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Abstract

This paper describes a working system which performs natural language inference using polarity-
marked parse trees. The system handles all of the instances of monotonicity inference in the FraCaS
data set, and can be easily extended to compute inferences in other sections of FraCaS. We achieve
perfect precision and an accuracy comparable to previous systems on the first section of FraCaS.
Except for the initial parse, it is entirely deterministic. It handles multi-premise arguments. The kind
of inference performed is essentially “logical”, but it goes beyond what is representable in first-order
logic. In any case, the system works on surface forms and CCG parse trees rather than on logical
representations of any kind.

1 Introduction

Computational systems which attempt to automate natural language inference (NLI) generally fall into
one of the three categories: 1) systems which translate input into first-order logic (FOL) or higher-order
logic; 2) systems based on distributional semantics, using word embeddings and then neural networks for
learning inference (e.g. Bowman et al., 2015; Cases and Karttunen, 2017); and 3) systems using natural
logic.

This paper is a contribution to the third category, as are Abzianidze (2015, 2017); MacCartney and
Manning (2009); Angeli and Manning (2014); Angeli et al. (2016); Hu et al. (2018); Mineshima et al.
(2015). Specifically, we continue work on order-based approaches to natural language inference going
back to Fyodorov et al. (2003) and Zamansky et al. (2006). We make use of the polarity-marking tool due
to Hu and Moss (2018). When given as input a derivation tree in CCG, this tool outputs the polarized
yield of the tree. For example, when one inputs Most Europeans live outside of Asia, the output will
be Most↑ Europeans= live↑ outside= of= Asia↓. Indeed, the tool polarizes every constituent. These
arrows indicate whether inferences can be made by replacement “upward”, replacement “downward”, or
in neither direction =. Iterating this idea of replacement does give a “fair amount” of inference, but to
cope with NLI datasets we augment replacement with rules of natural logic (van Benthem, 1986), and
with a mechanism for handling contradictions.

Our system is aimed at inference problems such as those in the FraCaS data set (Cooper et al., 1996),
and we compare our efforts with the results in other papers. In addition, the ideas in our system can be
adapted by others as part of their NLI toolkits.

2 Inference Algorithm

Input A set P of premises, another set K called the knowledge base and a sentence H , the hypothesis.

Output whether the relation between P ∪ K and H is entailment, contradiction, or unknown. The
unknown relation means that in general, P ∪K neither entails nor contradicts H .



Two auxilliary sets K and S: a knowledge base K and a set S of entailed sentences. K consists of a
relation ≤ on constituents (that is, a set of ordered pairs of words or multi-word constituents):

cat ≤ animal kiss ≤ touch
kissed some cat ≤ touched some animal

These come from the premise set P, or from a fixed background knowledge base K, or from a lexical
source such as WordNet (Miller, 1995). K also keeps track of all the nouns, verbs, adjectives, adverbs,
relative clauses that appear in either P or H . The second auxilliary set is a sentence base, S. This set
stores all the inferences and contradictions our system derives, starting from P. Inferences are stored in
S.inferences whereas contradictions are stored in S.contradictions. (Optionally, it might include a subset
of K which is relevant to P ∪ {H}).

Algorithm The key intuition of our algorithm is that once we have a correctly polarized CCG tree, e.g.,
all↑ animal↓ sleep↑, we can replace a constituent with some word or phrase from K and get an inference:
all↑ cat↓ sleep↑. This replacement is extremely simple and effective. Along the same lines, we can
replace all with no to obtain a contradiction: no↑ animal↓ sleep↓. (This is not strictly a contradiction:
in a logically-possible model, there might not be any animals. In that model, both all animals sleep and
no animals sleep. However, the spirit of work in the RTE area is that we should use the more natural
semantics of all, the semantics that carries an existential presupposition. And from this in the premise,
we indeed have a contradiction.) Since we ignore most of the morphology, the words are all represented
by their lemmas. We also manipulate the sentence structures so that there isn’t too much variation. For
example, there-be structures such as “there are NP who VP” are changed to “some NP VP”. Major steps
of our algorithm are listed below. (A more complete pseudocode is presented in the Appendix.)

1. Get the polarities of all sentences in P, using the system in Hu and Moss (2018).

2. For each P ∈ P: (1) Add P to S.inferences; (2) If P is of the form “every X is a N”, then add X
≤ N to K; (3) If P is of the form “every X VP”, then add be X ≤ VP to K; (4) If P is of the form
“Npr is a N”, then add every N ≤ Npr and Npr ≤ some N to K.

3. Next, make the following additions to K:

• For each noun n and each subsective adjective a, each prepositional phrase p, and each rel-
ative clause r in P ∪ {H}: add to K the following inequalities: a n ≤ n, n p ≤ n, and
n r ≤ n. For instance, small dog ≤ dog, dog from France ≤ dog, dog that barks ≤ dog.

• For each verb v, and each adverb a to K the inequality v a ≤ v.

4. Loop over each premise P and do two types of replacement; one derives inferences while the
other produces contradictions. See Figure 1 for a concrete example.

• replacement infer: 1) if a constituent is ↓, then replace it with something “smaller” in
K; 2) if a constituent is ↑, then replace it with something “bigger” in K. Finally, store the
new sentences in S.inferences.

• replacement contra: 1) replace “no” with “some” and vice versa if the quantifier is
not embedded in a relative clause1. 2) negate the sentence by e.g., adding “do not” before the
main verb. Finally, store the new sentences in S.contradictions.

Now the inference problem becomes a typical AI search problem. That is, we are searching for
an inference that matches H string for string. If such an inference can be found before reaching a
stopping criterion, then we return entail. If not, we turn to the generated contradictions to see
if any of them matches H; if so, we return contradict, otherwise return unknown.

1“Books that no one reads are on the shelf” does not contradict “Books that some one reads are on the shelf”.



P : every↑ animal↓ likes↑

some↑ young↑ semanticist↑

every cat likes
some young semanticist

every cat likes
some semanticist

every cat likes
some linguist

every animal likes
some semanticist

......

some animal likes
some young semanticist
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no animal likes
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Figure 1: Example search tree where P is every animal likes some young semanticist, with the H: every
cat likes some linguist. Only one replacement is allowed at each step. Sentences in rectangular are
the generated contradictions. In this case our system will return entail.

Note that theoretically we can perform replacement infer indefinitely, on the inferences
generated in the last step. On the contrary, replacement contra can only be applied once on
each inference, since the contradiction of a contradiction brings us back to the premise again.2

This search problem is implemented using depth-first search, w/ default depth = 2.

Inferences not handled by replacement As discussed in Hu et al. (2018), replacement can
handle/derive many rules of natural logic, but not all of them. To name just a few the rules below are not
covered by replacement:

Some y are x

Some x are y
SOME2

All (r all x) (r all y)
All y are x

ANTI
Det x y All x z

Det x (y ∧ z) DET

To deal with this, we first convert the premises to a sentence compatible to natural logic syntax, i.e.,
quantifier x y. Then we apply the above rules on these sentences to get inferences. Finally we convert
sentences in natural logic to sentence in natural language. This usually only involves minimal editing.
For example, every cat (animal ∧ meow) will be converted to “every cat is an animal who meows”. As
we will show later, DET is useful in solving many of the multi-premise problems in the first section of
FraCaS. It is also worth noting that the capacity of our system can be easily expanded by including more
rules from natural logic.

Initial knowledge base K includes the most basic (monotonicity) knowledge that can be utilized for
all problems:

• knowledge from WordNet (Miller, 1995). dog ≤ animal, dog | cat, etc. The first section of the
FraCaS dataset does not require world knowledge, so we didn’t include WordNet relations for now.
However, they can easily be added if need be.

• knowledge about quantifiers. Our system treats the following words/phrases as quantifiers:

– every = all = each ≤ most ≤ many ≤ a few = several ≤ some = a; the ≤ some = a
– at least/most n.

Because the parsers do not treat at least/most n as quantifiers as we hoped, we need a separate
work-around for them.

2For example, s1 = a man walks, s2 = no man walks, s3 = some man walks. We see that s2 contradicts s1 and that s3
contradicts s2, but s3 is the same as s1. This is also noted in Angeli et al. (2016).



system MM08 AM14 LS13 T14 D14 M15 A16 ours
multi-premise? N N Y Y Y Y Y Y
# problems 44 44 74 74 74 74 74 74
Acc. (%) 97.73 95 62 80 95 77 93 88

Truth / Pred E U C
Entail 29 7 0
Unknown 0 33 0
Contradict 0 2 3

Table 1: Left: Accuracy of our system and previous ones. Right: confusion matrix of our system.
Our system achieves 100% precision and comparable accuracy with others. MM08: MacCartney and
Manning (2008). AM14: Angeli and Manning (2014). LS13: Lewis and Steedman (2013). T14: Tian
et al. (2014). D14: Dong et al. (2014). M15: Mineshima et al. (2015). A16: Abzianidze (2016).

3 Experiments on section 1 of FraCaS

We run our algorithm on the FraCaS dataset for NLI. This paper reports only on the first section: gen-
eralized quantifiers. Extending to other sections of the FraCaS dataset, and to other datasets, is work
in progress. Results of our system are shown in Table 1. We have perfect precision and a comparable
accuracy with previous systems.

3.1 Choice of parsers and their errors

Parser performance is the biggest bottle-neck of the system. We have tested two commonly used CCG
parsers, C&C (Clark and Curran, 2007) and EasyCCG (Lewis and Steedman, 2014). C&C fails to
parse four sentences from Sec. 1 of FraCaS. EasyCCG can parse all of them but we still need to semi-
automatically modify the trees. Some of these are modifications that transform the tree into a semanti-
cally more meaningful form, while others are correcting parse errors. For example, not all quantifiers are
super-tagged consistently, e.g., most, few are sometimes not tagged as NP/N. There are parsing errors
involving multi-word expressions such as “a lot of”, “used to be”. We only correct systematic ones.

3.2 An example

The following example shows the actual process solving FraCas-026, which is a multiple-premise prob-
lem, and handled not only by replacement, but also with DET rule. Major steps are listed below:

1. Get polarities3 of all premises P, but not the hypothesis H:
P1: Most↑ Europeans= are↑ resident↑ in↑ Europe↑

P2: All↑ Europeans↓ are↑ people↑

P3: All↑ people↓ who↓ are↓ resident↓ in↓ Europe↓ can↑ travel↑ freely↑ within↑ Europe↓

H: Most Europeans can travel freely within Europe

2. Update knowledge base K with the information from P, e.g.:
Based on the form “every (or equivalent quantifiers, see above) X VP”, add X ≤ VP, which is:
people who are resident in Europe ≤ can travel freely within Europe
We can also get: be people who are resident in Europe ≤ can travel freely within Europe

3. Using the DET rule, the system generates a series of sentences which are also polarized, e.g.,
applying the DET rule to P1 and P2 we get:
Most↑ Europeans= are↑ people↑ who↑ are↑ resident↑ in↑ Europe↑

4. Then adds generated sentences into sentence base S, and start to do replacement on every
constituent of each sentence. Therefore, we obtain a series of inferences like the following:
Many European are people who are resident in Europe
Most European are people
Most European can travel freely within Europe
Several European are people who are resitdent in Europe

3The polarity marking in P3 of the second occurrence of Europe was corrected from our system’s output. The point is that
under the scope of a modal can, a prepositional phrase headed by in or within changes polarity.



5. At last, one of the sentences in the list of inferences above matches the given hypothesis H, which
means that solution to the original problem is entail.

4 Comparison with previous systems

We comment on our system and compare it to several systems mentioned in our Introduction (e.g. Mac-
Cartney and Manning, 2008; Angeli and Manning, 2014; Mineshima et al., 2015; Abzianidze, 2015).

Our algorithm is provably correct in the following sense. If one has a correctly-parsed set P =
P1, . . . , Pn of premises and uses our algorithm, and if the hypothesis H is proved from the premises in
our system, then H follows logically from P . So in this sense, our system will have no false positives,
i.e., no type I error. Now this requires words of clarification. First, frequently the parsed output does
not reflect the logical structure accurately, and in this case, the polarity-marking step of our algorithm
might well go wrong. Second, in the case of ambiguous logical words, it is also possible that errors in a
parse will lead to errors in our output. For example, the English word “any” means “all” in a downward-
entailing environment, but it means “some” in an upward-entailing environment. There are exceptions
to this.

MacCartney and Angeli’s systems, on the other hand, find downward-entailing environments by
pattern-matching using dependency trees, which makes the polarizing algorithm more error-prone. For
example, their system (part of Stanford CoreNLP v3.9.1) incorrectly polarizes the following sentences:
no↑ man↓ walks↑, Ed↑ refused↑ to↑ dance↑, John↑ loves↑ dancing↑ without↑ shoes↑, I↑ like↑ most↑ dogs↑,
whereas our system correctly polarizes all of them (walks, dance, shoes should all be ↓ and dogs =).
Another difference is that in our system, replacement can happen in any order, and the results are
the same, whereas in Angeli’s system only certain “mutating” orders lead to the correct inferences (see
Section 3.1 of Angeli et al. (2016)). A final point is that their systems only polarize at the word level, but
our system computes polarities also on the constituent level, which is important for replacement as
shown in the example above.

We used the tool in Hu and Moss (2018), but they did not provide a working system for NLI. Such
a system was described in Hu et al. (2018), but that paper was programmatic and did not have an im-
plementation, or test data. So it left open the issue of how much NLI can be done with mononotonicity
alone, and how much requires natural logic rules. We present initial attempts to address this problem.

The best-performing system in the logic-related area of NLI is the one described in Abzianidze (2014,
2015, 2017). That line of work uses tableau rules rather than deduction, as a more standard theorem-
prover from automated reasoning. Our system is arguably simpler than his: we use no lambda logical
forms, and we believe that the theoretical basis of our system is also simpler. When our system finds an
inference (or contradiction) the derivations in our system are not so far from a natural language proof of
the hypothesis (or its negation) from the premises. This would not be possible from a tableau proof.

5 Conclusion and future work

We have provided a generic algorithm for natural language inference based on polarized parses and
natural logic rules. The algorithm requires parsed output, but it does not require translation into a logical
form, or special alignment steps. It would be possible to extend our system in either or both directions.

For future work, we are currently tuning our system on other sections of the FraCaS dataset (espe-
cially Sections 5 and 6) and the larger SICK dataset (Marelli et al., 2014). Another line of work is to
incorporate into our system some “light” representation of the sentences, e.g. dependency parses, abstract
meaning representation, that allows for more flexible syntactic variation than the current string-for-string
match strategy.
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A Pseudocode of our system

Algorithm 1 Infer with Monotonicity
1: procedure MYPROCEDURE(premises, H)
2: build s and k:
3: s← SentenceBase() . initialize s
4: k ← KnowledgeBase() . initialize k
5: k.buildQuantifier() . add to k: all = every = each ≤ some = a
6: k.buildMorphTense() . add to k: man = men, have = has
7: for P in premises do
8: P.fixTree()
9: k.extractPattern(P ) . add to k: “every x is NP”→ x ≤ NP

10: k.updateWordLists(P ) . add to k: all nouns, adjs, rel clauses, etc. in P
11: s.addInference(P ) . add to s: P
12: end for
13: k.updateWordLists(H) . add to k: all nouns, adjs, rel clauses, etc. in H
14: s.addHypothesis(H) . add to s: H , “there be N who VP”→ “some N VP”
15: update k:
16: k.update() . adj + noun ≤ noun, noun + RC/PP ≤ noun, verb + PP ≤ verb
17: k.updateRules() . SOME, ANTI, DET rules
18: polarize premises:
19: for P in premises do
20: P.polarize()
21: end for
22: infer by replacement:
23: infer(s, k, depth) . depth = how many rounds of replacement; iterative deepening search
24: predict:
25: if H in s.inferences then return entail
26: else
27: if H in s.contradictions then return contradiction
28: else return unknown
29: end if
30: end if
31: end procedure
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