
CSTFRS 2019

IWCS 2019 Workshop on Computing Semantics with
Types, Frames and Related Structures

Proceedings of the Workshop

May 24, 2019
Gothenburg, Sweden

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-25-3

ii

Introduction

The Workshop on Computing Semantics with Types, Frames and Related Structures, colocated with the
13th International Conference on Computational Semantics (IWCS 2019), is intended as a forum for
people interested in structured representations of linguistic information, especially from a computational
perspective.

Structured representations play a central role in the study of natural language semantics, especially
in cognitively oriented approaches in the tradition of Fillmore, Jackendoff, and Langacker. Formal
semantics in the Montague-tradition, on the other hand, is less concerned with the structure of
representations but with logical expressions, truth conditions, and model-theoretic interpretations. In
recent years, however, there has been a growing body of research which aims to integrate structured
entities into formal semantic accounts. Important developments in this field are the uses of rich type
systems and frame-based representations in lexical and compositional semantics. A key feature of these
approaches is that semantic representations can themselves be used to compute semantic content and have
yielded a way of combining compositional and lexical semantics by providing a single representational
system for different modalities.

The topics of this workshop cover both foundational issues (e.g. developments in rich type theoretical
semantics) and applications of theories that employ structured representations to specific linguistic
phenomena.

We would like to thank the organizers of IWCS 2019 for hosting our workshop in Gothenburg.

Rainer Osswald
Christian Retoré
Peter Sutton

iii

Program Chairs & Organization

Rainer Osswald, Heinrich Heine University Düsseldorf (Germany)
Christian Retoré, Université de Montpellier & LIRMM (France)
Peter Sutton, Heinrich Heine University Düsseldorf (Germany)

Program Committee

Daisuke Bekki, Ochanomizu University (Japan)
Ellen Breitholtz, University of Gothenburg (Sweden)
Stergios Chatzikyriakidis, University of Gothenburg (Sweden)
Robin Cooper, University of Gothenburg (Sweden)
Jonathan Ginzburg, Université Paris-Diderot (France)
Eleni Gregoromichelaki, Heinrich Heine University Düsseldorf (Germany)
Justyna Grudzińska, University of Warsaw (Poland)
Laura Kallmeyer, Heinrich Heine University Düsseldorf (Germany)
Zhaohui Luo, Royal Holloway – University of London (UK)
Bruno Mery, Université de Bordeaux (France)
Richard Moot, Université de Montpellier & LIRMM (France)
Reinhard Muskens, Tilburg University (The Netherlands)
Valeria de Paiva, Nuance Communications & University of Birmingham (UK)
Sylvain Pogodalla, INRIA Nancy – Grand Est, LORIA Lab (France)
James Pustejovsky, Brandeis University (USA)
Livy Real, Universidade de São Paulo (Brasil)
Marek Zawadowski, University of Warsaw (Poland)
Henk Zeevat, Heinrich Heine University Düsseldorf (Germany)

v

Table of Contents

Underspecification and interpretive parallelism in Dependent Type Semantics
Yusuke Kubota, Koji Mineshima, Robert Levine and Daisuke Bekki . 1

Translating a Fragment of Natural Deduction System for Natural Language into Modern Type Theory
Ivo Pezlar . 10

Modeling the Induced Action Alternation and the Caused-Motion Construction with Tree Adjoining
Grammar (TAG) and Semantic Frames

Esther Seyffarth . 19

Complex event representation in a typed feature structure implementation of Role and Reference Gram-
mar

Erika Bellingham . 28

Computational Syntax-Semantics Interface with Type-Theory of Acyclic Recursion for Underspecified
Semantics

Roussanka Loukanova . 37

Modeling language constructs with compatibility intervals
Pavlo Kapustin and Michael Kapustin . 49

ImageTTR: Grounding Type Theory with Records in Image Classification for Visual Question Answering
Arild Matsson, Simon Dobnik and Staffan Larsson . 55

Enthymemetic Conditionals: Topoi as a guide for acceptability
Eimear Maguire . 65

vii

Workshop Program

Friday, May 24, 2019

9:15–9:30 Opening Remarks

9:30–10:00 Underspecification and interpretive parallelism in Dependent Type Semantics
Yusuke Kubota, Koji Mineshima, Robert Levine and Daisuke Bekki

10:00–10:30 Coffee

10:30–11:00 Translating a Fragment of Natural Deduction System for Natural Language into
Modern Type Theory
Ivo Pezlar

11:00–11:30 Modeling the Induced Action Alternation and the Caused-Motion Construction with
Tree Adjoining Grammar (TAG) and Semantic Frames
Esther Seyffarth

11:30–12:00 Complex event representation in a typed feature structure implementation of Role
and Reference Grammar
Erika Bellingham

12:00–13:30 Lunch

13:30–14:00 Computational Syntax-Semantics Interface with Type-Theory of Acyclic Recursion
for Underspecified Semantics
Roussanka Loukanova

14:00–14:30 Modeling language constructs with compatibility intervals
Pavlo Kapustin and Michael Kapustin

14:30–15:00 ImageTTR: Grounding Type Theory with Records in Image Classification for Visual
Question Answering
Arild Matsson, Simon Dobnik and Staffan Larsson

15:00–15:30 Enthymemetic Conditionals: Topoi as a guide for acceptability
Eimear Maguire

15:30 Coffee

ix

Friday, May 24, 2019 (continued)

15:30–16:00 General discussion and closing

x

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 1–9
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Underspecification and interpretive parallelism in
Dependent Type Semantics

Yusuke Kubota
National Institute for

Japanese Language and Linguistics
kubota@ninjal.ac.jp

Koji Mineshima
Ochanomizu University

mineshima.koji@ocha.ac.jp

Robert Levine
Ohio State University
levine.1@osu.edu

Daisuke Bekki
Ochanomizu University

bekki@is.ocha.ac.jp

Abstract
The scope parallelism in the Geach sentence (Every boy loves, and every girl detests, some sax-

ophonist) and the related parallel interpretation requirement in pronominal binding is a pervasive
phenomenon found across different types of coordination and ellipsis phenomena. Previous accounts
all resort to additional constraints of some sort that restrict the otherwise flexible syntax-semantics
interface to avoid overgeneration. In this paper, we propose a novel approach to this long-standing
problem. We show that, by taking a proof-theoretic perspective on natural language semantics and by
viewing the ambiguity resolution for pronouns and indefinites as underspecification resolution that
invokes extra proof search, a conceptually natural solution emerges for the problem of interpretive
parallelism. The analysis is cast in Dependent Type Semantics, with Hybrid Type-Logical Categorial
Grammar as the syntax-semantics interface backbone. For empirical illustration, we show how the
proposed approach correctly accounts for the classical Geach paradigm and its pronominal variant.

1 Introduction: interpretive parallelism in coordination and ellipsis

One of the long-standing problems in the analysis of coordination and ellipsis is the strong parallelism
requirement imposed on the interpretations of the ‘shared’ linguistic expression. For example, Geach
(1972) famously noticed that, in the following type of examples involving right-node raising (RNR),
the object indefinite that is shared in the two conjuncts can either scope below the subject quantifier in
each conjunct or scope over the entire coordination, but that mixed scope readings, in which the object
indefinite scopes above the subject quantifier in one conjunct but not in the other, are unavailable.

(1) Every boy loves, and every girl detests, some saxophonist. (∀ > ∃ ∧ ∀ > ∃ / ∃ > ∀ ∧ ∃ > ∀)
Jacobson (1999) notes that this interpretive parallelism extends to the pronominal variable binding in
examples such as the following (on reading 2, John is a salient male individual in the discourse):

(2) Every Englishman admires, and every American loves, his mother.
reading 1: ‘Every Englishman admires his own mother, and every American loves his own mother.’
reading 2: ‘Every Englishman admires John’s mother, and every American loves John’s mother.’

In general, pronouns can either be free or bound by a quantifier. Thus, there are four logically possible
interpretations for (2) (bound/free in first/second conjunct). And all these interpretations are indeed
available in the non-RNR counterpart of (2) (Every Englishman admires his mother and every American
loves his mother). However, only two of these readings are attested for (2), as indicated above.

The parallel interpretation requirement is not limited to coordination but extends to ellipsis phenom-
ena. For example, Hirschbühler (1982) notes that VP ellipsis imposes parallelism requirement for the
scope of the quantifier inside the ‘elided’ material, in a way essentially parallel to the RNR sentences:

1

(3) An American flag was hanging in front of every window. A Canadian flag was, too.

Like the RNR example in (1), there are only the ∀ > ∃ ∧ ∀ > ∃ and ∃ > ∀ ∧ ∃ > ∀ parallel scope
readings for this sentence. Mixed scope readings in which the universal scopes over the indefinite in the
antecedent but not in the ellipsis site (or vice versa) are unavailable.

Just as the RNR parallelism for quantifier scope in (1) is mirrored in the anaphora case in (2), the
scopal parallelism in the VP ellipsis data in (3) has an exact analogue in the anaphora example in (4).

(4) Every Englishman admires his mother, and every American does as well.

As in (2), the admiration relation holds either between every Englishman and every American male and
his own respective mother or between every Englishman and every American male and the mother of
some specific male individual in the antecedent context, with no mixed reading possible.

The parallelism patterns in (1) and (2) recur in the case of Stripping (see Puthawala (2018) for a
recent formal analysis of Stripping, as well as a discussion of important properties of this construction).

(5) a. Every boy admires a saxophonist, and every girl too.
b. Every Englishman admires his mother, and every American as well.

These examples exhibit only the parallel interpretations (analogous to the relevant readings for the RNR
and VP ellipsis examples given above) for the quantifier or pronoun contained in the elided material.

The interpretive parallelism in the data surveyed above has been noted by many authors (see, e.g.,
Jacobson 1999; Fox 2000; Asudeh and Crouch 2002; Steedman 2012), but no uniform analysis currently
exists which treats the binding and quantifier cases in a principled manner and which covers both the co-
ordination and ellipsis cases. The present paper attempts to make a first step in such a unified analysis by
focusing on the binding and scope data in RNR (i.e. the Geach paradigm). The key claim of our proposal
is that interpretive parallelism is a consequence of the underspecification involved in the interpretation
of pronouns and indefinites (in this sense, it is similar in spirit to Steedman’s (2012) approach).

All the examples above have one property in common: the shared material contains an expression
(pronoun/quantifier) that exhibits interpretive variability. Our proposal in a nutshell is that interpretive
parallelism falls out from the way underspecification resolution happens in sentences that have this prop-
erty, due to interactions of the following conceptually natural assumptions:

(i) interpretive variability is resolved by underspecification resolution, formalized as type-checking
(ii) for ‘shared’ material, the syntax-semantics mapping requires the duplication of resource at some

point in the mapping from the surface string to the final, fully resolved translation
(iii) the formal language for the underspecified semantic representation imposes a certain restriction on

the way multiple copies of an (originally) underspecified term are interpreted

The third condition can be thought to arise from the requirement to keep the mechanism simple for
ensuring proper identity of underspecified terms with respect to their interpretive possibilities.

We show below that these simple assumptions suffice to ensure the right range of interpretations to be
assigned to the examples discussed above, by taking the case of RNR as an example. We formulate our
analysis in Dependent Type Semantics (DTS; Bekki 2014; Bekki and Mineshima 2017), by proposing
a novel treatment of indefinites involving underspecification. The proof-theoretic perspective of DTS
provides a particularly natural setup to embody the assumptions outlined in (i)–(iii) above. For the sake
of explicitness, we adopt Hybrid Type-Logical Categorial Grammar (Hybrid TLCG; Kubota and Levine
2012, 2015) for the syntax-semantics interface in spelling out the analyses of specific linguistic examples.
The choice of Hybrid TLCG for syntax is not essential, but we believe that it helps illuminate the general
nature of our solution, which is compatible with any suitably general theory of compositional semantics.

2

A : t

[x : A]i....
B : t

(x :A)→ B : t
ΠF, i

A : t

[x : A]i....
B : t

(x :A)×B : t
ΣF, i

[x : A]i....
m : B

λx.m : (x :A)→ B
ΠI, i

m : A n : B[m/x]

(m,n) : (x :A)×B ΣI

f : (x :A)→ B a : A

f(a) : B[a/x]
ΠE

c : (x :A)×B
π1(c) : A

ΣE
c : (x :A)×B

π2(c) : B[π1(c)/x]
ΣE

Figure 1: Inference rules: formation rules (ΠF ,ΣF), introduction rules (ΠI,ΣI), elimination rules (ΠE,ΣE)

2 Anaphora and scope via underspecification in DTS

Dependent Type Theory (Martin-Löf 1984) is an extension of simply typed λ-calculus. Dependent Type
Semantics (DTS) is a proof-theoretic compositional dynamic semantics based on Dependent Type The-
ory. This framework allows us to use types depending on terms and to represent propositions (corre-
sponding to semantic representations of sentences) as types. For instance, run(x) is a type depending on
a term x. Under the Curry-Howard correspondence (propositions-as-types principle), the type run(x)
can be regarded as the proposition that x runs. If a term u has this type, we write u : run(x), expressing
that u is a proof of the proposition that run(x). Such a term u is called a proof term and plays a key role
in representing the dynamic notion of contexts for resolving anaphora in DTS.

Anaphora resolution via underspecification In the following analysis, we mainly use two construc-
tions, Σ-types and Π-types. Σ-type, written (x :A) × B, is a generalization of product type A × B. A
term of type (x :A)×B is a pair (m,n) such thatm has typeA and n has typeB[m/x].1 The projection
functions π1 and π2 are defined so that π1(m,n) = m and π2(m,n) = n. Σ-types can be used to
represent existential quantification. For instance, A man entered is given the translation (6) in DTS.2

(6) (u : (x : e)×man(x))× enter(π1(u))

Here u is a proof term of (x : e) ×man(x), which is a pair of x having type e (entity) and a proof that
x is a man. Thus, its first component (the entity x) can be picked up by the projection π1(u). The entire
translation means that there is an entity x such that x is a man and x enters. For notational simplicity, we
often abbreviate Σ-type of the form (x : e)×A(x) asA∗, thus we write (6) as (u : man∗)×enter(π1(u)).

Π-type, (x :A) → B in our notation, is a generalization of function type A → B. A term of type
(x :A)→ B is a function f such that for any term m of type A, f(m) is of type B[m/x]. Π-type is used
to represent universal quantification. Thus, Every man entered is given the translation in (7).

(7) (u : man∗)→ enter(π1(u))

Note that when the variable x does not occur free in B, (x :A) × B and (x :A) → B can be written
A×B and A→ B, respectively.

We illustrate how anaphora resolution works in DTS by the example A man entered and he smiled,
which is given the following translation as an initial underspecified representation.
(8) (v : (u : man∗)× enter(π1(u)))× smile(@1e)

In DTS, a pronoun is analyzed as an underspecified term @, possibly annotated with its typeA, which we
write @A. We assume that in the initial underspecified representation, each occurrence of underspecified
term @ is assigned a mutually distinct index. In the above example, the pronoun he corresponds to @1e.
This underspecified term searches for its antecedent of type e in the context represented as a proof term.

The initial step to resolve anaphora is type checking, which is a process to ensure that a given expres-
sion is a type (i.e. a well-formed proposition). This amounts to proving that it has type type, abbreviated
as t. The formation rules (see Figure 1) tell us when a given expression has type t. In the case of (6),
the goal is to prove that the representation in (6) has type t. In this case, no underspecified term appears,
thus using the inference rules in Figure 1, we have the following closed derivation.

1Here and henceforth, B[t/x] means the substitution of a term t for free occurrences of the variable x in the term B.
2We will provide an alternative analysis of indefinites later in this section.

3

(9)

[x : e]1

man(x) : t
man : e→ t

(x : e)×man(x) : t
ΣF, 1

[u : (x : e)×man(x)]2

π1(u) : e
ΣE

enter(π1(u)) : t
enter : e→ t

(u : (x : e)×man(x))× enter(π1(u)) : t
ΣF, 2

Here we assume that type assignments (signatures) such as e : t and enter : e → t are in the initial
context and can be used as an axiom. To simplify derivations, we usually omit axioms and use the name
of the predicate applied (possibly with its type) as a rule label.

If an initial representation contains an underspecified term @, the process of type checking tells us in
what context the antecedent of the @-term can be found. For this purpose, we use the following rule:

(10) A : t A true
@iA : A

@

We use a judgement of the form A true to mean that there exists a term of type A; in other words, type
A is inhabited. Using this rule, the type checking for (8) gives an open derivation as follows.

(11)
.... (9)

(u : man∗)× enter(π1(u)) : t

e : t Ax
e true

@1e : e
@

smile(@1e) : t
smile

(v : (u : man∗)× enter(π1(u)))× smile(@1e) : t
ΣF, 1

Here the derivation starts from the open premise e true. Once we prove e true and find a witness for
@i, it becomes a closed derivation. To formalize this idea, we use the following rule for @-elimination.

(12) @-elimination: Let A be a term in which no @-term occurs. Then the derivation on the left can
be transformed into the derivation on the right:

....
A : t

.... D2

u : A
A true

@iA : A
@

.... D1

.... D2

u : A.... D1[u/@iA]

This rule allows us to replace the underspecified term @iA with its witness u in the entire derivation.
To find a witness for an underspecified term @, we need to do proof search in a given local context. In

the case of (11), the application of ΣF rule at the final step allows us to use a proof term for the left-side
proposition, (u : man∗) × enter(π1(u)), to find a witness for @1e. It can be easily seen that one such
witness is π1(π1(v)); in this case, we say @1e is bound to π1(π1(v)).3 Thus we have a closed derivation
on the left below and it can be transformed to the derivation on the right by @-elimination.

.... (9)

(u : man∗)× enter(π1(u)) : t

e : t Ax

[v : (u : man∗)× enter(π1(u))]1

π1(v) : man∗
ΣE

π1(π1(v)) : e
ΣE

e true
@1e : e

@

smile(@1e) : t
smile

(v : (u : man∗)× enter(π1(u)))× smile(@1e) : t
ΣF, 1

.... (9)

(u : man∗)× enter(π1(u)) : t

[v : (u : man∗)× enter(π1(u))]1

π1(v) : man∗

π1(π1(v)) : e
ΣE

smile(π1(π1(u))) : t
smile

(v : (u : man∗)× enter(π1(u)))× smile(π1(π1(u))) : t
ΣF, 1

The final representation can be read off from the bottom line of the derivation on the right.

(13) (v : (u : man∗)× enter(π1(u)))× smile(π1(π1(v)))

This is equivalent to saying that there is an entity x such that it satisfies man(x), enter(x), and smile(x).
Our analysis naturally accounts for the bound reading of (14a), whose translation is given in (14b).

(14) a. Every Englishman thinks he is a genius.
b. (u : eng∗)→ think(genius(@1e))(π1(u))

The derivation on the left shows the type checking with proof search to find a witness for @1e in (14b).
3If the initial context (called global context) contains other possible antecedents, they give rise to different readings.

4

(15)

[u : eng∗]1

π1(u) : e
e true
@1e : e

@

genius(@1e) : t
genius

[u : eng∗]1

π1(u) : e

think(genius(@1e))(π1(u)) : t
think : t→ e→ t

(u : eng∗)→ think(genius(@1e))(π1(u)) : t
ΣF, 1

[u : eng∗]1

π1(u) : e

genius(π1(u)) : t
genius

[u : eng∗]1

π1(u) : e

think(genius(π1(u)))(π1(u)) : t
think : t→ e→ t

(u : eng∗)→ think(genius(π1(u)))(π1(u)) : t
ΣF, 1

Here the premise e true follows from the hypothesis u : eng∗ licensed by the application of ΣF . Thus
@1e is bound to π1(u) and the @-term can be eliminated as shown in the derivation on the right. This
yields the bound reading (u : eng∗)→ think(genius(π1(u)))(π1(u)) for (14a), as desired.

An alternative treatment of indefinites In the classical version of DTS, pronouns and definites are
translated as underspecified terms, while indefinites are not. Here we propose an alternative analysis that
translates an indefinite to an underspecified term of the form #A where A is a Σ-type. This alternative
analysis translates the sentence (6a) as follows (note that man∗ is an abbreviation for (x : e)×man(x)):

(16) enter(π1(#man∗))

For underspecified terms #, we use the following rule.4

(17) A : t
#A : A

#

The difference between @iA and #A is that while @iA searches for an antecedent of type A in a given
local context via anaphora resolution, #A introduces an object of type A via the following rule for
#-elimination:

(18) #-elimination: Let ϕ be a term containing #A as a subterm, where A is a type in which no
@-term nor #-term occurs. Suppose that we have a derivation of the form on the left, where ϕ : t
is the first node that has type t and depends on #A : A, i.e., no other judgement of the form ψ : t
appears in D2. Then the derivation can be transformed into the one on the right:

.... D1

A : t
#A : A

#

.... D2

ϕ : t

.... D1

A : t

[u : A]n.... D2[u/#A]
ϕ[u/#A] : t

(u :A)× ϕ[u/#A] : t
ΣF, n

By this rule, if there is a branch containing an underspecified term #A, one can close it by taking the
existence of an object of type A as part of the asserted proposition represented as a Σ-type of the form
(u :A)× ϕ[u/#A], where ϕ[u/#A] is the expression obtained by replacing the occurrence of #A in ϕ
by u. In the case of (16), the initial derivation shown on the left in (19) is transformed to the derivation
on the right by #-elimination, so we end up with the same representation as (6).

(19)

[x : e]1

man(x) : t

man∗ : t
ΣF, 1

#man∗ : man∗
#

π1(#man∗) : e
ΣE

enter(π1(#man∗)) : t

[x : e]1

man(x) : t

man∗ : t
ΣF, 1

[u : man∗]1

π1(u) : e
ΣE

enter(π1(u)) : t

(u : man∗)× enter(π1(u)) : t
ΣF, 1

Thus #-elimination allows us to eliminate a #-term from a type and rewrite it to a Σ-type. For notational
convenience, we write this transformation as enter(π1(#man∗)) # (u : man∗)× enter(π1(u)).

It should be clear from the above that DTS crucially makes use of underspecification in the inter-
pretations of both pronouns and indefinites. We make the following two assumptions about the way
underspecified terms are interpreted in the course of semantic composition:

4In this rule, #A : Amust be understood as an open assumption depending onA : t. In the sequent-style natural deduction,
such a rule can be formulated more explicitly.

5

(20) a. Ban on the duplication of underspecified terms: In a well-formed semantic representation
of DTS, an underspecified @-term with the same index can appear at most once.

b. Normal form requirement on compositionally derived semantic terms: At each step of
semantic composition, the semantic term assigned to the derived linguistic expression is in
β-normal form.

These restrictions can be thought of as embodying a general requirement that underspecification reso-
lution is not totally unconstrained but is affected by the form of the sentences in which underspecified
expressions occur. As such, these restrictions play key roles in the analysis of scope parallelism in the
next section.

3 Analysis of the binding/scope parallelism

With the treatment of anaphora and indefinites introduced above, the interpretive parallelism exemplified
by (1) and (2) falls out automatically as a consequence of the way underspecification is resolved in DTS.
Unlike previous proposals (Asudeh and Crouch 2002; Steedman 2012), no extra assumption is needed
beyond the simple restriction (20) on underspecification resolution introduced in the previous section.

We start with the pronominal binding case. To avoid the issue of possessives (which is itself a
complex problem), we illustrate the analysis with the following example involving an embedded clause:

(21) Every Englishman thinks, and every American believes, that he is a genius.

One technical issue that needs to be addressed first is how to obtain the bound reading for the pronoun
in the RNR’ed position to begin with. Note that given the prohibition on the duplication of underspecified
terms in DTS, the simple derivation for (21) in (22) cannot yield the bound reading for the pronoun.5

(22)

λσ.σ(every ◦
Englishman);A

eng; S�(S�NP)

[
ϕ2;
y;
NP

]2 thinks;
think; VP/S′

[ϕ1;
p; S′

]1

/E
thinks ◦ϕ1; think(p); VP

/E
ϕ2 ◦ thinks ◦ϕ1; think(p)(y); S

�I2
λϕ2.ϕ2 ◦ thinks ◦ϕ1;
λy.think(p)(y); S�NP

�E
every ◦ Englishman ◦ thinks ◦ϕ1;A

eng(λy.think(p)(y)); S
�I1

every ◦ Englishman ◦ thinks;
λp.

A

eng(λy.think(p)(y)); S/S′

and;
λFλGλp.
(v :G(p))
×F (p);

(X\X)/X

...
every ◦ American ◦
believes;

λq.

A

am(λy.
believe(q)(y));

S/S′
/E

and ◦ every ◦ American ◦ believes;
λGλp.(v :G(p))
× A

am(λy.believe(p)(y));
(S/S′)\(S/S′)

\E
every ◦ Englishman ◦ thinks ◦ and ◦ every ◦ American ◦ believes;
λp.(v :

A

eng(λy.think(p)(y)))× A

am(λy.believe(p)(y)); S/S′

that ◦ he ◦
is ◦ a ◦
genius;

gen(@1e);
S′

/E
every ◦ Englishman ◦ thinks ◦ and ◦ every ◦ American ◦ believes ◦ that ◦ he ◦ is ◦ a ◦ genius;
λp[(v :

A

eng(λy.think(p)(y)))× A

am(λy.believe(p)(y))](gen(@1e)); S. .
λp[(v : (u :eng∗)→ think(p)(π1(u)))× ((u :am∗)→ believe(p)(π1(u)))](gen(@1e))

Here, for the pronoun in the RNR’ed S′ to be bound by the subject quantifiers in each conjunct, the term
gen(@1e) first needs to be substituted for variable p in each conjunct (from where the antecedent is
syntactically visible, given the definition of anaphora resolution from section 2), but this is precisely the
move that is prohibited by the ‘no duplication of underspecified term’ restriction.

This means that, in order to obtain the bound reading, we need a slightly more complex syntactic
derivation involving (syntactic) type-lifting of both the RNR’ed material and the conjuncts. The effect in
a nutshell is that, via type-lifting, we can ensure enough of the ‘derivational structure’ of the sentence to
be present in the (beta-unreduced) semantic translation to identify the ‘possible binder’ of the pronoun
before all the material is actually composed in the (surface) syntax. The derivation for the bound pronoun
reading for (21) thus goes as in (23).

5We adopt the abbreviation

A

eng =def λP.[(u : eng∗) → P (π1(u))], etc. These abbreviations are unpacked at the end of
the derivation (via the step designated by the dotted line, which is not part of the syntactic derivation) for clarity of presentation.

6

(23)

λσ.σ(every ◦ Englishman);A

eng; S�(S�NP)

[
ϕ3;
x; NP

]3 thinks; think; VP/S′ [ϕ1;P; (VP/S′)\VP]1
\E

thinks ◦ϕ1; P(think); VP
\E

ϕ3 ◦ thinks ◦ϕ1; P(think)(x); S
�I3

λϕ3.ϕ3 ◦ thinks ◦ϕ1; λx.P(think)(x); S�NP
�E

every ◦ Englishman ◦ thinks ◦ϕ1;

A

eng(λx.P(think)(x)); S
/I1

every ◦ Englishman ◦ thinks; λP.

A

eng(λx.P(think)(x)); S/((VP/S′)\VP)

...
every ◦ Englishman ◦ thinks ◦ and ◦
every ◦ American ◦ believes;

λP.(v :

A

eng(λx.P(think)(x)))
×(A

am(λx.P(believe)(x)));
S/((VP/S′)\VP)

[
ϕ5;
x; NP

]5 [ϕ4;R; VP/S′]4 that ◦ he ◦ is ◦ a ◦ genius; gen(@1e); S′
/E

ϕ4 ◦ that ◦ he ◦ is ◦ a ◦ genius; R(gen(@1e)); VP
\E

ϕ5 ◦ϕ4 ◦ that ◦ he ◦ is ◦ a ◦ genius; R(gen(@1e))(x); S
�I5

ϕ4 ◦ that ◦ he ◦ is ◦ a ◦ genius; λx.R(gen(@1e))(x); VP
�I4

that ◦ he ◦ is ◦ a ◦ genius; λRλx.R(gen(@1e))(x); (VP/S′)\VP
/E

every ◦ Englishman ◦ thinks ◦ and ◦ every ◦ American ◦ believes ◦ that ◦ he ◦ is ◦ a ◦ genius;
λP[(v :

A

eng(λx.P(think)(x)))× (

A

am(λx.P(believe)(x)))](λRλx.R(gen(@1e))(x)); S. .
λP[(v : (u :eng∗)→P(think)(π1(u)))× ((u :am∗)→P(believe)(π1(u)))](λRλx.R(gen(@1e))(x))

Type checking for the semantic representation involves a branch to check the type of λRλx.R(gen(@1e))(x),
which is shown on the left below. Here the assumption e true follows from the hypothesis x : e and
thus by @-elimination we can replace @1e with x throughout the derivation.

(24)

[x : e]2

e true
@1e : e

@

gen(@1e) : t [x : e]2

R(gen(@1e))(x) : t
[R : t→ e→ t]1

λx.R(gen(@1e))(x) : e→ t
ΠI, 2

λRλx.R(gen(@1e))(x) : (t→ e→ t)→ e→ t
ΠI, 1

[x : e]2

gen(x) : t [x : e]2

R(gen(x))(x) : t
[R : t→ e→ t]1

λx.R(gen(x))(x) : e→ t
ΠI, 2

λRλx.R(gen(x))(x) : (t→ e→ t)→ e→ t
ΠI, 1

Note crucially that here the underspecification for the pronoun term @1e is resolved before the meaning
contribution of the RNR’ed S′ which contains it as a subterm is copies into each conjunct via β-reduction.
The underspecified term identifies the (λ-bound) subject x of the upstairs clause as its antecedent. After
@-elimination and β-reduction, we obtain the final translation in (25), which corresponds to the parallel
bound reading for the sentence.
(25) λP[(v : (u :eng∗)→P(think)(π1(u)))× ((u :am∗)→P(believe)(π1(u)))](λRλx.R(gen(x))(x))

�β ((u : eng∗)→ think(gen(π1(u)))(π1(u))))× ((u : am∗)→ believe(gen(π1(u)))(π1(u))))

For the parallel free pronoun reading, the simpler derivation in (22) would suffice. Since β-reduction
is prohibited before underspecification resolution, type checking for the underspecified term searches
for an appropriate antecedent in the global context (consisting of the previous linguistic discourse and
extra-linguistic information). For concreteness, we assume that the previous utterance was Bobby Fisher
is a famous American chess player, and that the judgement bf : e is in the global context. The previous
sentence thus provides an antecedent and @1e in (22) is bound to bf. By β-reducing the term after
anaphora resolution, we obtain (26), where the pronoun refers to Bobby Fisher in each conjunct.

(26) ((u : eng∗)→ think(gen(bf)(π1(u))))× ((u : am∗)→ believe(gen(bf))(π1(u))))

The quantifier scope case is somewhat different at the level of technical implementations, but at the
broader conceptual level, is essentially similar to the pronoun case in that interpretive parallelism falls
out from the constraints pertaining to underspecification resolution in the derivation of compositional
semantics. Note first that, unlike the case for @-terms, we don’t need to ensure that the derivationally
obtained local context is ‘large enough’ to contain the ‘antecedent’. Thus, the following simple derivation
suffices to yield both the wide-scope and narrow-scope readings for the RNR’ed indefinite:

(27)
...

every ◦ boy ◦ admires ◦ and ◦ every ◦ girl ◦ hates;
λx.(v :

A

boy(λy.admire(x)(y)))× (

A

girl(λy.hate(x)(y))); S/NP
some ◦ saxophonist;
#sax∗; NP

every ◦ boy ◦ admires ◦ and ◦ every ◦ girl ◦ hates ◦ some ◦ saxophonist;
λx[(v :

A

boy(λy.admire(x)(y)))× (

A

girl(λy.hate(x)(y)))](#sax∗); S
. .
λx[(v : (u :boy∗)→ admire(x)(π1(u)))× ((u :girl∗)→ hate(x)(π1(u)))](#sax∗)

7

Since #-terms do not carry indices, in the case of indefinites, interpretive parallelism follows not
from the ban on duplicating indexed underspecified terms (whose role was to ensure ‘construal identity’
in anaphora resolution), but from an interaction of the normal form requirement for derived semantic
terms and the locality requirement on underspecification resolution encoded in the #-elimination rule
(18). Specifically, there are two possible ways for resolving underspecification for the #-term in the
semantic translation for the sentence obtained at the final line of (27). If we resolve underspecification
before β-reducing the term, we obtain the wide scope reading for the indefinite as in (28):

(28) λx[(v : (u :boy∗)→ admire(x)(π1(u)))× ((u :girl∗)→ hate(x)(π1(u)))](#sax∗)
 # (t : sax∗)× λx[(v : (u :boy∗)→ admire(x)(π1(u)))× ((u :girl∗)→ hate(x)(π1(u)))](π1(t))

→β (t : sax∗)× [(v : (u :boy∗)→ admire(π1(t))(π1(u)))× ((u :girl∗)→ hate(π1(t))(π1(u)))]

If, on the other hand, we first β-reduce the term and then resolve underspecification, the Σ-type that
has the existential force associated with the indefinite is introduced in the smallest local context in each
conjunct, via (18). In this case, the distributive, narrow scope reading obtains for the sentence.

(29) λx[(v : (u :boy∗)→ admire(x)(π1(u)))× ((u :girl∗)→ hate(x)(π1(u)))](#sax∗)
→β (v : (u :boy∗)→ admire(#sax∗)(π1(u)))× ((u :girl∗)→ hate(#sax∗)(π1(u)))

 # (v : (u :boy∗)→ (t : sax∗)× admire(π1(t))(π1(u)))× ((u :girl∗)→ (t : sax∗)× hate(π1(t))(π1(u)))

One may wonder at this point why we impose the normal form requirement on compositionally
derived semantic terms. To see why this requirement is needed, assume that no β-reduction takes place in
the course of the derivataion, and, (as above) that once the semantic representation for the whole sentence
is obtained, there is no restriction on the order of β-reduction and underspecification resolution for #-
terms. The following translation would then be assigned to the sentence, and via the underspecification
resolution in (30), a mixed scope reading would incorrectly be predicted to be available:

(30) λPλQλx[(v :P (x))×Q(x)](λy
A

boy(admire(y)))(λz
A

girl(hate(z)))(#sax∗)
→β (v :

A
boy(admire(#sax∗)))× λz[A

girl(hate(z))](#sax∗)
 # (v :

A

boy((t : sax∗)× admire(π1(t))))× ((t : sax∗)× λz[A

girl(hate(z))](π1(t)))
→β (v :

A

boy((t : sax∗)× admire(π1(t))))× ((t : sax∗)× A

girl(hate(π1(t))))

In short, assumption (20b) has the effect of eliminating unnecessary ‘traces’ of derivational history to
make unavailable intermediate scope positions that do not reflect the surface form of the sentence.

Our proposal treats indefinites as underspecified terms and universals as true quantifiers, and in this
respect, resembles the approach by Steedman (2012). Unlike Steedman’s approach, which interleaves
underspecification resolution with CCG syntactic combinatorics, our approach separates semantic un-
derspecification resolution from syntax. Nonetheless, the similarity between the two is striking, and
it is interesting to note that they both predict that mixed readings are available for examples involving
indefinites as subjects and a universal quantifier in the RNR’ed position, such as the following:

(31) Some boy loves, and some girl detests, every saxophonist.

The judgments are somewhat subtle due to the independent pragmatic preference for parallel readings,
but we follow Steedman (2012) in taking this prediction to be essentially correct.

One translation that our analysis can assign to (31) is the following:

(32) λP[(u : (λy[P(λx.love(x)(y))](#boy)))× λz[P(λx.hate(x)(z))](#girl)](

A

sax)

Here, β-conversion for the λ-bound variables y, z and P can take place in any order, and the relative
scope between the subject indefinites and the object universal depends on the order of application of
β-conversion and underspecification resolution for the two terms #boy and #girl.

8

4 Conclusion and outlook

In this paper, we have proposed an analysis of the interpretive parallelism for anaphora and scope in the
so-called Geach sentences involving right-node raising. In the proposed analysis, the parallel interpreta-
tion requirement on pronouns and indefinites in the shared right periphery is a consequence of the way
underspecified terms are interpreted in the underspecification language that mediates the compositional
semantic representation straightforwardly derived from the syntactic derivation and the fully resolved
semantic representation that explicitly encodes all the relevant logical entailment relations. The natural
next question is whether the present approach can be extended to the ellipsis cases. Preliminary results
suggest a positive answer to this question, but a detailed analysis is a task for future research.

Acknowledgments

This work was supported by JSPS KAKENHI JP15K16732, the NINJAL collaborative research project
’Cross-linguistic Studies of Japanese Prosody and Grammar’ and the OSU College of the Arts and Sci-
ences Larger Grant.

References

Asudeh, A. and R. Crouch (2002). Derivational parallelism and ellipsis parallelism. In L. Mikkelsen and
C. Potts (Eds.), WCCFL 21 Proceedings, Somerville, MA, pp. 1–14. Cascadilla Press.

Bekki, D. (2014). Representing anaphora with dependent types. In N. Asher and S. Soloviev (Eds.),
Logical Aspects of Computational Linguistics 2014, Heidelberg, pp. 14–29. Springer.

Bekki, D. and K. Mineshima (2017). Context-passing and underspecification in Dependent Type Seman-
tics. In S. Chatzikyriakidis and Z. Luo (Eds.), Modern Perspectives in Type-Theoretical Semantics,
pp. 11–41. Heidelberg: Springer.

Fox, D. (2000). Economy and Semantic Interpretation. Cambridge, Mass.: MIT Press.
Geach, P. T. (1972). A program for syntax. In D. Davidson and G. H. Harman (Eds.), Semantics of

Natural Language, pp. 483–497. Dordrecht: D. Reidel.
Hirschbühler, P. (1982). VP deletion and across-the-board quantifier scope. In J. Pustejovsky and P. Sells

(Eds.), Proceedings of the Twelfth Annual Meeting of the North Eastern Linguistic Society, pp. 132–
139. University of Massachusetts at Amherst.

Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and Philosophy 22(2), 117–184.
Kubota, Y. and R. Levine (2012). Gapping as like-category coordination. In D. Béchet and A. Dikovsky

(Eds.), Logical Aspects of Computational Linguistics 2012, Heidelberg, pp. 135–150. Springer.
Kubota, Y. and R. Levine (2015). Against ellipsis: Arguments for the direct licensing of ‘non-canonical’

coordinations. Linguistics and Philosophy 38(6), 521–576.
Martin-Löf, P. (1984). Intuitionistic Type Theory. Bibliopolis.
Puthawala, D. (2018). Stripping isn’t so mysterious, or anomalous scope, either. In A. Foret, G. Kobele,

and S. Pogodalla (Eds.), Formal Grammar 2018, pp. 102–120.
Steedman, M. (2012). Taking Scope. Cambridge, Mass.: MIT Press.

9

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 10–18
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Translating a Fragment of Natural Deduction System for Natural
Language into Modern Type Theory

Ivo Pezlar
The Czech Academy of Sciences, Institute of Philosophy

pezlar@flu.cas.cz

Abstract

In this paper, we investigate the possibility of translating a fragment of natural deduction system
(NDS) for natural language semantics into modern type theory (MTT), originally suggested by Luo
(2014). Our main goal will be to examine and translate the basic rules of NDS (namely, meta-rules,
structural rules, identity rules, noun rules and rules for intersective and subsective adjectives) to MTT.
Additionally, we will also consider some of their general features.

1 Introduction

In this paper, we will examine two proof-theoretic approaches to natural language semantics. Specifi-
cally, we will explore the possibility of embedding natural deduction systems (NDS, Francez 2015) into
modern type theory (MTT, Chatzikyriakidis and Luo 2017b), originally hinted at by Luo (2014).

Our main goal will be to examine and try to translate the basic rules of NDS (namely, meta-rules,
structural rules, identity rules, noun rules and rules for intersective and subsective adjectives) to MTT.
Additionally, we will also consider some of their general features.

2 NDS and MTT: A Preliminary Overview

MTT is closely related to Martin-Löf’s constructive type theory (Martin-Löf 1984) and it fully utilizes
its rich type structures (dependent types, inductive types, . . .). NDS is more similar to the standard
logical approach based on Gentzen’s natural deduction. In practice, this means that with NDS we are
devising a purely proof-theoretic framework, but with MTT we are allowed more liberties due to its
type-theoretic nature. This earned MTT some criticism from Francez, who regards MTT as ‘a model-
theoretic semantics, but one constrained by proof-theoretic constraints’ (see Francez and Dyckhoff 2010,
pp. 474–475). This point was not contested but rather embraced by Luo (see Luo 2014), who views his
MTT as having both proof-theoretic and model-theoretic features (see Luo 2014, pp. 177–178).

The choice of a base system also dictates what will be the main vehicles for content: in MTT we
work with judgements of the form a : A, where a is a so-called proof object (proof term, witness,
justification, . . .) and A a proposition/type, while in NDS we work with formulas (or (pseudo-)sentence
in the case of natural language fragment). From a technical standpoint, probably the most important
difference between judgements and formulas is that judgements have effective procedural content, i.e.,
they are decidable. More specifically, given a judgement a : A we should be always able to compute
whether a is an object of the type A. Consider e.g., the judgement 1 : Nat, i.e., the judgement that 1 is
a natural number. The number 1 is in constructive type theories usually defined simply as s(0) : Nat,
i.e., as the successor of 0. This form alone tells us that 1 is indeed a natural number, since in MTT all
natural numbers are either 0 or have the form s(a) where a is a natural number.1 This is not the case with

1This follows from the introduction rules for natural numbers. For a proper definition of natural numbers in MTT, see e.g.,
Martin-Löf (1984).

10

formulas, which are generally undecidable. For example, suppose that a ∈ P is a formula of predicate
logic capturing the fact that a has some property P , more specifically that a is in the set P . Whether
some element is a member of a set or not is, however, generally not decidable. Consequently, a ∈ P
is undecidable as well.2 Other points of discord could be found as well. For example, if our translation
of NDS into MTT succeeds, we lose some of the nice ‘philosophical’ properties of NDS (e.g., fewer
ontological commitments).3 On the other hand, if we are solely interested in formal semantics, this does
not need to concern us.

So far we have discussed only the differences between NDS and MTT, but we can identify important
similarities as well. The key intuition of proof-theoretic semantics that meanings are constituted via
canonical proofs4 is, of course, present in both systems. As Francez states:

For compound sentences, sentential meanings are defined as the (contextualised) collection of canon-
ical derivations [. . .]. This is very much in the spirit of the modern approach ‘propositions as types’
(for example, Martin-Löf 1984), the inhabitants of a type being the the proofs [. . .]. (Francez 2015,
p. 46)

As expected, both systems rely on the standard scheme of introduction rules mirrored by the corre-
sponding elimination rules. MTT adds to this mix, however, also formation rules and computation rules
(also called equality rules), which can be understood as rules for assembling well-formed terms and for
term reductions, respectively. Both frameworks also avoid the Fregean function-argument form of predi-
cation (F (a)) and move towards the more classical subject-predicate predication (S is P) reminiscent of
Aristotelian logic. More specifically, NDS utilizes pseudo-sentences of the general form a isa A, while
MTT operates with judgements of the general form a : A. NDS also relies on the so-called reification of
meaning, which puts it apart from most PTS approaches, but closer to MTT:

The approach I am proposing in this book is rather to conceive of PTS as providing an explicit
definition of meanings by meaning-conferring rules. Thus, if ξ is some meaning bearing expression,
PTS should provide some proof-theoretic semantic value of the form [[ξ]] =df. · · · as the meaning of
ξ. I refer to this semantic value as a reified meaning. (Francez 2015, p. 7)

This reification is similar to MTT and its underlying conception of propositions as sets of proof
objects. Assume that we have two proof objects λx.x and λy.y for the proposition A ⊃ A. These two
proof objects differ only in the names of bound variables, i.e., they are α-equivalent. In MTT, we can
express all this as λx.x : A ⊃ A, λy.y : A ⊃ A, and finally λx.x =α λy.y : A ⊃ A. Compare this
with NDS and its expression [[A ⊃ A]]Ic denoting the set of all I-canonical proofs of A ⊃ A. Since
λx.x and λy.y are essentially understood as reified proofs or codes for proofs, we can see that both
λx.x =α λy.y : A ⊃ A and [[A ⊃ A]]Ic capture a similar intuition.

3 From NDS to MTT

In our translation, we start with meta-rules (3.1), then we consider identity rules (3.2), rules for proper
names (3.3), and finally we will examine rules for intersective and subsective adjectives (3.4). As we shall
see, all the discussed NDS rules can be embedded into MTT semantics and justified either as admissible
rules or derivable rules.

The translation method we utilize is based on the suggestion made by Luo (2014). Generally speak-
ing, the translation method has two steps: 1) identifying the suitable expressions of NDS for the appli-
cation of translation function [[]] (a syntactic step), and 2) finding the appropriate translations in MTT

2Many other distinctions between formulas and judgements can be identified, but since it is a topic beyond the scope of this
paper, we will not pursue it further.

3See Francez (2015), p. 9.
4A proof is canonical if and only if it ends with an application of an introduction rule. We call such proof an I-canonical

proof (see Def. 1.5.8, Francez 2015, p. 36). In the framework of MTT, this corresponds to proof objects being in a canonical
form, i.e., a form given to them by the corresponding introduction rules.

11

(a semantic step). As an simple example, suppose we have an expression Alice isa student, which is
a proper sentence of NDS, hence we can apply the translation function [[Alice isa student]]. As the
corresponding translation in MTT, we get the judgement Alice : Student. Although the translation
is not always as straightforward as Luo’s quote might suggest, we will show that in general it can be
successfully deployed for all the basic rules (meta-rules, identity rules, noun rules, adjective rules).

3.1 Meta-Rules

The meta-rules for NDS (see below) are intended to confer meaning of sentences from the natural lan-
guage fragment containing only in/transitive verbs, determiner phrases with a singular noun, determiners
‘every’ and ‘some’ and a copula ‘is’ (see Francez 2015). The rules for determiners come in pairs of
introduction rules (I-rules) and (generalized) elimination rules (E-rules) and they behave in accordance
with the standard intuitionistic explanations of the corresponding quantifiers.

(Ax)
Γ, S ` S

Γ, j isa X ` S[j]
(eI)

Γ ` S[(every X)]

Γ ` j isa X Γ ` S[j]
(sI)

Γ ` S[(some X)]

Γ ` S[(every X)] Γ ` j isa X Γ, S[j] ` S′
(eE)

Γ ` S′

Γ ` S[(some X)] Γ, j isa X,S[j] ` S′
(sE)

Γ ` S′

where j is fresh for Γ, S[every X] in (eI), and for S[some X], S′ in (sE).5

First, some additional explanations are in order: j, X , and S are meta-variables for individual param-
eters (determiner phrases, . . .), nouns (including compound nouns), and (affirmative) pseudo-sentences,6

respectively, while isa serves as a copula. Furthermore, expression of the form S[j] means that j occupies
a determiner phrase position in the sentence S. every and some are determiners (for more, see Francez
2015).

First, we present all the translated variants for meta-rules, then we add comments and examples.

(Ax)′
[[Γ]], [[S]] ` [[S]]

[[Γ]], j : [[X]] ` [[S[j]]]
(eI)′

[[Γ]] ` [[S[∀([[X]])]]]

[[Γ]] ` j : [[X]] [[Γ]] ` [[S[j]]]
(sI)′

[[Γ]] ` [[S[∃([[X]])]]]

Γ ` [[S[∀([[X]])]]] [[Γ]] ` j : [[X]] [[Γ]], [[S[j]]] ` [[S′]]
(eE)′

[[Γ]] ` [[S′]]

[[Γ]] ` [[S[∃([[X]])]]] [[Γ]], j : [[X]], [[S[j]]] ` [[S′]]
(sE)′

[[Γ]] ` [[S′]]

Comments. The rule (Ax)′ is justified by the structural rule assump from MTT. The rules (eI)′ and
(sI)′ are justified by the rules Π-intro and Σ-intro (or more precisely, via ∀-intro and ∃-intro that are
based upon them), respectively. Analogously for the rules (eE)′ and (sE)′. The context Γ from NDS,
i.e., a finite list of formulas, is translated into a list of judgements. More specifically, in MTT, Γ ` a : A
is a hypothetical judgement properly unpacked as a1 : A, . . . , an : A ` a : A where n is the number
of assumptions in the context. The copula ‘isa’ is used for predication in NDS. In MTT, predication is
achieved with the use of colon ‘:’, so translating j isa X as j : [[X]] seems as a good fit. This decision
dictates the rest of the translation: if we replace isa with :, then the left-hand side has to be some object
and the right-hand side has to be its type. The most straightforward way to treat the determiner every

5Since we will not be interested here in the issue of quantifier scope ambiguity, we omit the corresponding explicit scope

indicators from the rules. For example, the rule (sI) in its fully disclosed variant looks like
Γ, j isa X ` S[j]

(eI)
Γ ` S[(every X)r(S[j]+1)]

.
6A pseudo-sentence (of the object language) is a schematic sentences with occurrences of at least one parameter, e.g.,

j isa X . Example of a (pseudo-)sentence might be e.g., j isa student.

12

seems to be simply to take it as the universal quantifier ∀, which is defined in MTT via the Π type.7 In
other words, we will capture S[(every X)] as sentential function over individual parameters, i.e., as an
indexed family of types over the objects of type X . Analogously for the determiner some that can be
treated via the Σ type.8

Examples. The following derivation from NDS:

Γ, j isa girl ` j smiles
(eI)

Γ ` every girl smiles

gets as its MTT variant the following derivation:

Γ, j : Girl ` s(j) : Smiles(j)
(eI)′

Γ ` λj.s(j) : (∀j : Girl)Smiles(j)

Note that in MTT, the noun girl is captured as the type Girl and the predicate smiles as the dependent
type Smiles(j). Furthermore, note that the relationship between j and S in NDS, i.e., S[j], is captured
in MTT by interpreting S[j] as a type of sentence (proposition) depending on the assumption j : Girl.
We can also see that this formalization is in accord with Francez’s own approach:

A proof of S[(every X)] is a function mapping each proof of j isa X (for an arbitrary fresh parameter
j) into a proof of S[j]. (Francez 2015, p. 247)

On our approach, the proof of (∀j : Girl)Smiles(j) is the proof object λj.s(j) which is a function (or
rather a function name) that takes a proof object j and returns a proof object s(j).9

As a more complicated example with a transitive verb, the NDS derivation:

k isa boy

Γ, j isa girl ` j loves k
(eI)

Γ ` every girl loves k
(sI)

Γ ` every girl loves some boy

becomes: k : Boy

Γ, j : Girl, y : A ` l(j, y) : Loves(j, y)
(eI)′

Γ, y : A ` λj.l(j, y) : (∀j : Girl)Loves(j, y)
(sI)′

Γ ` (k, λj.l(j, y)) : (∃k : Boy)(∀j : Girl)Loves(j, k)

And a derivations such as: Γ,k isa boy ` j loves k
(eI)

Γ ` j loves every boy
becomes:

Γ, k : Boy, x : A ` l(x, k) : Loves(x, k)
(eI)′

Γ, x : A ` λk.l(x, k) : (∀k : Boy)Loves(x, k)
.

3.2 Identity Rules

In the natural language fragment, Francez works with a set of rules determining the behaviour of the
copula is, which is treated as ‘a disguised identity’ (Francez 2015, p. 250). Naturally, it behaves in the
same way. The collection of rules is as follows:10

Γ, S[j] ` S[k]
(isI)

Γ ` j is k

Γ ` j is k Γ ` S[j]
(isÊ)

Γ ` S[k]
(is/r)

Γ ` j is j
Γ ` j is k

(is/s)
Γ ` k is j

7Π type is essentially a Cartesian product of a family of sets.
8NDS also utilizes the structural rules of contraction and weakening, which correspond to multiple and vacuous discharge

of assumptions in MTT.
9Note that since we are capturing j isa X as a judgement and not a proposition, it would make no sense speaking about its

proof objects.
10We skip over the generalized variant (isE) (see Francez 2015, p. 250) and use only the derived version (isÊ) presented

above.

13

Γ ` j is k Γ ` k is l
(is/t)

Γ ` j is l

Before we approach the translation of these rules, we have to address that in MTT there are two
kinds of identity: propositional (or extensional) and judgemental (intensional, definitional). Probably
the most important difference is that the judgemental identity, represented as a = b : A, is decidable,
while the propositional identity, usually written as Id(A, a, b), is not.11 So what type of identity describe
the rules above? If their were describing judgemental identity, then the translation of the reflexivity,
symmetry and transitivity would be straightforward. For example, the MTT variant of (is− sym) would
be: a = b : A symm

b = a : A
, etc. However, given the fact that the identity rules of NDS have dedicated I- and

E-rules, they seem to be describing propositional identity. In MTT, we cannot introduce judgemental
identity in a way we would introduce e.g., some logical operator.12

The translated variants would be:

[[Γ]], j = k : A, [[S[j]]] ` [[S[k]]]
(isI)′

[[Γ]] ` Id(A, j, k)

[[Γ]] ` Id(A, j, k) [[Γ]] ` [[S[j]]]
(isÊ)′

[[Γ]] ` [[S[k]]]

(is/r)′
[[Γ]] ` Id(A, j, j)

[[Γ]] ` Id(A, j, k)
(is/s)′

[[Γ]] ` Id(A, k, j)

[[Γ]] ` Id(A, j, k) [[Γ]] ` Id(A, k, l)
(is/t)′

[[Γ]] ` Id(A, j, l)

where A is the type of the objects j and k that we would use to represent the individual parameters. For
example, if we have j isa girl in NDS, then we assume that j : Girl in MTT.

Comments. Validity of the (isI)′ rule follows from the fact that, in general, from a = b : A we can
deduce refl(A, a) : Id(A, a, b), which can be derived as a rule from Id-intro using substitution and set
equality rules:

Γ, x : A ` Id(A, a, x) : type Γ ` a = b : A

Γ ` Id(A, a, a) = Id(A, a, b)
Γ ` a : A

Γ ` refl(A, a) : Id(A, a, a)

Γ ` refl(A, a) : Id(A, a, b)

The rule (is − refl)′ is justified by the Id-intro rule. The rule (isÊ)′ is sanctioned by the Id-elim
rule. With the constant refl provided by the Id-intro rule, we can also prove symmetry and transitivity
of the relation Id and supply the corresponding derived rules for symmetry:13

d : Id(A, a, b)

symm(d) : Id(A, b, a)

d : Id(A, a, b) e : Id(A, b, c)

trans(d, e) : Id(A, a, c)

which in turn justify the rules (is/s)′ and (is/t)′, respectively.

3.3 Proper Names Rules

The I- and E-rules for proper names, which are ranged over by meta-variables N,M , are specified as
follows (see Francez 2015, p. 251):

Γ ` j is N Γ ` S[j]
(nI)

Γ ` S[N]

Γ ` S[N] Γ, j is N,S[j] ` S′
(nE)

Γ ` S′

11As a concrete example of this distinction, consider e.g., the difference between numbers 5 + 7 and 12. While their are both
extensionally equal (they both denote the number 12), they are not intensionally equal (they do not denote it in the same way).
Alternatively, we can view this distinction as a difference between abstract objects and linguistic terms.

12Recall that a = b : A is one of the basic kinds of MTT judgements.
13For proofs and definitions of the constants symm and trans, see e.g., Nordström et al. (1990).

14

The translated variants will become:

[[Γ]] ` Id(A, j, n) [[Γ]] ` [[S[j]]]
(nI)′

[[Γ]] ` [[S[n]]]

[[Γ]] ` [[S[n]]] [[Γ]], Id(A, j, n), [[S[j]]] ` [[S′]]
(nE)′

[[Γ]] ` [[S′]]

Comments. Similarly to the case above, we capture j is N via propositional identity. Furthermore,
note that (nI)′ is essentially just a special case of Id-elim rule from MTT. More generally, it is an
instance of the Leibniz’s principle of the indiscernibility of identicals, which can be in MTT expressed
as follows:

(∀x : A)(∀y : A)(∀p : Id(A, x, y))B(x) ⊃ B(y).

Informally, it states that whenever we have two identical names, we can freely swap them in any sentence
they appear. For its proof using the Id-elim rule, see e.g., Martin-Löf (1984). The (nE)′ rule is also
justifiable via Id-elim.

Examples. As an example, we construct the derivation (8.3.35) (see Francez 2015, p. 251) establish-
ing that:

Rachel isa girl, every girl smiles ` Rachel smiles

which under our translation amounts to:

Rachel : Girl, λx.s(x) : (∀x : Girl)Smiles(x) ` s(Rachel) : Smiles(Rachel)

It can be derived as follows:

Rachel : Girl

Id(Girl, r, Rachel)

r : Girl λx.s(x) : (∀x : Girl)Smiles(x)
(eÊ)′

s(r) : Smiles(r)
(nI)′

s(Rachel) : Smiles(Rachel)
(nE)′

s(Rachel) : Smiles(Rachel)

3.4 Adjectives

3.4.1 Intersective Adjectives

In this section, we examine and compare NDS and MTT approaches to intersective adjectives. We will
take intersective adjectives as specified by adhering to the following two kinds of rules:

a is Adj Noun
intA1a is Adj

a is Adj Noun
intA2a is Noun

For example,

a is black car intA1a is black
a is black car intA2a is car

Hence, intersective adjectives are those adjectives that allow inferring from ‘a is Adj Noun’ that the
underlying object of predication a possesses both its constituents separately: the noun Noun, i.e., ‘a is
Noun’, as well as the intersective adjective Adj, i.e., ‘a is Adj’. Observe that the compound Adj Noun
of intersective adjective and noun behaves similarly to the logical connective conjunction in standard
natural deduction. More specifically, in natural deduction, conjunction has associated two elimination
rules: A ∧B ∧1-E

A
and A ∧B ∧2-E

B
. These two rules correspond in their behaviour to rules intA1

and intA1. Elimination rules for conjunction allow deducing both its conjuncts A and B separately, and,
analogously, rules for intersective adjectives allow deducing both its parts Adj and Noun. Hence, we
could say that intersective adjectives preserve inferential content. We will utilize this fact later.

In NDS, intersective adjectives appear within ground pseudo-sentences of the form14 j is A where A
is a meta-variable for intersective adjective (see above). The corresponding rules are:

14Ground pseudo-sentences are pseudo-sentences that contain only parameters in every determiner phrase position. For
example, j smiles. For more about ground pseudo-sentences, see Francez (2015), p. 245.

15

Γ ` j isa X Γ ` j is A
(adjI)

Γ ` j isa A X

Γ ` j isa A X Γ, j isa X, j is A ` S′
(adjE)

Γ ` S′

From the rule (adjE) we can obtain the following derived rules (see Francez 2015, p. 252):

Γ ` j isa A X
(adjÊ1)

Γ ` j isa X

Γ ` j isa A X
(adjÊ2)

Γ ` j is A

It is easy to check that these two rules correspond to our general rules intA1, intA2 for intersective
adjective and, consequently, to conjunction elimination rules. Furthermore, it now becomes clear that
the original rule (adjE) corresponds to the generalized conjunction elimination rule (see e.g., Negri et al.

2001): A ∧B
[A ∧B]

C ∧-GE
C

. Before we get to the translation of the above rules, we will first discuss

how adjectives are treated in MTT. Intersective adjectives are generally analyzed with Σ type, i.e., the
same type that is also used for defining conjunction.15 For example, the expression ‘black car’ would be
captured as the type: (Σx : Car)Black(x), i.e., the type of cars that are black (Black(x) is considered
as a property/propositional function). The corresponding proof object is a pair (x, y) such that x : Car
and y : Black(x), i.e., y is a justification (proof object) that x is black. Hence, common nouns are
interpreted as distinct types, so we will get types of cars, animals, humans, etc. (so-called many-sorted
type theory).16

The corresponding MTT introduction for (adjI) would then be:17

Γ ` n : Noun Γ ` a : intAdj(x)

Γ ` (n, a) : (Σx : Noun)intAdj(x)

We mentioned above that intersective adjectives should be conservative with respect to their inferential
content. We can test this with projection functions fst and snd. Intuitively, fst and snd are operations
that return the first and the second element of the proof object of the pair type (Σx : Noun)intAdj(x),
respectively. For example, assume that we have the proof object p such that p = (x, y) of (Σx :
Car)Black(x), then fst(p) = x : Car and snd(p) = y : Black(fst(p)).18 The corresponding
elimination rules will then be as follows:

Γ ` c : (Σx : Noun)intAdj(x)
(adjÊ1)′

fst(c) : Noun

Γ ` c : (Σx : Noun)intAdj(x)
(adjÊ2)′

snd(c) : intAdj(x)

The projections fst and snd can be defined using the non-canonical constantE (brought by Σ-elim rule)
in the following manner: fst(c) = E(c, (x, y)x) and snd(c) = E(c, (x, y)y), respectively.

Now, we can finally get to the translation of the rules themselves (we skip the generalized elimination
variant):

[[Γ]] ` j : [[X]] [[Γ]] ` k : [[A]]
(adjI)′

[[Γ]] ` (j, k) : [[A X]]

[[Γ]] ` j : [[A X]]
(adjÊ1)′

[[Γ]] ` snd(j) : [[A]]

[[Γ]] ` j : [[A X]]
(adjÊ2)′

[[Γ]] ` fst(j) : [[X]]

Comments. As discussed above, the rules for intersective adjectives are justified by the corresponding
Σ type rules.

Examples. The following NDS derivation (see Francez 2015, p. 252): j isa Y

j isa A X
(adjÊ2)

j is A
(adjI)

j isa A Y

becomes: k : [[Y]]

j : [[A X]]
(adjÊ2)′

snd(j) : [[A]]
(adjI)′

(k, snd(j)) : [[A Y]]

15Compare with Ranta (1994), pp. 34–35. However, it is important to note that in order for this formalization to work,
subtyping has to be adopted as well. See Luo (2012).

16Hence, e.g., a sentence ‘Alice is a girl’ will be understood as stating that Alice is an object of type girl, not as stating that
predicate girl is applied to the individual Alice.

17Note that in MTT the relation between noun and adjective is handled via the Σ type, while in NDS it is achieved by the
fact that both predications ‘isa X’ and ‘is A’ share the same parameter j.

18As we can see, our initial rules intA1 and intA2 correspond to rules for left and right conjunction elimination defined via
projections fst, snd, respectively.

16

3.4.2 Subsective Adjectives

We specify subsective adjectives by the following two rules:

a is Adj Noun
subA1a is Noun

a is Adj Noun
subA2a is AdjN

For example,

a is large mouse
intA1a is mouse

a is large mouse
intA2a is largem

Hence, subsective adjectives allow us to infer from ‘a is Adj Noun’ that the underlying object of
predication a possesses both its constituents separately: the noun Noun, i.e., ‘a is Noun’, as well
as the adjective Adj with the proviso it was relativized w.r.t Noun., i.e., ‘a is AdjN ’. Thus, e.g., ‘a is
largem’ from the example above can be read as ‘a is something large assuming mouse-largeness scale’.
Analogously to intersective adjectives, we can see that the compound containing a subsective adjective
and a noun behaves similarly to the logical connective conjunction.

In NDS, the rules for subsective adjectives are as follows (we omit the generalized elimination rules;
Francez 2017):

Γ ` j isa X Γ ` j is AX
(subAI)

Γ ` j isa A X

Γ ` j isa A X
(subAGÊ1)

Γ ` j isa X
Γ ` j isa A X

(subAGÊ2)
Γ ` j isa AX

The crucial part for the translaton is the premise Γ ` j isa AX in (subAI) rule, which captures the
fact that j is A only under the assumption that j isa X . Specifically, AX is a family of adjectives over
the set of nounsX . Hence, in effect, it makes the meaning ofA dependent on the meaning ofX . In other
words, the meaning of A is restricted only to a certain class of nouns X . So we will have a different
types of largeness: e.g., large human, large insect, large mammal, etc.

As Francez describes it:

The unfolding of the adjectives can be seen as a purely formal devise to parameterize a subsective
adjective: AX is just a family of adjectives originating from A and parameterized by nouns X . The
entailments in (4.14) are the basis for the revised I/E-rules for subsective adjectives. [. . .] The
explicit parameterization replaces the dependency in the original rules. (Francez 2017, pp. 12–13)

In MTT, we can capture this dependency by making the whole type of subsective adjectives range
over the X , i.e., (common) nouns. Thus its type will be ∀α : X.(α → Prop) (see Chatzikyriakidis and
Luo 2013, Chatzikyriakidis and Luo 2017a). After the translation, we get:

[[Γ]] ` j : [[X]] [[Γ]] ` j : [[AX]]
(subAI)′

[[Γ]] ` j : [[A X]]

[[Γ]] ` j : [[A X]]
(subAGÊ1)′

[[Γ]] ` j : [[X]]

[[Γ]] ` j : [[A X]]
(subAGÊ2)′

[[Γ]] ` j : [[AX]]

Comments. Rules are justified by the corresponding Σ type rules.
Examples. The following NDS derivation (see Francez 2017, p. 12):

j isa elephant j is smallelephant

j isa small elephant

becomes:

Γ ` j : Elephant Γ ` k : SmallE(j)
(subAI)′

Γ ` (j, k) : (Σj : Elephant)SmallE(j)

where SmallE denotes the fact that we use ‘elephant-smallness’ of type: Elephant→ Prop. Note that
we cannot derive that there is something small (corresponding to snd(l) : Small(fst(l))), only that we
have something small w.r.t. an elephant scale.

17

Acknowledgements. Work on this paper was supported by grant nr. 19-12420S from the Czech Sci-
ence Foundation, GA ČR.

References

Chatzikyriakidis, S. and Z. Luo (2013). Adjectives in a Modern Type-Theoretical Setting. pp. 159–174.
Springer, Berlin, Heidelberg.

Chatzikyriakidis, S. and Z. Luo (2017a). Adjectival and Adverbial Modification: The View from Modern
Type Theories. Journal of Logic, Language and Information 26(1), 45–88.

Chatzikyriakidis, S. and Z. Luo (2017b). Modern Perspectives in Type-Theoretical Semantics. Springer
Publishing Company, Incorporated.

Francez, N. (2015). Proof-theoretic Semantics. College Publications.

Francez, N. (2017). A Proof-Theoretic Semantics for Adjectival Modification. Journal of Logic, Lan-
guage and Information 26(1), 21–43.

Francez, N. and R. Dyckhoff (2010). Proof-Theoretic Semantics for a Natural Language Fragment.
Linguistics and Philosophy 33(6), 447–477.

Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy 35(6), 491–513.

Luo, Z. (2014). Formal Semantics in Modern Type Theories: Is It Model-Theoretic, Proof-Theoretic, or
Both? In N. Asher and S. Soloviev (Eds.), Logical Aspects of Computational Linguistics: 8th Interna-
tional Conference, LACL 2014, Toulouse, France, June 18-20, 2014. Proceedings, Berlin, Heidelberg,
pp. 177–188. Springer Berlin Heidelberg.

Martin-Löf, P. (1984). Intuitionistic type theory. Studies in proof theory. Bibliopolis.

Negri, S., J. von Plato, and A. Ranta (2001). Structural Proof Theory. Cambridge University Press.

Nordström, B., K. Petersson, and J. M. Smith (1990). Programming in Martin-Löf’s type theory: an
introduction. International series of monographs on computer science. Clarendon Press.

Ranta, A. (1994). Type-theoretical Grammar. Indices. Clarendon Press.

18

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 19–27
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Modeling the Induced Action Alternation and the Caused-Motion
Construction with Tree Adjoining Grammar (TAG) and Semantic

Frames

Esther Seyffarth
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
esther.seyffarth@hhu.de

Abstract

The induced action alternation and the caused-motion construction are two phenomena that allow
English verbs to be interpreted as motion-causing events. This is possible when a verb is used with
a direct object and a directional phrase, even when the verb does not lexically signify causativity
or motion, as in “Sylvia laughed Mary off the stage”. While participation in the induced action
alternation is a lexical property of certain verbs, the caused-motion construction is not anchored in the
lexicon. We model both phenomena with XMG-2 and use the TuLiPA parser to create compositional
semantic frames for example sentences. We show how such frames represent the key differences
between these two phenomena at the syntax-semantics interface, and how TAG can be used to derive
distinct analyses for them.

1 Introduction

Verbs and their semantics generally play an important role in determining the semantics of English sen-
tences. In many cases, the meaning of an event-denoting sentence can be derived by identifying the verb’s
syntactic arguments and assigning them to specific participant slots in the verb’s semantic frame, thus
creating a frame that represents the meaning of the whole sentence. However, the presence or absence
of slot fillers is not the only way in which the semantics of a verb depends on its syntactic environment.
The induced action alternation and the caused-motion construction are examples of phenomena in which
certain syntactic structures can enrich the semantics of the observed verbs in a systematic way.

In this paper, we discuss the overlap of possible syntactic structures licensed by these two phenom-
ena, draw attention to differences in the way they assign semantic frames to sentences, and present a
TAG model written in XMG-2 that can parse input sentences and derive their semantics correctly. While
participation in the induced action alternation is a lexical property of certain verbs and thus has to be
specified for each participating verb in our grammar, the caused-motion construction can apply to all
verbs that fulfill the constraints imposed by the construction, and is thus not anchored in the lexicon.

We use XMG-2 to model the constraints on frame unification that are required to generate the dif-
ferent frames licensed by the phenomena. We explore the phenomena from a perspective focused on
modeling their key differences, and leave the implementation of edge cases to future work (see Section
5). This work contributes to research on verb alternations and constructions by showing how similar
meanings can be generated by them, while pointing out important differences in the results and the
underlying processes. This is also a step towards a better understanding of the alternation and the con-
struction in the context of practical applications like semantic role labeling, where sentences involving
the phenomena need to be analysed correctly in order to successfully model their meaning.

To our knowledge, this is the first work to deal with these two phenomena in a TAG setting.

19

2 The Induced Action Alternation and the Caused-Motion Construction

This paper is concerned with differences between two phenomena at the syntax-semantics interface that
license causative interpretations by different means. While verb alternations apply to specific sets of
verbs in a language and allow these verbs to express their semantic arguments in particular syntactic
forms (Levin, 1993), constructions are “form-meaning correspondences that exist independently of par-
ticular verbs” (Goldberg, 1995, emphasis added).

The induced action alternation (Levin, 1993) is a verb alternation that allows participating verbs
to occur either intransitively or transitively, where the transitive use introduces a cause to the event
(examples taken from Levin, 1993, p. 31):

(1) a. Sylvia jumped the horse over the fence.
b. The horse jumped over the fence.

Sentence (1-a) can be paraphrased as “Sylvia caused the horse to jump over the fence”. Here, the verb
jump describes the action or behavior of the syntactic object, whereas in sentence (1-b), it describes the
action or behavior of the syntactic subject.

When an English verb does not participate in the induced-action alternation, it may still be used to
express a causative meaning. The caused-motion construction (Goldberg, 1995) allows sentences like
the following to be interpreted:

(2) Sylvia hit the horse into the barn.

Sentence (2) can be paraphrased as “Sylvia hit the horse, and thereby caused the horse to move into the
barn”. Here, the verb hit describes the action of the syntactic subject, and the directional phrase into the
barn describes a motion of the syntactic object that results from the action of the syntactic subject.

The caused-motion construction can also be used with intransitive verbs and verbs that do not lex-
ically encode motion. Combining a verb with a direct object and a directional phrase can result in a
caused-motion reading that is independent of the lexical meaning of the verb, as in (3), which can be
paraphrased as “By laughing, Sylvia caused Mary to move off the stage”.

(3) Sylvia laughed Mary off the stage.

In sentences involving the induced action alternation, the verb describes the action or behavior of the
syntactic object. In contrast to this, sentences involving the caused-motion construction express the
behavior of the syntactic subject in the verb, and the motion of the syntactic object in the directional
phrase (often realized in the form of a PP, as in “off the stage”, or an adverb, as in “away”).

This paper is concerned with a type of sentence structure that is licensed by both phenomena. In
both cases, the verb can occur together with a direct object and a directional phrase. When the verb
in a sentence participates in the alternation, it is interpreted analogously to (1-a). If this reading is not
available, the sentence can be interpreted analogously to (2) and (3). Constraints on the construction have
been discussed in the literature, for instance in Goldberg (1995); Goldberg and Jackendoff (2004); Oyón
(2007); Cervel (2009). Crucially, participation in the alternation is a lexical property of certain verbs,
while the construction can productively apply to any verb, as long as that verb fulfills the constraints
imposed by the construction. This means that sentences like (1-a) can also be interpreted in the caused-
motion reading. We discuss the available analyses for sentences like this in the course of the paper.

One possible test for the distinction between the alternation and the construction is their behavior
when the direct object and/or the directional phrase are deleted. For verbs in the induced action alterna-
tion, like jump, each of the sentences (4-a) - (4-c) is felicitous and interpretable, while non-alternating
verbs only allow structures like (4-d) if they are intransitive (like laugh) and/or (4-e) if they are transitive
(like hit). (4-f) is infelicitous for verbs that do not lexically encode motion or directedness. Note that
(4-a) and (4-c) express that it is Sylvia who moves over the fence, whereas the horse is the moving entity
in (4-b).

20

(4) a. Sylvia jumped.
b. Sylvia jumped the horse.
c. Sylvia jumped over the fence.
d. Sylvia laughed. / *Sylvia hit.
e. *Sylvia laughed Mary. / Sylvia hit Mary.
f. *Sylvia laughed off the stage.

3 Modeling with XMG-2

We present an XMG-2 model that can be used to derive the available readings of sentences like those
discussed above. XMG (eXtensible MetaGrammar, Crabbé et al. 2013) is a system for designing meta-
grammars that can be compiled into natural-language grammars. We use XMG-2 (Petitjean et al., 2016)
to create a TAG fragment (Tree Adjoining Grammar, Joshi and Schabes 1997) that encodes the syntax
and semantics of the sentence types discussed here. How XMG-2 generates compositional semantic
frames is laid out in Lichte and Petitjean (2015). After compiling the metagrammar, we use TuLiPA (an
open-source parsing environment by Kallmeyer et al., 2008) to parse input sentences and generate their
frames (Arps and Petitjean, 2018).

The semantic frames for a sentence are generated based on the frames of the lexical items in the
sentence and the unification constraints encoded in the metagrammar. This is inspired by Kallmeyer and
Osswald (2014), who present a model for directed motion expressions and the dative alternation.

We aim for a grammar fragment that allows and disallows sentences according to the judgments given
for the examples in (4). We achieve this by specifying the semantic frames for the lexical items that are
involved and providing different mechanisms for the derivation of compositional semantic frames. We
mark each lexical item in our grammar with the syntactic environments in which it can occur. The
syntactic trees assign frames to input sentences. This allows us to parse not only the causative sentences,
but also more basic cases, like “Sylvia laughed” or “The horse jumped over the fence”, in accordance
with the judgments in (4).

Fig. 1 presents the semantic frames we assume for the sentences (1-a) and (3).1 Both phenomena
add a causative reading to a sentence whose verb does not lexically express causativity.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

causation

CAUSE

⎡⎢⎢⎢⎢⎣
activity
ACTOR Sylvia

⎤⎥⎥⎥⎥⎦
EFFECT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

translocation
MOVER the horse
MANNER jumping
PATH over the fence

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

causation

CAUSE

⎡⎢⎢⎢⎢⎢⎢⎣
activity
ACTOR Sylvia
MANNER laughing

⎤⎥⎥⎥⎥⎥⎥⎦
EFFECT

⎡⎢⎢⎢⎢⎢⎢⎣
translocation
MOVER Mary
PATH off the stage

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 1: Event frames for (1-a) Sylvia jumped the horse over the fence (left, induced action alternation)
and (3) Sylvia laughed Mary off the stage (right, caused-motion construction).

In (1-a), the manner in which Sylvia causes the horse to jump over the fence is not explicitly stated.
This is reflected in the CAUSE subframe on the left in Fig. 1, where no MANNER attribute is given. The
alternation observed here can only apply to a specific subset of English verbs. Therefore, we include in
our grammar a dedicated tree for this sentence structure that is associated with a causation frame, and
allow alternating verbs, like jump, to anchor that tree. Note that a verb’s participation in the alternation
must be made explicit in the grammar fragment for this analysis to be derived.

1Our representation of the meanings of “over” and “off” is simplified due to space and time limitations.

21

In (3), Sylvia’s action is specified by the verb, laugh. Here, the manner in which Mary leaves the stage
(running, walking, jumping, etc.) is not explicitly stated. This is reflected in the EFFECT subframe, which
does not contain a MANNER attribute. Because the caused-motion construction exists independently of
individual verbs, we let verbs like laugh or hit anchor regular intransitive/transitive trees; the tree for
the caused-motion construction is a possible shape these trees can take, provided the syntactic structure
is compatible. Furthermore, the participants in a given sentence must be semantically compatible with
the slots of the causative frame, e.g., the ACTOR must be an agentive entity, and the MOVER must be an
entity that can be caused to move. We do not impose any restrictions as to whether the MOVER has to
belong to a type that can move by itself (like a horse), or a type that cannot move by itself (like a ball).

To design a metagrammar that can generate causation frames as in Fig. 1, we implement the fol-
lowing modules: (i) The morph file contains a morphological lexicon that connects word forms to the
lemmas they belong to. We need this to parse inflected word forms, such as jumped. (ii) The lemma file
contains a lexicon that connects known lemmas to their lexical frames. These are the “building blocks”
that will be used to derive frames for full sentences. (iii) The frame file defines the type hierarchy and
the frames that encode the lexical meaning of the lemmas, e.g. for the verb jump. (iv) Finally, the syntax
file defines the syntactic trees for sentences. Where new frames arise compositionally from the syntactic
structure, due to a verb alternation or a construction, the definition of that tree includes the appropriate
frame and specifies which syntactic arguments will be used to fill the slots of the semantic frame. For a
more detailed description of how these modules interact during parsing, see Arps and Petitjean (2018).

The trees that are generated for our input sentences during parsing assign different semantic frames
to the sentences, depending on whether the verb in question participates in the induced action alternation.
If it does, the frame will resemble the left side of Fig. 1; if not, it will resemble the right side.

Since the caused-motion construction is productive, it is conceivable that a conflict between these
analyses may arise. This would be the case when a verb that participates in the induced action alternation
is used in a way meant to realize the frame on the right of Fig. 1, not the one on the left. When parsing
such a sentence, the frame for the induced action reading will be derived as expected. The frame for the
caused-motion reading, where the verb is understood as applying to the syntactic subject, may however
be available as an alternative interpretation. For instance, one might construe a situation in which Sylvia
is jumping up and down in a way that scares the horse, causing it to move over the fence; in this case,
the sentence (1-a) may be read as an example of the caused-motion construction.

This is why we allow all sentences that involve compatible lexical items to generate the semantic
frame for the caused-motion construction. By explicitly marking verbs that participate in the induced
action alternation, we ensure that TuLiPA will generate both analyses wherever appropriate.

3.1 Grammar Excerpts

As mentioned above, our grammar fragment consists of a morph file, a lemma file, a frame file and
a syntax file. Examples from the files are presented in this section. The full grammar is available at
https://github.com/ojahnn/caused-motion-xmg.

3.1.1 The frame File

The frame file contains a type hierarchy and the lexical frames for the frame-evoking items in our
grammar. Since we are concerned with a grammar fragment for a specific set of phenomena, we use a
small set of types and specify only a small number of attribute constraints.

Lexical frames for proper names, such as Sylvia, include the specification that the frame is of type
person, as well as the corresponding value for the name attribute. Non-human agentive entities, such as
horse, are given the type actor, as well as an attribute kind that describes them further. Similarly, non-
animate entities such as fence are given the type physical-entity, with a kind attribute that describes
them further. These are greatly simplified frame structures because our focus here is on the behavior of
verbs and their influence on the structure of the derived event frames.

22

In our grammar fragment, we use directional phrases in the form of a set of prepositions. Since the
semantic structure of prepositions like over is nontrivial, we opt for a simplified frame structure here,
too. The prepositions in our grammar fragment are of type path and are described further by the value
of their trajectory attribute. Because trajectories are typically understood in relation to a landmark, a
landmark attribute is added when a PP is parsed (see e.g. Fig. 4).

Finally, the lexical frames for the verbs in our grammar fragment are given the type activity and
distinguished further by the value of their manner attribute.

The frame hierarchy and type constraints, as well as examples for the kinds of frames mentioned
above, are given in Fig. 2.

1 frame -types = {activity , physical_object , person , name ,
2 actor , mover , causation , manner , translocation ,
3 landmark , path , trajectory , kind}
4

5 frame -constraints = {
6 physical_object -> kind: +,
7 activity -> actor: +,
8 person -> name: + }

1 class FrameSylvia
2 declare ?X0
3 { <frame >{
4 ?X0[person ,
5 name: Sylvia]
6 }; <iface >{
7 [i=?X0]
8 }}

1 class FrameFence
2 export ?X0
3 declare ?X0
4 { <frame >{
5 ?X0[physical_object ,
6 kind: fence]
7 }; <iface >{
8 [i=?X0]
9 }}

1 class FrameOver
2 export ?X0
3 declare ?X0
4 { <frame >{
5 ?X0[path ,
6 trajectory: over]
7 }; <iface >{
8 [i=?X0]
9 }}

1 class FrameLaugh
2 export ?X0
3 declare ?X0
4 { <frame >{
5 ?X0[activity ,
6 manner: laughing]
7 }; <iface >{
8 [e=?X0]
9 }}

Figure 2: Excerpts from the frame file. Type hierarchy and frame constraints (top left); frame for a proper
name (top right); frame for a physical object (bottom left); frame for a preposition (bottom middle); frame
for a verb (bottom right). The iface feature allows unification of lexical and compositional frames.

3.1.2 The lemma and syntax Files

Our lemma file specifies the sentence trees that can be anchored by each verb. For instance, the verb
laugh can anchor intransitive sentences, which are covered by the tree named n0V in our syntax file. The
verb dance can anchor intransitive sentences with or without directional phrases, so we connect it to the
n0V tree as well as the n0Vpp tree, which is for verbs that lexically express motion.

The set of trees that can be anchored by the verb jump is where the induced action alternation comes
into play. The verb can be used intransitively with or without a directional phrase; but unlike laugh
or dance, it can also be used with a direct object and a directional phrase to trigger the induced action
alternation. We encode this by letting this verb anchor the n0V and n0Vpp trees, as well as a special tree,
n0Vn1pp actioninducing. This is necessary because verbs in the alternation express their semantic
arguments in different syntactic slots, compared to sentences with non-alternating verbs. The effect of
the n0Vn1pp actioninducing tree is that the verb frame defined in the frame file is “wrapped” in a
causative frame that assigns the syntactic arguments to their semantic slots, as given in Fig. 1.

The caused-motion construction is triggered whenever a verb like laugh or hit, which cannot anchor
the n0Vn1pp actioninducing tree, is observed in the same syntactic environment (with a direct object
and a directional phrase).2 These cases are served by one of the possible realizations of the n0V tree,
which is called alphanx0Vnx1pp motioncausing. Its effect is to “wrap” the verb frame into a new,
constructionally generated causation frame. Sentences that involve these verbs, but do not have the

2Note that some verbs, such as imagine or prefer, should not be assigned an actor attribute and can thus easily be excluded
from anchoring this tree by way of additional type constraints in the frame file.

23

syntactic structure that triggers the caused-motion construction, are realized by the other realization of
the n0V tree, alphanx0V.

All other words in our grammar fragment are also connected to appropriate elementary trees. This
allows phrases like NPs and PPs to be derived from the corresponding token sequences, and the NPs and
PPs can then be adjoined or substituted into the sentence trees described above.

Fig. 3 displays some example trees and shows that the construction can be applied to any activity
verb in our grammar that can anchor simple intransitive trees, while the induced action frame can only
be derived for those verbs that are lexically specified to anchor the corresponding tree.

1 class n0V
2 { alphanx0V [] | alphanx0Vn1pp_motioncausing [] }

1 class n0Vpp
2 import Subject [] directedverb []
3 declare ?X ?Y ?F
4 {<iface >{[cat=v, e=?F]};
5 <frame >{?F[translocation ,
6 actor:?X,
7 mover:?X,
8 path:?Y]}
9 }

1 class alphanx0V
2 import Subject [] BareVerbProjection []
3 declare ?F ?X
4 {<iface >{[cat=v, e=?F]};
5 <frame >{?F[activity ,
6 actor:?X]}
7 }
8

9

1 class alphanx0Vn1pp_actioninducing
2 import Subject [] actioninducingverb []
3 {<iface >{[cat=v, e=?G]};
4 <frame >{[causation ,
5 cause:
6 [activity ,
7 actor:?X],
8 effect:
9 ?G[translocation ,

10 mover:?Z,
11 actor:?Z,
12 path:?Y]
13]}}

1 class alphanx0Vn1pp_motioncausing
2 import Subject [] motioncausingverb []
3 {<iface >{[e=?G]};
4 <frame >{[causation ,
5 cause:
6 ?G[activity ,
7 actor:?X],
8 effect:
9 [translocation ,

10 mover:?Z,
11 path:?Y]
12]}}
13

Figure 3: Excerpts from the syntax file. The n0V tree has two realizations (top row). Trees with frames for
intransitive sentences with PP (middle left) and without PP (middle right); trees with frames for transitive
sentences with PP in alternation and construction reading (bottom left, bottom right). The iface feature
allows unification of derived frame and lexical frames. The imported trees carry exclusively syntactic
information.

4 Parsing With TuLiPA

Once the metagrammar is compiled, we use TuLiPA to check whether the sentences are correctly ana-
lyzed as specified in Fig. 1. When processing one of the input sentences, TuLiPA will look up the correct
lemma for each observed word form; select possible lexical frames for the given lemmas; derive possible
syntactic trees for the sentence; and generate a frame that represents the meaning of the full sentence.
For sentences with a direct object and a directional PP, a causation frame will be generated, with the
subframes for cause and effect filled as appropriate for the observed verb.

Fig. 4 shows one analysis generated by TuLiPA for the input sentence (1-a). The sentence licenses
two different frames, since both readings are possible. The alternative reading is shown in Fig. 5.

24

Figure 4: First TuLiPA output for sentence (1-a): Caused-motion reading. This analysis generates the
frame associated with the paraphrase “By jumping, Sylvia caused the horse to move over the fence”.

Figure 5: Second TuLiPA output for sentence (1-a): Induced-action reading. This analysis generates the
same syntactic tree as shown in Fig. 4, but assigns a different frame to the sentence. This is the case
because “jump” is marked in our grammar as participating in the induced action alternation.

25

5 Conclusion

The induced action alternation and the caused-motion construction are two different ways to use English
verbs in a causative way, even when they do not lexically encode causation. We discuss the semantic
frames that arise from different syntactic environments for each of these phenomena in Section 3.

We show how the two different types of semantic frames presented in Fig. 1 can be generated for
input sentences using XMG-2. We also show that our model allows TuLiPA to provide more than one
analysis for sentences that can be construed as examples of both phenomena.

Our analysis can be extended to reflect subtle differences in the interpretations of a range of possible
usages of the caused-motion construction, as well as closely related constructions. Goldberg and Jack-
endoff (2004) treat the caused-motion construction as a “subconstruction of the resultative” (p. 535),
which also includes other patterns at the syntax-semantics interface. Sentences that employ these related
constructions can have the same syntactic structures as the ones discussed in this paper, but be associated
with frames that are only distantly related to the frames we discuss here. A possible topic of future work
is an extension of our grammar fragment so that it can handle these partially-related cases as well.

Goldberg and Jackendoff (2004) and Cervel (2009) discuss edge cases of the resultative and caused-
motion construction that follow different constraints regarding selectional preferences; metaphorical
readings are also often an option. The following examples (taken from Goldberg and Jackendoff 2004)
illustrate part of the range of usages licensed by the construction:

(5) a. Bill walked himself into a coma.
b. Bill followed the road into the forest.
c. Aliza wiggled her tooth loose.
d. Sara caught a plane to New York.
e. Ray flew the coastal route to Buffalo.

With some additions, the grammar fragment would be able to analyze the sentences in (5).
To parse sentences like (5-a), reflexive pronouns can be added to the grammar fragment. As this

example illustrates the resultative construction, the type constraints on the construction’s frame may
need to be modified, since “into a coma” is not a physical translocation, but a change of state.

In (5-b), unlike the sentences discussed in previous sections, the subject is the mover (it is Bill who is
moving, not the road); the derivation of a causative frame could be prevented, for instance, by blocking
the verb follow from anchoring trees that are associated with a caused-motion meaning. This could be
done by giving follow a type that is specified to be incompatible with the caused-motion construction.
Then, a different tree can be defined in the syntax file such that the frames derived for sentences like this
are not causation frames.

Sentence (5-c) requires a refinement of the constraints that currently only allow directional phrases:
For now, the grammar handles prepositional phrases, but it can easily be extended to also allow adverbs
like loose. Like sentence (5-a), this sentence also expresses a change-of-state meaning, and the frame for
this kind of sentence should be generated accordingly.

Sentences (5-d) and (5-e) seem to block the constructional interpretation we discuss above, because
the prepositional phrases are part of the respective NPs, instead of being part of the VP.3 The grammar
needs to be extended to recognize such syntactic structures, so that frames similar to the one for sentence
(5-b) can be created.

While further work is needed to enable the grammar fragment to parse these kinds of sentences, we
have shown that TAG is well-suited to represent the two phenomena at the syntax-semantics interface
that we have discussed. The XMG-2 framework allows us to neatly separate lexical meaning from
constructional meaning. It can also provide more than one analysis if necessary; this is the case, for
instance, when a sentence can be construed as exemplifying both the alternation and the construction.

3Sentence (5-e) seems to allow analyses that are analogous to either that of sentence (5-b) or that of sentence (5-e), so both
syntactic trees and both frames should be made available to TuLiPa.

26

References

Arps, D. and S. Petitjean (2018). A Parser for LTAG and Frame Semantics. In Proceedings of the
Eleventh International Conference on Language Resources and Evaluation (LREC-2018), Miyazaki,
Japan, pp. 7.

Cervel, M. S. P. n. (2009, November). Constraints on Subsumption in the Caused-Motion Construction.
Language Sciences 31(6), 740–765.

Crabbé, B., D. Duchier, C. Gardent, J. Roux, and Y. Parmentier (2013). XMG: eXtensible MetaGrammar.
Computational Linguistics 39(3), 591–629.

Goldberg, A. E. (1995). Constructions: A Construction Grammar Approach to Argument Structure.
University of Chicago Press.

Goldberg, A. E. and R. Jackendoff (2004). The English Resultative as a Family of Constructions. Lan-
guage 80(3), 532–568.

Joshi, A. K. and Y. Schabes (1997). Tree-Adjoining Grammars. In G. Rozenberg and A. Salomaa (Eds.),
Handbook of Formal Languages: Volume 3 Beyond Words, pp. 69–123. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Kallmeyer, L., T. Lichte, W. Maier, Y. Parmentier, J. Dellert, and K. Evang (2008, August). TuLiPA: To-
wards a Multi-Formalism Parsing Environment for Grammar Engineering. In Coling 2008: Proceed-
ings of the Workshop on Grammar Engineering Across Frameworks, pp. 1–8. Coling 2008 Organizing
Committee.

Kallmeyer, L. and R. Osswald (2014). Syntax-Driven Semantic Frame Composition in Lexicalized Tree
Adjoining Grammars. Journal of Language Modelling 1(2), 267–330.

Levin, B. (1993). English Verb Classes and Alternations: A Preliminary Investigation. University of
Chicago press.

Lichte, T. and S. Petitjean (2015, July). Implementing Semantic Frames as Typed Feature Structures
with XMG. Journal of Language Modelling 3(1), 185.

Oyón, A. L. (2007, January). Semantic Constraints on the Caused-Motion Construction. Epos : Revista
de filologı́a 0(23), 167.

Petitjean, S., D. Duchier, and Y. Parmentier (2016). XMG 2: Describing Description Languages. In
M. Amblard, P. de Groote, S. Pogodalla, and C. Retoré (Eds.), Logical Aspects of Computational
Linguistics. Celebrating 20 Years of LACL (1996–2016), Lecture Notes in Computer Science, pp.
255–272. Springer Berlin Heidelberg.

27

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 28–36
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Complex event representation in a typed feature structure
implementation of Role and Reference Grammar

Erika Bellingham
University at Buffalo

ebelling@buffalo.edu

Abstract

Role and Reference Grammar (RRG) (Foley and Van Valin, 1984; Van Valin and LaPolla, 1997;
Van Valin, 2005) is typologically general, semantically-driven syntactic framework. A major fo-
cus of RRG is a fine-grained typology of form-to-meaning mapping, emphasizing the syntactic and
semantic structure of complex event descriptions. I introduce a constraint-based typed feature struc-
ture variant of RRG which exploits RRG’s semantically-motivated syntactic backbone: the Layered
Structure of the Clause (LSC). Each layer in the LSC is represented as a subtype of sign, and the
unique combination of syntactic and semantic properties possessed by each layer is captured by a set
of constraints on the appropriate sign subtype. Sentences are incrementally built up from predicates
(represented semantically as event frames) to propositions using constructions to pass and combine
information through the different layers (and juncture types) in the LSC. An English fragment of this
constraint-based RRG is implemented using the Attribute Logic Engine (Carpenter, 1992).

1 Introduction

Role and Reference Grammar (RRG) offers a typologically motivated constructional approach to gram-
mar, in which semantics plays a very significant role in syntactic structure. RRG’s semantically mo-
tivated structural backbone, the Layered Structure of the Clause (LSC), offers several key advantages
for capturing fine-grained semantic properties of classes of linguistic structures, particularly for complex
sentences with multiple verbal elements. Semantic modifiers (adjuncts), as well as grammatical operators
(e.g. tense, aspect, modals, negation), each apply to a specific layer of the clause, with the layer of ap-
plication predicting both the position of the operator/modifier relative to the predicate (the nucleus of the
clause), and the semantic scope of the operator/modifier. Complex event descriptions involving multiple
verbal predicates vary in terms of their degree of both syntactic integration and semantic cohesion. The
syntactic and semantic structures are isomorphically related to such a degree that an important concep-
tual property of the overall event representation - whether the event is represented as a single conceptual
event (versus multiple conceptual events) - can be predicted based on the syntactic packaging.

The major effort towards formalizing RRG (Kallmeyer et al., 2013; Kallmeyer and Osswald, 2017;
Osswald and Kallmeyer, 2018) uses the building blocks provided by Tree Adjoining Grammar (TAG)
(Joshi and Schabes, 1997), with modified operations for combining trees. This paper introduces an alter-
native formalization possibility: a constraint-based variant of RRG, in which the layers in the LSC are
implemented as typed feature structures. The focus is on building the backbone of syntactic and seman-
tic representations to produce complex event representations that exploit the form-to-meaning mapping
properties captured by the LSC, rather than on broad coverage of all syntactic possibilities. Drawing from
Sign-based Construction Grammar (Sag, 2012), constructions are represented as typed feature structures
with syntactic and semantic components. Events and entities are represented in a typed hierarchy of
semantic frames, while the layers in the LSC are represented as subtypes of sign. Sentences are incre-
mentally built from predicates using constructions to pass information between layers in the LSC.

Unification-based typed feature structure grammars (Carpenter, 1992) are mathematically well un-
derstood, computationally implementable and therefore easily testable, and are compatible with con-

28

struction grammars. A fragment an English grammar using the proposed constraint-based RRG is im-
plemented with the Attribute Logic Engine (ALE) (Carpenter and Penn, 2001), a Prolog implementation
of the formalism in Carpenter (1992). The paper is structured as follows. Section 2 summarizes the
relevant components of Role and Reference Grammar, focusing on RRG’s Layered Structure of the
Clause. Section 3 briefly discusses unification-based construction grammars, and Section 4 introduces
this constraint-based variant of RRG. The ALE implementation is discussed in Section 5.

2 The Layered Structure of the Clause in RRG

Syntactic structure in RRG is built around abstract syntactic categories with semantic correlates: the
layers in the Layered Structure of the Clause. The LSC is based on two apparently universal contrasts
in the structure of natural languages: (1) predicating elements versus non-predicating elements, and (2)
arguments versus non-arguments. Predicating elements (canonically verbs) are contained within nuclei,
predicating elements plus their arguments are contained within cores, (most) non-arguments (adjuncts)
are contained within the core periphery, and cores plus their peripheries are contained within the clause.
Each layer is compatible with certain types of grammatical operators (Section 2.1) and semantic modi-
fiers (Section 2.2): these operators or modifiers scope over a particular layer, which becomes especially
relevant when considering the structure and interpretation of complex event descriptions (Section 2.3).

2.1 Grammatical operators

Figure 1: English clause structure
with operator projection

Grammatical categories (e.g. tense, aspect, modality, negation) are mod-
elled in RRG as ‘operators’, each of which may apply only to a specific
layer in the LSC. Not all languages have all operators: Standard German
lacks grammatical aspect, English lacks grammatical evidentiality, Yu-
catec Maya lacks grammatical tense, and so on. Nuclear operators (e.g.
aspect) modify something about the event/action/state without reference
to any of the event participants, and therefore have scope only over the nu-
cleus. Core operators (e.g. deontic modals) modify some property of the
involvement of the participants in the event, and have scope over the core.
Clausal operators, which modify propositions, fall into two distinct cate-
gories: tense and status operators situation the proposition expressed by
the clause temporally and along the irrealis-realis dimension respectively;
while illocutionary force and evidentiality are more sentential in nature,
scoping over the first category of clausal operators and applying only to
main clauses which are immediately dominated by a sentence node.

An English clause with three grammatical operators is shown in Figure 1. The syntactic and the
operator structures are projected above and below the sentence respectively. The aspectual operator
expressed by the be V-ing construction applies to the nucleus. The deontic modal operator expressed by
the should auxiliary applies to the core. The tense operator is expressed by the finite auxiliary should.

2.2 Semantic modifiers

The clause, core, and nucleus each have their own periphery, containing modifiers that combine with
the non-peripheral constituent in that layer. Modifiers include prepositional phrases and adverbs. Just
as the layer of application for each type of grammatical operator is semantically motivated, so too is
the layer of application for each semantic category of modifier. Aspectual adverbs (e.g. completely or
continuously) modify the nucleus and occur in the nuclear periphery; pace adverbs (e.g. quickly), manner
adverbs (e.g. carefully) and temporal and locative modifiers (e.g. yesterday, on Friday, in the kitchen,
in an hour) modify the core and occur in the core periphery, and epistemic and evidential adverbs (e.g.
evidently, probably) modify the clause and occur in the clause periphery. The layering of modification
also captures restrictions on the possible orderings for modifiers: if a modifier applies at a higher layer

29

than another modifier, it cannot occur between that lower modifier and the verb. For example in (1c), but
not in in (1a-b), the core modifier on Friday intervenes between the nucleus destroyed and the nuclear
modifier completely, and so the sentence is anomalous.

(1) a. Jane destroyed the painting completelyNUCMOD on FridayCOREMOD.
b. Jane completelyNUCMOD destroyed the painting on FridayCOREMOD.
c. # Jane destroyed the painting on FridayCOREMOD completelyNUCMOD.

The application of operators and modifiers is also relevant when considering the structure of complex
sentences with multiple predicates. This is discussed further in Section 2.3.

2.3 The structure and interpretation of complex event descriptions

Figure 2: Core cosubordination

While simple sentences are built around a single predicating ele-
ment, with a single nucleus, core, clause and sentence, more com-
plex sentences can contain multiple predicating elements, requir-
ing a more complex syntactic structure to combine them. Tradi-
tional theories of grammar typically assume that syntactic units
are either joined together via coordination inside a larger unit, or
via subordination (with one unit embedded in the other, as ei-
ther an argument or a modifier). RRG recognizes a third possible
nexus type, cosubordination, which shares some properties with
coordination, and some with subordination.

In cosubordination (Figure 2), two units of the same type are
joined together to form a unit of that same type (i.e. two nuclei
form a nucleus, two cores form a core, or two clauses form a clause). The operators and periphery (mod-
ifiers) that apply to that type are shared across both units (only the mother unit, and not the daughter
units, has its own periphery and operators). In coordination, each unit has its own operators and pe-
riphery, and the two units join together to form a larger unit (e.g. two cores form a clause, two clauses
form a sentence). A sentence instantiating core coordination is shown in Figure 3. In non-subordinate
core junctures, each core has its own argument structure, but an argument can be shared between the two
cores via a control or raising relationship (argument sharing is obligatory in core cosubordinations, and
possible but not obligatory in core coordinations). In this case, the argument NP Sophie occurs in the
first core, but is also an argument of the second core (the Actor in the visiting event).

Figure 3: Core coordination

The possible linkage relations (juncture-nexus
types) can be arranged hierarchically in terms of
the strength of the syntactic bond between the
units: from closer to being integrated into a single
unit (e.g. a complex predicate - nuclear cosubordi-
nation), to closer to being two separate units (e.g.
sentential coordination). Nuclear junctures are the
most compact, followed by core, clausal and sen-
tential. Within each layer, cosubordination is the
tightest nexus type, followed by subordination and
then coordination. The hierarchy of syntactic relations aligns with a hierarchy of semantic relations ac-
cording to the degree of semantic cohesion between the the two units: closer to being conceptualized as
facets of a single event/action, or to being conceptualized as two distinct events/actions.

A cross-linguistically applicable breakpoint in the hierarchy of linkage relations was identified by
Bohnemeyer and Van Valin (2017): constructions which combine two units using a core cosubordination
linkage (or tighter) have the property of construing the described event as a single conceptual event, while
constructions which combine two units using a core coordination linkage (or weaker) have the property
of construing the described event as consisting of multiple conceptual events. The Macro Event Property

30

(MEP) (Bohnemeyer et al., 2007) is a possible semantic property of a syntactic construction (containing
an event description). Constructions which have the MEP package an event representation such that any
time-positional modifiers necessarily have scope over all of the subevents in the construction: the event is
construed as more like a single event. Constructions which lack the MEP package an event representation
such that multiple time-positional modifiers are possible (such that they each have scope over a different
subpart of the complex event): the complex event is construed more like multiple events. (2) exemplifies
this property using English infinitival constructions.

(2) a. Lara persuaded Sophie on Thursday to visit her sister on Saturday. (Core coordination)
b. Sophie went (#yesterday) to visit her sister today. (Core cosubordination)

Nuclear junctures necessarily have the MEP, as do cosubordinate core junctures, while core coordi-
nation, core subordination, and all clausal and sentential junctures lack the MEP. This fits neatly with the
idea of a shared periphery: because time-positional modifiers occur in the core periphery, and core co-
subordinations (as well as all nuclear junctures) share a single core periphery, time-positional modifiers
necessarily have scope over the entire complex event. This distinction between complex events descrip-
tions that have the MEP, construing the event as a single macro event, and those that lack the MEP, and
construe the complex event as multiple macro events, is exploited in the semantic representation of the
implemented grammar (see Section 4.3.1).

3 A typed feature structure approach to Construction Grammar

The term Construction Grammar describes a family of grammatical theories in which constructions (de-
fined as form-meaning pairings) are basic units. Sign-based Construction Grammar (SBCG) (Sag, 2012)
combines insights from HPSG (Pollard and Sag, 1994) and Berkeley Construction Grammar (Fillmore
and Kay, 1996). The grammar signature is an inheritance hierarchy of types. Each type has an asso-
ciated set of features, and the value of each feature is itself typed. Features and their type constraints
are inherited in the type hierarchy: subtypes must have all the features and value type restrictions of
their ancestors, plus any additional restrictions introduced for that subtype. Words and phrases are signs
(pairings of form and meaning). Local trees are encoded as feature structures as shown in (3).

(3)
[

MOTHER np
DTRS 〈det, n 〉

]

Although the proposed constraint-based RRG variant shares with SBCG the use of Frame Semantics
(Fillmore, 1982), frames are embedded hierarchically rather than as a flat list. The focus of the present
work is on the structure of complex event representations (distinguishing event frames, macroevents and
propositions), rather than on the ability to handle phenomena such as quantifier scope ambiguity.1

4 A constraint-based variant of Role and Reference Grammar

Role and Reference Grammar (Van Valin, 2005) traditionally recognizes constructions as an important
part of the grammar, but restricts them to cover only the more idiosyncratic structures in a language.
Unlike constructions in SBCG and other unification-based construction grammars, RRG’s constructions
rely heavily on additional linking rules and template selection principles (Van Valin, 2005, p.244). RRG
posits an inventory of abstract syntactic templates and linking relations (juncture-nexus types) which
are distinct from grammatical construction types: these templates/relations may appear on the syntactic
side of a constructional schema. Unlike standard RRG, where only idiosyncratic phenomena are cap-
tured with explicit constructional schemas, in the proposed constraint-based RRG variant all syntactic
structures are captured as constructions (of varying degrees of abstraction).

1A flatter structure closer to Minimal Recursion Semantics (Copestake et al., 2005) may be considered in the future.

31

The various layers (nucleus, core, clause, sentence) are represented as subtypes of layer, a subtype of
sign (Figure 4a). Other layer subtypes are pp (prepositional phrase) and np (noun phrase). As in SBCG,
phrasal constructions (Figure 4b) are represented as feature structures with MOTHER and DTRS features.

sign

layer

nucleus core clause sentence mods pp np word

lex sign

lexeme

(a) Sign types

phrasal-cx

pump-cx arg-struc-cx arg-cx mod-cx junct-cx pp-cx np-cx

(b) Phrasal construction types

Figure 4: Type hierarchies in a constraint-based variant of RRG

The type signature for sign is shown in (4): objects of type sign have a SYN feature of type syn-
obj,2 and a SEM feature of type sem-obj. The subtype layer additionally introduces the boolean feature
PERIPHERY, to indicate whether any peripheral modification has already been applied to that layer (co-
subordination constructions require that the daughter layers have not yet had modification applied).

(4)

sign
SYN syn-obj
SEM sem-obj

(5)
[

layer (↑ sign)
PERIPHERY boolean

]

(6)

pumping-cx (↑ phrasal-cx)

MOTHER

[
layer
SYN 1

]

DTRS

〈

layer

SYN 1

[
CLM clm-none

]

〉

sentence
FORM 3

SYN | VAL 〈〉

clause
FORM 3

SYN | VAL 〈〉

core
FORM 3 〈Pat,laughed〉
SYN | VAL 〈〉

XXXXX
�����

1

np
FORM 〈Pat〉
SYN | VAL 〈〉

core
FORM 2

SYN | VAL 〈 1 〉

nucleus
FORM 2

SYN | VAL 〈〉

word
FORM 2 〈laughed〉
SYN | VAL 〈〉

Figure 5: Simplified derivation Pat laughed

Pumping constructions pass each non-complex layer
up to the next layer. DTRS in a pumping construction is a
singleton list containing one layer type (e.g. a core), and the
MOTHER is the layer above (e.g. a clause). Syntactic (SYN)
features are passed from the daughter to the mother, while
some elements of the semantics (SEM) are changed from
layer to layer (discussed in Section 4.3). The transition from
nucleus to core is not captured in a pumping construction,
but in an argument structure construction, as changes must
be made to the valence list (SYN|VAL) (SYN values remain
constant for all other layer transitions). Instead of RRG’s
standard linking algorithms, argument structure construc-
tions assign the appropriate number and ordering of argu-
ments positions to a core, and argument constructions add
appropriate arguments to those positions.3

Figure 5 shows the derivation of a simple intransitive
sentence (Pat laughed). A sentence is produced from a
clause through a pumping construction (or via a more com-
plex juncture). A minimum of four pumping constructions
(or more complex juncture constructions) plus an argument
construction are required to produce a sentence from a verb.
As a consequence, there is a core node for every argument,
unlike standard RRG. This tree structure captures more of
the argument linking process than a standard RRG tree,
where the linking algorithm is represented separately.

Juncture constructions combine two units of the same layer in coordinate or cosubordinate nexus.
For example, a core cosubordination construction combines two daughter cores and produces a mother
core, while a core coordination construction combines two daughter cores and produces a mother clause.
Juncture constructions may place both syntactic (e.g. verb form, presence of a particular clause linkage

2I omit further discussion of the syn-obj type here for space reasons.
3This is English-centric, and may be adjusted in the future to allow for broader typological coverage.

32

marker) and semantic (e.g. subtypes of a certain semantic event frame) restrictions on their constituents.

4.1 Operators and modifiers

The sem-obj type (7) has a feature OPERATORS (OPS), which records the value of each of the nuclear,
core and clausal operators that have been incorporated into a representation. These operators are then
passed to the representation of the relevant semantic unit (see Section 4.3.1) at the time it is generated. In
this way, the grammar is able to handle operators that occur on the surface between elements of a lower
layer in the LSC (e.g. clausal operators inside the core, or tense morphemes attached to predicates).

Modifier constructions combine a layer in the LSC with something in its periphery. As discussed in
Section 2.2, different semantic categories of verbal modifier apply to different layers in the clause. This
restriction is captured by having a different modifier construction for each semantic category of modifi-
cation, and restricting each modifier construction to apply to a particular layer (nucleus, core, clause or
sentence). As modifiers combine a layer in the LSC with something in its periphery, all modifier con-
structions constrain the mother’s PERIPHERY to +. This value is effectively reset each time a new layer
is reached, as it is not passed from daughter to mother. While this approach does not allow for modifiers
applicable to one layer to be interspersed between the elements of a lower layer, this could be improved
in the future by adjusting the representation of modifiers to be more like the operator representation.

4.2 Comparison to a Tree Adjoining Grammar-based RRG formalization

The TAG-inspired approach to RRG formalization pursued by Osswald and Kallmeyer (2018) produces
trees that are more consistent with standard RRG that the approach I have proposed. In the TAG
approach, the trees are flatter, represent the fully derived structure rather than the steps involved in
derivation, and capture the extended domain of locality in a way that is more consistent with standard
RRG: long distance dependencies are captured using a ‘wrapping substitution’ mechanism, in which the
predicate-argument structure that is the source of the long distance dependency is wrapped around the
intervening elements. In the present approach, long distance dependencies would need to be percolated
through the layered structure of the clause, as in Pollard and Sag (1994).

4.3 Semantics representation
event-fr

protag-ev-fr

action-fr

intern-act-fr communication-fr ...

cause-fr change-state ...

no-protag-ev

phase-fr

phase-onset-fr

beginning-fr ...

keeping-fr finishing-fr ...

appears-fr ...

Figure 6: A section of the event frame type hierarchy

Although not explicitly arranged hi-
erarchically, or using typed fea-
ture structures, the verbal repre-
sentations in standard RRG can be
straightforwardly adapted to hierar-
chically organized feature structure representations (semantic frames). RRG’s lexical decomposition
semantics already organizes verbs into a number of classes. A fragment of the proposed event frame
hierarchy is shown in Figure 6. Each event frame is associated with a set of boolean aspectual features
(STATIC, DYNAMIC, TELIC and PUNCTUAL), following Van Valin (2005). These features are used to
restrict the application of constructions that are sensitive to the aspectual properties of their constituents,
such as phase constructions (e.g. begin to X) and duration (e.g. for an hour) or time-to-completion
modifiers (e.g. in two hours). Participant roles are already hierarchically organized in RRG, so that
most roles are fairly specific but can also be categorized into more coarsely grained thematic relations
and macro roles (see Van Valin, 2005, p.54). Verbs describing activities are represented with do’ in the
logical representation. This could be transformed into an abstract ACTOR role in an event frame, to be
realized as EATER, RUNNER, TALKER and so on in specific event frames.

4.3.1 Semantic representation: entities, event frames, macroevents and propositions

Extending the idea of the Macro Event Property (Bohnemeyer et al., 2007; Bohnemeyer and Van Valin,
2017), a distinction is made between event frames, macroevents, and propositions. Macroevents are com-

33

posed from the event frame in the nucleus, any additional event frame contributed by the argument struc-
ture construction, and any core cosubordination junctures. As the macroevent is built up from the nucleus
to the core to be passed on to the clause, it is represented in SEM|FRAMES|BUILD-MACROEVENT (abbre-
viated to SEM|FRMS|B-MACRO). Once a core becomes a clause, either through a pumping construction
(10), or through a core coordination construction, the macro-event-obj in BUILD-MACROEVENT is trans-
ferred to the MACRO-EVENTS (M-EVS) list in the first proposition-obj in the PROPOSITIONS (PROPS)
list. The type signatures for sem-obj, macro-event-obj and proposition-obj are shown in (7-9):

(7)

sem-obj
INDEX index

FRMS

ENTITIES list(ref-descriptor-obj)
PROPS list(proposition-obj)
PROP-RELS list(proposition-rel-obj)

OPS

NUCLEAR-OPS nuclear-ops-obj
CORE-OPS core-ops-obj
CLAUSAL-OPS clausal-ops-obj

(8)

macro-event-obj
EV-FRMS list(frame)
MODS list(frame)
OPERATORS core-ops-obj
ASPECT-PROF aspect-obj
INDEX index

(9)

proposition-obj
M-EVS list(macro-ev-obj)
MODS list(frame)
OPERATORS clausal-ops-obj
M-EV-RELS list(macroevrel-obj)
INDEX index

list(τ) represents a list containing only elements of type τ . Propositions (9) are composed from the
macroevent/s contributed by the core/s that feed into a sentence. Core coordination constructions produce
two macroevents, while core cosubordination constructions produce only one: the events contributed by
each daughter core are integrated into the semantics of a single macroevent in the juncture construction.

(10)

core-to-clause (↑ pumping-cx)

MTR

clause

SEM | FRMS

ENTITIES 1

M-EVS 5 ⊕ 2

PROPS 4

PROP-RELS 3

DTRS

〈

core

SEM | FRMS

ENTITIES 1

PROPS 4

PROP-RELS 3

BUILD-M-EV 2

〉

(11)

core-cosub (↑ juncture-cx)

MTR

core

SEM

INDEX i
OPERATORS 1

FRMS | B-MACRO | ASPECTP 2

DTRS

〈

core
PERIPHERY −

SEM

INDEX i
OPERATORS 1

FRMS

[
B-MACRO | ASPECTP 2

ENTITIES〈〉

]

,

[
core
PERIPHERY −

]

〉

The precise relationship between event frames (contributed either by a predicate or by a construction)
is specified in the constraints of each construction. Core layer modifiers are added to the MODS list of the
macro-event-obj. The onset-phase construction shown in (12) specifies that the first core must contribute
a phase-onset-fr, while the second core must contribute an event-fr which fills the EVENT role of the
phase-onset-fr. The ultimate semantic output of a sentence is a list of entities, and a list of propositions
(plus proposition relations, in the case of sentences containing multiple clause nodes).

(12)

ccosub-onset-phase (↑ core-cosub)

MTR

SEM | FRMS | B-MACRO | EV-FS

〈
3

[
phase-onset-fr
EVENT 4

]〉

DTRS

〈[
SEM | FRMS | B-MACRO | EV-FS 〈 3 〉

]
,
[

SEM | FRMS | B-MACRO | EV-FS 〈 4 event-fr〉
]〉

34

5 Implementation in ALE

The Attribute Logic Engine (ALE) is a freeware logic programming and grammar parsing and generation
system written in Prolog. For a full description of ALE, see Carpenter and Penn (2001). The proposed
constraint-based RRG-variant is implemented for a fragment of English.4 The current fragment contains
a restricted set of 419 lexical items and 45 leaf node constructions. A semi-automatic expansion of the
lexicon using FrameNet is planned. The implementation includes: a type-hierarchy, containing all types
and their features; a list of constraints on types; a lexicon; a list of lexical rules; a list of phrase rules which
map constituents to the daughters of a compatible construction, thus generating a mother constituent; a
list of declarative statements which constrain the parser so that only the leaf construction types in the
hierarchy (and not the more abstract parent types) can be parsed; and macros to simplify repeated chunks
of code. Listing 1 shows the implementation of the constraints on the abstract core-cosubordination
construction (11). Listing 2 shows the output of the recsem() command, which parses a sentence and
displays the semantic output of a sentence: a list of entities and a list of propositions.

Listing 1: Core cosubordination constraints in ALE

coreCosub cons

(mother:(core,

syn:(category: Cat,

clmm: clm_none),

sem:(index:I,

operators: O,

frames:(buildMacroEvent:(aspectprofile:Asp)))),

dtrs:[(core,

periphery: minus,

syn:(category: Cat,

clmm:clm_none),

sem:(index:I,

operators: O,

frames:(buildMacroEvent:(aspectprofile:Asp),

entities: []))),

(core, periphery: minus)]).

Listing 2: Semantic output for The cat began to purr.

sem_output

ENTS referentdescriptor

BOUNDED plus

CAT cat_fr

ENTITY [0]

DEF definite

IX [0]

NUMBER sg

PROPS proposition

MACROEVS macroEvent

ASPECTPROF [1] achievement

EV-FRMS beginning_fr

ASPECT [1]

PHASE_EV purring_fr

PROTAG [0]

SIT [2]

OPERATORS clauseops

TENSE past

PROP_INDEX [2]

Constructions are parsed via phrase rules. Phrase rules in ALE specify an output, one or more con-
stituents (cat>) in the order they must be encountered, and goals (goal>) which evaluate Prolog predi-
cates with respect to variables from the output or constituents of the phrase rule. In this implementation,
the type of each constituent is always phrasal-cx, and cat> is only ever sensitive to the constituent’s
MOTHER value. The phrase rule output is also a construction, and each item in its DTRS list must unify
with the MOTHER of a particular constituent. The possible output construction types are restricted via the
goal: only construction types which satisfy a specified Prolog predicate (defined in a list of declarative
statements) are eligible. In this way, parsing is restricted to only leaf node construction types, and not
their more abstract/underspecified supertypes.

6 Future work
The current implementation of this constraint-based variant of RRG has focused primarily on: a) building
out the backbone of the layered structure of the clause; and b) the structure and semantic representation
of complex event descriptions. Two major additional features are currently being developed: the incorpo-
ration of information structure (the third projection in RRG’s LSC model), which will extend the model
beyond parsing declarative sentences with broad focus; and aspectual coercion (c.f. Michaelis, 2004),
which will increase the flexibility of the grammar in parsing event descriptions that do not make use of
the default aspectual profile of a particular event.

4The full code plus user manual are available on Github: https://github.com/ebellingham/constraint-based-rrg

35

References

Bohnemeyer, J., N. J. Enfield, J. Essegbey, I. Ibarretxe-Antunano, S. Kita, F. Lüpke, and F. K. Ameka
(2007). Principles of event segmentation in language: The case of motion events. Language 83(3),
495–532.

Bohnemeyer, J. and R. D. Van Valin (2017). The macro-event property and the layered structure of the
clause. Studies in Language 41(1), 142–197.

Carpenter, B. (1992). The Logic of Typed Feature Structures. New York, NY, USA: Cambridge University
Press.

Carpenter, B. and G. Penn (2001). ALE: The attribute logic engine user’s guide [Version 3.2.1].
Carnegie-Mellon University.

Copestake, A., D. Flickinger, C. Pollard, and I. A. Sag (2005). Minimal Recursion Semantics: An
Introduction. Research on Language and Computation 3(2-3), 281–332.

Fillmore, C. J. (1982). Frame Semantics. In Linguistics in the Morning Calm, pp. 111–137. Hanshin
Publishing Co.

Fillmore, C. J. and P. Kay (1996). Construction grammar coursebook.

Foley, W. and R. D. Van Valin (1984). Functional syntax and universal grammar. Cambridge: Cambridge
University Press.

Joshi, A. K. and Y. Schabes (1997). Tree-adjoining grammars. In Handbook of formal languages, pp.
69–123. Springer.

Kallmeyer, L. and R. Osswald (2017). Combining predicate-argument structure and operator projection:
Clause structure in role and reference grammar. In Proceedings of the 13th International Workshop on
Tree Adjoining Grammars and Related Formalisms, pp. 61–70.

Kallmeyer, L., R. Osswald, and R. D. Van Valin (2013). Tree wrapping for role and reference grammar.
In Formal Grammar, pp. 175–190. Springer.

Michaelis, L. A. (2004). Type shifting in construction grammar: An integrated approach to aspectual
coercion. Cognitive Linguistics 15(1), 1–67.

Osswald, R. and L. Kallmeyer (2018). Towards a formalization of role and reference grammar. In
R. Kailuweit, L. Knkel, and E. Staudinger (Eds.), Applying and Expanding Role and Reference Gram-
mar, NIHIN Studies, pp. 355–378. Freiburg: Albert-Ludwigs-Universität, Universitätsbibliothek.

Pollard, C. and I. A. Sag (1994). Head-driven phrase structure grammar. University of Chicago Press.

Sag, I. A. (2012). Sign-based construction grammar: An informal synopsis. In Sign-based construction
grammar, Volume 193, pp. 69–202. CSLI: CSLI Publications.

Van Valin, R. D. (2005). Exploring the syntax-semantics interface. Cambridge: Cambridge University
Press.

Van Valin, R. D. and R. J. LaPolla (1997). Syntax. Cambridge: Cambridge University Press.

36

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 37–48
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Computational Syntax-Semantics Interface with Type-Theory of
Acyclic Recursion for Underspecified Semantics

Roussanka Loukanova
Stockholm University

loukanova@gmail.com

Abstract

The paper provides a technique for algorithmic syntax-semantics interface in computational
grammar with underspecified semantic representations of human language. The technique is intro-
duced for expressions that contain NP quantifiers, by using computational, generalised Constraint-
Based Lexicalised Grammar (GCBLG) that represents major, common syntactic characteristics of a
variety of approaches to formal grammar and natural language processing (NLP). Our solution can
be realised by any of the grammar formalisms in the CBLG class, e.g., Head-Driven Phrase Structure
Grammar (HPSG), Lexical Functional Grammar (LFG), Categorial Grammar (CG). The type-theory
of acyclic recursion Lλ

ar, provides facility for representing major semantic ambiguities, as under-
specification, at the object level of the formal language of Lλ

ar, without recourse of meta-language
variables. Specific semantic representations can be obtained by instantiations of underspecified Lλ

ar-
terms, in context. These are subject to constraints provided by a newly introduced feature-structure
description of syntax-semantics interface in GCBLG.

1 Introduction

Ambiguity permeates human language, in all of its manifestations, by interdependences, across lexicon,
syntax, semantics, discourse, context, etc. Alternative interpretations may persist even when specific
context and discourse resolve or discard some specific instances in syntax and semantics. We present
computational grammar that integrates lexicon, syntax, types, constraints, and semantics. The formal fa-
cilities of the grammar have components that integrate syntactic constructions with semantic representa-
tions. The syntax-semantic interface, internally in the grammar, handles some ambiguities as phenomena
of underspecification in human language.

We employ a computational grammar, which we call Generalised Constraint-Based Lexicalised
Grammar (GCBLG). The formal system GCBLG uses feature-value descriptions and constraints in a
grammar with a hierarchy of dependent types, which covers lexicon, phrasal structures, and semantic
representations. In GCBLG, for the syntax, we use feature-value descriptions, similar to that in Sag et al.
(2003), which are presented formally in Loukanova (2017a) as a class of formal languages designating
mathematical structures of functional domains of linguistics information. GCBLG is a generalisation
from major lexical and syntactic facilities of frameworks in the class of Constraint-Based Lexicalist
Grammar (CBLG) approaches. To some extend, this is reminiscence of Vijay-Shanker and Weir (1994).
We lift the idea of extending classic formal grammars to cover semantic representations with semantic
underspecification via syntax-semantics interface within computational grammar.

We introduce the technique here for varieties of grammar formalisms from the CBLG approach, in
particular: Categorial Grammar (CG), e.g., see Moortgat (1996); Head-Driven Phrase Structure Gram-
mar (HPSG), e.g., see Pollard and Sag (1994); Lexical Functional Grammar (LFG), e.g., see Bresnan
(2001), Dalrymple (2001), Kroeger (2004); Tree-Adjoining Grammar (TAG), e.g., see Joshi et al. (1975);
Joshi (1987); and other grammar approaches, such as the Grammatical Framework GF, see Ranta (2011).
The valance features that we use here with corresponding semantic representations can be translated di-
rectly into HPSG, LFG, and Categorial Grammar (CG).

37

The grammar rules and constraints in GCBLG, in syntax and lexicon, carry semantic representations.
The formal language of the semantic representations is a specialised feature-value encoding of terms of
the formal language of acyclic recursion Lλ

ar, see Moschovakis (2006).

2 Overview of Moschovakis Type-Theory of Acyclic Recursion

2.1 Syntax of Lλ
ar

TypesLλ
ar

is the smallest set defined recursively, e.g., by presenting the rules in Backus-Naur form:

τ ::= e | t | s | (τ → τ) (Types)

Typed Vocabulary of Lλ
ar: For each type τ ∈ Types, Lλ

ar has typed constants, and variables.
Constants K: a denumerable (e.g., finite) set, Kτ = {c0τ , . . . , cτk}, K =

⋃
τ Kτ

Pure variables PV: a denumerable set: PVτ = {v0, v1, . . .}; PV =
⋃

τ PVτ

Recursion (memory) variables RV: a denumerable set: RVτ = {r0, r1, . . .}; RV =
⋃

τ RVτ

The sets of constants and variables of both kinds are mutually distinct: K 6= RV 6= PV.

Terms of Lλ
ar: The set of the terms of Lλ

ar is Terms = ∪τ∈Types Termsτ , where for every τ ∈ Types,
the terms in Termsτ are defined recursively as follows:

• Constants: If c ∈ Kτ , then c ∈ Termsτ , denoted by c : τ and cτ

• Variables: If x ∈ PVτ ∪RVτ , then x ∈ Termsτ , denoted by x : τ and xτ

• Application Terms: If A ∈ Terms(σ→τ) and B ∈ Termsσ, then A(B) ∈ Termsτ , denoted by
A(B) : τ and [A(B)]τ

• λ-abstraction terms: If x ∈ PVσ, and A ∈ Termsτ , then λ(x)(A) ∈ Terms(σ→τ), denoted by
λ(x)(A) : (σ → τ) and [λ(x)(A)](σ→τ)

• Recursion terms: For any n ≥ 0, if Ai ∈ Termsσi (i = 0, . . . , n) and pi ∈ RVσi (i = 1, . . . , n) are
such that p1, . . . , pn are pairwise different, and the sequence { p1 := A1, . . . , pn := An } satisfies
the Acyclicity Constraint, i.e., it is acyclic, then A0 where {p1 := A1, . . . , pn := An} ∈ Termsσ0 .
The type assignment of the recursion term is denoted by:

A0 where { p1 := A1, . . . , pn := An } : σ0 (1a)

[A0 where { p1 := A1, . . . , pn := An }]σ0 (1b)

Acyclicity Constraint (AC): the sequence of assignments {p1 := A1, . . . , pn := An} is acyclic iff
there is a function rank : {p1, . . . , pn} −→ N such that, for all pi, pj ∈ {p1, . . . , pn},

if pj occurs freely in Ai then rank(pj) < rank(pi) (2)

We use the meta-symbol ≡ for identity between expressions, e.g., E1 ≡ E2, and in abbreviations.
The sets FreeV(A) and BoundV(A), respectively of the free and bound variables of a term A, are

defined by structural recursion, in the usual way, with the exception of the recursion terms. For any given
recursion term A ≡ [A0 where {p1 := A1, . . . , pn := An}], all occurrences of p1, . . . , pn ∈ RV in A
are bound, and all other free (bound) occurrences of variables (constants) in A0, . . . , An are also free
(bound) in A.

The reduction calculus of Lλ
ar has a set of reduction rules that reduce each Lλ

ar-term A to its unique,
up to congruence, canonical form cf(A), i.e., A ⇒ cf(A). Informally, for every A,B ∈ Terms:

A ≈ B iff (1) A and B are proper terms and their denotations are equal and computed by the same
algorithm determined by cf(A) and cf(B); (2) or, A and B are immediate, and A and B have the same
denotations.

See Moschovakis (2006) and Loukanova (2016, 2019, 2018), for details on the denotational and
algorithmic semantics of Lλ

ar. For the first representation of semantic underspecification with the theory
of acyclic algorithms, see Loukanova (2007).

38

3 Underspecified Terms and Universal Syntax

Definition 1 (Underspecified Lλ
ar-Terms). For any A ∈ Terms, we call A an underspecified term, in case

FreeV(A)∩RV 6= ∅, i.e., when A has free occurrences of recursion variables; otherwise A is specified.

We represent some of the semantic ambiguities of natural language sentences by rendering them
into underspecified Lλ

ar-terms. In this paper, we consider a class of typical ambiguous sentences, which
have different scope readings, due to occurrences of multiple quantifier NPs in them. For any such
sentence Φ, direct representation of alternative readings, by a set of different Lλ

ar-terms, is available,

e.g., Φ render−−−→ Ai, i = 1, . . . , n, for some n ≥ 1. Without any specific context, all of these alternative
readings can be potentially viable. Instead of rendering Φ into the set of these specific terms, e.g., by
some (syntactic or other) analyses, we render Φ into a single, underspecified term A that represents the
set of the alternatives. When context information is available, e.g., by data driven methods, individual
or all Ai can be derived from A. That can be done by instantiating the free recursion variables of A,
and thus instantiating A, via expanding A by adding recursion assignments that bind its free recursion
variables. We impose constraints over the free recursion variables FreeV(A) ∩ RV, e.g., due to the
syntactic structure of A, via syntax-semantic analysis, to prevent undesirable alternative instantiations
and denotational interpretations denA(A)(g).

Informally, we can restrict the instantiations of A by constraints over possible bindings of recursion
variables that occur in A. For any given A,R ∈ Terms and p ∈ RV, the relation (R rBind p) holds
between R and p in A, when R recursively binds p in A, via a sequence of recursion assignments and/or
by λ-abstraction across recursion assignments. Thus, rBind provides specification relation between un-
derspecified and specified Lλ

ar-terms. The formal treatment of rBind, which is not in the subject of this
paper, is based on the binding relation introduced in Loukanova (2017b). Here, we focus on the technique
of rendering natural language expressions into underspecified terms, via syntax-semantics interface.

For example, the terms in (3d)–(3f) render the sentence “Fido barks”, via unordered, i.e., abstract,
universal syntax. (3c) renders the verb “barks”, which is of lexical type verb in the lexicon, to the Lλ

ar-
term Tb. Tb has in its where-assignment, the term barks : (ẽ → t̃), which is not a constant, but a complex
term that caries information about time in relation to possible, underspecified time of potential utterance,
see Loukanova (2011b). While the term Tb : t̃ is of sentential type, it is unsaturated because it has a free
recursion variable p that fills the argument slot of b, and which is without any constraint over it, regarding
possible binding of p.

- NP word in lexicon; semantically specified:

[Fido]NP
render−−−→ Ti ≡ i where { i := fido } : ẽ (3a)

- V lexeme in lexicon; rendered to a constant; semantically specified:

[bark]V
render−−−→ T

(̃e→t̃)
lex−b ≡ bark : (ẽ → t̃) (3b)

- Inflected V word in lexicon; semantically underspecified term carrying information about time; unsat-
urated for p ∈ FreeV(T t̃

b); it becomes constrained VP in the sentence analysis:

[barks]V
render−−−→ T t̃

b ≡ b(p) where { b := barks } : t̃ (3c)

- Sentence: universal, unordered syntax with SynSem; semantically underspecified; SynSem constrained:

{ [Fido]NP, [barks]VP }S
render−−−→ T1 ≡ b(p) where { i := fido, b := barks } : t̃

such that { (i rBind p) }
(3d)

- Universal, unordered syntax with SynSem; semantically specified by the SynSem constraint:

{ [Fido]NP, [barks]VP }S
render−−−→ T 1

univ ≡ b(p) where { p := i, i := fido, b := barks } (3e)

- Semantically specified by the SynSem constraint; reduced chain assignments:

{ [Fido]NP, [barks]VP }S
render−−−→ T ≡ Tuniv ≡ b(p) where { p := fido, b := barks } (3f)

39

- Surface ordered syntax with SynSem; semantically specified by the SynSem constraint:

{ [Fido]NP, [barks]VP }S
render−−−→ T ≡ Tuniv ≡ b(p) where { p := fido, b := barks } (3g)

An alternative syntax-semantics analysis of the same sentence “Fido barks”, can be obtained by us-
ing a λ-term [T ′

b]
(̃e→t̃) rendering a VP like “barks”, as in (4), the type of which, via λ(x)-abstraction,

reflects that it is of a functional type. This analysis results in the same term for rendering the sentence,
as in (3g), but with different intermediate reductions of the canonical forms. The analysis uses interme-
diate steps with γ∗-reduction, or, alternatively, γ-reduction, introduced in Loukanova (2019, 2018) for
canonical forms cfγ* and cfγ , correspondingly. These reduction extensions of the classic reduction from
Moschovakis (2006), provide computational simplifications in many cases, like this one.

- Inflected V word of type verb in lexicon; p′ ∈ FreeV(T ′
b), p

′(x) designates an actant; semantically
underspecified:

[barks]VP
render−−−→ [T ′

b]
(̃e→t̃) ≡ [λ(x)(b(p′(x))) where { b := barks }] : (ẽ → t̃) (4)

In (5a)–(5e), we present stages of syntax-semantics analysis, of a sentence with one quantifier NP
and an intransitive verb, via unordered, i.e., abstract, universal syntax-semantics interface. (5b) renders
the verb “barks”, which is of lexical type verb (a subtype of the type word) in the lexicon, to the Lλ

ar-term
Tb. The term Tb has in its where-assignment, the term barks : (ẽ → t̃), which is not a constant, but a
complex term that caries information about time in relation to possible time of a potential utterance, see
Loukanova (2011b). While the term Tb : t̃ is of sentential type, it is unsaturated because it has a free
recursion variable p that fills the argument slot of b, and which is without any constraint over it, regarding
possible binding of p. The syntactic structure of the sentence saturates the syntactic argument of the VP,
[barks]VP, with the subject NP, e.g., [every dog]NP.

- NP phrase, in grammar with SynSem; semantically specified:

[Every, dog]NP
render−−−→ [K]((̃e→t̃)→t̃)

≡ [Q(d)]((̃e→t̃)→t̃) where {Q := every , d := dog }
(5a)

- Inflected V word in lexicon; semantically underspecified term carrying information about time; unsat-
urated for p ∈ FreeV(T t̃

b); it becomes constrained VP in the sentence analysis:

[barks]VP
render−−−→ [Tb]

t̃ ≡ b(p) where { b(ẽ→t̃) := barks(ẽ→t̃) } : t̃ (5b)

- Sentence: universal, unordered syntax with SynSem; semantically underspecified; SynSem constrained:

{ [Every dog]NP, [barks]VP }S
render−−−→ [T]t̃ ≡ i where {

k := Q(d), Q := every , d := dog ,

h := b(p), b := barks }
such that { (k rBind p) }

(5c)

- Universal, unordered syntax with SynSem; semantically specified by SynSem constraint:
process−−−−→ [T]t̃ ≡ i where { i := k(λ(x)(h(x))) ≈ k(h),

k := Q(d), Q := every , d := dog ,

h := λ(x)(b(p′(x))), p′ := λ(x)(x), b := barks }
such that { (k rBind p′) }

(5d)

- Surface ordered syntax with SynSem; semantically specified by the SynSem constraint:

{ [Every dog]NP [barks]VP }S
render−−−→ [T]t̃ ≡ i where { i := k(λ(x)(h(x))) ≈ k(h),

k := Q(d), Q := every , d := dog ,

h := λ(x)(b(p′(x))), p′ := λ(x)(x), b := barks }
such that { (k rBind p′) }

(5e)

40

Note that the tree structures of the syntactic analyses in Sect. 6 have unordered daughters, and in
essence, these are three demential graphs.

4 Syntax-Semantics Interface in GCBLG by the Type-Theory of Acyclic
Recursion

A formal background on generalised GCBLG is given in Loukanova (2017a). We use a formal feature-
value language for type-theoretical descriptions of computational syntax of human language. Sag et al.
(2003) is a detailed introduction to formal grammar of human language, by providing and using theo-
retical linguistics. In this version of generalised GCBLG, semantic representations of human language
expressions, are provided by Lλ

ar-terms of the formal language of acyclic recursion Lλ
ar, by using feature-

value structures, via the technique introduced in Loukanova (2011a). Here, we provide two of the major
grammatical rules of GCBLG, enhanced with semantic representation, and a new, additional feature-
value description on constraints over semantic representations, via syntax-semantics interface. For this,
we introduce a new feature SYNSEM of type synsem, with values of type list-of(propositions).

The analysed natural language expressions are rendered into Lλ
ar-terms, in canonical forms, by using

feature-value representations of the recursion terms, according to the following rule:
Rendering syntactic structures into Lλ

ar-terms: Assume that a natural language expression E is
analysed by GCBLG as a feature-value description F (A). Assume that, in F (A), the value of the
feature T-HEAD is a Lλ

ar-term A0, and the value of the feature WHERE is a sequence −→p :=
−→
A of where-

assignments. Then, E render−−−→ A0 where {−→p :=
−→
A }. The value of the feature L-TYPE is the Lλ

ar-type of
A0. We use recursion variables to designate the rendering terms in the feature-value descriptions, which
can be used in the combined terms.

The rules HSR and HCR1 take as inputs expressions that have semantic representations in canonical
forms and generate phrases with semantic representations that are in canonical forms too. The values of
T-HEAD and WHERE of the left hand side of the rules are determined by: the semantic types T1 and T2

of the daughter nodes; the values of T-HEAD and WHERE in the daughters’ feature structures on the right
hand side; and the definition of the canonical form cf(A) of each term A.

Head Specifier Rule (HSR): (6)

phrase

SYN

[
VAL

[
SPR 〈 〉

]]

SYNSEM
[
append(2 , R′)

]

SEM

L-TYPE T

TERM

TERM-RV L

T-HEAD A0

WHERE U

−→ 1

SEM

L-TYPE T1

TERM

TERM-RV L1

T-HEAD A1,0

WHERE U1

H

SYN

VAL

[
SPR 〈 1L1 〉
COMPS 〈 〉

]

SYNSEM
[
2 append(L1 rBind p,R)

]

SEM

L-TYPE T2

TERM

[
T-HEAD A2,0[p]

WHERE U2[p]

]

Head Complement Rule (HCR1): (7)

phrase

SYN

[
VAL

[
COMPS a

]]

SYNSEM
[
append(2 , R′)

]

SEM

L-TYPE T

TERM

TERM-RV L

T-HEAD A0

WHERE U

−→ H

SYN

VAL

COMPS

FIRST 1L1

REST a

[
list

]

SYNSEM
[
2 append(L1 rBind p,R)

]

SEM

L-TYPE T2

TERM

[
T-HEAD A2,0[p]

WHERE U2[p]

]

1

SEM

L-TYPE T1

TERM

TERM-RV L1

T-HEAD A1,0

WHERE U1

41

In both rules (6)–(7), p ∈ RV, A2,0[p], U2[p] indicate that p may fill up some argument slots in some of
the sub-terms, and the following cases can be realised:

Case1: Ti ≡ (σ → τ) and Tj ≡ σ, for i, j ∈ {1, 2} and i 6= j, T ≡ τ
There are two sub-cases, (8) and (9), for the term [A0 where U] in (6)–(7):
(1) if Aj,0 is immediate, then:

A0 ≡ Ai,0(Aj,0) and U ≡ append(U1, U2) (8)
(2) otherwise, i.e., if Aj,0 is proper, then:

A0 ≡ Ai,0(q0) and U ≡ append({q0 := Aj,0}, append(U1, U2)) (9)
Case2: T2 : t̃; and T1 : ((ẽ → t̃) → t̃) or T1 : ((ẽ → t̃) → ((ẽ → t̃) → t̃))
The binding constraints in the value of the feature SYNSEM provide suitable terms for A0 and U ,

by combining the parts Aj,0, Uj , for j = 1, 2, and adding new constraints, as needed. The detailed
specifications use the definition of the relation rBind.

Case2 covers expressions such as NPs, VPs, and sentences S, where some argument slots are bound
by sub-terms of the renderings of NP quantifiers, via recursion variables. The technique is exemplified by
the analysis of the sentence “Every cat hugs some dog”, which represents a general pattern for multiple
quantifier scopes. It is presented in Fig. 3.

5 Scope Underspecification and Specification

Scope Underspecification: The feature-value structural description given in Fig. 3 is a pattern of one of
the possible ways to represent multiple semantic scopes of quantification. The syntax-semantics interface
is provided by the HSR and HCR1 rules of GCBLG, while the formal calculi of Lλ

ar, provides terms for
algorithmic semantics. A sentence that has occurrences of multiple quantifier NPs can be rendered into a
single Lλ

ar-term that represents the multiple possibilities simultaneously. It is underspecified, by having
constrained free recursion variables filling up the argument slots that are bound by the corresponding
NPs.

Scope Specification: The binding relation rBind in Lλ
ar provides a syntax-semantics facility to con-

strain the possible bindings in specific scopes, via restricting free recursion variables occurring in an
underspecified term. An underspecified term can be expanded into specified terms only if they satisfy
the rBind-constraints. Thus, constraints expressed by rBind also restrict the possible interpretations of
the free recursion variables. For instance, the semantic rendering in Fig. 3 can be expanded into specified
semantic representation, which has to satisfy the constraints imposed by the structural combinations.
Fig. (4) presents one of the available possibilities to instantiate the free recursion variables, i.e., to bind
them by the corresponding NP quantifiers.

6 Grammar Analyses with Syntax-Semantics Interface in GCBLG

In this section, we provide several analyses of typical sentences with head verbs taking NPs as their
syntactic, and corresponding semantic, arguments. We exemplify the classes of intransitive and transitive
head verbs having NP subjects and single NP complements.

Note that in the analysis in Fig. 1, we do not render the NP that is a proper name into a term of a
generalised quantifier, since that would introduce unnecessary complexity in the analysis of expressions
of this kind. Furthermore, the term [Tb]

t̃ that renders the VP is as in (5b). Optionally, we can use a
λ-abstraction term [T ′

b]
(̃e→t̃), and then, the sentence gets rendered to an algorithmically equivalent term

by the γ∗-reduction calculus of Lλ
ar, see Loukanova (2019, 2018).

In Fig. 2, we present a syntax-semantics analysis of a sentence with a single quantifier NP, in the
subject position of the intransitive V. Optionally, we can use a λ-abstraction term [T ′

b]
(̃e→t̃), resulting in

an algorithmically equivalent term for the sentence, by the γ∗-reduction calculus of Lλ
ar.

42

S

SYN

VAL

[
COMPS 〈 〉
SPR 〈 〉

]

SEM

L-TYPE t̃

TERM

T

T-HEAD b(p)

WHERE { (p := i, i := fido)
p := fido,

b := barks }

NPi

1

SYN

HEAD 4

VAL

[
COMPS 〈 〉
SPR 〈 〉

]

SEM

L-TYPE ẽ

TERM

Ti

T-HEAD i

WHERE { i := fido }

Fido

V(P)

H

word

SYN

HEAD 0

[
verb
AGR 3

]

VAL

[
COMPS 〈 〉
SPR 〈 1 i 〉

]

SYNSEM
[
i rBind p

]

SEM

L-TYPE t̃

TERM

T t̃
b

T-HEAD b(p)

WHERE { b := barks}

barks

Figure 1: A Proper Name as the Specifier of an Intransitive Verb

S

SYNSEM
[
i rBind p′, Q rBind p′

]

SEM

L-TYPE t̃

TERM

T

T-HEAD i

WHERE { i := Q(λ(x)(h(x))) ≈ Q(h),
Q := q(d),
q := some , d := dog ,
h := λ(x)(b(p′(x))),
p′ := λ(x)(x),
b := barks }

NPQ

1

SYN

HEAD 4

VAL

[
COMPS 〈 〉
SPR 〈 〉

]

SEM

L-TYPE (ẽ → t̃) → t̃

TERM

Q0

T-HEAD q(d)

WHERE { q := some ,
d := dog }

2

SYN

HEAD
[
det

]

VAL

[
SPR 〈 〉
COMPS 〈 〉

]

SEM

L-TYPE ((ẽ → t̃) → ((ẽ → t̃) → t̃))

TERM

q0

T-HEAD some

WHERE { }

some

H

SYN

HEAD 4

[
noun

]

VAL

SPR

〈
2

〉

COMPS 〈 〉

SEM

L-TYPE (ẽ → t̃)

TERM

d0

T-HEAD dog

WHERE { }

dog

V(P)

H

word

SYN

HEAD 0

[
verb
AGR 3

]

VAL

[
COMPS 〈 〉
SPR 〈 1 i 〉

]

SYNSEM
[
Q rBind p

]

SEM

L-TYPE t̃

b : (ẽ → t̃)

TERM

Tb

T-HEAD b(p)

WHERE { b := barks }

barks

Figure 2: Quantifier NP in Subject Position, Specified

43

In Fig. 3, we present a syntax-semantics analysis of a sentence with two quantifier NPs, in subject and
compliment positions of the head verb V. In Fig. 4, we present its specification to one of the alternative
scope distributions. In it, we have specified the VP at the intermediate level of the analysis, in the node
marked by (n1) VP. Pragmatically, it is more viable for this node to be underspecified as it is in 3, and
the specification is at the node (n0) S, at the sentence level, e.g., when disambiguating information is
available at that level.

In Fig. 5, we present an optional analysis of the same sentence, by rendering the head verb to a λ-
term, which is congruent to λ(xd2)λ(xd1)h(p

′
1(xd1))(p

′
2(xd2)). In such a case, there is a correspondence

between the syntactic and semantic saturation types of the V and VP expressions. But, the term that
renders the sentence at the node (n0) S, is not algorithmically equivalent to the one in Fig. 3, and naturally
reflect on the algorithmic steps that are used during the analyses for filling up arguments. Similarly, the
specification terms corresponding to these two options are not algorithmically equivalent.

7 Conclusions and Future Work

We have presented how the formal language of the theory of acyclic recursion Lλ
ar can be used for se-

mantic representations of natural language via syntax-semantics interface in computational grammar. We
have introduced the technique by generalised GCBLG that employs feature-value descriptions. GCBLG
is type theoretical by its hierarchy of constraints, which are of dependent types, for the syntactic com-
positions. The feature-value descriptions embed semantic representations by the higher-order Lλ

ar-terms.
We have focused on two of the major grammar rules for saturation of syntactic and semantic arguments,
for underspecified semantic representations of multiple quantifier scopes. A sentence that has two (or
more) quantifier NPs, with ambiguous semantic scopes, can be rendered into a single, underspecified
Lλ
ar-term A. The key idea is that A has free recursion variables saturating arguments that can be bound

by corresponding quantifier NPs in alternative orders. The phrasal rules of GCBLG introduce restrictions
over possible bindings via recursion assignments in syntax-semantics interface.

We foresee extending and implementing the technique for computational syntax-semantics interface
in lexical and phrasal structures, for broader grammatical constructions.

References

Bresnan, J. (2001). Lexical-Functional Syntax. Oxford: Blackwell Publishers.

Dalrymple, M. (2001). Lexical Functional Grammar, Volume 34 of Syntax and Semantics. New York:
Academic Press.

Joshi, A. K. (1987). An introduction to tree adjoining grammars. Mathematics of Language 1, 87–115.

Joshi, A. K., L. S. Levy, and M. Takahashi (1975, February). Tree adjunct grammars. J. Comput. Syst.
Sci. 10(1), 136–163.

Kroeger, P. (2004). Analyzing Syntax: A Lexical-Functional Approach. Cambridge: Cambridge Univer-
sity Press.

Loukanova, R. (2007, August). Typed Lambda Language of Acyclic Recursion and Scope Underspec-
ification. In R. Muskens (Ed.), Workshop on New Directions in Type-theoretic Grammars, ESSLLI
2007, Dublin, Ireland, pp. 73–89. The Association for Logic, Language and Information.

Loukanova, R. (2011a). Semantics with the Language of Acyclic Recursion in Constraint-Based Gram-
mar. In G. Bel-Enguix and M. D. Jiménez-López (Eds.), Bio-Inspired Models for Natural and Formal
Languages, pp. 103–134. Cambridge Scholars Publishing.

44

(n
0
)

S
 S

Y
N

 V
A

L

[S
P

R
〈〉

C
O

M
P

S
〈〉

]

S
Y

N
S

E
M

[l 1
rB

in
d
T

,l
2
rB

in
d
T

,
Q

1
rB

in
d
p
1
,
R

1
rB

in
d
p
1
,Q

2
rB

in
d
p
2
,R

2
rB

in
d
p
2

]

S
E

M

 L
-T

Y
P

E
t̃

T
E

R
M

 R
3

T-
H

E
A

D
T

W
H

E
R

E
{l

1
: =

Q
1
(R

1
),
l 2

: =
Q

2
(R

2
),

Q
1
: =

q 1
(d

1
),
q 1

: =
so
m
e
,
d
1
: =

d
og

,
Q

2
: =

q 2
(d

2
),
q 2

: =
ev
er
y
,
d
2
: =

ca
t,

R
0
: =

h
(p

1
)(
p
2
),
h
: =

h
u
g
}

(n
2
)

N
P Q

2

2

 S
Y

N

 H
E

A
D

4

V
A

L

[C
O

M
P

S
〈〉

S
P

R
〈〉

]

S
E

M

 L
-T

Y
P

E
((
ẽ
→

t̃)
→

t̃)

T
E

R
M

 Q
2

T-
H

E
A

D
q 2
(d

2
)

W
H

E
R

E
{q

2
: =

ev
er
y

,
d
2
: =

ca
t
}

3

 S
Y

N

 H
E

A
D

[de
t]

V
A

L

[S
P

R
〈〉

C
O

M
P

S
〈〉

]

S
E

M

 T
E

R
M

[T-
H

E
A

D
ev
er
y

W
H

E
R

E
{}

]

ev
er

y

H

 S
Y

N

 H
E

A
D

4

[no
un

]

V
A

L

 S
P

R
〈 3

〉

C
O

M
P

S
〈〉

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

T
E

R
M

[T-
H

E
A

D
ca
t

W
H

E
R

E
{}

]

ca
t

(n
1
)

V
P

 S
Y

N

 H
E

A
D

[ve
rb
]

V
A

L

[S
P

R
〈2

Q
2
〉

C
O

M
P

S
〈〉

]

S
Y

N
S

E
M

[(Q
2
rB

in
d
p
2
),

(Q
1
rB

in
d
p
1
),

(R
1
rB

in
d
p
1
)]

S
E

M

 L
-T

Y
P

E
t̃

T
E

R
M

 T
0

T-
H

E
A

D
l 1

W
H

E
R

E
{l

1
: =

Q
1
(R

1
),

Q
1
: =

q 1
(d

1
),
q 1

: =
so
m
e
,
d
1
: =

d
og

,
R

0
: =

h
(p

1
)(
p
2
),
h
: =

h
u
g
}

(n
3
)

V
 w

or
d

S
Y

N

 H
E

A
D

[ve
rb
]

V
A

L

[S
P

R
〈2

Q
2
〉

C
O

M
P

S
〈1

Q
1
〉]

S
Y

N
S

E
M

[Q
1
rB

in
d
p
1
,Q

2
rB

in
d
p
2
,
]

S
E

M

 se
m

-c
at

L
-T

Y
P

E
t̃ h
:
(ẽ

→
(ẽ

→
t̃)
)

T
E

R
M

 R
0

T-
H

E
A

D
h
(p

1
)(
p
2
)

W
H

E
R

E
{h

: =
h
u
g
}

hu
gs

(n
5
)

N
P Q

1

1

 S
Y

N

 H
E

A
D

5

V
A

L

[C
O

M
P

S
〈〉

S
P

R
〈〉

]

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

→
t̃

T
E

R
M

 Q
1

T-
H

E
A

D
q 1
(d

1
)

W
H

E
R

E
{q

1
: =

so
m
e

,
d
1
: =

d
og

}

so
m

e
do

g

Fi
gu

re
3:

U
nd

er
sp

ec
ifi

ed
Sc

op
e:

Q
ua

nt
ifi

er
N

P
as

Su
bj

ec
ta

nd
Q

ua
nt

ifi
er

N
P

as
C

om
pl

em
en

t

45

(n
0
)

S
 S

Y
N

S
E

M
[Q

1
rB

in
d
p
′ 1
,Q

2
rB

in
d
p
′ 2
,
R

2 1
rB

in
d
p
′ 1
,
R

2
rB

in
d
p
′ 2

]

S
E

M

 L
-T

Y
P

E
t̃

T
E

R
M

 R
3

T-
H

E
A

D
l 2

W
H

E
R

E
{l

2
: =

Q
2
(R

2
),

R
2
: =

λ
(x

d
2
)Q

1
(R

2 1
(x

d
2
))

,
R

2 1
: =

λ
(x

d
2
)λ
(x

d
1
)R

2 0
(x

d
2
)(
x
d
1
),

R
2 0
: =

λ
(x

d
2
)λ
(x

d
1
)h
(p

′ 1
(x

d
1
))
(p

′ 2
(x

d
2
))

,
Q

1
: =

q 1
(d

1
),

q 1
: =

so
m
e
,
d
1
: =

d
og

,
Q

2
: =

q 2
(d

2
),

q 2
: =

ev
er
y
,
d
2
: =

ca
t,

h
: =

h
u
g

,
p
′ 1
: =

λ
(x
)(
x
),

p
′ 2
: =

λ
(x
)(
x
)
}

(n
2
)

N
P Q

2

2

 S
Y

N

 H
E

A
D

4

V
A

L

[C
O

M
P

S
〈〉

S
P

R
〈〉

]

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

→
t̃

T
E

R
M

 Q
2

T-
H

E
A

D
q 2
(d

2
)

W
H

E
R

E
{q

2
: =

ev
er
y

,
d
2
: =

ca
t
}

3

 S
Y

N

 H
E

A
D

[de
t]

V
A

L

[S
P

R
〈〉

C
O

M
P

S
〈〉

]

S
E

M

 T
E

R
M

[T-
H

E
A

D
ev
er
y

W
H

E
R

E
{}

]

ev
er

y

H

 S
Y

N

 H
E

A
D

4

[no
un

]

V
A

L

 S
P

R
〈 3

〉

C
O

M
P

S
〈〉

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

T
E

R
M

[T-
H

E
A

D
ca
t

W
H

E
R

E
{}

]

ca
t

(n
1
)

V
P

 S
Y

N

 H
E

A
D

[ve
rb
]

V
A

L

[S
P

R
〈2

Q
2
〉

C
O

M
P

S
〈〉

]

S
Y

N
S

E
M

[Q
1
rB

in
d
p
′ 1
,
R

1 1
rB

in
d
p
′ 1
,
Q

2
rB

in
d
p
2

]

S
E

M

 L
-T

Y
P

E
t̃

T
E

R
M

 R
1 2

T-
H

E
A

D
l 1

W
H

E
R

E
{l

1
: =

Q
1
(R

1 1
),

R
1 1
: =

λ
(x

d
1
)R

1 0
(x

d
1
),

R
1 0
: =

λ
(x

d
1
)h
(p

′ 1
(x

d
1
))
(p

2
),

Q
1
: =

q 1
(d

1
),
q 1

: =
so
m
e
,
d
1
: =

d
og

,
h
: =

h
u
g

,
p
′ 1
: =

λ
(x
)(
x
)
}

(n
3
)

V
 w

or
d

S
Y

N

 H
E

A
D

[ve
rb
]

V
A

L

[S
P

R
〈2

Q
2
〉

C
O

M
P

S
〈1

Q
1
〉]

S
Y

N
S

E
M

[Q
1
rB

in
d
p
1
,Q

2
rB

in
d
p
2
,
]

S
E

M

 se
m

-c
at

L
-T

Y
P

E
t̃ h
:
(ẽ

→
(ẽ

→
t̃)
)

T
E

R
M

 R
0 0

T-
H

E
A

D
h
(p

1
)(
p
2
)

W
H

E
R

E
{h

: =
h
u
g
}

hu
gs

(n
5
)

N
P Q

1

1

 S
Y

N

 H
E

A
D

5

V
A

L

[C
O

M
P

S
〈〉

S
P

R
〈〉

]

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

→
t̃

T
E

R
M

 Q
1

T-
H

E
A

D
q 1
(d

1
)

W
H

E
R

E
{q

1
: =

so
m
e

,
d
1
: =

d
og

}

so
m

e
do

g

Fi
gu

re
4:

Sp
ec

ifi
ca

tio
n:

Q
ua

nt
ifi

er
N

P
as

Su
bj

ec
ta

nd
Q

ua
nt

ifi
er

N
P

as
C

om
pl

em
en

t:
de

di
ct

o

46

(n
0
)

S
 S

Y
N

 V
A

L

[S
P

R
〈〉

C
O

M
P

S
〈〉

]

S
Y

N
S

E
M

[l 1
rB

in
d
T

,l
2
rB

in
d
T

,
Q

1
rB

in
d
p
1
,
R

1
rB

in
d
p
1
,Q

2
rB

in
d
p
2
,R

2
rB

in
d
p
2

]

S
E

M

 L
-T

Y
P

E
t̃

T
E

R
M

 R
3

T-
H

E
A

D
T

W
H

E
R

E
{l

1
: =

Q
1
(R

1
),
l 2

: =
Q

2
(R

2
),

Q
1
: =

q 1
(d

1
),
q 1

: =
so
m
e
,
d
1
: =

d
og

,
Q

2
: =

q 2
(d

2
),
q 2

: =
ev
er
y
,
d
2
: =

ca
t,

R
2 0
: =

λ
(x

d
2
)λ
(x

d
1
)h
(p

′ 1
(x

d
1
))
(p

′ 2
(x

d
2
))

,
h
: =

h
u
g
}

(n
2
)

N
P Q

2

2

 S
Y

N

 H
E

A
D

4

V
A

L

[C
O

M
P

S
〈〉

S
P

R
〈〉

]

S
E

M

 L
-T

Y
P

E
((
ẽ
→

t̃)
→

t̃)

T
E

R
M

 Q
2

T-
H

E
A

D
q 2
(d

2
)

W
H

E
R

E
{q

2
: =

ev
er
y

,
d
2
: =

ca
t
}

3

 S
Y

N

 H
E

A
D

[de
t]

V
A

L

[S
P

R
〈〉

C
O

M
P

S
〈〉

]

S
E

M

 T
E

R
M

[T-
H

E
A

D
ev
er
y

W
H

E
R

E
{}

]

ev
er

y

H

 S
Y

N

 H
E

A
D

4

[no
un

]

V
A

L

 S
P

R
〈 3

〉

C
O

M
P

S
〈〉

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

T
E

R
M

[T-
H

E
A

D
ca
t

W
H

E
R

E
{}

]

ca
t

(n
1
)

V
P

 S
Y

N

 H
E

A
D

[ve
rb
]

V
A

L

[S
P

R
〈2

Q
2
〉

C
O

M
P

S
〈〉

]

S
Y

N
S

E
M

[Q
2
rB

in
d
p
′ 2
,l

1
rB

in
d
T
1
,

Q
1
rB

in
d
p
′ 1
,R

1
rB

in
d
p
′ 1

]

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

T
E

R
M

 T
′ 1

T-
H

E
A

D
T
1

W
H

E
R

E
{l

1
: =

Q
1
(R

1
),

Q
1
: =

q 1
(d

1
),
q 1

: =
so
m
e
,
d
1
: =

d
og

,
R

2 0
: =

λ
(x

d
2
)λ
(x

d
1
)h
(p

′ 1
(x

d
1
))
(p

′ 2
(x

d
2
))

h
: =

h
u
g
}

(n
3
)

V
 w

or
d

S
Y

N

 H
E

A
D

[ve
rb
]

V
A

L

[S
P

R
〈2

Q
2
〉

C
O

M
P

S
〈1

Q
1
〉]

S
Y

N
S

E
M

[Q
1
rB

in
d
p
′ 1
,Q

2
rB

in
d
p
′ 2
,
]

S
E

M

 se
m

-c
at

L
-T

Y
P

E
(ẽ

→
(ẽ

→
t̃)
)

h
:
(ẽ

→
(ẽ

→
t̃)
)

T
E

R
M

 R
2 0

T-
H

E
A

D
λ
(x

d
2
)λ
(x

d
1
)h
(p

′ 1
(x

d
1
))
(p

′ 2
(x

d
2
))

W
H

E
R

E
{h

: =
h
u
g
}

hu
gs

(n
4
)

N
P Q

1

1

 S
Y

N

 H
E

A
D

5

V
A

L

[C
O

M
P

S
〈〉

S
P

R
〈〉

]

S
E

M

 L
-T

Y
P

E
(ẽ

→
t̃)

→
t̃

T
E

R
M

 Q
1

T-
H

E
A

D
q 1
(d

1
)

W
H

E
R

E
{q

1
: =

so
m
e

,
d
1
: =

d
og

}

so
m

e
do

g

Fi
gu

re
5:

U
nd

er
sp

ec
ifi

ed
Sc

op
e:

Q
ua

nt
ifi

er
N

P
as

Su
bj

ec
ta

nd
Q

ua
nt

ifi
er

N
P

as
C

om
pl

em
en

t:
vi

a
λ

-a
bs

tr
ac

tio
n

47

Loukanova, R. (2011b). Syntax-Semantics Interface for Lexical Inflection with the Language of Acyclic
Recursion. In G. Bel-Enguix, V. Dahl, and M. D. Jiménez-López (Eds.), Biology, Computation and
Linguistics — New Interdisciplinary Paradigms, Volume 228 of Frontiers in Artificial Intelligence and
Applications, pp. 215–236. Amsterdam; Berlin; Tokyo; Washington, DC: IOS Press.

Loukanova, R. (2016). Relationships between Specified and Underspecified Quantification by the The-
ory of Acyclic Recursion. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence
Journal 5(4), 19–42.

Loukanova, R. (2017a). An Approach to Functional Formal Models of Constraint-Based Lexicalized
Grammar (CBLG). Fundamenta Informaticae 152(4), 341–372.

Loukanova, R. (2017b). Binding Operators in Type-Theory of Algorithms for Algorithmic Binding of
Functional Neuro-Receptors. In M. Ganzha, L. Maciaszek, and M. Paprzycki (Eds.), Proceedings of
the 2017 Federated Conference on Computer Science and Information Systems, Volume 11 of Annals
of Computer Science and Information Systems, pp. 57–66. Polish Information Processing Society.

Loukanova, R. (2018). γ-Reduction in Type Theory of Acyclic Recursion. to appear.

Loukanova, R. (2019). Gamma-star canonical forms in the type-theory of acyclic algorithms. In
J. van den Herik and A. P. Rocha (Eds.), Agents and Artificial Intelligence, Cham, pp. 383–407.
Springer International Publishing.

Moortgat, M. (1996). Categorial type logics. In J. van Benthem and A. ter Meulen (Eds.), Handbook of
Logic and Language, pp. 93–177. Amsterdam: Elsevier.

Moschovakis, Y. N. (2006). A Logical Calculus of Meaning and Synonymy. Linguistics and Philoso-
phy 29(1), 27–89.

Pollard, C. and I. A. Sag (1994). Head-Driven Phrase Structure Grammar. Chicago, IL: University of
Chicago Press.

Ranta, A. (2011). Grammatical Framework: Programming with Multilingual Grammars. Stanford:
CSLI Publications.

Sag, I. A., T. Wasow, and E. M. Bender (2003). Syntactic Theory: A Formal Introduction. Stanford,
California: CSLI Publications.

Vijay-Shanker, K. and D. J. Weir (1994, November). The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27(6), 511–546.

48

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 49–54
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Modeling language constructs with compatibility intervals

Pavlo Kapustin
University of Bergen

pavlo.kapustin@uib.no

Michael Kapustin
Moscow Institute of Physics and Technology
michael.kapustin@gmail.com

Abstract

We describe a representation for modeling meaning of natural language constructs that is closely
related to fuzzy sets. Same as fuzzy sets, it allows to express quantitative relationships between dif-
ferent concepts, and is designed to support vagueness and imprecision common to natural language.
We compare the representations using several examples, and argue that in some cases the proposed
representation may be a good alternative to the fuzzy set based representation, and that it may also
be easier to learn from data.

Introduction

Consider the sentence “A young lady came into the room”. The word “lady” informs us about the gender
of the person, and both words in the construct “young lady” tell us something about the age of the person.
To be able to make such inferences one needs quantitative information about the relation of the construct
“young lady” to the property “age”, i.e. what ages are compatible with this description.

One representation that allows to explicitly capture this type of quantitative information is based on
fuzzy sets and suggested by Lotfi Zadeh in his earlier papers (Zadeh, 1971, 1972). However, there is
currently not much research in applying this representation to problems of computational linguistics and
natural language processing (Carvalho et al., 2012; Novák, 2017).

We believe that one of the reasons for this may be that membership functions are relatively complex
objects, possibly increasing the complexity of operations like different transformations and learning from
data when using the fuzzy set based representation. In this paper we briefly describe a representation
closely related to fuzzy sets that we call compatibility intervals, and argue that in some cases it may be a
good alternative to the fuzzy set based representation, and may also be easier to learn from data.

Related work

In his early works, Lotfi Zadeh suggests modeling meaning of certain types of adjectives (e.g. “small”,
“medium”, “large”) as fuzzy sets, and some lingustic hedges (e.g. “very”, “slightly” — as operators,
acting on these fuzzy sets (Zadeh, 1971, 1972). Hersh and Caramazza (1976) introduce logical and
linguistic interpretation of membership functions, confirming the difference between them in an experi-
mental setting.

Novák (2017) describes Fuzzy Natural Logic, a mathematical theory attemping to model the seman-
tics of natural language, that includes Theory of Evaluative Linguistic Expressions (Novák, 2008).

In M. Kapustin and P. Kapustin (2015) we describe a framework for computational interpreting of
natural language fragments, and suggest modeling meaning of words as operators. P. Kapustin (2015)
describes an application that implements and tests some features of this framework in a simplified setting.

Runkler (2016) describes an approach for generation of linguistically meaningful membership func-
tions from word vectors.

In P. Kapustin and M. Kapustin (2019b) we describe a couple of approaches that can be used for
modeling meaning of natural language constructs using fuzzy sets and discuss some examples. We

49

discuss how people relate some language constructs to compatibility intervals in an experimental study
(P. Kapustin and M. Kapustin, 2019a).

Schwarzchild and Wilkinson (2002) describe interval-based semantics for comparatives. Abrusán
and Spector (2008) describe semantics of degree questions based on intervals.

Different interpretations

Lotfi Zadeh’s further work on linguistic variables (Zadeh, 1975a, 1975b, 1975c) and possibility theory
(Zadeh, 1999) introduce term “compatibility”, clarifying interpretation of the values of the membership
functions: they can be seen as degrees of compatibility between the value of the function argument and
the construct that is described by the membership function.

Similarly to Hersh and Caramazza (1976), we distinguish between logical and linguistic interpre-
tations of membership functions. Consider fig. 1: “young1” corresponds to the logical interpretation,
reflecting the fact that infants and newborns are, indeed, as young as one can be. On the other hand,
“young2” corresponds to the linguistic interpretation, reflecting the fact that when we use the word
“young”, we usually refer to ages other than newborns and infants. Similarly, we normally do not use
“often” when something occurs always or almost always, and we normally do not use “seldom” when
something occurs never or almost never. On the other hand, the usage of word “old” does not seem to
differ from what is “logically” correct: we may say “old” about someone who is 80 or 100 years old.

We think that many, but probably, not all of the differences between logical and linguistic inter-
pretations are related to scalar implicatures and related phenomena, and believe that this needs to be
investigated further.

Difference between logical and linguistic interpretations has some interesting implications. Consider
fig. 2. Here we apply negation, implemented as Zadeh’s complementation (Zadeh, 1972), to constructs
“young1”, “young2” and “old”. While such negation seems to work well with the logical interpretation,
it gives somewhat unexpected results with the linguistic interpretation: according to not(µyoung2), it
appears that infants are less “not young” than newborns, which is not correct.

Figure 1: Different meanings of
“young”.

Figure 2: Logical “not”, applied to
“young1” and “young2”.

Consider fig. 3. Here we apply intensifier “very”, implemented as Zadeh’s concentration (Zadeh,
1972), to constructs “young1”, “young2” and “old”. While such implementation of “very” seems to
work well with the logical interpretation, it gives somewhat unexpected results with the linguistic inter-
pretation: according to very(µyoung2), it appears that infants are “very young” to a lower degree than
they are “young”. In addition, the width of the interval in which the membership degree is equal to one
is unaffected by the application of “very”, which seems to be incorrect.

We believe that logical and linguistic interpretations complement each other, each of them modeling
different aspects of the meaning of natural language constructs, and for some words may need to be

50

modeled as separate membership functions.
We think that finding mathematical functions and their transformations that correctly capture impor-

tant details about language constructs may not always be that easy. This seems to become even more
challenging if we are working with the linguistic interpretation, as in this case the shape of the functions
often becomes more complex.

Representation based on compatibility intervals

Here we briefly describe the representation based on compatibility intervals and discuss some examples.
Compatibility interval is an interval of property values on some scale that are compatible with a given

language construct (here term “property” is used in a relatively general sense). The discussion of scales
is a large topic of separate research, and is out of scope of this paper.

Compatibility intervals consist of the main subinterval with high compatibility, and optional left
(“increasing”) and right (“decreasing”) subintervals adjacent to the main subinterval. The following
invariants are maintained: all the values in the main subinterval have equal (high) compatibility, and the
closer the values are to the main subinterval the higher their compatibility is.

Here we provide examples of some intervals for different age groups (we use double hyphens be-
tween the start and the end of the main subinterval, and single hyphens between the start and the end of
the left and the right subintervals).

child: [0 -- 15-20]
young1: [0 -- 30-50]
young2: [0-18 -- 30-50]
adult: [15-20 -- 100]
middle-aged: [40-45 -- 65-70]
old: [70-80 -- 100]

Figure 3: Intensifier “very”, applied to
“young2”.

Figure 4: “Mere”, “only”, “just”,
“whole” and “entire” related to per-
ceived quantity.

Compatibility intervals may have including or excluding boundaries.
In P. Kapustin and M. Kapustin (2019b) we suggest how words “mere”, “only” and “just” can be

modeled using fuzzy sets (fig. 4). These words may be used with quantities that are perceived as very
small, but not with zero quantities (neither “a mere zero”, “only zero” or “only no one” seem to make
sense). This fact is not very convenient to model using membership functions. Using the representation
based on compatibility intervals, we could model this with an excluding boundary:

mere: (0 -- 0.10.3]

51

only, just: (0 -- 0.2-0.4]
expected quantity: [0.2-0.4 -- 0.6-0.8]
whole, entire: [0.6-0.8 -- 1]

In case of compatibility intervals, instead of using one membership function to model relation of
a language construct to a certain property, one or several compatibility intervals can be used (several
intervals would correspond to a membership function with more than one maximum, something that
could be used for modeling ambiguity). For example, suppose that “teenager” is defined by interval:

teenager: [10-13 -- 17-20]

Then something corresponding to “not teenager” with meaning similar to Zadeh’s complementation
(Zadeh, 1972) could be modeled by inverting the interval, for example:

[0 -- 10-13)
(17-20 -- 100]

Consider the construct “not teenager” in the context of the phrase “you are not a teenager” (that
may mean “younger child” or “adult”). Compared to membership functions, as long as intervals don’t
have membership values, if we would like to represent which of the two intervals corresponding to
“not teenager” is more “possible”, we would need to store this information separately or extend the
representation to optionally contain the membership degree of the main subinterval.

Same as with membership functions, if we are interested in both logical and linguistic interpretations,
we need to store two different intervals (or two different sets of intervals, if a construct is represented by
several intervals) for some constructs.

Also, as with membership functions, if we attempt to invert interval “young2”, trying to model
negation similar to Zadeh’s complementation (Zadeh, 1972), we would get unexpected results (similar
to what is described on fig. 2).

On the other hand, it seems to be easier to model intensifier “very” for the linguistic interpretation
using compatibility intervals. If we would like to do something similar to Zadeh’s concentration (Zadeh,
1972), we could, for example, use a very simple model: for constructs whose compatibility interval starts
at the left end of the scale, we could leave the left boundary of the left subinterval unchanged, multiplying
all the other boundaries with a certain factor. For constructs whose compatibility interval ends at the right
end of the scale, we could do the opposite: leave the right boundary of the right subinterval unchanged,
multiplying all the other boundaries with the inverse of the same factor.

young2: [0-18 -- 30-50]
very (young2): [0-16.20 -- 27-45]
old: [60-80 -- 100.0]
very (old): [66.67-88.89 -- 100]

Note that we no longer have the unexpected result compared to what was described on fig. 3.
This example is provided to illustrate that it may be easier to control what effects are achieved by

doing different transformations when using compatibility intervals, rather than membership functions,
because one can move boundaries of the subintervals independently.

Discussion

Presented representation, while being closely related to fuzzy sets, is different in some important respects.
Compatibility intervals move attention away from specific mathematical functions, curve shapes and
membership degrees, rather focusing on the intervals of values that are compatible with the language
construct.

52

Compared to membership functions, compatibility intervals are relatively simple objects that are
defined by several numbers. That’s why we hope that certain operations, including different transforma-
tions and learning from data, may be easier to implement with compatibility intervals than with fuzzy
sets.

We believe that moving focus away from membership degrees has mostly positive effect, as one only
needs to think about interval boundaries when implementing operations on intervals. However, we can
imagine situations when explicit membership degrees may be desirable. We described one such case
related to ambiguity, along with possible solutions.

In general, we think it is positive that there is not a clear boundary between the representation based
on fuzzy sets and the representation based on compatibility intervals, which means that it in some cases
it may be possible to use benefits of both of the representations.

We discussed why it is important to distinguish between logical and linguistic interpretations when
modeling meaning of natural language constructs using fuzzy sets or compatibility intervals.

Representations based on fuzzy sets and compatibility intervals, being closely related, are both able
to quantitatively represent what language constructs tell us about certain properties, allowing to capture
important aspect of meaning of these constructs. That’s why we hope that more researchers in the field
of computational linguistics and natural language processing become interested in this area.

Acknowledgements

We thank Vadim Kimmelman and Csaba Veres for helpful discussions and comments. We thank anony-
mous reviewers for helpful feedback.

References

Abrusán, M., and B. Spector (2008). An interval-based semantics for degree questions: negative is-
lands and their obviation. In Proceedings of the 27th West Coast Conference on Formal Linguistics,
Somerville, MA, 17–26. Citeseer.

Carvalho, J. P., F. Batista, and L. Coheur (2012). A critical survey on the use of fuzzy sets in speech and
natural language processing. In Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference
on, 1–8. IEEE.

Hersh, H. M., and A. Caramazza (1976). A fuzzy set approach to modifiers and vagueness in natural
language. Journal of Experimental Psychology: General 105 (3): 254.

Kapustin, M., and P. Kapustin (2015). Modeling meaning: computational interpreting and understanding
of natural language fragments. arXiv preprint arXiv:1505.08149.

Kapustin, P. (2015). Computational comprehension of spatial directions expressed in natural language.
Master’s thesis, The University of Bergen.

Kapustin, P., and M. Kapustin (2019a). Language constructs as compatibility intervals: an experimental
study. In preparation.

Kapustin, P., and M. Kapustin (2019b). Modeling language constructs with fuzzy sets: some approaches,
examples and interpretations. In submission.

Novák, V. (2008). A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets
and Systems 159 (22): 2939–2969.

Novák, V. (2017). Fuzzy logic in natural language processing. In Fuzzy Systems (FUZZ-IEEE), 2017
IEEE International Conference on, 1–6. IEEE.

53

Runkler, T. A. (2016). Generation of linguistic membership functions from word vectors. In Fuzzy Sys-
tems (FUZZ-IEEE), 2016 IEEE International Conference on, 993–999. IEEE.

Schwarzchild, R., and K. Wilkinson (2002). Quantifiers in comparatives: A semantics of degree based
on intervals. Natural language semantics 10 (1): 1–41.

Zadeh, L. A. (1971). Quantitative fuzzy semantics. Information sciences 3 (2): 159–176.

Zadeh, L. A. (1972). A fuzzy-set-theoretic interpretation of linguistic hedges.

Zadeh, L. A. (1975a). The concept of a linguistic variable and its application to approximate reason-
ing—I. Information sciences 8 (3): 199–249.

Zadeh, L. A. (1975b). The concept of a linguistic variable and its application to approximate reason-
ing—II. Information sciences 8 (4): 301–357.

Zadeh, L. A. (1975c). The concept of a linguistic variable and its application to approximate reasoning-
III. Information sciences 9 (1): 43–80.

Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 100 (1):
9–34.

54

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 55–64
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

ImageTTR: Grounding Type Theory with Records in Image
Classification for Visual Question Answering

Arild Matsson
Språkbanken, Department of Swedish

University of Gothenburg
arild.matsson@gu.se

Simon Dobnik Staffan Larsson
CLASP and FLoV

University of Gothenburg
simon.dobnik@gu.se

sl@ling.gu.se

Abstract
We present ImageTTR, an extension to the Python implementation of Type Theory with Records

(pyTTR) which connects formal record type representation with image classifiers implemented as
deep neural networks. The Type Theory with Records framework serves as a knowledge representa-
tion system for natural language the representations of which are grounded in perceptual information
of neural networks. We demonstrate the benefits of this symbolic and data-driven hybrid approach
on the task of visual question answering.

1 Introduction

A situated artificial conversational agent must be able to interact with its environment through perception
and action, as well as with other agents through language. The key challenge for building situated
agents is how to represent and reason with both linguistic and non-linguistic information in some formal
system that can be modelled on a computer (the question of information fusion). This is challenging
because linguistic and perceptual domains are not of the same kind. Perceptional information is typically
represented by abundance of sensory readings that are typically represented as real numbers. On the
other hand, language is a symbolic system. The two domains are typically bridged through classification
(Harnad, 1990).

Several approaches have dealt with information fusion by combining machine learning classification
with some kind of formal representation (Kruijff et al., 2006, 2007; Roy, 2005). Recently, using deep
learning architectures such associations are learned automatically (Xu et al., 2015; Lu et al., 2016). While
they are highly effective, they are not interpretable and directly portable to domains where one would
like to combine them with logic-like formal representations.

Among formal representations, first-order logic (FOL) have long been of choice, but it has its lim-
itations. A recent contribution that combines several branches in formal systems is Type Theory with
Records (TTR) (Cooper, 2005b, fthc).

The goal of this paper is a model, which is formulated in TTR and connects machine-learning clas-
sification of perceptual information on one hand with language on the other, as well as an executable
implementation of this model. TTR is expected to represent semantics of perceptual and linguistic con-
tent in a single framework. The connection is realised in a visual question answering (VQA) application,
where questions are interpreted in the context of an image.

2 Background

2.1 Type Theory with Records (TTR)

Type Theory with Records (TTR) is a formal semantic framework that represents the semantics of lan-
guage, action and perception (Cooper, fthc). The types in type theory are employed to represent words

55

and semantic units within a sentence or discourse (Cooper, 2005b). A brief introduction to TTR is given
in this section. For further reference, see Cooper (2005a) and Cooper (2012).

To begin with, a : T is the judgement that a is of type T . Some basic types in TTR are Ind , the type
of an individual, and Int , the type of integers.

Given that T1 and T2 are types, T1 → T2 is a functional type whose domain is objects of type T1 and
whose range is objects of type T2.

Next, we introduce records and record types. If a1 : T1, a2 : T2(a1), . . . , an : Tn(a1, a2, . . . , an−1),
where T (a1, . . . , an) represents a type T which depends on the objects a1, . . . , an, the record to the
left in Equation 1 is of the record type to the right. In Equation 1, `1, . . . , `n are labels which can be
used elsewhere to refer to the values associated with them. A sample record and record type is shown
in Equation 2. If r is a record and ` is a label in r, we can use a path r.` to refer to the value of ` in r.
Similarly, if T is a record type and ` is a label in T , T .` refers to the type of ` in T . Records (and record
types) can be nested, so that the value of a label is itself a record (or record type).

r =

`1 = a1
`2 = a2
. . .
`n = an
. . .

:

`1 : T1

`2 : T2(`1)
. . .
`n : Tn(`1, `2, . . . , `n−1)

 (1)

ref = obj123
cman = prf(man(obj123))
crun = prf(run(obj123))

 :

ref : Ind
cman : man(ref)
crun : run(ref)

 (2)

As can be seen in Equation 2, types can be constructed from predicates, e.g., “run” or “man”. Such
types are called ptypes and correspond roughly to predicate formulas in first order logic. Ptypes may be
dependent, which is represented by the fact that arguments to the predicate may be represented by labels
used elsewhere. In Equation 2, the type of cman is dependent on ref (as is the type of crun).

A fundamental type-theoretical intuition is that something of a ptype P (a1, . . . , an) is whatever it
is that counts as a proof of P (a1, . . . , an). One way of putting this is that “propositions are types of
proofs”. In Equation 2, we simply use prf(P) as a placeholder for proofs of P ; below, we will show how
perceptual input can be included in proofs1.

A singleton type Ta is a subtype of T restricted so that only a can be a witness of it. In a record type,
a singleton-typed field can be written as a manifest field:

[
x : Ta

]
=

[
x = a : T

]

Types are sorted into orders, where types of one order may be witnesses of a type in a higher order.
Typen, n > 0 is the type of all types of order n − 1. In this paper, most types will be of order 0, so we
will skip the order superscript and use Type to denote Type1. Similar to Type , RecType is the type of
all record types and PType is the type of all ptypes.

The re-labelling η of a record type T is a set of tuples where the first element is a label in T and the
second is another, new label. Tη is the record type which has the same fields as T but where the first item
in each element of η has been replaced with the second item. Thus, if T =

[
x : T ′

]
and η = [〈x, y〉],

then Tη =
[

y : T ′
]
.

A list of objects of type T is a witness of the list type list(T): If L is a list and ∀a ∈ L, a : T , then
L : list(T). In this paper, the list containing a, b and c will be written as [a, b, c].

2.2 Visual Question Answering (VQA)

Antol et al. (2017) suggest visual question answering (VQA) as a challenge for multi-modal semantic
systems. A VQA system is presented an image and a natural-language question about the image, and is
expected to produce a natural-language answer. The initiative includes datasets and a series of annual
competitions since 2016.

1Note that TTR is not proof-theoretic like may other type theories. TTR proofs are more like witnesses in situation semantics
(Barwise and Perry, 1983) or the proof objects in intuitionistic type theory (Martin-Löf and Sambin, 1984).

56

This task has been defined within the deep learning approach to vision and language. However, a
purely end-to-end approach faces challenges like opacity and ignorance of developed models of per-
ception. We choose a hybrid approach to VQA and provide a proof of concept of its strengths in this
domain.

Many VQA problems are formulated with open-domain questions. In this paper, however, we are
limited to polar (yes/no) questions, because those are, arguably, the easiest to model and answer.

It is important to note that the presented model is not an attempt at scoring high in the VQA task. A
comparison to dedicated VQA models would place this model low in most aspects: limitations in lan-
guage domain and syntax, and computation speed, just to name a couple. Rather, this is an exploration
of a multimodal representation model (or paradigm), with VQA used as an evaluation context. Ad-
vantages of the model include modularity, transparency and reversibility, as provided by the underlying
formal-semantic framework.

2.3 Tools

PyTTR (Cooper, 2017) is a Python implementation of TTR. It supports the modelling of TTR types
and operations such as judgement and type checking. As a Python library it also enables other features
and peripheral procedures to be written in Python. PyTTR allows, in turn, the implementation of TTR
models. By implementing a theoretical model as a computer program, it can “come alive” and be tested
on real problems and data. When implemented, the model can be evaluated in practical settings.

You Only Look Once (YOLO) (Redmon et al., 2016) is a neural network model for image recognition.
Given an image, it will detect objects and classify them. Each detection consists of a bounding box in
pixel coordinates, a class label and a confidence score. YOLO is written in C, using the Darknet neural
network library (Redmon, 2013). It can be used in Python with the Darkflow library (Trieu, 2018).
Development within this thesis has been using the YOLOv2 configuration (Redmon, 2018) trained on
the COCO dataset (Lin et al., 2014).

Natural Language Toolkit (NLTK) (Bird et al., 2009) is a Python library facilitating various natu-
ral language processing operations. It features a semantically augmented context-free grammar (CFG)
framework which enables parsing language into first-order logic (FOL) formulas.

3 A grounded PyTTR

The Python implementation of the model described here is published as a Jupyter notebook file at
https://github.com/arildm/imagettr/releases/tag/1.1 under the open-source MIT
license. This section contains references to numbered cells of the notebook file.

3.1 Object detection

The perception of objects in this model is largely based on (Dobnik and Cooper, 2017, Section 5.1). The
name and definitions of some of the types have been slightly modified here, for better alignment with the
names used in the implementation within this project.

Let the world be of some type World , and any portion of the world of some type Segment . These
types are left undefined for now, as they differ significantly between (Dobnik and Cooper, 2017) and
this project. An object detector function fobjdetector : ObjDetector (Equation 3) maps the world to a
collection of perceptual objects of the type Obj (Equation 4). A perceptual object contains a segment
of the world as well as a field of the type Ppty (Equation 5). A Ppty function can be applied to an
individual and return a type, for example λv : Ind . kite(v) : Ppty . The type PType is defined as the
type of all ptypes (Definition 1).

Definition 1 For any ptype T = pred(v1, ..., vn), T v PType .

57

ObjDetector = (World → list(Obj)) (3)

Obj =

[
seg : Segment

pfun : Ppty

]
(4)

Ppty = (Ind → PType) (5)

The perceptual object is evidence that a certain segment of the perceptual input is associated with
a certain property (such as being a kite). Going further, an individuation function findfun : IndFun
(Equation 6) generates an individuated object from each perceptual object. The individuated object is
a record type and a subtype of IndObj (Equation 7). Here, the ‘x’ field refers to a specific individual
which was only implied by the existence of the perceptual object. The ‘cl’ field specifies that the position
of ‘x’ is the content of the field ‘loc’, which has the same type as ‘seg’ in Obj . Through the ‘cp’ field,
the property can be explicitly associated with the individual.

IndFun = (Obj → RecType) (6) IndObj =

x : Ind
loc : Segment
cp : PType
cl : location(x, loc)

 (7)

Note that the step from the perceptual to the conceptual domain is made by generating a record type
(not a record), namely the type of situations where a certain individual is at a certain location.

3.1.1 Model

This section applies the theory outlined above to the case at hand. The main difference against (Dobnik
and Cooper, 2017) is that the world is now an image (Equation 8), rather than a 3D point space. A
Segment (Equation 9) is now defined as a record type describing a rectangular bounding box within an
image. Its fields contain the centre coordinates of the box (‘cx’ and ‘cy’) and the width (‘w’) and height
(‘h’) of the box.

World = Image (8) Segment =

cx : Int
cy : Int
w : Int
h : Int

 (9)

The object detection function is a Python function which takes an image as input and invokes YOLO
(the implementation of this procedure is in the notebook cells 11, 12 and 14). The return value from
YOLO is a collection of dictionary objects, which are converted to perceptual objects of the type Obj
which are the output of the object detection function (cell 14, see example in Equation 11).

The individuation function findfun is defined in Equation 10 (cell 15). Here, the ‘x’ field is specified
as a newly instantiated Ind object an, and ‘loc’ is specified as the perceptual object’s ‘seg’. The type of
the ‘cp’ field applies the perceptual object’s ‘pfun’ to ‘x’. An example output from the function is shown
in Equation 12.

findfun = λr : Obj .

x = an : Ind
cp : r.pfun(x)
cl : location(x, loc)

loc = r.seg : Segment

 (10)

seg =

cx = 102
cy = 156
w = 204
h = 84

pfun = λv : Ind . kite(v)

: Obj (11)

x = a0 : Ind
cp : kite(x)
cl : location(x, loc)

loc =

cx = 102
cy = 156
w = 204
h = 84

 : Segment

v IndObj

(12)

58

3.2 Spatial relations

(Dobnik and Cooper, 2013, Section 3) provides a TTR model of the classification of spatial relations
between a located object, a reference object and a viewpoint. The classifier for a given spatial relation
may be equal to a geometric classifier κ or this can be combined with functional classifiers to encompass
functional aspects of objects on spatial relations (Coventry et al., 2001).

In this project, spatial relation classification is less sophisticated, ignoring the viewpoint as well as
the functional aspects of a spatial relation. The reference frame is implicit in the frame of an image,
rather than given by a viewpoint object.

A tuple-like record of the type LocTup (Equation 13) groups a located object ‘lo’ and a reference
object ‘refo’. A classifier of the type RelClf (Equation 14) takes a LocTup record and returns a new
record type which describes the relation.

LocTup =

[
lo : IndObj

refo : IndObj

]
(13) RelClf = (LocTup → RecType) (14)

A pattern for a RelClf classifier is given in Equation 15, where rel is to be replaced with a predicate
and κrel with a boolean classifier.

λr : LocTup .

x : r.lo.x
y : r.refo.x

cr : rel(x, y)

 , if κrel(r.lo.loc, r.refo.loc)

[], otherwise

(15)

The boolean classifiers are implemented as Python functions, one for each of the relations ‘left’,
‘right’, ‘above’ and ‘below’. Each returns true or false after comparing the ‘cx’ or ‘cy’ fields of the two
Segment inputs, i.e. the centre points of the bounding boxes of the objects.

The whole procedure described in this section is implemented in notebook cell 16.

3.3 Beliefs

The set of individuated objects and the set of relation classification results form a set of beliefs. They
contain information that the agent has grounded about its perceptual environment. Each of these types
is a situation held to be true, by virtue of resulting from perception mechanisms. The belief types are
combined into one scene record type S which describes the full scene.

3.3.1 Combining situation types

In TTR literature, the combination of multiple record types into one typically follows one of two methods.
The first method uses the merge operation ∧· or the asymmetric merge operation ∧· . The reliance
on field labels in the (asymmetric) merge operation is a problem in this case, where labels have been
automatically generated and sometimes clash. Another method is iteratively nesting one record type as a
field of the next, and then flattening the result to avoid the nesting. This method avoids label clashes.

However, a third method is used in this project for the purpose of computational speed (cell 18).
Each belief record type is re-labelled to only have unique labels, and they are then merged. The resulting
type is essentially the same as in the case when nesting and flattening.

3.3.2 De-duplication

Among the belief record types, the same individuals occur more than once. For instance, one belief may
hold that a1 is a kite and another that a1 is above some other individual. Both beliefs will have a field
like xi = a1 : Ind , with different labels xi but the same specification to a1. De-duplicating these is
necessary for the subtype check that will follow. This process involves first finding which fields have the
same type as another field. Subsequently, simply removing duplicates is not an option, as there may be
other fields that depend on the duplicate field. These dependent fields must also first be updated to use
the remaining field. This algorithm is implemented in cell 7.

59

3.4 Parsing user questions

The VQA setting requires the model to understand not only the visual input, but also a natural language
question. Parsing natural language is a complex task, ambiguity in syntax as well as semantics being one
significant source of difficulties. Within this project, this task has been drastically reduced by focusing
on a tiny language domain, with only a handful grammatical constructions and a small, customised
vocabulary.

Theoretical formulations of syntactic parsing to TTR have been given in Cooper (2005a,b, 2012,
fthc). Applying them in this project is however considered out of scope. Instead, we make use of parsing
tools from NLTK (Bird et al., 2009), as follows (cell 20).

A small context-free grammar (CFG) is composed and used to parse natural language into a rep-
resentation of first-order logic (FOL). The parsing process is visualised in Figure 1. The FOL is then
“translated” into a TTR representation by traversing the FOL expression tree and gradually building a
TTR record type, according to the following rules: For an Exists expression, an Ind field is added to the
type. For an Application expression, a ptype field is added, copying the predicate and variable names.
An And expression simply triggers recursion into each of the two terms.

QS
tNP(tPP)

∃x.[kite(x) ∧ ∃y.[person(y) ∧ above(x, y)]

NP
tDet(tN)

λQ.∃x.[kite(x) ∧ Q(x)]

Det
λP.λQ.∃x.[P(x) ∧ Q(x)]

N
kite

PP
λx.tNP(λy.tPrep(x, y))

λx.∃y.[person(y) ∧ above(x, y)]

Prep
above

NP
tDet(tN)

λQ.∃y.[person(y) ∧ Q(y)]

Det
λP.λQ.∃y.[P(y) ∧ Q(y)]

N
person

is there a kite above a person

Figure 1: Syntactic-semantic parsing of an utterance into first-order logic. Each node in the tree has
a bold-faced constituent label and the FOL lambda expression associated with it. Parent constituents
additionally have a third line containing the formula resulting from substitution and β-reduction.

The question sentence in Figure 1 is now translated to the record type Q in Equation 16.

Q =

x : Ind
y : Ind

c0 : kite(x)
c1 : person(y)
c2 : above(x, y)

(16)

3.5 Question answering

As a limitation of scope, this project focuses on polar questions. Thus, the language is first limited in
domain, to various nouns and geometric spatial relations, and then grammatically, to polar questions.

Object detection and spatial relation classification result in a collection of situation types, which are
combined to one, the scene type S (Section 3.3). Aside from that, the language parsing results in a type
representing the question Q (Section 3.4).

The scene type is considered true by virtue of being generated by mechanisms of perceptual clas-
sification. The situation described by the question type, on the other hand, will be true if there exists
a witness of that type, r : Q. It follows that the question type is true if it is a super-type of the scene
type, S v Q. Thus, rather than looking for a witness to the question type, we formulate the problem as
subtype checking, and answer the question with “yes” or “no” depending on the truth of that check.

60

An important problem, however, stems from the fact that TTR record types are labelled. In general,
fields in the scene type and question type will not share labels in a way that enables direct subtype
checking to be useful. Field labels in the scene type will generally not agree with those in the question
type. The remedy to this is an alternative subtype relation vrlb which is insensitive to label names (cell
21).

Definition 2 A record type S is a re-label-subtype of the record type Q, S vrlb Q, if there is a re-
labelling η of Q such that S v Qη.

An intuitive way to implement this would be to perform all re-labellings η from labels of Q to labels
of S and check whether the subtype relation holds. However, this approach is practically impossible,
as the number quickly grows very large. An alternative algorithm is developed for the purpose of this
project, where fast computation is enabled by making a few assumptions about the input record types2.

The algorithm handles non-dependent and dependent fields separately. First, when considering re-
labellings η of Q, only the non-dependent fields are included. This drastically limits the number of re-
labellings to try. Then, for each re-labellingQη′ being tried, the remaining, dependent fields are subtype-
checked individually, in order to avoid more re-labelling. This means checking person(x) v person(x)
(true) instead of

[
c : person(x)

]
v

[
f : person(x)

]
(false). For each dependent field in Qη′ where

there is a field in S that passes this check, the corresponding label pair is added to η′. If, for some Qη′
field, there is no matching S field, it is concluded that S ��v Qη′ , and the algorithm proceeds to the next
η.

When a re-labelling η is found which enables the subtype check for all dependent fields to pass, the
algorithm returns η, which can be interpreted as S vrlb Q being true. If all non-dependent-field re-
labellings have been evaluated without successful dependent-field subtype checks, the algorithm returns
nothing, which is interpreted as the relation not holding.

4 The agent structure

The perceptual-conceptual pieces described above are now connected in an agent record type (Equa-
tion 17 and Equation 18, cell 21) with associated manipulation algorithms (cell 25). Upon receiving an
image, it will carry out object detection, individuation and spatial relation classification, in order to form
its beliefs. It may also receive a parsed natural-language utterance, which will then be verified against
the beliefs. A construction like this provides a means to answer natural-language questions about the
image.

Agent =

objdetector : ObjDetector
indfun : IndFun
relclfs : list(RelClf)

state : AgentState

 (17) AgentState =

img : Image
perc : list(Obj)
bel : list(RecType)
utt : String

que : RecType

(18)

The fields ‘objdetector’, ‘indfun’ and ‘relclfs’ of Agent are to be statically defined for a specific
agent. The AgentState record in ‘state’ will be modified by the agent algorithm while running. The
‘perc’ field will contain a list of perceptual objects. The ‘bel’ field will be a list of beliefs modelled as
situation types: individuated objects and spatial relations between individuals.

For an agent record ag : Agent , the perception and question-answering procedure is carried out as
follows. Visual input in the form of an image is received, and object detection returns a collection of
perceptual objects, for which individuated objects are generated and added as beliefs (Section 3.1). For
each pair of individuated objects, spatial relation classifications are generated and also added to beliefs
(Section 3.2). Natural-language input is parsed to a type representing the situation hypothesised in the

2The algorithm presupposes a certain conformity between S andQ, in that it is not aware of the equivalence between a record
type and its flattened version. For instance, it will fail to acknowledge

[
x1 :

[
x2 : T

]]
vrlb

[
x3 : T

]
. However, this

problem is not encountered in this application, due to the the way that S and Q are constructed.

61

question (Section 3.4). Finally, a re-label-subtype check is performed against the beliefs, and the answer
“Yes” or “No” is emitted (Section 3.5).

5 Discussion

Within this project, the foundations of visual question answering (VQA) have been implemented in Type
Theory with Records (TTR). The result is an executable application powered by PyTTR.

The application is a practical example that TTR can be used to connect existing vision and language
systems. TTR is the single framework that serves as a knowledge representation system that glues
together the various parts of the pipeline – perception, language and grounding – and provides reasoning
qualified for a simple VQA application.

PyTTR This is one of the few applications of the recently developed PyTTR library. A few extensions
were needed in order to realise the present project. Simple and general operations, like copying a record
type, could be implemented directly in the PyTTR library. Others, like the combination of record types
(Section 3.3.1), should remain in the project-specific source code.

Inference The use of formal frameworks for question-answering tasks, as opposed to statistical or neu-
ral methods, especially invites techniques for logical inference. Consider an image of a person wearing
glasses, and the question “Does this person have 20/20 vision?” It is reasonable to assume that a person
is wearing glasses because they do not have perfect eyesight, to which “20/20 vision” is synonymous.
Logical inference, in connection with a database of real-world knowledge encoded in TTR, could help
to achieve the synonymity as well as the relationship between eyesight and wearing glasses.

Theorem prover approach to subtype check The re-label-subtypevrlb check, currently implemented
as an iterative algorithm, could likely be made more efficient and generalised if instead cast as a problem
of theorem proving (Plaisted, 2014).

5.1 Future work

Non-polar questions Extending the language domain should be an interesting topic for further re-
search. Keeping within the problem domain of geometric spatial relations, allowing other question types
than polar questions is one direction to explore. (Dobnik, 2009, p. 156) lists four basic question types:
“Where is the chair?”, “Is the table to the left of the chair?” (this is the focus of this project), “What is to
the left of the chair?” and “What is the chair to the left of?”

Inference first The algorithm of perception performs classification of spatial relations on all pairs
of individuated objects. In other words, all of the agent’s beliefs are inferred at once. Later, when
attempting to answer the given question, the beliefs can be queried directly in the subtype check. This
means spending more effort than sometimes necessary. A more viable alternative is to first parse the
question and then perform inference as needed to arrive to an answer. If the question is about the spatial
relation between a kite and a person, it will probably be enough to find a kite and a person in the scene,
and check that the spatial relation between them matches the one expressed in the question.

Sophisticated spatial relation classification The implementation of spatial relation classification in
this project compares the horizontal or vertical coordinates of the centre points of two objects, a simpli-
fied geometric representation that does not correspond well to human judgements. A more sophisticated
geometric method is the statistical spatial templates model (Logan and Sadler, 1996). Another is the
attentional vector-sum (AVS) model, a mathematical formula which respects object shape (Regier and
Carlson, 2001).

62

References

Antol, S., A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh (2017, May). VQA:
Visual Question Answering. International Journal of Computer Vision 123(1), 4–31.

Barwise, J. and J. Perry (1983). Situations and Attitudes. The MIT Press.

Bird, S., E. Klein, and E. Loper (2009). Natural Language Processing with Python (1st ed.). O’Reilly
Media, Inc.

Cooper, R. (2005a). Austinian truth, attitudes and type theory. Research on Language and Computa-
tion 3, 333–362.

Cooper, R. (2005b, April). Records and Record Types in Semantic Theory. Journal of Logic and
Computation 15(2), 99–112.

Cooper, R. (2012). Type theory and semantics in flux. In R. Kempson, N. Asher, and T. Fernando (Eds.),
Handbook of the Philosophy of Science, Volume 14: Philosophy of Linguistics. Elsevier BV. General
editors: Dov M. Gabbay, Paul Thagard and John Woods.

Cooper, R. (2017). PyTTR. https://github.com/GU-CLASP/pyttr.

Cooper, R. (fthc). Type Theory and Language: From Perception to Linguistic Commu-
nication. Draft of book chapters available from https://sites.google.com/site/
typetheorywithrecords/drafts (accessed on 2018-01-17), University of Gothenburg.

Coventry, K., M. Prat-Sala, and L. Richards (2001, April). The Interplay between Geometry and Function
in the Comprehension of Over, Under, Above, and Below. Journal of Memory and Language 44, 376–
398.

Dobnik, S. (2009). Teaching Mobile Robots to Use Spatial Words. Ph. D. thesis, The Queen’s College,
University of Oxford.

Dobnik, S. and R. Cooper (2013, March). Spatial Descriptions in Type Theory with Records. In Pro-
ceedings of IWCS 2013 Workshop on Computational Models of Spatial Language Interpretation and
Generation (CoSLI-3), Potsdam, Germany, pp. 1–6. Association for Computational Linguistics.

Dobnik, S. and R. Cooper (2017). Interfacing Language, Spatial Perception and Cognition in Type
Theory with Records. Journal of Language Modelling 5(2), 273–301.

Harnad, S. (1990, June). The symbol grounding problem. Physica D 42(1–3), 335–346.

Kruijff, G.-J. M., J. D. Kelleher, and N. Hawes (2006). Information fusion for visual reference resolution
in dynamic situated dialogue. In E. André, L. Dybkjær, W. Minker, H. Neumann, and M. Weber
(Eds.), Perception and Interactive Technologies. International Tutorial and Research Workshop, PIT
2006 Kloster Irsee, Germany, pp. 117–128. Berlin, Heidelberg: Springer.

Kruijff, G.-J. M., H. Zender, P. Jensfelt, and H. I. Christensen (2007). Situated dialogue and spatial
organization: what, where... and why? International Journal of Advanced Robotic Systems 4(1),
125–138.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick (2014).
Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars
(Eds.), Computer Vision – ECCV 2014, Volume 8693, pp. 740–755. Cham: Springer International
Publishing.

63

Logan, G. D. and D. D. Sadler (1996). A computational analysis of the apprehension of spatial relations.
In Language and Space., Language, speech, and communication., pp. 493–529. Cambridge, MA, US:
The MIT Press.

Lu, J., C. Xiong, D. Parikh, and R. Socher (2016). Knowing when to look: Adaptive attention via a
visual sentinel for image captioning. arXiv arXiv:1612.01887 [cs.CV], 1–10.

Martin-Löf, P. and G. Sambin (1984). Intuitionistic type theory. Studies in proof theory. Bibliopolis.

Plaisted, D. A. (2014, March). Automated theorem proving: Automated theorem proving. Wiley Inter-
disciplinary Reviews: Cognitive Science 5(2), 115–128.

Redmon, J. (2013). Darknet: Open Source Neural Networks in C. https://pjreddie.com/
darknet/ (accessed on 2018-09-21).

Redmon, J. (2018, September). YOLO: Real-Time Object Detection. https://pjreddie.com/
darknet/yolov2/ (accessed on 2018-09-21).

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016, June). You Only Look Once: Unified,
Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, pp. 779–788. IEEE.

Regier, T. and L. A. Carlson (2001, June). Grounding Spatial Language in Perception: An Empirical and
Computational Investigation. Journal of Experimental Psychology: General 130(2), 273–298.

Roy, D. (2005, September). Semiotic schemas: a framework for grounding language in action and
perception. Artificial Intelligence 167(1-2), 170–205.

Trieu, T. H. (2018, March). Darkflow. https://github.com/thtrieu/darkflow (accessed
on 2018-09-21).

Xu, K., J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio (2015, February 11).
Show, attend and tell: Neural image caption generation with visual attention. arXiv arXiv:1502.03044
[cs.LG], 1–22.

64

Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 65–74
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

Enthymemetic Conditionals: Topoi as a guide for acceptability

Eimear Maguire
Laboratoire Linguistique Formelle (UMR 7110), Université de Paris

eimear.maguire@etu.univ-paris-diderot.fr

Abstract

To model conditionals in a way that reflects their acceptability, we must include some means
of making judgements about whether antecedent and consequent are meaningfully related or not.
Enthymemes are non-logical arguments which do not hold up by themselves, but are acceptable
through their relation to a topos, an already-known general principle or pattern for reasoning. This
paper uses enthymemes and topoi as a way to model the world-knowledge behind these judgements.
In doing so, it provides a reformalisation (in TTR) of enthymemes and topoi as networks rather than
functions, and information state update rules for conditionals.

1 Introduction

The content of the antecedent and consequent of a conditional, not just their truth or falsity, makes
a difference to whether we find the conditional acceptable or not, generally rejecting those that seem
disconnected (Douven, 2008). If we are to model conditionals in a way that reflects their acceptability, we
must include some means of making those judgements. Enthymemes are non-logical arguments which
are nevertheless treated as acceptable through their relation to a topos, a general principle or pattern
for reasoning. Apart from the evidence from their own acceptability conditions, which correlate strongly
with judgements of high conditional probability, conditional structures are also associated with ‘that kind
of thinking’, being used as plain-language explanations of particular topoi (e.g. “if something is a bird,
then it flies” in Breitholtz, 2014b), or used as materials on reasoning in any number of experiments
(e.g. Pijnacker et al., 2009). If we are going to explicitly recognise the use of such ‘rule’ type objects in
discourse, then conditionals are one place where they show up, at least sometimes.

This paper has two aims. First, to propose a formalisation of enthymemes and topoi that is geared
towards relating them to more complex rule-based world knowledge, including a distinction between
knowledge about causality, non-causality, and ambiguity about causality. Second, to account for the
acceptability (or not) of conditionals by proposing an enthymeme-like structure as associated with if -
conditionals, such that topoi can enhance their content and are used in judging whether a given condi-
tional is acceptable or not. The acceptability of conditionals is linked to perceived relationships between
the antecedent and consequent cases: with enthymemes and topoi, we can incorporate this non-arbitrarily
into the dialogue state.

The rest of this section will provide some background. Section 2 is focused on enthymemes, topoi,
and specification of the alternative formalism, while Section 3 uses this in a proposal of update rules
associated with conditionals. Lastly, Section 4 provides a conclusion. This paper draws on work on
enthymemes and topoi elsewhere in Breitholtz (2014a,b) etc, and will likewise use TTR (Cooper, 2012)
for formalisation.

1.1 Enthymemes and Topoi

Enthymemes are incomplete non-logical arguments that get treated as complete ones. They are ‘incom-
plete’ in that to be accepted, they must be identified as a specific instance of a more general pattern that
is already in the agent’s resources – a topos. Topoi encode world knowledge that comes as a ‘rule of

65

thumb’, such as characteristics typical of groups, and a speaker may hold contradictory topoi as equally
valid in different scenarios, with no clash experienced unless both are used at the same time. Speakers
make enthymemetic arguments by linking what on the surface might technically be non-sequiturs, but
are easily identified as an argument using accepted principles. For example, a speaker might say “Let’s
go left here, it’s a shortcut”. This argument invokes the assumption that shorter routes are better, and
that therefore the left turn being a shortcut is a good reason to take it – but they might equally say “it’s
longer”, invoking an assumption that a longer route is preferable.

Topoi have been proposed to be a resource available to speakers, and consequently a means to address
non-monotonic reasoning (Breitholtz, 2014b), the treatment of non-logical rules as expressing neces-
sity, and contradictory claims being equally assertable, as in the route-taking example above Breitholtz
(2014a).

To these ends, they have been formalised in TTR for use in dialogue (Breitholtz and Cooper, 2011),
as functions from records to record types, as in this example (Breitholtz, 2014a):

(1) a. Topos:

λr :
⎡⎢⎢⎢⎢⎣
x : Ind
cbird : bird(x)

⎤⎥⎥⎥⎥⎦([cfly : fly(r.x)])
b. Enthymeme:

λr :
⎡⎢⎢⎢⎢⎣
x = Tweety : Ind
cbird : bird(x)

⎤⎥⎥⎥⎥⎦([cfly : fly(Tweety)])
Both are of type Rec → RecType, and the fields of the specified record types match, but fields of

the enthymeme have been restricted to specific values. A function to a record type does not by itself
indicate what happens once we have access to that type, such as gaining a belief that some instance of
it exists (e.g. that there really some case where the bird flies). For these functions to be useful, they are
additionally governed by a theory of action, which will license various actions that can be performed
with the type, e.g. judging that the original situation is additionally of that type, judging that there exists
some situation of the type described, or creating something of that type (Cooper, in prep).

1.2 Conditionals

The assumption that conditionals express a proposition is fundamental to most linguistic work on the
topic, both that which follows the commonly accepted restrictor theory of conditional semantics based
on the work of Lewis (1975), Kratzer (1986) and Heim (1982), and that which does not (e.g. Gillies,
2010).

As mentioned at the beginning, the acceptability of conditionals correlates strongly with their con-
ditional probability, with Stalnaker (1970) proposing that the probability of a conditional and the condi-
tional probability of the consequent on the antecedent are one and the same, in what is usually referred
to as the Equation. A subsequent proof by Lewis (1976) found that there is no single proposition based
on the antecedent and consequent such that its probability will consistently match the conditional prob-
ability. Therefore one could have a propositional theory of conditionals, or validate the Equation – but
not both.

However, conditional probability seems so important to the meaning of conditionals that in the view
of some non-linguists, (e.g. Edgington, 1995; Bennett, 2003) conditionals should properly be consid-
ered be probabilistic, directly expressing the conditional probability of the consequent on the antecedent,
P(cons∣ant). Subsequent empirical work overwhelmingly supports the intuition behind the original Equa-
tion, and shows that conditional probability does indeed tend to correlate with acceptability (e.g. Evans
et al., 2003; Oaksford and Chater, 2003). Conditional probability thus needs to be taken seriously,
whether one believes it is the core content of a conditional or not: indeed, figuring out how propositional
theories can accommodate its relationship to acceptability is an important issue (e.g. Douven and Ver-
brugge, 2013). Conditional probability is also not the only factor in acceptability: it is further moderated
by whether there appears to be a connection between antecedent and consequent (Skovgaard-Olsen et al.,
2016). To make these judgements, we need to know about the relationships between the antecedent and
consequent states.

66

2 Enthymemes, Topoi and Other Knowledge

Given that their presence in an agent’s resources has already been motivated, topoi are a natural way
to account for the required knowledge about some ‘dependence’ between antecedent and consequent.
Enthymemes and topoi are snippets of reasoning, rather than complex networks, but they should also
be related explicitly to other rule-like world knowledge, which includes the possibility of multiple rela-
tionships between more than two cases, and knowledge of explicitly causal relations. If we are going
to use topoi to express the kind of knowledge that also forms such networks (i.e. informative about
causality or related probabilities in more complex systems), then they should be in the same form as that
knowledge. The alternative, to keep succinct rule-like topoi apart from larger rule-based(ish) systems, is
counter-intuitive.

Bayesian networks (a combination of directed acyclic graphs and probability distributions) are a
common way to encode causal relations. They have two components, the first of which is a directed
acyclic graph, with the various variables as nodes, and directed edges describing any direct relationships.
Graphs and networks are a useful way to describe relationships, and express a more complex set of
relationships than a linear chain of functions. The graph structure is in accordance with constraints about
what direct parenthood in the graph can mean – that the parent is part of the minimal set of preceding
nodes whose value determines the probability distribution of the child.

The second component to a Bayesian Network is a set of probability functions for determining the
values of variables given the values of their parents – their conditional probabilities. Associated prob-
abilities are also a natural means of modelling learning, by adjusting the confidence in a given rule on
the basis of evidence and experience, allow us to make explicit the level of confidence in a judgement
beyond a binary. For unreliable rules, a high (but below 1) probability can be used to express that they
are likely to be correct in a given case, but not certain.

2.1 Graphical Topoi

The proposal is as follows. Topoi and enthymemes are of the same type as any other ‘relational’ knowl-
edge, by which I mean knowledge about causal and correlational relations. This knowledge can be
encoded as a graph. The direction(s) of the links between connected nodes, along with additional con-
straints, indicate either causal or non-causal relations via directed or bi-directed links respectively. The
variable at each node is a RecType, representing a situation, with the probability of a RecType being
across whether it is true or false (for type T, whether ∃a ∶ T). Topoi and enthymemes as usually discussed
are minimal examples, containing only two nodes.

Let RecTypei be a RecType associated with an index, and ProbInfo be a constraint on some probabil-
ity. The supertype of enthymemes and topoi, rather than a function Rec→RecType, is the type Network:

(2) Network =def
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes :{RecTypei}
links :{⟨RecTypei, RecTypei⟩}
probs :{ProbInfo}
cindex : ∃⟨x′j , yp⟩, ⟨x′′k , zq⟩ ∈ links, x′j , x′′k ⊑r xi ∈ nodes,

i = j = k. Likewise for ⟨yp, x′j⟩, ⟨zq, x′′k⟩ ∈ links
and ⟨x′j , yp⟩, ⟨zq, x′′k⟩ ∈ links.

clinks : ∀⟨x′i, y′p⟩ ∈ links, ∃xi, yp ∈ nodes, x′i ⊑r xi, y′p ⊑r yp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let ⊑r indicate a subtype relation where subtyping is through restriction of one or more fields i.e. not
through the specification of extra fields. The first constraint cindex enforces co-indexing, that if subtypes
of a node are included in links, they all share its index. The second constraint clinks specifies that any
members of links are between (potentially restricted subtypes of) members of nodes. For ease of reading
and the sake of space, the constraints will not be repeated in further examples. In a link ⟨xi, xj⟩, the
specification of member xi may use j to indicate some r ∶ xj , and vice versa, e.g. where a is some field
in xi and b is some field in xj , specifying that a = j.b.

67

Causality, non-causal correlation and independence are interpreted on the basis of the members of
links. Where a path is a sequence of indices ⟨1, . . . , k⟩ such that for each i, i+1 there is ⟨xi, xi+1⟩ ∈ links,
the node indexed i is a predecessor of the node indexed j (shorthand: predecessor(i, j, links)) if there is
a path from i to j, given the contents of links. Where there is a bi-directional link e.g. ⟨xi, xj⟩, ⟨xj , xi⟩ ∈
links, the relationship is non-causal. Where there is an absence of any path, the relationship may be
treated as potential independence. Where there is a link in one direction only, the relationship may be
treated as potentially causal. However, neither this potential independence or causality is locked in: there
is a distinction between merely lacking information, and having information about a confirmed absence.
Certainty about independence or causality is expressed via constraints preventing the addition of any
link that would violate them. For n ∶ Network containing nodes xi and xj , independence, causality and
non-causality can be expressed in updated n′ as follows, where a. b indicates the merge of two records,
a record containing all fields from both, and a . b indicates their asymmetric merge (see Cooper and
Ginzburg (2015)), where in event of a field appearing in both records, the field from b is the one found
in the merge, effectively overwriting the field of a.

(3) Independence of i and j:
n′ = n.[cindij : ¬predecessor(i, j, links) ∧¬predecessor(j, i, links)]

(4) Direct causality from i to j:
n′ = n.[ccauseij : ⟨i, j⟩ ∈ n.links ∧ ¬predecessor(j, i, links)]

(5) Non-causality between i and j, where ⟨xi, xj⟩ ∈ n.links:
n′ = n . [links = n.links ∪⟨xj , xi⟩ : {⟨RecTypei, RecTypei⟩}]

The choice of bi-directed rather than undirected edges to express non-causality is motivated by a desire
for the difference in belief from potentially causal to non-causal to be something that changes easily (i.e.
with the addition of information, not replacement of one thing with another of a different type), and for
creation of a ‘casual’ (not a typo) middle-ground, where only one direction is of relevance and there is
no strong commitment either way.

All this is meant to allow for a more complex set of relationships than expressed in your average
topos which, as stated earlier, is a minimal case with just two nodes. The original example can now be
rewritten as follows:

(6) Topos:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣

x : Ind
cbird : bird(x)

⎤⎥⎥⎥⎥⎦1,
⎡⎢⎢⎢⎢⎣

x : Ind
cfly : fly(x)

⎤⎥⎥⎥⎥⎦2
⎫⎪⎪⎪⎬⎪⎪⎪⎭:{RecTypei}

links =

⎧⎪⎪⎪⎨⎪⎪⎪⎩⟨
⎡⎢⎢⎢⎢⎣

x : Ind
cbird : bird(x)

⎤⎥⎥⎥⎥⎦1,
⎡⎢⎢⎢⎢⎣

x = 1.x : Ind
cfly : fly(x)

⎤⎥⎥⎥⎥⎦2 ⟩
⎫⎪⎪⎪⎬⎪⎪⎪⎭:{⟨RecTypei, RecTypei⟩}

probs =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

x = r.x : Ind

cfly : fly(x)

⎤⎥⎥⎥⎥⎦2 ∣ r :
⎡⎢⎢⎢⎢⎣

x : Ind

cbird : bird(x)

⎤⎥⎥⎥⎥⎦1
⎞⎟⎟⎟⎠ = 0.95

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
:{ProbInfo}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7) Enthymeme: as the topos, but all vari-
ants indexed with i are replaced with⎡⎢⎢⎢⎢⎣
x = Tweety : Ind
cbird : bird(x)

⎤⎥⎥⎥⎥⎦1

The confidence rating of 0.95 has been somewhat arbitrarily set here for topoi to imply high confidence
without certainty. Enthymemes are distinguished from other arguments by the fact they don’t hold up
by themselves, but are instead accepted on the basis of identification with a topos – this doesn’t include
arguments that are accepted despite being unsupported. However, the terms enthymeme and topoi will
continue to be used here: this is partly for convenience, but also because once the context indicates
that an enthymemetic argument is being made (such as a recognisable suggestion+motivation pattern),
an unsupported ‘enthymeme’, once accepted, can be used to establish a potential new topos (Breitholtz,
2015). An Enth is defined as a Network containing a node that has at least one field restricted to a specific
object, removing its generality. A Topos is a Network in which no fields are restricted to a specific object.

An enthymeme emay be identified with a topos t if its nodes and links have equivalents in t, that is if
for every node xi ∈ e.nodes,∃yp ∈ t.nodes such that xi ⊑ yp and for any links ⟨x′i, x′j⟩ ∈ e.links,∃⟨y′p, y′q⟩ ∈
t.links such that x′i ⊑ y′p and x′j ⊑ y′q. This may be by a clear match for the topos fields, but may also
include the types of fields in the enthymeme as subtypes of fields in the topos1.

1as in the example “Give a coin to the porter, he carried the bags all the way here” from Breitholtz (2014b), where carrying

68

3 Conditionals and Reasoning

Having reformalised topoi and enthymemes as an object intended for more general correlational and
causal knowledge, we turn back to conditionals.

Firstly, and as mentioned at the beginning, expressing this kind of relational knowledge is (both
intuitively and according to empirical evidence) strongly associated with conditionals, and existence
of a dependence relation and high conditional probability usually determine their acceptability. Van
Rooij and Schulz (2019) suggest a way to combine these two features into a single measure, the relative
difference the state of the parent in a relation makes to the likelihood of the child. Pleasingly, with some
independence assumptions this measure works not only for the ‘causal’ direction typically expressed by
conditionals (if there’s fire, there’s smoke), but for the reverse as expressed by evidential conditionals
(if there’s smoke, there’s fire). However, for it to do so, the direction of the relationship still has to be
recognised even when the ‘usual’ roles of antecedent as parent and consequent as child have flipped.
This kind of structural knowledge is topoic.

Secondly, and while it feels almost trivial to point out, we use conditionals to tell each other new
things. When we are informed of something through the use of a conditional, we don’t necessarily know
beforehand that they lie in such a relation: otherwise they would only be useful to draw attention to
connections we haven’t made, not to tell each other things that are entirely new. Indeed, Skovgaard-
Olsen et al. (2016) found evidence that when faced with a conditional, people assume that there is a
positive connection between antecedent and consequent unless they have reason to believe otherwise. It
is not so much that an acceptable conditional has to be backed up by pre-existing knowledge about the
relation between the antecedent and consequent cases, but at the very least it should not clash with any.

Breitholtz (2014a) mentions how an enthymemetic argument can be recognised on the basis of the
current conversational game/expected rules (with the specific example of knowledge that a suggestion
may be followed by the speaker providing a motivation), or by an explicit lexical cue. With the above in
mind, I will suggest that use of an if -conditional is one such linguistic cue.

3.1 Enthymemetic Conditionals

The overall suggestion is as follows. If -conditionals are associated with the making of enthymeme-like
arguments. Note that I say “enthymeme-like arguments”, not “enthymemetic arguments”. Enthymemes
depend on identification with a previously-known topos, while conditionals can be used to teach new
relations, rather than just make statements that rely on existing knowledge to make sense. Although they
are structured like the characterisation of enthymemes and topoi above, they are not all strictly speaking
‘enthymemetic’. The content of a conditional can be checked against the topoi in the agent’s resources.
Given a match with a topos, an enhanced version can be added to the agent’s knowledge if a link is found
between the two relevant nodes. If no supporting topos is found, a more minimal version can be added
without the benefit of any extra details a topos might have provided. If there only exists a match for the
nodes in a topos that specifies there is definitely no link between them, or that there is a conflicting link,
then the conditional should be rejected. The following subsections describe dialogue state update rules
associated with conditionals.

3.2 Use of a conditional
To begin with, the type of an information state is minimally given as (8), broadly following the decisions
for the place of enthymemes and topoi in Breitholtz (2014a) etc.

(8) InfoState =def
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

priv : [Topoi :{Topos}]

dgb :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

enths :{Enth}
Topoi :{Topos}
Moves : list(LocProp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
someone else’s bags is recognised as a subtype of work, and the enthymemetic argument is on the basis of a topos like work
should be rewarded

69

(9) Prop =def⎡⎢⎢⎢⎢⎣
sit : Rec
sit-type : RecType

⎤⎥⎥⎥⎥⎦
(10) Update rule =def⎡⎢⎢⎢⎢⎣

pre : InfoState
effects : Infostate

⎤⎥⎥⎥⎥⎦
The information state has two parts: the agent’s private resources, and their representation of the

shared context. The private resources include propositions2 and specific relations about which they have
beliefs, and a set of general topoi which they can use as resources. Fields for beliefs about propositions
and for private beliefs about specific enthymemes have been omitted from the above as we will not need
to reference them, although propositions themselves will appear in example (14) later. A public Topoi
field tracks which topoi have been introduced onto the dialogue gameboard. The general form for update
rules is given in (10): pre describes the preconditions for states to which the rule can be applied, and
effects the changes.

Next we will add a few useful functions on the basis of some of the content of Section 2.1: a means
to describe whether there is a successful match between an enthymeme and a topos, and a means to
reference the result of an enthymeme that has been enriched by the content of a topos.

(11) enthMatch(e : Enth, t : Topos) : Bool, true iff all of the following hold

(i) All e’s nodes are subtypes of t’s nodes:∀xi ∈ e.nodes,∃yp ∈ t.nodes such that xi ⊑ yp,

(ii) All e’s links are subtypes of t’s links:∀⟨x′i, x′j⟩ ∈ e.links,∃⟨y′p, y′q⟩ ∈ t.links such that x′i ⊑ y′p and x′j ⊑ y′q,

(iii) For any constraints on links in e, the same constraints hold for the equivalent links in t:∀cindij ∈ e, ∃cindpq ∈ t or cindqp ∈ t,
xi ∈ e.nodes, yp ∈ t.nodes, xi ⊑ yp and xj ∈ e.nodes, yq ∈ t.nodes, xj ⊑ yq.
Likewise for all ccauseij ∈ e, there is an equivalent ccausepq ∈ t.

(12) enhanceEnth(e : Enth, t : Topos) : Enth, e′ such that e′ is an asymmetric merge of t and e,
where the sets in nodes, links and probs undergo asymmetric union such that for any nodes
xi ∈ e.nodes, yp ∈ t.nodes, xi ⊑ yp, the corresponding node zu ∈ e′.nodes = yp . xi.
Likewise for any subtypes x′i and y′p, x′i ⊑ y′p in members of e.links, t.links, e.probs and t.probs.

The update rules for each case are given in the subsections below. These are rules for ‘specific’
conditionals, not those expressing general rules such as if there’s fire, there’s smoke. There should be an
equivalent to each rule below for a conditional that expresses a general topos, on the basis of whether any
fields in the conditional’s content are tied to a specific object. These should lead to an update of Topoi
only, not of enths. They are not included here, and the rules below don’t include explicit constraints
for steering the update into enths only where a check for a restricted field is successful. There are three
rules given: where there is a supporting topos in the ‘default’ direction, where there is not but there is a
supporting topos in the reverse direction, and where there is neither support nor a clash.

3.2.1 Recognising a supporting topos

First are the update rules for when the agent has a topos linking the two parts of the conditional: either
in the direction with the antecedent as the parent in the link, or in the opposite direction with consequent
as parent (though only if no topos with the default direction is known). The direction of antecedent as
parent is ‘default’ in the sense that it should be preferred if distinct topoi in both directions are available,
and is the direction assumed in case neither a supporting topos nor a conflicting one is found. The update
in case of a supporting topos in the antecedent-consequent direction is given in (13):

2defined in (9) as Austinian propositions as per Ginzburg (2012)

70

(13) default direction, ant→cons:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pre :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

priv :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Topoi :{Topos}
t : Topos
cmember : t ∈ Topoi
cdef : enthMatch(x ∶X , t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dgb : [Moves[0] = Assert(if(a, b)) : LocProp]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
effects :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dgb :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

enths = pre.dgb.enths

∪ enhanceEnth(x ∶X , t) :{Enth}
Topoi = pre.dgb.Topoi ∪ pre.priv.t :{Topos}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where X is the type⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes =

{a.sit-type1, b.sit-type2}: RTi

links =

{⟨a.sit-type1, b.sit-type2⟩}: ⟨RTi, RTi⟩
probs =

{P(b.sit-type2∣ r : a.sit-type1) = 0.95}: PI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This rule may be applied following assertion of a conditional, where an agent knows a topos t that

matches an enthymeme based on the content of the conditional, with a link from antecedent to conse-
quent. In this case, the agent may add such an enthymeme enhanced with the topos to their enths, and
add the underlying topos to the set of currently active topoi in the conversation.

Where such an option does not exist, a topos with only a link from consequent to antecedent can be
used. The enthymeme added to enths in this case will contain a link only in the ant←cons direction. In
practice, this means that any topoi supporting a link from antecedent to consequent take precedence over
topoi which only reflect a link from consequent to antecedent. Relative to (13), the update rule for this
case has constraints in its preconditions that (i) there are no topoi with a link in the ant→cons direction,
but (ii) there is a known topos that supports an enthymeme in the alternative order. This topos is used to
enhance such an enthymeme in effects.

The following is a simplified example using this second ‘alternative order’ rule for evidential condi-
tionals. For space, members of links and probs are referenced by their index in nodes bolded.

(14) “If the glass fell, the cat pushed it.”
a. Type of i ∶ InfoState, a candidate for the second update rule⎡⎢⎢⎢⎣

priv :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Topoi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x : Ind

y : Ind

cpush : push(x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1,
⎡⎢⎢⎢⎢⎣
x = 1.y : Ind

cfall : fall(x)

⎤⎥⎥⎥⎥⎦2
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

links = ⟨1,2⟩
probs ={P(2∣r ∶ 1) = 0.95}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . .⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dgb :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Moves[0] = Assert
⎛⎝if

⎛⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sit =

⎡⎢⎢⎢⎢⎢⎢⎣
x = obj3
cglass = glass(obj3)
cfall = fall(obj3)

⎤⎥⎥⎥⎥⎥⎥⎦
sit-type =

⎡⎢⎢⎢⎢⎢⎢⎣
x : Ind
cglass : glass(x)
cfall : fall(x)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sit =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x = obj4
y = obj3
ccat = cat(obj4)
cpush = push(obj4, obj3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
sit-type =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x : Ind
y : Ind
ccat : cat(x)
cpush : push(x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎠⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎦
b. Type of i′ ∶ InfoState, the result of applying the update rule to i⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dgb :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

enths = i.dgb.enths ∪

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nodes =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x = obj4 : Ind
y = obj3 : Ind
ccat : cat(x)
cpush : push(x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
1,

⎡⎢⎢⎢⎢⎢⎢⎣
x = obj3 : Ind
cglass : glass(x)
cfall : fall(x)

⎤⎥⎥⎥⎥⎥⎥⎦
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
links = ⟨1,2⟩
probs ={P(2∣r ∶ 1) = 0.95}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:{Enth}

Topoi = i.dgb.Topoi ∪ t :{Topos}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where t is the topos specified in priv.Topoi in (14a)

71

3.2.2 New information

Even without a guiding topos, conditionals allow us to express or learn information via an assumption
that there is a positive connection between antecedent and consequent – provided we do not already know
that the two are independent, or that the consequent shouldn’t follow from the antecedent.

The last rule describes this case, where the agent’s known topoi have neither evidence about a link
between the antecedent or consequent, about the definite absence of one, or about a conflicting link. In
this case, an ‘enthymeme’ with a link in the ant→cons direction may be added to enths solely on the
basis of the conditional content. No additional topos is added to the list of active topoi – the process for
generalising an acceptable enthymeme to a re-usable topos is not addressed here.

Recall that the topoi in an agent’s resources may conflict with each other, and by necessity one of
them was learned first: despite this, a conditional does not lead to formation of an acceptable enthymeme
when such a clashing topos is already present. The shorthand for presence of a clashing topos is given
in (15) as enthClash. An enthymeme clashes with a topos where the equivalent parent nodes lead to
mutually exclusive child nodes, i.e. child nodes where a true type cannot be formed from their meet.

(15) enthClash(e : Enth, t : Topos) : Bool, true iff∃xi, yj ∈ e.nodes, pi, qj ∈ b.nodes, xi ⊑ pi∃⟨x′i, y′j⟩ ∈ e.links, x′i ⊑ xi, y′j ⊑ yj , ∃⟨p′i, q′j⟩ ∈ t.links, p′i ⊑ pi, q′j ⊑ qj ,
and ¬T, where T = y′j . q′j

Relative to the previous two update rules, the preconditions in this rule specify that priv.Topoi has no
topos supporting an enthymeme with a link between the antecedent and consequent in either direction,
or a link which clashes with the possible conditional enthymeme, and also does not contain a topos
supporting an enthymeme with an explicit constraint enforcing independence between the two.

4 Conclusion

The acceptability of a conditional is often determined by the conditional probability of the consequent on
the antecedent, and recognition of some meaningful link between the two. However, both intuitively and
according to experimental evidence, positive acceptability judgements can still be made without fore-
knowledge of such a connection. This paper presented two proposals on the basis that the knowledge
enabling these judgements is topoic, integrating these factors into the representation of the dialogue state
and agent resources. First, a formalisation of enthymemes and topoi as graphs was presented, on the
grounds that they should be in the same form as other knowledge about causal and correlational rela-
tionships. Second, update rules for conditionals using topoi and enthymemes were presented, drawing
on topoi to recognise the presence and direction of a ‘meaningful’ connection between antecedent and
consequent, and making an assumption of one in the absence of any evidence.

There are several avenues for further work. Most work focuses on declarative conditionals, the most
common form by far. However, conditional clauses are also used to form conditionalised questions and
directives. The proposals here should be related to these forms, whether because to an extent they apply
in those cases too, or because this topoic association is exclusive to declarative conditionals. This paper
has also said nothing about more standard propositional aspects of conditionals. The proposals here
about structural knowledge associated with conditionals should be integrated with this more standard
fare.

Acknowledgements

Thanks to Jonathan Ginzburg for helpful discussion of and feedback on this work. This
project has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No 665850.

72

References

Bennett, J. (2003, April). A Philosophical Guide to Conditionals. Oxford University Press.

Breitholtz, E. (2014a). Enthymemes in Dialogue: A micro-rhetorical approach. Ph. D. thesis, University
of Gothenburg.

Breitholtz, E. (2014b). Reasoning with topoi – towards a rhetorical approach to non-monotonicity. In
Proceedings of the 50th anniversary convention of the AISB, 1st–4th April.

Breitholtz, E. (2015, August). Are widows always wicked? learning concepts through enthymematic
reasoning. In R. Cooper and C. Retoré (Eds.), Proceedings of the TYTLES workshop on Type Theory
and Lexical Semantics, Barcelona.

Breitholtz, E. and R. Cooper (2011). Enthymemes as rhetorical resources. In Proceedings of the 15th
Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2011), pp. 149–157.

Cooper, R. Type theory and language: From perception to linguistic communication. In prep.

Cooper, R. (2012). Type theory and semantics in flux. In R. Kempson, T. Fernando, and N. Asher (Eds.),
Philosophy of Linguistics, Handbook of the Philosophy of Science, pp. 271 – 323. Amsterdam: North-
Holland.

Cooper, R. and J. Ginzburg (2015). TTR for natural language semantics. In C. Fox and S. Lappin (Eds.),
Handbook of Contemporary Semantic Theory (2 ed.)., pp. 375–407. Oxford: Blackwell.

Douven, I. (2008, September). The evidential support theory of conditionals. Synthese 164(1), 19–44.

Douven, I. and S. Verbrugge (2013, January). The probabilities of conditionals revisited. Cognitive
Science 37(4), 711–730.

Edgington, D. (1995). On conditionals. Mind 104(414), 235–329.

Evans, J. S. B. T., S. J. Handley, and D. E. Over (2003). Conditionals and conditional probability. Journal
of Experimental Psychology: Learning, Memory, and Cognition 29(2), 321–335.

Gillies, A. S. (2010). Iffiness. Semantics and Pragmatics 3, 1–42.

Ginzburg, J. (2012). The Interactive Stance. Oxford University Press.

Heim, I. (1982). The Semantics of Definite and Indefinite Noun Phrases. Ph. D. thesis, MIT.

Kratzer, A. (1986). Conditionals. Chicago Linguistics Society 22(2), 1–15.

Lewis, D. K. (1975). Adverbs of quantification. In E. L. Keenan (Ed.), Formal Semantics of Natural
Language, pp. 3–15. Cambridge University Press.

Lewis, D. K. (1976, July). Probabilities of conditionals and conditional probabilities. The Philosophical
Review 85(3), 297–315.

Oaksford, M. and N. Chater (2003, September). Conditional probability and the cognitive science of
conditional reasoning. Mind and Language 18(4), 359–379.

Pijnacker, J., B. Geurts, M. van Lambalgen, C. C. Kan, J. K. Buitelaar, and P. Hagoort (2009, Febru-
ary). Defeasible reasoning in high-functioning adults with autism: Evidence for impaired exception-
handling. Neuropsychologia 47(3), 644–651.

Skovgaard-Olsen, N., H. Singmann, and K. C. Klauer (2016, May). The relevance effect and condition-
als. Cognition 150, 26–36.

73

Stalnaker, R. (1970, March). Probability and conditionals. Philosophy of Science 37(1), 64–80.

van Rooij, R. and K. Schulz (2019, March). Conditionals, causality and conditional probability. Journal
of Logic, Language and Information 28(1), 55–71.

74

Author Index

Bekki, Daisuke, 1
Bellingham, Erika, 28

Dobnik, Simon, 55

Kapustin, Michael, 49
Kapustin, Pavlo, 49
Kubota, Yusuke, 1

Larsson, Staffan, 55
Levine, Robert, 1
Loukanova, Roussanka, 37

Maguire, Eimear, 65
Matsson, Arild, 55
Mineshima, Koji, 1

Pezlar, Ivo, 10

Seyffarth, Esther, 19

75

	Program
	Underspecification and interpretive parallelism in Dependent Type Semantics
	Translating a Fragment of Natural Deduction System for Natural Language into Modern Type Theory
	Modeling the Induced Action Alternation and the Caused-Motion Construction with Tree Adjoining Grammar (TAG) and Semantic Frames
	Complex event representation in a typed feature structure implementation of Role and Reference Grammar
	Computational Syntax-Semantics Interface with Type-Theory of Acyclic Recursion for Underspecified Semantics
	Modeling language constructs with compatibility intervals
	ImageTTR: Grounding Type Theory with Records in Image Classification for Visual Question Answering
	Enthymemetic Conditionals: Topoi as a guide for acceptability

