Dowmunt et al., 2018) and (ii) by providing the encoder with linguistic
information (lemmas, semantic tags (Abzianidze and Bos, 2017), POS-tags, dependency parses and CCG
supertags) that are encoded in a separate encoder.

6.3 Liu et al. (2019)

LIU ET AL. also follow the approach of Van Noord et al. (2018) in terms of pre- and postprocessing
the data, but they improve on it by using the Transformer model (Vaswani et al., 2017), instead of a
sequence-to-sequence RNN. Also, they show that employing the bronze standard in addition to the gold
and silver standard leads to improved performance.

6.4 Evang (2019)

EVANG aim to find a middle-ground between traditional symbolic approaches and the recent neural
(sequence-to-sequence) models. They employ a transition-based parser that relies on explicit word-
meaning pairs that are found in the training set. Parsing decisions are made based on vector representa-
tions of parser states, which are encoded using stack-LSTMs.

6.5 FANCELLU ET AL.9

FANCELLU ET AL. propose a graph decoder that given an input sentence encoded via a bidirectional
LSTM generates a DAG (Directed Acyclic Graph) as a sequence of fragments from a graph grammar.
These fragments are delexicalized; predicate names, synset and information on whether the predicate is
presupposed or not are predicted in a second step, conditioned on the fragment and the decoding history.
Two are the main features of the graph parser: 1) it is agnostic to the underlying semantic formalism and
does not need any preprocessing step to deal with variable binding; 2) fragments are aware of the overall
graph structure and the graph is built incrementally via a process of non-terminal rewriting. (1) sets
this method apart from the graph parser of Groschwitz et al. (2018) where a grammar is extracting via
an elaborate pre-processing step, tailored to a specific formalism, whereas (2) allows to leverage neural
sequential decoding (stackLSTM, Dyer et al., 2016). The only preprocessing step required is to convert
DRSs in clause format into single-rooted, fully instantiated DAGs; we do so by treating both variables

9The full list of authors: Federico Fancellu, Sorcha Gilroy, Adam Lopez and Mirella Lapata (University of Edinburgh).
Since the authors refrained from submitting a system paper due to the ACL policy for submission, we include a slightly
extended summary of their system, generously provided by them.



Table 3: Official results of the shared task for the participating systems

PMB 2.2.0 (F%) Evaluation set (%)
Train Dev Test Prec. Rec. F

AMR2DRS NA 39.7 40.1 36.7 42.2 38.8
SPAR NA 40.0 40.8 44.3 35.4 39.4
SIM-SPAR NA 53.3 57.7 55.7 53.0 54.3

FANCELLU ET AL. 91.1 69.9 73.3 71.9 64.1 67.8
EVANG 84.2 74.4 74.4 71.9 69.9 70.9
NOORD ET AL.18 88.5 81.2 83.3 80.8 78.6 79.7
NOORD ET AL.19 94.9 86.5 86.8 85.5 83.6 84.5
LIU ET AL. 96.9 85.5 87.1 84.8 84.8 84.8

and boxes as nodes and semantic roles, operators and discourse relations as edges between those (where
each binary operator or relation gives rise to two edges). Similarly, the only postprocessing step lies in
converting the graph back to clause format. This last step can inject errors in the parse and it is the reason
why some of the output graphs can be ill-formed.

7 Results

Table 3 shows the official results of the shared task. The system of LIU ET AL. achieved the best per-
formance, though there is no significant difference with the work of NOORD ET AL.19 (p = 0.23). The
systems of EVANG and FANCELLU ET AL., though clearly outperforming the baselines, are a bit be-
hind the best three systems. However, they can likely improve performance by incorporating silver and
bronze standard data. No systems seem to have overfit on the provided dev and test sets. The work of
FANCELLU ET AL. is perhaps overfit on the training set, given their high score on train compared to the
test sets.

Table 4 shows a more detailed overview of the results. All teams produced a substantial amount of
perfect DRSs, but only 31 DRSs of them were perfectly produced by each system. EVANG is the only
system with a substantial number of ill-formed DRSs. This hurts their performance, since they get an
F-score of 0.0 in evaluation. If we ignore referee and score their ill-formed DRSs as if they were valid,
their score increases to 72.1. On the other hand, calculating an F-score for only the ill-formed DRSs
(without referee) gives us an F-score of 50.6, suggesting that the model would not have scored very well
in either way.

Similar as was observed in Van Noord et al. (2018), word sense disambiguation is problematic for
the DRS parsers. When assuming oracle sense numbers, all systems obtain a substantially higher F-score
(increases of 1.8 to 3.6). NOORD ET AL.19 propose a simple method to improve on this sub-problem by
taking the most frequent sense in the training set for a concept, though this only increased their F-scores
by 0.2 to 0.4 on the dev and test sets. Nouns are the easiest for all models to correctly produce (possibly
due to the frequent time.n.08), while adverbs are the hardest, though there are only 12 such clauses
in the evaluation set.

8 Analysis

Longer sentences are probably harder to parse, but which systems behave well on longer sentences?
Figure 6 shows the performance of the systems plotted over sentence length. As expected, all systems
show a clear drop in performance for longer sentences. The work of LIU ET AL. is based on the
Transformer model (Vaswani et al., 2017), which claims that performance should not degrade for longer



Table 4: F-scores of fine-grained evaluation of the participating systems on the evaluation set. “Winner
out of 5” counts only those instances for which the parser obtained a higher score than all the rest, while
“Highest out of 5” allows ties.

LIU NOORD19 NOORD18 EVANG FANCELLU

All clauses 84.8 84.5 79.7 70.9 67.8

DRS Operators 93.9 94.2 91.7 75.2 76.3
VerbNet roles 82.7 83.5 78.1 72.4 66.4
WordNet synsets 83.8 82.3 77.2 67.8 66.5

nouns 89.2 87.5 83.5 75.9 70.3
verbs 69.5 68.9 60.9 44.1 58.3
adjectives 74.8 74.2 66.5 61.5 53.8
adverbs 63.6 45.5 33.3 0.0 31.6

Oracle sense numbers 86.6 87.1 82.6 74.5 69.8
Oracle synsets 90.5 90.7 87.5 80.1 76.5
Oracle roles 88.4 88.5 84.3 74.5 73.7

# of perfect DRSs 214 210 160 95 104
# highest out of 5 383 376 261 171 161
# winner out of 5 100 77 26 18 18
# of ill-formed DRSs 1 0 1 37 5
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Figure 6: Performance of the systems per sentence length (punctuation are counted as tokens).

sentences. However, for DRS parsing this does not seem to be the case, as LIU ET AL. shows a similar
decrease in performance as the neural models of NOORD ET AL.18 and NOORD ET AL.19.

How similar were the outputs of the participating systems to each other? Table 5 shows pairwise
comparison of the outputs of the systems on the evaluation set. The only system that has a substantially
higher similarity to one of the systems than their official F-score is NOORD ET AL.18 compared to
NOORD ET AL.19, which tells us the models make similar mistakes. This makes sense given that they



Table 5: F-scores of all systems compared to each other.

LIU NOORD19 NOORD18 EVANG FANCELLU

LIU 83.4 79.6 70.5 66.6
NOORD19 83.4 83.3 70.9 68.1
NOORD18 79.6 83.3 71.5 67.1
EVANG 70.5 70.9 71.5 61.3
FANCELLU 66.6 68.1 67.1 61.3

are both character-level sequence-to-sequence models trained on the same data. Additionally, the output
of NOORD ET AL.19 comes closest to the output of FANCELLU ET AL. when compared to other systems’
outputs. Similarly, EVANG is most similar to NOORD ET AL.18 than to any other systems.

How complementary were the participating systems to each other? If we had an ensemble system,
with an oracle component that selected the best DRS for each sentence out of the participants submis-
sions, it would obtain an F-score of 90.5. When only combining the submissions of LIU ET AL. and
NOORD ET AL.19, it would already result in an F-score of 89.1. This suggests that the neural models in
fact do learn different things, though there is still a significant portion that both methods could not learn.

Finally, are there phenomena that are especially hard for all participating systems? This is not an
easy question to answer, and here we show just a first step to such an analysis. Table 6 shows sentences
for which systems, on average, performed badly. Some of them show non-standard use of English, others
are phenomena that are relatively rare, such as generics, multi-word expressions, and coordination.

Table 6: Sentences for which participating systems, on average, produced the worst DRSs

Sentence avg. F Comment

Thou speakest. 21.4 archaic English
I dinnae ken. 21.8 Scottish
My fault. 24.2 noun phrase
A cat has two ears. 38.1 generic
I look down on liars and cheats. 40.3 coordination, MWE
Get me the number of this young girl. 41.8 imperative
She attends school at night. 44.6 temporal modifier
The union of Scotland and England took place in 1706. 46.4 coordination, MWE
Something I hadn’t anticipated happened. 47.0 reduced relative clause
Charles I had his head cut off. 47.2 ordinal, MWE

9 Conclusion

The first shared task on DRS parsing was successful. It improved the state-of-the-art in DRS parsing, and
the variety in methods used (models based on recursive neural networks, transformer models, models
based on transition-based parsing, graph decoders) gives inspiration for future research. In the future
DRS parsing will be made more challenging by moving to longer sentences and texts (where we expect
simple seq2seq models to have a harder time), more complex phenomena (ellipsis, comparatives, multi-
word expressions), and to languages other than English.
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Abstract

We present our submission to the IWCS 2019 shared task on semantic parsing, a transition-
based parser that uses explicit word-meaning pairings, but no explicit representation of syntax. Pars-
ing decisions are made based on vector representations of parser states, encoded via stack-LSTMs
(Ballesteros et al., 2017), as well as some heuristic rules. Our system reaches 70.88% f-score in the
competition.

1 Introduction

Anyone who complains about arguing over “semantics” has never seen how boring it can be to argue
over syntax. —isaacs (@izs). 2013-07-05. Tweet.

A spectrum is haunting semantic parsing—the spectrum ranging from traditional semantic grammars
on one end to recent sequence-to-sequence methods on the other. Examples of the former include the
LKB system for Minimal Recursion Semantics (Copestake, 2002), and Boxer (Bos, 2008) for Discourse
Representation Theory (DRT). Examples of the latter include van Noord and Bos (2017) for Abstract
Meaning Representations (AMR) and Liu et al. (2018); van Noord et al. (2018) for DRT. The approach
in the present paper aims to occupy a useful middle ground on this spectrum. On the one hand, we
emphasize the usefulness of an explicitly specified lexicon of word-meaning pairs, amenable to tweaking
by linguists and engineers, and to interfacing with rule-based components. On the other hand, we aim to
minimize the amount of grammar engineering required, and rely on neural networks to learn to assemble
word meanings into sentence meanings.

We describe a system that follows this approach and apply it to the IWCS 2019 shared task on DRS
parsing (Abzianidze et al., 2019). The challenge is to map raw input sentences (plain text, not tokenized
or otherwise annotated) to discourse representation structures (DRSs). DRSs represent meaning as a
hierarchy of nested boxes containing referents and conditions. They can be represented as a flat set of
clauses, where referent identity and special conditions encode the structure. For example, in Figure 1
(top right), all clauses belonging in box b2 are marked with the b2 prefix, and that the referent e1 is
introduced by box b2 is expressed by the special condition b2 REF e1.

Our system is inspired by the AMR parser of Ballesteros and Al-Onaizan (2017) and, by extension,
the non-projective dependency parsing algorithm of Nivre (2009): it uses a transition sytem to process
tokens from left to right, and stack-LSTMs to create vector representations of parser states to make
transition decisions. To apply this approach to DRT, we replace atomic node labels by lexical clause
lists (LCLs) and edge labels by sets of referent address pairs (RAPs), which encode decisions to unify
specific discourse referents. We also factor the lexicon to address data sparseness and apply various
preprocessing and postprocessing steps to ease learning.



You were tricked.

t1 e1 b2

time.n.08(t1)
t1 ≺ now

trick.v.01(e1)
Patient(e1, x1)
Time(e1, t1)

x1 b1

hearer(x1) =

You were tricked.
b1 REF x1
b1 "hearer" x1
b2 REF t1
b2 TPR t1 "now"
b2 time "n.08" t1
b2 REF e1
b2 trick "v.01" e1
b2 Patient e1 x1
b2 Time e1 t1

=

You

b3 REF x2
b3 "hearer" x2

+

were

b4 REF t2
b4 time "n.08" t2
b4 TPR t2 "now"
b4 Time e2 t2

+

tricked

b5 REF e3
b5 trick "v.01" e3
b5 Patient e3 x3

+
{{x2, x3},
{b4, b5},
{e2, e3}}

Figure 1: An example DRS in box notation (top left), clause notation (top right), and decomposed into
three lexical clause lists (LCLs) and a binding set (bottom row).

Table 1: The most frequent bind actions generated from the shared task gold training data.
rank action count rank action count

1 bind({(x1, x1)}) 6 969 6 bind({(b1, b1),(x2, x1)}) 1 126
2 bind({(b1, b1)}) 3 435 7 bind({(b2, b1)}) 865
3 bind({(x2, x1)}) 2 526 8 bind({(b2, b1),(s1, s1)}) 644
4 bind({(b1, b1),(e1, e1))} 2 187 9 bind({(x1, x2)}) 629
5 bind({(b1, b1),(x1, x1))} 1 730 10 bind({(e1, e2)}) 380

2 Parsing Algorithm

Words. They mean things. —The Linguist Llama

For training, we assume tokenized sentences, each paired with a DRS in the form of a clause list, each
clause aligned to 0, 1, or more tokens. We decompose this clause list into one lexical clause list (LCL)
per token, plus a binding set B, as shown in the bottom row of Figure 1. Each LCL contains only the
clauses aligned to the corresponding token, and referents are replaced by fresh ones unique to that LCL.
B contains all unordered pairs of referents that replaced the same original referent. We say that a referent
has an address Tn in an LCL if it is the n-th referent of type T to occur in the LCL. For example, e2 has
address e1 in the LCL for were, and e3 has the same address in the LCL for tricked. We write ref (L, Tn)
for the referent that has address Tn in L.

The parser uses three data structures: a stack, initially empty, a buffer, initially containing all tokens
of the sentence, and a result clause list, initially empty. Until both stack and buffer are empty, the parser
repeatedly chooses an action that manipulates the contents of the data structures. The correct action
sequence for our example is shown in Figure 2. For training, we determine the correct action sequence
(also called the oracle) as follows: if the rightmost stack element is a token, choose confirm and replace
the token with the corresponding LCL. Otherwise, if the rightmost stack element does not contain any
referent that still occurs in B, choose reduce, add its clauses to the result clause list, and remove it
from the stack. Otherwise, if there are at least two elements on the stack, consider the two rightmost
ones; let them be called L and R. Compute the set B of RAPs (referent address pairs) (Tl, Tr) so that
{ref (L, Tl), ref (R, Tr)} ∈ B. If B is nonempty, choose bind(B), unify the corresponding referents,
and remove referent sets that are now singleton from B. If B is empty and L and R are still in their
original order, choose swap and move L to the left end of the buffer. Otherwise, choose shift and move
the leftmost buffer element to the rightmost position on the stack.

RAP sets can be seen as an automatically induced approximation to arguments in semantic grammars,
in that they define the interface between two lexical meaning representations. Table 1 shows the most



action stack buffer

init You were tricked
shift You were tricked

confirm b1 REF x1
b1 "hearer" x1

were tricked

shift b1 REF x1
b1 "hearer" x1

were tricked

confirm b1 REF x1
b1 "hearer" x1

b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

tricked

swap
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

tricked

shift
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

tricked

shift
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

tricked

confirm
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

b3 REF e2
b3 Patient e2 x2
b3 trick "v.01" e2

bind({(x1, x1)})
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1

b1 "hearer" x1

b3 REF e2

b3 Patient e2 x1
b3 trick "v.01" e2

swap
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b3 REF e2
b3 Patient e2 x1
b3 trick "v.01" e2

b1 REF x1
b1 "hearer" x1

bind({(b1, b1), (e1, e1)})

b2 REF t1

b2 TPR t1 "now"

b2 Time e1 t1

b2 time "n.08" t1

b2 REF e1

b2 Patient e1 x1

b2 trick "v.01" e1

b1 REF x1
b1 "hearer" x1

reduce
b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b1 REF x1
b1 "hearer" x1

reduce b1 REF x1
b1 "hearer" x1

shift b1 REF x1
b1 "hearer" x1

reduce

Figure 2: Actions for parsing the sentence “You were tricked.” Referent addresses (e.g., b1) should not
be confused with referent names (e.g., b1).



tricked

b1 REF e1
b1 trick "v.01" e1
b1 Patient e1 x1
b1 Time e1 t1

=
b1 REF e1
b1 work "v.00" e1
b1 Role e1 x1
b1 Time e1 t1

* [Patient] * trick "v.01"

Figure 3: Factoring a lexical clause list (LCL) into an underspecified lexical clause list (ULCL), a rolelist,
and a sense. We use work "{n,v,a}.00" as dummy senses.

FFs

e({x1, x1})

LSTMst

FFR

FFI

e(tricked) e( ) e([Patient])

LSTMst

FFI

e(were) e( ) e([])

LSTMst

e(<s>)

LSTMb

FFL

FFI

e(You) e( ) e([])

LSTMb

e(</s>)

LSTMa

e(swap)

LSTMa

e(bind({(x1, x1)})

LSTMa

e(confirm)

...

FFa softmaxa

FFu softmaxu

FFrl softmaxrl

Figure 4: Configuration of the neural network after the second swap action in Figure 2. e(...) are
embeddings of words, ULCLs, rolelists, RAP sets, and actions. FFI is the interpretation function,
FFL, FFR are the composition functions. Boxes labeled LSTM represent individual LSTM cells of
the stack/buffer/action stack-LSTMs. Boxes labeled FF denote feed-forward neural networks with one
hidden layer; FFs has a RelU nonlinearity and the others have a tanh nonlinearity.

frequent bind actions. In total, 127 were induced from the training data. They may be too sparse. Our
RAP set generation is not sensitive to referent names since referents are addressed by order, not name.
However, it is sensitive to clause order and referent type. As a reviewer pointed out, van Noord et al.
(2018) showed that normalizing clause order while conflating the referent types x, t, and e improved
performance in their parser. We plan to investigate this in future work.

3 Parsing Model

At test time, we have neither gold-standard LCLs nor a binding set, yet we want to end up with a result
clause list that is the same as the gold standard DRS, or at least similar. We thus train a statistical model
to choose the right action at each parser state, and to choose the right lexical clause list for each token.
The model has three softmax classifiers, shown in the top right corner of Figure 4: the action classifier,
the ULCL classifier, and the rolelist classifer. At each state, the action classifier chooses one out of 131
actions which were extracted from the shared task gold training data, 127 of which are bind actions with
various RAP sets. The classifier only chooses among the actions which are applicable to the respective
state, for example, shift requires a nonempty buffer, and bind actions require every addressed referent
to exist. After each confirm action, the model chooses an LCL for the token on the stack to be replaced
with.

To better handle the large variety of LCLs, we factor this into three steps, as illustrated in Figure 3:
first, the ULCL classifier chooses one out of 548 different ULCLs (underspecified LCLs with dummy
event roles, dummy senses, and dummy constants). The rolelist classifier then chooses from 146 lists of



event roles to replace the dummy event roles with. Finally, heuristic rule-based components (“symboliz-
ers”, see below) fill in the senses and constants.

The set of ULCLs is automatically created offline from all LCLs in the training data by normal-
izing referent names and replacing event roles, senses, and constants with dummy values. Non-event
roles are currently left intact, as are a number of very common senses and constants (male "n.02",
female "n.02", time "n.08", person "n.01", measure "n.02", entity "n.01", country "n.02",
city "n.01", quantity "n.01", name "n.01", location "n.01", "now", "speaker", "hearer").

The input to the three classifiers is a vector representation of the parser state, computed using stack-
LSTM representations of the stack, the buffer, and the list of previous actions. Stack-LSTMs (Ballesteros
et al., 2017; Ballesteros and Al-Onaizan, 2017) are LSTMs (Hochreiter and Schmidhuber, 1997) whose
sequence of input vectors can change dynamically. Over the course of a parsing process, the parser grows
and shrinks these input sequences as elements are added to and removed from the associated data struc-
tures. Initially, the buffer LSTM (LSTMb) has the word embeddings of the entire input sequence. These
are gradually moved to the stack LSTM (LSTMst ) by shift actions, where they are further transformed:
when confirm occurs, the righmost hidden state of the stack LSTM is transformed by an interpretation
function and its output then replaces the rightmost input to the stack-LSTM. When bind occurs, the
two rightmost hidden states of LSTMst are transformed by two separate composition functions and their
outputs replace the two rightmost inputs to the LSTMst . Inputs to LSTMst can also become inputs to
LSTMb again through swap actions. Figure 4 shows one snapshot of the dynamically changing network,
after the second swap action in our example.

4 Implementation

Our system is implemented in Python using DyNet (Neubig et al., 2017). We use ELMo (Peters et al.,
2018) for pre-trained word embeddings. At test time, we tokenize sentences using Elephant (Evang et al.,
2013) trained on a pre-release version of the Parallel Meaning Bank (Abzianidze et al., 2017).

Table 2: Hyperparameter settings.

hyperparameter value

updated word embeddings
unknown word probability 0.2
dimensions 40

pretrained word embeddings (ELMo)
dimensions (average of 3 layers) 1024

other embedding dimensions
actions 20
ULCLs 20
RAP sets 20
rolesets 20

stack-LSTMs
input dimensions 100
hidden layers 2
hidden dimensions (per layer) 100

learning rate (simple SGD)
initial value 0.1
decay per epoch 0.08

Hyperparameters Time did not allow for ex-
tensive tuning. Where applicable, we followed
the choices of Ballesteros et al. (2017). For de-
tails, see Table 2 and the source code (https://
bitbucket.org/kevang/drs_parsing).

Preprocessing and Postprocessing In the train-
ing data, the constants "speaker" and "hear-
er" typically appear in clauses aligned to verbs
rather than first and second person pronouns. To
prevent a proliferation of verb ULCLs, our system
changes this representation to the one shown in
Figure 1 for training and applies an inverse trans-
formation to its output at test time. It also creates
a “main box” (a DRS containing all other DRSs)
in postprocessing if none exists yet.

Symbolizers We implemented rule-based com-
ponents that replace dummy constants with proper
constants for names (e.g., "mary" for the token
Mary), quantities (e.g., "1000" for the token
"one~thousand"), and time expressions (e.g.,
"05:00" for the token five~o’clock). For

https://bitbucket.org/kevang/drs_parsing
https://bitbucket.org/kevang/drs_parsing


dummy word senses, we fill in the lemma using NLTK’s WordNet lemmatizer (Bird et al., 2009) and
assume sense number 01.

Training We train with 1 batch = 1 training example, using the negative sum of the log probabilities of
all correct classification decisions as loss. We train on the gold training data for 20 epochs and validate
after each epoch on the gold development data using Counter (van Noord et al., 2018). We use the model
with the highest validation f-score.

5 Competition Results and Discussion

For the competition, we used the best model unchanged, i.e., we did not retrain with the dev/test data
included. At this point, our system had a bug where the interpretation function FFI only took ULCL and
rolelist embeddings as input, not the word embedding. It was also still lacking the quantity symbolizer.
It reached 74.34% precision, 73.32% recall, and 73.83% f-score on the development data, 74.60% preci-
sion, 74.14% recall, and 74.37% on the test data, and 71.81%, 69,92% recall, and 70.88% f-score in the
competition. The organizers provided five sentences for which our system’s output was lowest (highest)
compared to the minimum (maximum) of the other participating systems, along with all outputs. We
inspected sentences and tried to identify the main reasons our system performed worse (better) than oth-
ers on these examples. They are by no means guaranteed to be representative, but may serve as starting
points for discussion and further investigation.

Reasons for Failure (a) The system “skipped” some tensed matrix verbs, i.e., it assigned them the
empty ULCL, as it does for punctuation (sentences 522, 271, 385). This may point to failure to generalize
or sparse data. (b) The system introduced many DRSs but failed to connect them by binding referents,
so it defaulted to connect them with CONTINUATION discourse relations in post-processing (452, 414).

Reasons for Success (c) The system profited from the decision to leave special senses intact, which
enabled it to correctly analyze relational nouns (309). (d) The system was not completely thrown off
by archaic language, possibly helped by the large body of text the ELMo embeddings are trained on
(163). (e) A rare adjective seemed to trip up character-based systems, but was handled correctly by our
WordNet-based symbolizer (147). (f) Our system’s first-sense heuristic got lucky (454). (g) Our system
got lucky and agreed with an apparent error in the gold standard (138).

We further observe that our system does very poorly on some sentences that lack sentence-final punc-
tuation, which points to hypersensitivity to diversions that is typical of current neural models (cf., e.g.,
Søgaard et al., 2018). Our current oracle generation algorithm treats anaphora like other long-distance
dependencies, which we surmise is suboptimal. Finally, the shared task data has quite an aggressive
approach to merging multi-token units into a single token, which is not handled optimally by the to-
kenizer we used. Beyond these specific avenues for future improvement, generic ones are applicable:
architecture optimization, hyperparameter optimization, ensembles, additional features from taggers and
dependency parsers, training on silver data, etc. Some of these have been shown to have a large impact
on similar tasks (Ballesteros and Al-Onaizan, 2017; van Noord et al., 2018).

6 Ablations

After the competition, we improved the system by fixing the bug in the interpretation function and adding
the quantity symbolizer. We then ran an ablation study to assess the contribution of some individual
components. The results are shown in Table 3. Contrary to our expectations, factoring rolelists out of
ULCLs does not seem to improve results, although it helps the system reach its peak performance after



precision recall f-score epochs

full system .7562 .7460 .7511 15
- factoring rolelists out of ULCLs .7545 .7503 .7524 18
- realigning pronouns .7545 .7444 .7494 20
- date/time symbolizer .7535 .7434 .7484 15
- quantity symbolizer .7495 .7395 .7445 15

Table 3: Ablation results on the development data, with one component removed at a time. “Epochs”
indicates the number of training epochs needed to reach the indicated f-score.

fewer epochs. Realigning pronouns helps a bit. The date/time symbolizer and the quantity symbolizer
are clearly beneficial.

7 Conclusions

Traditional semantic grammars are transparent, but theory-heavy and costly to adapt to new languages
and domains. End-to-end systems are easy to use and performant, but opaque: if there are errors, it is hard
to pinpoint the causes and fix them. Thus, either approach has problems that may make it infeasible in
production, semi-automatic annotation, or education settings. We believe that our approach—lexicalist
but with no need for an explicit representation of syntax—strikes an elegant balance between the two
extremes. At the time of this writing, we do not know where our system ranks among the shared task
participants. Previous work on similar tasks (Liu et al., 2018; van Noord et al., 2018) has reached f-
scores of up to 77.5% resp. 83.6%, however, these results were obtained on different and potentially
less complex test sets. And as discussed above, there are many promising avenues to further increasing
the performance of our system. Thus, whatever the outcome of this competition, we believe that our
approach is worth pursuing further.
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Abstract

We describe the systems we developed for Discourse Representation Structure (DRS) parsing
as part of the IWCS-2019 Shared Task of DRS Parsing.1 Our systems are based on sequence-to-
sequence modeling. To implement our model, we use the open-source neural machine translation
system implemented in PyTorch, OpenNMT-py. We experimented with a variety of encoder-decoder
models based on recurrent neural networks and the Transformer model. We conduct experiments on
the standard benchmark of the Parallel Meaning Bank (PMB 2.2.0). Our best system achieves a score
of 84.8% F1 in the DRS parsing shared task.

1 Introduction

Discourse Representation Theory is a popular theory of meaning representation designed to account for
a variety of linguistic phenomena, including the interpretation of pronouns and temporal expressions
within and across sentences (Kamp and Reyle, 1993). The Groningen Meaning Bank (GMB; Bos et al.
2017) provides a large collection of English texts annotated with Discourse Representation Structures
(DRS), while the Parallel Meaning Bank (PMB; Abzianidze et al. 2017) provides DRSs in English,
German, Italian and Dutch. Furthermore, the PMB introduces clause representation, as shown on the top
of Figure 1.

With the recent introduction of neural network learning to the Natural Language Processing commu-
nity, several neural DRS parsers have been developed for the problem of DRS parsing, i.e. the problem
of taking a document or a sentence as input, and outputting their corresponding DRS. Liu et al. (2018)
convert box-style DRSs to tree-style DRSs and propose the three-step tree DRS parser on the GMB,
while van Noord et al. (2018) adopt a neural machine translation approach to parse sentences to their
clause-style DRSs on PMB. Due to the different standard of annotations between GMB and PMB, and
that the IWCS-2019 Shared Task of DRS Parsing mainly focuses on averagely short sentences in PMB
annotations, our systems take sentences as input and output a clause-style DRS of PMB represented as a
sequence for the IWCS-2018 Shared Task of DRS parsing (Abzianidze et al., 2019).

2 The Parsing System

Figure 2 shows the data pipeline in our system for both training and parsing. There are three main
parts: (a) The component Preprocess, which prepares the input data to make it suitable for training and
parsing models; (b) The component Neural Model which is based on OpenNMT; (c) The component
Postprocess which contains some rules to ensure the system output is a well-formed DRSs.

1https://competitions.codalab.org/competitions/20220



b1 REF e1 b1 live "v.01" e1
b1 REF t1 b1 time "n.08" t1
b1 EQU t1 "now" b1 Location e1 x1
b1 Theme e1 "speaker" b2 REF x1
b1 Time e1 t1 b2 ground floor "n.01" x1

e1 t1 b1

time.n.08(t1)
t1 = now

live.v.01(e1)
Location(e1, x1)
Time(e1, t1)
Theme(e1, speaker)

x1 b2

ground floor.n.01(x1)

Figure 1: The clause representations (top) and box-style representations (bottom) for the sentence I live
on the ground floor..

DRS
preprocess

Training

neural
model

postprocess

sentences

DRSs

sentence
preprocess

Parsing

sentences DRSs

Figure 2: The framework of our DRS parsing system.

2.1 Preprocessing

The Preprocess step works on the sentences and their DRSs of the training data and on the sentences of
the development and the test data. We tried two levels of preprocessing, character-level and word-level.

Character Level We use the scripts of van Noord et al. (2018) to perform character-level preprocessing
for sentences and their DRSs. Each sentence is separated into characters where a special symbol “|||”
is used to mark a word boundary.2 The clauses are represented as a character sequence, except for the
semantic roles, DRS operators and deictic constants, as shown in Figure 3(a). For example, “b1 REF e1”
is preprocessed to “$NEW ||| REF”, which means that a new box (b1) is construct and a new referent (e1)
is introduced by the box; “b2 ground floor “n.01” x1” is preprocessed to “$0 ||| g r o u n d f l o o r |||
“ n . 0 1 ” ||| @0”, which means that the sense ground floor.n.01 is constructed and then assigned to the
referent @0, which is latest introduced, where @n (n∈ Z) denotes the referent |n|th latest introduced.3.
Similarly, $n (n∈ Z) denotes the box |n|th latest constructed.

Word Level Each sentence is tokenized using the Moses script4 and then transformed to its lowercase
form. Clauses are represented as sequences without changing the order, where a special symbol “|||” is
used to start a new clause. We rule out quotation marks in clauses (e.g. “tom” is converted to tom) and

2Here, sentences are not further tokenized than they are in the data, and a token could be I’m or floor. .
3if n is positive, @n denotes the referent is nth latest introduced in future.
4https://github.com/moses-smt/mosesdecoder



sentence: i ||| l i v e ||| o n ||| t h e ||| g r o u n d ||| f l o o r .
DRS: $NEW ||| REF *** $0 ||| REF *** $0 ||| EQU ||| @0 ||| “now” *** $0 ||| Theme ||| @-1

||| “speaker” *** $0 ||| Time ||| @0 ||| @-1 *** $0 ||| l i v e ||| “ v . 0 1 ” ||| @-1 *** $0
||| t i m e ||| “ n . 0 8 ” ||| @0 *** $0 ||| Location ||| @-1 ||| @1 *** $NEW ||| REF ***
$0 ||| g r o u n d f l o o r ||| “ n . 0 1 ” ||| @0

(a) character level

sentence: i live on the ground floor .
DRS: $NEW REF ||| $0 REF ||| $0 EQU @0 now ||| $0 Theme @-1 speaker ||| $0 Time @0

@-1 ||| $0 live v.01 @-1 ||| $0 time n.08 @0 ||| $0 Location @-1 @1 ||| $NEW REF ||| $0
ground floor n.01 @0

(b) word level

Figure 3: An example of preprocessing in character level and word level, respectively.

LSTM
Parameter Value Parameter Value Parameter Value
layers 2 batch size 12 global attention general
rnn size 300 batch type sents copy attention True
rnn type LSTM optim sgd copy attn type dot
dropout 0.2 learning rate 0.7 start decay steps 5000
bridge True learning rate decay 0.7 decay steps 1000
encoder type brnn max grad norm 5 decoder type rnn

Transformer
Parameter Value Parameter Value Parameter Value
layers 6 batch size 512 encoder type transformer
rnn size 300 batch type tokens decoder type transformer
transformer ff 2048 optim adam position encoding True
heads 6 learning rate 0.001 copy attn type dot
dropout 0.2 global attention general max grad norm 5
bridge True copy attention True

Table 1: Choice of hyperparameters for our neural network models.

remain them case-sensitive. Following previous work (van Noord et al., 2018), the indices of variables
in clauses are relative, as shown in Figure 3(b), which is the same to the character-level preprocessing.

2.2 Neural Models

We adopt Recurrent Neural Networks (RNNs) equipped with Long Shot-Term Memory (LSTM; Hochre-
iter and Schmidhuber 1997) units and the Transformer model (Vaswani et al., 2017) as our neural models.
For the model implementation, we use the one provided by the OpenNMT-py toolkit (Klein et al., 2017).
The hyperparameters we used are shown in Table 1 which are institutionally set without optimization.

Fine-tuning We propose a fine-tuning approach to enable the system to effectively use more training
data in various quality, i.e. bronze and silver data. The fine-tuning approach allows the system train
to convergence on one dataset (e.g. silver and gold data) and then continues to train to convergence on
another dataset (e.g. gold data), where the optimizers are reset.



LSTM
character word

P R F1 time(h) P R F1 time(h)
sg-data 73.91 75.00 74.45 13.1 73.81 73.75 73.78 7.8
sg-data + g-data 86.05 84.78 85.41 +2.0 84.80 82.83 83.80 +0.8

Transformer
character word

P R F1 time(h) P R F1 time(h)
sg-data 69.11 69.93 69.52 5.2 75.41 75.36 75.38 5.1
sg-data + g-data 82.32 81.19 81.75 +0.6 85.76 84.45 85.10 +0.6

Table 2: Results on test partition of the Parallel Meaning Bank.

P R F1
bsg-data 74.27 75.78 75.02
bsg-data + sg-data 77.74 78.78 78.26
bsg-data + g-data 86.98 86.55 86.76
bsg-data + sg-data + g-data 87.04 87.17 87.10

Table 3: Results on test dataset by word transformer

2.3 Postprocessing and Evaluation

We adopt the postprocessing scripts of van Noord et al. (2018) to transform back the output of our models
to the clause format, and then use COUNTER (van Noord et al., 2018) as our evaluation metric.

3 Experiments

In this section, we introduce the training data that we used and the results on the PMB benchmarks.

3.1 Data

The training data consists of all of the bronze data (bronze), all of the silver data (silver), and the training
section of the gold data (gold). All data is preprocessed. We mix bronze, silver and gold as bsg-data,
and mix silver and gold as sg-data, and name the training section of gold data as g-data. Meanwhile,
we adopt GloVe (Pennington et al., 2014) pre-trained word embeddings5 to initialize the representation
of input tokens.

3.2 Results

Table 2 shows the results on test data, where sg-data means that the models are only trained on sg-data,
and + g-data means that the models are continually fine-tuned on g-data. With LSTM, the character
model performs marginally better than the word model. However, with Transformer, the word model
performs significantly better than the character model. With both LSTM and Transformer, fine-tuning
on g-data significantly improves the performance. Although the character LSTM is marginally better
than the word Transformer, we still prefer the word Transformer as our final model, because it could be
trained faster.

Table 3 shows the improved results on test dataset by using word Transformer with bronze data,
where bsg-data means that the model is only trained on bsg-data, + sg-data means that the model is
continually fine-tuned on sg-data, and + g-data means that the model is further fine-tuned on g-data. As
shown in Tables 2 and 3, the improvement gap of fine-tuning on sg-data from bsg-data (3.24% F1) is
narrower than that of fine-tuning on g-data from sg-data (8.84% F1). Fine-tuning on g-data may be the
key to improve the performance on the test dataset. We believe this is due to the high similarity between

5https://nlp.stanford.edu/projects/glove/



char-LSTM word-LSTM char-transformer word-transformer
all clauses 85.41 83.80 81.75 85.10
DRS operators 92.96 93.00 91.67 93.72
Roles 85.03 82.51 81.22 83.40
Concepts 83.23 81.99 78.89 83.89
Synsets-Noun 87.63 87.91 84.34 89.75

Verbs 73.28 66.38 66.16 68.47
Adjectives 68.92 71.06 62.45 74.63
Adverbs 54.55 83.33 50.00 40.00

Table 4: F1-scores of fine-grained evaluation on test dataset.

g-data and the test data. Also, we discover that the model trained on bsg-data then fine-tuned on g-data
can also have good performance, but slightly worse than the final models.

We submitted the word Transformer on bsg-data + sg-data + g-data as our final model to the DRS
parsing shared task. On the test dataset of the shared task, our model achieves 84.80 F1 score.

3.3 Analysis

We further analyze the output of the parsers trained on sg-data + g-data to see what components of
the meaning representation are challenging. Table 4 shows the detailed results of Counter, where DRS
Operators (e.g. negation), Roles (e.g. Agent), Concepts (i.e. predicates), synsets (e.g. “n.01”) are scored
separately.

We compare four parsing models, LSTM with character-level preprocessing (char-LSTM), LSTM
with word-level preprocessing (word-LSTM), Transformer with character-level preprocessing (char-
transformer) and Transformer with word-level preprocessing (word-transformer). The char-LSTM and
word-transformer models both achieve good performance, where word-transformer performs best on
the construction of DRS operators, Concepts, Synsets-Noun and Synsets-Adjectives, and char-LSTM
performs best on construction of Roles and Synsets-Verbs. The word-LSTM model is mediocre, but
significantly outperforms the other models on the construction of Synsets-Adverbs with a large gap of
average 35.14% F1 score.

4 Conclusions

In this paper, we describe the system for the IWCS-2019 Shared Task of DRS parsing. We found that
the character-level LSTM and the word-level transformer are competitive in the task. The training time
of LSTM models increases as input sequences are longer, while training time are not sensitive to the
lengths of input sequences in transformer. The output of LSTM models and transformers have different
error distributions. There is still a large improvement space for the sequential models.
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Abstract

This paper describes our participation in the shared task of Discourse Representation Structure
parsing. It follows the work of Van Noord et al. (2019), who employed a neural sequence-to-sequence
model to produce DRSs, also exploiting linguistic information with multiple encoders. We provide a
detailed look in the performance of this model and show that (i) the benefit of the linguistic features is
evident across a number of experiments which vary the amount of training data and (ii) the model can
be improved by applying a number of postprocessing methods to fix ill-formed output. Our model
ended up in second place in the competition, with an F-score of 84.5.

1 Introduction

Semantic parsing is the problem of mapping natural language utterances to interpretable meaning rep-
resentations. Specifically, we focus on producing Discourse Representation Structures (DRS), based
on Discourse Representation Theory (Kamp, 1984; Kamp and Reyle, 1993), a formalism developed in
formal semantics. Since DRS parsing is a complex task, among others dealing with scope, negation,
presuppositions and discourse structures, previous parsers used to be a combination of symbolic and sta-
tistical components (Bos, 2008, 2015). However, recently neural sequence-to-sequence models achieved
impressive performance on the task (Liu et al., 2018; Van Noord et al., 2018, 2019).

This work describes our system with which we participated in the first shared task on DRS parsing
(Abzianidze et al., 2019). Our system is the same as described in Van Noord et al. (2019), except for a
number of additional post-processing methods to solve ill-formed DRSs. Van Noord et al. (2019) follow
Van Noord et al. (2018) in employing a sequence-to-sequence neural network to produce the DRSs, using
character-level input1 and rewriting the variables to a more general structure. They then improve on this
work by exploiting linguistic information (POS-tags, semantic tags2, dependency parses, CCG categories
and lemmas), using a second encoder to provide this information to the model. We first demonstrate how
sensitive the model is to changes in certain parameter settings, after which we determine if the model
could still benefit from additional gold or silver standard data (Section 2). In Section 3, we describe
our new postprocessing methods to decrease the number of ill-formed DRSs. Finally in Section 4 we
perform a detailed error analysis.

2 Analysis

All results are obtained by training on the data released in Parallel Meaning Bank release 2.2.0 (Abzian-
idze et al., 2017). This release contains gold standard (fully manually annotated) data of which we use
4,597 as train, 682 as dev and 650 as test instances. Moreover, we also use the 67,965 silver (partly
manually annotated) instances as extra training data for some experiments. Reported values are F-scores
calculated by COUNTER (Van Noord, Abzianidze, Haagsma, and Bos, 2018), which are averaged over 3

1They use super characters (Van Noord and Bos, 2017a,b) for DRS roles and operators.
2See Bjerva et al. (2016) and Abzianidze and Bos (2017) for a detailed description of semantic tagging.



different runs of the system. In this section, all experiments are performed on the development set. All
code is publicly available.3

2.1 Parameter sensitivity

The parameter search in Van Noord et al. (2019) was performed by applying a hill climbing method:
one parameter was tuned with all other parameters fixed. Only if a parameter returned a significant
improvement, it was chosen over the current setting. In Van Noord et al. (2019) we only did a single
pass over all parameters, meaning that there is likely still room for improvement. Also, it is interesting
to determine the sensitivity of our model to certain parameter settings, since we generally prefer a model
that is not too sensitive to slight changes in them.

We performed a detailed search for the hyper-parameters RNN dimension, dropout, learning rate and
beam size, of which the results are shown in Figure 1.4 We see that the model allows for some variety
in dropout and learning rate, though there is a sharp decrease in performance if we move too far from
the optimal setting. For the RNN dimension there is not much difference if more than 250 nodes are
used, though increasing the dimension to 500 could improve performance. Similarly, a beam size of 5 is
sufficient for good performance, but using a beam size of 15 could be an extra small gain.
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Figure 1: Performance of our best model trained on only gold standard data for the hyper parameters
(shared task setting in brackets): RNN dimensions (300), dropout (0.2), learning rate (0.002) and beam
size (10).

3https://github.com/RikVN/Neural_DRS
4Performed after the shared task deadline, our official scores are with the parameters reported in Van Noord et al. (2019).



2.2 Learning curves
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Figure 2: Performance of our baseline and best system for: training on only different amounts of gold
data (top left), training on all silver standard data with different amounts of gold data (top right), and
training on different amounts of silver data, finetuned on all gold data (bottom).

Since manual DRS annotation is a hard and time consuming task, it is interesting to know how much
we can still benefit from extra silver and gold standard examples, as well as identifying how the amount
of data contributes to the final scores. Concurrently, we can also observe the impact of the linguistic fea-
tures across different amounts of training data. We show the learning curves of two models: the baseline
model and the best model. The best model employs the linguistic features in a separate encoder.

How much gold is needed?
The top-left graph of Figure 2 (left) shows the performance of our two models when only using gold
training data. It is clear that additional gold data still improves performance, though in a way we already
knew this due to the success of employing silver data. Therefore, we also plot the effect of varying the
amount of gold data used when using all available silver data in the top right graph of Figure 2. We see
the same trend there: adding gold standard data still clearly improves performance.

How much silver is needed?
The effect of varying the amount of silver data is shown in bottom graph of Figure 2. The initial addition
of silver data is clearly beneficial. However, the effect seems to diminish a bit for the best model after
40,000 silver instances. The baseline model, though, still improves after 40,000 instances. In general, it
seems like additional silver data could be beneficial, though the extra benefit is likely to be small.



Impact of linguistic features
For all experiments shown in Figure 2, we see that the linguistic features increase performance across
virtually all amounts of data used. This further confirms that the linguistic features supply the model
with additional useful information.

3 Postprocessing methods

There are a number of syntactic and semantic requirements for a set of clauses to be considered a well-
formed DRS (Van Noord et al., 2018). Among others, there should be a single main box and there
should be no loop in the subordination of boxes. Since we do not restrict our model when producing
clauses, these errors can occur. However, they can often be (easily) fixed, by changing a single clause or
a set of clauses. We outline a few of those methods below. Moreover, we propose a method to improve
performance on word sense disambiguation.

3.1 Improvement methods

Removing clauses
One of the problems of the neural model is that it can get stuck in a loop producing (more or less) the
same output. We apply two straightforward methods to fix these instances. For one, we remove all
clauses after clause number 75. Second, we remove clauses of concepts, roles and operators (except
REF) if they occur more than three times. We only look at the second argument of a clause (the identi-
fier), for example, if a full DRS contains five Theme clauses, we remove the last two, no matter the other
values in those clauses.

No main box found
If there is no main box found, this means that there are multiple independent boxes. For two independent
boxes, we first try to remedy this by changing a single discourse variable in one of these boxes. We
change a discourse variable that is unique in b1 to a unique variable in b2 (and vice versa), to estab-
lish a connection between the boxes. For each of these possible changes we check whether the DRS is
well-formed now, and if so, return the new DRS. For multiple independent boxes, and if the previous
method failed for two independent boxes, we start merging boxes together (e.g. replace each occurrence
of b1 by b2), until we find a well-formed DRS. If this does not result in a well-formed DRS, we return a
non-matching dummy DRS.5

Subordinate relation has a loop
This can occur if boxes indirectly subordinate themselves, e.g. b0 subordinates b1, b1 subordinates b2
and b2 subordinates b0. To solve this, we first try to merge the offending box with each of the other
boxes in the DRS. If this does not work, we try to remove the offending box from the DRS. If the DRS is
still ill-formed, we start the process again if the error is Subordinate relation has a loop (but now with the
offending box removed) or apply the previously described fix for No main box found. A non-matching
dummy DRS is returned if the DRS is still ill-formed after these steps.5

Fixing senses
Previous work showed that the neural model often produced the wrong word sense for the correct concept
(Van Noord et al., 2018). It even often output senses that were never observed in the training set. We
apply a simple method to fix these instances. If a concept + sense is not present in the gold standard
training set, we replace the sense by the most frequent sense for this concept in the training set. For
example, we change grow.v.01 to grow.v.07 and fast.n.02 to fast.a.02. Note that this
method does not influence whether a DRS is well-formed or not. This was implemented after the shared
task deadline, meaning our final shared task system did not apply this method.

5The shared task system returned the SPAR default DRS.



3.2 Results

We can check by how much the scores in Van Noord et al. (2019) would have improved if these methods
had been applied. The results of adding the improvement methods incrementally are shown in Table 1.
We see that simply removing clauses returns only modest gains, but fixing ill-formed DRSs gives a
substantial improvement, even for our best model. By applying these fixes on the shared task evaluation
set we decreased the number of ill-formed DRSs from 283 to 9, but since this evaluation set was not
released, we do not know the impact on the F-score. The method for fixing word senses also proved
quite effective, improving the final F-score by 0.2 to 0.4.

Initial + Removing clauses + Solving ill-formed + Fixing senses

ill (%) F1 ill (%) F1 ill (%) F1 ill (%) F1

Gold-only baseline 2.6 78.6 2.6 78.8 0.2 79.5 0.2 79.8
Gold-only + ling 2.7 81.3 2.7 81.4 0.1 82.2 0.1 82.4
Gold + silver + ling 1.5 84.5 1.5 84.5 0.0 85.1 0.0 85.4
Gold + silver + ling 0.9 85.6 0.9 85.7 0.0 86.1 0.0 86.4

Table 1: Impact of the new postprocessing methods on the dev set results of Van Noord et al. (2019).

4 Results & Error Analysis

4.1 Detailed F-scores

The right column of Table 2 shows the results of our official submission to the shared task. We obtained
an F-score of 84.5, with a precision and recall of 85.5 and 83.6, which is slightly lower than our dev and
test scores. We ended up in second place in the competition, though the difference with the first place
(84.8) was not statistically significant.

Table 2 also contains the automatically calculated detailed F-scores on the test set for both Van Noord
et al. (2018) and Van Noord et al. (2019). The improvement for the new neural model and the addition of
the linguistic features mainly comes from improved performance on the roles and concepts. It is evident
that word sense disambiguation is a hard problem, since even with our method to fix word senses, we
still obtain large increases in F-score for oracle senses. The improvement methods described in Section 3
result in a modest, but significant 0.4 increase on the test set.

NeuDRS-18 NeuDRS-19 This work - test This work - eval

All clauses 83.2 87.0 87.4 84.5

DRS Operators 93.4 94.4 94.5 94.2
VerbNet roles 83.2 87.1 87.3 83.5
WordNet synsets 79.7 84.3 85.2 82.3

nouns 85.5 89.3 90.1 87.5
verbs 65.6 72.2 73.0 68.9
adjectives 64.7 70.4 73.6 74.2
adverbs 50.0 72.6 71.9 45.5

Oracle sense numbers 85.7 89.2 89.6 87.1
Oracle synsets 90.0 92.6 92.7 90.7
Oracle roles 86.7 90.0 90.4 88.5

Table 2: F-scores of fine-grained evaluation on the test set of the work of Van Noord et al. (2018)
(NeuDRS-18) , Van Noord et al. (2019) (NeuDRS-19) and this work, which is NeuDRS-19 plus the
improvement methods described in Section 3.



4.2 Examples

Relatively good performance Relatively bad performance

(a) Tom died when he was 97. (f) These bananas are not ripe.
(b) I read comic books. (g) A book about dancing is lying on the desk.
(c) We should drink 64 ounces of fluids a day. (h) Approximately seven billion people inhabit our planet.
(d) I look down on liars and cheats. (i) The trip will take approximately five hours.
(e) You can’t run away. (j) Tom was too tired to speak.

Table 3: Sentences for which our model performed relatively well and poor.

The organizers provided us with five sentences in the test set for which our model did relatively well,
and 5 for which the model performed relatively poor. The sentences are shown in Table 3.6 Interestingly,
the model does well on sentences containing numbers, (a) and (c), but fails to capture the correct inter-
pretation of approximately in (h) and (j). For (b) and (d), our model correctly identified the multi-word
expressions comic book and look down on, perhaps due to the character-level input. For (e), our model
produced a perfect DRS, while other approaches had trouble either producing run away, or the fact that
the sentence was addressed to a hearer. Sentence (j) is interpreted in the gold standard as Tom could not
speak because he was tired, which our model simply failed to capture. It produced a DRS more similar
to the meaning of Tom spoke and was tired, as is shown in Table 4.

Gold standard Produced output Matching

b2 REF x1 b6 DRS b1 b1 REF x1 b2 ⇒ b1
b2 Name x1 "tom" b6 DRS b3 b1 Name x1 "tom" x1 ⇒ x1
b2 male "n.02" x1 b6 RESULT b1 b3 b1 male "n.02" x1 b1 ⇒ b2
b1 REF t1 b1 REF s1 b2 REF x2 t1 ⇒ x2
b1 TPR t1 "now" b1 Theme s1 x1 b2 TPR x2 "now" s1 ⇒ x3
b1 Time s1 t1 b1 tired "a.01" s1 b2 Time x3 x2 b3 ⇒ ∅
b1 time "n.08" t1 b5 REF e1 b2 time "n.08" x2 b4 ⇒ ∅
b3 NOT b4 b5 Agent e1 x1 b2 REF x3 b5 ⇒ ∅
b4 POS b5 b5 speak "v.01" e1 b2 Theme x3 x1 b6 ⇒ ∅

b2 tired "a.01" x3 e1 ⇒ ∅
b2 Co-Theme x3 x4 ∅ ⇒ x4
b2 REF x4
b2 speak "n.01" x4

Table 4: Gold standard and produced DRS for the sentence Tom was too tired to speak. This gave us a
precision and recall of 7/9 and 7/14, resulting in an F-score of 0.61.

5 Conclusion

This paper provided a more detailed analysis on the study of Van Noord et al. (2019), in which they
showed that explicitly encoder linguistic features can be beneficial for neural sequence-to-sequence mod-
els on the task of DRS parsing. We show that the benefit of these features are robust across experiments
with different amounts of training data. Moreover, we show that the model is not too sensitive to small
variations in parameter settings, perhaps even observing room for more finetuning of the model. Lastly,
we show that a number of rule-based methods can drastically decrease the number of ill-formed DRSs.
Our method ultimately obtained a second place in the shared task competition with an F-score of 84.5.

6DRSs available at: https://urd2.let.rug.nl/ rikvannoord/DRS/IWCS/
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