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Introduction

Welcome to the 13th edition of the International Conference on Computational Semantics (IWCS 2019) in
Gothenburg. The aim of IWCS is to bring together researchers interested in any aspects of the annotation,
representation and computation of meaning in natural language, whether this is from a lexical or structural
semantic perspective. It embraces both symbolic and machine learning approaches to computational
semantics, and everything in between. This is reflected in the themes of the sessions which take place
over full 3 days. The programme starts with formal and grammatical approaches to the representation and
computation of meaning, interaction of these approaches with distributional approaches, explore the issues
related to entailment, semantic relations and frames, and unsupervised learning of word embeddings and
semantic representations, including those that involve information from other modalities such as images.
Overall, the papers capture a good overview of different angles from which the computational approach
to natural language semantics can be studied.

The talks of our three keynote speakers also reflect these themes. The work of Mehrnoosh Sadrzadeh
focuses on combination categorial grammars with word- and sentence embeddings for disambiguation
of sentences with VP ellipsis. The work of Ellie Pavlick focuses on the evaluation of the state-of-the
art data-driven models of language for what they “understand” in terms of inference and what is their
internal structure. Finally, the work of Raffaella Bernardi focuses on conversational agents that learn
grounded language in visual information through interactions with other agents. We are delighted they
have accepted our invitation and we are looking forward to their talks.

In total, we accepted 25 long papers (51% of submissions), 10 short papers (44% of submissions) and 7
student papers (54% of submissions) following the recommendations of our peer reviewers. Each paper
was reviewed by three experts. We are extremely grateful to the Programme Committee members for
their detailed and helpful reviews. The long and student papers will be presented either as talks or posters,
while short papers will be presented as posters. Overall, there are 7 sessions of talks and 2 poster sessions
(introduced by short lighting talks) which we organised according to the progression of the themes over
3 days, starting each day with a keynote talk. The sessions are organised in a way to allow plenty of time
in between to allow participants to initiate discussions over a Swedish fika.

To encourage a broader participation of students we organised a student track where the papers have
undergone the same quality review as long papers but at the same time the reviewers were instructed to
provide comments that are beneficial to their authors to develop their work. To this end we also awarded
a Best Student Paper Award.

The conference is preceded by 5 workshops on semantic annotation, meaning relations, types and frames,
vector semantics and dialogue, and on interactions between natural language processing and theoretical
computer science. In addition to the workshops, this year there is also a shared task on semantic parsing.
The workshops and the shared task will take place over the two days preceding the conference.

There will be two social events. A reception which is sponsored by the City of Gothenburg will be opened
by the Lord Mayor of Gothenburg and will take place on the evening of the second day of the workshops
and before the main conference. A conference dinner will take place in Liseberg Amusement Park where
participants will also get a chance to try some of their attractions.

IWCS 2019 has received general financial support (covering over a half of the costs) from the Centre
for Linguistics Theory and Studies in Probability (CLASP) which in turn is financed by a grant from the
Swedish Research Council (VR project 2014-39) and University of Gothenburg. CLASP also hosts the
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event. We are also grateful to the Masters Programme in Language Technology (MLT) at the University
of Gothenburg, Talkamatic AB and the City of Gothenburg for their financial support.

We very much hope that you will have an enjoyable and inspiring time!

Simon Dobnik, Stergios Chatzikyriakidis, and Vera Demberg

Gothenburg & Saarbrücken

May 2019
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Abstract
Under the standard approach to counterfactuals, to determine the meaning of a counterfactual

sentence, we consider the “closest” possible world(s) where the antecedent is true, and evaluate the
consequent. Building on the standard approach, some researchers have found that the set of worlds
to be considered is dependent on context; it evolves with the discourse. Others have focused on how
to define the “distance” between possible worlds, using ideas from causal modeling. This paper inte-
grates the two ideas. We present a semantics for counterfactuals that uses a distance measure based
on causal laws, that can also change over time. We show how our semantics can be implemented in
the Haskell programming language.

1 Introduction and background

The problem of modeling counterfactual statements and situations has drawn much attention, in computer
science, linguistics, and other disciplines. In addition to its intrinsic interest, counterfactual reasoning is
important for artificial intelligence systems to be able to handle novel situations (Pearl and Mackenzie,
2018).

The classic approach to counterfactuals in linguistics and philosophy is based on a possible-worlds
semantics (Lewis, 1973; Stalnaker, 1968; Kratzer, 1981). To evaluate a counterfactual, we examine a
possible world where the antecedent is true, and evaluate the consequent. For example, let us consider
the following classic example from Lewis (1973):

(1) If kangaroos had no tails, they would topple over.

In the actual world, kangaroos have tails, but we can think of a possible world in which they do
not, and consider whether they topple over in that world. However, not all possible worlds should be
considered. We can consider a world in which kangaroos have no tails, but use crutches, and perhaps
they would not topple over in that world. But in the actual world, kangaroos do not use crutches, so why
should we consider those worlds in which they do? We therefore only consider the “closest” possible
worlds to the actual world, according to some distance metric or ordering of worlds.

Formally, we have an accessibility relation R, such that R(w,w′) is true if and only if w′ is suf-
ficiently similar to w. This defines for each world w a context, or modal horizon, consisting of those
worlds w′ such that R(w,w′) (von Fintel, 2001). A counterfactual φ > ψ is true in a world if and only if
in all the worlds in the modal horizon where φ is true, ψ is true.

Von Fintel (2001) provides evidence that this context changes over time, by considering sequences
of counterfactuals. Briefly, if there are no worlds in the modal horizon where the antecedent φ is true,
the modal horizon expands until it includes those φ-worlds most similar to the current world. However,
after the counterfactual has been evaluated, the accessibility relation does not revert to its previous state.
For example, consider the following sequence of counterfactuals (a Lewis-Sobel sequence):

(2) If kangaroos had no tails, they would topple over.
If kangaroos had no tails but used crutches, they would not topple over.
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In the closest possible worlds in which kangaroos have no tails, they do not use crutches, and do
topple over. However, in the closest worlds in which kangaroos both have no tails and use crutches, they
do not topple over. The above sequence makes sense. But the next sequence of counterfactuals, with the
order of the sentences reversed (a reverse Sobel sequence), is semantically infelicitous:

(3) If kangaroos had no tails but used crutches, they would not topple over.
#If kangaroos had no tails, they would topple over.

The first sentence expands the modal horizon to include worlds in which kangaroos have no tails and
use crutches. Once we have introduced worlds in which kangaroos use crutches, we cannot subsequently
forget about them when thinking of worlds where they have no tails. Therefore, when evaluating the
second sentence, we must consider all worlds in the modal horizon where kangaroos have no tails,
including both worlds in which they do and those in which they do not use crutches. In some of these
worlds, they topple over, and in others, they do not.

In the classic possible-worlds approach to counterfactuals, the notion of distance or similarity be-
tween worlds is deliberately left underspecified. However, a computational implementation of counter-
factuals must specify the distance metric to be used. Let us consider a possible world to be characterized
by the “facts” true in that world (Kratzer, 1981). Given two worlds that differ from the actual world in the
same number of facts, which one is closer? Pollock (1976) suggests that “subjunctive generalizations”
are more important than other facts, while Kratzer (1981) suggests that certain facts should be “lumped”
together. For example, if one looks in a mirror, one would expect to see their reflection, even if it is not
currently visible (because they are not currently looking in the mirror). In other words, the facts “one
looks in a mirror” and “one sees their reflection” should be lumped together: if the truth value of one fact
changes, the truth of the other should change as well.

A related idea from Pearl (2000) is that the distances between worlds rely on the notion of cause and
effect. Specifically, worlds that differ in their causal laws are more distant than worlds whose laws are
the same. If we say that looking in a mirror causes one to see their reflection, then among worlds where
one looks in the mirror, those in which they see their reflection are closer to the actual world than those
where they do not.

Pearl formulates causal laws in terms of structural equations. An equation a = f(b) denotes that, in
a particular world, the value of a is dependent on the value of b. This allows us to reason about what the
value of a would have been, if the value of b had been different. The set of structural equations, together
with an enumeration of the variables, defines a causal model. While Pearl’s framework cannot model all
possible counterfactual sentences, others have extended the causal modeling approach to different types
of counterfactuals (Briggs, 2012).

Causal modeling approaches to counterfactuals make use of interventions: changes in the causal
model (Pearl, 2000). Specifically, to evaluate a counterfactual sentence, change the underlying model
to make the antecedent true, and allow the change to propagate through the model. Then evaluate the
consequent with respect to the new model. Briggs (2012), making connections between causal modeling
and possible-worlds approaches, identifies causal models with possible worlds. Applying an intervention
then corresponds to selecting the closest possible world where the antecedent is true.

In this paper, we present a semantics for counterfactual sentences that integrates causal reasoning
with a dynamic semantics, such as that of Groenendijk and Stokhof (1991). Causal reasoning allows
us to give an exact specification of the vague notion of “distance” between worlds, while a dynamic
semantics allows us to analyze how the meaning of counterfactuals changes with context. The key idea
connecting these two approaches is that causal laws can be encoded in an accessibility relation, and
therefore a change in context is equivalent to an intervention in the causal model. We can formalize
this using ideas from Alternating-time Temporal Logic with Intentions (ATL+I), a logic for strategic
reasoning (Jamroga et al., 2005). We also present a computational implementation of our semantics in
the Haskell programming language, available at https://github.com/klai12/dscc.
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2 Causal models and concurrent game structures

Our implementation is based on concurrent game structures, introduced by Alur et al. (2002) as an ex-
tension of Kripke structures to open (multi-agent) systems. A Kripke structure contains a set of possible
worlds, a set of propositions, and a labeling function from worlds to sets of propositions true in those
worlds (Kripke, 1963). Concurrent game structures add a set of players, where each player has, for each
possible world, a non-empty set of moves available at that world. The transitions available from some
world are determined by the moves taken by each player at that world.

We can formally assign types to the above components as follows. We take worlds, propositions,
players, and moves to be primitive types World, Prop, Player, and Move, respectively. It will be
convenient to also define a type Vector for move vectors, i.e., which move is taken by each player, as
[(Player, Move)]. A concurrent game structure then consists of the following six components:

• A set A of players, of type [Player];

• A set W of worlds, of type [World];

• A set P of propositions, of type [Prop];

• A labeling function L, of type World -> [Prop];

• A move function D, of type Player -> World -> [Move];

• A transition function δ, of type World -> Vector -> World.

We now introduce the notion of a strategy. We adopt the definition in (Jamroga et al., 2005), as a
function that, for a given player, maps each world to a non-empty subset of the moves available to that
player at that world. Strategies therefore have type World -> [Move]. We can then define a “strat-
egy function” σ as a non-empty subset of the move function, with type Player -> Strategy (or
equivalently Player -> World -> [Move]), that specifies a strategy for each player. In ATL+I,
because the strategies employed by each player restrict the set of moves from which the player will
choose, and the transitions allowed from a world depend on the moves made by each player, the strategy
function therefore determines which transitions are allowed. The set of allowed transitions, in turn, forms
an accessibility relation that depends on the strategies used by each player.

To return to the setting of counterfactuals, we recall that in a dynamic semantics, the accessibility
relation (or modal horizon) changes over time. Furthermore, using a causal modeling approach, the
change in the accessibility relation is determined by an intervention in a causal model. Our proposal is
to identify variables in a causal model with players in a concurrent game structure. Then we can use the
strategy for a player to encode the structural equation for that variable, such that a change in strategy
corresponds to an intervention in the causal model.

2.1 Example: Kangaroos, tails, and crutches

As an illustrative example, we will again consider the case of the kangaroos. Let us assume that kanga-
roos will topple over if and only if they have no tails and they do not use crutches; otherwise they will
stay upright. Let Q, R, and S be Boolean variables corresponding to whether kangaroos have tails, use
crutches, and topple over, respectively. Then we can write the structural equation S = ¬Q ∧ ¬R to
encode this causal law.

Now we can represent our scenario as a concurrent game structure. First, the set of players in our
model is A = {Q,R, S}. Each variable in the causal model is a player in the concurrent game structure.
Note that despite the use of the term “player”, the players in our model are not agents, or even entities,
for that matter; there are no players corresponding to “kangaroos”, “tails”, or “crutches”.

Next we consider the space of possible worlds. We will introduce a possible world for each possi-
ble combination of moves the players can make. We will discuss the meanings of the different moves
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each player can make below; for now, we will say that players Q and R have two moves each (which
we will call 0 and 1), and S has three moves (which we will call 0, 1, and x). Therefore, there are
2 × 2 × 3 = 12 possible worlds in our concurrent game structure. We will also say that each player
has the same set of available moves at each world; i.e., for all worlds w, the move function D is
specified by D(Q,w) = D(R,w) = {0, 1}, and D(S,w) = {0, 1, x}. We will label the possible
worlds according to the moves made by each player to arrive at that world; e.g., w10x is the possible
world that results when Q makes move 1, R makes move 0, and S makes move x. The combination
{(Q, 1), (R, 0), (S, x)} is then a move vector, and therefore we know that for all worlds w, the transi-
tion function δ(w, {(Q, 1), (R, 0), (S, x)}) = w10x. We can calculate the other values of the transition
function in the same way.

We have specified the possible moves for each player at each world, but what do the moves mean?
Although our players are not agents in the conventional sense, we can nevertheless think of them as being
able to “set” their own values. For all players, then, the move 0 sets its value to 0 in the next world, while
1 sets its value to 1.

The above moves are sufficient for those variables that are exogenous, i.e., those whose values are not
dependent on the values of any other variables. In our scenario, Q and R are exogenous variables. For
an endogenous variable such as S, whose value is dependent on the values of Q and R, it is not possible
to represent the causal law governing S, only using some combination of moves 0 and 1. The reason is
because the value of S in the next world is dependent on the values of Q and R in the next world, not the
current world. For endogenous variables, therefore, we introduce a third move x, which sets the value of
the endogenous variable according to its structural equation. For example, the move x for player S sets
the value of S in the next world to be equal to ¬Q ∧ ¬R. In summary, exogenous variables have two
moves 0 and 1, while endogenous variables have a third move x.

The initial set of propositions is P = {q, r, s}. Our propositions correspond to valuations of each of
the variables; e.g., q is true in those worlds where the value of Q is 1, etc. Where necessary, the values of
endogenous variables can be calculated using their structural equations. For example, the value of S in
w10x is ¬1 ∧ ¬0 = 0 ∧ 1 = 0. The labeling function is then straightforward to calculate: L(w000) = ∅,
L(w10x) = {q}, etc.

Finally, we must specify our initial conditions: the initial strategies of each player. For player S, the
strategy is to enforce the causal law S = ¬Q∧¬R at each world. Therefore the strategy for S is simply
λw.x: at all worlds w, make move x.

As for players Q and R, because they are exogenous variables, they do not have structural equations
in Pearl’s causal models (Pearl, 2000). However, we do not want to say that they have no strategies. As
previously mentioned, when evaluating a counterfactual sentence, we only want to consider those worlds
that are closest to the actual world. But in ATL+I, having no strategy means placing no restrictions on
which worlds are accessible from the actual world (Jamroga et al., 2005). Intuitively, given a world with
some value of Q, worlds with the same value of Q can be considered closer to that world than worlds
with the opposite value, all else being equal. Therefore, one possible strategy is to keep the value of Q
the same:

σ(Q) = λw.

{
1, q ∈ L(w)
0, otherwise

The strategy for R can be similarly specified.

3 The dynamics of causal counterfactuals

Now we can describe the evaluation of counterfactual sentences in our framework. We translate sentences
into formulas of type Form. In addition to the formulas of propositional and basic modal logic, we also
include the formula scheme Str a strategy phi; these correspond to ATL+I sentences (straσa)φ.
In ATL+I, it is the evaluation of str-formulas in which changes of strategy occur; in our framework,
counterfactual sentences are translated into str-formulas for evaluation.
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Formulas must of course be evaluated relative to some model. In addition, in a dynamic semantics,
we must also keep track of the context. To do this, we make use of Haskell’s state monad. We define
the type Model of our states as a record type, that includes the current strategy function, as well as
four components of our concurrent game structure: the sets of players and worlds, and the labeling and
transition functions. Because of how we constructed our concurrent game structures above, the set of
propositions and the move function can be inferred from the other components.

For a given function (and context), our model checker returns the set of possible worlds where the
formula is true. As such, our main function, check, has type Form -> State Model [World].
The model checker is based heavily on that in (Jamroga et al., 2005) for ATL+I, which itself is derived
from the model checker for ATL in (Alur et al., 2002). Propositions are checked using the labeling
function, and formulas of propositional logic follow via the usual set-theoretic operations. The checking
of modal formulas makes use of a pre-image function, which, given a set of possible worlds, returns the
set of worlds that can access any of those worlds. Then, for example, to check a formula ♦φ, we first
find the set of worlds where φ is true, and then calculate the set of worlds such that the φ-worlds are
accessible.

Finally, to check str-formulas, we introduce a revise function. This is the mechanism by which
causal interventions are modeled. Formally, let σ be the current strategy for player a, and σ′ be a’s new
strategy. Then we can say that revise(a, σ′) = {σ ∪ σ′}.

We should note that our revise function differs from that of Jamroga et al. (2005). Whereas
changes of strategy in ATL+I involve replacement of the player’s previous strategy, our revise function
simply add the moves from σ′ to a’s previous strategy. We recall that in von Fintel’s dynamic account of
counterfactuals, the accessibility relation (modal horizon) expands but does not contract. In other words,
all worlds accessible from a given world before an update to the model, remain accessible afterwards.

Returning to the kangaroos, we can now see the difference in the evaluation of the Lewis-Sobel
sequence in (2) and the reverse Sobel sequence in (3). We will use the propositions q, r, and s as before,
to represent kangaroos having tails, using crutches, and toppling over, respectively. In evaluating the
sentence “If kangaroos had no tails, they would topple over” under the causal modeling approach, we
apply an intervention in the model to set Q = 0. This corresponds to a strategy for Q to go to a world
where ¬q is true; i.e., λw.0. Then, following von Fintel (2001), we check whether in all accessible
worlds where ¬q is true, s is also true; this is the strict conditional �(¬q → s). Therefore, the formula
we want to evaluate is (strQ(λw.0))�(¬q → s).

Similarly, when we evaluate the sentence “If kangaroos had no tails but used crutches, they would
not topple over”, we want to expand our modal horizon to include worlds where ¬q and r are both true.
This involves changes in strategy by both Q and R; Q to set Q = 0, R to set R = 1. The formula to
be evaluated must therefore include both an (strQ(λw.0)) term and an (strR(λw.1)) term. Then, since
we want to check the truth of ¬s in those accessible worlds where both ¬q and r are true, our formula is
(strQ(λw.0))(strR(λw.1))�((¬q ∧ r)→ ¬s).

Suppose that starting from our initial conditions, the sentence “If kangaroos had no tails, they would
topple over” is uttered. We first update the strategy function for Q, to add the move 0 to Q’s initial
strategy. This has no effect in worlds where Q = 0, as the default strategy for Q is to keep its value the
same. However, in worlds where Q = 1, Q now has two moves consistent with its new strategy, 0 and
1. Now, using the updated accessibility relation, we evaluate the formula �(¬q → s). Every world now
has an accessible ¬q-world. We note that according to the structural equation S = ¬Q ∧ ¬R, s will be
true in those worlds where ¬q and ¬r hold. Since S’s strategy is to enforce the structural equation, we
know that it will hold in all accessible worlds. In addition, R’s strategy continues to dictate that from
every world, any accessible world will have the same valuation of R. We conclude that the sentence is
true in those worlds where R = 0; these include the actual world w10x.

Then suppose the sentence “If kangaroos had no tails but used crutches, they would not topple over”
is uttered. Again, we update the strategy function forQ to add move 0. But since 0 was previously added
when evaluating the first sentence, this revision has no effect. Next, we add the move 1 to all worlds in
R’s strategy, similarly as before. Now we evaluate the strict conditional �((¬q ∧ r) → ¬s). Since S’s
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strategy still has not changed, the causal law S = ¬Q∧¬R continues to hold in every accessible world.
Therefore, for every world in our model, in every accessible world where (¬q∧ r) is true, ¬s is true, and
so is the sentence.

What if the order of the two sentences were reversed? First, starting again from the initial conditions,
the sentence “If kangaroos had no tails but used crutches, they would not topple over” is uttered. Because
move 0 had not been added yet, it is this sentence that adds 0 to Q’s strategy. All other effects of uttering
this sentence are the same as before, as is the set of possible worlds where it is true. However, we can
see a difference in the evaluation of the second sentence “If kangaroos had no tails, they would topple
over”. Updating the strategy function forQ has no effect, since the move 0 has already been added toQ’s
strategy by the first sentence. Furthermore, it is no longer the case that R’s strategy keeps the valuation
of R constant; as a result of the first sentence, move 1 is now available to R at every world. In other
words, among the ¬q-worlds accessible from any given world, one of them will also be an r-world. Since
S = ¬Q∧¬R holds in every world, we know that from any world, one of the accessible ¬q-worlds will
not be an s-world. We conclude that the sentence does not hold in any world.

4 Discussion

4.1 Translating counterfactual sentences into str-formulas

One challenge in synthesizing a causal modeling approach to counterfactuals with a possible-worlds se-
mantics is the difference in how counterfactual sentences are evaluated in the two approaches. Under
the classic possible-worlds framework, we check whether in the closest possible worlds where the an-
tecedent is true (making any changes to the accessibility relation, if necessary, to ensure that at least one
such possible world exists), the consequent is true. In a causal theory of counterfactuals, the antecedent
of the counterfactual determines the intervention to be applied to the causal model. Then, the consequent
is evaluated relative to the new model.

In this paper, we identified the necessary change in the accessibility relation with the intervention in
the causal model, which we implement as a change in strategy for some player. Such an approach raises
two questions. The first question concerns which possible worlds count as worlds where the antecedent
is true. In the kangaroo example, when we translated a counterfactual of the form φ > ψ into an str-
formula, the strict conditional portion of the formula was simply �(φ → ψ). In other words, if the
antecedent of the counterfactual is φ, then we check whether the accessible φ-worlds are also ψ-worlds.
However, there is evidence that this approach may not work for all scenarios.

Briggs (2012) discusses the scenario, originally found in Pearl (2000), of an execution of a prisoner.
A full description of the scenario can be found in either of the above papers; we note here that there are
two executioners, X and Y, and whether they fire is determined by whether the captain C signals for them
to do so. In other words, the behavior of executioner X is governed by the structural equation X = C. If
either executioner fires, the prisoner dies. In the actual world, the captain signals, both executioners fire,
and the prisoner dies.

Briggs considers the sentence “If executioner X had fired, then (even) if the captain had not signalled,
the prisoner would have died.” Under a causal model, we intervene to change the structural equation
X = C to X = 1. However, in the classic possible-worlds framework, no change in the accessibility
relation is necessary. Executioner X fires in the actual world, and as a consequence of (weak) centering,
the assumption that every world is at least as similar to itself as to any other world, every world is then
accessible to itself. Under the classic approach, we check the truth of the consequent in the closest
possible world where the antecedent is true; i.e., the actual world, where the consequent is false. But as
Briggs notes, applying the intervention to the causal model changes the truth of the consequent.

When specifying a set of possible worlds corresponding to a causal model, we must distinguish
between worlds where different causal laws hold. For example, in the kangaroo scenario, we distinguish
worlds w10x (where kangaroos do not topple over because they have tails) and w100 (where they do not
topple over, because it is a law of nature that they never topple over), even though the same propositions
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are true in both worlds: L(w100) = L(w10x) = {q}. Likewise, the antecedent of the counterfactual in
the execution case is the proposition that executioner X fires; let us call it x. We note that x does not
determine what structural equation holds in a particular world; in some x-worlds, the relevant causal law
is X = 1, while in others, it is X = C. When we say “if executioner X had fired” in a causal model,
the relevant possible worlds are those in which the structural equation is X = 1. The corresponding
proposition is not x, but a different proposition (call it x1), which is true in exactly those worlds where
the causal law X = 1 holds.

4.2 Counterfactuals with complex antecedents

Second, we note that antecedents of counterfactuals are propositions (of type Prop), while strategies
have type World -> [Move]. Is there a way to systematically translate propositions into strategies?
We have already seen that for atomic propositions such as r, we intervene to make sure that there is an
accessible world where r is true, by adding the move 1 to the strategy of player R at every world: λw.1.
Similarly, for negations of atomic propositions, such as ¬q, we add move 0 to Q’s strategy: λw.0.

We have also seen an example of a conjunction, (¬q ∧ r). To ensure that there is an accessible
world where the conjunction holds, we simply have both players change their strategies in sequence:
(strQ(λw.0))(strR(λw.1)).... We note that the order each player changes their strategy does not matter.
The moves each player is allowed to make are affected only by their own strategy, not those of any other
players, and the strict conditional portion of the counterfactual formula is only evaluated after all strategy
changes.

For other complex antecedents, Briggs (2012) borrows the idea of a state space from Fine (2012).
States are defined by a valuation of some variable(s); e.g., Q = 0∧R = 1. For propositional antecedents
(including negations, conjunctions, disjunctions, and material conditionals), Briggs specifies states that
make the antecedent true. For example, a disjunctive antecedent (φ ∨ ψ) is made true by three states or
interventions: one that sets φ = 1, one that sets ψ = 1, and one that sets both φ = 1 ∧ ψ = 1.

One challenge that arises in adapting this approach to ours is that evaluating the disjunction involves
checking the results of three different interventions applied to the original model. However, in our dy-
namic semantics, once an intervention is made, the moves added to the player’s strategy remain available
to future evaluations; there is no “going back” to try a different intervention. In addition, while the
states associated with the disjunction (φ∨ψ) are the same as those associated with the negated conjunc-
tion ¬(¬φ ∧ ¬ψ), Ciardelli et al. (2018) provide evidence that those antecedents in fact have different
meanings.

Furthermore, it is not clear what impact, if any, a disjunctive antecedent should have on the acces-
sibility relation at all. Ciardelli et al. (2018) discuss the example of two switches for a light. They are
connected in such a way that the light is on if the switches are both up or both down, and off other-
wise. In the actual world, the switches are both up and the light is on. While Ciardelli et al. do not
consider sequences of counterfactuals, it is easy enough to construct a reverse Sobel sequence as with
the kangaroos:

(4) If switch A and switch B were both down, the light would be on.
#If switch A was down, the light would be off.

Now let us replace the conjunction with a disjunction. In their experiment, Ciardelli et al. found that
the sentence “If switch A or switch B was down, the light would be off.” was judged by most participants
to be true (in contrast with the sentence “If switch A and switch B were not both up, the light would
be off.”, with a negated conjunctive antecedent). If we use this sentence instead in our sequence, the
infelicity seems to go away:

(5) If switch A or switch B was down, the light would be off.
If switch A was down, the light would be off.
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In fact, according to the rule of simplification of disjunctive antecedents, the second sentence is a
logical consequence of the first. Nevertheless, this indicates that perhaps the modal horizon did not
expand to include worlds where switch B was down in this case, at least not permanently; if it had, then
we would have to consider them when evaluating the second sentence. Alternatively, von Fintel (2001)
suggests that logical arguments, unlike normal discourse, carry with them an assumption of constant
context. Certainly more research is needed in this area.

5 Conclusion

In this paper, we present a semantics for counterfactuals that combines ideas from dynamic semantics
and causal modeling approaches. Our implementation is based on concurrent game structures, where
variables are interpreted as players and interventions as changes in players’ strategies. Using the classic
example of kangaroos with no tails, we show how our approach is able to capture judgments about
sequences of counterfactuals.
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Abstract

In this paper, I will describe a system that was developed for the task of Visual Question Answer-
ing. The system uses the rich type universe of Type Theory with Records (TTR) to model utterances
about the image, the image itself, and classifications made relating the outcomes of these two tasks.
At its most basic, the decision of whether any given predicate can be assigned to an object in the
image is delegated to a CNN. Consequently, images can be taken as evidence for propositional judg-
ments. The end result is a model whose application of perceptual classifiers to a given image is
guided by the accompanying utterance.

1 Introduction

Visual question answering is a recent popular task in the field of computer vision. However, the extent to
which formal linguistics is needed to solve the task has been a point of contention. This paper details an
approach that utilizes both a rule-based approach to parsing utterances about an image and a deep neural
model to supply perceptual meaning. TTR (Cooper and Ginzburg, 2015) offers a powerful semantic
framework for modelling natural language. TTR has been used to model more coarse-grained linguistic
phenomena, many of them related to dialogue. However, this paper is concerned with relatively basic
phenomena. The challenge here is to model a multimodal world, namely a visual and linguistic one.
This project builds on a previous VQA model using TTR which is detailed in Matsson (2018)1. Both
projects utilize pyTTR (Cooper, 2017), a python implementation of TTR. This previous implementation
features a pipeline that includes object recognition in the form of You Only Look Once (YOLO, Redmon
et al. (2015)), representation of the image and question in TTR and, subsequently, evaluation of the
utterance with respect to the image. The TTR representation of the image consists of a record type that
contains an individual variable and bounding box for every detected object, as well as the predicates that
apply to them. Furthermore, it uses the predicate loc to link individual variables to their bounding boxes.
This predicate simply signifies that the individual with this name is located at this position in the image.
I refine the TTR modelling of the image and object classification and replace YOLO with a set of binary
word classifiers. In Visual TTR, predicates do not need to be added explicitly to the TTR representation of
the image. Instead, links between the image and the question are made where appropriate. For example,
if a question contains a reference to a dog, the system will try to find suitable objects by running the dog
classifier on every annotated entity in the image. If the classifier returns a sufficiently high score for any
of the objects, these objects are considered instances of the dog predicate (type). These technical changes
enable a change to the order in which the model performs its sub-tasks. Where the original system runs
an object recognition algorithm on the image and translates the result to a TTR representation of the
image, the question is now parsed first, and guides the perceptual classification part of the architecture.

1see https://github.com/arildm/imagettr
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In section 3, I make recommendations for appropriate training data and classifier design. Based on the
classifier score, likely candidate regions will be considered instances (or witnesses) of the predicate type.
In the case of polar questions, this classified record of the image is a witness of the question type iff the
answer to the question is yes.

Matsson (2018) Visual TTR
object recognition bounding box annotations

↓ bounding boxes, predicates, entities ↓ bounding boxes, entities
image type image record

question parsing question parsing
- object classification

type check type check
↓ answer ↓ answer

Figure 1: Comparison of ImageTTR and Visual TTR Pipelines

2 A Visual Universe of Types

In order to implement the visual classification in TTR, all information necessary for classification should
be contained in the representation of the image. While it would be possible to include the entire image
matrix, this model uses the path to the image for legibility reasons. This section provides an overview
of the types (and types of types) that are used in the model. Basic Types are basic in the sense that they
do not depend on other types and should be thought of as corresponding to basic ontological categories
(Cooper and Ginzburg, 2015).

2.1 Basic Types

Image(path) The source of the image data.

Int Integers, used to describe the coordinates of the bounding boxes.

Ind Variables of type Ind are Montagovian individuals. In the record for a given image, every object is
assigned an identifier or name. In the case of the examples in this paper, this name uses the object
ids annotated in the corpus (see section 3.1).

2.2 The Image in TTR

2.2.1 Segment & Region

The model utilizes segmented images, as are commonly provided with state-of-the-art image corpora
like MS COCO (Lin et al., 2014) or Visual Genome (Krishna et al., 2016).
The segment contains the (x,y) coordinates of the bottom-left corner as well as the width and height of
the bounding box, as well as the path to the image. Note that this constitutes all the visual information
about the relevant part of the image.
The region contains a segment and its name, a variable of type Ind. The two fields in the Region type
represent the segment seg and the name z of the object in question.




seg :




x : Int
y : Int
w : Int
h : Int

path : Image




z : Ind




(1)
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2.2.2 Scene

The Scene type consists of at least one Ind type and a corresponding Region type object. The Scene is
the TTR representation of the entire image and contains the information of every object in the image.
Note that the names of each object appear twice in this format. This has two purposes. One, the image
itself also contains the individuals; two, the individual is now clearly linked to its segment.
When processing an image, a record/an instance of the Scene type is produced. In an image with only
two objects, this could look like (2).




obj0 =




seg =




x = 349
y = 138
w = 71
h = 90

path = image.jpg




z = a1032844




obj1 =




seg =




x = 3
y = 146
w = 204
h = 90

path = image.jpg




z = a1032847




z0 = a1032844
z1 = a1032847




(2)

3 Visual Grounding

3.1 Training Data

Visual Genome (Krishna et al., 2016) is a densely annotated dataset of 108k images. The dataset contains
several kinds of human-generated annotations such as region descriptions and question/answer pairs.
However, the model described in this paper works solely with object annotations. The object annotations
consist of a name and bounding box. The object names are extracted from region descriptions by crowd-
workers. The format I used for preprocessing these annotations can be found in the repository released
alongside Schlangen (2019).2

3.2 Object Classification

In contrast to Matsson (2018), the model described in this paper uses object classifiers. Conceptually,
these represent the system’s understanding of the perceptual meaning of object names. This means that
a separate classifier must be trained for every word in the system’s vocabulary. This particular imple-
mentation uses word classifiers with a architecture much like that described in (Schlangen et al., 2016)3.
These classifiers are binary logistic regression classifiers based on vgg19 (Simonyan and Zisserman,
2014) features. The classifiers share a common base model that outputs the visual features, while the
final layer is different for every word(-model).
Opting for these classifiers over the YOLO-model leads to more control over the vocabulary. YOLO
uses the PASCAL VOC (Everingham et al., 2015) test set of twenty object categories. The perceptual
classifiers also do not have a structural bias against infrequent categories in the training data.

2However, I trained classifiers on a subset of the roughly 3.8 million object annotations.
3Although the architectures are similar, the data and application of the models turn out quite differently. Compared to

reference resolution task that the word classifiers from Schlangen et al. (2016) were used for, object naming is a comparatively
simpler task.
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4 Classification in Visual TTR

4.1 Perceptual Segments

For every predicate, there is a corresponding Basic Type that maps from visual data (in this case, a seg
record) to a basic perceptual type. It is here that pyTTR invokes the classifier. For example, the conditions
for being a DogSeg are (1) be a seg, (2) get a higher-than-threshold score from the dog classifier (see (3)).
This is not yet applicable to the question - it represents the perceptually basic type of looking like a dog.



seg :




x : Int
y : Int
w : Int
h : Int

path : Image







: DogSeg if clsfr(seg) > threshold (3)

4.2 Predicates

Classification, one of the major cornerstones of the model, has the power to add regions to the witness
cache of a given predicate. In order to add entities to the witness cache, potential candidate regions are
queried. If the result of the query is positive, the region’s record is considered a witness of the predicate
(see (4)).




seg =




x = 10
y = 9
w = 473
h = 300

path = image.jpg




z = a1032844




:
[
c : dog(z)

]
(4)

4.3 Objects as Witnesses of a PType

In the previous section, I show how regions of the image can be identified as evidence for a certain
predicate. However, this alone does not cover any TTR parse of a question. To illustrate, think of a basic
example - Is there a dog?. This should be modelled like so:

[
z : Ind
c : 〈λv : Ind.dog(v), z〉

]
(5)

If the system has already classified one of the objs as being of type c : dog(z) and there exists a corre-
sponding z in the image record, the system will come to the conclusion that the image is in fact a witness
for the question type:




obj2 =




seg =




x = 10
y = 9
w = 473
h = 300

path = image.jpg




z = a1032844




z2 = a1032844




:

[
z : Ind
c : 〈λv : Ind.dog(v), z〉

]
(6)
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As shown in (6), classification in Visual TTR is a type judgment. Iff the answer to the question is
yes, the image is a Record of the Record Type of the question. For example, the picture is an instance
of the kind of situations where there is a dog. The surface representation of the image does not change.
However, type judgments were made - on the basis of the question, the perceptual classifiers and the
image. Figure 2 (above) provides a visualization of the information that the model uses to make a deter-
mination about the predicate type. The image, the object bounding boxes, and the scores produced by
the classifier.

5 Conclusions

While the system described in this paper is not yet a full-fledged Q&A system, it shows that TTR is
a suitable formalism for the task of building and querying an understanding of an image. In order to
reliably measure the effectiveness of the model, a proper training set is necessary. For example, this
could mean the significant expansion of its grammar so that is covers a Visual Q&A dataset such as
VQA v2 (Goyal et al., 2017). The expansion of the grammar is desirable also because being able to
model more semantic nuance (e.g. background/foreground) is one of the major benefits of using TTR in
the first place.
In this paper, I pay particular attention to the formal core of this system. A necessary aspect of such
a model that I have glossed over is the parser. There is no off-the-shelf English to TTR parser, so the
model does require the person implementing it to write a grammar. This has the disadvantage of limiting
the model’s coverage (and having to write a grammar). The advantage of a custom grammar is that it is
possible to model domain-specific semantic phenomena. For example, Is there a cat? and Is this a cat?
evoke the same classifier. The former applies the classifier to the whole image, while the latter applies it
to all objects in the image.
A further upside to the model proposed here is transparency. It is possible for a human observer to
examine the judgments that the model made when trying to answer a question. This is not very exciting in
the dog example, but should become useful for questions that require multiple perceptual type judgments.
Another avenue for further work on the model would be to implement it in an agent-based system as
described in Matsson (2018). In such a setting, judgments made about an image can become persistent
additions to the agent’s knowledge base.
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Abstract
The challenge of automatically describing images and videos has stimulated much research in

Computer Vision and Natural Language Processing. In order to test the semantic abilities of new
algorithms, we need reliable and objective ways of measuring progress. Using our dataset of 2K
human and machine descriptions, we find that standard evaluation measures alone do not adequately
measure the semantic richness of a description. We introduce and test a new measure of semantic
ability based on relative lexical diversity. We show how our measure can work alongside existing
measures to achieve state of the art correlation with human judgement of quality.

1 Introduction

Image and video processing systems are being developed for a wide variety of semantically rich tasks,
such storytelling (Zhu et al., 2015), Visual Question Answering (VQA) (Anderson et al., 2017; Teney
et al., 2016; Wu et al., 2016), and engaging in visual dialogue (Jain et al., 2018). In this paper, we
consider the task of Image Description (Lin et al., 2014; Hodosh et al., 2015; Plummer et al., 2017).
Closing the semantic gap between human and machine descriptions requires robust and standardised
measures of performance. In classical computer vision problems such as object detection, segmenta-
tion and classification, quality can be defined easily as a comparison between machine predictions and
reference answers. Standard measures of image description quality consider the alignment of candidate
sentences with ground truth sentences. However defining a set of ”correct” answers for a given image is
restrictive, as an image may contain diverse semantic information. Consequently we find semantically
rich and detailed content is regarded very poorly by such measures, and the more sparse and simplistic
the reference data and predictions, the higher the score. In summary:

1. We sourced 2K human and machine descriptions, which we used to show that standard automated
measures of quality give an incomplete picture of semantic ability. The measures produce higher
scores when candidates and reference data are semantically sparse, and lower scores on richer
descriptions.

2. We show that measuring the relative lexical diversity of a system is a better indicator of semantic
ability. We define two measures of relative diversity, and show that when combined with standard
measures, achieve achieve state-of-the-art correlation with human judgement.

We hope our work will stimulate research in to more advanced measures of semantic ability, helping to
close the gap between human and machine descriptions.

2 Relevant Literature

The predominant approach to generating original descriptions is to encode visual data into semanti-
cally useful features, which are then decoded into language. The capability of Convolutional Neural
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Networks (CNN) and their variants for extracting spatial features is well established in Computer Vi-
sion. Pre-training the network on a dataset such as ImageNet1 (which already embeds images based on
the WordNet nouns contained within them) provides spatial features which accurately predict common
nouns. In language generation, it is common to use a gated recurrent neural network which predicts a
probability distribution across the vocabulary, given prior states and spatial features (Long et al., 2014).
Many systems have evolved from this fundamental approach, and we refer interested readers to surveys
on such developments(Bernardi et al., 2016; Aafaq et al., 2018). Systems are typically trained end-to-
end on one of a number of image description datasets. Relevant to this paper are MS-COCO (Lin et al.,
2014), Flickr8k (Hodosh et al., 2015), and Flickr30k(Plummer et al., 2017).

2.1 Methods of Evaluation

Objective measures of performance enable the automatic evaluation of systems across large datasets,
avoiding the laborious process of sourcing human judgements. The measures divide into three groups:

1. Machine Translation measures: Early description systems considered image description as a trans-
lation task, in which information in the visual domain, is translated to the linguistic domain. As
such machine translation measures based on n-gram alignment such as BLEU(Papineni et al.,
2002), ROUGE(Lin and Hovy, 2003) and METEOR(Denkowski and Lavie, 2014).

2. Captioning Measures: CIDEr(Vedantam et al., 2015) and SPICE(Anderson et al., 2016), designed
specifically for the description task. CIDEr addresses the problem of description diversity by
rewarding candidates that match the consensus of references. SPICE, applies work from scene
graph generation(Schuster et al., 2015) to create semantic graph representations of candidate and
ground truth.

3. Neural Network Evaluation: Neural networks can be trained to evaluate descriptions. NNEVAL
(Sharif et al., 2018) is a network trained to predict whether a description is human or machine,
using both the captioning and translation measures as linguistic features.

As automated measures are a substitute for human evaluation, they are compared on the basis of their
ability to correlate with human judgement. The poor correlation of translation measures is well known,
(Bernardi et al., 2016; Chen and Dolan, 2011), and captioning measures show improved results. In this
work we assess the correlation using the Composite dataset(Aditya et al., 2015). Human and machine
captions for images in subsets of MS-COCO, Flickr8K and Flickr30K are judged by Amazon Mechanical
Turk workers, and rated for correctness and completeness.

2.2 Lexical Diversity (LD)

The ability of text or speech to convey information specifically and articulately is a widely studied field.
It is of interest in areas such as language learning, educational psychology and the study of speech
impediments (Durán et al., 2004; Jarvis, 2013). An indicator of such fluency is Lexical Diversity (LD),
which is a measure of the distribution of words used in a sample text. A simple measure such as the
Type Token Ratio (TTR) considers the number of unique words used, relative to the total number of
words in a sample. However TTR disadvantages longer texts, because for every additional word added
to a corpus, the probability that it will be novel decreases. Such a measure would therefore be difficult
to apply to a large scale image description corpus. A variety of measures derived from TTR have been
proposed to address the issue of sample size such as the rate at which the TTR falls as successive tokens
are added to the text (Jarvis, 2013). A curve with a larger negative gradient demonstrates more diversity
than one with a smaller decay, and its parameters can be found with a numerical method (Durán et al.,
2004). We later illustrate the application of this to image descriptions. More recent measures such as
MTLD (McCarthy and Jarvis, 2010) consider the mean length of word strings for a particular TTR.

1http://www.image-net.org/
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Hypo-geometric Distribution-D (HD-D) (McCarthy and Jarvis, 2010) measures the probability that for
a random sample of words from a corpus, a particular token will be selected a certain number of times.
Here we use HD-D for its simple implementation, lower sensitivity to corpus size and wide use in the
literature, but our method could be applied with a different LD measure.

3 Evaluation Measures and Rich Descriptions

A desirable quality of a description is to convey semantically insightful information. In this section we
describe how we sourced a set of human and machine descriptions, comparing them on their semantic
richness. We compared standard evaluation measures on semantically sparse and rich captions.

3.1 Sourcing Rich and Sparse Descriptions

We showed a total of 20 images to volunteers (Figure 1), asking them to describe the image in an infor-
mative sentence. ”Describe this image as if describing it to a friend”. Unlike large scale data collection,
where participants have many images to process, our smaller scale collection gave participants unlim-
ited time to consider their description. We also sourced machine descriptions by training a common
image captioning baseline(Xu et al., 2016) on MS-COCO. After validating the performance of our sys-
tem against the original paper, we sourced 1K machine descriptions of our images. From a subjective
comparison between the human and machine descriptions, we noted a gap in semantic richness, illus-
trated in Figure 2. Humans incorporate information extrinsic to the images, such as from current affairs,
cultural background and human experience, reacting with empathy to emotional cues. Machine descrip-
tions however, are produced sequentially one word at a time, with each word selected from a probability
distribution, predicted from object and attribute features. As all human descriptions were semantically
more insightful than corresponding machine descriptions, we refer the machine descriptions as ”sparse”
and human descriptions as ”rich”. Table 2 shows that the distinction between rich and sparse is also
evident in the vocabulary and lexical diversity of the datasets.

Figure 1: Rich-Sparse Dataset

3.2 Evaluation Measures on Human and Machine Descriptions

We evaluated human and machine descriptions separately, using the standard evaluation measures. For
each image we performed 1000 evaluations, where 5 sentences were randomly selected from the set of
descriptions to be the ground truth candidates, with the remaining used to calculate the metrics. Table
1 shows that when both ground truth and candidate description sentences are semantically sparse they
perform very well. However descriptions of a higher semantic complexity are penalised as a result of
their more diverse and rich descriptions, with many insightful descriptions scoring zero. Figure 3 shows
examples where the SPICE metric scores rich descriptions as zero. When rich descriptions were used as
ground truth, the machine descriptions perform very poorly.

3.3 Comparison of Lexical Diversity

We measured and compared the LD of human and machine descriptions. Our human descriptions were
universally richer and more semantically detailed than the machine descriptions. For each of the 40 TTR
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Figure 2: Examples of human (black) and machine descriptions (red).

Figure 3: Zero scoring rich descriptions (top) and low scoring machine descriptions (bottom) when
measured on SPICE

curves we plotted (machine and human for each image), we found that LD was an accurate indication of
whether a descriptions was from the rich or sparse set. Figure 4 shows the TTR curves for the examples
presented in Figure 2 . The figure illustrates the faster decline of the sparse descriptions, relative to the
semantically richer descriptions.
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Ground Truth Human Machine
Candidates Human Machine Human Machine

Cider 0.09 0.02 0.01 0.27
Bleu1 0.49 0.37 0.25 0.75
Bleu2 0.22 0.1 0.06 0.59
Bleu3 0.09 0.01 0.01 0.42
Bleu4 0.05 0.00 0.00 0.28

Rouge(L) 0.32 0.23 0.19 0.19
METEOR 0.17 0.1 0.09 0.3

SPICE 0.1 0.05 0.03 0.2

Table 1: Evaluation Measures for Rich (Human) and Sparse(Machine) Domains

Figure 4: TTR curves for rich and sparse descriptions

3.4 Comparison of Linguistic Complexity

Readability measures have long been used to automatically grade the complexity of language. We tested
several measures, including Flesch–Kincaid(Kincaid JP, 1988), Coleman–Liau(Coleman and Liau, 1975),
Dale-Chall(Dale E, 1948) and Automated Readability(Senter, 1967). However we found they did not
correlate well with semantic quality. Informative descriptions tend to be lexically diverse, but are not
necessarily complex. Rich descriptions can contain a higher syllable count and more ’difficult’ words
than sparse descriptions however this is not always the case. Furthermore a description corpus which
generates exactly the same complex sentence for every image conveys no information and yet would
score highly on complexity.

4 The Lexical Gap

One indication of the performance of a machine description system, is its ability to convey semantically
rich information. We propose a measure which considers the entire output of a description system (which

Lexical Diversity
TTR Root-TTR Log-TTR HDD MTLD

Sparse 0.09 2.98 0.65 0.55 16.07
Rich 0.24 14.29 0.83 0.75 40.58

Table 2: Rich-Sparse Dataset Statistics
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we call cm) and compares it with its training data (which we call cr). Thus instead of solely considering
a machine’s ability to predict n-grams or words, we also measure its ability to maintain the linguistic
diversity of its training corpus. Our key finding is that measuring the LD of a description corpus relative
to its ground truth data is a good indication of semantic quality, and can be used to weight standard
performance measures, increasing their correlation with human subjective judgement. In this section we
define our measures, which we later compare compare with standard captioning measures.

4.1 Measuring the Lexical Gap

The Lexical Diversity Ratio (LDR) is a straightforward measure of the ability of a machine to match the
semantic depth of its source material. Given a function Lwhich calculates LD for a reference description
corpus cr and the machine description corpus cm, we define the Lexical Diversity Ratio (LDR) ld as:

ld =
L(cm)

L(cr)
(1)

A machine with a score of 1, is more able to match the lexical diversity of its training source. A lower
score, indicates a reduction in semantic richness. We also define the lexical gap (Lg) a bounded measure
of the ability of a system to maintain lexical diversity. An ld below some constant µ, will tend to zero
indicating a larger lexical gap. As ld increases a system is closing that gap, towards a score of 1, which
indicates ideal performance. Given the constants µ and α, we define the Lexical Gap Lg:

Lg =
1

1 + exp−α(ld−µ)
(2)

Considering our rich and sparse descriptions independently, we split them into sub-corpora. We calculate
ld scores each sub-corpora as (cr) using in every case the richer descriptions has our reference cr. Figure
5 shows the LDRs (ld) for the rich and sparse parts of our description dataset. The richer descriptions,
although more broadly distributed, have a higher mean ld. We define µ as the value that produces the
Bayes Minimum error between the two distributions of ld (0.81), and we set α=5 to distribute all our
values broadly and between the range 0..1. Then given a description metric M , we calculate the gap-

Figure 5: Distribution of LDR scores for sparse and rich descriptions

weighted score for each sentence: sn in a corpus sn ⊆ cr:

mgap =M(sn)Lg (3)

mldr =M(sn)Ld (4)

5 Results

We evaluated the performance of weighted lexical measures using the Composite dataset. The dataset
contains selected human and machine descriptions for images sourced from Flickr30k, Flickr8K and

20



Source Dataset Caption Source LDR (ld) Lexical Gap (Lg)

Flickr30k

Human 1.03 0.98
Machine1 0.63 0.02
Machine2 0.70 0.08
Machine3 0.71 0.11

Flickr8k
Human 0.92 0.89

Machine1 0.71 0.10
Machine2 0.65 0.03

MS COCO

Human 0.97 0.95
Machine1 0.72 0.11
Machine2 0.73 0.13
Machine3 0.73 0.13

Table 3: Calculation of ld and Lg for the Composite Dataset

Spearman Pearson Kendal-T
NNEval 0.524 0.532 0.404
ld 0.473 0.621 0.329
Lg 0.473 0.630 0.369

Table 4: Overall Correlations for LDR and Lexical Gap

MS COCO. For each description in Composite, we sourced the relevant ground truth sentences from the
source dataset so that we could calculate the captioning scores for that sentence. These are the standard
scores presented in Table 5.

Using our measures defined previously, we also calculated ld andLg for each subset of the Composite
dataset (Table 3) using the relevant source corpus as our reference (cr). We thus measured the lexical
diversity of human and machine subsets of the Composite dataset. Before using standard evaluation
measures, we found that our ld and Lg correlated well with human subjective judgements, as presented
in Table 4. Then we calculated themgap andmldr for each evaluation measure over the entire Composite
dataset. We calculate the correlation performance with the human evaluation scores.

Table 5 compares the gap weighted scores with standard measures of performance. We found that on
all measures, weighting by ld and Lg improves the correlation between human judgements and objective
measures.

Spearman Pearson Kendal-T
Standard mldr mgap Standard mldr mgap Standard mldr mgap

CIDEr 0.361 0.383 0.516 0.354 0.388 0.571 0.270 0.369 0.389
Bleu1 0.346 0.429 0.444 0.362 0.471 0.489 0.257 0.292 0.362
Bleu2 0.323 0.395 0.393 0.342 0.411 0.534 0.258 0.283 0.282
Bleu3 0.292 0.382 0.516 0.286 0.327 0.544 0.250 0.277 0.392
Bleu4 0.235 0.373 0.531 0.202 0.228 0.569 0.206 0.286 0.401

Rouge L 0.364 0.447 0.473 0.369 0.476 0.632 0.271 0.319 0.369
Meteor 0.367 0.427 0.473 0.400 0.478 0.635 0.275 0.335 0.369
SPICE 0.372 0.409 0.540 0.399 0.448 0.573 0.299 0.329 0.411

Table 5: Overall Correlations for LDR and Lexical Gap. All p-values<0.001
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6 Conclusion

Much progress has been in visual description, with many systems capable of generating original sen-
tences which convey salient objects and attributes. However building systems capable of conveying
semantically insightful information still remains a big challenge because of the difficulty of developing
effective and insightful evaluation measures. We find that LD of descriptions is a useful indicator of
semantic quality, and propose that description systems are measured not only on the accuracy of their
predictions, but also on their ability convey lexically specific information. Measuring LD, rewards sys-
tems which are able to preserve rich and diverse descriptions, but penalises sparse systems, which have
a poor lexical capability.

We hope that our work will inspire larger datasets of semantically richer and more detailed descrip-
tions, and the development of more effective evaluation criteria for descriptions.
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Abstract

We present and discuss a couple of approaches, including different types of projections, and
some examples, discussing the use of fuzzy sets for modeling meaning of certain types of language
constructs. We are mostly focusing on words other than adjectives and linguistic hedges as these
categories are the most studied from before. We discuss logical and linguistic interpretations of
membership functions. We argue that using fuzzy sets for modeling meaning of words and other
natural language constructs, along with situations described with natural language is interesting both
from purely linguistic perspective, and also as a meaning representation for problems of computa-
tional linguistics and natural language processing.

1 Introduction

The use of fuzzy sets for representing meaning of some types of natural language constructs was first
proposed and described in earlier works of Lotfi Zadeh (Zadeh, 1971, 1972). Representation based on
fuzzy sets is very expressive as it allows to quantitatively model the nature of the relationship between
different concepts, and represent vagueness and imprecision that are so common to natural language.

Nowadays, fuzzy sets seem to be relatively little known among linguists, and little used in natu-
ral language processing (Carvalho et al., 2012; Novák, 2017). Most of the examples described in the
literature include certain types of adjectives and linguistic hedges.

We would like to contribute to this field by describing a couple of approaches, including different
types of projections, that can be used for modeling meaning of some types of language constructs using
fuzzy sets. We describe and discuss examples that include some adjectives, adverbs and prepositions.
We discuss logical and linguistic interpretations of membership functions (Hersh and Caramazza, 1976),
and argue for importance of distinguishing between them when modeling language constructs with fuzzy
sets.

2 Related work

Here we briefly mention some of the work related to the use of fuzzy sets as a meaning representation.
In his early works, Lotfi Zadeh suggests modeling meaning of certain types of adjectives (e.g.

“small”, “medium”, “large”) as fuzzy sets, and some lingustic hedges (e.g. “very”, “slightly” — as
operators, acting on these fuzzy sets (Zadeh, 1971, 1972). Hersh and Caramazza (1976) introduce logi-
cal and linguistic interpretations of membership functions.

Novák (2017) describes Fuzzy Natural Logic, a mathematical theory that attempts to model seman-
tics of natural language, including Theory of Evaluative Linguistic Expressions (Novák, 2008). Some
ways of modeling meaning of words like nouns and verbs) have also been suggested (Novák, 1992, 2017;
M. Kapustin and P. Kapustin, 2015). Novák et al. (2016) includes an example of evaluative linguistic
expressions that contain perceptions like “near” and “far”.
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In M. Kapustin and P. Kapustin (2015) we describe a framework for computational interpreting of
natural language fragments, and suggest modeling meaning of words as operators. P. Kapustin (2015)
describes an application that implements and tests some features of this framework in a simplified setting.

There is some work aiming to make fuzzy sets easier to learn from data. For example, Runkler
(2016) describes an approach for generation of linguistically meaningful membership functions from
word vectors. We describe compatibility intervals, a meaning representation that is closely related to
fuzzy sets (P. Kapustin and M. Kapustin, 2019b).

We discuss how people relate some language constructs to compatibility intervals in an experimental
study (P. Kapustin and M. Kapustin, 2019a).

3 Method

3.1 Projections

In this paper, we describe modeling meaning of language constructs by approximating it with a set of
projections of this construct on different properties (here term “property” is used in a relatively gen-
eral sense).1 Each such projection is defined by a fuzzy set and a corresponding membership function
that describes compatibility of the construct with different values that the respective property may take.
The intuition behind this approach is simple: language constructs contain information about different
properties, and information about each property can be modeled as an independent projection.2

Consider fig. 1. Presented membership functions attempt to quantitatively relate constructs “ex-
pected”, “common”, “possible”, “extraordinary” to surprisingness of a certain result. Of course, meaning
of mentioned words is complex and cannot be fully described in terms of surprisingness, but they do tell
us something about it, among other things. So, these membership functions may be seen as projections
of the meanings of these constructs onto property “surprisingness”.

3.2 Membership function arguments and values

Regarding values of membership function arguments (in this case, values of “surprisingness”), here we
are using a relative scale ranging from zero to one. Choice of scale, including its type (linear, logarithmic,
etc.), and mapping between real values and relative values is a topic of separate research and is beyond
the scope of this paper.

We look at interpreting membership functions values similarly to Zadeh (1975, 1978): values of
membership function can be seen as degrees of compatibility between the value of the function argument
and the construct the membership function is describing. Consider fig. 1: µexpected(1) = µcommon(1) = 0,
because constructs “expected” and “common” are not compatible with high values of surprisingness, and
µextraordinary(1) = 1, because “extraordinary” is highly compatible with high values of suprisingness (µ
is denoting degree of membership).

3.3 Membership functions: different interpretations

Similarly to Hersh and Caramazza (1976), we distinguish between two different interpretations of mem-
bership functions: logical (modeling what is “logically”, or “technically” correct), and linguistic (mod-
eling how the word is used).

Consider fig. 2: “young1” corresponds to logical interpretation, reflecting the fact that infants and
newborns are, indeed, as young as one can be. On the other hand, “young2” corresponds to linguistic
interpretation, reflecting the fact that when people use the word “young”, they usually refer to ages other

1We propose a related but a bit more specific definition of properties in M. Kapustin and P. Kapustin (2015).
2This approach may be seen as a slight generalization of the ideas described in Lotfi Zadeh’s early works (Zadeh, 1971,

1972), where construct meaning is modeled as one fuzzy set (one projection), and as a special case of the approach we suggest
in M. Kapustin and P. Kapustin (2015), where each concept is modeled as an operator.
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Figure 1: “Expected”, “common”, “possi-
ble”, “extraordinary” related to “surpris-
ingness”.

Figure 2: Logical (young1) and linguistic
(young2) interpretations.

than newborns and infants. However, for the word “old” its usage does not differ from what is “logically”
correct: we may say “old” about someone who is 80 or 100 years old.

Let’s consider fig. 1 again: µexpected(0) > µcommon(0) > µpossible(0). This corresponds to linguistic
interpretation and models that, even though highly anticipated results are probably both common and
possible, “expected” might be a better word than “common” (and especially than “possible”) to describe
such results (of course, this only takes “surprisingness” into account).

We believe that many, but probably, not all of the differences between logical and linguistic inter-
pretations are related to scalar implicatures and related phenomena, and believe that this needs to be
investigated further.

Differing logical and linguistic interpretations have some interesting implications. Consider fig. 3.
Here we apply negation, implemented as Zadeh’s complementation (Zadeh, 1972), to constructs “young1”,
“young2” and “old”. While such negation seems to work well with the logical interpretation, it gives
somewhat unexpected results with the linguistic interpretation: according to not(µyoung2), it appears that
infants are less “not young” than newborns, which is not correct.

We think that logical and linguistic interpretations complement each other, each of them modeling
different aspects of the meaning of the language constructs, and for some words may need to be mod-
eled as separate membership functions. Examples in this paper follow linguistic interpretation (unless
mentioned otherwise).

3.4 Choice of constructs, projections and membership functions

The choice of constructs, projections and membership functions in this paper is subjective and serves as
an illustration. For the experimental study, please see P. Kapustin and M. Kapustin (2019a).

4 One-dimensional projections

One-dimensional projection is a projection onto one property that allows to model how a language con-
struct relates to this property.

4.1 One-dimensional projections: time references

Here we describe how one-dimensional projections can be used for modeling meaning of words like
“after”, “afterwards”, “later”, “until” and “since”. In these examples we choose to focus on the meaning
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Figure 3: Negation of young2 gives some-
what unexpected results.

Figure 4: Time reference given by “after
breakfast” in “you can play after break-
fast”.

Figure 5: Time references given by “af-
terwards” and “later” in “let’s discuss this
afterwards / later”.

Figure 6: Time references given by “un-
til darkness” in “you can play until dark-
ness”.

aspect of the words that has to do with providing a time reference relative to the time of utterance (given
by “now”).

Consider fig. 4. Here we choose to model “after” as suggested by Vocabulary.com (2018a): “happen-
ing at a time subsequent to a reference time”, that’s why the membership function for “after breakfast”
is decreasing relatively rapidly (this would be different if we chose to model “after” as in “the world
has changed after the Second World War”). “Before” may be modeled in a similar way, but we do not
include a figure here for brevity.

Consider fig. 5. Here we choose to model “afterwards” as a function that decreases relatively rapidly
after a certain point, agreeing with dictionaries mentioning that a certain reference time is usually as-
sumed (Vocabulary.com, 2018b; Cambridge.org, 2018a). On the other hand, “later” is modeled as “at
some time in the future” (Vocabulary.com, 2018c; Cambridge.org, 2018b), that’s why the function is
decreasing slower, µlater > µafterwards in more distant future, and µlater(1) > 0. This would be different
if we chose to model “later” as a synonym for “afterwards” (this meaning of “later” is also suggested by
the same dictionaries).

Consider figs. 6 and 7. The fact that the time references given by “darkness” and “summer” are
relatively vague is modeled by slow decrease of µuntilDarkness and slow increase of µsinceSummer.
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Figure 7: Time reference given by “since
summer” in “you have had the book since
summer”.

Figure 8: “Mere”, “only”, “just”,
“whole”, “entire” related to perceived
quantity in “only two days”, “whole
room”, “mere one percent”.

4.2 One-dimensional projections: perception of quantities

Consider fig. 8. Here we suggest how one-dimensional projections can be used to model meaning of
words like “only”, “just”, “whole”, “entire”, “mere”. In these examples we choose to focus on what
these words tell us about certain quantity compared to our expectations (e.g. Zeevat, 2009; Berkeley.edu,
2019). We use name “perceived quantity” for the property.

Here we let µwhole(1) = µentire(1) = 1 to model the fact that words “whole” and “entire” may be used
with something perceived as very large (e.g. “entire universe”). On the other hand, we let µmere(0) =
µonly(0) = µjust(0) = 0, because we cannot think of examples when these words are used with zero
quantities (e.g. “a mere zero”, “only nothing” and “just no one” sound strange). Also, here we choose to
model “mere” as a more specific word than “only” and ”just”, as suggested by OxfordDictionaries.com
(2019b): “used to emphasize how small or insignificant someone or something is”. Here we do it by
letting µmere cover less area than µonly, just on fig. 8.

4.3 One-dimensional projections on related properties: repeating events

Consider fig. 9. Here we are attempting to model what the words “seldom”, “occasionally”, “regularly”,
“often” tell us about event frequency (as in “I often play chess”). The words “occasionally” and “regu-
larly” seem to be less specific than the words “seldom” and “often”, and we model this by letting their
membership functions cover larger area under the curve.

Consider fig. 10, where we are attempting to model what the words “seldom”, “occasionally”, “reg-
ularly”, “usually”, “often” tell us about expectedness of an event (as in “I often play chess when we meet
with my friends”)3. We model “regularly” as a more specific word on fig. 10 than on fig. 9, because we
believe that “I regularly play chess when I meet with my friends” means a rather high expectedness of
the game of chess if the meeting happens (but lower than for “usually” or “often”).4 Note that we include
“usually” on fig. 10, but not on fig. 9, because it is possible to say “I usually play chess when I meet with
my friends”, while “I usually play chess” sounds strange.

In this example words “seldom”, “occasionally”, “regularly”, “often” have two independent projec-
tions on related properties: “frequency” and “expectedness”. In general, we think that having multiple
independent projections on related properties is interesting, in particular because it may help the systems

3Here by “expectedness” we mean “the quality or state of being expected” (CollinsDictionary.com, 2019).
4We discuss how people relate these and other constructs to compatibility intervals (P. Kapustin and M. Kapustin, 2019b), a

representation closely related to fuzzy sets, in an experimental study (P. Kapustin and M. Kapustin, 2019a).
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Figure 9: “Seldom”, “occasionally”,
“regularly”, “often” related to event fre-
quency.

Figure 10: “Seldom”, “occasionally”,
“regularly”, “usually”, “often” related to
event expectedness.

learn more about the relation between these properties, and needs more research.

5 Membership functions that depend on other functions

5.1 Membership functions that depend on other functions: sufficiency and excess

Consider figs. 11 and 12. Here we are attempting to model what constructs “enough”, “not enough”,
and “too much” tell us about the amount of certain property with respect to how much property is de-
sirable/acceptable, modeled with a separate desarability/acceptability function.5 We believe that for the
construct “not enough” to be meaningful, there should be a place where desirability/acceptability func-
tion is increasing (e.g. “not enough air pollution” usually does not make sense). Likewise, the construct
“too much” (or too expensive, etc.) only makes sense if there is a place where desirability/acceptability
function is decreasing (e.g. “I have too much money” would often require an explanation to answer why
having less money would be more desirable).

Here we follow linguistic interpretation for µenough, modeling the fact that we would normally use
words other than “enough”, when the amount of property is much higher than the amount qualifying as
“enough”, and that is why µenough is gradually decreasing after a certain point. We let µenough(1) > 0 as
“enough” may still be used in such situations (e.g. “he earns enough” may be used about a millionaire
when one prefers to be less specific).

It is interesting to note that figs. 11 and 12 present examples when both membership functions and
the scale of members function arguments depend on another function (in this case, desirability / accept-
ability). We believe that such dependencies need further research for such models to become practically
useful for problems of computational linguistics and natural language processing.

6 Multi-dimensional projections

Sometimes modeling meaning of certain constructs requires membership functions that take several ar-
guments, when it is the relation of the arguments is what defines the concept. Here we are discussing
several examples of this kind.

Consider figs. 13 and 14. Like many other constructs, “already” and “still” have several related
meanings with subtle differences. Here we are focusing on modeling surprise at the fact that something
happens or will happen earlier or later than expected (e.g. Zeevat, 2009, 2013; Cambridge.org, 2019a,

5Similar notion of admissibility is used in Meier (2003).
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Figure 11: “Enough” and “not enough”
related to the amount of property in
“enough / not enough for everyone”.

Figure 12: “Too” related to the amount of
property in “I think that owning a car is
too expensive these days”.

Figure 13: “Already” related to perceived
change and perceived elapsed time in “it
is already finished”.

Figure 14: “Still” related to perceived
change and perceived elapsed time in
“they are still working”.

2019d). We represent these constructs by relating properties “perceived change” and “perceived elapsed
time”. “Already” means that perceived elapsed time is relatively low, and perceived change is relatively
high, while “still” means the opposite.

Consider fig. 15. Here we model construct “efficient” by relating properties “progress” and “elapsed
time”: “efficient” means that elapsed time is relatively low, and progress is relatively high.

Consider fig. 16. Many dictionaries define “lately” as “recently” or “not long ago” (OxfordDic-
tionaries.com, 2019a; Cambridge.org, 2019c; Merriam-Webster.com, 2019). However, Cambridge.org
(2019b) explains that “lately” is used for states or repeating events, mostly with present perfect, and is not
used for single events. Here we choose to model “lately” in this meaning, as a word that describes recent
state of things: when the time is close to zero (further in the past), pretty much all states are compatible
with the construct “it rains a lot lately”. In other words, we have no information about the state of things,
and this is modeled by membership degree of “lately” being approximately equal to one, as long as time
is close to zero. When the time is closer to one (recent past), only the states with high average rainfall are
compatible with the construct. It seems that “lately” is sometimes used as a word that contrasts recent
situation with earlier situation, however we believe that this can be very context dependent, and choose
not to model it here: according to fig. 16, we don’t know how things were in the past.
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Figure 15: “Efficient” related to progress
and time in “this dryer is very efficient”.

Figure 16: “Lately” related to time and
average rainfall in “it rains a lot lately”.

7 Discussion

Although the choice of membership functions used in the examples is subjective, we hope that they are a
useful illustration to the approaches and ideas described in the paper, as well as to the importance of dis-
tinguishing between logical and linguistic interpretations of membership functions. For the experimental
study, please see P. Kapustin and M. Kapustin (2019a).

One can see applications of such models both in natural language understanding and natural language
generation. When a system meets a language construct, it can understand it in terms of “underlying”
properties, e.g. “often” — in terms of “frequency”, and “already” — in terms of the relation between
“perceived change” and “perceived elapsed time”. Similarly, having information about possible values
of property or properties, a system can attempt to describe the situation with appropriate words, e.g.
information about “progress” and “time” can be described using words like “efficient”.6

We think that wider adoption of fuzzy sets in computational linguistics and natural language pro-
cessing may benefit from the research that will help to make such models easier to learn from data. For
example, Runkler (2016) describes an approach for generation of linguistically meaningful membership
functions from word vectors. We suggest a meaning representation that is closely related to membership
functions, but may be somewhat easier to learn from data (P. Kapustin and M. Kapustin, 2019b).

In many cases, when trying to understand how the membership functions should behave, and even
qualitatively compare membership functions for related words, it was not that easy to find linguistic
evidence in the literature. In some cases we had a feeling that dictionary definitions left some important
parts of the construct meaning unexplained (but it was clear from the examples or explanations found
elsewhere). We noticed these things because of our attempts to model meanings of the constructs in a
more formal way (in this case using membership functions).

We argue that fuzzy sets and membership functions are useful tools that are interesting both from
purely linguistic perspective, and also as a meaning representation for problems of computational lin-
guistics and natural language processing, and hope that more researchers become interested in this area.
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Abstract
In this paper we present new results on applying topological data analysis (TDA) to discourse

structures. We show that topological information, extracted from the relationships between sen-
tences, can be used in inference, namely it can be applied to the very difficult legal entailment
problem given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and
Gholizadeh et al. (2018) show that topological features are useful for classification. The applications
of computational topology to entailment are novel, and in our view provide a new set of tools for
discourse semantics: computational topology can perhaps provide a bridge between the brittleness of
logic and the regression of neural networks. We discuss the advantages and disadvantages of using
topological information, and some open problems such as explainability of the classifier decisions.

1 Introduction

Topology is a classic branch of mathematics that deals with shape invariants such as the presence and
numbers of holes. More recently topological data analysis (TDA) was introduced as a branch of compu-
tational mathematics and data science, predicated on the observation that data points have implicit shapes
(e.g. Edelsbrunner and Harer (2010)). Throughout the paper we will be using the word topology only in
these two particular senses.

Both topology and TDA can be viewed as an abstraction mechanism, where we replace the original
shape or cloud of data points by some numbers representing their mathematical properties, using a for-
mal machinery derived from algebraic topology. In case of TDA, we use software implementing these
methods.

A natural question to ask is whether texts or discourse structures have shapes that can be measured
using tools of topology. Zhu (2013) was the first to investigate this question and observed we can capture
some information about discourse structures using topological structures, namely homological persis-
tence (which we do not have space to define here, and we simply use it as a source of numerical features).
Zhu used a collection of nursery rhymes to illustrate how topology can be used to find certain patterns of
repetition. More recently, Doshi and Zadrozny (2018) applied Zhu’s method in a larger setting showing
its classification superiority on the task of assigning movie genres to user generated plot summaries, us-
ing the IMDB data set. They improved on the early 2018 state of the art results of Hoang (2018), which
was achieved using deep learning on this large data set. Gholizadeh et al. (2018) applied a different
method for computing homological persistence to the task of authorship attribution, which is also a clas-
sification task, showing that the patterns of how authors introduce characters in novels can be captured to
large extent using topological descriptors. Interestingly, neither of these works uses topological features
to augments the usual tf/idf representations of documents: Doshi and Zadrozny (2018) use counts of
words (from a previously identified vocabularies) to form a matrix which is the only input to topologi-
cal persistence, and then they make a rule based decision based only on the presence of barcodes; and
Gholizadeh et al. (2018) use time series. To use topological data analysis (TDA), Zhu (2013) assumes
that text is implicitly coherent (SIFTS method), and so do Doshi and Zadrozny (2018). Namely, they
assume implicit connection between consecutive sentences in each document. While for movie plots this
assumption makes sense, it might be more problematic in other contexts, such as entailment, especially
when two passages are unrelated.
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Figure 1: Persistence homology is a data analysis tool. Intuitively, as we start expanding the data points into
balls of increased radii, planar figures emerge and change. The intervals in H0 and H1 capture relevant features of
this process, namely the number of connected components, and the number of holes at different resolutions. The
method abstracts distance information about the feature vectors of original data. It is an open problem how exactly
these new numerical features help entailment. Source of the figure: Huang et al. (2018)

1.1 Our results

In this paper, we present our very recent results on applying topological data analysis (TDA) to entail-
ment, with some improvement of accuracy over the baseline without persistence.

More specifically, this paper shows TDA works on entailment improving the task of classification
for establishing entailment on the COLIEE 2018 task by over 5% (F-measure) compared to the results
classification without topology that is using only tf/idf and similarity. Furthermore, this result does not
assume the existence of the implicit skeleton connecting consecutive sentences (as was done in Doshi
and Zadrozny (2018), following Zhu (2013)).

The title of the present article ends with a question mark. This question mark reflects the tension
between the positive empirical results derived using topological methods and our lack of understanding
why these methods work. Thus, perhaps another contribution of this paper is to point to both, the need
for theoretical inquiry about relationships between discourse and its topological abstractions, and more
importantly to the need for tools that would allow us to experiment with such hypothetical relations. As
we speculate in Section 4, the effectiveness of TDA for entailment might be explainable using the known
mathematical connections of topology and logic (e.g. Vickers (1996)). Proper tooling could prove or
disprove this hypothesis.

1.2 A minimum background on topological data analysis

Topological Data Analysis (TDA) can be viewed as a method of data analysis done at different resolu-
tions. Informally speaking, this process can be viewed as data compression(cf. Lum et al. (2013)). It can
also be viewed as an attempt to reconstruct shape invariants, such as presence of voids or holes, from col-
lection of points, at different resolutions (Edelsbrunner et al. (2000)). Or in yet another formulation TDA
tries to make data points fit together, and measures their divergence from perfect fit Robinson (2014) (we
will not be using this last property here).

Figure 1 (taken from Huang et al. (2018)) conveys these ideas: it shows a cloud of data points, and its
subsequent approximation by balls of increased radii. The overlaps produce a change in shape which can
be measured using the H0 and H1 lines: The number of H0 lines intersecting the vertical bar at ε is the
number of connected components of when the points are extended with balls of that radius. Therefore as
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ε increases, the number of components decreases. In this process the exact values of the data points are
ignored, but the shape information is preserved – that is, two clouds of similar shapes but different values
will have similar persistence diagrams. The H1 lines show the birth and death of holes at given values of
ε. The top line show a hole persisting from 1.2 to 3.3 (approximately). Jointly, H0 and H1 (and higher
Hn’s , not discussed here) compress information about the shape of the point cloud. This diagram deals
only with planar structures, but persistence works in higher dimensions as well, in principle allowing
machines to ”see” shapes in dimensions higher than 3, a task difficult for humans. ”Persistence” refers
to the fact that the number of components and holes remains stable at some intervals, and we record this
fact as numerical features; ”homology” means similarity (of shape).

In NLP, the points are in a high dimensional space and represent vectors of tf/idf or other features
derived from text. The method works the same, but please note that Figure 1 only illustrates how TDA
progresses from points to shapes. At this point, we do not know — and we see it as a major open problem
— what aspects of natural language semantics, whether for entailment or classification, are captured by
topological features.(Although, as mentioned earlier, some aspects of this problem are discussed in Zhu
(2013)).

To finish this introduction, we mention an equivalent representation, called persistence diagram, an
example of which appears later in Figure 5, represents birth and death as two dimensional coordinates,
and uses colors to make a distinction between H0 and H1. To repeat, the representation method is
general, and it generates numbers we can use as machine learning features. However, finding the corre-
sponding natural language mechanisms responsible for the improvements in accuracy of classification or
entailment is an open problem.

1.3 Related work on applying topological data analysis to discourse modeling, and text
processing in general

Applications of TDA to text started with discourse: Zhu (2013) used nursery rhymes to illustrate prop-
erties of homological persistence (e.g. that it is not simply measuring repetitions), and also showed that
children, adolescent and adult writing styles can be differentiated using TDA. Doshi and Zadrozny (2018)
used Zhu’s tools and methods to show that topological features can improve the accuracy of classification
(movie plots). They also discuss the paucity of applications of TDA to text, and the fact that not all of
these applications show improvements over the state of the art: in particular this was the case for senti-
ment analysis and clustering Michel et al. (2017). Temčinas (2018) argues for applicability of persistent
homology to lexical analysis using word embeddings, and in particular for discovery of homonyms such
as ’bank’, thus potentially for word sense disambiguation.

For discourse analysis, broadly speaking, we see that according to Guan et al. (2016) TDA can help
with extraction of multiword expressions and in summarization; also it might be worth to mention Horak
et al. (2009) apply TDA to a networks of emails, but without going into their text. In other words, TDA
for text data is an emerging area of research, perhaps with a potential to be of value for computational
linguistics (see the last two sections of this paper for an additional discussion).

2 Entailment between legal documents

The COLIEE task: Our application of topological data analysis (TDA) to computing entailment fo-
cuses on the legal entailment COLIEE 1 task, i..e Competition of Legal Information Extraction and
Entailment (COLIEE).

To solve an entailment task, given a decision of a base case, along with its summary and facts, the
system should be able to establish the relation of entailment with an associated noticed case, given
as a list of paragraphs. We can define it as, given a base case b, and its decision d, and another
case r represented by its paragraphs P = {p1, p2, p3, . . . , pn}, and we need to find the set E =

1COLIEE 2018 Workshop collocated with JURISIN 2018: https://sites.ualberta.ca/˜miyoung2/
COLIEE2018/
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{p1, p2, . . . ., pm | pi ∈ P}, where entails(pi, d) denotes a relationship which is true when pi ∈ P
entails the decision d (c.f. Rabelo et al. (2018), Kim et al. (2016), Adebayo et al. (2016)).

Figure 2: Each case folder includes decision file, summary file and fact file with paragraph folders. Decision file
is an actual query i.e. a decision of a base case, summary file consists of a summary of a base case and facts file
includes all the human annotated facts about the base case.

Figure 3: Above example illustrates entailment between text and hypothesis for one of the base cases of COLIEE
2018. Text column consists of decision and summary of a base case and the hypothesis is an entailed supporting
paragraph for a given base case. (We have excluded facts file in text while demonstrating as size of its text is large)

Overview of dataset: For training, there were 181 base cases provided which were drawn from an
existing collection of Federal Court of Canada law cases. Every case consists of a decision file, summary
file, facts file and a list of paragraph files. The training data also consists of labels in XML format for
entailed paragraphs. Our task was to identify paragraphs from this list, that entails with the decision of a
base case. In 181 base cases, the number of paragraph files were 8794 out of which 239 were positively
entailed and the rest were not entailed. This led us to a very imbalanced class ratio of 2.71% examples
in positive class and 97.29 % in negative class.

37



Why this task is difficult: Since the data is of legal domain, it might require an understanding of
law to analyze it: A traditional approach such as training neural network, or the more intuitive semantic
similarity approach did not work very well on this dataset. Reason being, pre-trained word embedding
such as GloVe and word2vec may not contain enough legal terms for neural networks to learn. Similarity
correlates with entailment, but it clearly is a different problem. Also, this corpus is too small to use it to
create our own pre-trained word embeddings. And at this point we do not have the bandwidth to pursue
corpus expansion and create appropriate legal embeddings. An example of the type of text present in the
COLIEE data is shown in Fig.3.

Another challenge was data distribution. Using common re-sampling techniques for classification
task along with tf/idf leads to predicting always the negative class and treating positive class as noise,
giving false high accuracy.

The best results obtained on COLIEE leaderboard was of Rabelo et al. (2018) where they employed
similarity-based feature vector and used a “candidate” paragraph, chosen from histogram of the simi-
larities between each noticed case and all paragraphs for classification. In this method, due to the un-
structured input format, their team used post processing for classifier’s predictions. In case of too many
positive detections, they retained 5 candidate paragraphs whereas for zero positive predictions they re-
tained 1 paragraph by choosing classifier’s confidence interval. With this approach they delivered 0.24
precision, 0.28 recall and 0.26 F-score.

3 Computing entailment with and without topological features

To see whether topological features provide any additional information we employed a supervised ma-
chine learning approach. We represented the data points as a set of elements of type “[text, hypothesis],
Label“. We defined ”text” as a combination of decision file, summary file, and fact file; and ”hypothesis”
as a list of paragraphs for a case. For cleaning the text data, we simply removed punctuation, stop-words
followed by converting the text to lower case and stemming it. This process, together and the features
used in the experiments are shown in Fig. 4.

Figure 4: Diagram represents pipeline used for establishing entailment. A simple flow was to pre-process the
data, prune highly similar and relevant paragraphs and resample further using NearMiss-3, then in the second pass,
use homology features along with tf/idf.

We then formulated the problem as a binary classification problem for establishing corresponding
paragraphs as entailed or not entailed with a base case. Mathematically, given a training dataD = (xi, yi)
for i = 1, ..., N , where xi = {texts, hypothesis}, and yi = {0, 1}.
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3.1 Method 1: Relevance and similarity approach.

Considering every case had a list of paragraphs and severe imbalance, we approached this problem by
first ranking the paragraph files using Okapi BM25 algorithm. We also calculated cosine similarity of
a text and its hypothesis, and combined these features to re-sample the data, which we hoped would
maximize the probability of establishing entailment without any information loss. Using the augmented
samples that are highly relevant and similar with the base case, we computed TF-IDF vectors using
sklearn. To retain the order of a sequence of every sentence we used n-gram range hyper-parameter
with value 1 to 3. This experiment was performed using Random Forest classifier for binary classifica-
tion. The results, shown in Table 1 show improvement over previously reported top score of Rabelo et al.
(2018) – note, however, our results were obtained after the JURISIN 2018 competition. Our main point
was to see whether topological features provide additional value.

3.2 Method 2: Topological Data Analysis approach.

We wanted to examine if topology could create stronger signals to capture entailment. From the previous
method we learned that entailment cannot be explained by establishing similarity only. By measuring
the distance between two documents, one cannot necessarily infer a meaning of one text from another.
In Information Retrieval, if a document is relevant to a given query, it does not necessarily mean that the
meaning of a query can be completely inferred from the retrieved document. In fact, this creates a need
for entailment in various NLP tasks including IR.

We used Ripser, a C++ library to compute persistent homology, for establishing topological structure
of documents.2 Ripser was applied both to text and hypothesis. Our assumption is if text is entailed
with hypothesis then the corresponding values of birth, death radius can provide stronger signals to the
classifier. Unlike the movie classification experiment, we did not observe any specific barcode structure
for entailed and non-entailed paragraphs, but the radius of birth-death cycle was significantly different
for entailed documents as compared to the non-entailed ones. Another reason for not having a specific
structure between such documents could be the length of these documents, as each file consists of 5
sentences on an average. In future we aim to perform this experiment on larger size documents to see if
there is any obvious barcode structure between entailed documents, and that can visually give us a clear
interpretation.

After calculating homology, we combined persistent homology features with tf/idf to create a feature
vector comprised of the same. We used Random Forest classifier for binary classification task to establish
entailment. Notably, we have not assumed the existence of coherence skeletons in documents (SIFTS in
Zhu (2013)).

Experiment and Results:
We used tenfold cross-validation, setting a random sample of 22 cases aside from given 181 cases

for the evaluation task. From our first method where we used highly similar and relevant paragraphs for
classification along with tf/idf feature vector, our best results were 0.28 precision score, 0.58 recall and
0.38 F-score for entailed class (see Table 1).3 We improved our precision score by 2.5%, recall by over
14% and F-score by over 5% using topological data analysis. (Our aim was to achieve higher F-score for
classification other than recall as a naı̈ve implementation can give 1.0 recall by predicting all paragraphs
as entailed). Using topological features, we could see reduction in predicting false positives, and more
accurate predictions for true positives. We experimented with three machine learning classifiers out of
which we obtained the best results using Random Forest.

2https://github.com/Ripser/ripser
3These results were obtained after the COLIEE competition.
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Figure 5: Left Panel: Barcode structure of persistent homology capturing multiple cycles. Note the the differences
in radius of one long cycle and the others. Right panel: Persistent diagram representing the cycles from the left
panel. Note the dot further from the diagonal corresponding to the long cycle. We show that these cycles are
informative (Table 1), but we do not have tools to understand precisely how.

Method Precision Recall F-score
Robelo et al. (2018) [prior art] 24% 28% 26%
Similarity + relevance score + tf/idf+ RF 28.2 58.3 37.6
Similarity + relevance score + tf/idf + RF + Topology 30.7 72.5 43.0

Table 1: Results of the classification experiments using Random Forest (RF) with 10-fold validation; RF produced
best results, with and without topological features. In the first experiment, using proper filtering and resampling
improved the F-score compared with COLIEE 2018 prior art. More importantly, we see that the presence of
topological features is informative for entailment – this is the main point of the paper.

4 Discussion and Open Problems

As shown in Table 1, the use of topological features, namely birth-death information shown in Fig. 5, can
improve the accuracy of computing entailment. However, it is an open issue to understand what exactly
is being captured by using persistence. This can be seen as two sets of open problems: (a) we do not
know exactly the correspondence between text and homological features; (b) we do not have instruments
to capture these relationships.

We understand these relationship on some the abstract, mathematical level, even for text; in Zhu
(2013) and Doshi and Zadrozny (2018) experiments, because of the simple setups, the 1-dimensional
persistence measures the tie backs of content words. However, this is less clear for entailment, and we do
not have instruments that would allow us to go back from the classifier decision and show the meaning
of the topological features in documents we were using. Thus the abstract and concrete explainability
of topological text features is an open problem. In addition, as the referees observed, entailment has
direction, but distances used by our out of the box TDA methods are symmetric. So, what exactly is
happening? – We don’t know. However, asymmetric structures as in Fig. 1 can arise from (symmetric)
distances between points. One hypothesis we plan to explore is that ”global alignment” of Dagan et al.
(2010) is captured by homological persistence. Similarly, it is conceivable that feature inclusion measures
such as APinc, balAPinc , see e.g. Baroni et al. (2012), are indirectly captured by homological
persistence. Again, it is an open problem what exactly is happening here.

In principle asymmetric measures of distance can be used in computational topology, see: Bubenik
and Vergili (2018) and also discussion in Hennig and Liao (2013). Whether doing so would help entail-
ment is an open problem.

To continue with speculations, there is a category theoretical style of research on entailment and
distributional semantics, e.g. Bankova et al. (2016). There are also deep connections between topology,
category theory and logic (e.g. Vickers (1996)). And we could even add physics to the mix: Baez and
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Stay (2010). Given the connections between intuitionistic logic, Heyting algebras and topology, and the
possibility of translation between these three representations (Vickers (1996)), we can speculate if we
properly do computational topology for inference, we should get approximately-correct intuitionistic,
logical inference methods. This could be an important connection, since logics are proverbially brittle,
and computational topology is not. Thus our results might be experimentally confirming this intuition,
and on a pretty difficult data set.

5 Summary and Conclusion

TDA can be computationally expensive, as observed by many researchers, and also Huang et al. (2018) to
argue that quantum computing methods might be appropriate (if they materialize). However topological
features seem to provide advantage when only small amount of the data is available, as shown here,
and also in Doshi and Zadrozny (2018), who used only small percentage of data for preparation and
training. This is also the case in our related work (Savle and Zadrozny (2019)), where we improved on
Doshi and Zadrozny (2018) movie plot classifcation results by changing the inputs to the computation of
persistent homologies from binary matrices to tf/idf representations augmented with persistence, which
is the representation used here. Furthermore, we did not use the assumption of time skeleton Zhu (2013).
From discourse interpretation point of view, this shows the assumption of discourse coherence does not
have to be built in into the TDA method. But, again, the trade-offs between these two approaches are
unclear.

Similarly, if larger amounts of data are given (e.g. movie plots), the precise computational tradoffs
between using topology versus deep neural networks are unclear, especially given the ongoing improve-
ments on various text analysis benchmarks, and new methods for addressing these tasks appearing on a
daily basis.

Our future work includes, in the near horizon, experimenting with other data sets, possibly using
graph embeddings in addition to topology. In a slightly longer horizon, we also want to explore higher
dimensional persistence, which was shown in Horak et al. (2009) to capture relevant properties of a so-
cial network (email exchanges), but has not, to our knowledge, been used for other aspects of discourse
understanding. And in parallel, we will be focusing on building tools to help us answer the question what
exactly is captured by topological features.

In summary, this work confirms the ability of topological features to effectively capture certain struc-
tural properties of discourse text. On the one hand, it is another application of topological data analysis
to text. On the other hand, given the paucity of positive results in this space (as discussed in the Intro-
duction), and no previously reported applications to inference, we see our work as giving a new tool for
computational discourse semantics, which could be used, as we have shown, as an addition to existing
tools. Therefore, in our view, this research opens a new area of discourse analysis, where regression-
based tools (such as standard machine learning and neural networks) can be used jointly with structural
tools: to logic and ontology we can therefore add topology. From a formal point of view, with the known
correspondence between intuitionistic logic and topology, the effectiveness of computational topology
for inference, should yield approximate (and mostly correct) inference methods. This work shows that
indeed this might possible, even for relatively difficult cases of entailment.
Acknowledgments: We thank the referees of IWCS 2019 for their comments and suggested improve-
ments. Most of the issue raised by them we addressed in the preceding section. Unfortunately, explaining
why exactly topological methods work on entailment is an open problem.
Authors’ contributions: K. Savle designed, ran and analyzed the results of the experiments under the
guidance of W. Zadrozny, and with additional help from M. Lee, esp. in analyzing machine learning
results. KS and WZ were the primary writers of this paper.
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Abstract

The early phases of requirements engineering (RE) deal with a vast amount of software re-
quirements (i.e.,requirements that define characteristics of software systems), which are typically
expressed in natural language. Analysing such unstructured requirements, usually obtained from
stakeholders’ inputs, is considered a challenging task due to the inherent ambiguity and inconsis-
tency of natural language. To support such a task, methods based on natural language processing
(NLP) can be employed. One of the more recent advances in NLP is the use of word embeddings
for capturing contextual information, which can then be applied in word analogy tasks. In this paper,
we describe a new resource, i.e., embedding-based representations of semantic frames in FrameNet,
which was developed to support the detection of relations between software requirements. Our em-
beddings, which encapsulate contextual information at the semantic frame level, were trained on
a large corpus of requirements (i.e., a collection of more than three million mobile application re-
views). The similarity between these frame embeddings is then used as a basis for detecting semantic
relatedness between software requirements. Compared with existing resources underpinned by frame
embeddings built upon pre-trained vectors, our proposed frame embeddings obtained better perfor-
mance against judgments of an RE expert. These encouraging results demonstrate the potential of
the resource in supporting RE analysis tasks (e.g., traceability), which we plan to investigate as part
of our immediate future work.

1 Introduction

As a part of Requirements Engineering (RE), requirements analysis is “a critical task in software devel-
opment as it involves investigating and learning about the problem domain in order to develop a better
understanding of stakeholders actual goals, needs, and expectations” (Hull et al., 2017). However, it is
a challenge to analyse requirements to find relations between them, especially implicit ones, i.e., those
that are not expressed explicitly and formally, especially within a lengthy document. As stated by Ferrari
et al. (2017), these challenges are mainly due to the semantic ambiguity and incompleteness inherent
to natural language. Moreover, performing an RE analysis task, e.g. by manually inspecting words
and implicit or explicit relations between requirements, is a time-consuming and error-prone procedure
(Fernández et al., 2017).

One of the approaches that has drawn the attention of the RE research community is semantic anal-
ysis. Representing under-specified meanings within requirements in a structured manner will lead to a
more efficient way for conducting RE analysis task. As an example, Mahmoud and Niu (2015) discussed
the importance of using techniques for measuring semantic relatedness in tracing links (or relations) be-
tween requirements. This mimics the human mental model in understanding links between pieces of text
through their implicit meanings. Natural language processing (NLP) tools and techniques offer viable
solutions to many tasks in RE, including requirements analysis (Dalpiaz et al., 2018). However, the
majority of the available NLP techniques and resources are not domain-specific, i.e., they are trained or
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built based on general-domain data sets (e.g., news articles). For this reason, a recent research direction
in RE calls for “customizing general NLP techniques to make them applicable for solving the problems
requirements engineers face in their daily practice” (Ferrari et al., 2017).

In this work, we present a new resource, i.e., semantic frame embeddings, built upon semantic frames
in FrameNet (Baker et al., 1998). To demonstrate an application to requirements analysis, we employed
our semantic frame embeddings in computing semantic relatedness between software requirements at a
semantic frame level.

The rest of this paper is organised as follows: Section 2 provides background information on FrameNet
and word embeddings, while Section 3 presents the method we carried out to generate the frame embed-
dings. In Section 4, we discuss the results of employing the obtained frame embeddings in a semantic
relatedness measurement task. Finally, we conclude and briefly discuss our ongoing work in Section 5.

2 Background

2.1 A Brief Overview on FrameNet

Fillmore (1976) proposed the linguistic theory of semantic frames, stating that each word in a language
is accompanied by essential knowledge which is important to understand its full meaning. For example,
words such as “store” and “keep” are usually accompanied by the following elements: (1) an agent that
performs a storing event; (2) an object which is a result of the storing event; and (3) the location where
the object is kept.

FrameNet1 is a web-based general-domain semantic lexicon that implements the semantic frame
theory. Initially started by Baker et al. (1998), it has continued to grow and now contains more than
1,200 semantic frames (Baker, 2017). For every semantic frame in FrameNet, the following information
is given: frame title, definition, frame elements and lexical units (LUs). LUs are words that evoke the
frame, represented as a combination of their lemmatised form and part-of-speech (POS) tag. The concept
of keeping an object, for example, which is stored in FrameNet as a semantic frame entitled Storing is
evoked by the LU save.v where v stands for verb, among other LUs. Its core frame elements, which are
essential in understanding the meaning of the frame, include Agent, Location and Theme. FrameNet also
catalogues non-core frame elements which are used to enhance the understanding of a specific frame. For
the Storing frame, Manner, Duration, and Explanation are considered as non-core elements.

In Figure 1, we demonstrate the use of semantic frames and their related LUs for representing a
set of software requirements. From the given example in Figure 1, we can identify the requirements
and conditions for implementing the designated system, e.g., accessing restrictions to the documents as
shown in in Req-1 and Req-2. The need to update records on a regular basis as described in Req-3 and
Req-4 are also shown. These requirements are abstractly represented by using FrameNet frames. For in-
stance, accessing restrictions are represented by the Deny or grant permission and Preventing or letting
frames from FrameNet. Similarly, the processed materials “reports”, “logs”, and “contact information”
are captured by the Text, Records and Information frames, respectively.

Furthermore, some frames (e.g., Storing, Records, Verification, and Frequency) are repeated amongst
the requirements in Figure 1, boosting the semantic relatedness between these requirements. FrameNet
holds a representation of semantic relations between its frames (Baker, 2017). For example, the frame
Record inherits from the Text frame. Using such semantic relations could help create links between
annotated requirements, as reported in our previous work Alhoshan et al. (2018c). However, according
to Baker (2017) not all frames in FrameNet are semantically connected. For example, Information and
Records are not linked in any way. Similarly, Deny or grant permission and Prenveting or letting are
not connected in FrameNet although both frames share some LUs (e.g., permit.v). For this reason, rather
than rely on the semantic relations encoded in FrameNet, we sought another way to find semantic links
between FrameNet frames.

1https://framenet.icsi.berkeley.edu/
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Figure 1: A set of software requirements, where “Req” refers to the raw requirements and “FN-Req”
refers to the requirements annotated with FrameNet frames titles (highlighted with colours) and their
evoked LUs (in bold font).

2.2 Word Embeddings

One of the recent advances in NLP research is the use of word embeddings as a method for capturing
the context of any given word in a corpus of documents. According to Mikolov et al. (2013), word
embeddings allow words with similar, or related meanings, to have similar vector representations. They
are learned based on the principle of distributional semantics, which posits that words occurring in the
same context have similar or related meanings (Harris, 1954). Deep learning offers a framework for
representing word context as real-valued vectors, that goes beyond the counting of co-occurrences and
takes into account word order as well (Bengio et al., 2003). For training word embeddings, a large and
representative corpus is needed. There are existing pre-trained, general-domain word embeddings ready
for use, e.g., the Word2Vec embeddings trained on 100 billion words from Google News (Mikolov et al.,
2013).

In general, word embeddings have helped boost the performance of various NLP tasks. An example is
word analagy, where word embeddings provide the capability to calculate semantic similarities between
words (Fu et al., 2014). However, the use of word embeddings can lead to even better performance
if they are trained on corpora specific to the domain of interest or application. This could potentially
reduce the problem of out-of-vocabulary (OOV) words (Jozefowicz et al., 2016), i.e., the lack or sparsity
of instances of certain words in the training corpus, which leads to not being able to capture or map their
context in embedding vectors. The solution to such cases is typically based on simply ignoring the OOV
words, which is not ideal.

In this work, we proposed a solution for mitigating text sparsity that is based on semantic frames.
Rather than mapping each word in the text, we target a group of words which represent a semantic frame,
hence producing semantic frame embeddings. There are previously reported efforts that proposed the use
of frame embeddings, e.g., Sikos and Padó (2018) and Alhoshan et al. (2018c). In our work, we aim to
develop frame embeddings that are suitable for captruing the context of RE-related documents.
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3 Semantic Frame Embeddings

Our method for generating frame embeddings was previously discussed in our prior work Alhoshan
et al. (2018c) which we employed existing word embeddings developed by Efstathiou et al. (2018). In
this paper, we trained our own word embeddings which then formed the basis for generating semantic
frame embeddings. Afterwards, we measured the semantic relatedness between frames using different
similarity metrics. Finally, we selected the most suitable metric for applying frame embeddings to the
RE domain.

3.1 Preparation of Training Data

As a first step, we generated a corpus of requirements documents that are more similar to software re-
quirements, i.e., a collection of user reviews of mobile applications. Using the web-based AppFollow
tool2, reviews from different mobile application repositories (e.g., Apple Store and Google Play) were
retrieved. The user reviews covered different categories of mobile applications, i.e., business, sports,
health, travel, technology, security, games, music, photos, videos, shopping, lifestyle, books, social net-
working, finance. While each review came with metadata such as review date, title and per-user applica-
tion rating, we took into consideration only the textual content of the reviews. This resulted in a total of
3,019,385 unique reviews/documents in our training data set.

The documents in the training data set were then preprocessed with the following steps: sentence
splitting, tokenisation, stop-word removal, part-of-speech (POS) tagging and lemmatisation. The prepro-
cessing results allowed us to automatically check for the occurrence of LUs (associated with semantic
frames) catalogued in FrameNet, in order to assess the data set’s coverage of semantic frames. Based on
this, we were able to determine that our mobile application reviews data set covers all of the 123 semantic
frames annotated in FN-RE corpus (a FrameNet annotated corpus of software requirements presented in
Alhoshan et al. (2018a,b).

3.2 Training Word Embeddings

Utilising the preprocessed mobile application reviews data set as a corpus, we trained word embeddings
using the continuous bag-of-words (CBOW) learning method of Word2Vec as proposed by Mikolov et al.
(2013). A word embedding vector was trained for each LU, which was represented as a combination
of its lemmatised form and POS tag. Taking into account the POS tag of an LU makes it possible to
train different vectors for words with the same lemma but different parts of speech. It is preferable, for
example, to train a vector for “form” as a verb (form.v) that is different from the vector for “form” as a
noun (form.n). The size of each vector was set to 300, following previously reported work in Sikos and
Padó (2018) and Mikolov et al. (2013).

3.3 Generating Frame Embeddings

The word embedding vectors resulting from the previous step were then used to form an embedding-
based representation of semantic frames, i.e., frame embeddings. That is, for any given semantic frame
F, we collected the vectors corresponding to the LUs that evoke it. The average of these LU vectors
is then computed and taken as the frame embedding for F. For instance, as 11 LUs are associated with
the Creating frame in FrameNet, a vector containing the average over the 11 word embedding vectors
corresponding to these LUs was obtained as part of this step.

3.4 Measuring Frame-to-Frame Semantic Relatedness

The generated frame embeddings were employed in computing relatedness between semantic frames.
Following our method described in Alhoshan et al. (2018c), we used the cosine similarity metric. For

2https://appfollow.io
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FrameNet frames X and Y, let FR(X,Y) denote the relatedness between these two frames:

FRCosine(X,Y ) =
FX · FY

‖FX‖‖FY‖
(1)

where FX and FY are the frame embedding vectors for X and Y, respectively.
The cosine similarity metric measures the angle between two vectors (i.e., frame embeddings). If the

vectors are close to parallel (e.g., with R(X,Y) ≈ 1) then we consider the frames as similar, whereas if
the vectors are orthogonal (i.e., with R(X,Y) ≈ 0), then we can say that the frames are not related.
In addition, we used two other similarity metrics, Euclidean Distance and Manhattan Distance, for later
comparison:

FREuclidean(X,Y ) =
√
(Fx− Fy)2 (2)

FRManhattan(X,Y ) = ‖Fx− Fy‖ (3)

Similar to the cosine metric, the Euclidean and Manhattan metrics measure the distance between two
data points (i.e., distance between the two frame embeddings) to detect their similarity—i.e., if the data
points are close together (with a shorter distance), this is considered as a higher similarity between the
designated frame embeddings to be measured.

The Manhattan distance metric calculates the path between any two data points as it would be placed
in a grid-like path, whereas the Euclidean distance measures the distance as a straight-line.

An issue that is related to the distance scores of both Euclidean and Manhattan metrics is that the
results can be too large (i.e., greater than 1) if the data points to be compared are sparse. For this reason,
we applied the Zscore in order to normalise obtained results from Euclidean and Manhattan distance
metrics separately:

Zscore(Fx, Fy) =
Dxy − µ

α
(4)

Zscore is a function for normalising Dxy which is the similarity distance calculated by FR between
Fx and Fy (calculated using either Euclidean or Manhattan distance) where µ is the mean distance over
all frame pairs, and α is the standard deviation.

For implementing the methods described above, we employed various Python-based packages. The
preprocessing pipeline was implemented using the NLTK Python package3 as well as NodeBox4. Mean-
while, the Word2Vec implementation available in the Gensim package5 facilitated the training of word
embeddings. The numpy package6 was used in generating the frame embeddings and calculating simi-
larity scores, and matplotlib 7 for visualising the frame embeddings relations.

4 Results

In this section, we discuss the results obtained by using the frame embeddings generated by the method
described above. We used the 123 semantic frames in FrameNet that are annotated in the FN-RE corpus,
reported in Alhoshan et al. (2018b). The first author of this paper, who is a PhD candidate investigating
the use of NLP techniques in RE, annotated the semantic relatedness between the selected frames pairs
as “yes” if the frame pair is semantically related according to their definition and related (or shared) LUs,
and “no” otherwise.

We applied the three similarity metrics discussed in Section 3.4, on the frame embeddings of the
selected frame pairs as exemplified in Table 1. The results obtained from Euclidean and Manhattan

3https://www.nltk.org/
4https://www.nodebox.net/code/index.php/Linguistics
5https://radimrehurek.com/gensim/models/word2vec.html
6http://www.numpy.org/
7https://matplotlib.org/
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distance metrics are normalised according to our discussion above. We considered 0.50 as a threshold
value to indicate semantic relatedness for any frame pair in the set, following prior work by Alhoshan
et al. (2018c). From the given results in Table 1, it is clear that using the cosine metric provides more
reliable relatedness scores that are close to the registered human-judgement—i.e., out of six positive
scores of semantic relatedness on the given frame pairs shown in Table 1, the cosine metric identified
five of them as semantically related with scores that are equal or higher than the used minimum threshold
value. The cosine metric is generally used to identify semantic relatedness regardless of the magnitude of
the frame embedding, whereas both the Euclidean and Manhattan metric measure the actual magnitude
distance between the frame embeddings. For example, the frame Sending occurs 0.824% in the training
corpus and the frame Receiving occurs only 0.007% of the time. The Euclidean and Manhattan metrics
measure the similarity of these two frames depending on how often they occurred in the corpus, whereas
cosine similarity measures only the angle of their vector representations. For this reason, we selected the
cosine metric to compare our frame embeddings with the pre-trained frame embeddings.

Table 1: Results of frame pair semantic relatedness scores according to the applied similarity metrics.
Underlined values pertain to the highest valued score (above the minimum threshold) for each semanti-
cally related frame pair.

Frames Pairs Human-judgements:
Semantically related?

Euclidean Distance
(Normalised)

Manhattan Distance
(Normalised)

Cosine similarity

(Sending, Creating) Yes 0.8622 -0.6653 0.5794

(Sending, Intentionally create) Yes -0.6249 -0.62574 0.5383

(Sending, Receiving) Yes -0.3409 -0.3443 0.5356

(Sending, Recording) No -0.2469 -0.2050 0.4538

(Creating, Intentionally create) Yes -1.3837 -1.3967 0.9034

(Creating, Receiving) No -0.3098 -0.3406 0.4697

(Creating, Recording) No -0.3329 -0.3422 0.4573

(Intentionally create, Receiving) No -0.2057 -0.2170 0.3703

(Intentionally create, Recording) Yes -0.2570 -0.2769 0.3778

(Receiving, Recording) Yes -0.1992 -0.2102 0.5081

In Table 2, we compare the characteristics of the frame embeddings based on word embeddings
pre-trained on news articles as used by Sikos and Padó (2018) (Column A), those pre-trained on Stack-
overflow posts by Efstathiou et al. (2018) used in Alhoshan et al. (2018c) (Column B), and our own
proposed embeddings (Column C).

Table 2: Comparison between our proposed Frame Embeddings (C) and the two available frame embed-
dings (A) and (B).

Feature FrameNet Corpus Frame Em-
bedding (A)

FN-RE Corpus Frame Embed-
ding version 1.0 (B)

FN-RE Corpus Frame Embed-
ding version 2.0 (C)

Trained data set size 31.0 MB 1.5 GB 990.1 MB

data set context News articles Stack overflow technical posts User reviews of mobile applications

Number of words entries 21,121 words 1.7 million words 1.6 million words

Language Model Word2Vec (dimension size: 300) Word2Vec (dimension size: 200) Word2Vec (dimension size: 300)

Context General Software Engineering Requirements Engineering

The frame embeddings (A) and (B) are compared with our proposed frame embeddings (C) based
on a data set of frame pairs whose semantic relatedness has been labelled. The results are shown in
Table 3. For example, Creating and Intentionally create frames, have some LUs in common (e.g., cre-
ate.v, generate.v and make.v). Both frames are connected via the inheritance relation is-a in FrameNet.
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During the annotation of the FN-RE corpus, described in Alhoshan et al. (2018a) and Alhoshan et al.
(2018b), those two frames (Creating and Intentionally create) in particular are overlapping and describe
very similar contexts. As shown in Table 3, the frame pair (Creating, Intentionally create) obtained a
significant relatedness score of 0.903 according to our frame embeddings (C). More importantly, our
frame embeddings provided overall semantic relatedness results that are closer to our judgement, as we
discussed previously in this section. Such encouraging results indicate that using a training corpus that
is specific to the RE context provides improved results.

Table 3: Semantic relatedness scores (computed using cosine similarity) for each frame pair according
to our proposed frame embeddings (C) and the two other frame emebeddings (A) and (B). Underlined
values pertain to the highest score (above the minimum threshold) for each semantically related frame
pair.

Compared Frames Pairs Human-judgments:
Semantically related?

General FrameNet
Corpus Frame (A)

FN-RE Corpus Frame
Embedding version
1.0 (B)

FN-RE Corpus Frame
Embedding version
2.0 (C)

(Sending, Creating) Yes 0.2642 0.3722 0.5795

(Sending, Intentionally create) Yes 0.2320 0.4175 0.5383

(Sending, Receiving) Yes 0.2605 0.6466 0.5356

(Sending, Recording) No 0.2356 0.5587 0.4538

(Creating, Intentionally create) Yes 0.8318 0.4338 0.9034

(Creating, Receiving) No 0.3433 0.2677 0.4697

(Creating, Recording) No 0.3084 0.2508 0.4573

(Intentionally create, Receiving) No 0.3008 0.3496 0.3703

(Intentionally create, Recording) Yes 0.3620 0.2867 0.3778

(Receiving, Recording) Yes 0.2722 0.2875 0.5081

As shown in previous work, semantic frames are a promising means for capturing the meaning of
software requirements ,e.g., Alhoshan et al. (2018c). Our encouraging results demonstrate that with care-
ful selection of a similarity metric (for measuring semantic relatedness) and a suitable training data set
representing software requirements, our proposed semantic resource (i.e., the frame embeddings) com-
bines the strengths of semantic frames and embedding-based representations– which can be integrated
with RE tools to support the task of software requirements analysis and traceability.

5 Conclusion

We presented a novel language resource to aid in finding semantic relations between software require-
ments, in support of RE tasks. The proposed resource is based on the development of an embedding-
based representation of semantic frames in FrameNet (i.e., frame embeddings), trained on a large corpus
of user requirements, consisting of more than three million mobile application reviews. In our imme-
diate future work, we shall integrate this resource with RE methods for analysing and tracing seman-
tic relatedness of software requirements. This in return, will aid in organising and grouping related
system features described in requirements documents.The frame embeddings are publicly available at
https://doi.org/10.5281/zenodo.2605273.
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Abstract

This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques.
In contrast to previous work which has primarily been focused on subword units for machine transla-
tion, we are interested in the general properties of such segments above the word level. We call these
segments r-grams, and discuss their properties and the effect they have on the token frequency distri-
bution. The proposed approach is evaluated by demonstrating its viability in embedding techniques,
both in monolingual and multilingual test settings. We also provide a number of qualitative exam-
ples of the proposed methodology, demonstrating its viability as a language-invariant segmentation
procedure.

1 Introduction

Natural Language Processing (NLP) requires data to be segmented into units. These units are normally
called words, which in itself is a somewhat vague and controversial concept (Haspelmath, 2011) that
is often operationalized as meaning something like “white-space (and punctuation) delimited string of
characters”. Of course, some languages do not use white-space delimiters, such as Chinese and Thai,
which have context-dependent notions of what constitute words without special symbols dedicated to
segmentation. As an example, the sequence 我喜欢新西兰花 can be segmented (correctly) in two
different ways (Badino, 2004):

我/喜欢/新/西兰花
I like fresh broccoli
我/喜欢/新西兰/花

I like New Zealand flowers

Even for white-space segmenting languages, it is seldom as simple as merely using white-space
delimited strings of characters as atomic units. As one example, morphologically sparse languages such
as English rely to a large extent on word order to encode grammar, which means that such languages
often form lexical multi-word units, which by all accounts function as atomic units on the same level
as white-space delimited words. As an example, “white house” and “rock and roll” are both distinct
semantic concepts that it would be beneficial to include as atomic units in an NLP application.

Of course, atomic units of language can also exist below the level of white-space delimited strings of
characters. In linguistics, morphemes are defined as the atomic units of language. For synthetic languages
such as Turkish, Finnish, or Greenlandic, where grammatical relations are encoded by morphology rather
than word order, there can be a possibly large number of morphemes within one single white-space de-
limited string of characters. The canonical example in this case tends to be Western Greenlandic, which
is a polysynthetic language that produces notoriously long white-space delimited string of characters.
As an example, the string “tusaanngitsuusaartuaannarsinnaanngivipputit” consists of 9 different mor-
phemes (“hear”|neg.|intrans.participle|“pretend”|“all the time”|“can”|neg.|“really”|2nd.sng.indicat.) and

†These authors contributed equally to the work.
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means “you simply cannot pretend not to be hearing all the time”. One white-space delimited string of
characters in Western Greenlandic, eleven in English.

Similarly, compounding languages such as Swedish can form productive compounds, where a poten-
tially large number of words (and morphemes) are compounded into one single white-space delimited
string of characters. As an example, the string “forskningsinformationsförsörjningssystemet” is a com-
pound of the words for research information supply system.

The arbitrariness of segmenting units based on white space becomes especially clear when consid-
ering translations between languages. As one example, the concept of a “knife sharpener” is realized
as two white-space delimited strings of characters in English, one in Swedish (“knivslip”), and three in
Spanish (“afilador de cuchillo”).

Segmentation is thus as non-trivial as it is foundational for NLP. Consequently, there exists a large
body of work on segmentation algorithms (often driven by the need for segmenting languages other
than English). Examples include Webster and Kit (1992); Chen and Liu (1992); Saffran et al. (1996);
Beeferman et al. (1999); Kiss and Strunk (2006); Huang et al. (2007). Related areas (from the perspec-
tive of segmentation) such as multiword expressions and morphological normalization also have a rich
literature of prior art. For multiword expressions, see e.g. Sag et al. (2002); Baldwin and Kim (2010);
Constant et al. (2017), and for morphological normalization see e.g. Porter (1980); Koskenniemi (1996);
Yamashita and Matsumoto (2000).

In recent years, interest have begun to shift towards the use of character-level techniques, which by-
pass the problem of segmentation by simply operating on the raw character sequence. Much of this work
is driven by research on deep learning, and techniques inspired by neural language models (Sutskever
et al., 2011; Kim et al., 2016). In theory, such models can learn task-specific segmentations of the input
that are optimal for solving whatever task the network is trained to perform.

The approach presented in this paper is inspired by character-level modeling, but in contrast to such
techniques we seek a task-independent and objective segmentation of text. Our work is motivated by
the idea that if there exists an optimal and language-invariant segmentation of text, it should be based on
statistical properties of language rather than heuristics. We argue that such a segmentation exists, and
introduce a novel type of data-driven segmented unit: the recursion-gram or r-gram in short. The name
is inspired by the n-gram introduced by Shannon (1948), who used it to explore language modeling in the
context of information entropy, which was also introduced in the same paper. Our approach is inspired
by information theoretic concerns.

In the applications where r-grams can be used, it replaces segmentation but not necessarily normal-
ization. R-grams capture a range of semantic units from morphemes (or more generally, parts of words)
to words to compounds to multi-word units, all based on simple frequency statistics. In this paper, we
demonstrate an algorithm for computing one type of r-grams, and discuss novel observations and charac-
teristics of the statistical distribution of natural language. We then demonstrate how r-grams can be used
as basic building blocks in embeddings, and evaluate the resulting embeddings using both monolingual
and multilingual test sets. We conclude the paper with some directions for future research.

2 R-grams and compression algorithms

Given a sequence over a finite alphabet, an r-gram is a variable length subsequence, derived by a set of
well defined statistical rules, segmenting the original sequence into a set of subsequences.

2.1 A first class of r-grams

The fundamental idea of r-grams is deceptively simple. Given a sequence of discrete symbols sampled
from a finite alphabet, find the most common pair of adjacent symbols and replace all instances of the
pair with instances of a new single symbol, extending the alphabet by one, repeat until no more pairs can
be found or some other criterion is fulfilled.
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Iteration Sequence Alphabet Replacement
0 s =< β, β, β, α, β, β, β, α, β, β, β > A = α, β < β, β >→ γ
1 s =< γ, β, α, γ, β, α, γ, β > A = α, β, γ < γ, β >→ δ
2 s =< δ, α, δ, α, δ > A = α, β, γ, δ

Table 1: Procedure to derive r-grams.

Table 1 illustrates an example where we have a sequence S and an alphabet A. We show the first two
iterations of the algorithm, at each step identifying the most common pair in the sequence and replacing
it by a new symbol. Two new symbols γ and δ are introduced. We observe a hierarchical structure where
δ contains γ which in turn contains symbols from the original alphabet. δ can thus be expanded into three
elements from the original alphabet δ = (β, β, β). The observant reader might notice that there are some
cases that require additional definitions. If two pairs overlap, as in the original sequence in the example,
a rule for which pair to replace first has to be defined. In this example the rule was that the first from left
to right observed pair is replaced. Another case is when there are more than one alternative for the most
common pair, when the pairs has an equal amount of observations, then a rule on which pair to prioritize
has to be defined. In the example above two r-grams were created: γ =< β, β > and δ =< β, β, β >.

If n iterations of this procedure are performed on a sequence, the sequence is compressed, but the
alphabet is expanded. Given that the compression of the sequence is larger than the expansion of the
alphabet, we end up with a more compact representation of the underlying sequence. This exact proce-
dure turns out to be an excellent compression algorithm named re-pair in the family of dictionary-based
compression (Larsson and Moffat, 2000). A remarkable property of this procedure is that, if the se-
quence is generated by an ergodic process, the segmented sequence becomes asymptotically Markov as
the procedure is continually applied (Benedetto et al., 2006).

A close relative to the re-pair algorithm is Byte Pair Encoding (BPE) (Gage, 1994), first used in
the context of segmentation by Schuster and Nakajima (2012) and recently popularized in within deep
learning by Sennrich et al. (2016). The segmentation method has primarily been used for finding subword
units for later processing in recurrent neural networks, e.g. Wu et al. (2016) Sennrich et al. (2016).

Published libraries for Byte Pair Encoding as segmentation exists in the form of, e.g. SentencePiece
Kudo and Richardson (2018), and the resulting segments are commonly referred to as either “senten-
cepieces” or “wordpieces”, the latter stressing their use as subword units. Functionally, the difference
between such segmentation procedures and the r-gram algorithm is small, if at all existent. Crucially,
however, we are interested in the properties of the segmented units (which we call r-grams) and the
grammar they form, rather than their use as a preprocessing step.

2.2 Implementation details

The naive r-gram algorithm runs in quadratic time relative to the sequence length: find the most common
pair in linear time, merge it, and repeat the process. This is prohibitively expensive. Thankfully there
exists algorithms (namely re-pair and BPE) that recalculates the pair-frequencies in an efficient way,
resulting in linear time algorithms. We have implemented a slightly modified version of the re-pair
algorithm laid out in Larsson and Moffat (2000) that allows for other stopping criteria and accounts for
document and sentence boundaries:
Stopping criterion. We define two stopping criteria for the merges of the r-grams, which we simply
call minimum frequency and maximum vocabulary. The minimum frequency criterion states that a new
r-gram can be merged if its frequency exceeds the minimum frequency threshold, and the maximum
vocabulary criterion simple states that new r-grams can be merged as long as the size of the vocabulary
does not exceed the maximum vocabulary threshold.
Sequences boundaries. In natural language there are segmentations that signal a new local context such
as sentence, paragraph or document boundaries. We generalize our statistics and alphabet collection over
these boundaries but we do not create r-grams that overlap them.
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Figure 1: Ranked word and r-gram frequency distribution for the first hundred items in a subset of
English Wikipedia.

The result of the re-pair compression algorithm on sequence S is (1) a mapping from r-grams to their
constituent parts (e.g. γ → 〈β, β〉 from example 1) and (2) a compressed sequence Sc of the original
sequence S, where Sc is a sequence of r-grams rather than symbols from the original alphabet. By
applying the mapping recursively down to the terminal symbols, the original sequence can be restored.
When using r-grams as a segmentation technique, the sequence Sc is taken to be a segmentation of S.

3 Frequency distribution of data

It is a well-known fact that the vocabulary of natural languages as segmented by traditional approaches
follow a Zipfian distribution (Zipf, 1932). It is also a well-known fact that the majority of the frequency
spectrum of traditionally segmented natural language is comprised of a small number of very high-
frequent items, which are normally referred to as stop words. These high-frequent items are normally
viewed as semantically vacuous, and are therefore generally not included in NLP applications. This prac-
tice has been around since the 1950s, when Hans Peter Luhn connected the “resolving power” of words
in language to their frequency distribution (Luhn, 1958). Current methods in NLP still use basically
the same type of algorithmic compensation for the power law distribution of word tokens in written text,
whether it is the use of inverse document frequency in document processing applications, or subsampling
(Mikolov et al., 2013), mutual information (Church and Hanks, 1990), or incremental frequency weight-
ing (Sahlgren et al., 2016) in word embeddings. There is even debate whether the Zipfian distribution is
an inherent language-specific feature or an emergent phenomenon sprung from the process of drawing
and counting various-length character sequences from a finite alphabet (Piantadosi, 2014).

From an information theoretic and information entropy perspective, a uniform distribution carries
the most surprise (Shannon, 1948) and thus also the most information. The Zipfian distribution belongs
to the power law family and is highly non-uniform. Keeping both the practice of throwing away stop
words and the information entropy perspective in mind, there is reason to believe that there exists more
informative segmentations than word level segmentation for natural language.

Figure 1 shows the ranked frequency distributions for the 100 most high-frequent words and r-grams
in a subset of English Wikipedia. The r-grams are computed over an increasing number of iterations
(the r parameter), and the figure clearly shows how the frequency distribution is flattened as the number
of iterations of the r-gram algorithm is increased. This is a natural consequence of the algorithm, since
it finds common elements and reforges some of them into new elements, reducing the frequency of
common elements. In of itself this observation does not hold much value, but inspecting the r-grams
created it seems that they capture semantic regularities such as morphemes, words and multi word units.
Table 2 demonstrates the effect of applying the algorithm to a 735MB sample text drawn from English
Wikipedia. Note that after 100 iterations, the algorithm has formed the copula (“is”) and a determiner
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Merges Text
10 r a n n e b er g er _ ( b o r n _ 1 9 4 9 ) _ i s _a _ f o r m er _ u
100 r an n e b er g er_ ( b or n _ 19 4 9 ) _ is _a_ for m er_ un it ed_
1000 ran ne ber g er_ ( born _ 194 9 ) _is_a_ form er_ united_stat es _am
20000 ran ne berg er_( born_ 1949 )_is_a_former_ united_states _ambassador
100000 ran ne berg er_(born_ 1949 )_is_a_former_ united_states _ambassador_t
400000 ran neberg er_(born_ 1949 )_is_a_former_ united_states_ambassador_to_

Table 2: Textual example of r-grams being merged from English Wikipedia

(“a”). After 1000 iterations, it has collapsed these into a common unit (“is a”) as well as the word “born”
and the beginning of the collocation “united states”. After 400 000 iterations, the algorithm has learned
several long sequences, such as “is a former” and “united states ambassador to”.

Note that this has been learned from the statistics of the sequence alone, with all characters being
treated as equal with no specific rules for whitespace or other special characters, with the exception for
sequence separators such as newline. The important thing to note is that the r-gram algorithm learns
units that would normally be discarded in NLP applications, since they contain (or, in the extreme case,
consist entirely of) stop words. As an example, the phrase “has yet to be” constitutes a semantically
useful unit that would be completely discarded when using standard stop word filtering.

4 Experiments

4.1 R-grams in word embeddings

The domain of NLP that focuses specifically on the semantics of units of language is called distribu-
tional semantics, where semantics is modeled using distributional vectors or word embeddings. Word
embeddings encode semantic similarity by minimizing distance between vectors in a latent space, which
is defined by co-occurrence information. Many methods for creating word embeddings have been pro-
posed (Turney and Pantel, 2010). Segmentation, as a preprocessing step, has a significant impact on
the quality of word embeddings. The standard procedure is to simply rely on the white-space heuristic,
and to remove all punctuation. This invariably leads to conflation of collocations in the distributional
representations, and to problems with out of vocabulary items.

To counter such problems, one may use preprocessing techniques to detect significant multiword
expressions (Mikolov et al., 2013) and morphological normalization (Bullinaria and Levy, 2012), or one
may try to incorporate string similarity into the distributional representation (Bojanowski et al., 2017),
or detect collocations directly from the vector properties (Sahlgren et al., 2016).

A radically different approach, suggested by Oshikiri (2017), is to produce embeddings for a subset
of all possible character n-grams. This alleviates the need for preprocessing completely, but requires
delimiting the subset with respect to the size of the n-grams, and their frequency of occurrence. Schütze
(2017) also operates of character n-grams, but uses a random segmentation of the data. R-grams is similar
in spirit to these previous approaches, but in contrast to the parameters required by Oshikiri (2017),
r-grams put no restrictions on the size of the units, or on their frequencies (except for the minimum
frequency stopping criterion).

In order to demonstrate the applicability of r-grams for building word embeddings, we use a 735MB1

subset of English Wikipedia for this experiment. The only preprocessing used before creating r-grams
is lowercasing, for embeddings we also substitute numbers 0 − 9 with N and remove leading and trail-
ing whitespaces from the r-grams. When building embeddings, we use skipgram with subword units
(Bojanowski et al., 2017), a window size of 2, and evaluate the models on standard single word En-
glish embedding benchmarks2. It is worth noting that the skipgram model uses subsampling of common

1The quality of the r-grams seem to correlate strongly to the amount of data they are derived from, more data equals better
semantic representations. Our selected data size was dependent on the available RAM on the machine used for experiments.

2https://github.com/kudkudak/word-embeddings-benchmarks
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Test r-grams words
AP 0.58 0.56
BLESS 0.59 0.75
Battig 0.36 0.40
ESSLI_1a 0.73 0.75
ESSLI_2b 0.77 0.80
ESSLI_2c 0.62 0.71
MEN 0.68 0.73
MTurk 0.64 0.67
RG65 0.66 0.73

Test r-grams words
RW 0.31 0.39
SimLex999 0.36 0.39
WS353 0.60 0.67
WS353R 0.53 0.61
WS353S 0.68 0.70
Google 0.32 0.33
MSR 0.39 0.39
SemEval2012_2 0.18 0.21

Table 3: Comparison of word embeddings benchmarks using r-grams and words.

# ’back to the future’ Cos
1. ’who framed roger rabbit’ 0.78
2. ’dr. no’ 0.77
3. ’show boat’ 0.76
4. ’nightmare on elm street’ 0.75
5. ’apocalypse now’ 0.75

# ’counterintelligence’ Cos
1. ’counterterrorism’ 0.56
2. ’intelligence community’ 0.55
3. ’counter-terrorism’ 0.54
4. ’intelligence’ 0.52
5. ’advanced research project’ 0.51

# ’has yet to be’ Cos
1. ’has not been’ 0.69
2. ’has not yet been’ 0.68
3. ’was never’ 0.59
4. ’had not been’ 0.59
5. ’has never been’ 0.59

# ’psychology’ Cos
1. ’sociology’ 0.69
2. ’social psychology’ 0.66
3. ’anthropology’ 0.65
4. ’political theory’ 0.64
5. ’political science’ 0.62

Table 4: Examples of the 5 nearest neighbors to four different targets in the r-gram embedding.

words, which is an optimization introduced to compensate for the power law distribution in common
vocabularies. Also, the skipgram model controls for collocations by dampening the impact of frequent
collocations. This implies that the skipgram model might not be the optimal choice for creating em-
beddings from data driven segmentation. It was, however, the best performing model of those we tried
during initial testing.

Table 3 shows the results of the embeddings produced using r-gram segmented data in comparison
with whitespace segmented data. Note that the benchmark results in general are almost as good for the
r-gram embedding as they are for the word embedding. In particular the analogy tests (Google and MSR)
show no, or negligible, difference in the results between the r-gram embedding and the word embedding.
This is remarkable, since the r-grams have been learned directly from the character sequence, with no
preconceptions of what constitutes viable semantic units. Taken by themselves, the scores for the r-gram
embedding are competitive, and demonstrate the viability of the approach.

The benchmarks used in Table 3 only include single words. However, the r-grams range from parts
of words to multiword expressions, strictly derived from the statistical distribution of the elements in the
original sequence. In order to illustrate the qualitative properties of the r-gram embedding, Table 4 show
examples of the 10 nearest neighbors to a selected set of r-grams. Note that the r-grams may include
punctuation as in “dr. no” and “a hard day’s”, and that the embedding includes phrases such as “has
yet to be” (and all its neighbors) that would normally have been filtered out by stop word removal. The
qualitative examples use the skipgram model without subword information.

4.2 R-grams as a language agnostic segmentation technique

To test whether or not r-gram segmentation is a viable language-agnostic segmentation technique we
evaluate r-gram embeddings on the analogy test sets in (Grave et al., 2018). These consist of (unbalanced)
analogy tests for Czech, German, English, Spanish, Finnish, French, Hindi, Italian, Polish, Portuguese,
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and Chinese. For each language, we use a 750MB sample of Wikipedia, r-gram segmented with a stop-
ping criteria of either minimum frequency of 4 or maximum vocabulary of 800000. As an additional pre-
processing step we remove whitespace characters from the ends of r-grams: ’example_’ → ’example’3

The resulting, slightly modified, r-gram segmentation is then used to train r-gram embeddings using the
skipgram model with subword units, as described in the previous subsection.

Despite the large variation across languages, the results in Table 5 demonstrate that r-gram seg-
mentation does indeed constitute a viable language-agnostic segmentation technique, albeit with poorer
performance in the analogy tasks compared to regular segmentation.

CS DE ES FI FR HI IT PL PT ZH Average

Score
r-gram 0.60 0.25 0.35 0.09 0.15 0.10 0.36 0.24 0.13 0.30 0.26
baseline 0.63 0.61 0.57 0.36 0.64 0.11 0.56 0.53 0.54 0.60 0.51

Coverage
r-gram 0.66 0.54 0.64 0.85 0.67 0.40 0.52 0.38 0.61 0.96 0.62
baseline 0.77 0.79 0.94 0.95 0.88 0.71 0.81 0.70 0.79 1.00 0.83

Table 5: R-gram and baseline performance and coverage on the word analogy tasks. The baseline is
taken from Grave et al. (2018)

Part of the explanation for the relatively poor performance both here and the tests in the previous
section is that the r-gram segmentation technique construct many near synonymous tokens. Table 6
shows an example of this for the analogy query “Great Britain is to the United States as Pound is to ?
“ in Finnish. The correct term according to the evaluation data set is ‘dollari‘, which is not in the top
ten candidates. However, ‘yhdysvaltain dollaria‘ (U.S. Dollar), is the second candidate. Dually, the top
candidate is ’punt’, which is a subword unit of ’punta’, ’puntaa’, ’puntin’ et.c. We believe both of these
types of near synonymous words, and their relative abundance in the r-gram vocabulary, has a detrimental
effect on the word-based evaluation benchmarks.

Going into a more qualitative view of what is represented by the r-gram embeddings in different
languages, Table 7 shows the nearest neighbors to two different acronyms (“vw” and “kgb”) in 6 different
languages. The column marked # indicates rank of the neighbor (i.e. 1 means the closest neighbor, and 7
means the seventh neighbor). The examples in Table 7 demonstrate not only that the r-gram segmentation
produces useful semantic units in all languages used in these experiments, but also that they constitute
viable data for building embeddings; associated r-grams to “vw” are terms such as “volkswagen” and
other automobile-related multiword units. The same applies to the neighbors of “kgb”; neighbors are
terms related to the secret police and security services. Again, note that all these terms were found by
the unsupervised r-gram process.

The examples in Table 7 where chosen with the intent to highlight how short r-grams can be viewed
as semantically similar neighbors to longer r-grams. Next we turn to a demonstration of how the r-gram
embeddings can be mapped across languages using a recently proposed unsupervised projection model
(MUSE) (Lample et al., 2018). Their method leverages adversarial training to learn a linear mapping
from a source to a target space, aligning embeddings trained on separate data allowing us to translate by
finding similar vectors between the embeddings. Table 8 demonstrates examples of translation between
German and Spanish. In the first case we see how a single word in German (“kürzer”, eng. “shorter”)
is mapped to relevant multiword units in Spanish. Note that the only difference between the first and
second Spanish neighbor is the comma at the end. In the second example we see how a multiword unit
in Spanish (“las ideas”, eng. “the ideas”) is mapped to relevant single word units in German.

5 Conclusions

The main contribution of this paper is its novel perspective on segmentation as a statistical process
operating on the raw character sequence. We believe that the application of this general process is not
limited to language, but that it is generally applicable to compressible sequences of categorical data in

3This step — while not strictly necessary — was performed to better match the terms in the analogy tests.
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# ’punta’ − ’englanti’ + ’yhdysvallat’ Cos Translation
1. ’punt’ 0.53 ’Pound’
2. ’yhdysvaltain dollaria’ 0.50 ’U.S. Dollar’
3. ’kun yhdysvallat’ 0.49 ’When United States’
4. ’yhdysvaltain dollari’ 0.48 ’U.S. Dollar’
5. ’yhdysvaltain dollarin’ 0.47 ’U.S. Dollar’

Table 6: Table showing analogy query candidates for finnish. The correct term according to the evalua-
tion data set is ’dollari’ which is only found as part of larger r-grams in the returned candidates.

Lang. # ’vw’
Spanish 1. ’volkswagen passat’
German 1. ’volkswagen’
Czech 1. ’koncernu volkswagen’
Finnish 1. ’volkswagen golf’
French 7. ’volkswagen’
Polish 1. ’volkswagen’

Lang. # ’kgb’
Spanish 4. ’policía secreta’
German 1. ’geheimdienstes’
Czech 2. ’státní bezpečnosti’
Finnish 8. ’yhdysvaltain

keskustiedustelupalvelu’
French 8. ’service de renseignement’
Polish 5. ’głównego zarządu

bezpieczeństwa państwowego’

Table 7: Examples of nearest neighbors in the r-gram embeddings in different languages to two different
acronyms.

order to find units and hierarchies. The fact that an r-gram is generated from a global context compression
algorithm, and is also interpretable, is an interesting observation from the perspective of viewing AI
as a compression problem (Mahoney, 1999; Legg and Hutter, 2007), which also suggests interesting
directions for future work.

The substitution of the most common pair of types with a new type could be thought of as forming
rules in a grammar. A lot of work has been done on inferring the smallest possible grammar (which turns
out to be an NP complete problem (Charikar et al., 2005)), as well as efficient grammar construction from
local contexts (Nevill-Manning and Witten, 1997). The r-gram grammar (or graph) constitutes a very
different type of grammar that contains both context, frequent collocations and natural subword units. It
would be interesting to further investigate potential applications of this grammar; one interesting question
is how the grammars differ between languages and in what ways they can be exploited in translation tasks,
another very interesting possibility is to build embeddings directly on the grammar, since it records all
necessary contextual information. Preliminary work indicates that generating embeddings directly from
the r-gram grammar is a promising path going forward.

German to Spanish
’kürzer’ (’shorter’)
’más corto’ (’shorter’)
’más corto,’ (’shorter’)
’mucho más larg’ (’much more larg(e)’)
’muy corto’ (’very short’)
’más cortos’ (’shorter’)

Spanish to German
’las ideas’ (’the ideas’)
’überzeugungen’ (’convictions’)
’tendenzen’ (’trends’)
’gedankengänge’ (’thought processes’)
’ideologien’ (’ideologies’)
’moralvorstellungen’ (’moral values’)

Table 8: Examples of crosslingual nearest neighbors using r-gram embeddings mapped with the MUSE
algorithm. Words in parenthesis are English translation for the benefit of the reader.

59



References

Leonardo Badino. 2004. Chinese text word-segmentation considering semantic links among sentences.
In Proceedings of Interspeech.

Timothy Baldwin and Su Nam Kim. 2010. Multiword expressions. In Handbook of Natural Language
Processing, pages 267–292. Chapman and Hall/CRC.

Doug Beeferman, Adam Berger, and John Lafferty. 1999. Statistical models for text segmentation.
Machine Learning, 34(1):177–210.

Dario Benedetto, Emanuele Caglioti, and Davide Gabrielli. 2006. Non-sequential recursive pair
substitution: some rigorous results. Journal of Statistical Mechanics: Theory and Experiment,
2006(09):P09011.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

John Bullinaria and Joseph P. Levy. 2012. Extracting semantic representations from word co-occurrence
statistics: stop-lists, stemming, and svd. Behavior Research Methods, 44:890–907.

Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi
Shelat. 2005. The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–
2576.

Keh-Jiann Chen and Shing-Huan Liu. 1992. Word identification for mandarin chinese sentences. In
Proceedings of the COLING, pages 101–107.

Kenneth Ward Church and Patrick Hanks. 1990. Word association norms, mutual information, and
lexicography. Computational Linguistics, 16(1):22–29.
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