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Introduction

Welcome to the 13th edition of the International Conference on Computational Semantics (IWCS 2019) in
Gothenburg. The aim of IWCS is to bring together researchers interested in any aspects of the annotation,
representation and computation of meaning in natural language, whether this is from a lexical or structural
semantic perspective. It embraces both symbolic and machine learning approaches to computational
semantics, and everything in between. This is reflected in the themes of the sessions which take place
over full 3 days. The programme starts with formal and grammatical approaches to the representation and
computation of meaning, interaction of these approaches with distributional approaches, explore the issues
related to entailment, semantic relations and frames, and unsupervised learning of word embeddings and
semantic representations, including those that involve information from other modalities such as images.
Overall, the papers capture a good overview of different angles from which the computational approach
to natural language semantics can be studied.

The talks of our three keynote speakers also reflect these themes. The work of Mehrnoosh Sadrzadeh
focuses on combination categorial grammars with word- and sentence embeddings for disambiguation
of sentences with VP ellipsis. The work of Ellie Pavlick focuses on the evaluation of the state-of-the
art data-driven models of language for what they “understand” in terms of inference and what is their
internal structure. Finally, the work of Raffaella Bernardi focuses on conversational agents that learn
grounded language in visual information through interactions with other agents. We are delighted they
have accepted our invitation and we are looking forward to their talks. We include the abstract of their
talks in this volume.

In total, we accepted 25 long papers (51% of submissions), 10 short papers (44% of submissions) and 7
student papers (54% of submissions) following the recommendations of our peer reviewers. Each paper
was reviewed by three experts. We are extremely grateful to the Programme Committee members for
their detailed and helpful reviews. The long and student papers will be presented either as talks or posters,
while short papers will be presented as posters. Overall, there are 7 sessions of talks and 2 poster sessions
(introduced by short lighting talks) which we organised according to the progression of the themes over
3 days, starting each day with a keynote talk. The sessions are organised in a way to allow plenty of time
in between to allow participants to initiate discussions over a Swedish fika.

To encourage a broader participation of students we organised a student track where the papers have
undergone the same quality review as long papers but at the same time the reviewers were instructed to
provide comments that are beneficial to their authors to develop their work. To this end we also awarded
a Best Student Paper Award.

The conference is preceded by 5 workshops on semantic annotation, meaning relations, types and frames,
vector semantics and dialogue, and on interactions between natural language processing and theoretical
computer science. In addition to the workshops, this year there is also a shared task on semantic parsing.
The workshops and the shared task will take place over the two days preceding the conference.

There will be two social events. A reception which is sponsored by the City of Gothenburg will be opened
by the Lord Mayor of Gothenburg and will take place on the evening of the second day of the workshops
and before the main conference. A conference dinner will take place in Liseberg Amusement Park where
participants will also get a chance to try some of their attractions.

IWCS 2019 has received general financial support (covering over a half of the costs) from the Centre
for Linguistics Theory and Studies in Probability (CLASP) which in turn is financed by a grant from the
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Swedish Research Council (VR project 2014-39) and University of Gothenburg. CLASP also hosts the
event. We are also grateful to the Masters Programme in Language Technology (MLT) at the University
of Gothenburg, Talkamatic AB and the City of Gothenburg for their financial support.

We very much hope that you will have an enjoyable and inspiring time!

Simon Dobnik, Stergios Chatzikyriakidis, and Vera Demberg

Gothenburg & Saarbrücken

May 2019
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Invited Talks

Mehrnoosh Sadrzadeh: Ellipsis in Compositional Distributional Semantics

Ellipsis is a natural language phenomenon where part of a sentence is missing and its information must
be recovered from its surrounding context, as in “Cats chase dogs and so do foxes.”. Formal semantics
offers different methods for resolving ellipsis and recovering the missing information, but the problem
has not been considered for distributional semantics, where words have vector embeddings and combi-
nations thereof provide embeddings for sentences. In elliptical sentences these combinations go beyond
linear as copying of elided information is necessary. I will talk about recent results in our NAACL 2019
paper, joint with G. Wijnholds, where we develop different models for embedding VP-elliptical sentences
using modal sub-exponential categorial grammars. We extend existing verb disambiguation and sentence
similarity datasets to ones containing elliptical phrases and evaluate our models on these datasets for a
variety of linear and non-linear combinations. Our results show that indeed resolving ellipsis improves
the performance of vectors and tensors on these tasks and it also sheds some light on disambiguating their
sloppy and strict readings.

Ellie Pavlick: What Should Constitute Natural Language “understanding”?

Natural language processing has become indisputably good over the past few years. We can perform re-
trieval and question answering with purported super-human accuracy, and can generate full documents of
text that seem good enough to pass the Turing test. In light of these successes, it is tempting to attribute
the empirical performance to a deeper "understanding" of language that the models have acquired. Mea-
suring natural language "understanding", however, is itself an unsolved research problem. In this talk, I
will discuss recent work which attempts to illuminate what it is that state-of-the-art models of language
are capturing. I will describe approaches which evaluate the models’ inferential behaviour, as well as
approaches which rely on inspecting the models’ internal structure directly. I will conclude with results
on human’s linguistic inferences, which highlight the challenges involved with developing prescriptivist
language tasks for evaluating computational models.

Raffaella Bernardi: Beyond Task Success: A Closer Look at Jointly Learning to See, Ask, and
GuessWhat

The development of conversational agents that ground language into visual information is a challenging
problem that requires the integration of dialogue management skills with multimodal understanding. Re-
cently, visual dialogue settings have entered the scene of the Machine Learning and Computer Vision
communities thanks to the construction of visually grounded human-human dialogue datasets against
which Neural Network models (NNs) have been challenged. I will present our work on GuessWhat?! in
which two NN agents interact to each other so that one of the two (the Questioner), by asking questions
to the other (the Answerer), can guess which object the Answerer has in mind among all the entities in
a given image (GuessWhat?!). I will present our Questioner model: it encodes both visual and textual
inputs, produces a multimodal representation, generates natural language questions, understands the An-
swerers’ responses and guesses the object. I will compare our model’s dialogues with models that exploit
much more complex learning paradigms, like Reinforcement Learning, showing that more complex ma-
chine learning methods do not necessarily correspond to better dialogue quality or even better quantitative
performance. The talk is based on work available at https://vista-unitn-uva.github.io/.
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Projecting Temporal Properties, Events and Actions

Tim Fernando
Trinity College Dublin

Tim.Fernando@tcd.ie

Abstract

Temporal notions based on a finite setA of properties are represented in strings, on which projections
are defined that vary the granularity A. The structure of properties in A is elaborated to describe
statives, events and actions, subject to a distinction in meaning (advocated by Levin and Rappaport
Hovav) between what the lexicon prescribes and what a context of use supplies. The projections
proposed are deployed as labels for records and record types amenable to finite-state methods.

1 Introduction
Reflecting on years of work on discourse semantics, Hans Kamp writes

when we interpret a piece of discourse — or a single sentence in the context in which it is being used
— we build something like a model of the episode or situation described; and an important part of
that model are its event structure, and the time structure that can be derived from that event structure
by means of Russell’s construction (Kamp, 2013, page 13).

The event structure Kamp has in mind is “made up of those comparatively few events that figure in this
discourse” (page 9). Let us put aside for the moment how to extract from a discourse D the set ED of
events that figure in D, and observe that if the set ED is finite (as typically happens in practice), so is the
linear order returned by the Russell construction for time (details in section 2 below). This is in sharp
contrast to the continuum R, with which “real” time is commonly identified (Kamp and Reyle, 1993), or
to any unbounded linear order supporting the temporal interval structure defined in Allen and Ferguson
(1994), where a different perspective on events is adopted.

We take the position that events are primarily linguistic or cognitive in nature. That is, the world
does not really contain events. Rather, events are the way by which agents classify certain useful and
relevant patterns of change (Allen and Ferguson, 1994, page 533).

Allen and Ferguson specify temporal structure before introducing events (or, for that matter, properties
and actions), reversing the conceptual priority events enjoy over time in the Russell construction men-
tioned by Kamp. Without embracing this reversal, the present paper builds on elements of Allen and
Ferguson (1994) and other works to construct time from not only events, but also properties and actions.
The aim is to find a temporal ontology of finite strings that is not too big (which R or any infinite linear
order arguably is) and not too small (which the linear order from Russell’s construction can be, depend-
ing on the event structure it is fed as input). Insisting on temporal structure that is just right is reminiscent
of Goldilocks, and perhaps more germanely, the Goldilocks effect observed in Kidd et al. (2012) as the
tendency of human infants to look away from events that are overly simple or overly complex. Whether
or not any useful link can be forged between that work and the present paper, I am not able to say.
But I do claim that the notions of projections brought out below provide helpful handles on granularity,
especially when granularity is varied.

That granularity is given, in the simplest case, by a finite set A of properties, expressing in section
2 events, as conceived in the Russell construction. More sophisticated pictures of events are considered
and “relevant patterns of change” captured through an explicit account of action and incremental change
in section 3. Strings and languages are presented in section 4 as records and record types labeled with
projections, bringing out certain affinities with Type Theory with Records (Cooper and Ginzburg, 2015).
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2 Strings from properties and changes

Leibniz’s law, decreeing that any difference x 6= y be discernible via some property, can be expressed in
monadic second-order logic (MSO, e.g. Libkin (2010)) as the implication

x 6= y ⊃ (∃P )¬(P (x) ≡ P (y)) (LL)

with ¬(P (x) ≡ P (y)) asserting P separates x from y. A special case of inequality 6= is the successor
relation S that specifies a notion of step. We link that step to a set {Pa}a∈A of properties Pa named
with a finite set A (conflating the property Pa with its name a ∈ A when convenient), and adopt the
abbreviation x ≡A y for the conjunction expressing the inseparabilty in A of x and y

x ≡A y :=
∧

a∈A
(Pa(x) ≡ Pa(y)).

Two substitutions in (LL), S for 6=, and the negation of x ≡A y for its consequent, turn (LL) into

xSy ⊃ x 6≡A y (LLA)

(pronounced “S-steps require changeA”). If we represent x by its A-profile

A[x] := {a ∈ A | Pa(x)}

specifying the properties in A that hold of x, we can can study S-chains

x1Sx2 and x2Sx3 and · · · and xn−1Sxn

through strings A[x1]A[x2] · · ·A[xn] of subsets of A. In model-theoretic terms, this suggests construing
a string s = α1 · · ·αn of subsets αi of A as the model

Mod(s) := 〈[n], Sn, {[[Pa]]s}a∈A〉

with domain/universe
[n] := {1, . . . , n}

of string positions, interpreting S as the successor relation

Sn := {(i, i+ 1) | i ∈ [n− 1]}

+1 on [n], and Pa as the set
[[Pa]]α1···αn := {i ∈ [n] | a ∈ αi}

of positions in s where a occurs (for each a ∈ A). For example, the string a a, a′ a′ of length
5 (with string symbols drawn as boxes) corresponds to the model with universe [5] = {1, 2, 3, 4, 5},
interpreting Pa as {2, 3} and Pa′ as {3, 4}. (Note is the empty set ∅ qua string of length 1, not to be
confused with the null string of length 0 or the empty language.) The vocabulary of s, voc(s), is the
smallest set A′ such that s is a string of subsets of A′

voc(α1 · · ·αn) =
n⋃

i=1

αi

(making, for example, {a, a′} the vocabulary of a a, a′ a′ ).
Rather than fixingA once and for all, we letA vary, keeping it finite for bounded granularity (restrict-

ing our attention to finite strings of finite sets). If A = ∅, then x ≡A y, which is to say, the strings that
satisfy (LL∅) are exactly those of length 1 (or 0, if we allow a model with empty universe). Evidently, the
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space of models of (LLA) increases as we enlarge A. Given a string s of sets that may or not be subsets
of A, we define the A-reduct of s to be the string obtained by intersecting s componentwise with A

ρA(α1 · · ·αn) := (α1 ∩A) · · · (αn ∩A)

(Fernando, 2016). For instance, the {a}-reduct of the string a a, a′ a′ is

ρ{a}( a a, a′ a′ ) = a a .

Whereas a a, a′ a′ satisfies (LL{a,a′}), its {a}-reduct satisfies neither (LL{a,a′}) nor (LL{a}). The
problem is that a a stutters. In general, a stutter of a string α1 · · ·αn is a position i ∈ [n − 1]
such that αi = αi+1. a a has two stutters, 2 and 4. It is easy to see that a string s is stutterless iff
it satisfies (LLvoc(s)). The consequent x 6≡A y of (LLA) is equivalent to the disjunction

∨

a∈A
((¬Pa(x) ∧ Pa(y)) ∨ (Pa(x) ∧ ¬Pa(y))

where each a ∈ A can separate x from y in one of two ways, corresponding to a’s left and right borders,
l(a) and r(a), respectively. We introduce predicates Pl(a) saying: Pa is false but S-after true

Pl(a)(x) ≡ ¬Pa(x) ∧ (∃y)(xSy ∧ Pa(y)) (1)

and Pr(a) saying: Pa is true but not S-after

Pr(a)(x) ≡ Pa(x) ∧ ¬(∃y)(xSy ∧ Pa(y)). (2)

Then x 6≡A y is equivalent under xSy to
∨
a∈A(Pl(a)(x) ∨ Pr(a)(x)))

xSy ⊃ (x 6≡A y ≡
∨

a∈A
(Pl(a)(x) ∨ Pr(a)(x))).

Hence, (LLA) is equivalent to

(∃y)(xSy) ⊃
∨

a∈A
(Pl(a)(x) ∨ Pr(a)(x)) (3)

assuming (1), (2), and

xSy ∧ xSz ⊃ y = z. (4)

(4) expresses the determinism of S, which is built into strings. As for (1) and (2), let A• be the set of
borders in A

A• := {l(a) | a ∈ A} ∪ {r(a) | a ∈ A}
and define the border translation b(s) of a string α1 · · ·αn to be the string β1 · · ·βn of subsets of voc(s)•
specified by (1) and (2)

βi := {l(a) | a ∈ αi+1 − αi} ∪ {r(a) | a ∈ αi − αi+1} for i < n (5)

βn := {r(a) | a ∈ αn}
(Fernando, 2018). For example,

b( a, a′ a′ ) = l(a), l(a′) r(a) r(a′) .

In general, (5) says that for a non-final position i,

βi 6= � ⇐⇒ (αi+1 − αi) ∪ (αi − αi+1) 6= �
⇐⇒ αi+1 6= αi.

That is, s is stutterless iff b(s) is �-lite, where by definition, a string α1 · · ·αn is �-lite if for each
i ∈ [n− 1], αi is not �. For the record, we have
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Proposition 1. For any sets A and X , and for any string s ∈ (2X)∗, the following are equivalent.

(i) Mod(s) satisfies (LLA)

(ii) ρA(s) is stutterless

(iii) Mod(b(ρA(s))) satisfies (3)

(iv) the A•-reduct of b(s) is �-lite.

Implicit in Proposition 1 are two notions of string compression,

sααs′  sαs′ (6)

for strings over the alphabet 2A to satisfy (LLA), and

s�s′  ss′ for s′ 6= ε (7)

for strings over the alphabet 2A• to satisfy the border translation (3) of (LLA). Destuttering (6) is imple-
mented fully by block compression bc

bc−1α1 · · ·αn = α+
1 · · ·α+

n for stutterless α1 · · ·αn
while �-removal d� implements (7) without the proviso s′ 6= ε

d−1
� α1 · · ·αn = �∗α1�∗ · · ·�∗αn�∗ for �-less α1 · · ·αn

where a �-less string is a string of non-empty sets. In Durand and Schwer (2008), �-less strings are
called S-words (“S for Set”), and the S-projection over A of s defined to be d�(ρA(s)). To make
room for bc and link up with Allen and Ferguson (1994) and the Russell construction mentioned in the
Introduction, let us agree that, given strings s and s′ of sets,

(i) s bc-projects to s′ if the voc(s′)-reduct of s without stutters is s′

bc(ρvoc(s′)(s)) = s′

(ii) s �-projects to s′ if the voc(s′)-reduct of s without any � is s′

d�(ρvoc(s′)(s)) = s′

(iii) an s-period is an a ∈ voc(s) such that s bc-projects to a .

The occurrences of � to the left and right in a represent the left and right bounds on a period in
Allen and Ferguson (1994). As with intervals, periods a and a′ can be related by exactly one element of
the set

AR := {b, bi, o, oi, m, mi, d, di, s, si, f, fi, e}
of Allen relations (Allen, 1983). Each R ∈ AR is pictured as a stutterless string saRa′ in Table 1 so that
for any string s of sets, and all distinct a, a′,

a and a′ are both s-periods ⇐⇒ (∃R ∈ AR) s bc-projects to �saRa′� .

Table 1. Allen relations as stutterless strings

R saRa′ R−1 saR−1a′ R saRa′ R−1 saR−1a′

b a a′ bi a′ a d a′ a, a′ a′ di a a, a′ a

o a a, a′ a′ oi a′ a, a′ a s a, a′ a′ si a, a′ a

m a a′ mi a′ a f a′ a, a′ fi a a, a′

e a, a′
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Let us call a string s an A-timeline if s is stutterless and every a ∈ A is an s-period. For a 6= a′, the
{a, a′}-timelines are exactly the strings�saRa′�, forR ∈ AR. How do these {a, a′}-timelines compare
to the linear orders obtained by the Russell construction on event structures over {a, a′}?

Without entering into all the details of the event structure 〈A,≺,©〉 on which the Russell construc-
tion is applied, suffice it to say we can derive sa m a′ from a ≺ a′, sa mi a′ from a′ ≺ a, and sa e a′ from
a© a′, while every other string saRa′ is ruled out by the following fact about a linear order < obtained
via Russell

(†) the instants related by < are certain subsets of A, no two of which are related by ⊆.

For example, for A = {a, a′}, < cannot describe sa o a′ = a a, a′ a′ since a ⊆ a, a′ . But can we
not get around the antichain condition (†) by fleshing sa o a′ out as

a, pre(a′) a, a′ post(a), a′

and similarly for all other strings saRa′? In general, the idea would be for any set A and string s of sets,
to form the A-closure of s, clA(s), by setting clA(α1 · · ·αn) to β1 · · ·βn where

βi := αi ∪ {pre(a) | a ∈ (A− αi) ∩
n⋃

k=i+1

αk} ∪ {post(a) | a ∈ (A− αi) ∩
i−1⋃

k=1

αk}

adding two negations, pre(a) and post(a), for every a ∈ A (familiar in the A-series of McTaggart (1908)
as past and future). The difficulty with clA(s) is that if a is an s-period, then neither pre(a) nor post(a)
can be a clA(s)-period, as

bc(ρ{pre(a)}(clA(s)) = pre(a) and bc(ρ{post(a)}(clA(s)) = post(a) .

To cover pre(a) and post(a), infinitely many periods are assumed in Allen and Ferguson (1994), each
bounded to the left and right.

An alternative is to drop the bounds on periods, and work with semi-intervals (Freksa, 1992). Or
rather than introducing pre(a) and post(a) through the A-closure clA(s), we might apply the border
translation b(s) for left and right borders l(a) and r(a) that capture moments of change (as opposed to
instants, under the Russell construction, of pairwise overlapping events). Table 2 records �-less strings
b(�saRa′), depicting howR orders l(a), l(a′), r(a), r(a′). For example, l(a) r(a) l(a′) r(a′) depicts

b’s ordering l(a) < r(a) < l(a′) < r(a′) while l(a), l(a′) r(a), r(a′) depicts e’s ordering l(a) =

l(a′) < r(a) = r(a′).

Table 2. Allen relations as �-less strings, after Durand and Schwer (2008)

R b(�saRa′) R−1 b(�saR−1a′)

b l(a) r(a) l(a′) r(a′) bi l(a′) r(a′) l(a) r(a)

d l(a′) l(a) r(a) r(a′) di l(a) l(a′) r(a′) r(a)

o l(a) l(a′) r(a) r(a′) oi l(a′) l(a) r(a′) r(a)

m l(a) r(a), l(a′) r(a′) mi l(a′) r(a′), l(a) r(a)

s l(a), l(a′) r(a) r(a′) si l(a), l(a′) r(a′) r(a)

f l(a′) l(a) r(a), r(a′) fi l(a) l(a′) r(a), r(a′)

e l(a), l(a′) r(a), r(a′) e

Table 2 with l(a) and r(a) replaced both by a, and l(a′) and r(a′) replaced both by a′ leads to Figure 4
in (Durand and Schwer, 2008, page 3288). These replacements simplify, for example, b(�sa b a′) to

a a a′ a′
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with the first occurrence of a understood as a’s left border, and the second as a’s right. Insofar as these
simplifications suffice to represent Allen relations in strings, MSO is overkill. The “relevant patterns of
change” associated with events in Allen and Ferguson (1994) are, however, another matter, or so the next
section argues, pointing to action and activity left out of l(a) and r(a).

3 Border action and activity

Box-removal d� implements the Aristotelian slogan no time without change under the assumption that

(B) all predicates appearing in a box (string symbol) express change.

While (B) holds for the strings in Table 2, it fails for those in Table 1, the approriate compression in
which is destuttering bc, or be cumulative. By definition, a predicate P on intervals is cumulative if
whenever an interval i meets (abuts) an interval i′ for the combined interval i t i′,

P (i) and P (i′) =⇒ P (i t i′).

The converse

P (i t i′) =⇒ P (i) and P (i′) whenever i meets i′

is the defining condition for divisive predicates P . Cumulativity and divisiveness combine for the condi-
tion (H) for homogeneity

(H) for all intervals i and i′ whose union i ∪ i′ is an interval,

P (i ∪ i′) ⇐⇒ P (i) and P (i′).

If d� assumes (B), bc assumes strings are built from homogeneous predicates. Stative predicates are
commonly assumed to be homogeneous, as in the well-known aspect hypothesis from Dowty (1979)
claiming

the different aspectual properties of the various kinds of verbs can be explained by postulating a single
homogeneous class of predicates — stative predicates — plus three or four sentential operators or
connectives. (page 71)

Developing Dowty’s aspect hypothesis in terms of strings arguably runs counter to assumption (B) above.
Many non-statives are given by result verbs that center around some prescribed post-state, as opposed to
some manner of change (Levin and Rappaport Hovav, 2013, for example). It is natural to identify that
post-state with the consequent state in Moens and Steedman (1988), where the Aristotle-Ryle-Kenny-
Vendler verb classification (Dowty, 1979) is reworked according to Table 3.

Table 3. Moens and Steedman (1988)’s reconstruction of ARKV, annotated with strings

atomic extended
+conseq culmination (achievement) culminated process (accomplishment)

a pre(a) a pre(a), ap(f ) pre(a), ap(f ), ef(f ) ef(f), a

−conseq point (semelfactive) process (activity)
f ap(f) ef(f) ap(f) ap(f), ef(f) ef(f)

Table 3 formulates the culimination resulting in consequent state a as the string pre(a) a , which is
associated with the left border l(a) by the border translation b and closure clA from the previous section.
Line (1) in that section implies

¬Pa(x) ∧ (∃y)(xSy ∧ Pa(y)) ⊃ Pl(a)(x) (8)

6



which can be read as a law of inertia (Dowty, 1986) saying pre(a) persists (forward) unless a force
is applied, l(a). If we associate a result verb with a force, it is not surprising that a force f should
represent a manner verb lacking a lexically prescribed post-state (Levin and Rappaport Hovav, 2013),
marked −conseq in Table 3 (with f below). The point (semelfactive) string ap(f ) ef(f ) is built from
two properties, ap(f) saying f is applied, and ef(f) representing a contextually supplied effect of that
application. We are borrowing here a basic distinction drawn in Levin and Rappaport Hovav (2013)
between the meaning of a verb that is lexically specified (before the verb is used) and the meaning
inferred from a specific context of use. When ef(f) is a, it is tempting to reduce ap(f) to l(a), except
that the lexical/contextual distinction tells us to resist that reduction. Whereas the contextually supplied
effect of a manner verb may vary with the use of the verb, the lexically prescribed post-state of a result
verb does not. Moreover, while a point (semelfactive) can apply successively (for a process/activity), the
implication

Pl(a)(x) ⊃ ¬Pa(x)

(saying l(a) cannot co-exist with a in the same box) blocks successive culminations.
How is it possible that ap(f) and ef(f) can be boxed together, as in the rightmost column in Table 3

(when pre(a) and a cannot)? An instructive example, given by incremental change tracked by a scale ≺
on a set D of degrees, is a force ↑D for a ≺-increase, with the effect at y

Pef(↑D)(y) ≈ (∃d ∈ D) Pd(y) ∧ (∃xSy)(∃d′ ≺ d)Pd′(x) . (9)

Unfortunately, the right side of≈ in (9) quantifies over d and d′, which appear as subscripts in Pd(y) and
Pd′(x), not as arguments y and x. Working instead with any finite subset D◦ of D (which may well be
infinite), we turn (9) into the MSO formula

Pef(↑D)(y) ≡
∨

d∈D◦
P�d(y) ∧ (∃x)(xSy ∧ P≈d(x)) (10)

built with predicates P≈d approximating D by D◦. Given D◦, (10) says the D◦-degree at y is greater
than the D◦-degree d at the S-predecessor x of y. Now, whereas l(a) and r(a) cannot co-occur

Pl(a)(x) ⊃ ¬Pr(a)(x),

we should look out for an opposing force ↓D before leaping from ap(↑D) to ef(↑D)

Pap(↑D)(x) ∧ xSy ∧ ¬Pap(↓D)(x) ⊃ Pef(↑D)(y). (11)

If we unwind the disjunction characterizing ef(↑D) in (10), (11) gives

P≈d(x) ∧ Pap(↑D)(x) ∧ xSy ∧ ¬Pap(↓D)(x) ⊃ P�d(y) (d ∈ D0). (12)

To allow P�d(x) in place of P≈d(x) in (12), we modify (10) slightly to

Pef(↑D)(y) ≡
∨

d∈D◦
P�d(y) ∧ (∃x)(xSy ∧ (P�d(x) ∨ P≈d(x))) (13)

which means ↑D may have the effect not of change but rather preservation (of P�d). Pressure to change
P�d comes from ↓D, for which we have ↓-counterparts to (11)

Pap(↓D)(x) ∧ xSy ∧ ¬Pap(↑D)(x) ⊃ Pef(↓D)(y) (14)

and to (13)

Pef(↓D)(y) ≡
∨

d∈D◦
P≺d(y) ∧ (∃x)(xSy ∧ (P≺d(x) ∨ P≈d(x))).
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The implications (11) and (14) reveal shortcomings that the borders l(a) and r(a) have as pictures
of transitions associated with events. The account of inertia from the half of line (1) expressed by (8) is
unproblematic enough: change requires force. But the other half of (1), the converse of (8), misrepresents
how complicated determining the effects of forces can be. Incrementality (the possibility of more than
two degrees) opens the door to competition, necessitating the “no-intervention” provisos, ¬Pap(↓D)(x)
and ¬Pap(↑D)(x), in the antecedents of (11) and of (14). In Allen and Ferguson (1994), thwarted forces
lead to a predicate Try(f, t) that takes an action (or force) term f and time period t, corresponding above
to Pap(f)(t).1

Whether we refer to f as a force or an action, what are we to make of the property ap(f)? As far
as the point (semelfactive) entry ap(f ) ef(f ) in Table 3 is concerned, ap(f) is clearly non-stative —
i.e., subject to �-removal, as opposed to destuttering d�. But turning to a force f given by incremental
change, our revision (13) of (10) has the effect beyond (12) of adding (via (11)) the implications

P�d(x) ∧ Pap(↑D)(x) ∧ xSy ∧ ¬Pap(↓D)(x) ⊃ P�d(y) (d ∈ D0).

Conservative forces that guard against change are left out of l(a),2 along with incrementality and compe-
tition. If ↑D can have the effect of not changing P�d, what becomes of the assumption (B) above behind
box-removal d�? In Moens and Steedman (1988), the difference between a state and a process (activity)

ap(f) ap(f), ef(f) ef(f) (15)

is blurred by a progressive state. Arguably, that progressive state pertains to the second box ap(f), ef(f)

in (15), perhaps with ap(f) replaced by a stative variant, aps(f). Aspectual type shifts are commonly
associated with reconstruals, and rather than attempt to resolve the aspectual character of ap(f) defini-
tively, suffice it to repeat Levin and Rappaport Hovav (2013)’s claim that context is required to spell out
the effect ef(f) of a manner verb f . That wrinkle is a sign of, in Robin Cooper’s words, “semantics in
flux,” challenging a legacy from Montague (1974)

the impression of natural languages as being regimented with meanings determined once and for all
by an interpretation (Cooper, 2012, page 271).

This impression is congenial with Allen and Ferguson (1994)’s avowed position that temporal structure
is prior to properties, events and actions — a position open to dispute (harking back to Russell).

4 Projections within records and record types

Semantic flux is an important motivation for Type Theory with Records (TTR), against which it is in-
structive to understand the present paper’s

Main Claim Temporal notions such as those in Allen and Ferguson (1994) and Moens and Steedman
(1988) can be represented in strings structured by MSO and finitary projections, on which we can reason
through finite-state methods.

The promise of finite-state methods (mentioned in the Main Claim) rests on (i) a classic theorem due
to Büchi, Elgot and Trakhtenbrot (Libkin, 2010) mapping MSO-sentences to finite automata checking
satisfaction (and back), and (ii) the computability by finite-state transducers of the projections proposed.
These projections operate between finite sets A and A′, composing f ∈ {bc, d�, id} (where id is the
identity function) with ρA for the function fA,A′ = ρA; f : (2A

′
)∗ → (2A)∗ mapping a string s of

subsets of A′ to the string f(ρA(s)) of subsets of A that f returns when fed the A-reduct ρA(s) of s.

Proposition 2. Given any set Θ, let Fin(Θ) be the set of finite subsets of Θ. For f ∈ {bc, d�, id}, the
family {fA,A′ : (2A

′
)∗ → (2A)∗}A,A′∈Fin(Θ) is a projective system — i.e., fA,A is the identity on (2A)∗

and fA,A′′ is the composition fA′,A′′ ; fA;A′ for all A ⊆ A′ ⊆ A′′ ∈ Fin(Θ).
1Talk of “forces” complements inertia, while “action” is in the title of Davidson (1967) and is likened in Allen and Ferguson

(1994) to a program (quite natural to apply). Programs in Dynamic Logic (Harel et al., 2000) underly yet another approach to
verb semantics (Naumann, 2001; Pustejovsky and Moszkowicz, 2011), relations with which I hope to take up elsewhere.

2A force that resists change is old hat to readers familiar with, for instance, Talmy (1988).
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Recall from section 2 the introduction of strings and the projections ρA, bc and d� through a bounded
form of Leibniz’s law in MSO (linking stutterless and �-less strings according to Proposition 1). MSO
properties are restricted to unary predicates over string positions, compelling us in section 3 to sidestep
the formula

(∃d ∈ D) Pd(y) ∧ (∃xSy)(∃d′ ≺ d)Pd′(x) (16)

(in (9)) saying theD-degree at y is greater than at its predecessor. Logical hygiene around Pa(x) dictates
separating the temporal entities over which the property-argument x ranges from the bits incorporated
into the property-index a. Among the latter bits are degrees d in P�d and P≈d, as well as actions/forces
f in Pap(f) and Pef(f). That said, any finite ≺-chain

d1 ≺ d2 ≺ · · · ≺ dn in D

yields an approximation of (16) as the finite disjunction
n∨

i=1

P>i(y) ∧ (∃x)(xSy ∧ Pi(x)) (17)

much as time is sampled in section 2 by a string s, with string positions populating the MSO-model
Mod(s).3 A basic flaw, however, in (17) is that the indices > i and i (appearing as subscripts in P>i
and Pi) leave out the attribute that is being graded. That is, the degree d in Pd ought properly to be
fleshed out as an attribute-value pair (`, v) with a grade or value v that a force ↑D can raise (and ↓D
lower). The letter ` for attribute can also be understood as a `abel in a record {〈`i, vi〉}i∈[k] or record-type
{〈`i, Ti〉}i∈[k]. In the remainder of this paper, we decompose strings that capture changes in {Pa}a∈A
in terms of records and record types with labels equal to subsets of A, approaching MSO (under the
projections above) bottom-up and perhaps even probabilistically.

Given a finite setA, and f ∈ {bc, d�, id}, an (A, f)-string is a string s over the alphabet 2A such that
f(s) = s (meaning s is stutterless for f = bc, or s is �-less for f = d�). An (A, f)-record is a record
{〈`i, vi〉}i∈[k] such that each label `i is a subset ofA, and each vi is an (`i, f)-string. We can decompose
a string s over 2A into its {a}-reducts for the (A, id)-record {〈{a}, ρ{a}(s)〉}a∈A, from which we can
reconstruct s by componentwise union &◦ of strings of the same length

α1 · · ·αn &◦ α′1 · · ·α′n := (α1 ∪ α′1) · · · (αn ∪ α′n)

by repeatedly appealing to

ρA1∪A2(s) = ρA1(s) &◦ ρA2(s) . (18)

For f = bc or d�, however, (18) will not do,4 assuming the (A, f)-record {〈`i, vi〉}i∈[k] is understood as
describing the set L({〈`i, vi〉}i∈[k]) of (A, f)-strings that f -project to each vi

L({〈`i, vi〉}i∈[k]) := {f(s) | s ∈ (2A)∗ and (∀i ∈ [k]) f(ρ`i(s)) = vi}.
Under this assumption, the (A, bc)-record {〈{a}, a 〉}a∈A describes the set ofA-timelines (as defined
in section 2). To specify an Allen relation R between a and a′, we form the label {a, a′} and pair it with
the string �saRa′� from Table 1. But what if say, we know only that the Allen relation between a and
a′ is either meet, m, or before, b? Then we should pair the label ` = {a, a′} with the set

{ a a′ , a a′ }
of (bc, {a, a′})-strings picturing a m a′ and a b a′. Mildly generalizing the notions above, let us agree

3In terms familiar from, for example, Grenon and Smith (2004), strings that structure occurrents/perdurants along temporal
S-steps may arise from strings that structure continuants/endurants along a ≺-scale. See also Jackendoff (1996).

4While any finite string is too short to serve as a timeline, it can be extended indefinitely through inverse limits relative to
the composition of ρA with bc or d�. MSO under these projections has a formulation, spelled out in Fernando (2016), as an
institution in the sense of Goguen and Burstall (1992). So too does a finite-state fragment of TTR (Fernando, 2017), although
how to relate these institutions category-theoretically remains (as far as I know) to be worked out.

9



(i) an (A, f)-record type is a record type {〈`i, Ti〉}i∈[k] such that each label `i is a subset of A, and
each Ti is a set of (`i, f)-strings

(ii) the language described by an (A, f)-record type {〈`i, Ti〉}i∈[k] is the set L({〈`i, Ti〉}i∈[k]) of
(A, f)-strings that for each i ∈ [k], f -project to some string in Ti

L({〈`i, Ti〉}i∈[k]) := {f(s) | s ∈ (2A)∗ and (∀i ∈ [k]) f(ρ`i(s)) ∈ Ti}.

Different (A, f)-record types can describe the same language, as illustrated by the [k + 1]-timelines in

L({〈{i}, i 〉}i∈[k+1]) = L({〈{i, i+ 1}, Li〉}i∈[k]) (19)

where k ≥ 1 and Li is the set of 13 strings, �siRi+1�, one per Allen relation R

Li = {�siRi+1� | R ∈ AR}.

What is gained by complicating the ([k + 1], bc)-record type on the left side of (19) to that to its right?
Labels with two intervals (such as i and i + 1) allow us to represent information updates that eliminate
strings from Li. Indeed, this is the basis of interval networks which operate around a transitivity table
(Allen, 1983, Figure 4) that specifies for every pair (R1, R2) of Allen relations, the set t(R1, R2) of
Allen relations R such that under some {1, 2, 3}-timeline, 1R12, 2R23 and 1R3

t(R1, R2) = {R ∈ AR | there is a {1, 2, 3}-timeline that bc-projects to

�s1R12� and �s2R23� and �s1R3�}.

For example, t(m,m) = {b} since 1 2 3 is the one string in the language described by

{〈{1, 2}, 1 2 〉, 〈{2, 3}, 2 3 〉}

whereas t(m,d) = {o,d,s} means exactly three strings belong to the language described by

{〈{1, 2}, 1 2 〉, 〈{2, 3}, 3 2, 3 3 〉}

(where sa d a′ = a′ a, a′ a′ ). The challenge, in general, is, given a set L of (A, f)-strings, to describe
L through an (A, f)-record type {〈`i, Ti〉}i∈[k] such that, if possible,

(†) no two labels in the set {`i}i∈[k] are ⊆-comparable (minimizing redundancy)

(‡) each Ti is a singleton {vi} (minimizing branching).

The antichain condition (†) on labels mirrors one for Russell instants in section 2, and can be satisfied
by keeping only the labels that are ⊆-maximal. (‡) can be a more difficult, if not impossible, demand
(Woods and Fernando, 2018). A measure of non-determinism being unavoidable, L may serve as a
sample space on which to define a probability mass function (Fernando and Vogel, 2019). The strings
in L are finite, and hold no mysteries. To make this point forcefully, I close on an aspirational note,
brazenly quoting the physicist John Archibald Wheeler on it from bit

every it – every particle, every field of force, even the space-time continuum itself – derives its
function, its meaning, its very existence entirely – even if in some contexts indirectly – from the
apparatus-elicited answers to yes-or-no questions, binary choices, bits. It from bit symbolizes the
idea that every item of the physical world has at bottom – a very deep bottom, in most instances
– an immaterial source and explanation; that which we call reality arises in the last analysis from
the posing of yes-no questions and the registering of equipment-evoked responses; in short, that all
things physical are information-theoretic in origin and that this is a participatory universe (Wheeler,
1990, page 5).

Here, it is the value/string vi (or type/language Ti), linked by `i in records (or record types), and based
(at a shallow bottom) on “yes-no questions” Pa, the responses to which are registered by the apparatus
of MSO in S-steps.
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Abstract
A growing interest in tasks involving language understanding by the NLP community has led to

the need for effective semantic parsing and inference. Modern NLP systems use semantic represen-
tations that do not quite fulfill the nuanced needs for language understanding: adequately modeling
language semantics, enabling general inferences, and being accurately recoverable. This document
describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for
a semantic representation that balances these needs. ULFs fully resolve the semantic type structure
while leaving issues such as quantifier scope, word sense, and anaphora unresolved; they provide a
starting point for further resolution into EL, and enable certain structural inferences without further
resolution. This document also presents preliminary results of creating a hand-annotated corpus of
ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannota-
tor agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach
to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to
subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.

1 Introduction

Episodic Logic (EL) is a semantic representation extending FOL, designed to closely match the expres-
sivity and surface form of natural language and to enable deductive inference, uncertain inference, and
NLog-like inference (Morbini and Schubert, 2009; Schubert and Hwang, 2000; Schubert, 2014). Kim
and Schubert (2016) developed a system that transforms annotated WordNet glosses into EL axioms
which were competitive with state-of-the-art lexical inference systems while achieving greater expres-
sivity. While EL is representationally appropriate for language understanding, the current EL parser is
too unreliable for general text: The phrase structures produced by the underlying Treebank parser leave
many ambiguities in the semantic type structure, which are disambiguated incorrectly by the hand-coded
compositional rules; moreover, errors in the phrase structures can further disrupt the resulting logical
forms (LFs). Kim and Schubert (2016) discuss the limitations of the existing parser as a starting point
for logically interpreting glosses of WordNet verb entries. In order to build a better EL parser, it seems
natural to take advantage of recent advances in corpus-based parsing techniques.

This document describes a type-coherent initial LF, or unscoped logical forms (ULF), for EL which
captures the predicate-argument structure in the EL semantic types and is the first critical step in fully-
resolved semantic interpretation of sentences. Montague’s profoundly influential work (Montague, 1973)
demonstrates that systematic assignments of appropriate semantic types to words and phrases allows us
to view language as akin to formal logic, with meanings determined compositionally from syntactic
structures. This view of language directly supports inferences, at least to the extent that we can resolve
– or are prepared to tolerate – ambiguity, context-dependence, and indexicality, towards which semantic
types are agnostic. ULF takes a minimal step across the syntax-semantics interface by doing exactly
this – selecting the semantic types of words within EL. Thus ULFs are amenable to corpus-construction
and statistical parsing using techniques similar to those used for syntax, and they enable generation of
context-dependent structural inferences. The nature of these inferences is discussed in more detail in
Section 3.4.
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English She wants to eat the cake.

ULF
(Unscoped)

(she.pro ((pres want.v)

(to (eat.v (the.d cake.n)))))

SLF
(Scoped)

( pres ( the.d x (x cake.n)

(she.pro (want.v (to (eat.v x ))))))

CLF
(Contextual)

( |E|.sk at-about.p |Now17| ),
((the.d x (x cake.n)

(she.pro (want.v (to (eat.v x))))) ** |E|.sk )

x Ñ |Cake3|,
she.pro Ñ |Chell|

Anaphora

want.v Ñ want1.v,
eat.v Ñ eat1.v,
cake.n Ñ cake1.n

WSD

ELF
(Episodic)

(|E|.sk at-about.p |Now17|),
(( |Chell| ( want1 .v (to ( eat1 .v |Cake3| ))))

** |E|.sk)

structure flow
information flow

Key

Parsing

Scoping

Deindexing and Canonicalization

Figure 1: The semantic interpretation process, with the ULF step in the fore. Structurally dependent steps in the
interpretation process are connected by solid black arrows and structurally independent information flow is repre-
sented with dashed blue arrows. The components that changed from the previous structural step are highlighted in
yellow. Backward information arrows indicate that arriving at the optimal choice at a particular step may depend
on “later” – or structurally dependent – steps.

Our working hypothesis in designing ULF is that a divide-and-conquer approach starting with pre-
liminary surface-like LFs is a practical way to generate fully resolved interpretations of natural language
in EL. Figure 1 shows a diagram of our divide-and-conquer approach, which is elaborated upon in Sec-
tion 3.3. We also outline a framework for quickly and reliably collecting ULF annotations for a corpus
in a multi-pronged approach. Our evaluation of the annotation framework shows that we achieve an-
notation speeds and agreement comparable to those for the abstract meaning representation (AMR)
project, which has successfully built a large enough corpus to drive research into corpus-based pars-
ing (Banarescu et al., 2013). Further resources relating to this project, including a more in-depth
description of ULFs, the annotation guidelines, and related code are available from the project web-
site http://cs.rochester.edu/u/gkim21/ulf/.

2 Episodic Logic

EL is a semantic representation that extends FOL to more closely match the expressivity of natural
languages. It echoes both the surface form of language, and more crucially, the semantic types that
are found in all languages. Some semantic theorists view the fact that noun phrases denoting both
concrete and abstract entities can appear as predicate arguments (Aristotle, everyone, the fact that there
is water on Mars) as grounds for treating all noun phrases as being of higher types (e.g., second-order
predicates). EL instead uses a small number of reification operators to map predicate and sentence
intensions to individuals. As a result, quantification remains first-order (but allows quantified phrases
such as most people who smoke, or hardly any errors). Another distinctive feature of EL is that it treats the
relation between sentences and episodes (including events, situations, and processes) as a characterizing
relation, written ‘**’. This coincides with the Davidsonian treatment of events as extra variables of
predicates (Davidson, 1967) when we restrict ourselves to positive, atomic predications. However, ‘**’
also allows for logically complex characterizations of episodes, such as not eating anything all day, or
each superpower menacing the other with its nuclear arsenal (Schubert, 2000).

EL defines a hierarchical ontology over the domain of individuals, D . D includes simple individuals,
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e.g. John, possible situations, S , possible worlds, WĂS , various numerical types, propositions, P ,
and kinds, K , as well as others that are not important for the purposes of this document. A complete
description of the ontology is provided by Schubert and Hwang (2000). The types of some predicates
are further restricted by these categories. For example, the predicate claim.v – as in “I claim that grass
is red.” – has the type P Ñ pD Ñ pS Ñ 2qq, since its first argument is a proposition and the second
argument is a simple individual (in the semantics of EL the agent argument is supplied last, though it
precedes the predicate in the surface syntax).

The semantic types in EL are defined by recursive functions over individuals, D , and truth val-
ues, t0,1u, written as 2. Semantic values of predicates applied to their surface arguments can yield
a value in 2 at a given (possible) situation, or be undefined there (indicating irrelevance of the predi-
cation in the given situation). Most predicates in EL are of type Dn Ñ pS Ñ 2q (where D2 Ñ 2 ab-
breviates D Ñ pD Ñ 2q, D3 Ñ 2 abbreviates D Ñ pD Ñ pD Ñ 2qq, and so on). That is, they are
first-order intensional predicates.1 Monadic predicates play a particularly important role in EL as well
as ULF, and we will abbreviate their type D Ñ pS Ñ 2q as N . In EL syntax, square brackets indicate
infixed operators (i.e. rτn π τ1 ... τn´1s where π is the operator) and parentheses indicate prefixed opera-
tors (i.e. pπ τ1 ... τnqwhere π is the operator). Predicative formulas such as [|Aristotle| famous.a] or
[|Romeo| love.v |Juliet|] are regarded as temporal and must be evaluated with respect to a situation
via an episode-relating operator (e.g. ‘**’) to supply the episode and thus produce an atemporal formula.

There are also a limited number of type-shifting operators in EL to map between some of these types.
The kind operator, ‘k’, shifts a monadic predicate into a kind, pD Ñ pS Ñ 2qq Ñ K , and the operator ,
‘that’, forms propositions from sentence intensions, pS Ñ 2q Ñ P . “that grass is red”, a segment of an
earlier example, is formulated as (that [(k grass.n) red.a]) in EL, uses both of these operators.

3 Unscoped logical form

ULFs are type-coherent initial LFs which provide a stepping stone to capturing full sentential EL mean-
ings. They enable interesting classes of structural inferences that are of broader scope than those enabled
by Natural Logic (NLog) (Sánchez Valencia, 1995), and unlike NLog inferences do not depend on prior
knowledge of the propositions to be confirmed or refuted. ULF captures the full predicate argument
structure of EL while leaving word sense, scope, and anaphora unresolved. Therefore, ULFs can be
analyzed using the formal EL type system while taking the scopal ambiguities into account. There is not
enough space here to exhaustively discuss how ULF handles various phenomena, so the discussion will
be restricted to the broad framework of ULF and the most crucial aspects of the semantics. Please refer
to http://cs.rochester.edu/u/gkim21/ulf/ for complete information on ULF.

3.1 ULF Syntax

All atoms in ULF, with the exception of certain logical functions and syntactic macros, are marked with
an atomic syntactic type. The atomic syntactic types are written with suffixed tags: .v,.n,.a,.p,
.pro,.d,.aux-v,.aux-s,.adv-a,.adv-e,.adv-s,.adv-f,.cc,.ps,.pq,.mod-n, or .mod-a, ex-
cept for names, which use wrapped bars, e.g. |John|. These are intended to echo the part-of-speech
origins of the constituents, such as verb, noun, adjective, preposition, pronoun, determiner, etc., re-
spectively; some of them contain further specifications as relevant to their entailments, e.g., .adv-e for
locative or temporal adverbs (implying properties of events). The distinctions among predicates of sorts
.v,.n,.a,.p, corresponding to English parts of speech, are often suppressed in other LFs for language,
but are semantically important. For example, “Bob danced" can refer to a brief episode while “Jill was
a dancer" generally cannot (and may suggest Jill is no longer alive); this is related to the fact that verbal
predicates are typically “stage-level" (episodic) while nominal predicates are generally “individual-level"
(enduring). Whereas in EL the bracket type specifies whether prefix or infix notation is being used, in
ULF this distinction is inferred from the semantic types of the constituents and only parentheses are used.

1Some predicates allow for a monadic predicate complement such as look in “They look happy”.
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(1) Could you dial for me?
(((pres could.aux-v) you.pro (dial.v {ref1}.pro (adv-a (for.p me.pro)))) ?)

(2) If I were you I would be able to succeed.
((if.ps (i.pro ((cf were.v) (= you.pro))))
(i.pro ((cf will.aux-s) (be.v (able.a (to succeed.v))))))

(3) Flowers are weak creatures
((k (plur flower.n)) ((pres be.v) (weak.a (plur creature.n))))

(4) Very few people still debate the fact that the earth is heating up
(((fquan (very.mod-a few.a)) (plur person.n))

(still.adv-s (debate.v
(the.d (n+preds fact.n (= (that ((the.d |Earth|.n)

((pres prog) heat_up.v))))))))

Figure 2: Example sentences with corresponding raw ULF annotations. Examples (1) and (2) are from the Tatoeba
database, (3) is from The Little Prince, and (4) is from the Web. Strictly speaking, weak.a in (3) is actually missing
a type-shifting operator mod-n, a simplification discussed in Section 4.

Atoms that are implicit in the sentence or elided and thus supplied by the annotator are wrapped in curly
brackets, such as {ref}.pro in example (1) of Figure 2.

For practical purposes we distinguish raw ULF from postprocessed ULF. In raw ULF we allow cer-
tain argument-taking constituents to be dislocated from their “proper" place, so as to adhere more closely
to linguistic surface structure and thereby facilitate annotation. For example, sentence-level operators (of
type adv-s) appearing mid-sentence may be left “floating” (e.g., (|Alice| certainly.adv-s ((pres
know.v) |Bob|))), since they can be automatically lifted to the sentence-level; and verb-level adverbs
(of type adv-a) can be interleaved with arguments (e.g., ((past speak.v) sternly.adv-a (to.p-arg
|Bob|))), even though semantically they operate on the whole verb phrase. Kim and Schubert (2017)
presented this method of dislocated annotation for sentence-level operators. In postprocessed ULF, we
can understand all atoms and subexpressions of well-formed formulas (wffs) as being one of the follow-
ing ULF constituent types (modulo some following remarks):

entity, predicate, determiner, monadic predicate modifier, sentence, sentence modifier,
connective, lambda abstract, or one of a limited number of type-shifting operators,

where the predicates and operators that act on predicates are subcategorized by whether the predicate is
derived from a noun, verb, adjective, or preposition. These constituent types uniquely map to particular
semantic types, i.e., are aliases for the formal types. Clausal constituents are combined according to their
bracketing and semantic types.

A qualification of the above general claim is that unscoped tense operators, determiners, and coor-
dinators remain in their surface position even in postprocessed ULF. For example, in (|Bob| ((pres
own.v) (a.d dog.n))), pres is actually an unscoped sentence-level operator (which, in conversion
to EL, is deindexed to yield a characterization of an episode by the sentence, and a temporal predi-
cation about that episode). We also retain coordinated expressions such as ((in.p |Rome|) and.cc
happy.a), where this will ultimately lead to a sentential conjunction in EL. Similarly, (a.d dog.n) is
kept in argument position as if it were of semantic type D (thus, as if the determiner were of seman-
tic type N Ñ D).2 Such unscoped constituents do not disrupt type coherence, because the possible
conversions to type-coherent EL are well-defined.

Finally, both raw ULFs and postprocessed ULFs can contain macros. For example, the macro op-
erator n+preds is used for postmodified nominal predicates such as (n+preds dog.n (on.p (a.d
leash.n))) – see also example (4) in Figure 2; this avoids immediate introduction of a λ-abstracted
conjunction of predicates, simplifying the annotation task. Appendix C discusses macros further, includ-
ing their formal definitions. Section 4 will ground the high-level discussions in this and the following
section with a concrete discussion of modifiers.

2The actual semantic type of determiners in EL, after lambda-abstraction of the restrictor and matrix formula, is N Ñ
pN Ñ pS Ñ 2qq. See Appendix A for full details.
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3.2 ULF Type Structure

The type-shifting operators mentioned in the previous section are crucial for type coherence in ULFs.
In example (1) the phrase “for me” is coded as (adv-a (for.p me.pro)), rather than simply (for.p
me.pro) because it is functioning as a predicate modifier, semantically operating on the verbal predicate
(dial.v {ref1}.pro) (dial a certain thing). Let NADJ , NN , and NV be the sortal refinements of the
monadic predicate type N corresponding to adjectives, nouns, and verbs, respectively. (adv-a (for.p
me.pro)) has type NV ÑNV . Without the adv-a operator the prepositional phrase is just a 1-place pred-
icate. Its use as a predicate is apparent in contexts like “This puppy is for me". Note that semantically the
1-place predicate (for.p me.pro) is formed by applying the 2-place predicate for.p to the (individual-
denoting) term me.pro. If we apply (for.p me.pro) to another argument, such as |Snoopy| (the name
of a puppy), we obtain a sentence intension.3 So semantically, adv-a is a type-shifting operator of type
N Ñ pNV ÑNV q.

This brings up the issue of intensionality, which is preserved in ULF. Example (2) is a counterfactual
conditional, and the consequent clause “I would be able to succeed" is not evaluated in the actual world,
but in a possible world where the (patently false) antecedent is imagined to be true. ULF captures this
with the ‘cf’ operator in place of the tense and the EL formulas derived from it are evaluated with
respect to possible situations (episodes), whose maxima are possible worlds. The type of ‘cf’ is pS Ñ
2q Ñ pS Ñ 2q after operator scoping to the sentence-level, but like tense operators is kept with the verb
in raw ULF, essentially functioning as a predicate-level identity function, pλX .Xq, there.

‘to’ in (2), ‘k’ in (3), and ‘that’ in (4) are all operators that reify different semantic categories,
shifting them to abstract individuals. ‘to’ (synonym: ka) shifts a verbal predicate to a kind (type) of
action or attribute, NV Ñ KA; ‘k’ shifts a nominal predicate to a kind of thing, NN Ñ K (so the subject
in example (3) is the abstract kind, flowers, whose instances consist of sets of flowers); and ‘that’
produces a reified proposition, pS Ñ 2q Ñ P (again an abstract individual) from a sentence meaning.
Using these type shifts, EL and ULF are able to maintain a simple, classical view of predication, while
allowing greater expressivity than the most widely employed LFs.

3.3 Role of ULF in Comprehensive Semantic Interpretation

ULFs are underspecified, but their surface-like form and the type structure they encode make them well-
suited to reducing underspecification by using well-established linguistic principles and exploiting the
distributional properties of language. Figure 1 shows the interpretation process for EL formulas and
the role of ULFs in providing the first step into it. Due to the structural dependencies between the
components in the interpretation process, the optimal choice at any given component depends on the
overall coherence of the final interpretation; hence the backward arrows in the figure. Word sense dis-
ambiguation (WSD) and anaphora have no structural dependencies in the interpretation process so they
are separated from and fully connected to the post-ULF components. These resolutions are depicted in
the last step in the figure.

WSD & Anaphora: While (weak.a (plur creature.n)) in example (3) does not specify which of the
dozen WordNet senses of weak or three senses of creature is intended here, the type structure is perfectly
clear: A predicate modifier is being applied to a nominal predicate. ULF also does not assume unique
adicity of word-derived predicates such as run.v, since such predicates can have intransitive, simple
transitive and other variants, but the adicity of a predicate in ULF is always clear from its structural
context – we know that it has all its arguments in place when an argument (the “subject") is placed on its
left, as in English.

Linguistic constraints (e.g. binding constraints) exist for coreference resolution. For example, in
“John said that he was robbed", he can refer to John; but this is not possible in “He said that John was
robbed", because in the latter, he C-commands John, i.e., in the phrase structure of the sentence, it is a
sibling of an ancestor of John. ULF preserves this structure, allowing use of such constraints. While ULF

3(for.p me.pro) has type D Ñ pS Ñ 2q and |Snoopy| has type D , so (|Snoopy| (for.p me.pro)) has a type that
resolves to S Ñ 2 (i.e. a sentence intension).
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constrains the word senses and coreferences through adicity and syntactic structure, WSD and anaphora
resolution should not be applied to isolated sentences since word sense patterns and coreference chains
often span multiple sentences.

Scoping: Unscoped constituents (determiners, tense operators, and coordinators) can generally “float"
to more than one possible position. Following a view of scope ambiguity developed by Schubert and Pel-
letier (1982) elaborated by Hurum and Schubert (1986), these constituents always float to pre-sentential
positions, and determiner phrases leave behind a variable that is then bound at the sentential level. The
accessible positions are constrained by linguistic restrictions, such as scope island constraints in subor-
dinate clauses (Ruys and Winter, 2010). Beyond this, many factors influence preferred scoping possi-
bilities, with surface form playing a prominent role (Manshadi et al., 2013). The proximity of ULF to
surface syntax enables the use of these constraints.

Deindexing and Canonicalization: Much of the past work relating to EL has been concerned with
the principles of deindexing (Hwang, 1992; Hwang and Schubert, 1994; Schubert and Hwang, 2000).
Deindexing corresponds to the introduction of event variables for explicitly characterizing the sentence it
is linked to via the ‘**’ operator (this variable becomes |E|.sk in Figure 1 after Skolemization). Hwang
and Schubert’s approach to tense-aspect processing, constructing tense trees for temporally relating event
variables, is only possible if the LF being processed reflects the original clausal structure – as ULF indeed
does. Canonicalization is the mapping of an LF into “minimal”, distinct propositions, with top-level
Skolemization. The CLF step in Figure 1 contains two separate formulas as a result of this process.

Episodic Logical Forms (ELF): When episodes have been made explicit and all anaphoric and word
ambiguities are resolved the result is a set of episodic logical forms. These can be used in the EPILOG in-
ference engine for reasoning that combines linguistic semantic content with world knowledge.4 A variety
of complex EPILOG inferences are reported by Schubert (2013), and Morbini and Schubert (2011) give
examples of self-aware metareasoning. EPILOG also reasoned about snippets from the Little Red Riding
Hood story, for example using knowledge about the world and goal-oriented behavior to understand why
the presence of nearby woodcutters prevented the wolf from attacking Little Red Riding Hood when he
first saw her (Hwang, 1992; Schubert and Hwang, 2000).

3.4 Inference with ULFs

An important insight of NLog research is that language can be used directly for inference, requiring
only phrase structure analysis and upward/downward entailment marking (polarity) of phrasal contexts.
This means that NLog inferences are situated inferences, i.e., their meaning is just as dependent on the
utterance setting and discourse state as the linguistic “input" that drives them. This insight carries over
to ULFs, and provides a separate justification for computing ULFs, apart from their utility in the process
of deriving EL interpretations from language. The semantic type structure encoded by ULFs provides
a more reliable and general basis for situated inference than mere phrase structure. Here, briefly, are
some kinds of inferences we can expect ULFs to support with minimal additional knowledge due to their
structural nature:

• NLog inferences based on generalizations/specializations. For example, “Every NATO member
sent troops to Afghanistan", together with the knowledge that France is a NATO member and that
Afghanistan is a country entails that France sent troops to Afghanistan and that France sent troops
to a country.

• Inferences based on implicatives. For example, “She managed to quit smoking" entails that She
quit smoking (and the negation of the premise leads to the opposite conclusion). Inferences of this
sort have been demonstrated for headlines using ELFs by Stratos et al. (2011).

• Inferences based on attitudinal and communicative verbs. For example, “John denounced Bill as
a charlatan" entails that John probably believes that Bill is a charlatan, that John asserted to his

4EPILOG is competitive against state-of-the-art FOL theorem provers (Morbini and Schubert, 2009).
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listeners (or readers) that Bill is a charlatan, and that John wanted his listeners (or readers) to
believe that Bill is a charlatan. These inferences would be hard to capture within NLog, since they
are partially probabilistic, require structural elaboration, and depend on constituent types.

• Inferences based on counterfactuals. For example, “If I were rich, I would pay off your debt" and
“I wish I were rich" both implicate that the speaker is not rich. This depends on recognition of the
counterfactual form, which is distinguished in ULF.

• Inferences from questions and requests. For example, “When are you getting married?" enables
the inferences that the addressee will get married (in the foreseeable future), that the questioner
wants to know the expected date of the event, and that the addressee probably knows the answer
and will supply it. Similarly an apparent request such as “Could you close the door?" implies that
the speaker wants the addressee to close the door, and expects that he or she will do so.

4 Predicate and Sentence Modification in Depth

Here we ground the general description of ULF given so far with an in-depth discussion of how ULF
handles modification. This is done with the purpose of demonstrating how the core syntax of ULF, its
syntactic looseness, and semantic types fit together in practice. EL semantic types represent predicate
modifiers as functions from monadic intensional predicates to monadic intensional predicates, i.e., N Ñ
N , which enables handling of intersective, subsective, and intensional modifiers such as in the examples

((mod-n wooden.a) shoe.n), ((mod-n ice.n) pick.n), (fake.mod-n ruby.n),
((mod-a worldly.a) wise.a), (very.mod-a fit.a), (slyly.adv-a grin.v).

Modifier extensions .mod-n, and .mod-a respectively reflect the linguistic categories of noun-
premodifying (attributive) adjectives and adjective-premodifying adverbs; correspondingly, operators
mod-n, and mod-a type-shift prenominal predicates to modifiers applicable to predicates of sorts .n and
.a respectively. Modifier extension .adv-a reflects the linguistic category of VP adverbials, and oper-
ator adv-a creates such modifiers from predicates. Thus, “walk with Bob" is represented in raw and
postprocessed ULF respectively as

(walk.v (adv-a (with.p |Bob|))) and ((adv-a (with.p |Bob|)) walk.v).
Adverbial modifiers of the sort .adv-a intuitively modify actions, experiences, or attributes, as distinct
from events. Thus “He lifted the child easily" refers to an action that was easy for the agent, rather than
to an easy event. Actions, experiences, and attributes in EL are individuals comprised of agent-episode
pairs, and this allows modifiers of the sort .adv-a to express a constraint on both the agent and the
episode it characterizes. As such, actions are not explicitly represented in ULF but rather derived during
deindexing when event variables are introduced.

A formula or nonatomic verbal predicate in ULF may contain sentential modifiers of type pS Ñ 2qÑ
pS Ñ 2q: .adv-s, .adv-e, and .adv-f. Again there are type-shifting operators that create these sorts of
modifiers from monadic predicates. Ones of the sort .adv-s are usually modal (and thus opaque), e.g.,

perhaps.adv-s, (adv-s (without.p (a.d doubt.n)));
However, negation is transparent in the usual sense – the truth value of a negated sentence depends only
of the truth value of the unnegated sentence. Modifiers of sort .adv-e are transparent, typically implying
temporal or locative constraints, e.g.,

today.adv-e, (adv-e (during.p (the.d drought.n))), (adv-e (in.p |Rome|));
these constraints are ultimately cashed out as predications about episodes characterized by the sentence
being modified. (This is also true for the past and pres tense operators.) Similarly any modifier of
sort .adv-f is transparent and implies the existence of a multi-episode (characterized by the sentence
as a whole) whose temporally disjoint parts each have the same characterization (Hwang and Schubert,
1994); e.g.,

regularly.adv-f, (adv-f (at.p (three.d (plur time.n))));
The earlier walk with Bob example shows how in ULF the operator and operand can be inferred from the
constituent types. Consider the types for play.v and (adv-a (with.p (the.d dog.n))). Since they
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have types NV and NV ÑNV , respectively, we can be certain that (adv-a (with.p (the.d dog.n)))
is the operator while play.v is the operand.

In practice, we’re able to drop the mod-a, mod-n, and nnp type-shifters during annotation since we
can post-process them with the appropriate type-shifter to make the composition valid. We assume in
these cases that the prefixed predicate is intended as the operator, which reflects a common pattern in
English. Thus, “burning hot melting pot” would be hand annotated as

((burning.a hot.a) (melting.n pot.n))
which would be post-processed to

((mod-n ((mod-a burning.a) hot.a)) ((mod-n melting.n) pot.n))
While the prefixed predicate modification allows us to formally model non-intersective modification,
there are modification patterns in English that force an intersective interpretation, e.g., post-nominal
modification and appositives, and we annotate them accordingly. “The buildings in the city” is annotated

(the.d (n+preds (plur building.n) (in.p (the.d city.n))))
which is equivalent (via the n+preds macro) to

(the.d (λx ((x (plur building.n)) and.cc (x (in.p (the.d city.n)))))).

5 Annotating a ULF Corpus

The syntactic relaxations in ULF and the annotation environment work hand-in-hand to enable quick
and consistent annotations. ULF syntax relaxations are designed to: (1) Preserve surface word order
and (2) Make the annotations match linguistic intuitions more closely. As a result, annotating a sentence
with its ULF interpretation boils down to marking the words with their semantic types, bracketing the
sentence according to the operator-operand relations, then introducing macros and logical operators as
necessary to make the ULF type-consistent. The annotation environment is designed to assist in this
process by improving the readability of long ULFs and catching mistakes that are easy to miss. The
environment is shared across annotators with certainty marking so that more experienced annotators can
correct and give feedback to trainees. This streamlines the training process and minimizes the mistakes
entering into the corpus. Here are the core annotator features.5

1. Syntax and bracket highlighting. Highlights the cursor location and the closing bracket, un-
matched brackets and quotes, operator keywords, and badly placed operators.

2. Sanity checker. Alerts the annotator to invalid type compositions and suggests corrections for
common mistakes.

3. Certainty marking. Annotators can mark whether they are certain of an annotation’s correctness
so that partial progress can be made while preserving the integrity of the corpus.

4. Sentence-specific comments. Annotators can record their thoughts on partially complete annota-
tions so that others can pick up where they left off.

The ULF type system makes it possible to build a robust sanity checker for the annotator. The type
system severely restricts the space of valid ULF formulas and usually when an annotator makes an error
in annotation, it leads to a type inconsistency.

6 Experimental Results and Current Progress

We ran a timing study and an interannotator agreement (IA) study to quantify the efficacy of the presented
annotation framework. We timed 80 annotations of the Tatoeba dataset and found the average annotation
speed to be 8 min/sent with 4 min/sent among the two experts and 11 min/sent among the three trainees
that participated. AMRs reportedly took on average 10 min/sent (Hermjakob, 2013). In the IA study five

5The annotator can be accessed from the ULF project website and a screenshot of it is in Appendix D.
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annotators each annotated between 18 and 23 sentences from the same set of 23 sentences, marking their
certainty of the annotations as they normally would. The sentences were sampled from the four datasets
listed in Table 1. The mean and standard deviation of sentence length were 15.3 words and 10.8 words,
respectively.

Table 1: Current sentence annotation counts
broken down by dataset and certainty. DG and
PG are the Discourse Graphbank and Project
Gutenberg, respectively. The Old column anno-
tations are from before we added the certainty
feature.

Cert. Unc. Inc. Old All
Tatoeba 533 66 24 396 1019
DG 102 37 4 0 143
UIUC QC 179 50 0 0 229
PG 113 59 17 0 189
Total 927 212 45 396 1580

We computed a similarity score between two anno-
tations using EL-smatch (Kim and Schubert, 2016), a
generalization of smatch (Cai and Knight, 2013) which
handles non-atomic operators. The document-level EL-
smatch score between all annotated sentence pairs was
0.70. When we restricted the analysis to just annotations
that were marked certain, the agreement rose to 0.78. The
complete pairwise scores are shown in Table 2. Notice
that annotators 1, 2, and 3 had very high agreement with
each other. If we restrict the agreement to just those three
annotators, the full and certain-subset scores are 0.79 and
0.88, respectively. Out of all the annotations, less than a
third were marked as uncertain or incomplete. AMR an-
notations reportedly have annotator vs consensus IA of 0.83 for newswire and 0.79 for web text (Tsialos,
2015).

Table 2: Pairwise IA scores, where the left score is
over all annotations and the right score is only over
annotations marked as certain.

2 3 4 5
1 0.80/0.88 0.79/0.89 0.69/0.77 0.63/0.75
2 - 0.77/0.86 0.72/0.77 0.62/0.75
3 - - 0.69/0.75 0.63/0.73
4 - - - 0.62/0.71

This study also demonstrates that the certainty
marking indeed reflects the quality of the annotation,
thus performing the role we intended. Also, based
on the high agreement between annotators 1, 2, and
3, we can conclude that consistent ULF annotations
across multiple annotators is possible. However, the
lower scores of annotators 4 and 5, even in annotations
marked as certain, indicates room for improvement in
the annotation guidelines and training of some anno-
tators.

We have so far collected 927 certain annotations and have 1,580 in total. The full annotation break-
down is in Table 1. We started with the English portion of the Tatoeba dataset (https://tatoeba.org/
eng/), a crowd-sourced translation dataset. This source tends to have shorter sentences, but they are more
varied in topic and form. We then added text from Project Gutenberg (http://gutenberg.org), the
UIUC Question Classification dataset (Li and Roth, 2002), and the Discourse Graphbank (Wolf, 2005).
Preliminary parsing experiments on a small dataset (900 sentences) show promising results and we ex-
pect to be able to build an accurate parser with a moderately-sized dataset and representation-specific
engineering (Kim, 2019).

7 Related Work

A notable development in general representations of semantic content has been the design of AMR (Ba-
narescu et al., 2013) followed by numerous research studies on generating AMR from English and on
using it for downstream tasks. AMR is intended as a kind of intuitive normal form for the relational
context of English sentences in order to assist in machine translation. Given this goal, AMR deliberately
neglected issues such as articles, tense, the distinction between real and hypothetical entities, and non-
intersective modification. In the context of inference, this risks making false conclusions such as that a
“big ant” is bigger than a “small elephant”.

Still, this development was an inspiration to us in terms of both the quest for broad coverage and
methods of learning and evaluating semantic parsers. There has also been much activity in developing
semantic parsers that derive logical representations, raising the possibility of making inferences with
those representations (Artzi et al., 2015; Artzi and Zettlemoyer, 2013; Howard et al., 2014; Kate and
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Mooney, 2006; Konstas et al., 2017; Kwiatkowski et al., 2011; Liang et al., 2011; Poon, 2013; Popescu
et al., 2004; Tellex et al., 2011). The techniques and formalisms employed are interesting (e.g., learn-
ing of CCG grammars that generate λ-calculus expressions), but the targeted tasks have generally been
question-answering in domains consisting of numerous monadic and dyadic ground facts (“triples"), or
simple robotic or human action descriptions.6

Noteworthy examples of formal logic-based approaches, not targeting specific applications are
Bos’ (2008) and Draiccio et al.’s (2013), whose hand-built semantic parsers respectively generate FOL
formulas and OWL-DL expressions. But these representations preclude generalized quantifiers, modifi-
cation, reification, attitudes, etc. Manshadi and Allen (2012) presented an intuitive graphical representa-
tion, like AMR, but allowing for modals, generalized quantifiers, etc., and not attempting to canonicalize
meanings in the way AMR does. The difference from ULF is that it focuses on binary structural relations
such as restrictor, body, or modifier between semantic components, rather than operator-operand type
structure. It is not directly intended for inference, but readily lends itself to incremental disambiguation.
We are not aware of any work on inference generation of the type ULFs targets, based on these projects.

A couple of yet-unmentioned but notable semantic annotation projects are the Groningen Mean-
ing Bank (Bos et al., 2017), with discourse representation structure (DRS) annotations (Kamp, 1981)
and the Redwoods treebank (Flickinger et al., 2012; Oepen et al., 2002) with Minimal Recursion Se-
mantics (MRS) (Copestake et al., 2005) annotations. DRSs have the same representational limitations
as Bos’ (2008) system. MRS is descriptively powerful and linguistically motivated, with significant
resources including a hand-built grammar, multiple parsers, and a large annotated dataset (Bub et al.,
1997; Callmeier, 2001). Given that MRS and Manshadi and Allen’s graphical representation are object-
language agnostic, meta-level semantic representations, inference systems cannot be built directly for
them based on model-theoretic notions of interpretation, truth, satisfaction, and entailment. However,
the lack of an object-language leaves open the possibility of forming a correspondence between these
representations and ULF that fully respects both formalisms. Finally, the use of unscoped LFs in a rule-
to-rule framework was first introduced by Schubert and Pelletier (1982) and a similar approach to scope
ambiguity was taken by the Core Language Engine (Alshawi and van Eijck, 1989).

8 Conclusion & Future Work

ULF, the underspecified initial representation for EL described in this document, captures a subset of the
semantic information of EL that allows it to be annotated reliably, participate in the complete resolution
to EL, and form the basis for structural inferences that are important for language understanding tasks.
We will continue this work by expanding the corpus of ULF annotations and training a statistical parser
over that corpus. Automatic ULF parses could then be used as the backbone for a complete EL parser
or as the core representation for NLP tasks that require sentence-level formal semantic information or
structural inferences.
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A Quantifier Semantics

Noun phrases can occur in any position here an individual variable or constant can occur, and in post-
processing are replaced by bound variables. Therefore the positional types of noun phrases are individu-
als, D . Therefore, we can treat determiners such as every.d in ULF as if they were of type pN ÑD , i.e.
a function from a predicate to an individual. For example consider the ULF formula ((every.d dog.n)
(pres run.v)). (every.d dog.n) seems to be able to occur in any place that |John| and they.pro
can occur.

((every.d dog.n) (pres run.v)), (i.pro ((pres like.v) (every.d dog.n))),
(|John| (pres run.v)), (i.pro ((pres like.v) |John|)),

(they.pro (pres run.v)); (i.pro ((pres like.v) they.pro));
Semantically we consider they.pro and them.pro to be the same, as they only differ in syntactic posi-
tion. Then since dog.n (and any other argument of a determiner) is a monadic predicate, we can infer
that the positional type of determiners is N Ñ 2. This will be transformed after scoping into a formula
of the form pδv : φ ψq, where δ is the determiner, and φ and ψ correspond to the formulas resulting from
substituting the scoped variable into the restrictor and matrix predicates, respectively. These formulas are
interpreted in EL via satisfaction conditions over the quantified variable and two formulas (a restrictor
formula and the nuclear scope), e.g., for an sentence such as “Most car crashes are due to driver error",
pmost v : φ ψqM U “ 1 iff

for most d PD for which φM Uv:d “ 1, ψM Uv:d “ 1
where M is the model, Uis the variable assignment function, and Uv:d is the same as U except that its
value for variable v is d. When this formula is evaluated with respect to an episode, it corresponds to a
formula of the form
rpseveral v : φ ψq ˚˚ ηs,

where ‘˚˚’ is the operator relating a sentence to the episode it characterizes (describes as a whole),
which is discussed in Section 2. pδv : φ ψq can equivalently be rewritten as pδ pλv φq pλv ψqq and we can
define δ as a second-order intensional predicate of type N ÑN Ñ S Ñ 2 similar to the approach used
in generalized quantifier theory (Barwise and Cooper, 1981).

B Episodic Operators

‘**’, ‘*’, and ‘@’ are episodic operators, which relate formulas to episode variables in Episodic Logic.
They do not appear in ULFs since ULFs do not have explicit episode variables. However, these operators
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are foundational to Episodic Logic semantics in handling event structure and intensional semantics. All
formulas in EL must be evaluated with respect to one of these operators to obtain a truth value since
sentence intensions in EL have the type S Ñ 2.

• ‘**’ - the characterizing operator

‘**’ relates an episode variable to a formula that characterizes it. In other word, the formula describes
the episode as a whole, or the nature of the episode, rather than a tangential part or a temporal segment
of it. This, however, does not mean that the characterizing formula must describe every detail of the
episode. It can in fact be quite abstract. For instance, “John had a car accident” and “John hit some
black ice and his car skidded into a tree” might characterize the same event. As such, for most news
stories the headline and the first sentence of the article are likely to both characterize the same event
even though the headline is much shorter. Formally,

rφ ˚˚ ηsM U “ 1 iff φM UpηM Uq “ 1;

rpnot φq ˚˚ ηsM U “ 1 iff φM UpηM Uq “ 0.

The semantic type of φ is S Ñ 2 (a sentence intension) and the semantic type of η is S , a situation.
Therefore, η characterizes φ just in the case that the interpretation of φ with respect to the model M
and variable assignment function U evaluated over the interpretation of η with respect to M and U is
true.

• ‘*’ - the truth operator

‘*’ relates an episode variable to a formula that is true in that episode. This is a weaker operator than
‘**’ in that a formula that is ‘*’-related can be a just a segment or an incidental aspect of the episode
to be true. Therefore, rφ ˚˚ ηs entails rφ ˚ ηs, but not the other way. Therefore, “There was black
ice on the road” and “John was driving” could both be ‘*’-related to the episode characterized by the
example given in for the ‘**’ operator. Formally,

rφ ˚ ηsM U “ 1 iff there is an episode s Ď ηM U such that φM Upsq “ 1.

Where Ď is an episode part-of relation. It’s formal definition is given by Hwang and Schubert (1993).
Intuitively we can think of s Ď η to mean that s is a subepisode of η.

• ‘@’ - the concurrent operator

‘@’ relates an episode variable to a formula characterizes another episode that runs concurrent with
it. So this operator can be rewritten in the following way. rφ @ ηs entails and is entailed by psome e :
re same-time ηs rφ ˚˚ esq. Formally, @ us defined as

rφ @ ηsM U “ 1 iff there is an episode s P S with timepsq “ timepηM Uq such that φM Upsq “ 1.

C More About Macros

ULF macros are different syntactic rewriting operators to reduce the annotator burden of encoding com-
plex, but regular, semantic structures or avoid unnecessary word reordering. Table 3 lists the definitions
and simple examples of the basic ULF macros. The sub macro is the substitution macro which performs
a simple substitution of its first argument into the position of *h within the second argument. This is
used for topicalization, such as “Swiftly, the fox ran away”, which topicalizes “Swiftly” from the sen-
tence “The fox swiftly ran away”. The rep macro is the replace operator and the exact same as sub
with the arguments swapped and using *p instead of *h as the placeholder variable. This is used for
rightward-displaced clauses, such as, “A man answered the door with a white beard”, in which with a
white beard is really displaced from the expected post-nominal position, i.e “A man with a white beard
...”.

27



Table 3: List of basic rewriting macros in ULF. “m is the macro defining operator.

Name Definitions Example
sub (sub C S[*h]) “m S[*hÐC] (sub A (B *h)) “m (B A)
rep (rep S[*p] C) “m S[*pÐC] (rep (A *p) B) “m (A B)

n+preds
(n+preds N P1 ... Pn) “m (n+preds dog.n red.a) “m

(λx ((x N) and.cc (x P1) ... (x Pn))) (λx ((x dog.n) and.cc (x red.a)))

np+preds
(np+preds NP P1 ... Pn) “m (np+preds he.pro red.a) “m

(the.d (λx ((x = NP) and.cc (the.d (λx ((x = he.pro) and.cc
(x P1) ... (x Pn)))) (x red.a))))

’s ((NP ’s) N) “m (the.d ((poss-by NP) N))
((|John| ’s) dog.n) “m
(the.d ((poss-by |John|) dog.n))

Figure 3: Current ULF annotator state with example
annotation process.

Next, n+preds and np+preds are macros for
handling post-nominal modification. n+preds
modifies a noun and returns a noun, whereas
np+preds modifies an entity and returns a mod-
ified entity. Intuitively, np+preds handles non-
restrictive modifiers, whereas n+preds handles
restrictive modifiers. This makes sense since the
modifying predicates in n+preds are added before
the determiner, thus introduced into the restrictor
of the quantification.

The ’s macro is for handling possession us-
ing an appended marker to the possessor just as
is done in English (e.g. “John’s dog”). For-
mally, this maps to a pre-modifying possession
relation. So “John’s dog” is hand-annotated as
((|John| ’s) dog.n), which expands out to
(the.d ((poss-by |John|) dog.n)). poss-by
is a binary predicate relating two entities, seman-
tic type D Ñ pD Ñ pS Ñ 2qq. so (poss-by
|John|) resolves to semantic type of a predicate,
N . Notice that this is a predicate-noun pair so
as discussed in Section 4 the mod-n type-shifter
is automatically introduced, resulting in (the.d
((mod-n (poss-by |John|)) dog.n)).

D Additional Annotator Info

Here we reiterate the annotator features as described in Section 5 with reference to an image of it in
Figure 3.

1. Syntax and bracket highlighting. Highlights the cursor location and the closing bracket, un-
matched brackets and quotes, operator keywords, and badly placed operators. The “Final Anno-
tation” window in Figure 3 shows the cursor matching bracket in yellow-green highlighting, an
unmatched bracket in red, the sub macro in purple, and sentence-level operators in blue.

2. Sanity checker. Alerts the annotator to invalid type compositions and suggests corrections for
common mistakes.

3. Certainty marking. Annotators can mark whether they are certain of an annotation’s correctness
so that partial progress can be made while preserving the integrity of the corpus. The bottom of
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Figure 3 shows radio buttons for selecting the certainty of the annotation.

4. Sentence-specific comments. Annotators can record their thoughts on partially complete annota-
tions so that others can pick up where they left off. The bottom-most window in view in Figure 3
is the sentence-specific comment window. These comments are viewable by all annotators when
accessing this sentence.

E Additional Grounding Examples

Here are a couple of additional sections that ground the high-level ULF background in concrete examples.

E.1 More Resources on Predicate Modifiers

A type of modification not covered in the main document is entity-predicate modification. The type
shifter from an individual to a nominal predicate modifier is named nnp and has semantic type, D Ñ
pNN ÑNNq. It is for indicating premodification of a common noun by a proper noun; e.g.,

((nnp |Seattle|) skyline.n).
All of the operators discussed in Section 4 and here are listed alongside a ULF example, and its semantic
type in Table 4.

Table 4: Predicate and sentence modifier forming operators in ULF along with examples and their se-
mantic types.

Name Example Semantic Type
mod-a ((mod-a worldly.a) wise.a) N Ñ pNADJ ÑNADJq
mod-n ((mod-n (very.mod-n happy.a)) dog.n) N Ñ pNN ÑNNq
adv-a (play.v (adv-a (with.p (a.d dog.n)))) N Ñ pNV ÑNV q
nnp ((nnp |Seattle|) skyline.n) D Ñ pNN ÑNNq
adv-s (show_up.v (adv-s (to.p (my.d surprise.n)))) pS Ñ 2q Ñ pS Ñ 2q
adv-e (eat.v (adv-e (at.p (a.d cafe.n)))) pS Ñ 2q Ñ pS Ñ 2q
adv-f (run.v (adv-f (very.mod-a often.a))) pS Ñ 2q Ñ pS Ñ 2q

Ultimately in EL, adv-a, adv-e, and adv-f will be reconstrued as predications over actions and events
via meaning postulate inferences. Agent-episode pairs that intuitively represent actions, experiences, or
attributes are distinct from events. For example, “He fell painfully" refers to a painful experience rather
than to a painful event and “He excels intellectually" refers an intellectual attribute rather than to an
intellectual event or situation. .adv-a type modifiers constrain both the agent and the episode in the pair.
No sharp or exhaustive classification of such pairs into actions, experiences, and attributes is presupposed
by this – the point is just to make available the subject of sentences in working out entailments of
VP-modification. Since actions are formed by pairing an agent with an event variable, they are not
explicitly represented in ULF. The meaning postulate inferences on .adv-a type modifiers would infer
from (he.pro (play.v (adv-a (with.p (a.d dog.n))))) the following deindexed ULF [[[he.pro
play.v] ** E1.sk] and.cc [(pair he.pro E1.sk) (with.p (a.d dog.n))]]. The meaning
postulate inference of .adv-e type modifiers to predications over events is also straightforward. The
ULF formula (she.pro (eat.v (adv-e (at.p (a.d cafe.n))))) leads to the deindexed, inferenced
formula [[[she.pro eat.v] ** E1.sk] and.cc [(pair she.pro E1.sk) (at.p (a.d cafe.n))]].

E.2 Topicalization & Relative Clauses in ULF

The sub macro was introduced to reduce the amount of lexical reordering by annotators when annotating
sentences with syntactic movement such as topicalization. sub takes two constituents, the second of
which must contain the symbol *h. When the operator is evaluated the first argument is inserted into the
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position of *h in the second argument. “Swiftly, the fox ran away” for example would be annotated as
(in raw ULF form)

(sub swiftly.adv-a ((the.d fox.n) ((past run.v) away.adv-a *h)))
and when the sub macro is evaluated, becomes

((the.d fox.n) ((past run.v) away.adv-a swiftly.adv-a)).
For relative clauses we introduce one extra post-processed element which is the relativizer, annotated
with a .rel extension. “The coffee that you drank” is annotated in raw ULF with macros as

(the.d (n+preds coffee.n (sub that.rel (you.pro ((past drink.v) *h)))))
During post-processing, the embedded sentence in which the .rel variable lies is λ-abstracted and the
lambda variable replaces the .rel variable. Post-processing that.rel leads to

(the.d (n+preds coffee.n (λx (sub x (you.pro ((past drink.v) *h))))))
Now if we evaluate both n+preds and sub, and perform one lambda reduction we get

(the.d (λy ((y coffee.n) and.cc (you.pro ((past drink.v) y)))))
which is exactly the meaning that is expected that is expected from the relative clause. That is, “The
coffee that you drank” is a coffee ((y coffee.n)) and is something that you drank ((you.pro ((past
drink.v) y))).
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Abstract

This paper describes in brief an annotation scheme called ’QuantML’ which was proposed last
December to the International Organisation for Standardisation (ISO) as a starting point for devel-
oping a standard for interoperable rooted in the theory of generalised quantifiers, neo-Davidsonian
semantics, and DRT, covers a wide range of aspects of quantification. The scheme consists of (1)
an abstract syntax which defines ’annotation structures’ as triples and other set-theoretic constructs;
(b) a compositional semantics of annotation structures; (3) an XML representation of annotation
structures.

1 Introduction

Quantification is widespread in spoken and written language; it can be found in nearly every sentence,
since it occurs whenever a predicate is applied to one or more argument sets (rather than single argu-
ments). This commonly happens in two of the linguistically most prominent units: clauses and noun
phrases. In clauses it happens when a verb is combined with sets of arguments, as in “Last year
the American car manufacturers produced more than 12 million vehicles”. In noun phrases it happens
when a head noun is subject to modification, as in “I’m carrying some heavy books”.

A widely held view is that the quantifiers of natural language are not determiners like “some” and
“all”, in spite of their superficial similarity with the quantifiers of formal logic, but rather noun phrases,
like “more than 12 million vehicles” and “some heavy books”. Other types of quantifiers can also be
found, such as adverbs for temporal or spatial quantification (“always”, “nowhere”, “sometimes”), but
these are of minor importance compared to noun phrases. Hobbs and Shieber (1987) have argued that
the sentence “Some representatives of every department in most companies saw a few samples of every
product”, containing five noun phrases, has 42 readings, corresponding to equally many linguistically
valid alternative scopings of the five quantifiers (of the120 mathematically possible permutations). Bunt
and Muskens (1999) show that, when other ambiguity types are taken into account, such as those of a
quantification’s distributivity, the number of possible readings of an ordinary written sentence may run
into the thousands.

Quantification is the main source of structural ambiguity in natural langue; therefore applications of
natural language processing for which semantic information is important, such as information extraction,
and question answering, need effective ways of interpreting quantification expressions. This calls for a
flexible and interoperable way of indicating aspects of quantification.

This paper presents an annotation scheme, called ‘QuantML’, where a range of aspects of natu-
ral language quantification are captured by a relatively small number of features, distributed over the
components of annotation structures in a way that allows a compositional semantic interpretation. The
QuantML scheme is based on a number of preliminary studies including Bunt (2017), Bunt et al. (2018),
and Bunt (2018), and has recently been accepted as the basis for developing Part 12 of the ISO Semantic
annotation framework (ISO 24617).
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2 Related work

ISO standard 24617-1 for the annotation of time and events, commonly known as ‘ISO-TimeML’, has
certain provisions for dealing with time-related quantification. For example, the temporal quantifier
“daily” is represented as follows, where “P1D” stands for “period of one day”:

(1) <TIMEX3 xml:id=“t5” target=“#token0” type=“SET” value=“P1D” quant=“EVERY”/>

In ISO-TimeML @quant is one of the attributes of temporal entities, used to indicate that the entity
is involved in a quantification. The limitations of this approach for annotating temporal quantification
have been discussed by Bunt & Pustejovsky (2010).

ISO-Space (ISO 24617-7) uses the @quant attribute as well, applying it to spatial entities, and in
addition uses the attribute @scopes to specify a scoping relation. The following example, taken from
ISO 24617-7:2014, illustrates this:

(2) a. There’s a lampse1 onss1 every deskse2.

b. <spatialEntity id=“se1” target=‘”#token2” pred=”lamp” form=“nom” countable=“true” quant=“1”
scopes=“/0”/>

<spatialEntity id=“se2” target=“#token5” pred=“desk” form=“nom” countable=“true” quant=“every”
scopes=“#se1”/>

<spatialSignal id=“ss1” target=“#token3” type=“dirTop” />
<qsLink id=“qsl1” relType=“EC” figure=“#se1” ground=“#se2” trigger=“#ss1”/>
<oLink id=“ol1” relType=“above” figure=“#se1” ground=“#se2” trigger=“#ss1” frameType=“intrinsic”

referencePt=“#se2” projective=“false” />

From a semantic point of view, this use of the @scopes attribute is not very satisfactory since the
relative scoping of quantifications over different sets of entities is not a local property of one of these
quantifications; therefore an annotation such as (2) does not have a compositional semantics.

The Parallel Meaning Bank (PMB, Abzianidze et al., 2017), building upon the Groningen Meaning
Bank (GMB, Bos et al., 2017), is a corpus of semantically annotated sentences and texts in English,
German, Dutch and Italian in raw and tokenised format with formal meaning representations. The PMB
aims to provide fine-grained meaning representations in DRT for the most likely interpretation of a
sentence, with a minimal use of underspecification. The GMB and the PMB are very useful resources
for semantic study, but this work is somewhat different from the usual kind of annotation work, where
semantic features are associated with small stretches of text or speech.

3 Granularity in quantification annotation

3.1 Ambiguity and lack of specificity

The multiplicity of possible readings of quantifications forms a challenge for language understanding
systems, but hardly for humans, who are mostly not aware of the ambiguities. Human annotators who
are not trained linguists or logicians likewise tend not to see all the possible readings of quantifications.
Automatic annotation processes run into the same problems as language understanding systems, having
a lack of general world knowledge and situation-specific context information. Both for manual and for
automatic annotation it is therefore of practical importance to not be forced to make more specific choices
than the available information and skills justify. On the other hand, it should of course be possible for
a skilled annotator to make precise annotations if sufficiently detailed information is available. A useful
annotation scheme should thus allow specifications with varying degrees of granularity.

The ambiguity challenge that quantification poses for automatic language understanding has led to
the development of underspecification techniques in computational semantics, in particular for under-
specified representation of quantifier scope (e.g. Alshawi, 1992; Bos, 1995; Reyle, 1993, Willis & Man-
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andhar, 2001). In the same vein, QuantML allows the annotation of quantifier scope to be underspecified
by making the specification of scope relations between a pair of quantifiers optional.

Scope is not the only source of quantifier ambiguity; ambiguities in the distributivity and individua-
tion of quantifiers make the ambiguity problem even more dramatic than has generally been assumed in
the literature, due to issues concerning precision and individuation which are considered next.

3.2 Precision and distributivity

Ambiguity in natural language quantification is mostly considered in terms of the number of logically
precise interpretations. But natural language expressions are sometimes not meant to be interpreted
with logical precision. This is in particular the case for quantifier distributivity. Consider the following
example:

(3) The men carried all the boxes upstairs.

In the event(s) described by this sentence it is not necessarily the case that all the carrying was done either
collectively or individually; the sentence could for instance describe a set of events in which the men
collectively carried the heaviest boxes, and individually the lighter ones. This means that the distributivity
of the quantification over the set of men is neither collective nor individual (and the same is true for the
quantification over the boxes); the term ‘unspecific’ has been introduced for this distributivity (Bunt,
1985). This interpretation can be represented in second-order predicate logic as shown in (4), where
following Kamp & Reyle (1993)1 the notation X∗ is used to designate the set consisting of the members
and subsets of X, and moreover the subscript notation P0 to designate the characteristic predicate of
the reference domain of a quantifier,2 which is a contextually determined part of the quantifier’s source
domain (as determined by an NP head), characterized by the predicate P.

(4) ∀x [box0(x) → ∃y ∃e [man0*(y) ∧ carry-up(e) ∧ agent(e,y) ∧ ∃z [box0*(z) ∧ [x=z ∨ x∈z] ∧
theme(e,z)]]]

This representation says that for every box in a given reference domain there is a carry-event in which a
contextually distinguished man or group of men carried it upstairs or carried a set of boxes upstairs that
contains it.

A quantification with unspecific distributivity has both individual and collective participation as spe-
cial cases, so ‘unspecific’ could be used to avoid having to choose a more specific distributivity. In the
case of (3), ‘unspecific’ is the correct distributivity to assign. In cases where it is difficult to decide on
the distributivity, ‘unspecific’ could be useful as a coarse-grained default value in annotations.3

3.3 Individuation

The ‘individuation’ of a quantification is another source of ambiguity, as illustrated in (5):

(5) a. I see no chicken in the garden.
b. I see no chicken in the stew.

The count/mass distinction is often characterized semantically in terms of ‘individuation’: “To learn
‘apple’ ... we must learn how much counts as an apple. (...) Such terms possess built-in modes (...) of
dividing their reference (..) Consider ‘shoe’, ‘pair of shoes’, and ‘footwear’: (...) two of the them divide
their reference differently, and the third not at all.” (Quine, 1960). In other words, count nouns have
a domain of reference made up of individuals, while that of a mass noun is made up of entities (often
called ‘quantities’) with mereological part-whole relations.

1Kampl & Reyle 1983, Section 4.2.2
2Also known as ‘context set’, Westerståhl, 1985.
3See also Schwertel, 2005 for a discussion of vagueness and lack of specificity in quantification.
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Quantifiers expressed by an NP with a count head noun may be ambiguous in a different way, as
illustrated by (6a). This sentence could for example describe a series of events where last Monday Mario
had a pizza, on Wednesday he had another pizza plus a few slices, and on Friday he had the slices
remaining from Wednesday. Pizzas are a domain where it is common to consider parts of individuals,
like in many domains related to food and drink. For other domains this may be less common, but in
principle every physical object has parts, and many abstract objects as well. When interpreting an NP
that describes domain involvement or domain size in terms of a non-integer number of individuals, this
is clearly necessary. The interpretation of sentence (6a) as describing a set of events in which Mario has
eaten some pieces of pizza, adding up to a total of three pizzas, can be represented by (6b), where P+

designates the property of being a part of an individual that has the property P,4 and Σ designates the
joining together of parts of an individual.5

(6) a. Mario had three pizzas last week.

b. ∃Y (∀y (y ∈ Y→ (pizza+(y) ∧ ∃e (eat(e) ∧ agent(e, Mario) ∧ theme(e, y)))) ∧ |ΣY|pizza=3)

In model-theoretic semantics it is commonly assumed that individuals are atomic concepts, but for
examples like the above we must assume an ontology where individuals have parts (in the mereological
sense). This part-whole relation has the same logical properties as the corresponding relation for mass
nouns.6 A quantification where parts of individuals should be taken into account will be said to have the
individuation “count/parts”.

Individuation and distributivity are distinct aspects of quantification; elements from a domain with
count/parts individuation can for example participate collectively in a quantification, as in the report from
a weight-lifting contest that “Tarzani lifted 27.5 pizzas” (see (15) below), if Tarzani lifted a pile of 25
whole pizzas topped by a short stack of five pizza halves.

4 Methodology

4.1 Theoretical background

The theory of generalized quantifiers (GQT) has been successful in describing and understanding many
aspects of natural language quantification. Together with neo-Davidsonian event semantics and Dis-
course Representation Theory (DRT), GQT forms the theoretical basis of the approach to quantification
annotation taken in this paper.

GQT exploits the fact that quantification in natural language differs from that in formal logic in that
logical quantifiers like ”for all x” and ”there exists an x” range over all the individual objects in a given
universe of discourse, whereas quantifying expressions in natural language like “all the students”, “an
essay”, “some coffee”, indicate a restricted domain that the quantification applies to GQT therefore
views noun phrases as the quantifiers of natural language (rather than determiners) (Barwise and Cooper,
1981; see e.g. also van Benthem and ter Meulen, 1985 and Szabolcsi, 2010). This view generalizes to
natural language quantifiers like ”two books”, ”less than three weeks”, ”thirty tons of peanut butter”.
Semantically, generalized quantifiers are viewed as expressing properties of sets of individuals; for ex-
ample, the quantifier ”more than three essays” is interpreted as the property of being a set that contains
more than three essays.

4Formally, P+(x)↔ ∃y (P(y) ∧ x v y).
5Expressing the size of a collection of pizza-parts in terms of number of pizzas assumes (1) a way of measuring the size of

pizzas and pizza-parts, and (2) a standard size. The notation |..|D designates such a measure function for the domain D. Note
that, for example, eight quarters of three different pizzas together have a size of 2 pizzas, even though it may not be possible to
physically join the parts to form two well-formed pizzas. The mereological sum ‘Σ’ in (6b) is used to avoid counting the size
of overlapping parts more than once.

6The most important properties are: (1) a part of a part of an individual is again a part of that individual: (xv a ∧ yv x)→
y v a; (2) the mereological sum of parts of an individual is another part of that individual: (x v a ∧ y v a)→ Σ(x,y) v a; (3)
every object is part of itself: xv x. See Bunt (1985) for a detailed discussion of the logic of mereological part-whole relations,
including a discussion of Lesniewski’s mereology and Leonard & Goodman’s ‘calculus of individuals’.
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Davidson (1967) proposed to treat events as individual objects, facilitating the semantic interpretation
of adverbs, like “quickly”, “passionately”, and adverbial quantifying expressions such as “everywhere”,
“never” and “at least three times”. Following Parsons (1990), this event-based semantics can be ex-
pressed in semantic representations by means of one-place predicates applied to existentially quantified
event variables, and two-place predicates to indicate the semantic roles of the participants in an event.
This ‘neo-Davidsonian’ approach has been adopted in the ISO annotation standards 24617-1 (Time and
events), 24617-4 (Semantic roles), 24617-7 (Spatial information), and 24617-8 (Discourse relations).
Champollion (2015) has shown that GQT and neo-Davidsonian semantics can be combined successfully.
Still, natural language quantification is a semantically extremely complex set of phenomena, and espec-
cially the interpretation of plural noun phrases presents certain theoretical challenges for GQT (see e.g.
Schwertel, 2005), some of which have been successfully been approached in DRT (Kamp and Reyle,
1993), which has other limitations. Luckily, providing a semantics for quantification annotations is less
challenging than providing a semantics for natural language expressions involving quantifications.

Several of the ISO semantic annotation standards use DRT’s Discourse Representation Structures
(DRSs) for defining a semantics of annotation structures. QuantML follows suit, combining ideas from
GQT, neo-Davidsonian semantics, and DRSs in the semantics of its annotation structures.

4.2 Annotation scheme architecture

The annotation scheme outlined in this paper has been designed according to the ISO principles of
semantic annotation (ISO standard 24617-6). This means that the scheme has a three-part definition
consisting of (1) an abstract syntax that specifies the possible annotation structures at a conceptual level
as set-theoretical constructs, such as pairs and triples of concepts; (2) a semantics that specifies the
meaning of the annotation structures defined by the abstract syntax; (3) a concrete syntax, that specifies
a representation format for annotation structures using XML expressions. Defining the semantics at
the level of the abstract syntax puts the focus of an annotation standard at the conceptual level, rather
than that of representation formats. Alternative representation formats may be defined with guaranteed
interoperability (Bunt et al., 2018). Annotators (human or automatic) deal with concrete representations
only, but they can rely on the existence of an underlying abstract syntax and semantics.

Example (7) shows the QuantML annotation structure (in a slightly simplified form), XML represen-
tation, and semantics for the collectdive reading of a simple sentence. Besides the usual box notation of
DRT also a string notation will be used, which is shown in (7e). Capital variables are used to designate
non-empty sets.

(7) a. Two thousand students protested
Markables: m1 = Two thousand students; m2 = students; m3 = protested

b. QuantML annotation structure:
〈 〈m3, 〈protest〉〉, {〈m1, 〈student, λ z.|z|= 2000, indef 〉〉}, agent, collective〉, {}〉

c. Annotation representation:
<entity xml:id=“x1” target=“#m1” pred=“student” involvement=“2000”/>
<entity xml:id=“e1” target=“#m3” pred=“protest”/>
<participantLink event=“#e1” participant=“#x1” semRole=“agent” distr=”collective”/>

d. Semantics:

X E

|X| = 2000,
x

x ∈ X
⇒

student(x)
,

e

e ∈ E
⇒ protest(e)

agent(e,X)

e. [X, E | |X|=2000, [x ∈ X→ student(x)], [e ∈ E→ [ protest(e), agent(e,X)]]]
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It may be noted that the annotation semantics in (7d,e) is structurally the same as the DRS that Kamp and
Reyle propose for the collective reading of the sentence “Three lawyers hired a new secretary” (Kamp
and Reyle 1993, p. 327). For the individual reading of the sentence (7a), where the students act in
individual protest-events (e.g. writing personal letters of protest), the annotation structure and its XML
representation would both have ‘individual’ instead of ‘collective’ (and narrow event scope, by default),
and the DRS interpretation would be as in (8):

(8) [X, E | |X|=2000, [x ∈ X→ student(x)], [e ∈ E→ protest(e)], [x ∈ X→ [e | e ∈ E, agent(e,x)]]]

Note also that the discourse referent X in these DRSs stands for the set of entities that participate in
the protest events, which corresponds to the set of entities (or the property) that in a classical linguistic
analysis is denoted by the VP. The DRS thus has a condition of the form [x ∈ X → ...θ (e,x)] for the
individual reading and a condition with θ (e,X) for the collective reading. The two conditions |X|=2000,
[x ∈ X→ student(x)] together reflect the GQT interpretation of the subject NP.

5 QuantML specification

5.1 Abstract syntax
The structures defined by the abstract syntax are n-tuples of elements that are either basic concepts, taken
from a store called the ‘conceptual inventory’, or, recursively, such n-tuples. Two types of structure are
distinguished: entity structures and link structures. An entity structure contains semantic information
about a segment of primary data and is formally a pair 〈m, s〉 consisting of a markable, which refers to a
segment of primary data, and certain semantic information. A link structure contains information about
the way two or more segments of primary data are semantically related.

QuantML conceptual inventory:

• unary predicates that characterize source domains (such as ‘book’, ‘student’, and ‘water) or event domains
(such as ‘lift’, ‘carry‘, ‘drink’), or that correspond to adjectives or to prepositions;

• binary predicates that correspond to semantic roles (agent, theme, instrument,...); for this purpose, the
semantic roles defined in ISO 24617-4 (Semantic roles) are used;

• numerical predicates for specifying reference domain involvement, reference domain size, the size of certain
parts of a reference domain, or the number of repetitions or frequency of recurrence in event structures;

• predicates for specifying proportional reference domain involvement, such as ‘all’, ‘some’, ‘most’;
• parameters for specifying definiteness: ‘definite’ and ‘indefinite’; domain individuation: ‘count’, ‘mass’,

and ‘count/parts’; and distributivity: ‘collective’, ‘individual’, ‘homogeneous’, ‘group’, ‘unspecific’;
• basic units of measurement, such as ‘meter’, ‘kilogram’, ‘litre’, and the operators ‘division’ and ‘multipli-

cation’ for forming complex units;
• the polarity values ‘positive’ and ‘negative’;
• parameters for specifying event scope: ‘wide’ and ‘narrow’, and for specifying whether scope inversion

occurs: ‘inverse’ or ‘linear’ (default value).
• ordering relations for specifying the relative scopes of quantifiers over sets of participants: ‘wider’, ‘equal’,

‘dual’, and ‘unscoped’.

QuantML has three kinds of entity structures: (1) for events; (2) for participants; (3) for restrictions
on sets of participants. A quantified set of participants is characterized by the following properties:

1. the source domain, from which the participants are drawn;

2. the reference domain, typically a subset of the source domain;

3. the individuation of the reference domain;

4. the quantitative (absolute or proportional) involvement of the reference domain;

5. the size of the reference domain, or of groups, subsets, or parts of the reference domain involved
in the quantified predication (optional).
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The entity structure 〈m,s〉 for a set of participants thus contains a triple s = 〈〈D, v〉, q, d〉 with D = char-
acteristic domain predicate, v = individuation, q = reference domain involvement, and d = definiteness,
with possibly an additional size specification. The domain component is more complex when the restric-
tor of an NP contains one or more head noun modifiers and/or multiple, conjoined heads (see Bunt 2018
for details).

Entity structures for sets of events are simpler than those for participants; they contain just a predicate
that characterizes a domain of events, and if applicable the cardinality of a set of repeated events or the
frequency of recurring events.

Two kinds of link structure are defined: participation structures, which link participants to events,
and scope link structures. Participation structures specify (1) a set of events; (2) a set of participants; (3) a
semantic role; (4) the distributivity of the participation; (5) the relative scope of the event quantification.
Scope link structures specify the relative scope of two participant entity structures.

Annotation structures for quantification are associated mostly with clauses and their constituent NPs
and verbs. The annotation structure for a clause is a quadruple consisting of an event structure, a set
of participant structures, a set of participation link structures, and a (possibly empty) set of scope link
structures. In a complete clause annotation structure all participant entity structures are linked to the
verb’s event entity structure, and all the relative scopes of all participant entity structures are specified.

5.2 Concrete syntax

A concrete syntax is specified here in the form of an XML representation of annotation structures. For
each type of entity structure, defined by the abstract syntax, a corresponding XML element is defined;
each of these elements has an attribute @xml:id whose value is a unique identifier, and an attribute
@target, whose value anchors the annotation in the primary data, having a markable as value (or a
sequence of markables). In addition, these elements have the following attributes:

<entity>: @domain, @involvement, @definiteness and @size (optional);

<event>: @pred (event type), @number (optional), and @frequency (optional);

<qDomain>: @source (with multiple values in the case of a conjunctive head) and @restrictions;

<sourceDomain>: @pred, @individuation;

<adjMod>: @pred, @distr, and @restrictions (optional);

<nnMod>: @pred, @distr, and @restrictions (optional);

<ppMod>: @pRel, @pEntity, @distr, @linking;

<relClause>: @semRole, @clause, @distr, @linking;

<amount>: @num, @unit;

<complexUnit>: @unit1, @operation, @unit2.

For each of the two types of link structure defined by the abstract syntax, an XML element is defined:

<participantLink> with the attributes @event, @participant, @semRole, @distr, @evScope (default
value: narrow) and @polarity (default value: positive);

<scopeLink> with the attributes @arg1, @arg2, @scopeRel.

5.3 Semantics

The QuantML semantics specifies a recursive interpretation function IQ that translates annotation struc-
tures into DRSs in a compositional way: the interpretation of an annotation structure is obtained by
combining the interpretations of its component entity structures and participation link structures, in a
way that is determined by scope link structures (if any). A full specification of the QuantML semantics
would go beyond the scope of this paper; the reader is referred to Bunt (2018, Appendix C). Here we
outline the overall approach and present some interesting parts of the definition of IQ.

37



The QuantML interpretation function translates every participant entity structure, event entity struc-
ture, and participation link structure into a DRS and combines these. Consider the example in (7). The
entity structures for “Two thousand students”, and “protested” are translated into the DRSs shown in
(10). For the participant entity structure this is achieved by applying an instance of clause (9a) in the IQ

definition, which interprets entity structures with source domain D, individuation v, involvement q, and
definiteness indef. The interpretation q′ of domain involvement specification q is defined in (9b-c), and
that of the domain specification in (9d-e).

(9) a. IQ(〈m1, 〈〈〈m2, D〉, v〉, q, indef 〉〉) = [ X | q′(X), [x ∈ X→ D′(x)]]

b. q′ = IQ(q)◦FQ(v)

c. FQ(v): FQ(count) = λX.|X|; FQ(mass) = FQ(count/parts) = λX.|ΣX|
d. D′ = IQ(〈D, v〉)
e. IQ(〈D, v〉): IQ(〈D, count〉) = IQ(〈D, mass〉) = IQ(D); IQ(〈D, count/parts〉) = IQ(D)+

(10) a. IQ(〈m1, 〈〈〈m2, student〉, count〉, λ z.|z|= 2000, indef 〉〉) = [ X | |X|=2000, [x ∈ X→ student(x)]]

b. IQ(〈m3, 〈protest〉〉) = [ E | [ e ∈ E→ protest(e)]]

The DRS in (10a) says that there exists a set with the property of containing two thousand students,
reflecting the GQT approach to NP interpretation. The DRS in (10b) together with (12) illustrates the
adoption of neo-Davidsonian event semantics.

The participation link structure has in this example the form 〈εE , {εP1}, R, d, σ〉, where εE and εP1
are the participant and event entity structures that are linked in the Agent role (R = Agent), with d =
collective, and σ (event scope) = narrow. The semantic interpretation of such a structure is defined as
follows, where ‘∪’ designates the familiar merge operation for DRSs:

(11) IQ〈εE , {εP1}, R, d, σ〉 = IQ〈εP1) ∪ (IQ〈εE) ∪ IQ(R, d, σ ))

Triples like 〈 R, d, σ〉 are interpreted as shown in (12):

(12) a. IQ(R, individual, narrow) = [ X, E | x ∈ X→ [ e | E ∈ E, agent(e, x) ]

b. IQ(R, individual, wide) = [ X, E | x ∈ X→ [ e | E ∈ E, agent(e, x) ]

c. IQ(R, collective, σ ) = [ X, E | x ∈ X→ [ e | E ∈ E, R(e, X) ]

Applying rule (11) to the right-hand sides of (10) and (12c) , with the values for R, d and σ substituted,
gives the desired result shown in (7d,e):

[X, E | |X|=2000, [x ∈ X→ student(x)], [e ∈ E→ [ protest(e), agent(e,X)]]]

The annotation structures defined by the QuantML abstract syntax can be deeply nested, since par-
ticipation link structures contain the entity structures that they link; see the argument of the IQ function
in (11). (Their XML representations, by contrast, are ‘flat’, which is more convenient for their practical
use.) A participant entity structure inside a link structure can itself have a complex structure, for in-
stance due to the head noun of an NP being modified by a quantifying relative clause. In a well-formed
annotation structure for a clause that contains only a single NP, like (7), such a link structure contains
all the semantic information. The only scoping in such cases is between the NP quantifier and the verb
viewed as an event quantifier (which is useful for examples like “All passengers died in the crash” and
“Mary wants to buy an inexpensive coat”, cf. Szabolcsi, 2010). For clauses with multiple NPs the addi-
tional information about their relative scopes is taken into account in the IQ function by applying ‘scoped
merge’ operations to their interpretations, and where appropriate inversion operations in order to obtain
the interpretations of ‘inversely linked’ quantified head noun modification by a PP or a relative clause
(Barker, 2014). The reader is referred to Bunt (2018) for details.
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6 Using QuantML

This section illustrates the use of QuantML with a few examples. The first example concerns two quan-
tifications with unspecific distributivity and an NP head with adjectival modification.

(13) a. Two young men carried all the boxes upstairs.
Markables: m1=Two young men, m2=young, m3=young men, m4=men, m5=carried upstairs, m6=all
the boxes, m7=boxes

b. QuantML annotation structure:
〈 〈m5, 〈cary-upstairs〉〉, {〈m1, 〈〈〈m4,man〉,〈m2,young〉〉, λ z.|z|= 2, inde f 〉〉, 〈m6, 〈〈m7,box0〉, all,de f 〉〉},
{〈〈m5,〈carry-upstairs〉〉,{〈m1,〈〈〈m4,man〉,〈m2,young〉〉,λ z.|z|= 2,indef〉}, agent, unspecific, narrow〉,
〈〈m5,〈carry-upstairs〉〉,{〈m6,〈〈m7, box0〉, all,def〉}, theme, unspecific, narrow〉}, {}〉

c. Annotation representation:
<entity xml:id=“x1” target=“#m1” domain=”#x2” involvement=“2” definiteness=”indef”/>
<qDomain xml:id=“x2” target=“#m3” source=”#x3” restrs=”#r1”/>
<sourceDomain xml:id=“x3” target=”#m4” individuation=”count” pred=“man”/>
<adjMod xml:id=“r1” target=“#m2” distr=”individual” pred=“young”/>
<event xml:id=“e1” target=“#m5” pred=“carry-up”/>
<entity xml:id=“x4” target=“#m6” domain=”#x5” involvement=“all” definiteness+”def”/>
<sourceDomain xml:id=“x5” target=”#m7” individuation=”count” pred=“box”/>
<participantLink event=“#e1” participant=“#x1” semRole=“agent” distr=”unspecific”

eventScope=”narrow”/>
<participantLink event=“#e1” participant=“#x1” semRole=“agent” distr=”unspecific”

eventScope=”narrow”/>
<scopeLink arg1=”#x4” arg2=”#x1” scopeRel=”wider”/>

d. Semantics:
[ X, Y, E | e ∈ E→ carry-up(e), x ∈ X→ [man0(x), young(x)], |X|=2, y ∈ Y↔ box0(y), x ∈ man*→ [
y, e | e ∈ E, y ∈ Y*, agent(e,x), theme(e,y) ], y ∈ box0*→ [ x, e | e ∈ E, x ∈ X, agent(e,x), theme(e,y) ]]

The next example illustrates the annotation and interpretation of a cumulative quantification with a mass
NP. The cumulativity means that none of the two NP quantifiers outscopes the other; this is annotated as
their scopes being equal.

(14) a. The girls ate most of the chocolate.
Markables: m1=The girls, m2=girls. m3=ate, m4=most of the chocolate, m5=chocolate

b. QuantML annotation structure:
〈 〈m3, 〈eat〉〉, {〈m1, 〈girl, all, de f 〉〉}, {〈m4, 〈chocolate, most,de f 〉〉},
{〈m3, 〈eat〉〉, {〈m1, 〈girl, all, de f 〉〉}, agent, unspecific, narrow〉,
〈m3, 〈eat〉〉, {〈m4, 〈chocolate0, most, de f 〉〉}, theme, unspecific, narrow〉}, {}〉

c. Annotation representation:
<entity xml:id=“x1” target=“#m1” domain=“#x2” involvement=“all” definiteness=”def”/>
<sourceDomain xml:id=“x2” target=“#m2” individuation=”count” pred=“girl”/>
<entity xml:id=“x3” target=“#m4” domain=“#x4” involvement=“most” definiteness=”def”/>
<sourceDomain xml:id=“x4” target=“#m5” individuation=”mass” pred=“chocolate”/>
<event xml:id=“e1” target=“#m3” pred=“eat”/>
<participantLink event=“#e1” participant=“#x1” semRole=“agent” distr=”individual”

eventScope=”narrow”/>
<participantLink event=“#e1” participant=“#x3” semRole=“patient” distr=”individual”

eventScope=”narrow”/>
<scopeLink arg1=”#x1” arg2=”#x3” scopeRel=”equal”/>
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d. Semantics:
Interpretation of the entity structure for “most of the chocolate”:
IQ(εP2) = [X | |Σ(X)| ≥ |Σ(chocolate0)|/2, x ∈ X→ chocolate0(x) ].

Interpretation of the annotation structure for the sentence:
IQ(< εE , {εP1,εP2}, {LP1, LP2} {sc1}>) = IQ(LεE ,εP1) ∪= IQ(L(εE ,εP2)) =
[ X Y E | x ∈ X↔ girl0(x), y ∈ Y→ chocolate(y), |Σ(Y)| ≥ |Σ(chocolate0)|/2, e ∈ E→eat(e),

x ∈ X→ [ e y | e ∈ E , y ∈ Y, agent(e,x), theme(e,y) ]
y ∈ Y→ [ e x | e ∈ E, x ∈ X, agent(e,x), theme(e,y) ]]

In words, this DRS says that there is a set Y of quantities of chocolate that together make up all the
contextually distinguished chocolate (referred to as “the chocolate”), and a set of eat-events such that
each of the girls in the set (X) of contextually distinguished girls (“the girls”) ate some of the quantities
of chocolate, and each of the quantities of chocolate was eaten by one of those girls.

The third example concerns a proper name and a quantification with “count/parts” individuation and
collective (!) distributivity.

(15) a. Tarzani lifted twenty-seven-and-a-half pizzas.
Markables: m1=Tarzani, m2=lifted. m3=twenty-seven-and-a-half pizzas, m4=pizzas

b. QuantML annotation structure:
〈 〈m2, 〈lift〉〉, {〈m1, 〈〈tarzani, count〉 all, def, 1〉〉, 〈m3, 〈〈pizza, count/parts〉, 〈27.5, pizza〉, indef 〉〉},
{〈m2, 〈lift〉〉, {〈m1, 〈〈tarzani, all, def, 1 〉〉}, agent, individual, narrow〉,
〈m2, 〈lift〉〉, {〈m3, 〈〈pizza, count/parts〉, 〈27.5, pizza〉, indef 〉〉}, theme, collective, narrow〉}, {}〉

c. Annotation representation:
<entity xml:id=“x1” target=“#m1” domain=“#x2” involvement=“all” definiteness=“de” size=“1”/>
<sourceDomain xml:id=“x2” target=“#m1” individuation=“count” pred=“tarzani”/>
<event xml:id=“e1” target=“#m2” pred=“lift”/>
<entity xml:id=x3” target=#m3 domain=#x4 involvement=27.5 definiteness=indef/>
<sourceDomain xml:id=“x4” target=“#m4” individuation=“count/parts” pred=“pizza”/>
<participantLink event=“#e1” participant=“#x1” semRole=agent” distr=“individual” eventScope=“wide”/>
<participantLink event=“#e1” participant=“#x3” semRole=“theme” distr=“collective” eventScope=“wide”/>
<scopeLink arg1=“#x1” arg2=“#x3” scopeRel=“wider”/>

d. Semantics:
[ E | e ∈ E→ lift(e), e ∈ E→ [ Y | y ∈ Y→ pizza+(y), |ΣY|pizza=27.5, agent(e,tarzani0), theme(e,Y)]]

7 Conclusions and Further Work

The QuantML annotation scheme was recently proposed to the International Organisation for Standardi-
sation for developing into part 12 of the ISO Semantic Annotation Framework, and was accepted as such
in March 2019 (ISO, 2019a). The QuantML scheme is rooted in the theory of generalized quantifiers,
neo-Davidsonian event semantics, and DRT, and is methodologically shaped after the ISO principles of
semantic annotation (ISO standard 24617-6). Different from these semantic theories, the proposed an-
notation scheme has a number of provisions for leaving aspects of quantification unspecified, on the one
hand intended to reflect the vagueness and ambiguity that natural language quantifications may have, and
on the other hand to allow annotators to make annotations with varying degrees of granularity.

The current proposal still has several loose ends, e.g. related to modality and polarity and to inten-
sional contexts. It is also fair to say that, where GQT and DRT do not provide adequate solutions for all
the complexities of quantification in natural language, currently no annotation scheme can be expected
to do much better.

The next important thing after or while further elaborating the proposed annotation scheme, is to
apply it in annotation projects and see to what extent it may need to be adapted in order to be optimally
useful for language technology applications and for empirically-based semantic investigations.
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Abstract

Topics models, such as LDA, are widely used in Natural Language Processing. Making their
output interpretable is an important area of research with applications to areas such as the enhance-
ment of exploratory search interfaces and the development of interpretable machine learning models.
Conventionally, topics are represented by their n most probable words, however, these representa-
tions are often difficult for humans to interpret. This paper explores the re-ranking of topic words
to generate more interpretable topic representations. A range of approaches are compared and eval-
uated in two experiments. The first uses crowdworkers to associate topics represented by different
word rankings with related documents. The second experiment is an automatic approach based on a
document retrieval task applied on multiple domains. Results in both experiments demonstrate that
re-ranking words improves topic interpretability and that the most effective re-ranking schemes were
those which combine information about the importance of words both within topics and their relative
frequency in the entire corpus. In addition, close correlation between the results of the two evaluation
approaches suggests that the automatic method proposed here could be used to evaluate re-ranking
methods without the need for human judgements.

1 Introduction

Probabilistic topic modelling (Blei, 2012) is a widely used approach in Natural Language Processing
(Boyd-Graber et al., 2017) with applications to areas such as enhancing exploratory search interfaces
(Chaney and Blei, 2012; Aletras et al., 2014; Smith et al., 2017; Aletras et al., 2017) and developing
interpretable machine learning models (Paul, 2016). A topic model, e.g. Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) learns a low-dimensional representation of documents as a mixture of latent
variables called topics. Topics are multinomial distributions over a predefined vocabulary of words.

Traditionally, topics have been represented by lists of the topic’s n most probable words, however
it is not always straightforward to interpret them due to noisy or domain specific data, spurious word
co-occurrences and highly-frequent/low-informative words assigned with high probability (Chang et al.,
2009).

Improving the interpretability of topic models is an important area of research. A range of approaches
have been developed including computing topic coherence (Newman et al., 2010; Mimno et al., 2011;
Aletras and Stevenson, 2013a; Lau et al., 2014), determining optimal topic cardinality (Lau and Baldwin,
2016), labelling topics text and/or images (Lau et al., 2011; Aletras and Stevenson, 2014, 2013b; Aletras
and Mittal, 2017; Sorodoc et al., 2017) and corpus pre-processing (Schofield et al., 2017). However,
methods for re-ranking topic words to improve topic interpretability have not been systematically eval-
uated yet. We hypothesise that some words relevant to a particular topic have not been assigned with a
high probability due to data sparseness or low frequency in the training corpus. Our goal is to identify
these words and re-rank the list representing the topic to make it more comprehensible. Table 1 shows
topics represented by the 30 most probable words. Words displayed in bold font are more general (less
informative, e.g. with high document frequency) while the remaining words are more likely to represent
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Table 1: Examples of topics represented by 30 most probable words from New York Times. Less infor-
mative words are shown in bold.

Topic
space museum years history science earth mission could art shuttle universe flight people theory world radar crew
site pincus plane three scientists day century pilot exhibit back anniversary landing project
percent million market company stock billion sales bank shares price business investors money share companies
rates fund interest rate quarter prices investment funds financial amp analysts growth industry york banks
film even movie world stars man much little story good way star best show see well seems american people love
hollywood director big ever rating though great seem production makes
officials agency office report department investigation government former federal charges secret information
card cia law agents security documents case investigators official fraud intelligence illegal commission service
police cards enforcement attorney

a coherent thematic subject. For example in the second topic, relevant words (e.g. investment, fund) have
been assigned with lower probability compared to less informative words (e.g. percent, million). As a
result, these words will not appear in the top 10 words.

This paper compares several word ranking methods and evaluate them using two approaches. The
first approach is based on a crowdsourcing task in which participants are provided with a document and
a list of topics then asked to identify the correct one, i.e. the topic that is most closely associated with
the document. Topics are represented by word lists ranked using different methods. The effectiveness of
the re-ranking approaches is evaluated by computing the accuracy of the participants on identifying the
correct topic. The second evaluation approach is based on an information retrieval (IR) task and does not
rely on human judgements. The re-ranked words are used to form a query and retrieve a set of documents
from the collection. The effectiveness of the word re-ranking is then evaluated in terms of how well it
can retrieve documents in the collection related to the topic. Results show that re-ranking topic words
improves performance in both experiments.

The paper makes the following contributions. It highlights the problem of re-ranking topic words
and demonstrates that it can improve topic interpretability. It introduces the first systematic evaluation
of topic word re-ranking methods using two approaches: one based on crowdsourcing and another based
on an IR task. The latter evaluation is an automated approach and does not rely on human judgments.
Experiments demonstrate strong agreement between the results produced by these approaches which in-
dicates that the IR-based approach could be used as an automated evaluation method in future studies.
The paper also compares multiple approaches to word re-ranking and concludes that the most effective
ones are those which combine information about the importance of words within topics and their rel-
ative frequency across the entire corpus. Code used in the experiments described in this paper can be
downloaded from https://github.com/areejokaili/topic_reranking.

2 Background

The standard approach to representing topics has been to show the top n words with the highest proba-
bility given the topic, e.g. (Blei and Lafferty, 2009a,b). However, these words may not be the ones that
are most informative about the topic and a range of approaches to re-ranking them has been proposed in
the literature.

Blei and Lafferty (2009a) proposed a re-ranking method inspired by the tf-idf word weighting which
includes two types of information: firstly, the probability of a word given a topic of interest and, secondly,
the same probability normalised by the average probability across all topics. The intuition behind this
approach is that good words for representing a topic will be those which have both high probability for a
given topic and low probability across all topics. Blei and Lafferty (2009a) did not describe any empirical
evaluation of the effectiveness of their approach.

Other word re-ranking methods have also combined information about the overall probability of a
word and its relative probability in one topic compared to others. Chuang et al. (2012) describe a word re-
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ranking method applied within a topic model visualisation system. Their approach combines information
about the word’s overall probability within the corpus and its distinctiveness for a particular topic which
is computed as the Kullback-Leibler divergence between the distribution of topics given the word and the
distribution of topics. Sievert and Shirley (2014) also combine both types of information within a topic
visualisation system. Bischof and Airoldi (2012) developed an approach for hierarchical topic models
which balances information about the word frequency in a topic and the exclusivity of that word to that
topic relative to a set of similar topics within the hierarchy.

Others have proposed approaches that only take into account the relative probability of each word in a
topic compared to the others. Song et al. (2009) introduced a word ranking method based on normalising
the probability of a word in a topic with the sum of the probabilities of that word across all topics. They
evaluated their method against two other methods, the topic model’s default ranking and the approach
proposed by Blei and Lafferty (2009a), and found that it performed better than either. A similar method
was proposed by Taddy (2012) who used the ratio of the probability of a word given a topic and the
word’s probability across the entire document collection.

Recently, Xing and Paul (2018) proposed to use information gathered while fitting the topic model.
They made use of topic parameters from posterior samples generated during Gibbs sampling and re-
weighted words based on their variability. Words with high uncertainty (i.e. their probabilities fluctuate
relatively highly) are less likely to be representative of the topic than those with more stable probability
estimates.

Topic re-ranking has also been explored within the context of measuring topic quality (Gollapalli and
Li, 2018). A main claim of that work is that word importance should not only depend on its probability
within a topic but also on its association with relevant neighbour words in the corpus. This information
is incorporated by constructing topic-specific graphs capturing neighborhood words in a corpus. The
PageRank (Brin and Page, 1998) algorithm is used to assign word importance scores based on centrality
and then re-rank words based on their importance. The top n words with the highest PageRank values
are used to compute the topics quality.

A common characteristic of previous work on topic word re-ranking is that it has been carried out
within the context of an application of topic models (e.g. topic visualisation) and approaches have
been evaluated in terms of these applications, if at all. The fact that word re-ranking methods have
been considered in previous studies demonstrates their importance. The lack of direct and systematic
evaluation is addressed in this work.

3 Word Re-ranking Methods

This paper explores a range of methods for word re-ranking based around the main approaches that have
been applied to the problem (see Section 2). Let ϕ̂w,t be the probability of a word w given a topic t
produced by a topic model, e.g. LDA.1 The following methods are used to re-rank topic words.

Original LDA Ranking (ROrig) The most obvious and commonly used method for ranking words
associated with a topic is to use ϕ̂w,t to score each word, i.e. scorew,t = ϕ̂w,t. The ranking generated by
this scoring function is equivalent to choosing the n most probable words for the topic and is referred to
as ROrig.

Normalised LDA Ranking (RNorm) The first re-ranking method is a simple extension of ROrig that
represents approaches that normalise the probability of a word given a particular topic by the sum of
probabilities for that word across all topics (Song et al., 2009; Taddy, 2012). This measure is computed
as:

1We use the topic-word posterior distribution of LDA, but re-ranking can be applied to any topic model that estimates
probabilities for words given topics.
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scorew,t =
ϕ̂w,t

T∑

j=1

ϕ̂w,j

(1)

where T denotes the number of topics in the model. This approach scales the importance of words based
on their overall occurrence within all topics in the model and downweights those that occur frequently.

Tf-idf Ranking (RTFIDF) The second re-ranking method was proposed by Blei and Lafferty (2009a)
and represents methods that combine information about the probability of a word in a single topic with
information about its probability across all topics (Bischof and Airoldi, 2012; Chuang et al., 2012; Sievert
and Shirley, 2014). Blei and Lafferty re-rank each word as:

scorew,t = ϕ̂w,t log
ϕ̂w,t




T∏

j=1

ϕ̂w,j




1
T

(2)

Inverse Document Frequency (IDF) Ranking (RIDF) The final word re-ranking method explored in
this paper is a variant on the previous method that takes account of a word’s distribution across documents
rather than topics. This method has not been explored in previous literature. In this approach each word
is weighted by the Inverse Document Frequency (IDF) score across the corpus used to train the topic
model:

scorew,t = ϕ̂w,t log
|D|
|Dw|

(3)

where D is the entire document collection and Dw the documents within D containing the word w.
To better understand the effect of re-ranking words, consider the various representations of two topics

shown in Table 2. The first row for each topic represents the baseline rank produced by topic model
(ROrig), while the other rows show the topic after re-ranking using Equations 1, 2 and 3, respectively.
The bold words included in the original ranking (ROrig) are down weighted and removed by at least two
methods. Underlined words are those weighted higher by a re-ranking method and included in the topic
representation.

Table 2: Examples of topic representations produced using various ranking approaches. Words in the
ROrig representation that were removed by at least two methods are shown in bold. Words that are
ranked higher by the other approaches and included in the topic representation are shown underlined.

Method Topic

ROrig space museum years history science earth mission could art shuttle
RNorm pincus abrams downey gettysburg particles sims emery landers lillian alamo
RTFIDF museum space earth shuttle pincus science universe radar exhibit art
RIDF museum space pincus science earth shuttle universe radar history mission

ROrig film even movie world stars man much little story good
RNorm vampire que winchell tomei westin swain marisa laughlin faye beatty
RTFIDF film movie stars vampire rating spielberg hollywood star characters actors
RIDF film movie stars vampire rating star spielberg even hollywood story
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4 Experiment 1: Human Evaluation of Topic Interpretability

The first experiment compares the effectiveness of different topic representations (i.e. word re-rankings)
by asking humans to choose the correct topic for a given document. We hypothesize that humans would
be able to find the correct topic more easily when the representation is more interpretable.

4.1 Dataset and Preprocessing

We randomly sampled approximately 33,000 news articles from the New York Times included in the
English GigaWord corpus fifth edition.2 Documents were tokenized and stopwords removed. Words
occurring in fewer than five or more than half of the documents were also removed to control for rare
and common words. The size of the resulting vocabulary is approximately 52,000 words.

4.2 Topic Generation

Topics were generated using LDA’s implementation in Gensim3 fitted with online variational Bayes
(Hoffman et al., 2010). The most important tuning parameter for LDA models is the number of topics
and it was set to 50 after experimenting with varying number of topics optimised for coherence. To
assess the quality of the resulting LDA models, topic coherence was computed4 using: (1) CV (Röder
et al., 2015); (2) CUCI (Newman et al., 2010); and (3) CNPMI (Bouma, 2009).

4.3 Crowdsourcing Task

A job was created on the Figure Eight5 crowdsourcing platform (previously known as CrowdFlower) in
which participants were presented with ten micro-tasks per page6. Each micro-task consists of a text
followed by six topics represented by a list of n words selected using one of the re-ranking methods
presented in Section 3. Participants were asked to select the topic that was most closely associated with
the text.

Micro-tasks were created using 48 New York Times articles (see Section 4.1). The correct answer
is the topic with the highest probability given the article and incorrect answers (i.e. distractors) are five
topics with low probabilities. The probability of the correct topic was at least 0.6 and the probability of
the five distractors lower than 0.3.7 Each article micro-tasks were created using each of the four ranking
methods (Section 3) generated from topics created using three cardinalities (5, 10, 20). Five assessments
were obtained for each micro-task and consequently 60 judgments were obtained for each document.8

Figure 1 shows an example of the micro-task presented to participants were they are asked to choose
one of the topics. Participants are first provided with a brief description and an example to help them
understand the task, followed by a quiz of ten micro-tasks to ensure their reliability and to eliminate
random answers (Kazai, 2011). Participants who fail to answer seven out of ten micro-tasks correctly are
eliminated from the job. If they qualify and proceed, a further quality micro-task is added per page and
they need to maintain an accuracy of responses above 70%. To ensure non-redundant results, participants
were always shown questions using the same topic word re-ranking method and the same number of
words per topic. Also, participants can only answer a single page of 10 micro-tasks.

2https://catalog.ldc.upenn.edu/LDC2011T07
3https://radimrehurek.com/gensim
4The implementations available in Gensim were used.
5https://www.figure-eight.com/
6One of the ten micro-tasks on each page is reserved for quality assessment.
7Alternative values for these parameters were explored but it was found that lowering the probability of the correct answer

and/or raising the probability of the distractors made the task too difficult.
84 (ranking methods) × 3 (cardinalities) × 5 (judgments per document)
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Figure 1: Example of the crowdsourcing micro-task interface.

4.4 Results and Discussion

Results for ROrig, RNorm, RTFIDF and RIDF when topics are represented by the 5, 10 and 20 highest
scoring words are shown in Table 3. Accuracy represents the percentage of questions for which partici-
pants were able to identify the correct topic (i.e. topic with the highest probability given the document).
Time/page is the mean time taken for participants to complete a page of 10 questions. Coherence is the
average coherence of the topics, computed using NPMI (Aletras and Stevenson, 2013a)9.

Table 3: Results of experiment comparing re-ranking methods in which crowdsourcing participants were
asked to associate topic representations with documents. Topics are represented with their top 5, 10 or
20 probable words.

#words
Ranking Methods

ROrig RNorm RTFIDF RIDF

5
Accuracy (%) 64 55 70 73

Time/page 11:46 13:13 13:00 11:28
Coherence (NPMI) 0.092 0.035 0.112 0.100

10
Accuracy (%) 67 48 76 70

Time/page 12:40 15:23 12:15 12:31
Coherence (NPMI) 0.072 0.038 0.091 0.084

20
Accuracy (%) 69 64 74 72

Time/page 14:18 14:30 11:47 11:13
Coherence (NPMI) 0.050 0.029 0.071 0.062

Results show a variation in performance which indicates that re-ranking words affects individual’s
ability to interpret topics. Performance when the words are ranked usingRTFIDF andRIDF outperform
the default ranking (ROrig). Performance when words are ranked using RNorm is considerably lower
than their word re-ranking methods, both in terms of accuracy and time taken to complete the task.

These results show that the improvement obtained by using RTFIDF and RIDF is consistent when
the number of words in the representation is varied. Results usingROrig improve as the number of words

9The implementation provided by https://github.com/jhlau/topic_interpretability was used.
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increases but never achieve the same performance as the re-ranking methods (exceptRNorm), even when
20 words are included. This demonstrates that choosing the most appropriate words to represent a topic is
more useful than simply increasing the number of words shown to the user. In fact, increasing the number
of words shown for the default ranking appears to come at the cost of slowing down the time taken for a
user to interpret the topic. The same increase in task completion time is not observed for RTFIDF and
RIDF and this may be down to the fact that more useful words appear earlier in the ranking, allowing
participants to interpret the topic more quickly.

The RTFIDF and RIDF approaches both combine information about the word’s importance within
an individual topic and across the entire document collection which results into more effective rankings
than ROrig. On the other hand, RNorm only considers the relative importance of a word across topics
and it would be possible for a word with a relatively low probability given the topic to be ranked highly
if that word also had low probability across all the other topics.

Our results contrast with those reported by Song et al. (2009) who concluded that RNorm was
more effective for word re-ranking than ROrig and RTFIDF (see Section 3). However, their evaluation
methodology used a single annotator per-task and asked them to judge whether words included within
topic representations were important or not. Our approach measures a participants ability to interpret
topic representations more directly and makes use of multiple annotations. The low results for RNorm

suggest that crowdworkers were simply unable to interpret many of the topics and, in those cases, their
judgments about which words are important are unlikely to be reliable.

Overall RTFIDF appears to be the most effective of the re-ranking approaches evaluated. This
method achieves the best performance for 10 and 20 words, although not as well as RIDF for 5 words.

5 Experiment 2: Automatic Evaluation of Topic Interpretability via Doc-
ument Retrieval

In this second experiment, we automate the evaluation of the different topic representations obtained by
re-ranking the topic words. The automated evaluation is based on an IR task in which the re-ranked topic
words are used to form a query and retrieve documents relevant to the topic. The motivation behind
this approach is that the most effective re-rankings are the ones that can retrieve documents related to
the topic, while ineffective re-rankings will not be able to distinguish these from other documents in
the collection. This evaluation method does not rely on human judgments, unlike the crowdsourcing
approach presented in the previous section.

5.1 Evaluation Pipeline

The evaluation approach assumes that given a document collection in which each document is mapped
to a label (or labels) indicating its topic. We refer to these labels as gold standard topics (to distinguish
them from the automatically generated topics created by the topic model).

First, a set of automatically generated topics are created by running a topic model over a document
collection. For each gold standard topic, a set of all documents labelled with that topic is created.
The document-topic distribution created by the topic model is then used to identify the most probable
automatically generated topic within that set of documents. This is achieved by summing the document-
topic distributions and choosing the automatically generated topic with the highest value. A query is
then created by selecting the re-ranked top n words from that automatically generated topic and use it to
retrieve a set of documents from the collection. The set of retrieved documents is then compared against
the set of all documents labelled with the gold standard label.

5.2 Datasets

Evaluation was carried out using datasets representing documents from a wide range of domains: news
articles, scientific literature and online reviews.
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Table 4: Datasets statistics.
Dataset Documents Distinct Words

NYT Annotated 39,218 60,339
MEDLINE 23,640 18,571

Amazon 40,000 24,943

5.2.1 New York Times

A subset of the NYT annotated dataset10 consisting of approximately approximately 39,000 articles was
used for this experiment11. This collection contains news articles from the New York Times labelled with
1,746 topics which we use as gold standard labels. These labels, which we refer to as NYT topics, belong
to a controlled set of topic categories and have been manually verified by NYTimes.com production staff.
Each article has at least one NYT topic, and articles are organised into a topic hierarchy. Examples of
NYT topics include:

• Top/Features/Travel/Guides/Destinations/North America/United States

• Top/News/New York and Region

• Top/News/Technology

The hierarchy into which the topics are organised is quite deep in some places and consequently we
truncated each topic to the top most four levels of the hierarchy to control the number of topics. For
example, the topic Top/Features/Travel/Guides/ Destinations/North America/United States is truncated
to Top/Features/Travel/Guides. This produces a total of 132 truncated NYT topics. The number of
articles associated with each of the 132 NYT topics ranges from 1 to 18,489. To avoid NYT topics that
are associated with small numbers of documents, we used the 50 NYT topics that are associated with the
most documents which resulted in NYT topic that are each associated with at least 560 documents.

5.2.2 MEDLINE

MEDLINE contains abstracts of more than 25 million scientific publications in medicine and related
fields. These abstracts are labelled with Medical Subject Headings (MeSH) codes which index publica-
tions into a hierarchy structure. Each publication is associated with a set of MeSH codes to describe the
content of the publication.

The 50 most frequently used MeSH codes with the most publications from a subset of MEDLINE
containing publications from 2017. This set of code are referred to as MeSH topics.

5.2.3 Amazon Product Reviews

The Amazon Product Reviews dataset (McAuley et al., 2015)12 contains reviews of products purchased
from the Amazon website. Reviews are organized into 24 top-level categories each of which is divided
into subcategories. The number of subcategories ranges from 1 to 1961. We chose eight main categories
(Cell Phones and Accessories, Electronics, Movies and TV, Musical Instrument, Office Products, Pet
Supplies, Tools and Home Improvement and Automotive) and extracted the 10 sub-categories with the
most reviews from each which yielded 76 distinct sub-categories. This set of categories is referred to as
AMZ topics. 5,000 product reviews are extracted from each main category and reviews must belong to at
least one category from the 50 most frequent in the AMZ topics, resulting in a total of 40,000 reviews.

10https://catalog.ldc.upenn.edu/LDC2008T19
11Note that this is a different dataset to the one used for experiment 1 and contains the gold standard topics required for this

evaluation
12http://jmcauley.ucsd.edu/data/amazon
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Table 5: Results of experiment in which top 5, 10 and 20 ranked words are used to form query.

#Words
Ranking Method

ROrig RNorm RTFIDF RIDF

New York Times Dataset
5 0.0945 0.0463 0.1363 0.1187

10 0.1161 0.0608 0.1417 0.1291
20 0.1256 0.0721 0.1392 0.1321

Medline Dataset
5 0.1420 0.0202 0.1738 0.1578

10 0.1518 0.0289 0.1612 0.1575
20 0.1498 0.0372 0.1662 0.1642

Amazon Product Reviews Dataset
5 0.0231 0.0202 0.0208 0.0244

10 0.0195 0.0154 0.0244 0.0236
20 0.0258 0.0137 0.0279 0.0266

5.3 Experimental Settings

Each of the datasets was indexed using Apache Lucene.13 The same preprocessing steps used in Experi-
ment 1 were applied to the datasets and the statistics of the datasets are shown in Table 4.

For each dataset, LDA was used to generate topics and the number of topics for each dataset was set
based on optimising for coherence which yielded 35 for NYT, 45 for MEDLINE and 35 for Amazon.
The automatically generated topic that was most closely associated with each of the gold topics (i.e.
50 NYT topics, 50 MeSH topics and 50 AMZ topics) were identified by applying the process outlined
above in Section 5.1. The top 5, 10 and 20 words from this topic is used to form a query which is
submitted to Lucene. The BM25 retrieval model (Robertson, 2004) was used to measure the similarity
between the document to a given query. The documents retrieved by applying these queries are compared
against the entire set of documents labelled with the dataset topics (i.e. NYT topic, MeSH topics, or
AMZ topics) by computing Mean Average Precision (MAP)14 which is commonly used as a single
metric to summarise IR system performance.

5.4 Results and Discussion

Queries were created using the top 5, 10, and 20 topic words using the ROrig, RNorm, RTFIDF , and
RIDF re-rankings and applied to each of the three datasets (Section 5.2). Results are shown in Table 5.

Re-ranking words using RTFIDF and RIDF consistently enhances retrieval performance compared
to the default ranking (ROrig). RTFIDF produces the best results in the majority of configurations, the
exception being when 5 words are used with the Amazon corpus where RIDF outperforms the other
re-ranking methods. Re-ranking using RNorm is less effective than all the other rankings, including the
default ranking. The relative performance of the four approaches is generally stable when the number of
words used to form the query is varied and across the three datasets representing very different genres of
text that were used in this experiment.

These results demonstrate that topic word re-ranking can produce words which are more effective for
discriminating documents describing a particular topic from those which do not. The pattern of results
is very similar to the crowdsourcing experiments suggesting that the re-rankings preferred by human
subjects are those which are also useful within applications such as document retrieval.

13http://lucene.apache.org/
14MAP is computed using the trec eval tool: http://trec.nist.gov/trec_eval/
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6 Evaluating Topic Representations

This paper presented two novel methods for the evaluation of topic representations: a crowdsourcing
experiment that relied on human judgments (Section 4) and an automated evaluation based on an IR
task (Section 5). Although there are some differences between results using the two methods, the rel-
ative performance of the re-ranking methods explored in this paper are very similar. The correlations
between results of the crowdsourcing experiment and IR evaluations are statistically significant for all
three datasets (Pearson’s r varies between 0.81 and 0.90, p < 0.05). This suggests that the automated
evaluation approach presented in Section 5 is a useful tool for assessing the effectiveness of methods for
word re-ranking with the advantage that results can be obtained more rapidly than methods that require
human judgments. However, human judgments are recommended when performance is similar and au-
tomated evaluation should not be relied upon to make fine-grained distinctions between approaches, as
is common for some tasks (e.g. Machine Translation (Papineni et al., 2002)).

7 Conclusion

We presented a study on word re-ranking methods designed to improve topic interpretability. Four meth-
ods were presented and assessed through two experiments. In the first experiment, participants on a
crowdsourcing platform were asked to associate documents with related topics. In the second experi-
ment, automated evaluation was based on a document retrieval task.

Re-ranking the topic words was found to improve the interpretability of topics and therefore should
be used as a post-processing step to improve topic representation. The most effective re-ranking schemes
were those which combined information about the importance of words both within topics and their
relative frequency in the entire corpus, thereby ensuring that less informative words are not used.
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Röder, M., A. Both, and A. Hinneburg (2015). Exploring the Space of Topic Coherence Measures. In
Proceedings of the eight ACM International Conference on Web Search and Data Mining (WSDM
’15), pp. 399–408. ACM.

Schofield, A., M. Magnusson, and D. Mimno (2017). Pulling Out the Stops: Rethinking Stopword
Removal for Topic Models. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL ’17), Volume 2, pp. 432–436.

Sievert, C. and K. Shirley (2014). LDAvis: A Method for Visualizing and Interpreting Topics. In
Preceedings of the Workshop on Interactive Learning Visualization, and Interfaces, pp. 63–70.

Smith, A., T. Lee, F. Poursabzi-Sangdeh, J. Boyd-Graber, N. Elmqvist, and L. Findlater (2017). Evaluat-
ing Visual Representations for Topic Understanding and Their Effects on Manually Generated Topic
Labels. Transactions of the Association for Computational Linguistics 5, 1–15.

Song, Y., S. Pan, S. Liu, M. Zhou, and W. Qian (2009). Topic and Keyword Re-ranking for LDA-
based Topic Modeling. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management (CIKM ’09), pp. 1757–1760.

Sorodoc, I., J. H. Lau, N. Aletras, and T. Baldwin (2017). Multimodal Topic Labelling. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL
’17), pp. 701–706.

Taddy, M. (2012). On Estimation and Selection for Topic Models. In Proceedings of the 15th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS ’12), pp. 1184–1193.

Xing, L. and M. J. Paul (2018). Diagnosing and Improving Topic Models by Analyzing Posterior Vari-
ability. In Proceedings of the Advancement of Artificial Intelligence (AAAI ’18), pp. 6005–6012.

54



An Improved Approach for Semantic Graph Composition
with CCG

Austin Blodgett Nathan Schneider
Georgetown University, Department of Linguistics
{ajb341, nathan.schneider}@georgetown.edu

Abstract

This paper builds on previous work using Combinatory Categorial Grammar (CCG) to derive
a transparent syntax-semantics interface for Abstract Meaning Representation (AMR) parsing. We
define new semantics for the CCG combinators that is better suited to deriving AMR graphs. In
particular, we define relation-wise alternatives for the application and composition combinators: these
require that the two constituents being combined overlap in one AMR relation. We also provide a
new semantics for type raising, which is necessary for certain constructions. Using these mechanisms,
we suggest an analysis of eventive nouns, which present a challenge for deriving AMR graphs. Our
theoretical analysis will facilitate future work on robust and transparent AMR parsing using CCG.

1 Introduction

At the heart of semantic parsing are two goals: the disambiguation of linguistic forms that can have multiple
meanings, and the normalization of morphological and syntactic variation. Among many techniques
for semantic parsing, one profitable direction exploits computational linguistic grammar formalisms
that make explicit the correspondence between the linguistic form of a sentence and the semantics (e.g.,
broad-coverage logical forms, or database queries in a domain-specific query language). In particular,
English semantic parsers using Combinatory Categorial Grammar (CCG; Steedman, 2000) have been
quite successful thanks to the CCGBank resource (Hockenmaier and Steedman, 2007; Honnibal et al.,
2010) and the broad-coverage statistical parsing models trained on it (e.g., Clark and Curran, 2004; Lewis
et al., 2016; Clark et al., 2018).

The CCG formalism assumes that all language-specific grammatical information is stored in a
lexicon: each word in the lexicon is associated with a structured syntactic category and a semantic
form, such that the compositional potentials of the category and the semantics are isomorphic. A
small universal set of combinators are responsible for assembling constituents into a full syntactic
derivation; each combinator operates on adjacent constituents with appropriate categories to produce a
new constituent and its compositional semantics, subject to constraints. A full grammar thus allows well-
formed sentences to be transduced into semantic structures. The categories and combinators cooperate
to license productive syntactic constructions like control and wh-questions, requiring the correct word
order and producing the correct semantic dependencies. For example, consider the sentence “Who did
John seem to forget to invite to attend?”: the correct logical form—in propositional logic, something
like seem(forget(Johni, invite(Johni,whoj , attend(whoj))))—is nontrivial, requiring a precise account of
several constructions that conspire to produce long-range dependencies.

Whereas CCG traditionally uses some version of lambda calculus for its semantics, there has also been
initial work using CCG to build parsers for Abstract Meaning Representation (AMR; Banarescu et al.,
2013), a standard with which a large “sembank” of English sentences1 has been manually annotated.2 To

1See https://amr.isi.edu/download.html
2As originally defined, AMR is English-specific. However, a companion annotation standard, corpus, and parsers exist for

Chinese (Xue et al., 2014; Li et al., 2016; Wang et al., 2018), and initial investigations have been made toward adapting AMR to
several other languages (Xue et al., 2014; Migueles-Abraira et al., 2018; Anchiêta and Pardo, 2018).
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date, dozens of publications3 have used the corpus to train and evaluate semantic parsers—most using
graph-based or transition-based parsing methods (e.g., Flanigan et al., 2014; Wang et al., 2016; Lyu
and Titov, 2018) to transform the sentence string or syntactic parse into a semantic graph via a learned
statistical model, without any explicit characterization of the syntax-semantics interface. There is good
reason to apply CCG to the AMR parsing task: apart from transparency of the syntax-semantics interface,
state-of-the-art AMR parsers are known to be weak at reentrancy (e.g., Lyu and Titov, 2018), which
presumably can be partially attributed to syntactic reentrancy in control constructions, for example. Prior
work applying CCG to AMR parsing has begun to address this, but some of the important mechanisms that
make CCG a linguistically powerful and robust theory have yet to be incorporated into these approaches.

In this paper, we build on a core insight of previous work (e.g., Artzi et al., 2015; Beschke and Menzel,
2018) that AMR fragments can be directly represented as the semantics of CCG lexical entries. With
appropriate definitions of the lexical items and combinatorial rules of CCG, the compositionality of CCG
gives a derivation of a full AMR “for free”. In other words, AMR parsing can be reduced to CCG parsing
(plus some additional semantic disambiguation and postprocessing). On a practical level, this should
allow us to take advantage of existing CCG datasets and parsing methods for AMR parsing. In addition,
explicitly storing AMR fragments in the CCG lexicon would provide a level of interpretability not seen in
most statistical AMR parsers: the transparent syntax-semantics interface would decouple errors in the
grammar from errors in the parsing model.

As a prerequisite for building a CCG-based AMR parser, or inducing a broad-coverage grammar
(CCG lexicon) from data, we consider in this paper the formal mechanisms that would be necessary
to derive AMRs with linguistic robustness. In particular, we address a variety of challenging syntactic
phenomena with respect to AMR, showing the semantic fragments, associated syntactic categories, and
combinators that will facilitate parsing of constructions including control, wh-questions, relative clauses,
case marking, nonconstituent coordination, eventive nouns, and light verbs. In so doing, we offer new
semantics of combinators for semantic graphs beyond the proposals of previous work.

After an overview of related work (§2),4 we introduce our formalism for AMR graph semantics in
CCG (§3). §4 gives example derivations for well-known linguistic phenomena including control, complex
coordination, and eventive nouns. §5 discusses some implications of our approach.

2 Related Work

AMR formalizes sentence meaning via a graph structure. The AMR for an English sentence is a directed
acyclic graph that abstracts away from morphological and syntactic details such as word order, voice,
definiteness, and morphology, focusing instead on lexical semantic predicates, roles, and relations.
Semantic predicate-argument structures are based on the PropBank frame lexicon (Kingsbury and Palmer,
2002) and its frame-specific core argument roles (named ARG0, ARG1, etc.). AMR supplements these
with its own inventory of noncore relations like :time and :purpose, and some specialized frames for the
semantics of comparison, for example. Named entities are typed and linked to Wikipedia pages; dates and
other values are normalized. Edges in the graph correspond to roles/relations, and nodes to predicate or
non-predicate “concepts”, which are lemmatized. Reentrancy is used for within-sentence coreference.

A limited amount of prior research has combined CCG and AMR. Artzi et al. (2015) and Misra
and Artzi (2016) develop an AMR parser using CCG by reformulating AMR graphs as logical forms in
lambda calculus. We opt here for an approach similar to that of Beschke and Menzel (2018), where AMR
subgraphs with free variables are treated as the semantics in the CCG lexicon. This requires definitions of
the combinators that operate directly on AMR subgraphs rather than lambda calculus expressions.

Beschke and Menzel (2018) situate their formalization within the literature on graph grammars. They
formulate their approach in terms of the HR algebra (Courcelle and Engelfriet, 2012), which Koller (2015)
had applied to AMR graphs (but not with CCG). In this formalism, graph fragments called s-graphs are
assembled to derive full graphs. S-graphs are equivalent to the AMR subgraphs described in this paper.

3https://nert-nlp.github.io/AMR-Bibliography/ is a categorized list of publications about or using AMR.
4Due to space constraints, we assume the reader is familiar with the basics of both CCG and AMR.
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Figure 1: Basic shape of AMR subgraph: Free variables (square,
blue) are represented with x, y, z, etc. AMR nodes (round, red) are
represented with a, b, c, etc. Dots indicate that part of the graph
may be present or not.

In particular, Beschke and Menzel define the semantics of CCG combinators in terms of HR-algebraic
operations on s-graphs. They discuss a small set of combinators from Lewis and Steedman (2014) that
includes forward and backward application and forward, backward, crossed, and generalized variants of
composition. We introduce equivalent semantics for application and composition (§3.2), avoiding the
conceptually heavy notation and formalism from the HR algebra. They also specify Conjunction and
Identity combinators, which we adapt slightly to suit our needs, and a Punctuation combinator. More
significantly, they treat unary operators such as type raising to have no effect on the semantics, whereas we
will take another route for type raising (§3.4), and will introduce new, relation-wise versions of application
and composition (§3.3). Finally, whereas Beschke and Menzel devote most of their paper to a lexicon
induction algorithm and experiments, we focus on the linguistic motivation for our definition of the
combinators, and leave the development of suitable lexicon induction techniques to future work.

A related graph formalism called hyperedge replacement grammar is also used in the AMR parsing
literature (Jones et al., 2012; Chiang et al., 2013; Peng et al., 2015; Peng and Gildea, 2016; Björklund
et al., 2016; Groschwitz et al., 2018). Hyperedge replacement grammars (Rozenberg, 1997) are a formal
way of combining subgraphs to derive a larger graph, based on an extension of Context Free Grammars
to graphs instead of strings. Readers may assume that the graph formalism described in this paper is a
simplified hyperedge replacement grammar which only allows hyperedges of rank 1.

3 Graph Semantics

AMR is designed to represent semantics at the sentence level. For CCG lexical entries and combinators
to parse AMR semantics, we need to formalize how AMR subgraphs can represent the semantics of
individual words, and how combinators combine subgraphs to derive a full AMR. This section will
formalize AMR subgraph semantics and CCG combinators for function application, composition, and
type raising. Additionally, we propose new relation-wise variants of application and composition which
are unique to graph semantics.

Each AMR subgraph contains nodes and edges from the resulting AMR as well as some nodes which
correspond to free variables. The basic shape of an AMR subgraph appears in figure 1. Formally, an AMR
subgraph is a tuple 〈G,R, FV 〉, where G is a connected, labeled, directed acyclic graph; R is the root
node in G; and FV is an ordered list of the nodes of G which are free and must be substituted by the end
of the derivation. Though not shown in figure 1, the root of an AMR subgraph may be a free variable.
Intuitively, a subgraph with at least one free variable corresponds to a function, and a subgraph with no
free variables corresponds to a constant.

Textual notation. Taking inspiration from the PENMAN notation used for AMR, we use the notation
(a :rel1 ( 2 :rel2 1 )) to denote an AMR subgraph rooted at a constant a, with a :rel1 edge to a free variable,
2 , which in turn has a child free variable, 1 .

Table 1 shows the formulation of graph semantics for all the combinators described below. The
formulas are schematic with attention paid to the resulting order of free variables, which semantically
distinguishes application from composition. Another combinator in CCG, crossing composition, has the
same semantics as regular composition. Semantics for the substitution combinator is left to future work.

3.1 Syntax-Semantics Isomorphism

A core property of CCG is that it provides transparency in the syntax-semantics interface: both syntactic
categories and semantic forms are defined as functions permitting a compositional derivation of the

57



combinator function (left/right) arg. (right/left) result FV ordering
Binary

Application . . .1 1 . . .2 a . . .3 . . .1 a . . .2 . . .3 2 , . . . , 1 , . . .
Composition (B, B2) . . .1 1 . . .2 a . . .3 . . .1 a . . .2 . . .3 1 , . . . , 2 , . . .

Relation-wise Application (R) . . .1 1 :relx b . . .2 a :relx 1 . . .3 . . .1 a :relx b . . .2 . . .3 2 , . . . , 2 , . . .
Relation-wise Composition (RB) . . .1 1 :relx b . . .2 a :relx 2 . . .3 . . .1 a :relx b . . .2 . . .3 1 , 3 , . . . , 2 , . . .

. . . Second-order (RB2) . . .1 1 :relx b . . .2 a :relx 3 . . .3 . . .1 a :relx b . . .2 . . .3 1 , 2 , 4 , . . . , 2 , . . .

Unary
Type Raising (T) a . . .1 1 :? a . . .1 1 , 1 , . . .

N-ary (≤1 FV per operand)
Conjunction (&) x a . . .1, b . . .2, . . . x :op1 a . . .1 :op2 b . . .2 . . . 1

Table 1: Formal semantic rules for AMR combinators. Boxed numbers stand for free variables (FVs)
in the semantics of each of the constituents being combined: 1 stands for the lowest indexed FV in the
function (head) constituent, and 1 for the lowest indexed FV in the argument constituent, if any. Ellipses
. . .n denote optional dominating structure (if preceding) and optional dominated structure (if following).
Any FVs in these optional structures are preserved in the result, in the order given in the last column.
For relation-wise combinators, the function constituent’s relation may also be :?. Crossing composition
(B×) and its variants behave semantically like their non-crossing counterparts. Not shown: exceptions to
application and composition for the identity function (ID), discussed in §4.

X. . . /Y : Y :

p

a

x1 x2 . . . y

:rel

>

X. . . :

p

x1 x2 . . . a
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(a) Function Application

X. . . /Y :

x

a

:rel Y :

p

y
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>R

X. . . :
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:rel

(b) Relation-wise Application

X :

p

x1 x2 . . . xn

>T
[
T
]

x

T/(T\X) : p

x1 x2 . . . xn

:?

(c) Type Raising

Figure 2: Combinators illustrated in terms of semantic graph structure. The semantics of composition
differs from application only in ordering of free variables (not shown).

sentence. The syntactic category determines which constituents may be constructed and in what word
order. In the semantics, the word order (direction of the slashes) is irrelevant, but the functional structure—
the arity and the order in which arguments are to be applied—must match in order for the semantics to
remain well-formed as the sentence is derived based on the syntactic categories and combinatorial rules.

In other words, the functional structure of the category must be isomorphic to the functional structure
of the semantics. For example, a hypothetical CCG category V\W/X/(Y/Z) would naturally correspond
to a ternary function whose first argument, Y/Z, is itself a unary function.

This brings us to the following principle:

Principle of Functional Isomorphism. The semantics of a word or constituent cannot have higher arity
than the CCG category calls for, and every functional category must take at least one semantic argument.
For instance, a word or constituent with category PP/NP must have exactly 1 semantic argument; and the
VP adjunct category (S\NP)\(S\NP) a.k.a. S\NP\(S\NP) can be interpreted as having 1 or 2 semantic
arguments.

Without proving it formally, we remark that this helps ensure that syntactic well-formedness according
to the categories will guarantee semantic well-formedness, with no attempt to apply something that is
not expecting any arguments, and no free variables remaining in the semantics at the end of a sentence
derivation. (An edge case where this guarantee might not hold is noted in fn. 6.)
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3.2 Function Application and Composition

In Function Application of AMR subgraphs, a free variable (blue) can be filled by the root of another
AMR subgraph. The case of right function application is shown in figure 2a. Function application can
only substitute the first free variable in FV corresponding to the rightmost syntactic argument.

While application and composition always differ syntactically, from a graph semantics point of view,
composition turns out to be the same as function application, where the root of one subgraph is substituted
for a free variable in another subgraph. The difference between application and composition is captured in
the resulting order of free variables. In the case of composition, the argument’s free variables are placed
first on the free variable stack followed by the function’s free variables. This allows free variables in
the AMR subgraph to consistently match syntactic arguments in the CCG category. This is a difference
between composition in this work and in Beschke and Menzel’s (2018) work, where the semantics of
application and composition is the same.

3.3 Relation-wise Application and Composition

When deriving a constituent, there are situations where it is desirable to have a semantic edge that is shared
between the two constituents being combined. For example, we specify the following lexical entry for the
control verb “decide”, indexing arguments in the category with subscripts for clarity: Sb\NP2/(Sto\NP)1 :
decide-01 :ARG0 2 :ARG1 ( 1 :ARG0 2 ). Unlike a simple verb, “decide” selects for an embedded
clause and controls its subject, coindexing it with the matrix subject. This is indicated in the semantics
with the bolded :ARG0 edge, which needs to unify with the :ARG0 edge of the embedded predicate. Thus
the constituent “you decide to eat yesterday” in figure 7 is formed by merging the :ARG0 edge expected
by “decide” and the :ARG0 edge expected by “eat” so that they may later be filled by the same node, you.
Note that the number of semantic free variables respects the functional structure of the category (§3.1). To
facilitate this, we define novel relation-wise variants of the application and composition combinators that
expect an edge in common (call it the shared edge). Apart from control, relation-wise combinators are
also useful for derivations with type raising and various interesting syntactic constructions.

The schematic graph structures serving as inputs and outputs for relation-wise combinators are shown
in figure 2b, and the full definition is given in table 1. Notably, the function constituent has its lowest-
indexed free variable at the source of the shared edge, and the argument constituent has a free variable at
the target of the shared edge (the variable’s index depending on the kind of application or composition).
In the result, each free variable unifies with the node or variable at the same side of the edge in the other
constituent. Other material attached to the shared edge in either constituent will be preserved in the result.

The regular vs. relation-wise distinction applies only to the semantics; syntactically, relation-wise
application (composition) is just like regular application (composition). During parsing, relation-wise
combinators apply if and only if the two constituents being combined share a common relation with the
appropriate free variables; otherwise, the non–relation-wise version of the combinator is used.

Relation-wise Composition (RB) differs from Relation-wise Application (R) in the index of the
argument’s free variable being unified and in the resulting order of free variables. Just as regular
composition can be used to adjust the order that constituents are normally combined and “save an
argument for later”, relation-wise composition does this with respect to a common edge. Examples of
both relation-wise and non–relation-wise composition appear in figure 7.

3.4 Type Raising

In CCG, Type Raising (T) converts an argument into a function. For example, the nominative case of
the pronoun “I” can be coded in the syntactic category by making it a function that expects a verb phrase
on the right and returns a sentence, thus preventing “I” from serving as an object. For our framework to
support type raising, we need an appropriate semantic conversion that respects the functional structure
of the category—thus, the type-raised semantics must take an argument. However, as type raising can
be applied to different types of arguments, we do not know a priori which relation label to produce.
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r/read-01

x2 x1

S\NP2/NP1 : :ARG0 :ARG1

(a) “read”; (r/read-01 :ARG0 2 :ARG1 1 )
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y/yellow
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(b) “yellow”; ( 1 :mod y/yellow)

(S\NP)\(S\NP)2/NP1 :
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x1
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(c) “at”; ( 2 :location 1 )

xNP/N :

(d) “the”; ID

Figure 3: Linguistic examples as AMR subgraphs: (a) transitive verb, (b) adjective, (c) preposition (in VP
adjunct), (d) determiner (identity semantics).

Therefore, we introduce the notion of an underspecified edge, denoted :?. The type-raised structure has
a free variable at the source of the underspecified edge, with the original subgraph at the target, as shown
in figure 2c. For example, see “John” and “Mary” in figure 5, where type raising is necessary to support
subject+verb constituents for coordination. The type-raised constituent must eventually be the input to a
relation-wise combinator, which will specify the label on the edge.

Note that in this strategy of representing type raising, the isomorphism between functions in semantics
and syntactic category is maintained. This fits with CCG’s philosophy of a transparent syntax-semantics
interface (§3.1). By contrast, Beschke and Menzel’s (2018) strategy was to leave the result of type raising
semantically unchanged, creating a mismatch between the syntax and the semantics.

4 Linguistic Examples

This section explains the use of the combinators discussed in §3 for particular linguistic constructions.
Transitive and Intransitive Verbs. Figure 3a shows the semantics for a transitive verb. Since “read” has
more than one semantic argument, the order of free variables matters: 1 , the first free variable, must
correspond to NP1, the rightmost syntactic argument in the category.
Adjectives. Figure 3b shows the semantics for an adjective. Note that, unlike in the examples above, the
root of this subgraph is a free variable, since the root of this subgraph is what will be filled in. Ordinary
adverbs have similar semantics.
Prepositional Phrases (Adjunct). Figure 3c shows semantics for the locative preposition “at”. To derive
a prepositional phrase, assume available constituents “at”: ( 2 :location 1 ) and “the library”: (l/library),
which may be combined by application.
Null Semantics: Articles, etc. Some linguistic features, including tense and definite/indefinite articles,
are not represented in AMR. For CCG derivations to deal with these elements, there will need to be a
semantic representation which allows them to be “syntactic sugar”, affecting the syntactic category but
adding nothing to the semantics in the derivation. We call this the identity function, following Beschke
and Menzel (2018), and notate it as ID. More precisely, if a constituent a has ID as its semantics, then a,
when combined with another constituent b via application or composition (either as the function or as the
argument), will produce b’s semantics for the resulting constituent.

Figure 4 shows the use of application (and identity application) combinators to derive a simple
sentence. Figure 5 demonstrates type raising, relation-wise composition, and conjunction as tools to
derive a sentence with complex coordination.
Passives, Control, and Wh-questions. Figures 6 and 7 show CCG derivations with AMR semantics for
three well-known linguistic phenomena in English: passives, control, and wh-questions. In a passive

John likes the cat

NP (S\NP)/NP NP/N N
(person :name (name :op1 “John”)) like-01 :ARG0 2 :ARG1 1 ID cat

>

NP
cat

>

S\NP
like-01 :ARG0 2 :ARG1 cat

<

S
like-01 :ARG0 (person :name (name :op1 “John”)) :ARG1 cat

Figure 4: application and
identity: “John likes the cat”
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John likes and Mary hates cats

NP (S\NP)/NP Conj NP (S\NP)/NP NP
(person :name (name :op1 “John”)) like-01 :ARG0 2

:ARG1 1

and (person . . . “Mary”) hate-01 :ARG0 2

:ARG1 1

cat
>T

[
S
]

>T

[
S
]

S/(S\NP) S/(S\NP)
1 :? (person . . . “John”) 1 :? (person . . . “Mary”)

>RB >RB

S/NP S/NP
like-01 :ARG0 (person . . . “John”) :ARG1 1 hate-01 :ARG0 (person . . . “Mary”) :ARG1 1

&

S/NP
and :op1 (like-01 :ARG0 (person . . . “John”) :ARG1 1 ) :op2 (hate-01 :ARG0 (person . . . “Mary”) :ARG1 1 )

>

S
a/and :op1 (l/like-01 :ARG0 (p/person :name (n/name :op1 “John”)) :ARG1 c/cat)

:op2 (h/hate-01 :ARG0 (p2/person :name (n2/name :op1 “Mary”)) :ARG1 c)

Figure 5: complex coordination and type raising: “John likes and Mary hates cats”
John was eaten by bears

NP (S\NP)/(Spass\NP) Spass\NP (S\NP)\(S\NP)/NP NP
(person :name (name :op1 “John”)) ID (eat-01 :ARG1 1 ) 2 :ARG0 1 bear

> >

S\NP (S\NP)\(S\NP)
(eat-01 :ARG1 1 ) 2 :ARG0 bear

<

S\NP
(eat-01 :ARG0 bear :ARG1 1 )

<

S
(eat-01 :ARG0 bear :ARG1 (person :name (name :op1 “John”)))

Figure 6: passive: “John was eaten by bears”

construction, a semantically core argument may be added by a syntactically optional adjunct phrase as in
figure 6. Note that in this semantic representation, only syntactically required arguments are represented
in a predicate’s semantics, and so the passive verb eaten does not include an :ARG0 edge.

Figure 7 shows both control and wh-question formation. Control is an important problem for
graph semantics as it requires representing the subject (here you) as the agent of two predicates (see
§3.3). Wh-questions are another complex and difficult phenomenon that is handled by CCG derivation.
Additionally, figure 7 gives examples of both types of composition: relation-wise and non–relation-wise.

4.1 Inverse Core Roles and Relative Clauses

AMR provides notation for inverse roles that reverse the usual ordering of a relation. These are indicated
with the -of suffix: (a :rel-of b) is equivalent to (b :rel a). This ensures that the graph can be constructed
with a single root, and provides a convenient mechanism for expressing derived nominals and relative
clauses. For instance, the noun phrases “teacher” and “a person who teaches” both receive the AMR
(person :ARG0-of teach-01). If the subject matter is expressed, that is slotted into the :ARG1 of teach-01.
This can be handled by treating “teachers” as a predicate of sorts, as seen in the derivation below.

math teachers

N NP\N
math person :ARG0-of (teach-01 :ARG1 1 )

<

NP
person :ARG0-of (teach-01 :ARG1 math)

people who teach math

NP NP\NP/(S\NP) S\NP/NP NP
person 2 :ARG0-of 1 teach-01 :ARG0 2 :ARG1 1 math

>

S\NP
teach-01 :ARG0 2 :ARG1 math

>R

NP\NP
2 :ARG0-of teach-01 :ARG1 math

<

NP
person :ARG0-of (teach-01 :ARG1 math)

61



What did you decide to eat yesterday

Swhq/(Sq/NP) Sq/(Sb\NP)/NP NP Sb\NP/(Sto\NP) Sto\NP/(Sb\NP) Sb\NP/NP (S\NP)\(S\NP)
1 :ARG1 amr-unknown 2 :ARG0 1 you decide-01 :ARG0 2

:ARG1 ( 1 :ARG0 2 )
ID eat-01 :ARG0 2

:ARG1 1

1 :time yesterday

> <B×
Sq/(Sb\NP) Sb\NP/NP

2 :ARG0 you
eat-01 :ARG0 2 :ARG1 1

:time yesterday
>B

Sto\NP/NP
eat-01 :ARG0 2 :ARG1 1 :time yesterday

>RB

Sb\NP/NP
decide-01 :ARG0 2 :ARG1 (eat-01 :ARG0 2 :ARG1 1 :time yesterday)

>RB

Sq/NP
decide-01 :ARG0 y/you :ARG1 (eat-01 :ARG0 y :ARG1 1 :time yesterday)

>R

Swhq

decide-01 :ARG0 y/you :ARG1 (eat-01 :ARG0 y :ARG1 amr-unknown :time yesterday)

Figure 7: wh-question and control, relation-wise and non–relation-wise composition: “What did
you decide to eat yesterday?” B× stands for crossing composition, which has the same semantics as
composition.

Also illustrated is the relative clause paraphrase, “people who teach math”. Here, the relativizer “who”
needs to fill the appropriate role of the verbal predicate with its noun head “people”. An inverse role is
produced so that person, rather than teach-01, will be the root of the resulting subgraph. The relation-wise
application combinator must therefore be aware of inverses: it must match the :ARG0-of with the :ARG0
edge in the operand and effectively merge the two relations. Alternatively, the phrase could be parsed by
first relation-wise composing “who” with “teach”, which requires similar handling of the inverse role, and
then attaching “math” by application.

4.2 Eventive Nouns and PP Complements

This section will describe an approach to the semantics of eventive nouns like “decision”, and in the process
will illustrate our treatment of prepositional phrase complements (as opposed to adjuncts: beginning of
§4), which in CCG are traditionally given the category PP.

In English, many eventive nouns can be linked to semantic arguments via prepositional phrases,
possessives, and light verb constructions, as shown in table 2. AMR uses a canonical form with a predicate
(typically based on a verbal paraphrase), treating John decided, John’s decision, and John made a/his
decision as semantically equivalent. Despite some work on integrating event nominals and multiword
expressions into CCG (Constable and Curran, 2009; Honnibal et al., 2010; de Lhoneux, 2014), we are
not aware of any CCG analyses of light verb constructions, which have been studied computationally in
other frameworks (e.g., Baldwin and Kim, 2010; Bonial et al., 2014; Ramisch et al., 2018), that gives them
semantics equivalent to a content verb paraphrase. We offer such an analysis based on three principles:

1. The event frame is in the semantics of the eventive noun or verb.
2. For any syntactic argument of a noun or verb, the corresponding edge (and free variable) is in the
semantics of the noun or verb.
3. Any function word (light verb, ’s, preposition, or infinitival to) that links the eventive noun to its
semantic argument has an associated edge (and free variables) in its semantics.

Note that when a verb or noun takes a PP complement, principles 2 and 3 force both the verb or
noun and the preposition to hold the same edge in their semantics. This is compatible with relation-wise
combinators as described in §3.3. The result is a nice analysis where both the eventive noun or verb and
its complement preposition signal patientness.

With this analysis, the associated light verbs given in table 2 (“make”, “pay”, etc.) as well as possessive
’s take the semantics 1 :ARG0 2 , and associated prepositions take the semantics 2 :ARG1 1 . In other
words, for each eventive noun, either a special light verb or a possessive contributes the agentive semantic
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light verb construction possessive form AMR predicate
make a decision

[
about/on

]
my decision

[
about/on

]
decide-01

pay attention
[
to
]

my attention
[
to
]

attend-02
make an attempt

[
to
]

my attempt
[
to
]

attempt-01
take a nap my nap nap-01

take a picture
[
of
]

— (“my picture” is not eventive) photograph-01 (suggested)

Table 2: English eventive nouns shown with a light verb or possessive; words in square brackets mark
additional semantic arguments. (In the AMR corpus, “take pictures” is actually treated superficially with
take-01 :ARG1 picture, but we suggest photograph-01 instead.)

John made a decision on his major

NP S\NP/NP NP/N N/PPon N/NP\(N/PPon) NP/N N
(person :name 1 :ARG0 2 ID (decide-01 :ARG1 1 ) 2 :ARG1 1 1 :poss he major
(name :op1 “John”))

<R >

N/NP NP
(decide-01 :ARG1 1 ) (major :poss he)

>

N
(decide-01 :ARG1 (major :poss he))

>

NP
(decide-01 :ARG1 (major :poss he))

>

S\NP
(decide-01 :ARG0 2 :ARG1 (major :poss he))

<

S
(decide-01 :ARG0 (person :name (name :op1 “John”)) :ARG1 (major :poss he))

Figure 8: light verb construction: “John made a decision on his major”

relation—and (if present) a special preposition or infinitive to may contribute the patient semantic
relation—thus allowing derivation of the same AMR regardless of form.

Figure 8 shows the derivation for “decision” in its light verb construction form. The preposition “on”
redundantly represents the :ARG1 edge, and is merged with “decision” by relation-wise application.5 The
light verb “made” specifies the :ARG0 edge.

5 Discussion

Unlike many semantic formalisms, AMR does not specify a ‘compositional story’: annotations do not
include any sort of syntactic derivation, or even gold alignments between semantic units and words in
the sentence. This presents a challenge for AMR parsing, which in practice relies on various forms of
automatic or latent alignments (see Szubert et al., 2018). Above, we have presented an analysis that lays
the foundation for a linguistically principled treatment of CCG-to-AMR parsing that meets a variety of
challenges in the syntax-semantics interface, and does so in a transparent way so that parsing errors can
be diagnosed. We believe the approach is reasonably intuitive, flowing naturally from CCG syntax, AMR
semantics, and the notion of free variables in subgraphs, without the additional need for complicated
lambda calculus notation or a highly general graph grammar formalism.

To realize this vision in practice, an approach is needed to build a CCG parser enriched with graph
semantics for deriving AMRs. We anticipate that existing CCG parsing frameworks can be adapted—for
example, by developing an alignment algorithm to induce the semantics for lexical entries from the
AMR corpus, and running an off-the-shelf parser like EasySRL (Lewis et al., 2015) at training and test
time for the syntactic side of the derivation. This approach would take advantage of the fact that our
analysis assumes the ordinary CCG syntax for obtaining the compositional structure of the derivation.
The only additional steps would be a) disambiguating the semantics of lexical entries in the derivation,
and b) applying the semantics of the combinators as specified in table 1. For each use of application or

5The category N/NP\(N/PPon) for “on” is suggested by Mark Steedman’s analysis of English prepositions as particles
(personal communication) and also maintains the Principle of Functional Isomorphism of §3.1.

63



composition, the semantic parser would check whether the conditions for relation-wise combination hold,
and otherwise apply the ordinary version of the combinator.6

Because AMRs are annotated by humans for raw sentences, rather than on top of a syntactic parse, we
cannot expect a parser to elegantly handle the full construction of all AMRs according to compositional
rules. Several components of AMR parsing are not part of CCG parsing and will have to be performed
as postprocessing steps. These components include named entity recognition, time expression parsing,
coreference resolution, and wikification, all of which need to be performed after (or before) CCG parsing.
Additionally, there is a risk that a CCG lexicon may ‘overgenerate’, producing invalid parses, and
additional checking—either in the combinators, or as postprocessing or reranking—may be warranted.

We are aware of certain phenomena where the approach described above would be unable to fully
match the conventions of AMR in the CCG-derived semantics. The analysis presented for coordination
(with the conjunction combinator: see figure 5) would address only one of the ways it can be expressed
in AMR, with a concept like and or or and operands. In other cases, coordinated modifiers are treated
as sister relations in the AMR, with no explicit concept for the conjunction. Even when the conjunction
is explicit in the AMR, it may be placed at a different level in the gold and CCG-derived AMRs: e.g.,
when two purpose adjuncts are coordinated, the derivation will result in semantic conjunction over the
predicate rather than a conjunction under the :purpose relation. In sentences where a semantic predicate
is duplicated in the AMR with different participants, e.g. due to right node raising, a copy mechanism
would be needed to avoid spurious reentrancy. The treatment of modal auxiliaries as above the main
event predicate in the AMR will be problematic for the CCG derivation when there is a preposed adjunct
(as in “Tomorrow, John may eat rice”) because the modifier will semantically attach under the root of the
semantics of the rest of the clause (possible-01 from “may”) rather than the main event predicate eat-01.
Full derivations for these problem cases, as well as examples of purpose clauses, raising, and subject and
object control, are given in appendix A. We will explore whether such limitations can be addressed via
postprocessing of the parse, or whether additional expressive power in the combinators is necessary.

Finally, as pointed out by Bender et al. (2015), AMR annotations sometimes go beyond the compo-
sitional ‘sentence meaning’ and incorporate elements of ‘speaker meaning’, though an empirical study
of AMR data found the rate of noncompositional structures to be relatively low (Szubert et al., 2018).
Beschke and Menzel (2018) give interesting examples of AMR fragments that would be difficult to
derive compositionally, e.g., “settled on Indianapolis for its board meeting”, where the AMR attaches
Indianapolis as the location of the meeting and the meeting as the thing that was settled on (reflecting the
inference settle on LOCATION for ACTIVITY⇒ settle on [ACTIVITY at LOCATION]).

6 Conclusion

We have given the linguistic motivation for a particular method of deriving AMR semantic graphs using
CCG. Our specification of AMR subgraphs and CCG combinators ensures a tight correspondence between
syntax and semantics, which we have illustrated for a variety of linguistic constructions (including light
verb construction semantics, which to the best of our knowledge has not previously been explored for
CCG). Future empirical work can make use of this framework to induce CCG lexicons for AMR parsing.

6We have considered an alternative analysis where underspecified :? edges would be used not only for type raising, but
for all case-marked pronouns, prepositions marking syntactic arguments, and other constructions where a word’s syntactic
category involves an argument to a separate predicate. Thus, only the predicate would be allowed to specify semantic roles for its
syntactic arguments. Relation-wise combinators would then require that the shared edge would be underspecified in the function
constituent. The rationale would be that this avoids redundant specification of core roles like :ARG0 and :ARG1 in the lexical
entries—e.g. in figure 7, the :ARG1 for “What”, the :ARG0 for “did”, and the second :ARG0 for “decide” would all be replaced
with :?. After all, constructions like wh-questions, control, and case target syntactic relations (subject/object), which are merely
correlated with semantic roles. And as pointed out by a reviewer, under the current approach, a wrong choice of semantic role
for a cased pronoun’s semantics could result in the use of a regular combinator rather than a relation-wise combinator, leaving a
free variable in the predicate unsatisfied and essentially breaking the syntax-semantics isomorphism. An argument in favor of the
current policy is that prepositions can contain information about roles to a certain extent, and redundant specification of semantic
roles may actually be helpful when confronted with a noisy parser and lexicon. We leave this open as an empirical question for
parsing research.
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A Additional Derivations

Below are full derivations illustrating raising, subject control, object control, an object control wh-question,
a modal auxiliary with preposed VP adjunct, a purpose clause, coordinated purpose clauses, and right
node raising with a shared main verb.

Mary seems to practice guitar often

NP (S\NP)/(Sto\NP) (Sto\NP)/(Sb\NP) (Sb\NP)/NP NP (S\NP)\(S\NP)
person :name Mary seem-01 :ARG1 ( 1 :ARG0 2 ) ID practice-01 :ARG0 2 :ARG1 1 guitar 1 :frequency often

>B

(Sto\NP)/NP
practice-01 :ARG0 2 :ARG1 1

>

Sto\NP
practice-01 :ARG0 2 :ARG1 guitar

<

Sto\NP
practice-01 :ARG0 2 :ARG1 guitar :frequency often

>R

S\NP
seem-01 :ARG1 (practice-01 :ARG0 2 :ARG1 guitar :frequency often)

>

S
seem-01 :ARG1 (practice-01 :ARG0 (person :name Mary) :ARG1 guitar :frequency often)

Figure 9: Raising

Mary wants to practice guitar

NP (S\NP)/(Sto\NP) (Sto\NP)/(Sb\NP) (Sb\NP)/NP NP
person :name Mary want-01 :ARG0 2 :ARG1 ( 1 :ARG0 2 ) ID practice-01 :ARG0 2 :ARG1 1 guitar

>B

(Sto\NP)/NP
practice-01 :ARG0 2 :ARG1 1

>

Sto\NP
practice-01 :ARG0 2 :ARG1 guitar

>R

S\NP
want-01 :ARG0 2 :ARG1 (practice-01 :ARG0 2 :ARG1 guitar)

>

S
w/want-01 :ARG0 (p/person :name Mary) :ARG1 (p2/practice-01 :ARG0 p :ARG1 g/guitar)

Figure 10: Subject control
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Mary persuaded John to practice guitar

NP (S\NP)/(Sto\NP)/NP NP (Sto\NP)/(Sb\NP) (Sb\NP)/NP NP
person :name Mary persuade-01 :ARG0 3 :ARG1 1 :ARG2 ( 2 :ARG0 1 ) person :name John ID practice-01 :ARG0 2 :ARG1 1 guitar

> >B

(S\NP)/(Sto\NP) (Sto\NP)/NP
persuade-01 :ARG0 3 :ARG1 (p/person :name John) :ARG2 ( 2 :ARG0 p) practice-01 :ARG0 2 :ARG1 1

>

Sto\NP
practice-01 :ARG0 2 :ARG1 guitar

>R

S\NP
persuade-01 :ARG0 3 :ARG1 (p/person :name John) :ARG2 (practice-01 :ARG0 p :ARG1 guitar)

>

S
p3/persuade-01 :ARG0 (p3/person :name Mary) :ARG1 (p/person :name John) :ARG2 (p2/practice-01 :ARG0 p :ARG1 guitar)

Figure 11: Object control. Note that the PropBank predicate persuade-01 specifies :ARG0 for the
persuader, :ARG1 for the persuadee, and :ARG2 for the impelled action.

Who did you persuade to smile

Swhq/(Sto\NP)/(Sq/(Sto\NP)/NP) Sq/(Sb\NP)/NP NP (Sb\NP)/(Sto\NP)/NP (Sto\NP)/(Sb\NP) Sb\NP
1 :ARG1 amr-unknown 2 :ARG0 1 you persuade-01 :ARG0 3 :ARG1 1 :ARG2 ( 2 :ARG0 1 ) ID smile-01 :ARG0 1

> >

Sq/(Sb\NP) Sto\NP
2 :ARG0 you smile-01 :ARG0 1

>RB2

Sq/(Sto\NP)/NP
persuade-01 :ARG0 you :ARG1 1 :ARG2 ( 2 :ARG0 1 )

>R

Swhq/(Sto\NP)
persuade-01 :ARG0 you :ARG1 a/amr-unknown :ARG2 ( 2 :ARG0 a)

>R

Swhq

p/persuade-01 :ARG0 y/you :ARG1 a/amr-unknown :ARG2 (s/smile-01 :ARG0 a)

Figure 12: Object control wh-question: “Who did you persuade to smile?” (example suggested by a
reviewer)

Tomorrow John may eat rice

S/S NP (S\NP)/(Sb\NP) (Sb\NP)/NP NP
1 :time tomorrow person :name John possible-01 :ARG1 1 eat-01 :ARG0 2 :ARG1 1 rice

>B

(S\NP)/NP
possible-01 :ARG1 (eat-01 :ARG0 2 :ARG1 1 )

>

S\NP
possible-01 :ARG1 (eat-01 :ARG0 2 :ARG1 rice)

<

S
possible-01 :ARG1 (eat-01 :ARG0 (person :name John) :ARG1 rice)

S
possible-01 :ARG1 (eat-01 :ARG0 (person :name John) :ARG1 rice) :time tomorrow

CORRECT: possible-01 :ARG1 (eat-01 :ARG0 (person :name John) :ARG1 rice :time tomorrow)

Figure 13: Modal auxiliary with preposed adjunct: “Tomorrow, John may eat rice”. In the derived AMR,
the temporal modifier is placed incorrectly under the modal predicate rather than the main event predicate.
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Mary bought a ticket to see the movie

NP (S\NP)/NP NP/N N ((S\NP)\(S\NP))/(Sb\NP) (Sb\NP)/NP NP/N N
(person :name Mary) buy-01 :ARG0 2 :ARG1 1 ID ticket 2 :ARG0 3 :purpose ( 1 :ARG0 3 ) see-01 :ARG0 2 :ARG1 1 ID movie

> >

NP NP
ticket movie

> >

S\NP Sb\NP
buy-01 :ARG0 2 :ARG1 ticket see-01 :ARG0 2 :ARG1 movie

>R

(S\NP)\(S\NP)
2 :ARG0 3 :purpose (see-01 :ARG0 3 :ARG1 movie)

<R

S\NP
buy-01 :ARG0 3 :ARG1 ticket :purpose (see-01 :ARG0 3 :ARG1 movie)

<

S
buy-01 :ARG0 (p/person :name Mary) :ARG1 ticket :purpose (see-01 :ARG0 p :ARG1 movie)

Figure 14: to-purpose

John arrived to eat and to party

NP S\NP ((S\NP)\(S\NP))/(Sb\NP) Sb\NP Conj ((S\NP)\(S\NP))/(Sb\NP) Sb\NP
person :name John arrive-01 :ARG1 1 2 :ARG1 3 :purpose ( 1 :ARG0 3 ) eat-01 :ARG0 1 and 2 :ARG1 3 :purpose ( 1 :ARG0 3 ) party-01 :ARG0 1

>R >R

(S\NP)\(S\NP) (S\NP)\(S\NP)
2 :ARG1 3 :purpose (eat-01 :ARG0 3 ) 2 :ARG1 3 :purpose (party-01 :ARG0 3 )

>&

(S\NP)\(S\NP)
and :op1 ( 2 :ARG1 3 :purpose (eat-01 :ARG0 3 )) :op2 ( 2 :ARG1 3 :purpose (party-01 :ARG0 3 ))

<R

S\NP
a/and :op1 (a2/arrive-01 :ARG1 3 :purpose (e/eat-01 :ARG1 3 )) :op2 (a2 :ARG1 3 :purpose (p/party-01 :ARG0 3 ))

<

S
a/and :op1 (a2/arrive-01 :ARG1 (p2/person :name John) :purpose (e/eat-01 :ARG0 p2)) :op2 (a2 :ARG1 p2 :purpose (p/party-01 :ARG0 p2))

CORRECT: a2/arrive-01 :ARG1 (p2/person :name John) :purpose (a/and :op1 (e/eat-01 :ARG0 p2) :op2 (p/party-01 :ARG0 p2))

Figure 15: Coordinated purpose clauses: “John arrived to eat and to party”. Note that the PropBank
predicate arrive-01 has no :ARG0; its subject is :ARG1. The lexical semantics for infinitive purpose to
is chosen accordingly. However, the placement in the derived AMR of the semantic conjunction and is
incorrect.

I should and you may eat

NP (S\NP)/(Sb\NP) Conj NP (S\NP)/(Sb\NP) Sb\NP
i recommend-01 :ARG1 ( 1 :ARG0 2 ) and you permit-01 :ARG1 ( 1 :ARG0 2 ) eat-01 :ARG0 1 :ARG1 1

>T

[
S
]

>T

[
S
]

S/(S\NP) S/(S\NP)
1 :? i 1 :? you

>RB >RB

S/(Sb\NP) S/(Sb\NP)
recommend-01 :ARG1 ( 1 :ARG0 i) permit-01 :ARG1 ( 1 :ARG0 you)

&

S/(Sb\NP)
and :op1 (recommend-01 :ARG1 ( 1 :ARG0 i)) :op2 (permit-01 :ARG1 ( 1 :ARG0 you))

>R

S
a/and :op1 (r/recommend-01 :ARG1 (e/eat-01 :ARG0 i/i)) :op2 (p/permit-01 :ARG1 (e :ARG0 y/you))

CORRECT: a/and :op1 (r/recommend-01 :ARG1 (e/eat-01 :ARG0 i/i)) :op2 (p/permit-01 :ARG1 (e2/eat-01 :ARG0 y/you))

Figure 16: Right node raising with shared main verb: “I should and you may eat”. The derived AMR has
a reentrancy for the eat-01 predicate where there should be a separate copy of the predicate.
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Abstract

This paper presents a semantic annotation scheme for Danish adjectives,  focusing both on
prototypical semantic content and semantic collocational restrictions on an adjective's head
noun. The core type set comprises about 110 categories ordered in a shallow hierarchy with 14
primary and 25 secondary umbrella categories. In addition, domain information and binary
sentiment tags are provided, as well as VerbNet-derived frames and semantic roles for those
adjectives  governing  arguments.  The  scheme  has  been  almost  fully  implemented  on  the
lexicon of the Danish VISL parser, DanGram, containing 14,000 adjectives. We discuss the
annotation scheme and its applicational perspectives, and present a statistical breakdown and
coverage evaluation for three Danish reference corpora.

1 Introduction

This paper describes a multi-dimensional semantic classification system for Danish adjectives. The
system has been implemented for a fairly unabridged computational lexicon, with 14,000 adjectival
lemmas,  and  is  intended for  use  with Danish NLP tools  in  general,  and machine translation and
semantic correctness grading of generated Danish sentences in particular. 

Lexical resources about the semantics of adjectives are much harder to come by than corresponding
dictionaries for nouns and verbs,  not least in the context  of  less-resourced languages like Danish.
Nouns allow the construction of ontologies based on hyponym-hyperonym relations (e.g. Princeton
WordNet, Fellbaum 1998 for English, and DanNet, Pedersen et al. 2009, for Danish), and verbs can be
classified using argument relations and restrictions (e.g. FrameNet, Baker et al. 1998 and Ruppenhofer
2010, for English). However, both methods are less ideal for adjectives - only a small set of adjectives
takes arguments, hyponym-hyperonym relations are problematic, and traditional WordNet synonym
clusters and antonym relations do not constitute a true classification system. One way out is using
noun classification as a proxy and linking adjectives to nouns or verbs:

(a) property nouns denoting the property that the adjective describes, e.g. linking "hot", "tepid",
"cool", "cold", "ice-cold" etc. to the noun "temperature", a method that works well for antonomy and
scale adjectives.  Thus,  EuroWordNet (Vossen 1998) uses a "near synonymy" relation across word
classes, e.g. "obese/obesity", "infamous/infamy".

(b) derivational base: A large percentage of adjectives are morphologically derived from nouns or
verbs using suffixes, e.g. "V-lig" (V-able), "N-lig" (N-like), "N-fuld" (being full of s.th.), "N-løs" (not
having s.th.). In addition, many Danish adjectives are morphologically past or present participles and
can thus be linked to a verbal base ("V-et" - V-ed, "V-ende" - V-ing).

(c) nominal  heads: Adjectves can be classified according to their  prototypical  head houn,  using
categories  like  "animal  adjective"  ("tame" -  tame,  "vild" -  wild,  "glubsk" -  voracious)  or  "food
adjectives" ("bagt" - baked, "fersk" - fresh, "lækker" - tasty).
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However, (c) lumps semantically very different adjectives together (e.g. states, quality, source, purpos
etc. for the food category), and neither (a) nor (b) is, on its own, applicable to the entire adjective
lexicon,  and  morphological/derivational  links,  in  particular,  are  slippery  ground,  as  meaning  can
change over time, and become less transparent. Thus, "huslig" ("housely") does not mean "house-like"
(the literal meaning), but rather "house-related" (tasks) or a human psychological trait of "housewife-
ness". Also, sometimes the adjective is primary in a derivation relation, as in "tapper" > "tapper-hed"
(brave  >  braven-ess),  risking  a  sparceness  of  information,  if  the  corresponding  noun  is  simply
classified as "property" exactly because its core is really adjectival.

GermaNet  (Hamp  & Feldweg,  1997)  addresses  the  problems  with  (a)  and  (b)  by  establishing  a
separate semantic class hierarchy1 for adjectives, with 16 classes at level 1 and 78 classes at level 2,
with relations  like  "green"  >  colour > perception or  "short"  > dimension > spatial.  Transparent
denominal  and  deverbal  derivations  is  classified  as  "pertainyms".  For  Danish,  Nimb & Pedersen
(2012) suggest the use of thesaurus data to build a type (c) classification by harvesting "property_of"
relations between adjectives and typical collocate classes (e.g. person, thing, feeling, food). However,
the authors mention the need for validation, and the current public version of DanNet2 does not contain
a "property_of" feature.

2 Existing resources

DanNet (and its dictionary precursor STO3) is one of two large sets of lexical resources used in Danish
language  technology.  However,  it  only  contains  about  3,000  adjectives,  with  a  flat  12-category
ontology, and while there is information about hyperonym relations to either other adjectives or nouns,
23%  are  linked  directly  to  the  top  node  "property"  or  "property:physical"  without  any  real
classificational information. The other resource is the lexicon of the Danish VISL parser, DanGram
(Bick 2001), containing 103,000 non-name lemma entries, of which about 14,000 are adjectives. The
lexicon  specifies  syntactic  word-order  information  for  11,400  of  these,  comprising  obligatory
predicative  or  attributive  use,  and  so-called  "modificational  zones"  (ordering  in  case  of  multiple
prenominal adjectives).

<pred> predicative use only: alene (alone), beliggende (situated), slut (finished)

<att> attributive use only: al (all), aldersmæssig (age-related), aldrende (becoming older)

<mod1> (specificational): bestemte alvorlige organiske sygdomme (certain serious organic diseases)

<mod2> (descriptional): bestemte alvorlige organiske sygdomme (certain serious organic diseases)

<mod3> (classificational): bestemte alvorlige organiske sygdomme (certain serious organic diseases) 

<jj>, ad-adjectival, adjectives that modify other adjectives 

On top of these syntactic tags, the adjective lexicon also contains some semantic tags. However, while
DanGram's  noun ontology4 and Danish FrameNet  (Bick 2011)  have been used in  numerous NLP
projects (treebanks, CALL, MT etc.), so far no corresponding semantic system for adjectives has been
published. Our current work strives to review, systematize and document existing semantic tags, and
to introduce and implement a completely new ontology, more akin to the GermaNet system, where
each  category  in  addition  to  its  semantic  feature  values  also  should  allow  the  prediction  of  the
semantic class of its typical head noun.

1 http://www.sfs.uni-tuebingen.de/GermaNet/adjectives.shtml (accessed 14 January 2019)

2 version 2.2 (https://cst.ku.dk/projekter/dannet/)

3 a Danish "word database" with 68,000 entries and morphological, syntactic and semantic information: 
https://cst.ku.dk/sto_ordbase/

4 http://visl.sdu.dk/semantic_prototypes_overview.pdf
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3 Category scheme

In our proposed system, the primary semantic tags used for adjectives have the form <j....> and are
combinatorially restricted feature prototypes, meaning that they specify a feature type of a certain
semantic  head  (noun)  class.  For  instance,  <jshape>  modifies  concrete  objects,  and  <jpsych>
(psychological feature) combines with human heads (<H...>), but also actions (<act>) and semiotic
products (<sem>).

There are 110-120 tags in all5, most of which can be lumped in 14 or - with subclasses - 25 umbrella 
classes, most of them linked to prototypical head types. For instance, all tags within the people groups 
imply [+hum] (human), <jappro> (appropriateness) and <jbehave> combine with actions [+act], and 
<jsem> is about features of works of art, plans, laws or speeches [+sem]. For some category 
definitions and examples, see table 3.

 people:  <jpsych> (feelings), <janat> (body features), <jage>, <jstate-h>, <jsick>, <jclo-h> 

(clothedness), <jappear> (appearance)
 effecting: <jaff> (affection), <jeff> (effecting), <jaff-h> (affected), <jimp> (important), 

 quality: <jqual> (quality), <jpower>, <jskill>, <jappro> (appropriate), <jlike> (liked), <jreg> 

(regulated)
 properties:

 inherent: <jprop>, <jtype>, <jbuild> (building), <jornam> (ornamental)

 +measure: <jsize>, <jweight>, <jtemp> (temperature), <jspeed>,

 -measure: <jshape>, <jsurf> (surface), <jsub> (composition), <jmat> (material), <jchem> 

(chemical), <jcol> (color), <jlight>
 state: <jstate>, <jdam> (damage), <jnormal>, <jres> (result), 

 sensed properties: <jpercep> (perception)

 quantity: <jquant> (quantity), <jdegree>, <jcont> (content), <jsetop> (set operation), 

<jmanner-q>
 identity: <jident> (identity), <jauth> (authentic), <jcomp> (comparison), <jname>

 cognitive:

 thought: <jcog> (cognitive), <jideo> (ideological), <jlike-h> (liking), <jmeta>

 speech: <jcom> (communication), <jling> (language)

 epistemiological: <jfact> (fact, true, likely), <jfame>

 semiotic [+sem]: <jsem>, <jgenre>, <jdomain>, <jstruct> (structure)

 event: <jevent>, <jprocess>, <jchance>, <jchange>, <jcause>, <jsit> (situation)

 doing: <jact> (action), <juse>, <jhand> (handled), <jmove>, <jmanner>, <jbehave>, 

<jmethod>, <jres> (resulting), <jcrea> (created), <jlink>, <jtarget>
 culture:

 food: <jfood>

 society: <jsoc> (social), <jpol> (politics), <jinst> (institution), <jrel> (religious), <jprof> 

(professional), <jright> (entitled)
 domain jargon: <jtech> (technical), <jjur> (law), <jmed> (medicine)

5 This number of categories was deemed a reasonable level of granularity for empirical reasons. For 
practical purposes (parsing and corpus annotation), having too many increases the error rate in automatic tagging
and risk introducing nuances that border on vagueness and often cannot be reliably distinguished by human  
annotators either. Too few categories, on the other hand, will mean a generalisation and abstraction level that 
misses out on many interesting semantic distinctions and is too course for contextual disambiguation tasks. 
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 cultural products: <jV> (vehicles), <jVwater> (ships), <jclo> (clothing features)

 money: <jmon> (money), <jmon-h>, <jposs> (owned), <jposs-h> (owning), <jval>(value)

 nature: <jbio>, <jA> (animals), <jB> (plants), <jL> (place feature), <jwea> (weather)

 auxiliary: <jbe>, <jcan> (possible), <jmust>, <jmay> (allowed), <jwill> (ready to)

 space: <jnat> (nationality), <jgeo> (geography), <jloc> (location), <jdir> (direction), <jori> 

(origin), <jpos> (position)
 time: <jtime>, <jord> (order), <jper> (period)

Sentiment and polarity markers

A number of feature types exhibit a plus/minus polarity, for instance <jtemp> (temperature: hot/cold),
<jlike> (liked or disliked), <jappro> (appropriate or inappropriate). This polarity is resolved by means
of <Q+> and <Q-> tags that are primarily meant as sentiment analysis tags, but will also double in
almost all cases as polarity distinctors. "-h" marks a separate subclass  for human heads, e.g. <poss>
("owned") and <poss-h> ("owning"). Where necessary, other, more specific, non-standard semantic
head types can be added by means of a <H:...> tag, e.g. <H:furn> for "polstret" (padded). 

4 Frames for adjectives

A small, but important, proportion6 of Danish adjectives can take valency-governed arguments, almost
all in the form of prepositional phrases (pp's). In these cases it is possible to say that the adjective is
the  core  constituent  of  a  predication,  much  like  verbs  or  de-verbal  nouns.  We  classify  these
constructions using an equivalent verbnet frame, and both frame and argument structure are provided
in the adjective lexicon.

1. forelsket i (in love with) - FN:like/head§COG/i§TH [cognizer - theme]

2. bange for (afraid of) - FN:emote_obj/for§CAU/head§EXP [cause - experiencer]

3. benovet over (embarrassed about) - FN:affect_exp/head§EXP/over§CAU 

4. beslægtet med (related to) - FN:relate/med§COM/head§TH [theme - co-argument]

5. blind for (ignorant of) - FN:neglect/for§TH/head§AG [agent - theme]

6. dygtig til (good at) - FN:can/head§AG/til§ACT'icl [agent - action]

7. sur på (angry at) FN:emote/head§EXP/på§CAU'H [experiencer - cause]
sur over at (angry because)  FN:emote/head§EXP/over§ACT'fcl [experience - action]

8. ond mod (mean against) - <FN:affect_exp/head§AG/mod§EXP'H> [agent - experiencer]

9. afhængig af - FN:depend/head§EXP'H/head§SOA'act/head§BEN/af§CAU
person hooked on s.th. - FN:depend/head§EXP'H/head§SOA'act/head§BEN/af§CAU
action depending on s.th. - FN:depend/head§EXP'H/head§SOA'act/head§BEN/af§CAU
city relying on tourism - FN:depend/head§EXP'H/head§SOA'act/head§BEN/af§CAU

Each noun frame entry (FN) lists first the corresponding verb frame and then a slash-separated list of
possible semantic role arguments7 (marked §) with their slot filler conditions (1-9). We distinguish

6 Currently, about 300 adjectives have been assigned frame-carrying valencies. As for verbs and nouns, 
structural complexity correlates with token frequency, so frame-capable adjectives are overrepresented in 
running text, with a token ratio higher than their type ratio.
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between  primary  conditions  and  secondary,  optional  subconditions  (present  in  6-9).  Primary
conditions are placed before the role concerned, secondary condition after it. The former are syntactic
slot  conditions  (either  'head'  or  a  bound  preposition  lexeme),  the  latter  are  categorial  conditions
concerning semantic class (e.g. 'H'=human, 'act'=action), or form conditions such as ’icl’ (non-finite
clause, 6) or ’fcl’ (finite clause, 7).

In the Danish data, adjectives only rarely have two completely different frames. More common are
cases where there is some variation within the same frame, with different prepositions (7) or different
semantic slot fillers (9) corresponding to different semantic roles. In these cases it is optional, whether
frames are duplicated (7) or fused by appending argument variants (9).

5 Coverage statistics

In  order  to  evaluate  coverage,  we  tagged  a  Danish  reference  corpus  consisting  of  DSL's  period
corpora,  Korpus90,  Korpus2000  and  Korpus2010  (Asmussen  2015),  covering  modern  post-war
Danish up to the 90s and the years around 2000 and 2010, respectively. The first corpus has a broad
genre and period scope, including some spoken data. The second is dominated by news and magazine
texts and the third includes online material of various types. Together, the three corpora can be said to
provide a fair cross-section of modern Danish.

Based on DanGram's morphological disambiguation, and a POS error rate under 1%, the corpus set
contained 5.6 million adjective tokens distributed across 27,280 adjective types. In this count, hapaxes
were ignored - inspection showed them to be mostly spelling errors and ad hoc foreign loan words. In
about 1% of adjective tokens (37% of types), the parser had to use live compounding analysis8. Table
1 shows adjectival coverage percentages for both semantic class tagging (j-tags) and domain tagging
(D-tags), first for all words, then separately for live compound analysis.

Tag type % tokens % types

semantic class tags (j-tags) 99.24 85.10

domain tags (D-tags) 95.64 73.89

j-tags / compounds 93.96 93.40

D-tags / compounds 75.99 76.82

Table 1: Corpus overage (all words)

As can be seen from the percentages, general running text coverage is very good (99.4%), but due
to obvious Zipf-curve effects type coverage is considerably lower (85.1%). Live compounds have a
worse  token  coverage,  but  better  type  coverage.  Though  surprising  at  first  glance,  this  can  be
explained by the fact that the class-controlling second parts of compounds are dominated by relatively
few, well-know suffixes and participles, leading to a good type-coverage. At the same time, because
the individual compounds are all rare compared to ordinary adjectives, there is no pronounced positive
effect of counting tokens rather than types.

If  (a) purely heuristic (i.e. non-compound) analyses, (b) lexicon-registered erroneous forms and (c)
foreign words are excluded (about 1,800 types or 11,500 tokens),  coverage increases, as could be
expected.

7 The Danish FrameNet foresees about 35 argument-capable roles and an additional 15 satellite roles

8 These are cases, where a word was unknown in the sense, that it could not be reduced to a lemma or a 
compound found in the lexicon, but where the parser was able to come up with a likely compound analysis 
of its own at run time. 
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Tag type % tokens % types

semantic class tags (j-tags) 99.39 90.53

domain tags (D-tags) 95.82 78.78

j-tags / compounds 95.12 94.47

D-tags / compounds 77.01 77.75

Table 2: Corpus overage (recognized words and compounds only)

Table 3 contains a breakdown of the 22 statistically most important tag types by frequency (covering
80% of tokens and 52% of types), providing definitions and examples. For sense discrimination and
other NLP tasks, it is an advantage that the category distribution curve is relatively even, with small
differences between neighbouring frequencies,  and even the top category below the 10% mark in
token terms. By comparison, DanNet contains not only fewer items, but also exhibits a much steeper
frequency curve, indicating less discriminatory power. Thus, when looking at type frequencies, our
system "peaks" at 6%, with a spread over several, very different categories, while DanNet links 34%
of adjective types to just "Property", and equally 34% to the hyperonym "beskaffenhed" (type). Even
when  classes  and  hyperonyms  are  combined,  23%  are  linked  to  combinations  of
Property/Property:physical and "beskaffenhed".

Tag definition %
tokens

%
types

examples

<jsize> size 9.51 1.36 kæmpestor, lav, bred

<jqual> quality 7.8 2.96 god, dårlig, ringe, pæn, smuk

<jnat> nation, region, town 7.49 5.81 afghansk, chilensk, aarhusiansk

<jtime> time 5.62 1.52 tyveårs, fortsat, sen, sjælden

<jstate> state, non-human 4.69 2.04 frisk, åben, lukket, vakkelvorn

<jcog> cognition 4.25 3.19 gennemtænkt, klar, enkel

<jquant> quantity 4.2 0.74 halv, hel, rigelig, samlet

<jpsych> psychological, feeling 3.79 5.45 vred, varmhjertet, arbejdsom

<jimp> importance, impact 3.48 1.63 (u)vigtig, nødvendig, afgørende

<jage> age 3.17 1.94 alderældst, attenårig, ung

<jord> order (successive) 2.57 0.24 efterfølgende, gradvis, sidste

<jident> identity 2.53 1.67 konkret, samme, selveste

<jsoc> social 2.5 1.71 offentlig, privat, fri, uafhængig

<jappro> appropriate 2.45 1.22 (u)egnet, rigtig, forkert, farlig

<jpol> politics 2.11 1.56 sprogpolitisk, blokfri, autonom

<jnormal> normal 2.09 0.56 almindelig, særlig, elementær 

<jcol> colour 2.04 3.8 grøn, lyseblå, ternet, tigerstribet

<jmanner> manner 1.97 3.02 klodset, uorganiseret, mesterlig

<jfact> fact, truth, probability 1.95 0.96 sand, korrekt, sikker, (u)mulig

<jdegree> degree 1.92 1.29 gennemført, ekstrem, drastisk

<jbehave> behaviour 1.86 3.27 anmassende, barbarisk, barnlig

<jtype> type (underspecified) 1.67 6.19 -mæssig, kvindelig, -betonet

79.66 52.13

Table 3: Semantic class distribution

Some of the categories in table 3 have a much higher type/token ration than others, indicating a larger
lexical spread, and more work for the lexicographer per annotated token. This is true not only for the
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underspecified  "type"  category,  but  also  for  people's  geographical  provenance  (<jnat>),  cognition
adjectives (<jcog>) and states-of-mind (<jpsych>). 

6 Applications

The DanGram parser is used in a number of ongoing research projects, where improving adjective
annotation might have an impact.

Greenlandic machine translation

Since Greenlandic linguistic tradition, based on morphological clues, does not recognize the existence
of adjectives in the language, it is a non-trivial task to match Danish adjectives to Greenlandic lexical
items. Often, the Greenlandic "adjective candidate" can translate into either a noun or an adjective in
Danish. With a semantic-combinatorial classification of Danish adjectives, it might be easier to decide
whether a word matches the semantics of a potential head noun, and hence should be treated as an
adjective, or not.

Sentence grading

One interesting area within Intelligent Computer-Aided Language Learning (ICALL) is the automatic
generation of exercises, and the  grading of possible solutions. For instance, an ICALL system can
generate sentences or question-answer pairs based on known vocabulary. If this is done solely based
on syntactic slots, however, a large proportion of the suggested sentences will be meaningless. Thus,
when using an adjective, it has to match the semantic type of its syntactic slot, normally defined by a
noun. "Red ideas" and "angry houses" should be weeded out, while slight or metaphorical mismatches
("angry machines" or "red elephants",  if  recognized as such,  might  even contribute to making an
exercise interesting and fun.

Sentiment analysis for hate speech

Hate speech research has lately drawn considerable public and political interest, as well as funding.
Both in terms of technology (extracting and recognizing hate speech from online data) and linguistics,
it is useful to be able to perform semantic annotation, and looking at what kind of adjectives are used
in connection with hate speech target objects (immigrants, Muslims, Jews) is one way of decoding the
linguistics  of  hate  speech.  Both sentiment  analysis  and adjective semantics  are  interesting in  this
regard, and to the best of our knowledge, no complete sentiment mark-up has ever been published for
Danish adjectives.

7 Conclusions and outlook

We have presented a full-fledged lexico-semantic annotation scheme for adjectives and shown that the
implemented  Danish  version  can  achieve  99%  token  coverage  and  90%  type  coverage,  while
exhibiting a shallow frequency distribution curve with a high discriminatory potential.

It will be interesting to see if ongoing NLP work in the area of machine translation, semantic sentence
grading and hate speech recognition can be made to profit from an improved lexical base for adjective
annotation. 
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Abstract

Complex predicates formed of a semantically ‘light’ verbal head and a noun which contributes the
major part of the meaning are frequently referred to as ‘light verb constructions’ (LVCs). In the paper,
we present a case study of LVCs with the German posture verb stehen ‘stand’. In our account, we
model the syntactic as well as semantic composition of such LVCs by combining Lexicalized Tree
Adjoining Grammar (LTAG) with frames. Starting from the analysis of the literal uses of posture
verbs, we show how the meaning components of the literal uses are systematically exploited in the
interpretation of stehen-LVCs. The paper constitutes an important step towards a compositional and
computational analysis of LVCs. We show that LTAG allows us to separate constructional from
lexical meaning components and that frames enable elegant generalizations over event types and
related constraints.

1 Light verb constructions

Light verb constructions (LVCs) are complex predicates consisting of – at least – two lexical elements
forming a joint predication. The grammatical head of the construction is a semantically light verb which
does not express the same predicational content as it does in its non-light (‘heavy’) uses. Rather, the
predicational content is mainly contributed by a nominal element which is either realized within an NP
or as a PP as illustrated by the German examples in (1-a) and (1-b), respectively.

(1) a. ein Bad nehmen
‘to take a bath’

b. unter Beobachtung stehen
‘to be under surveillance’

In its light use as in (1-a) the verb nehmen ‘take’ does not express a change of possession as it does in
its heavy use: ein Bad nehmen ‘take a bath’ does not denote an event in which an individual is taking
possession of a bath. Instead, the LVC in (1-a) denotes an event of bathing with the meaning mainly
contributed by the noun Bad ‘bath’. Likewise unter Beobachtung stehen in (1-b) does not refer to a
situation in which someone exhibits the particular posture specified by stehen ‘stand’ in its heavy use but
rather means that someone is the undergoer of the activity expressed by the eventive noun Beobachtung
‘surveillance’. As illustrated by the examples, the nominal element used in an LVC is characteristically
an eventive noun which determines the event denoted by the LVC as a whole. In this regard, Butt and
Geuder (2001) state that light verbs make a (often just subtle) semantic contribution to the predication
and are not able to denote full-fledged events of their own (in contrast to their heavy pendants).

Various authors (e.g. Fleischer 1997; Fellbaum et al. 2006) consider LVCs as idioms since construc-
tions of this type often have a conventionalized interpretation and especially the light verb cannot be
interpreted literally. In their discussion of idioms, Nunberg et al. (1994) argue that idiomaticity does not
contradict semantic compositionality. The authors distinguish between ‘idiomatic expressions’ (e.g. kick
the bucket) on the one hand and ‘idiomatically combining expressions’ on the other hand. Idiomatically
combining expressions (ICEs) are semantically compositional and most LVCs fall into that class. After
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having identified the probable figurative meaning of the different components of an ICEs, its meaning
can be build up compositionally. Such a compositional view is supported by the observation that ICEs
come in families (e.g. Sag et al. 2002; see Gibbs and Nayak 1989; Nunberg et al. 1994; Fleischhauer
and Neisani 2019 for further evidence supporting a compositional analysis of ICEs). Light Verb Con-
structions belonging to the same family instantiate the same interpretational pattern. For example, the
LVCs in (2) which instantiate the pattern vor (lit. ‘in front of’) + NP + stehen ‘stand’ all have the same
‘prospective’ interpretation and can be paraphrased as ‘be close to the change of state expressed by NP’.

(2) vor dem Ruin stehen ‘to face ruin’, vor dem Kollaps stehen ‘to be at the brink of collapse’, vor
der Explosion stehen ‘to be before the explosion/to be ready to explode’, vor der Vollendung
stehen ‘to near completion’, vor dem Abschluss stehen ‘to near completion/to be before the end’,
vor dem Untergang stehen ‘to be on the brink of decline’, vor der Fertigstellung stehen ‘to near
completion’

The existence of families such as the one in (2) shows that the individual LVCs are not interpreted
idiosyncratically but rather on the base of systematic interpretational patterns. In line with this, Nunberg
et al. (1994) argue that the existence of such families would be surprising, if the members of the families
were not built compositionally.

As a consequence of assuming compositionality, LVCs show a mismatch between syntactic and
semantic composition: syntactically, the light verb is the head of the construction and realizes the nominal
element as its complement whereas the nominal element is the semantic head contributing the major part
of the meaning.

The semantic composition of light verb constructions has only rarely been adressed explicitly in the
semantics literature. Noteable exceptions come from work on the composition of event structure (e.g.
Karimi 1997; Folli et al. 2005; Pantcheva 2009) and from Butt and Geuder (2001). The work on event
structure usually neglects lexical semantics and therefore only covers a part of the meaning of light verb
constructions. The current paper aims at filling this gap by presenting a case study on the semantic
composition of German LVCs of the ‘prospective family’ presented in (2).

2 Case study: LVCs with stehen (‘stand’)

German stehen ‘stand’ is basically a verb expressing the posture of its theme argument. In addition, it
also allows for the specification of the theme’s location by means of a spatial PP as in (3). The sentence
in (3) has the interpretation that the subject referent Peter is in an upright posture and is located at a
place denoted by vor dem Haus ‘in front of the house’. The spatial preposition locates the referent of its
external argument within a neighboring region of a reference object (cf. Wunderlich and Herweg 1991;
Kaufmann 1995 among others). In the case of vor, the referent of the internal argument (Peter) is located
in a spatial region in front of the reference object (the house). Following Talmy (1972) among others, we
refer to the reference object as ‘ground’.

(3) Peter steht vor dem Haus. ‘Peter is standing in front of the house.’

In (3), stehen ‘stand’ is used as a heavy verb. A light use of stehen is shown in (4). Its meaning is that
the boiler is close to explosion but not that the boiler is spatially located in a preregion of the explosion
event. Such a literal interpretation does not make sense since the event does not denote a location with
respect to which an object can be located.

(4) Der Kessel steht vor der Explosion. ‘The boiler is close to explosion.’

The interpretation of (4) is that the boiler is in a state anterior to an explosion event. Such an interpretation
is called ‘prospective’ in the aspectual literature (e.g. Comrie 1976, 64). This particular kind of light verb
construction is one way of expressing prospective aspect in German although it is not a grammaticalized
aspect construction. The prospective interpretation only arises with eventive nouns denoting a change of
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state such as Explosion ‘explosion’ or Vollendung ‘completion’. Crucially, the meaning of the LVC in
(4) is not that the boiler will definitely explode. Prospective aspect is weaker than the future tense and
only expresses that if the boiler remains in its current state, this will possibly result in an explosion.

The LVC exploits the ability of the preposition to refer to both location in space and time relative
to a spatial entity or an event. It is important to note that the preposition does not depend on the co-
occurrence of a light verb (LV) such as stehen ‘stand’ to be able to express the fact that the event denoted
by its internal argument is about to take place. This is clearly shown by the fact that a vor-PP can also be
used attributively in this reading as illustrated by (5).

(5) Ein Kessel kurz vor der Explosion ist eine große Gefahr.
‘A boiler close to explosion is a great danger.’

As in the LVC in (4), the PP in (5) conveys the meaning that the event referred to by the PP-internal
NP is close albeit not inevitable in spite of the absence of an LV. The LV therefore is not required for
establishing this particular reading and can be regarded as more or less copula-like, selected in order to
license a PP parallel to its heavy use. Another aspect central to the analysis of LVCs of the vor + NP
+ stehen–type is the selection of the subject argument in dependence of the argument structure of the
PP-internal NP: Since the noun Explosion ‘explosion’ refers to an event with only a single participant
undergoing the change of state referred to by the NP, it is exactly this argument which is selected as an
argument to be realized as the subject of the LVC. However, if the PP-internal NP comes with a more
complex argument structure as in (6), the LVC exhibits some flexibility in regard to subject choice:

(6) a. Die Gemeinde steht kurz vor der Fertigstellung der Umgehungsstraße.
‘The local community is about to complete the bypass.’

b. Die Umgehungsstraße steht kurz vor der Fertigstellung durch die Gemeinde.
‘The bypass is about to be completed by the local community.’

In (6) the eventive noun Fertigstellung ‘completion’ derives from the transitive verb fertigstellen ‘to
complete’ via ung–nominalization (see e.g. Ehrich and Rapp 2000 on ung–nominalization in German).
As shown by the contrast between (6-a) and (b), either the actor or the theme argument of the underlying
verb can be realized as subject of the LVC while the remaining argument is realized as a genitive NP as
in (6-a) or via a durch-PP as in (b) depending on its semantic role (theme vs. actor).

Given the observations illustrated above, a proper analysis of LVCs of the type vor + NP + stehen
has to account for at least (i) the way the meaning of the construction is derived compositionally given
the meaning of the parts outside this construction and (ii) the selection of the subject argument on the
base of the argument structure of the PP-internal NP.

3 The framework: LTAG and frames

3.1 Frame semantics

Frames emerged as a representation format of conceptual and lexical knowledge (Fillmore, 1982; Barsa-
lou, 1992; Löbner, 2014). They are commonly presented as semantic graphs with labeled nodes and
edges, as in Fig. 1, where nodes correspond to entities (individuals, events, . . . ) and edges to (functional
or non-functional) relations between these entities. In Fig. 1 all relations except part-of are meant to
be functional. This representation offers a fine-grained decomposition of meaning and should not be
confused with the FrameNet frames, although the former can help to capture the structural relations of
the latter (cf. Osswald and Van Valin, 2014).

Frames can be formalized as extended typed feature structures (Petersen, 2007; Kallmeyer and Os-
swald, 2013; Lichte and Petitjean, 2015), involving a finite set of types loc state, house, person, . . . , a
finite set of attributes (partial functions from frame nodes to frame nodes) THEME, GROUND, LOCATION,
. . . and a finite set of (non-functional) relations, for instance part-of (which is a one to many mapping).
Frame nodes are typed where we assume that a node can have more than one type (see the loc state ∧
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Figure 1: Frame for (3) Peter steht vor dem Haus (‘Peter is standing in front of the house’)

posture state node in Fig. 1). We assume some of the frame nodes to be accessible via unique labels, in
Fig. 1 for instance the label n0 uniquely points to the loc state ∧ posture state node of the frame. As
mentioned above, frame nodes can be connected via functional attributes or via non-functional relations.
We require however that every node in a frame is reachable from some labeled node via an attribute path,
i.e., via a sequence of functional attributes.1

Besides concrete frames, there is a frame signature that constrains the general form of semantic
frames. Within this signature, we allow to define subtype relations (e.g., every loc state is a state), type
incompatibilities (e.g., nothing can be of type state and person at the same time), requirements for the
existence of attributes for nodes of certain types (e.g., a state always has a THEME) etc. We will see more
examples below.

3.2 Lexicalized Tree Adjoining Grammars with frames

For syntactic modeling and syntactic composition, we choose Lexicalized Tree Adjoining Grammar
(LTAG Joshi and Schabes, 1997; Abeillé and Rambow, 2000). A LTAG consists of a finite set of el-
ementary trees. Larger trees can be derived via the composition operations substitution (replacing a leaf
with a new tree) and adjunction (replacing an internal node with a new tree). An adjoining tree has a
unique non-terminal leaf that is its foot node (marked with an asterisk). When adjoining such a tree to
some node v, in the resulting tree, the subtree with root v from the old tree ends up below the foot node.

In order to capture syntactic generalizations, the non-terminal node labels are enriched with feature
structures (Vijay-Shanker and Joshi, 1988). Each node has a top and a bottom feature structure (except
substitution nodes, which have only a top). Nodes in the same elementary tree can share features. Sub-
stitutions and adjunctions trigger unifications: In a substitution step, the top of the root of the new tree
unifies with the top of the substitution node. In an adjunction step, the top of the root of the adjoining
tree unifies with the top of the adjunction site and the bottom of the foot of the adjoining tree unifies with
the bottom of the adjunction site. Furthermore, in the final derived tree, top and bottom must unify in all
nodes.

For the syntax-semantics interface, we pair LTAG elementary trees with semantic representations, in
our case frames (Kallmeyer and Osswald, 2013). Syntactic nodes are enriched with (untyped) interface
features such as I(NDIVIDUAL) and E(VENT) that contribute labels of nodes in the related semantic frame.
Upon substitution and adjunction, the unification of interface features triggers the identification of frame
node labels and, consequently, the unification of the linked semantic frames.

An example (involving only substitution) is given in Fig. 2. The three substitutions lead to 1 = 7

(which unifies the frame contributed by Peter with the THEME of the loc state), 0 = 4 (which unifies
the posture loc state frame introduced by steht with the frame contributed by vor, thereby also unifying
the GROUND of the former with the GROUND of the latter), 2 = 3 (which unifies the LOCATION of the
loc state with the first element of the part-of relation) and 5 = 8 (which unifies the house frame with
the value of the GROUND feature, whose PREREGION value is the second element of the part-of relation).

1This condition is important for restricting the computational complexity of unification, i.e, of merging two frames.
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As a result, we obtain the frame from Fig. 1.

NP[I= 7 ]

Peter
7

[
person
NAME Peter

]

S

VP[E = 0 ]

PP[E= 0 , I= 2 ]V[E = 0 ]

steht

NP[I= 1 ]
0




loc state∧posture state
THEME 1

LOCATION 2
[

spatial region
]

GROUND >
POSTURE upright




PP[E= 4 , I= 3 ]

NP[I= 5 ]P

vor

4

[
GROUND 5

[
PREREGION 6

]]

part-of ( 3 , 6 )
NP[I= 8 ]

dem Haus
8
[

house
]

Figure 2: LTAG-frame derivation for (3), leading to the frame from Fig. 1

Generalizations over elementary tree frame pairs and constraints over frame types are captured in
the so-called metagrammar in form of a principled and factorized description of syntactic and semantic
building blocks. We will use this in the next sections when developing our analysis of LVCs with stehen.

There has been only very little work on computational implementations of LVCs so far that take both
syntax and semantics into consideration. Vaidya et al. (2014) propose an LTAG analysis for certain LVCs
in Hindi but, in contrast to our paper, do not deal with semantics. Their syntactic analysis is such that
the light verb adjoins into the noun, i.e., the noun spans the entire subcategorization frame. This requires
separate and largely unrelated analyses for the literal uses and the light verb uses of verbs such as stehen.
Our analysis is more factorized and thereby more unified, and it establishes links between the subject NP
and semantic arguments of the embedded event NP via appropriate frame unifications.

4 The analysis

In the following, we develop an analysis of LVCs of the type stehen + vor + NP, combined with an
analysis of the literal use of stehen as in Fig. 1. The goal is to factorize into the contributions of literal
and non-literal stehen, the contributions of the respective constructions (LVC with PP versus loc state
NP-V-PP), the contribution of the NP embedded in the PP within the LVC, and the contribution of the
preposition vor. We will see, that the use of LTAG allows us to separate lexical contributions from
constructional ones (the latter are paired with unanchored trees), and the use of frames, in particular of
the type hierarchy, allows for elegant generalizations, specifically, for a uniform meaning of vor.

4.1 Literal stehen versus LVC stehen + vor + NP

As a first step towards decomposing (3) Peter steht vor dem Haus (‘Peter is standing in front of the
house’) and (4) Der Kessel steht vor der Explosion (‘The boiler is close to explosion’) into form-meaning
components, we assume that there are different constructions for the literal (3) and the LVC case (4).
The former construction, n0Vpploc is characterized as requiring a THEME NP and a LOCATION PP and
it describes a loc state involving a theme, a location and a ground. It can, for instance, be anchored by
stehen (‘stand’), wohnen (‘live’), liegen (‘lie’), etc.). The latter, n0Vpplvc, is more general, it describes
a state (determined by the PP) and the subject NP contributes the THEME of that state. Fig. 3 shows the
two constructions. The diamond marks the position of the lexical anchor.

Concerning the lexical anchor stehen, we assume that we have two different lexical entries, for the
literal and the LVC reading respectively. In the literal case, the frame type is posture state and we have
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Figure 3: The two unanchored constructions

an attribute POSTURE = upright while in the LV case, the lexical entry only specifies the type as state.2

The relation between the two readings is captured within our factorization of lexical entries. The literal
reading extends the light verb reading by further restricting its type and adding the POSTURE attribute.

On an abstract level, the preposition vor expresses the same relation either between the LOCATION
of the loc state and the object denoted by the NP embedded in the PP or between the state itself and the
event denoted by the PP-internal NP. In both cases, it means that the former is part of some PREREGION
of the latter where PREREGION is to be understood in a very general way, not limited to spatial regions
but including also prestates of events.3 Along these lines, we define both spatial region and state as in-
compatible subtypes of region, expressed in general frame constraints that are part of the type hierarchy:

(7) a. spatial region→ region b. state→ region c. state ∧ spatial region→ ⊥

These constraints are taken to be universal quantifications over frame nodes, i.e., (7-a) is short for
∀x[spatial region(x)→ region(x)].

PP[E= 0 ,I= 1 ]

NP[I= 2 ]P

vor

0

[
GROUND 2

[
PREREGION 3

[
region

]]]

part-of ( 1 , 3 )

Figure 4: Anchored tree for the preposition vor.

With these additional constraints, we can char-
acterize the meaning contribution of vor as follows:
vor establishes a relation part-of between the frame
node contributed as I feature at the PP node (Peter’s
location or the state denoted by the light verb) and
a GROUND (the house or the explosion) with respect
to which the former is positioned. More precisely, it
expresses that the location (resp. the state in the LVC
case) is part of the PREREGION of the GROUND. Fig. 4
gives the corresponding elementary tree with its frame. When combining this with the loc state construc-
tion, the interface feature I at the PP node provides the location, while in the LVC construction, it has
the same value as the E feature, i.e., it provides the overall state. The relation part-of is defined between
elements of type region with the additional constraint that the elements must have the same type (this
excludes for instance a part-of relation between elements of the incompatible types spatial region and
state). We furthermore assume a general frame constraint stating that in a case where part-of relates two
states, they must have identical THEME values.

The embedded NP provides an object coming with a certain topological structure in the literal mean-
ing and an event in the LVC case. More concretely, house is of the more general type building, which
comes with an INREGION, an ATREGION and also a PREREGION that can be addressed via corresponding
prepositions. The values of these attributes are of type spatial region. We assume constraints as in (8).
(ATTR : type in some node x is short for ∃y[ATTR(x, y) ∧ type(y)].) With these constraints, the lexical
entry of Haus can be restricted to giving the type house. The effect of the constraints will lead to the
form meaning pair on the left of Fig. 5.

2We might actually need a second literal reading without a POSTURE specification for sentences as Die Wolken stehen vor
der Sonne (‘The clouds are in front of the sun’).

3We consider this abstract conception of PREREGION as allowing for (temporal) states as well as spatial regions as directly
reflecting the metaphorical relation between the literal spatial reading of the preposition and the figurative temporal interpreta-
tion. Consequently, our analysis takes up ideas of conceptual metaphors such as “time is space” (Lakoff and Johnson, 1980)
while it also offers a concrete formal treatment of such figurative processes.
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(8) a. house→ building
b. building → INREGION : spatial region
c. building → ATREGION : spatial region
d. building → PREREGION : spatial region
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PREREGION spatial region




Figure 5: Anchored elementary trees for the NPs embedded in the PP in (3) and (4)

Explosion, in contrast, denotes an event of type change-of-state with a RESULTSTATE of type bro-
ken state. Furthermore, we assume the general constraints in (9) and (10) stating that a change-of-state
has a PRESTATE, and a RESULTSTATE, all of them having as THEME the THEME of the overall change of
state. (, stands for path equality, i.e., structure sharing: ATTR1 , ATTR2 in some node x corresponds
to ∃y[ATTR1(x, y) ∧ ATTR2(x, y)].) Note that although we assume that a change of state always comes
with a PRESTATE, this PRESTATE is not part of the event structure encoded by an eventive noun such as
Explosion. This is evident if one looks at the referents of event nouns which are subject to polysemy but
never include a PREREGION as a potential referent (see Kawaletz and Plag 2015 for a frame account of
the polysemy of event nominalizations). Likewise, although a spatial object has some (possibly variable)
PREREGION, this region is not a part of it. Therefore, PRESTATE has to be differentiated from some event
internal INITIAL STATE which precedes the RESULT STATE and in which the result does not hold yet. Since
the phenomena we account for do not require reference to the INITIAL STATE of a change-of-state frame,
INITIAL STATE is not represented in the change-of-state frame for the sake of simplicity. Furthermore,
the PRESTATE is also the PREREGION of the event. Combining these constraints with the lexical entry for
Explosion yields the elementary tree frame pair on the right of Fig. 5.

(9) a. change-of-state→ PRESTATE : state
b. change-of-state→ RESULTSTATE : state

(10) a. change-of-state→ THEME , PRESTATE : THEME
b. change-of-state→ THEME , RESULTSTATE : THEME
c. change-of-state→ PREREGION , PRESTATE

For the literal case (3), we have already seen in Fig. 2 how the form meaning fragments are put together.
Fig. 6 shows the LTAG derivation for (4). The syntactic composition triggers unifications between 1 and
7 , between 0 , 3 and 4 , and between 5 and 8 . Furthermore, the constraints on part-of relations lead to
a unification of 1 and 11 , the THEME attributes of the two states that are related.

The resulting frame is given in Fig. 7. According to this frame, the boiler is in a state that is part of
the prestate of its explosion.4

A combination of a vor-PP embedding a change-of-state NP with the literal loc state construction is
excluded because it would lead to a part-of relation between a spatial region and a state, two types that

4Note that the temporal structure of the explosion event in relation to its prestate is only implicit in this frame. The prestate
stands in a precedes relation to the change of state, which in turn stands in an overlap relation to the result state. In other
words, the state represented in Fig.7 is such that the explosion has not happened yet. Furthermore, we assume that the fact that
a prestate holds does not necessarily entail the event itself, i.e., is compatible with a situation where the event never happens.
Note, however, that this is only implicit since the frame semantics used here does not distinguish between instantiated frames
and frames that are rather frame types. In future work, we will explore ways to explicitly include uninstantiated frames (in other
words complex frame types) along the lines of Balogh and Osswald (2017), which is close to what we find in Type Theory with
Records (TTR, Cooper 2012).
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Figure 6: LTAG-frame derivation for (4)
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Figure 7: Frame for (4)

are not unifiable.5 For the same reason, the combination of the LVC construction with a PP embedding
a building NP is ruled out.

4.2 LVCs with an NP event that has actor and undergoer

Now let us turn to LVCs involving stehen and a vor-PP with a noun that denotes an accomplishment
involving an actor and a theme. An example was Fertigstellung (‘completion’) in (6), repeated below:

(11) a. Die Gemeinde steht kurz vor der Fertigstellung der Umgehungsstraße.
‘The local community is about to complete the bypass.’

b. Die Umgehungsstraße steht kurz vor der Fertigstellung durch die Gemeinde.
‘The bypass is about to be completed by the local community.’

The additional complication, compared to vor der Explosion stehen is that both the actor or the theme
of the event denoted by the noun embedded in the PP can be realized as the subject NP of the LVC.
Depending which argument is realized as the subject, the interpretation varies slightly. The LVC makes
a predication about the local community in (11-a) whereas it predicates about the bypass in (11-b). This
results in a more active-like reading for (11-a), as the actor is the subject of the complex predicate, and
in a more passive-like reading for (11-b). However, the prestate remains unspecified apart from being a
prestate of a particular event and as such being affected by it. We leave it for future research to explore
potential semantic asymmetries between realization variants of the type illustrated in (11).

5A reviewer remarks that this restriction is too strong. However, apparent counterexamples involving the literal meaning of
stehen with a PP-internal noun referring to a change of state involve some kind of coercion such that the event is shifted to the
place where it takes place. For instance, in a sentence such as Die Ingenieure standen direkt vor der Explosion ‘The engineers
were standing right in front of the explosion’ vor der Explosion is interpreted as ‘in front of the place where the explosion
happened’.
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Figure 8: Lexical meaning of Fertigstellung
(‘completion’)

We pursue a similar analysis as in the case of a change-
of-state, namely that the LVC stehen vor NP indicates that
the subject is in a prestate of the NP event. The notion
of prestate is, however, less fixed in the case of Fertigstel-
lung since both actor and theme can be the theme of the
prestate, depending on the structure of the NP. Roughly, if
the NP event has an active-like interpretation (N + genitive
NP denoting the theme), the prestate refers to the actor as
in (11-a) and if it has a passive-like reading (N + durch-PP
denoting the actor), the prestate refers to the theme as in (11-b). In other words, there are different con-
structions that come with different specifications of the THEME of the PRESTATE. The (simplified) lexical
meaning contribution of Fertigstellung is given in Fig. 8.6
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Figure 9: Unanchored elementary trees for accomplishment denoting nouns

an NP with a genitive argument slot that contributes the theme while the actor is not realized. In this
case, the theme of the prestate is the actor. In the second construction, Nppdurch , a PP with preposition
durch realizes the actor inside the NP while the theme is missing. In this case, the prestate of the event
concerns the theme. Combining the respective anchored trees with the trees for the LVC construction
yields the two desired readings.

Semantically ill-formed sentences such as (12) can then be excluded by type constraints for semantic
roles. An actor has to be capable of volition, which is not the case for objects such as bypass. Therefore,
the bypass cannot be the actor of completion.

(12) #die Umgehungsstraße steht vor der Fertigstellung der Planung
#‘the bypass is close to finishing the planning’

4.3 Implementation

In order to check the theoretical analyses presented in the previous sections, we created a toy grammar
consisting of the pairs of LTAG trees and frames appearing in our examples.7 The grammar was devel-
oped using XMG-2 (Petitjean et al., 2016), a grammar engineering tool based on the notion of metagram-
mar. In this framework, developing a grammar consists in writing a compact and factorized description,
called the metagrammar. This linguistic resource, consisting of reusable abstractions described using
logic and constraints, is compiled with XMG-2 to obtain the non-factorized grammar. Such a grammar
can be used for parsing, thereby allowing to check that automatic semantic analyses are consistent with
the ones that we presented. To do so, we used the parser TuLiPA for LTAG and semantic frames (Arps

6We ignore here the fact that Fertigstellung is derived from the verb fertigstellen via -ung nominalization and that this also
should be modeled in a principled way within the syntax-semantics interface. For possible analyses of such phenomena using
frames see for instance Andreou and Petitjean (2017).

7Our implementation and the instructions to experiment with it are available online:
https://github.com/spetitjean/XMG-2/tree/master/MetaGrammars/synframe/LVC.
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and Petitjean, 2018), giving as parameters the toy grammar and its type hierarchy. TuLiPA was able to
compute the expected derivations for all the examples.

5 Conclusion and future work

In this paper, we develop a compositional analysis of the semantics of German LVCs involving the pos-
ture verb stehen (‘stand’) and a vor-PP. The chosen framework combines LTAG with frames, which
comes with constructionist elements (LTAG) and with the possibility to formulate general semantic con-
straints via frame types and constraints on the type hierarchy. This allows us to propose an analysis that
has the following features: It separates the meaning contribution of the light verb from the form-meaning
contribution of the different constructions (literal location-state versus LVC-vor-PP construction). Fur-
thermore, it assumes a single uniform tree-frame pair for the preposition vor, which establishes a part-of
relation between a region (the location in the literal case and the state in the LVC case) and the preregion
of the frame of the PP-internal NP (the spatial region in front of an object in the literal case and the
prestate of an event in the LVC case). Unifications triggered by syntactic composition lead to a further
specification of the type of region/preregion and part-of relation. Moreover, our analysis also distin-
guishes different constructions for eventive nouns, depending on the NP-internal syntactic realization of
their arguments. This allows for a construction-specific specification of the participant of a prestate of
the event, which leads to the possibility to identify the theme of the state denoted by the light verb either
with the actor or the theme of the PP-internal event, depending on the structure of the NP.

Even though this paper covers only a few cases of LVCs, it shows clearly that the combination of
a constructionist syntactic approach with frame semantics yields elegant means of generalization and
allows for a large degree of decomposition and factorization concerning the various form-meaning pairs.

As a next step, the analysis presented within the current paper should be extended to cover further
families of stehen-LVCs. There exist further families using the same preposition (13), as well as LVCs
using different prepositions (e.g. außer ‘without’ or zu ‘to’). The LVCs in (13) at first sight seem to be
instances of the pattern discussed above. However, they do not have a prospective interpretation, rather
they express that the subject is confronted with a certain task or question. Two particularly interesting
questions are: first, what is the semantic contribution of the LV and second, how is the preposition
interpreted. Especially with respect to the P element, it is clear that it cannot have the same interpretation
as in the prospective-family discussed in this paper.

(13) vor einer Frage stehen ‘to be faced with a question’, vor einer Aufgabe stehen ‘to be confronted
with a task’, vor dem Problem stehen ‘to be confronted with a problem’

The compositional analysis presented within the current paper is somewhat incomplete, as we ignored
the semantic contribution of the article. Contrary to e.g. Leiss (2000), it seems reasonable to claim that
the article has a semantic function since its use is not fixed (14). To yield a compositional analysis of the
entirely LVC, the contribution of the article needs to be integrated as well.

(14) a. Die Fabrik steht vor der Explosion. ‘The factory is close to explosion.’
b. Die Fabrik steht vor einer erneuten Explosion. ‘The factory is close to explosion again.’

The current paper presents a promising first step in the compositional analysis of LVCs, which will be
extended along the lines sketched above.
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Niemeyer.

Fleischhauer, J. and M. Neisani (2019). Adverbial and attributive modification of persian separable light
verb constructions. Journal of Linguistics, 1–41.

Folli, R., H. Harley, and S. Karimi (2005). Determinants of event type in Persian complex predicates.
Lingua 115, 1365–1401.

Gibbs, R. W. and N. P. Nayak (1989). Psycholinguistic studies on the syntactic behavior of idioms.
Cognitive Psychology 21, 100–138.

Joshi, A. K. and Y. Schabes (1997). Tree-adjoining grammars. In G. Rozenberg and A. Salomaa (Eds.),
Handbook of Formal Languages. Vol. 3: Beyond Words, pp. 69–123. Berlin: Springer.

Kallmeyer, L. and R. Osswald (2013). Syntax-driven semantic frame composition in Lexicalized Tree
Adjoining Grammar. Journal of Language Modelling 1, 267–330.

Karimi, S. (1997). Persian complex verbs: Idiomatic or compositional. Lexicology 3(2), 273–318.

Kaufmann, I. (1995). Konzeptuelle Grundlagen semantischer Dekompositionsstrukturen: Die Kombina-
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Abstract

Distributional Semantic Models (DSMs) construct vector representations of word meanings based
on their contexts. Typically, the contexts of a word are defined as its closest neighbours, but they can
also be retrieved from its syntactic dependency relations. In this work, we propose a new dependency-
based DSM. The novelty of our model lies in associating an independent meaning representation, a
matrix, with each dependency-label. This allows it to capture specifics of the relations between words
and contexts, leading to good performance on both intrinsic and extrinsic evaluation tasks. In addi-
tion to that, our model has an inherent ability to represent dependency chains as products of matrices
which provides a straightforward way of handling further contexts of a word.

1 Introduction

Within computational linguistics, most research on word-meaning has been focusing on developing Dis-
tributional Semantic Models (DSMs), based on the hypothesis that a word’s sense can be inferred from
the contexts it appears in (Harris, 1954). DSMs associate each word with a vector (a.k.a. word embed-
ding) that encodes information about its co-occurrence with other words in the vocabulary. In recent
work, the most popular DSMs learn the embeddings using neural-network architectures. In particular,
the Skip-gram model of Mikolov et al. (2013) has gained a lot of traction due to its efficiency and high
quality representations. Skip-gram embeddings are trained with an objective that forces them to be sim-
ilar to the vectors of their words’ contexts. The latter, context-word vectors, are a separate parameter
of the model jointly learned along with the main target-word vectors. Like most DSMs, Mikolov et al.
(2013)’s model derives contexts of a word from a pre-defined window of words that surround it.

An alternative way of defining contexts in Skip-gram was explored by Levy and Goldberg (2014),
who altered the model to accept contexts coming from a different vocabulary to that of the target-words.
The contexts were retrieved from targets’ syntactic dependency relations and were a concatenation of the
word linked to the target and the dependency-label. Each context type was associated with an indepen-
dent vector representation. In contrast to Skip-gram, which captures relatedness1, Levy and Goldberg
(2014)’s embeddings exhibited a more intuitive notion of similarity. For example, the former regards the
vector for abba, a popular Swedish pop group, as close to that for agnetha – a name of the group’s mem-
ber, while the latter considers it close to the vectors for other pop group names. But Levy and Goldberg
(2014)’s method of constructing contexts prevented their model from directly capturing how dependency
types affect relations between target and context-words, as the labels were not associated with indepen-
dent representations. At the same time it intensifies the problems associated with data sparsity due to the
large and fine-grained context-vocabulary.

In this work, we address the shortcomings of Levy and Goldberg (2014)’s approach by introducing
the dependency-matrix model – a DSM which associates meaning with each type of dependency. Instead

1Turney (2012) refers to relatedness as domain similarity and highlights its differences from function similarity that quanti-
fies the degree to which words share similar functional roles.
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Figure 1: A graphical representation of Skip-gram displaying its parameters (left) and how P (C =
1|V2, V3) and 1− P (C = 1|V2, V5) are calculated for the real and a negative context, respectively. N is
the embedding dimensionality.

of simply appending the labels to context-words, they are promoted to a separate parameter of the model.
They become matrices, acting as linear maps on the context-word vectors and trained alongside the em-
beddings. We hypothesised that this approach will lead to higher-quality representations, as it allows the
model to capture important interactions between all three: labels, contexts and targets, while diminishing
the data sparsity problem at the same time.

2 Background

2.1 The Skip-gram Model

We now give a short formal overview of the Skip-gram model, since we will build on this to specify our
dependency-matrix model in Section 3.

Skip-gram was based on the feed-forward neural probabilistic language model of Bengio et al.
(2003). It is trained to predict the context-words of a given target-word, where the contexts are the
immediate neighbours of the latter and are retrieved using a window of an arbitrary size n (by capturing
n words to the left of the target and n words to its right). During training the model is exposed to vast
amounts of training data pairs (Vt, Vc), where V is the vocabulary and t, c ∈ {1, ..., |V |} are indices of
a target-word and one of its contexts. The objective of negative-sampling Skip-gram, as introduced by
Mikolov et al. (2013), is to differentiate between the correct training examples retrieved from the corpus
and the incorrect, randomly generated pairs. For each correct example the model drawsm negative ones,
with m being a hyperparameter. These incorrect samples hold the same Vt as the original, while their
Vc is drawn from an arbitrary noise distribution. Mikolov et al. (2013) recommend setting the noise
distribution to the unigram distribution raised to the power 0.75 and we used this setting in this work.

Following Goldberg and Levy (2014), let D be the set of all correct pairs, D′ denote a set of all
negatively sampled |D| × m pairs and P (C = 1|Vt, Vc) be the probability of (Vt, Vc) being a correct
pair, originating from the corpus. The last is calculated using the sigmoid function:

σ(u) =
1

1 + e−u
(1)

where u = Et ·Oc

Here, E ∈ R|V |×N stands for an input-embedding matrix, holding representations of target-words and
O ∈ R|V |×N stands for the output-embedding matrix, holding context representations (see Figure 1).
Given this setting, the negative-sampling objective is defined as maximising

∑

(Vt,Vc)∈D
log σ(u) +

∑

(Vt,Vc)∈D′
log σ(−u) (2)
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The model is trained using stochastic gradient ascent, with the learning rate changing throughout the
training process and being proportional to the number of remaining training examples.

2.2 Dependency-based Embeddings

Since word meaning is closely related to syntactic behaviour, a feasible alternative to the window-method
is to extract the contexts from the word’s syntactic relations. This can be achieved by constructing the
context vocabulary V C through pairing all word types with labels of relations they can participate in.
For instance, among the contexts composed from dog would be dog/nsubj and dog/dobj. Alternatively,
one can keep the vocabulary unchanged and adjust the context selection method to disregard the labels
and only pick words in relation with the target. The first approach was taken in some of the earliest
works incorporating syntactic information into the count-based DSMs. Grefenstette (1994) used V C

that consists of tokens such as subject-of-talk and his vectors held binary values denoting whether the
target-word has co-occurred with the contexts in V C . This approach was later extended by Lin (1998)
who replaced the binary values with frequency counts. Even more methods for incorporating syntactic
information were introduced in the general frameworks of Padó and Lapata (2007)’s and Baroni and
Lenci (2010). Baroni and Lenci (2010) represented corpus-extracted frequencies of (word, link, word)
tuples as a third order tensor and, through its matricisation, generated various matrix-arrangements of the
data. In particular, as an alternative to the standard word by (link, word) matrix, the framework allows
the focus to be placed on links (which can be dependencies) and represent them in terms of the words
they connect through a link by (word, word) matrix.

More recently, Levy and Goldberg (2014) modified Skip-gram to use contexts of the form context-
word’s form/label. The context-word can be either the head or a modifier of the target, with the first role
causing the dependency to be marked as inverse. For example, if we take the sentence ‘I like rain’:

I like rain.

nsubj dobj

for rain we obtain like/dobj−1 context, marked with −1 to reflect the relation’s inverse nature.
One weaker side of this model is that it does not directly capture how the dependency type affects

the relation between the head and the dependent. For instance, during training it does not recognise that
the nsubj dependency in both sentences

Harry danced. Kate laughed.

nsubj nsubj

is in fact a relation of the very same type and cannot make use of the available subjecthood information
– a good indicator of words’ agentivity or animacy. In fact, it does not provide any mechanisms for
indicating that the contexts danced/nsubj−1 and laughed/nsubj−1 have anything in common, apart from
the fact that they will likely be contexts of similar words. Naturally, the latter is strongly informative
in its own right, but associating meaning with specific types of dependencies could further improve the
model’s performance. One benefit of such a solution is the increased informativeness of rare context-
words in cases when they appear in common relations.

Another disadvantage of Levy and Goldberg (2014)’s context creation is that it intensifies data spar-
sity issues. Many of the fine-grained contexts are likely to be relatively uncommon, and thus less infor-
mative. The rarest are excluded from V C , which potentially leads to the loss of relevant information. In
particular, this problem applies to when the model is trained on smaller corpora. The model’s extensive
V C also means it cannot be extended to handle chains of dependencies, as it would be infeasible to ad-
ditionally incorporate further contexts, such as I/dobj−1/nsubj. This limits the model to using a small
number of contexts per target, since a word typically participates in few relations.
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Figure 2: A representation of our model displaying its parameters (left) and how P (C = 1|V2, V3, V L
3 )

and 1− P (C = 1|V2, V5, V L
3 ) are calculated for real and negative contexts, respectively.

3 Dependency-matrix model

In the dependency-matrix (DM) model each type of dependency is associated with its own meaning
representation – a matrix, which embodies the characteristics of words it typically links. The target and
context-words are as in the original Skip-gram, drawn from the same vocabulary and represented as
vectors of equal dimensions. The difference lies in how we define u from Eq. 1. It is no longer the dot
product of target and context-word vectors, but the dot product of the target-word vector and the context-
vector, with the latter being the result of multiplying the context dependency-matrix by the context-word
vector, where the dependency-matrix is a representation of the relation linking the target to its context.
An important feature of the model is its inherent ability to represent chains of dependency relations – it
can be easily extended to handle contexts coming from further dependencies of the target by multiplying
the context-word vector by a number of matrices, as further explained in Section 4.2.

The dependency-matrices modify meanings captured in the context-word vectors. In this behaviour,
they are similar to representations of relational words, such as verbs or adjectives, in Compositional Se-
mantic Models based on tensor products. For instance, Baroni and Zamparelli (2010) represent adjectives
as matrices that enhance information encoded in the noun vectors with adjective-specific characteristics.
Another example is the model of Paperno et al. (2014) in which each relational word is associated with
a vector encoding its core meaning and a number of matrices – one for each argument the word takes.
The matrices act as linear maps on the corresponding arguments’ vectors, altering those depending on
the role they play with respect to the predicate. At its core, this role corresponds to the type of depen-
dency linking these words. This is closely aligned with the approach taken in this work, with the main
difference lying in the granularity of representations.

3.1 Training

The model’s training objective closely resembles that of Skip-gram (Eq. 2).
∑

(Vt,Vc,V L
d )∈D

log σ(u) +
∑

(Vt,Vc,V L
d )∈D′

log σ(−u) (3)

As before, D is a set of all positive training examples and D′ consists of those negatively sampled. The
model is trained on triples (Vt, Vc, V L

d ), where V L is the label vocabulary and d is an index to the label of
the relation between Vt and Vc. Given that in the DM model the final context representations are products
of two independent components: word-form vectors and dependency-matrices, we redefine u as

u = Et · Td Oc (4)
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where T ∈ R|V L|×N×N is a third order tensor holding the matrices, while E and O, as before, hold the
input and output-embeddings (see Figure 2).2

The following table gives an example of training triples obtained for the sentence ‘I like rain’. Note
that, as in Levy and Goldberg (2014), we create two training examples for each dependency relation.

target (Vt) context-word (Vc) label (V L
d )

I like nsubj−1

like I nsubj

like rain dobj

rain like dobj−1

It is important to note here that the incorporation of V L
d does not influence the negative-sampling proce-

dure. For each positive example the system samples m triples, which all share the same Vt and V L
d as

the original – the labels are not sampled.

4 Evaluation

We compared the performance of our model to that of Skip-gram (SG), Levy and Goldberg (2014)’s
model (LG) and Skip-gram for which the contexts are retrieved from the target’s syntactic relations but
the labels are disregarded (SGdep). Our primary evaluation involved a number of standard word similar-
ity datasets, as well as the RELPRON dataset (Rimell et al., 2016). In addition, we tested our model’s
performance on the task of differentiating between similarity and relatedness relations and evaluated it
qualitatively, by manually inspecting the types of captured similarities. We also conduct experiments on
three extrinsic tasks: dependency-parsing, chunking and part-of-speech tagging. Previous findings have
shown the dependency embeddings are well suited for these tasks (Bansal et al., 2014; Melamud et al.,
2016) so our primary objective here was to compare the performance of DM to that of LG.

All models were trained on the WikiWoods corpus (Flickinger et al., 2010), which contains a 2008
Wikipedia snapshot, counting approximately 1.3M articles. Throughout this work we used Universal
Dependencies (Nivre et al., 2016; Schuster and Manning, 2016) with all training examples for the depen-
dency models generated from WikiWoods parsed with the Stanford Neural Network Dependency parser
(Chen and Manning, 2014). Because words typically participate in only a few relations, the number of
training data instances obtained from the parses was a third of the number obtained for Skip-gram.

We tuned the embedding dimensionality for all tasks and the number of negative samples for REL-
PRON and word similarity. For the extrinsic tasks we experimented with dimensions 50, 100 and 200,
while for RELPRON and word similarity we experimented with setting m to 5, 10 and 15, and consid-
ered dimensions of 50, 100, 200 and 300. In the case of word similarity we based the hyperparameter
choice on the SimLex-999 results, as the similarity datasets do not provide standard development sets.
In all training conditions we removed all tokens in the target and context vocabularies with frequencies
less than 100. For Skip-gram, we used the dynamic window of size n = 5.

Following the original word2vec tool3, we sampled the initial values of the input-embeddings from
a uniform distribution over the range (-0.5, 0.5) and divided them by the embedding dimensionality. We
initialised the output-embeddings with zeros and dependency-matrices as identity matrices. The models
were trained in an online fashion using stochastic gradient updates, with the learning rate initially set to
0.025 and linearly decreased during training, based on the number of remaining training examples. All
of the models shared the same code-base, to ensure reliable comparison.

2One can also view Td as a bilinear map combining the elements of the input and the output-embedding vector spaces.
3https://code.google.com/archive/p/word2vec/
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DM LG SG SGdep

SimLex-999 0.423 0.414 0.398 0.411

RW 0.361 0.324 0.285 0.323
SimVerb-3500 0.301 0.257 0.242 0.259
WS353 (sim) 0.751 0.730 0.732 0.742
WS353 (rel) 0.457 0.441 0.532 0.46
MEN 0.679 0.613 0.728 0.688

Table 1: Word similarity evaluation results, the values are Spearman’s correlation coefficients.

4.1 Word Similarity Datasets

Word similarity evaluation is one of the most common methods of testing vector space semantic models.
The similarity datasets consist of word-pairs associated with human-assigned similarity scores. The task
is to measure how well the model’s scores, obtained using the learned embeddings, correlate with the
gold-standard. After the scores are computed for each pair, typically using the cosine similarity measure,
the pairs are ranked by these values. This ranking is then compared to the gold-standard ranking using
Spearman’s rank correlation coefficient.

The datasets used for this evaluation included Agirre et al. (2009)’s relatedness and similarity splits
of WordSim353 (WS353) (Finkelstein et al., 2001), MEN (Bruni et al., 2014) which consists of 3000
similar and related pairs, the Rare Word (RW) collection (Luong et al., 2013), incorporating 2034 pairs
of infrequent and morphologically complex words, SimLex-999 (Hill et al., 2016) consisting of 999
similar word pairs and SimVerb-3500 (Gerz et al., 2016) which includes 3500 similar verb-only pairs.

The models performed best using 300 dimensional embeddings and 20 negative samples (apart from
SG, which performed best with 15 samples). As reported in Table 1, DM outperformed LG on all
benchmarks and SGdep on all similarity datasets. The latter demonstrates that the labels are a valuable
information source and our model’s superiority over LG should not be attributed solely to decreasing
data sparsity. Despite being trained on three times less training examples than SG, DM and SGdep
managed to beat SG on all datasets but MEN and WS353 (rel). Importantly, both of these datasets
measure relatedness rather than similarity.

4.2 RELPRON

RELPRON was introduced by Rimell et al. (2016) as an evaluation dataset for semantic composition. It
consists of term-property pairs, with each term matched to up to ten properties. Each property takes the
form of a hypernym of the term, modified by a simple relative clause. For example, the term dog has the
property mammal that people walk. The full dataset consists of 1087 properties and 138 terms, with a
test set of 569 properties and 73 terms and a development set of 518 properties and 65 terms. The task
is to determine matching properties for all terms. This is framed as an information retrieval task – for
each term the properties are ranked according to their similarity to that term and the matching properties
should have the highest ranks. The correctness of the rankings is assessed using Mean Average Precision
(MAP). An alternative task is to determine the correct term for each property. Here, the evaluation
measure becomes Mean Reciprocal Rank (MRR), as each property has only one matching term.

In RELPRON evaluation we sought to investigate the utility of the dependency context representa-
tions for semantic composition. Since each property contains the term’s hypernym, it is easy to determine
the relations between the term and the words in the property. For both MAP and MRR rankings, we con-
structed a vector for each property, and then used cosine similarity between term vectors and property
vectors. We experimented with two approaches to constructing property vectors, both based on weighted
vector addition, which Rimell et al. (2016) showed to perform well as a composition method, despite
its simplicity. The first, simple-sum (SS), is the sum of the words’ input-embeddings. The second,
enhanced-sum (ES), makes use of the dependency structure.
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DM LG SG SGdep

Development set

MAP (SS) 0.390 0.354 0.451 0.418
MAP (ES) 0.472 0.426 0.485 0.497
MRR (SS) 0.525 0.489 0.567 0.523
MRR (ES) 0.612 0.592 0.614 0.587

Test set

MAP (SS) 0.324 0.292 0.436 0.371
MAP (ES) 0.400 0.315 0.475 0.439

MRR (SS) 0.465 0.444 0.549 0.501
MRR (ES) 0.557 0.509 0.574 0.543

Table 2: Results of MAP and MRR evaluation on the test and development sets of RELPRON.

Simple-sum composition

Simple-sum composes a property representation by summing the input-embeddings of the agent a, verb v
and patient p in a phrase4. The final similarity metric is the cosine between the resulting vector and the
term’s input-embedding:

cos(Et, Ea + Ev + Ep)

Enhanced-sum composition

The motivation behind the enhanced-sum formula is to compose semantic representations of phrases
based on a dependency graph, with a focus on one specific word – in this case, the head noun, which is
the term’s hypernym.

There are two ways that we can view the head noun: as a target word, or as a context. Viewing
the head noun as a target word, the verb acts as a context, and the other noun acts as a further context.
To represent the phrase, we therefore want to sum the head noun’s input embedding, the verb’s context
embedding, and the other noun’s further context embedding. This composed vector should be close to
the term’s input embedding.

Viewing the head noun as a context, the verb acts as the target word, and the other noun also acts
as a context. To represent the phrase, we therefore want to sum the head noun’s context embedding, the
verb’s input embedding, and the other noun’s context embedding. This composed vector should be close
to the term’s context embedding.

Because of these two ways that we can view the head noun, in all of the following formulae, there are
two cosines. The exact formulae differ across the models, as each model represents contexts differently.
For the dependency models, the formulae also depend on the semantic role of the head noun (agent or
patient), as it determines which dependency-matrices are used. Below, we present the formulae for the
case where the hypernym is the agent, as in fuel: material that supplies energy. The case where the
hypernym is the patient is analogous, but with different labels for the dependencies.

material (fuel) supplies energy.

nsubj
dobj

4We ignore the relative pronoun in the property representation as its contribution to semantics in RELPRON is indicating
semantic dependencies between content words. In fact, in many relative clauses, there is a semantically equivalent ‘bare
relative’ (Sag, 1997). E.g. ‘mammal that people walk’ has meaning equivalent to ‘mammal people walk’. In addition, adding a
vector for “that” would result in applying exactly the same semantic shift to every property and would not affect their ranking.
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For Skip-gram and SGdep, the dependency labels are not used. There is no way to represent a further
context (a path of multiple dependencies) except as a normal context, so the enhanced-sum uses the
following (note Op for the further context p):

cos(Et, Ea +Ov +Op)

+ cos(Ot, Oa + Ev +Op)

For LG, the context word and dependency are combined. There is no way to represent a further
context. Unlike for Skip-gram, it would be problematic to use Op/dobj , because the head noun would
never have been observed with a dobj context during training. We instead use the input embedding Ep:

cos(Et, Ea +Ov/nsubj−1 + Ep)

+ cos(Ot/nsubj , Oa/nsubj + Ev +Op/dobj)

For DM, we have a principled way to represent the further context, through the multiplication of two
dependency matrices. The input embedding Ep is mapped by T T

dobj−1 to the output embedding space,
and then mapped by Tnsubj−1 to the input embedding space.5 This composition method (multiplying
dependency matrices, and summing over words) can be applied to any possible dependency graph:

cos(Et, Ea + Tnsubj−1Ov + Tnsubj−1T T
dobj−1Ep)

+ cos(TnsubjOt, TnsubjOa + Ev + TdobjOp)

For RELPRON evaluation, DM and SGdep performed best using 300 dimensional embeddings and
m, the number of negative samples, set to 20. SG used 300 dimensions and m=15, while LG 200
dimensions and m=5. The results in Table 2 demonstrate that the DM model is once again superior
to LG, outperforming the latter on both MAP and MRR evaluation. Overall, Skip-gram is the best
performing model. As discussed by Emerson and Copestake (2017), models capturing relatedness can
perform well on RELPRON, as they directly recognise the association between the term and the other
argument of the verb (fuel and energy from the previous example).

All models benefit from ES, which proves our proposed composition method is viable. Notably, the
enriched similarity metric is particularly beneficial for DM, which experiences the highest performance
increase: on the development set DM’s MAP (ES) and MRR (ES) scores are competitive to that of
SG. This demonstrates the information encoded in DM’s dependency-enhanced contexts is valuable for
this task and the proposed representations of further contexts work well. Training the model on longer
dependency paths could further increase its performance, but we leave this for future work.

The general performance drop on the test set, also observed by Emerson and Copestake (2017) and
Rimell et al. (2016), could be attributed to a number of factors, including the test set being ∼10% larger
than the development set and containing more generic properties, ranked highly by many terms. For
example, in DM evaluation it contained 26 properties which appeared in the top 15 ranking of 7 or more
terms (out of 73). In comparison, the development set had only 9 such properties.

4.3 Similarity vs Relatedness

To test the model’s ability to distinguish between similarity and relatedness relations we evaluated it
on the task of ranking similar word-pairs above related ones. For this evaluation, following Levy and
Goldberg (2014), we incorporated WS353 and Chiarello et al. (1990)’s dataset that Turney (2012) used
for differentiating between functional and domain similarities. For both datasets we plotted precision-
recall curves based on the rankings and calculated the AUC values. In the case of WS353, we disregarded
the pairs that appear in both similarity and relatedness splits, which constituted the majority of pairs with
scores equal or lower than 5 (out of 10). Figure 3 demonstrates that all dependency models are superior
to SG on this task and there is not much difference in their performance.

5More precisely, the model is trained to maximise Ep · Tdobj−1Ov , so we expect TT
dobj−1Ep to be close to Ov . The model

is also trained to maximise Ea · Tnsubj−1Ov , so we expect Tnsubj−1Ov to be close to Ea. Combining these two results, we
expect Tnsubj−1TT

dobj−1Ep to be close to Ea.
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Figure 3: Precision-recall curves showing the results on ranking similar pairs above the related ones.

DM LG SG SGdep
dolphin whale, shark,

sailfish, porpoise
porpoise, giraffe,

seahorse, orca
bottlenose, tursiops,

stenella, delphis
whale, seahorse,
shark, porpoise

voldemort hordak, soth,
sidious, ganondorf

saruman, darkseid,
hordak, melkor

dumbledore, horcrux,
hagrid, dementors

melkor, xykon,
hordak, ganondorf

abba sizzla, tvxq,
mecano, cascada

roxette, a-ha,
t.a.t.u., n.w.a.

agnetha, fältskog,
lyngstad, eban

roxette, a-ha,
n.w.a, tider

cycling swimming, skiing,
speedskating,
motorcycling

bicycling, biking,
yachting, wakeboarding

bicycling, cyclo-cross,
bicycle, biking

biking, motorcycling,
luge, snowboarding

Table 3: Examples of word similarities learned by the models.

4.4 Qualitative Evaluation

To inspect the types of similarities captured by the models we made a selection of four words from the
vocabulary and analysed their closest neighbours according to each model. The examples presented in
Table 3 confirm Levy and Goldberg (2014)’s findings, with SG capturing both similarity and related-
ness and the dependency models demonstrating a bias towards similarity. Good examples of that are
the neighbours of abba or voldemort. For the first SG selected words such as agnetha or lyngstad –
the names of members of the Swedish pop group ABBA. The dependency models, on the other hand,
associated abba with other music bands, such as A-ha, Roxette or Sizzla. For voldemort, a villain from
the Harry Potter series, the dependency models considered other fictional villains as most similar, while
SG returned mostly names of characters from the books.

4.5 Dependency Parsing

In this experiment we used the input-embeddings of DM, LG and SG to initialise word representations
of the Stanford Neural Network Dependency parser (Chen and Manning, 2014). The parser was trained
and tested on the English Penn Treebank; sections 2–21 of WSJ were used for training, section 22 for
development, while section 23 was reserved for testing. We trained the model for 20000 iterations using
the default hyperparameters6. The embeddings were fine-tuned to the task during training. In addition to
initialising the parser with input-embeddings, for the DM model using 50 dimensions we experimented
with concatenations of the input and output-embeddings. We refer to this setting as DMio. Note that this
could not be done for LG, as it only provides a single representation for each word.

DM and SG performed best with 100 dimensions, while LG used 50. Table 4 presents the results
6https://nlp.stanford.edu/software/nndep.shtml
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DM LG SG DMio
Dependency Parsing

UAS 91.49 91.40 91.33 92.01
LAS 90.02 89.99 89.82 90.66

POS Tagging (accuracy)
tuned 95.58 95.69 95.53 95.69
fixed 95.25 95.28 94.30 94.71

Chunking (accuracy)
tuned 92.66 93.11 92.68 92.84
fixed 92.45 92.06 92.28 92.57

Table 4: Results of the dependency parsing, part-of-speech tagging and chunking evaluation.

achieved by the models measured with the unlabeled (UAS) and labeled attachment scores (LAS). Al-
though all models performed well on this task, DM proved to be the best input-embedding initialisation.
DMio performed overall best, demonstrating that utilising information encoded in the output-embeddings
can be more beneficial than simply increasing the dimensionality of the embeddings.

4.6 Part-of-speech Tagging

For the POS tagging we made use of the publicly available word embedding evaluation framework,
VecEval (Nayak et al., 2016). VecEval’s word-labelling model resembles the one introduced by Collobert
et al. (2011). First, it constructs the representation of the token’s context by concatenating embeddings
of the surrounding words and then passes it through two neural network layers, followed by a softmax
classifier. We trained and tested this model using the same WSJ splits used for the dependency parsing
task. We initialised the model with the embeddings of DM, LG and SG and experimented with two
settings: one that allows fine-tuning the embeddings to the task through backpropagation (tuned) and
one that keeps the embeddings fixed (fixed). For POS tagging DM and SG performed best with the same
embedding dimensions as for the dependency parsing, while best LG model used 100 dimensions. Table
4 demonstrates that in the tuned setting all models achieve comparable performance, while in the fixed
setting, both dependency models outperform SG, with LG reaching overall best performance.

4.7 Chunking

We evaluated SG, DM and LG on the chunking CoNLL’00 shared task (Tjong Kim Sang and Buchholz,
2000), which uses WSJ sections 15–18 for training and section 20 for testing. Similar to POS tagging,
we employed the VecEval’s model based on that of Collobert et al. (2011) and experimented with fixed
and tuned settings. The best performing models followed the same hyperparameter setting as for POS
tagging. The results presented in Table 4 show that in the tuned setting LG reaches the best perfor-
mance, while in the fixed setting, which allows us to investigate information inherently present in the
embeddings, DM outperforms the other models.

5 Conclusion

We introduced the dependency-matrix model (DM) – a novel Skip-gram-based DSM that represents
words’ contexts as products of dependency-label matrices and context-word vectors, both of which are
independent parameters of the model. Such handling of the labels allows DM to fully exploit the in-
formation encoded in the word-context relations and provides a straightforward way to handle further
contexts of a word by representing chains of dependencies as products of matrices – one for each depen-
dency in a chain. Our model proved to be superior or on par with Levy and Goldberg (2014)’s model, an
alternative DSM incorporating the labels, across all evaluation benchmarks. It was also the overall best
performing model on word similarity and dependency parsing evaluation.
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Abstract

Inferences regarding Jane’s arrival in London from predications such as Jane is going to London
or Jane has gone to London depend on tense and aspect of the predications. Tense determines the
temporal location of the predication in the past, present or future of the time of utterance. The
aspectual auxiliaries on the other hand specify the internal constituency of the event, i.e. whether the
event of going to London is completed and whether its consequences hold at that time or not.

While tense and aspect are among the most important factors for determining natural language
inference, there has been very little work to show whether modern NLP models capture these seman-
tic concepts. In this paper we propose a novel entailment dataset and analyse the ability of a range
of recently proposed NLP models to perform inference on temporal predications. We show that the
models encode a substantial amount of morphosyntactic information relating to tense and aspect, but
fail to model inferences that require reasoning with these semantic properties.

1 Introduction

Tense and aspect are two of the main contributors to the semantics of a proposition, describing the
temporal location of a predication and its internal constituency, thereby considerably influencing the
entailment relations it licenses. For example, while arrive in LOC |= be in LOC is generally considered
a valid entailment rule, the case is complicated when different tenses and aspectual auxiliaries1 of a given
verb are considered as sentences (1) and (2) illustrate.

(1) Jane has arrived in London.

|= Jane is in London now.

(2) Jane will arrive in London.

6|= Jane is in London now.

Understanding the difference between an event that has happened and whose consequences hold at
the present moment, and an event that is currently happening or will happen in the future, is crucial for
answering questions such as Where is Jane? or Is Jane in London now? Inferring the consequences
of events is important for understanding the relation between entities in the world. For example, if we
read that Lady Catherine has bought Longbourn estate, the inference that the acquisition is completed,
and that the resulting consequence is that Lady Catherine now owns Longbourn estate, is paramount for
keeping knowledge bases up-to-date.

In this paper we propose a novel entailment dataset that requires models to correctly determine the
internal and external temporal structure of predications when performing natural language inference. To
the best of our knowledge, this is the first dataset that is primarily focused on assessing natural language
inference between temporally and aspectually modified predications.

1For brevity we will refer to predications with different tenses and aspectual auxiliaries as temporal predications.
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As a first evaluation on our new dataset we compare to what extent five distributional embedding
models, word2vec (Mikolov et al., 2013), Anchored Packed Trees (Weir et al., 2016), fastText (Bo-
janowski et al., 2017), ELMo (Peters et al., 2018), and BERT (Devlin et al., 2018), and two bi-directional
LSTM (biLSTM) encoders, pre-trained on SNLI (Bowman et al., 2015) and DNC (Poliak et al., 2018),
respectively, are able to perform natural language inference on temporal predications. In our evaluation,
we refrain from fine-tuning any of the models as our goal is to assess to what extent tense and aspect
are captured in these models per se. As a pre-requisite diagnostic task for natural language inference
between temporal predications we analysed whether the models encode the morphosyntax of tense and
aspect and found that they capture a considerable amount of morphosyntactic information in their re-
spective embedding spaces. However, neither of the models outperforms a majority class baseline on our
proposed dataset due to their reliance on contextual similarity for performing inference, suggesting that
models based on distributional semantics struggle with the more latent nature of tense and aspect. Our
contributions in this paper are as follows:

• We assess the extent to which the models in our evaluation encode information about the agreement
between an inflected verb and its aspectual auxiliary, and whether a translation operation between
different tenses can be learnt from the embedding spaces.

• We propose a novel entailment dataset that requires models to perform inference with temporal
predications, and evaluate the five embedding models and two pre-trained biLSTM encoders.

• We analyse the performance of the models and show that their reliance on contextual similarity is
problematic for correctly modelling natural language inference governed by tense and aspect.

2 Tense, Aspect and Entailment

Tense is a grammatical category which is encoded in the morphology of the verb in English (e.g. past
loved vs. non-past loves). It establishes a point of reference that allows the temporal organisation of
events in a discourse. In English, tense interacts with aspectual auxiliaries such as the verbs be or have
that influence the internal constituency of a predication, and determine whether an event is completed
or ongoing. Tense and aspect therefore control the internal and external temporal structure of an event
and govern the inferences that a predication licenses (Reichenbach, 1947; Dahl, 1985; Steedman, 1997).
There is evidence that such morphology is represented in distributional embeddings (Mitchell and Steed-
man, 2015; Vylomova et al., 2016). In this paper we are concerned with perfect and progressive aspect,
but do not focus on any other types of aspect such as the Aktionsart of a predication (Vendler, 1957),
which we leave to future work.

2.1 The Interaction between Temporality and Entailment

Perfect aspect (typically) describes events as a completed whole, and licenses inferences regarding the
consequences of that event. The use of different tenses and aspects for past events influences their
relevance to the present moment and thereby their entailment behaviour. For example, the consequences
of an event in the present perfect hold at the time of utterance, whereas events in the simple past or the
past perfect do not (Comrie, 1985; Moens and Steedman, 1988; Depraetere, 1998; Katz, 2003). This
is shown in sentences (3) and (4), where only sentence (3) licenses the inference of Elizabeth being in
Meryton now.

(3) Elizabeth has gone to Meryton.

|= Elizabeth is in Meryton now.

(4) Elizabeth went / had gone to Meryton.

6|= Elizabeth is in Meryton now.

This property can be explained through a Reichenbachian view of the present perfect, where the point
of reference coincides with the point of speech, thereby indicating its current relevance (Reichenbach,
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1947). On the other hand, events in the past simple or the past perfect license inferences for consequent
states in the past, as sentence (5) shows.

(5) Elizabeth went / had gone to Meryton.

|= Elizabeth was in Meryton.

(6) Mary is going to Netherfield now.

6|= Mary has arrived / is in Netherfield.

Progressive aspect describes ongoing events and therefore does not license inferences regarding their
consequences as sentence (6) shows. It furthermore gives rise to the imperfective paradox (Dowty, 1979),
which only seems to license inferences for non-culminated processes (Moens and Steedman, 1988), as
sentences (7) and (8) show.

(7) Catherine was walking in the woods.

|= Catherine walked in the woods.

(8) Jane was reaching London.

6|= Jane reached / was in London.

The modal future introduces an event whose realisation is uncertain, therefore any inferences about
its outcome are only licensed if common-sense knowledge suggests that this is almost always the course
of events as sentence (9) shows.

(9) Charles will meet with Jane.

|= Charles will see Jane.

The correct treatment of tense and aspect in a predication is crucial for inferring the consequences it
licenses, which is important for answering questions about a given paragraph, or creating and updating
knowledge bases.

3 Models

We analyse five distributional embedding models and two pre-trained biLSTM sentence encoders for
their ability to perform inference on temporal predications. Our choice of models is motivated by the
observation that modelling entailment between temporal predications requires a bespoke representation
of the inflected verb in the context of the given aspectual auxiliary and its arguments.

word2vec. We evaluate the ability of word2vec representations for performing inference with
temporal predications. Contextualisation2 can be achieved by averaging two word vectors, which has
been shown to be a strong baseline for a range of problems (Iyyer et al., 2015; Wieting et al., 2016).
Notably, adding or averaging word vectors approximates the intersection of their feature spaces (Tian
et al., 2017).

APTs. Anchored Packed Trees are a recently proposed vector space model that take distributional
composition to be a process of lexeme contextualisation. APTs are based on a higher-order dependency-
typed structure that gives rise to a weighted, directed and labelled graph. Contextualisation is achieved
through distributional composition, which requires aligning two lexemes according to their syntactic
relation, and then merging the aligned representations. APTs are the only count-based (i.e. non-neural)
model in our evaluation.

fastText. The fastText model represents each word as a sum of bag-of-character n-grams,
thereby making better use of subword information and therefore — potentially — providing a better
mechanism for encoding morphosyntactic relations. Contextualisation is achieved through averaging the
respective word vectors in a phrase.

ELMo. ELMo is based on a deep bidirectional LSTM language model that creates multiple layers
of representations for every token. Contextualised representations are obtained from the internal states
of the LSTMs, where Peters et al. (2018) showed that lower levels of the architecture capture syntactic
characteristics, and higher-levels capture semantic characteristics of words.

2We refer to expressing the meaning of a word in its context as contextualisation.
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BERT. BERT uses multi-headed bi-directional self-attention and is based on the Transformer archi-
tecture (Vaswani et al., 2017). Devlin et al. (2018) observed that sequential language model architectures
are limited by the unidirectionality of the models. Therefore they proposed a novel training objective that
jointly conditions on left and right context in all layers. They showed that their training regime results in
substantial gains over serial language model-based architectures on numerous NLP tasks.

Pre-trained biLSTM. For our new entailment dataset, we pre-trained two bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997) sentence encoders on SNLI (Bowman et al., 2015) and DNC (Poliak et al.,
2018), representing two recently released large-scale entailment datasets. Our choice of biLSTMs was
motivated by their strong performance in recent studies (Balazs et al., 2017; Conneau et al., 2017).

Word2vec, APTs and fastText follow the one representation per word paradigm (Kober et al.,
2017), where every lexeme is represented by one vector, and contextualisation is typically achieved
through distributional composition. ELMo, BERT and the pre-trained biLSTMs, on the other hand ,create
context-sensitive representations on the token level. This results in different representations for the same
word, depending on its current context.

4 Experiments

We created two experiments to assess the extent of morphosyntactic information relating to tense and
aspect that is encoded in the respective embedding spaces. Subsequently we propose a novel entailment
dataset and evaluate the capability of the embedding models and the pre-trained biLSTMs to perform
inference on temporal predications. All our resources are available from https://github.com/
tttthomasssss/iwcs2019.

4.1 Auxiliary-Verb Agreement

The first experiment evaluates whether the models are able to capture the agreement between an inflected
verb and its corresponding aspectual auxiliary. For example, the models should be able to determine
that will visit represents a correct combination whereas will visiting does not. We consider capturing
the morphosyntactic interplay between an inflected verb and its aspectual auxiliary a pre-requisite for
adequately modelling the semantics of tense and aspect.

We cast the problem as a classification task with the goal of distinguishing correct auxiliary-verb pairs
from incorrect ones with a diagnostic classifier. This methodology is similar to the approach of Linzen
et al. (2016) who assessed the ability of LSTMs to learn number agreement in English subject-verb
phrases. For the dataset, we extracted verbs from the One Billion Word Benchmark (OBWB) (Chelba
et al., 2013) where each inflected verb form occurred at least 50 times. We then paired the inflected verb
forms with their corresponding auxiliaries to form positive pairs, and subsequently paired each of the
different inflected verb forms with all incorrect auxiliaries to build the negative pairs. We filtered the
negative pairs for plausible combinations such as is eaten by removing valid passive constructions and
any invalid combination that occurred at least 5 times in the OBWB corpus. The final dataset consists of
almost 36k auxiliary-verb combinations with a positive : negative class distribution of 38 : 62.

4.2 Translation Operation

In the second experiment we assess whether it is possible to learn a translation operation between differ-
ent tenses in the embedding space. We consider learning a translation operation in two ways: firstly a
simple vector offset on the basis of the averaged difference between inflected verbs with their auxiliaries
and their respective lemmas. Secondly, we train a feedforward neural network to project the infinitive
representation of a verb to one of its inflected forms. The goal for both approaches is then to generate an
unseen inflected verb form from a given unseen lemma.

The averaged offset translation is shown in Equation 1, where the offset ot is calculated on the
basis of a set of seed verbs S of size n, and vector representations xt and x` of the inflected form, or
contextualised form if the tense requires an auxiliary, and lemma form of the verb x, respectively. At
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prediction time, we are trying to create x′t by adding the offset ot to the lemma x′` (where x′ 6∈ S).
Equation 2 shows the setup where we use a neural network to learn a translation matrix from infinitive
forms to inflected forms, where f is a tense-specific neural network with a single hidden layer, that takes
an unseen lemma representation x′` as input and generates an inflected form x′t, and where Θt represent
the learnable parameters of the network.

ot =
1

n

∑

x∈S
xt − x` (1) x′t = f(x′`; Θt) (2)

We subsequently evaluate whether the correctly inflected verb is in the nearest neighbour list of the
generated verb. The inflected verb generation setup is inspired by Bolukbasi et al. (2016) and Shoemark
et al. (2017), who used a similar method in their respective works. For the dataset, we extracted verbs
from the OBWB corpus where each inflected verb form occurred at least 50 times, resulting in ≈2.8k
verbs per tense.

4.3 Entailment with Temporal Predications

Lastly, we propose TEA — the Temporal Entailment Assessment dataset. TEA contains pairs of short
sentences with the same argument structure that differ in tense and aspect of the main verb, and follows
a binary label annotation scheme (entailment vs. non-entailment). Example sentences from TEA are
shown in Table 1. The absence and infeasibility of creating a lexical resource for consequent state

John is visiting London. |= John has arrived in London.
John will visit London. 6|= John has arrived in London.
John is visiting London. 6|= John has left London.
John is visiting London. |= John will leave London.
George has acquired the house. |= George owns the house.
George is acquiring the house. 6|= George owns the house.

Table 1: Examples from TEA.

inference patterns creates the necessity for NLP systems to learn these rules from data. With TEA,
we cast the problem of determining when a new consequent state is licensed by an event as a natural
language inference task, thereby providing a first evaluation set for modern NLP models.

Data Collection. We sampled candidate pairs from the before-after category of VerbOcean (Chklovski
and Pantel, 2004), the WordNet verb entailment graph (Fellbaum, 1998), the entailment datasets of Weis-
man et al. (2012) and Vulić et al. (2017), and the relation inference dataset of Levy and Dagan (2016).
Subsequently, we manually filtered the list, and discarded candidate verb pairs without any temporal
relation to each other. For each pair we chose nouns as arguments to form full sentences. The arguments
further served the purpose of reducing ambiguity and avoiding habitual readings.

TEA covers entailments between an all-by-all combination of the present simple, present progres-
sive, present perfect, past simple, past progressive, past perfect and the modal future, covering perfect
and progressive aspect. The dataset contains 11138 sentence pairs with a class distribution of 22 : 78
(entailment : non-entailment). More detailed dataset statistics are presented in Appendix A.

Data Annotation. We interpreted entailment as common-sense inference (Dagan et al., 2006), and
considered a positive entailment relation between two temporal predications if a human annotator would
decide that sentence 2 is most likely true given sentence 1. We decided against a crowdsourced annotation
of TEA as our aim was to maximise the consistency of fine-grained entailment decisions. Therefore,
TEA was labelled by two annotators3, where the first round of annotation resulted in just under 20%
disagreement across the whole dataset. The relatively high level of disagreement suggests that even for
annotators who (more or less) know what they are looking for, assessing whether an entailment holds
between two temporal predications is a very challenging task.

3The first and second author of this paper.
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Disagreements in TEA were resolved on a case-by-case basis and all sentence pairs with an initial
disagreement have been resolved and included in the dataset. We found that with temporality involved,
suddenly everything appeared to become uncertain. Hence we approached the disagreement resolution by
first discussing which of several possible readings is the strongest, and whether that reading is sufficiently
more likely than any other possible reading. Subsequently we discussed whether the strong reading is
above the almost always true threshold.

Often, disagreements resulted from different assumptions regarding the ordering of the events’ nu-
clei. For example, even if we accept that buys entails chooses, will buy does not necessarily entail will
choose. The reason is that this pair is ambiguous between two readings, a “has-just-chosen-and-now-
will-buy” reading on one hand, and a “will-choose-and-then-will-buy” reading on the other, which seem
to be equally likely in the absence of any further context4.

Even when ordering was clear, however, disagreements could arise over beliefs of when an utterance
becomes licensed. Saying will graduate, for example, can be considered reasonable at any time, or only
once graduation is sufficiently imminent and likely. In the latter case, is studying can be considered
sufficiently likely to be an entailment, while in the former case the entailment is less clear5. Overall,
world knowledge and intuition played into disagreements heavily, causing cases to fall just above or
below the common-sense inference threshold depending on the annotator.

We identified a possible annotation artefact in TEA due to our decision to annotate the dataset se-
quentially rather than randomly. While this greatly reduced the cognitive load, we were confronted with
possible contradictions between different tenses of entailed predicates (for example, a single event can-
not happen in the past and the future). This initially led to more conservative annotations, since some
pairs when viewed independently can sound very plausible. We tried to factor out this source of bias
when resolving the disagreements, and are confident that the annotations in TEA are robust.

An interesting avenue for future work would be adding temporal adverbials to further reduce am-
biguity for annotators — and to analyse whether models can handle them correctly. The addition of
temporal adverbials might alleviate the temporal ordering ambiguity, as for example reading will buy in
5 years might help us conclude the ordering with will choose, since choosing is probably near buying.

5 Results and Analysis

For our experiments we used the publicly available versions of each embedding model. For the evaluation
on TEA, we trained two biLSTMs on SNLI and DNC in addition to the embedding models, achieving
83% and 88% accuracy on the SNLI and DNC development sets, respectively. Appendix B lists further
details for all models.

5.1 Auxiliary-Verb Agreement

For assessing whether the auxiliary-verb agreement can be detected with a diagnostic classifier, we built
a binary classification task, using stratified J-K-fold cross-validation (Moss et al., 2018) and report aver-
aged accuracy. We used the scikit-learn (Pedregosa et al., 2011) logistic regression classifier with default
hyperparameter settings.

The results in Table 2 show that the representations of APTs and BERT are specific enough for a linear
classifier to distinguish plausible from implausible combinations. The reason for the strong performance
of APTs stems from its sparsity — plausible auxiliary-verb combinations result in representations with
numerous non-zero entries, whereas implausible combinations rarely contain more than a handful of
non-zero elements. While word2vec and fastText seem to capture the morphosyntactic relation
between an auxiliary and an inflected verb to some extent, their performance is substantially worse
than APTs and BERT. Somewhat surprisingly, the results for ELMo are worse than the majority class
baseline for all auxiliaries. One possible reason for the comparatively weak performance of word2vec,

4In this case we decided that if will buy is true, the choosing didn’t happen yet, so will buy |= will choose.
5We decided will graduate |= is studying.
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Auxiliary word2vec APT fastText ELMo BERT Majority Class
is 0.65 (+/- 0.02) 0.88 (+/- 0.01) 0.67 (+/- 0.02) 0.52 (+/- 0.01) 0.90 (+/- 0.01) 0.53

will 0.48 (+/- 0.01) 0.94 (+/- 0.01) 0.58 (+/- 0.01) 0.63 (+/- 0.01) 0.89 (+/- 0.01) 0.67
has 0.84 (+/- 0.01) 0.94 (+/- 0.00) 0.77 (+/- 0.01) 0.63 (+/- 0.01) 0.91 (+/- 0.01) 0.66
had 0.84 (+/- 0.01) 0.95 (+/- 0.00) 0.78 (+/- 0.01) 0.62 (+/- 0.01) 0.93 (+/- 0.01) 0.66
was 0.72 (+/- 0.02) 0.86 (+/- 0.01) 0.74 (+/- 0.02) 0.52 (+/- 0.01) 0.92 (+/- 0.01) 0.53

Average 0.71 (+/- 0.01) 0.92 (+/- 0.00) 0.71 (+/- 0.01) 0.59 (+/- 0.00) 0.91 (+/- 0.00) 0.61

Table 2: Auxiliary-verb agreeement results. Results are averaged accuracies with standard deviations in brackets.

fastText and especially ELMo in comparison to BERT is the latter’s more global training objective
that does not rely on sequential input. For ELMo, we also tried running it with full sentence contexts for
all auxiliary-verb combinations, which, however, did not lead to improved performance (results omitted).

5.2 Translation Operation

For obtaining an averaged vector offset, we randomly sampled a seed set of verb types from our dataset
to learn an offset vector, and subsequently aimed to predict the inflected form for all remaining verb
types in the dataset. We sampled 10 different seed sets of size 10 for our experiments6.

For learning a translation operation with a neural network we used a simple feedforward architecture
with a single hidden layer and a tanh activation function, using Adam with a learning rate of 0.01 to
optimise the mean squared error between the generated inflected verb and the true inflected verb. Due to
the neural network requiring more training data than the averaged vector offset approach, we evaluated
the model using 10-fold cross-validation. For APTs we projected the explicit co-occurrence space down
to 100 dimensions using SVD before feeding the representations to the neural network.

Performance for both approaches is reported in terms of Mean Reciprocal Rank (MRR), averaged
over the 10 randomly sampled seed sets and the 10 cross-validation folds, for the averaged offset vector
and neural network approaches, respectively. For calculating MRR, the query space for retrieving an
inflected verb, given its lemma and the computed translation operation, is based on all contextualised
auxiliary-verb combinations, and all inflected forms of all verbs.

Creating translation operations in embedding space is primarily a word-type level task and thus
potentially puts BERT and ELMo at a disadvantage as they produce representations on the token level.
This is reflected in Figure 1, where both ELMo and BERT perform poorly in comparison to word2vec
and fastText. APTs also exhibit weak performance on this task, with this time the sparsity of its high-
dimensional representations being disadvantageous. Interestingly, performance generally dropped —
except for word2vec— when moving from the simple vector offset approach to a neural network based
translation operation, providing evidence that the morphosyntax of tense and aspect is well represented
as a linear offset in the embedding space. One of the main reasons for the poor performance of ELMo

Figure 1: Translation operation results based on averaged MRR.

and BERT was that the obtained offset vectors and learnt translation matrices varied substantially across
runs. Figure 2 shows the average cosine similarities (left) and average Euclidean distances (middle)
between the computed offset vectors for each subtask across all 10 runs. Figure 2 furthermore shows
the average Frobenius distances (right) between the learnt neural network translation matrices across
all 10 folds. Figure 2 mirrors the general performance trend in Figure 1, with vector offsets obtained

6In preliminary experiments we found that a seed set of 5-10 verbs is sufficient.
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Figure 2: Average cosine similarities and Euclidean distances of averaged offset vectors and Frobenius distances
of the learnt neural network weight matrices.

from word2vec and fastText having high average cosine similarity and low average Euclidean
distance. Furthermore, the lower average Frobenius distance for word2vec is reflected in its improved
performance in comparison to fastText whose translation matrices exhibit a larger average Frobenius
distance. For ELMo in particular, the offset vectors and translation matrices differ considerably across
experimental runs. The large average Frobenius distances for ELMo and BERT also suggest that the
neural network struggled to find a good minimum during learning.

5.3 Entailment with Temporal Predications

The results in this section so far have shown that morphosyntactic information relating to tense and aspect
is encoded in the different embedding spaces. In the following we use TEA to analyse whether these
models are able to use that information for natural language inference. As our goal is to assess to what
extent tense and aspect are captured by the models, we refrain from fine-tuning them on TEA.

For evaluation we measure precision and recall over varying thresholds and report performance in
terms of average precision7. TEA can also serve as an additional evaluation set for sentence encoder
models trained on large-scale natural language inference datasets such as SNLI or DNC, which them-
selves include very little temporal information in their respective test sets. We therefore additionally
cast TEA as a binary classification task, and report accuracy and macro-averaged F1-score for the two
pre-trained biLSTM models.

Table 3 shows the average precision scores for the models and the accuracy and F1-scores for the two
pre-trained biLSTMs in comparison to a majority class baseline and a baseline predicting the majority
class per tense pair. We used cosine as similarity measure for the embedding models and the softmax pre-
diction scores for the biLSTMs. For APTs, we also tried the asymmetric inclusion score BInc (Szpektor
and Dagan, 2008), however found cosine working better. We furthermore experimented with distribu-
tional inference (Kober et al., 2016), and found a small positive impact on recall but a slightly larger
negative dip in precision, which overall led to slightly lower average precision scores. The results show

Model Avg. Precision Accuracy F1-Score
word2vec 0.31 - -
APT 0.28 - -
fastText 0.30 - -
ELMo 0.21 - -
BERT 0.27 - -
biLSTM-DNC 0.22 0.58 0.49
biLSTM-SNLI 0.21 0.51 0.47
Maj. class 0.22 0.78 0.44
Maj. class / tense pair 0.35 0.80 0.66

Table 3: TEA results. All model results are significantly worse at the p < 0.01 level w.r.t. the majority class /
tense pair baseline, using a randomised bootstrap test (Efron and Tibshirani, 1994).

that neither of the models are able to outperform the majority class / tense baseline. This highlights that
despite the use of short and simple sentences in the dataset, the latent nature of tense and aspect make
TEA a very challenging problem.

7Also known as the area under the precision-recall curve.
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In order to analyse the causes for the low performance across models, we calculated the false positive
and false negative rates for different similarity threshold ranges for each of the models. Figure 3 shows
that even for high thresholds, the neural embedding models frequently predict entailment when there isn’t
one, thereby producing a high rate of false positives (highlighted at the top of Figure 3). Conversely, a
sparse model such as APTs, fails to predict entailment when there actually is one, resulting in a high
rate of false negatives (highlighted at the bottom of Figure 3). Our results show that natural language

Figure 3: False Positive (FP) and False Negative (FN) rates.

inference on temporal predications is a challenging problem, especially for distributional semantic ap-
proaches. One reason is that these models are primarily governed by contextual similarity which is a bad
proxy for inference in the case of a dataset such as TEA. For example, if Jane has arrived in London,
then she was going to London at some earlier point, but it is not the case that she currently is going to
London. Furthermore, when she has arrived in London, she is visiting London at the moment, and will
leave again at some point in the future.

The predications in the short narrative above are very diverse in terms of tense and aspect, however
the main verbs — or even the predications as a whole — typically have high distributional similarity,
which inevitably leads to numerous false entailment decisions as reflected in Figure 3.

In the following we briefly analyse the impact of distributional similarity and investigate to what
extent the similarity scores between two predications change when tense and aspect influence the entail-
ment. Table 4 shows that the cosine similarity between temporally and aspectually modified predications
is typically higher than for their respective lemmas. This further indicates that many false positives of
the neural network based models in our results are due to high distributional similarity scores between
predications. For APTs the cosine scores — even when normalised — are generally very low due to
their sparsity and high dimensionality, highlighting their bias towards false negatives. However, Table 4

Predication Pair w2v APT fT ELMo BERT DNC SNLI
visit |= leave 0.36 0.09 0.53 0.59 0.69 0.69 0.28

is visiting |= will leave 0.57 0.02 0.60 0.60 0.77 0.26 0.26
is visiting 6|= has left 0.58 0.03 0.71 0.65 0.72 0.32 0.20

visit |= arrive 0.45 0.07 0.55 0.49 0.71 0.58 0.45
is visiting |= has arrived 0.62 0.04 0.69 0.51 0.84 0.25 0.51
is visiting 6|= will arrive 0.57 0.01 0.60 0.50 0.81 0.32 0.25

win |= play 0.52 0.14 0.54 0.59 0.73 0.39 0.32
has won |= has played 0.75 0.25 0.88 0.60 0.85 0.55 0.23

has won 6|= will play 0.60 0.11 0.64 0.55 0.78 0.31 0.36

Table 4: Similarity scores between the example predicates. DNC and SNLI refer to the two biLSTMs pre-trained
on DNC and SNLI, respectively.

also shows that in most cases the distributional similarity between an entailed pair is higher than for a
non-entailed pair (boldfaced in Table 4). This indicates that the embedding models do appear to capture
some of the semantics of tense and aspect in their respective contextualised representations. However,
their high distributional similarity overwhelms any finer distinction that the models might have extracted.

While our analysis indicates that the embedding models are able to extract knowledge about tense
and aspect, the signal is not strong enough to reliably perform inference. A potential avenue for future
work would therefore be the development of models that are able to better represent tense and aspect,
while not being primarily governed by distributional similarity.
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6 Related Work

Most previous work on inference between verbs was concerned with extracting inference rules from raw
text (Lin and Pantel, 2001; Szpektor et al., 2004, 2007; Hashimoto et al., 2009; Melamud et al., 2013).
As a next step, Berant et al. (2010) and Hosseini et al. (2018) leverage these rules to build entailment
graphs for modelling natural language inference. However in both cases the entailment graphs are built
on the basis of verb lemmas and do not take tense and aspect into account. One example of using
tense for inference is Pavlick and Callison-Burch (2016), who leverage implicative verbs to determine
that managed to solve X |= X is solved. Our proposed dataset TEA fills a gap in the natural language
inference evaluation repertoire by focusing on temporal and aspectual entailment. Recent years saw the
release of a number of large-scale datasets, such as SNLI (Bowman et al., 2015), MNLI (Williams et al.,
2017) or DNC (Poliak et al., 2018), but neither of these datasets focuses on, or includes a substantial
proportion of, inference examples between temporal predications.

TEA is related to work on causality (Mirza et al., 2014; Mirza and Tonelli, 2014), however our
dataset has been created from scratch rather than derived from TimeBank (Pustejovsky et al., 2003), as
for example explicit buys |= owns relations are rarely encountered in the same paragraph or connected by
explicit causal links. Therefore, TEA captures many consequent state inferences that are missing from
previous datasets. The most closely related task to TEA is the relation inference dataset of Levy and
Dagan (2016), which however, contains only very few examples where temporality is a governing factor.

7 Future Work

In future work we plan to leverage tense- and aspect-based information for constructing temporal entail-
ment graphs (Lewis and Steedman, 2014), where nodes represent tensed predicates (e.g. has visited),
and edges represent entailment relations. Temporal entailment graphs, together with knowledge about
the completedness or current relevance of an event, can be applied to procedural reasoning, such as
tracking the state of entities through text, similar to recent work of Bosselut et al. (2017), and Henaff
et al. (2017). We furthermore plan to focus on other types of aspect such as Aktionsart.

8 Conclusion

In this paper we highlighted that tense and aspect are two of the most important factors for perform-
ing natural language inference. We introduced a novel entailment dataset, TEA, that contains pairs of
short sentences and focuses on entailment relations between temporally and aspectually modified verbs.
We showed that distributional embedding models capture a considerable amount of the morphosyntactic
information relating to tense and aspect in their embedding spaces. However, neither the embedding
models, nor two pre-trained biLSTMs, were able to outperform a simple rule-based baseline on TEA,
primarily due to their reliance on contextual similarity for inference. In this sense, tense and aspect se-
mantically resemble logical operators like negation rather than distributional components. The challenge
will be to combine logical operator semantics with distributional representations of content words.
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A Supplemental Material

A.1 Dataset Details

Table 5 shows a detailed overview of the number of examples per tense and aspect pair, as well as their
class distribution.

Category Num. Examples Class distribution (entailment : non-entailment)
Present progressive - Present progressive 188 33 : 67
Present progressive - Past progressive 188 23 : 77
Present progressive - Present perfect 213 20 : 80
Present progressive - Past perfect 213 12 : 88
Present progressive - Future simple 216 28 : 72
Present progressive - Present simple 216 27 : 73
Present progressive - Past simple 216 26 : 74
Past progressive - Present progressive 188 0 : 100
Past progressive - Past progressive 188 55 : 45
Past progressive - Present perfect 213 7 : 93
Past progressive - Past perfect 213 46 : 54
Past progressive - Future simple 216 1 : 99
Past progressive - Present simple 216 0 : 100
Past progressive - Past simple 216 49 : 51
Present perfect - Present progressive 213 12 : 88
Present perfect - Past progressive 213 44 : 56
Present perfect - Present perfect 240 26 : 74
Present perfect - Past perfect 240 26 : 74
Present perfect - Future simple 243 16 : 84
Present perfect - Present simple 243 17 : 83
Present perfect - Past simple 243 42 : 58
Past perfect - Present progressive 213 0 : 100
Past perfect - Past progressive 213 58 : 42
Past perfect - Present perfect 240 3 : 97
Past perfect - Past perfect 240 59 : 41
Past perfect - Future simple 243 0 : 100
Past perfect - Present simple 243 0 : 100
Past perfect - Past simple 243 58 : 42
Future simple - Present progressive 216 3 : 97
Future simple - Past progressive 216 1 : 99
Future simple - Present perfect 243 1 : 99
Future simple - Past perfect 243 1 : 99
Future simple - Future simple 246 47 : 53
Future simple - Present simple 246 2 : 98
Future simple - Past simple 246 1 : 99
Present simple - Present progressive 216 21 : 79
Present simple - Past progressive 216 29 : 71
Present simple - Present perfect 243 15 : 85
Present simple - Past perfect 243 17 : 83
Present simple - Future simple 246 19 : 81
Present simple - Present simple 246 29 : 71
Present simple - Past simple 246 26 : 74
Past simple - Present progressive 216 0 : 100
Past simple - Past progressive 216 55 : 45
Past simple - Present perfect 243 5 : 95
Past simple - Past perfect 243 54 : 46
Past simple - Future simple 246 0 : 100
Past simple - Present simple 246 1 : 99
Past simple - Past simple 246 56 : 44
Progressive - Progressive 3464 20 : 80
Progressive - Perfect 2748 18 : 82
Perfect - Progressive 2748 16 : 84
Perfect - Perfect 2178 37 : 63
TOTAL 11138 22 : 78

Table 5: Detailed statistics of TEA.
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B Supplemental Material

B.1 Model Details

word2vec. We used the 300-dimensional vectors trained on GoogleNews, available from https:
//code.google.com/archive/p/word2vec/.
APTs. We used order 2 APTs trained on Gigaword, with PPMI weighting and no negative SPPMI shift
which were used in Kober (2018). As composition function we used composition by intersection which
has previously been shown to work well for modelling the similarity of short phrases (Kober et al., 2016,
2017).
fastText. We used the 300-dimensional pre-trained vectors with subword information trained on
Wikipedia (Mikolov et al., 2018).
ELMo. We are using the pre-trained model released by Peters et al. (2018) and accessible via the
AllenNLP toolkit (Gardner et al., 2017).
BERT. We are using the BERT-big model released by Devlin et al. (2018) and available from https:
//github.com/google-research/bert.
Pre-trained biLSTM. We are using a bi-directional LSTM (Hochreiter and Schmidhuber, 1997) with
max pooling, but without an attention layer. We follow Balazs et al. (2017) in aggregating the embedded
and pooled premise and hypothesis representations before passing them to a single fully connected layer,
with a relu activation function and a dropout (Srivastava et al., 2014) probability of 0.3. The model is
optimised with Adam (Kingma and Ba, 2014) using a learning rate of 0.01. The model is implemented
in PyTorch (Paszke et al., 2017). Table 6 lists the accuracies on the SNLI and DNC development and test
sets for our model.

Dataset Dev Accuracy Test Accuracy
SNLI 0.83 0.82
DNC 0.88 0.87

Table 6: Accuracies on the development and test sets for the pre-trained biLSTMs on SNLI and DNC, respectively.
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Abstract

Distributional semantics has had enormous empirical success in Computational Linguistics and Cog-
nitive Science in modeling various semantic phenomena, such as semantic similarity, and distribu-
tional models are widely used in state-of-the-art Natural Language Processing systems. However, the
theoretical status of distributional semantics within a broader theory of language and cognition is still
unclear: What does distributional semantics model? Can it be, on its own, a fully adequate model of
the meanings of linguistic expressions? The standard answer is that distributional semantics is not
fully adequate in this regard, because it falls short on some of the central aspects of formal seman-
tic approaches: truth conditions, entailment, reference, and certain aspects of compositionality. We
argue that this standard answer rests on a misconception: These aspects do not belong in a theory of
expression meaning, they are instead aspects of speaker meaning, i.e., communicative intentions in a
particular context. In a slogan: words do not refer, speakers do. Clearing this up enables us to argue
that distributional semantics on its own is an adequate model of expression meaning. Our proposal
sheds light on the role of distributional semantics in a broader theory of language and cognition, its
relationship to formal semantics, and its place in computational models.

Keywords: distributional semantics, expression meaning, formal semantics, speaker meaning, truth
conditions, entailment, reference, compositionality, context

1 Introduction

Distributional semantics has emerged as a promising model of certain ‘conceptual’ aspects of linguistic
meaning (e.g., Landauer and Dumais 1997; Turney and Pantel 2010; Baroni and Lenci 2010; Lenci 2018)
and as an indispensable component of applications in Natural Language Processing (e.g., reference res-
olution, machine translation, image captioning; especially since Mikolov et al. 2013). Yet its theoretical
status within a general theory of meaning and of language and cognition more generally is not clear (e.g.,
Lenci 2008; Erk 2010; Boleda and Herbelot 2016; Lenci 2018). In particular, it is not clear whether dis-
tributional semantics can be understood as an actual model of expression meaning – what Lenci (2008)
calls the ‘strong’ view of distributional semantics – or merely as a model of something that correlates
with expression meaning in certain partial ways – the ‘weak’ view. In this paper we aim to resolve, in
favor of the ‘strong’ view, the question of what exactly distributional semantics models, what its role
should be in an overall theory of language and cognition, and how its contribution to state of the art
applications can be understood. We do so in part by clarifying its frequently discussed but still obscure
relation to formal semantics.

Our proposal relies crucially on the distinction between what linguistic expressions mean outside
of any particular context, and what speakers mean by them in a particular context of utterance. Here,
we term the former expression meaning and the latter speaker meaning.1 At least since Grice 1968
this distinction is generally acknowledged to be crucial to account for how humans communicate via

1English inconveniently conflates what speakers do and what expressions do in a single verb “to mean”. In other languages
the two types of ‘meaning’ go by different names, e.g., in Dutch, sentences ‘betekenen’ (mean, lit. ‘be-sign’ or ‘signify’) while
speakers ‘bedoelen’ (mean, lit. ‘be-goal’).
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language. Nevertheless, the two notions are sometimes confused, and we will point out a particularly
widespread confusion in this paper. Consider an example, one which will recur throughout this paper:

(1) The red cat is chasing a mouse.

The expression “the red cat” in this sentence can be used to refer to a cat with red hair (which is actually
orangish in color) or to a cat painted red; “a mouse” to the animal or to the computer device; and in the
right sort of context the whole sentence can be used to describe, for instance, a red car driving behind
a motorbike. It is uncontroversial that the same expression can be used to communicate very different
speaker meanings in different contexts. At the same time, it is likewise uncontroversial that not anything
goes: what a speaker can reasonably mean by an expression in a given context – with the aim of being
understood by an addressee – is constrained by its (relatively) context-invariant expression meaning. An
important, long-standing question in linguistics and philosophy is what type of object could play the role
of expression meaning, i.e., as a context-invariant common denominator of widely varying usages.

There exist two predominant candidates for a model of expression meaning: distributional semantics
and formal semantics. Distributional semantics assigns to each expression, or at least each word, a high-
dimensional, numerical vector, one which represents an abstraction over occurrences of the expression in
some suitable dataset, i.e., its distribution in the dataset. Formal semantics assigns to each expression,
typically via an intermediate, logical language, an interpretation in terms of reference to entities in the
world, their properties and relations, and ultimately truth values of whole sentences.2 To illustrate the two
approaches, simplistically (and without intending to commit to any particular formal semantic analysis
or (compositional) distributional semantics – see Section 5):

(2) The red cat is chasing a mouse.
Formal semantics: ιx(RED(x) ∧ CAT(x) ∧ ∃y(MOUSE(y) ∧ CHASE(x, y)))

Distributional semantics: ↗ ↘ ↙ → ↓ ↗ ← (i.e., a vector for each word)

Distributional and formal semantics are often regarded as two models of expression meaning that have
complementary strengths and weaknesses and that, accordingly, must somehow be combined for a more
complete model of expression meaning (e.g., Beltagy et al. 2013; Erk 2013; Baroni et al. 2014; Asher
et al. 2016; Boleda and Herbelot 2016). For instance, in these works the vectors of distributional seman-
tics are regarded as capturing lexical or conceptual aspects of meaning but not, or insufficiently so, truth
conditions, reference, entailment and compositionality – and vice versa for formal semantics.3

Contrary to this common perspective, we argue that distributional semantics on its own can
in fact be a fully satisfactory model of expression meaning, i.e., the ‘strong’ view of distributional
semantics in Lenci 2008. Crucially, we will do so not by trying to show that distributional semantics
can do all the things formal semantics does – we think it clearly cannot, at least not on its own – but by
explaining that a semantics should not do all those things. In fact, formal semantics is mistaken about its
job description, a mistake that we trace back, following a long strand in both philosophical and psycho-
linguistic literature, to a failure to properly distinguish speaker meaning and expression meaning. By
clearing this up we aim to contribute to a firmer theoretical understanding of distributional semantics, of
its role in an overall theory of communication, and of its employment in current models in NLP.

2 What we mean by distributional semantics

By distributional semantics we mean, in this paper, a broad family of models that assign (context-
invariant) numerical vector representations to words, which are computed as abstractions over occur-

2Our formulation covers only the predominant, model-theoretic (or truth-conditional, referential) type of formal semantics,
not, e.g., proof-theoretic semantics. We concentrate on this for reasons of space, but our proposal applies more generally.

3To clarify: when it is said that distributional semantics falls short, this pertains to distributional semantics on its own, i.e., a
set of word vectors, combined perhaps with some basic algebraic operations or, at most, a simple classifier. By contrast, when
distributional semantics is incorporated in a larger model (see section 2) the resulting system as a whole can be very successful.
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rences of words in contexts. Implementations of distributional semantics vary, primarily, in the notion
of context and in the abstraction mechanism used. A context for a word is typically a text in which it
occurs, such as a document, sentence or a set of neighboring words, but it can also contain images (e.g.,
Feng and Lapata 2010; Silberer et al. 2017) or audio (e.g., Lopopolo and Miltenburg 2015) – in principle
any place where one may encounter a word could be used. Because of how distributional models work,
words that appear in similar contexts end up being assigned similar representations. At present, all mod-
els need large amounts of data to compute high-quality representations. The closer these data resemble
our experience as language learners, the more distributional semantics is expected to be able in principle
to generate accurate representations of – as we will argue – expression meaning.

As for the abstraction mechanism used, Baroni et al. (2014) distinguish between classic “count-
based” methods, which work with co-occurrence statistics between words and contexts, and “prediction-
based” methods, which instead apply machine learning techniques (artificial neural networks) to induce
representations based on a prediction task, typically predicting the context given a word. For instance,
the Skip-Gram model of Mikolov et al. (2013) would, applied to example (1), try to predict the words
“the”, “red”, “is”, “chasing”, etc. from the presence of the word “cat” (more precisely, it would try to
make these context words more likely than randomly sampled words, like “democracy” or “smear”).
By training a neural network on such a task, over a large number of words in context, the first layer of
the network comes to represent words as vectors, usually called word embeddings in the neural network
literature. These word embeddings contain information about the words that the network has found
useful for the prediction task.

In both count-based and prediction-based methods, the resulting vector representations encode ab-
stractions over the distributions of words in the dataset, with the crucial property that words that appear
in similar contexts are assigned similar vector representations.4 Our arguments in this paper apply to
both kinds of methods for distributional semantics.

Word embeddings emerge not just from models that are expressly designed to yield word repre-
sentations (such as Mikolov et al. 2013). Rather, any neural network model that takes words as input,
trained on whatever task, must ‘embed’ these words in order to process them – hence any such model
will result in word embeddings (e.g., Collobert and Weston 2008). Neural network models for language
are trained for instance on language modeling (e.g., word prediction; Mikolov et al. 2010; Peters et al.
2018) or Machine Translation (Bahdanau et al., 2015). As long as the data on which these models are
trained consist of word-context pairs, the resulting word embeddings qualify, for present purposes, as
implementations of distributional semantics, and our proposal in the current paper applies also to them.
Of course some implementations within this broad family may be better than others, and the type of
task used is one parameter to be explored: It is expected that the more the task requires a human-like
understanding of language, the better the resulting word embeddings will represent – as we will argue
– the meanings of words. But our arguments concern the theoretical underpinnings of the distributional
semantics framework more broadly rather than specific instantiations of it.

Lastly, some implementations of distributional semantics impose biases, during training, for obtain-
ing word vectors that are more useful for a given task. For instance, to obtain word vectors useful for
predicting lexical entailment (e.g., that being a cat entails being an animal), Vulić and Mrkšić (2017) im-
pose a bias for keeping the vectors of supposed hypernyms, like “cat” and “animal”, close together (more
precisely: in the same direction from the origin but with different magnitudes). This kind of approach
presupposes, incorrectly as we will argue, that distributional semantics should account for entailment. It
results in word vectors that are more useful for a particular task, but the model will be worse as a model
of expression meaning. We will return to this type of approach in section 3.2.

4Both methods also share the characteristic that the dimensions of the high-dimensional space are automatically induced,
and hence not directly interpretable (this is the main way in which they are different from traditional semantic features; see
Boleda and Erk 2015). As a consequence, much work exploring distributional semantic models has relied not on the dimensions
themselves but on geometric relations between words, in particular the notion of similarity (e.g., measured by cosine; as an
anonymous reviewer notes, such technical notions of similarity need not completely align with semantic similarity in a more
intuitive sense).
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3 Distributional semantics as a model of expression meaning

We present two theoretical reasons why distributional semantics is attractive as a model of expression
meaning, before arguing in section 4 that it can also be sufficient.

3.1 Reason 1: Meaning from use; abstraction and parsimony

We take it to be uncontroversial that what expressions mean is to be explained at least in part in terms
of how they are used by speakers of the relevant linguistic community (e.g., Wittgenstein 1953; Grice
1968).5 A similar view has motivated work on distributional semantics (e.g., Lenci 2008; also at its
conception, e.g., Harris 1954). For instance, what the word “cat” means is to be explained at least in
part in terms of the fact that speakers have used it to refer to cats, to describe things that resemble cats,
to insult people in certain ways, and so on. Note that the usages of words generally resist systematic
categorization into definable senses, and attempts to characterize word meaning by sense enumeration
generally fail (e.g., Kilgarriff 1997; Hanks 2000; Erk 2010; cf. Pustejovsky 1995).

A minimal, parsimonious way of explaining the meaning of an expression in terms of its uses is to
say simply that the meaning of an expression is an abstraction over its uses. Such abstractions are,
of course, exactly what distributional semantics delivers, and the view that it corresponds to expression
meaning is what Lenci (2008) calls the ‘strong’ view of distributional semantics. Distributional semantics
is especially parsimonious because it relies on (mostly) domain-independent mechanisms for abstraction
(e.g., principal components analysis; neural networks). Of course not all implementations are equally
adequate, or equally parsimonious; there are considerable differences both in the abstraction mechanism
relied upon and in the dataset used (see section 2). But the family as a whole, defined by the core tenet
of associating with each word an abstraction over its use, is highly suitable in principle for modeling
expression meaning. This makes the ‘strong’ view of distributional semantics attractive.

An alternative to the ‘strong’ view is what Lenci (2008) calls the ‘weak’ view: that an abstraction
over use may be part of what determines expression meaning, but that more is needed. This view
underlies for instance the common assumption that a more complete model of expression meaning would
require integrating distributional and formal semantics (e.g., Beltagy et al. 2013; Erk 2013; Baroni et al.
2014; Asher et al. 2016; Boleda and Herbelot 2016). But in section 4 we argue that the notions of
formal semantic, like reference, truth conditions and entailment, do not belong at the level of expression
meaning in the first place, and, accordingly, that distributional semantics can be sufficient as a model
of expression meaning. Theoretical parsimony dictates that we opt for the least presumptive approach
compatible with the empirical facts, i.e., with what a theory of expression meaning should account for.

Some authors equate the meaning of an expression not with an abstraction over all uses, but only
stereotypical uses: what an expression means would be what a stereotypical speaker in a stereotypical
context means by it (e.g., Schiffer 1972; Bennett 1976; Soames et al. 2002). This approach is appealing
because it does justice to native speaker’s intuitions about expression meaning, which are known to
reflect stereotypical speaker meaning (see Section 4). However, several authors have pointed out that
stereotypical speaker meaning is ultimately not an adequate notion of expression meaning (e.g., Bach
2002; Recanati 2004). To see just one reason why, consider the following arbitrary example:

(3) Jack and Jill got married.

A stereotypical use of this expression would convey the speaker meaning that Jack and Jill got married
to each other. But this cannot be the (context-invariant) meaning of the expression “Jack and Jill got
married”, or else the following additions would be redundant and contradictory, respectively:6

5For compatibility with a more cognitive, single-agent perspective of language, such as I-language in the work of Chomsky
(e.g., 1986), this could be restricted to the uses of a word as experienced by a single agent when learning the language.

6An anonymous reviewer rightly points out that this presupposes that notions like redundancy and contradiction apply to
expression meanings. We think they don’t (see Section 4), at least not in their strictly logical senses, but they would if expression
meaning were to be construed as stereotypical speaker meaning, which is the position we are criticizing here.
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(4) Jack and Jill got married to each other.

(5) Jack and Jill got married to their respective childhood friends.

Hence the stereotypical speaker meaning of (3) cannot be its expression meaning. For many more exam-
ples and discussion see Bach 2002. Another challenge for defining expression meaning as stereotypical
speaker meaning is that of having to define “stereotypical”. It cannot be defined simply as the most
frequent type, because that presupposes that uses can be categorized into clearly delineated, countable
types. Moreover, an ‘empty’ context is a context too, and not the most stereotypical one.

Summing up: what an expression means depends on how speakers use it, but the uses of an expression
more generally resist systematic categorization into enumerable senses, and selecting a stereotypical use
isn’t adequate either. Equating expression meaning with an abstraction over all uses, as the ‘strong’ view
of distributional semantics has it, is more adequate, and particularly attractive for reasons of parsimony.

3.2 Reason 2: Distributional semantics as a model of concepts

Another reason why distributional semantics is attractive as a model of expression meaning is the fol-
lowing. As mentioned in section 1, distributional semantics is often regarded as a model of ‘conceptual’
aspects of meaning (e.g., Landauer and Dumais 1997; Baroni and Lenci 2010; Boleda and Herbelot
2016). This view seems to be motivated in part empirically: distributional semantics is successful at
what are intuitively conceptual tasks, like modeling word similarity, priming and analogy. Moreover,
it aligns with the widespread view in philosophy and developmental psychology that abstraction over
instances is a main mechanism of concept formation (e.g., the influential work of Jean Piaget). Let us
explain why concepts, and in particular those modeled by distributional semantics (because there is some
confusion about their nature), would be suitable representatives of expression meaning.

It is sometimes assumed that the word vector for “cat” should model the concept CAT (we discuss
some work that makes this assumption below). This may be a ‘true enough’ approximation for practical
applications, but theoretically it is, strictly speaking, on the wrong track. This is because the word vector
for “cat” does not model the concept CAT – that would be an abstraction over occurrences of actual cats,
after all. Instead, the word vector for “cat” is an abstraction over occurrences of the word, not the animal,
hence it would model the concept of the word “cat”, say, THEWORDCAT. The extralinguistic concept
CAT and the linguistic concept THEWORDCAT are very different. The concept CAT encodes knowledge
about cats having fur, four legs, the tendency to meow, etc.; the concept THEWORDCAT instead encodes
knowledge that the word “cat” is a common noun, that it rhymes with “bat” and “hat”, how speakers
have used it or tend to use it, that the word doesn’t belong to a particular register, and so on.7

Our distinction between THEWORDCAT and CAT, or between linguistic and extralinguistic concepts,
is not new, and word vectors are known to capture the more linguistic kind of information, and to be (at
best) only a proxy for the extralinguistic concepts they are typically used to denote by a speaker (e.g.,
Miller and Charles 1991). But it appears to be sometimes overlooked. For instance, the assumption that
the word vector for “cat” would (or should) model the extralinguistic concept CAT is made in work using
distributional semantics to model entailment, e.g., that being a cat entails being an animal (e.g., Geffet
and Dagan 2005; Roller et al. 2014; Vulić and Mrkšić 2017). But clearly the entailment relation holds be-
tween the extralinguistic concepts CAT and ANIMAL – being a cat entails being an animal – not between
the linguistic concepts THEWORDCAT and THEWORDANIMAL actually modeled by distributional se-
mantics: being the word “cat” does not entail (in fact, it excludes) being the word “animal”. Hence these
approaches are, strictly speaking, theoretically misguided – although their conflation of linguistic and
extralinguistic concepts may be a defensible simplification for practical purposes.

There have been many proposals to integrate formal and distributional semantics (e.g., Beltagy et al.
2013; Erk 2013; Baroni et al. 2014; Asher et al. 2016), and a similar confusion exists in at least some
of them (Asher et al., 2016; McNally and Boleda, 2017). We are unable within the scope of the cur-

7To clarify: the difference persists even if the notion of context in distributional semantics is enriched to include, say,
pictures of cats, or even actual cats. The distributions it models would still be distributions of words, not of things like cats.
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rent paper to do justice to the technical sophistication of these approaches, but for present purposes,
impressionistically, the type of integration they pursue can be pictured as follows:

(6) The red cat is chasing a mouse.
Formal semantics: ιx(RED(x) ∧ CAT(x) ∧ ∃y(MOUSE(y) ∧ CHASE(x, y)))

Distributional semantics: ↗ ↘ ↙ → ↓ ↗ ← (i.e., a vector for each word)
Possible integration: ιx(↘(x) ∧ ↙(x) ∧ ∃y(←(y) ∧ ↓(x, y))) (very simplistically)

Again, this may be a ‘true enough’ approximation, but it is theoretically on the wrong track. The atomic
constants in formal semantics are normally understood (e.g., Frege 1892 and basically anywhere since)
to denote the extralinguistic kind of concept, i.e., CAT and not THEWORDCAT. Put differently, entity x
in example (6) should be entailed to be a cat, not to be the word “cat”. This means that the distributional
semantic word vectors are, strictly speaking, out of place in a formal semantic skeleton like in (6).8

In short, distributional semantics models linguistic concepts like THEWORDCAT, not extralinguistic
concepts like CAT. But this is not a shortcoming; it makes distributional semantics more adequate, rather
than less adequate, as a model of expression meaning, for the following reason. A prominent strand in the
literature on concepts conceives of concepts as abilities (e.g., Dummett 1993; Bennett and Hacker 2008;
for discussion see Margolis and Laurence 2014). For instance, possessing the concept CAT amounts to
having the ability to recognize cats, discriminate them from non-cats, and draw certain inferences about
cats. The concept CAT is, then, the starting point for interpreting an object as a cat and draw inferences
from it. It follows that the concept THEWORDCAT is the starting point for interpreting a word as the word
“cat” and drawing inferences from it, notably, inferences about what a speaker in a particular context
may use it for: for instance, to refer to a particular cat.9 Thus, the view of distributional semantics as a
model of concepts, but crucially concepts of words, establishes word vectors as a necessary starting
point for interpreting a word. This is exactly the explanatory job assigned to expression meaning: a
context-invariant starting point for interpretation. Not coincidentally, for neural networks that take words
as input, distributional semantics resides in the first layer of weights (see Section 2).

Summing up, this section presented two reasons why distributional semantics is attractive as a model
of expression meaning. The next section considers whether it could also be sufficient.

4 Limits of distributional semantics: words don’t refer, speakers do.

In many ways the standard for what a theory of expression meaning ought to do has been set by formal
semantics. Consider again our simplistic comparison of distributional semantics and formal semantics:

(7) The red cat is chasing a mouse.
Formal semantics: ιx(RED(x) ∧ CAT(x) ∧ ∃y(MOUSE(y) ∧ CHASE(x, y)))

Distributional semantics: ↗ ↘ ↙ → ↓ ↗ ← (i.e., a vector for each word)

The logical formulae into which formal semantics translates this example are assigned precise interpre-
tations in (a model of) the outside world. For instance, RED would denote the set of all red things, CAT

8The mathematical techniques of the aforementioned approaches do not depend for their validity on the exact nature of the
vectors. We hope that these techniques can be used to represent not expression meaning but speaker meaning (see section 4),
provided we use vector representations of the distribution of actual cats, instead of the word “cat”.

9This is because how a speaker may use a word is constrained by how speakers have used it in the past – a trait of linguistic
convention. Since the concept THEWORDCAT reflects uses of “cat” in the past, among which are referential uses, it constrains
(hence warrants inferences about) what it may be used by a given speaker to refer to. (To clarify: this does not imply that the
actual or potential referents of a word are actually part of its meaning – see Section 4.) The same holds for the distributional
semantic word vector for “cat”, although instantiations of distributional semantics may differ in how much referentially relevant
information they encode. Presumably, more information of this sort is encoded when reference is prominent in the original data,
for instance when a distributional semantic model is trained on referential expressions grounded in images (Kazemzadeh et al.,
2014); otherwise such information needs to be induced from patterns in the text alone (like any other semantic information in
text-only distributional semantics).
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the set of all cat-like things, CHASE a set of pairs where one chases the other, the variable x would be
bound to a particular entity in the world, etc., and the logical connectives can have their usual truth-
conditional interpretation.10 In this way formal semantics accounts for reference to things in the world
and it accounts for truth values (which is what sentences refer to; Frege 1892). Moreover, referents and
truth values across possible worlds/situations in turn determine truth conditions, and thereby entailments
– because one sentence entails another if whenever the former is true the latter is true as well.11 By
contrast, distributional semantics on its own (cf. footnote 3) struggles with these aspects (Boleda and
Herbelot 2016; see also the work discussed in section 3.2 on entailment), which has motivated afore-
mentioned attempts to integrate formal and distributional semantics (e.g., Beltagy et al. 2013; Erk 2013;
Baroni et al. 2014; Asher et al. 2016; Boleda and Herbelot 2016). Put simply, distributional semantics
struggles because there are no entities or truth values in distributional space to refer to. Nevertheless,
we think that this isn’t a shortcoming of distributional semantics; we argue that a theory of expression
meaning shouldn’t model these aspects.12

We think that these referential notions on which formal semantics has focused are best understood to
reside at the level of speaker meaning, not expression meaning. In a nutshell, our position is that words
don’t refer, speakers do (e.g., Strawson 1950) – and analogously for truth conditions and entailment.
The fact that speakers often refer by means of linguistic expressions doesn’t entail that these expressions
must in themselves, out of context, have a determinate reference, or even be capable of referring (or
capable of entailing, of providing information, of being true or false). Parsimony (again) suggests that
we do not assume the latter: To explain why a speaker can use, e.g., the expression “cat” to refer to a cat,
it is sufficient that, in the relevant community, that is how the expression is often used. It is theoretically
superfluous to assume in addition that the expression “cat” itself refers to cats.

Now, most work in formal semantics would acknowledge that “cat” out of context doesn’t refer to
cats, and that its use in a particular context to refer to cats must be explained on the basis of a less
determinate, more underspecified notion of expression meaning. More generally, expressions are well-
known to underdetermine speaker meaning (e.g., Bach 1994; Recanati 2004), as basically any example
can illustrate (e.g., (1) “red cat” and (3) “got married”). However, this alone does not imply that the
notions of formal semantics are inadequate for characterizing expression meaning; in principle one could
try to define, in formal semantics, the referential potential of “cat” in a way that is compatible with
its use to refer to cats, to cat-like things, etcetera. And one could define the expression meaning of
“Jack and Jill got married” in a way that is compatible with them marrying each other and with each
marrying someone else.13 What is problematic for a formal semantic approach is that the ways in which
expressions underdetermine speaker meaning are not clearly delineated and enumerable, and that there
is no symbolically definable common core among all uses.14 This argument was made for instance by
Wittgenstein (1953), who notes that the uses of an expression (his example was “game”) are tied together

10In fact, the common reliance on an intermediate formal, logical language is not what defines formal semantics; what
matters is that it treats natural language itself as a formal language (Montague, 1970), by compositionally assigning precise
interpretations to it – and this can be done directly, or indirectly via translation to a logical language as in our example.

11There are serious shortcomings to the formal semantics approach, some of which we discuss below, but others which aren’t
relevant for present purposes. An important criticism that we won’t discuss is that the way in which formal semantics assigns
interpretations to natural language relies crucially on the manual labor of hard-working semanticists, which does not scale up.

12Truth conditions, entailments and reference are just three sides of the same central, referential tenet of formal semantics, and
what we will say about reference in what follows will apply to truth conditions and entailment, and vice versa. An anonymous
reviewer draws our attention also to the logical notions of satisfiability and validity, i.e., possible vs. necessary truth. Our
proposal applies to these notions too, regardless of whether they are understood in terms of quantification over possible ways
the world may be, or in terms of quantification over possible interpretations.

13For instance, an anonymous reviewer notes that richer logical formalisms such as dependent type theory are well-suited for
integrating contextual information into symbolic representations.

14Similarly, Bach (2005, among others) has criticized the common approach in formal semantics of incorporating, in defi-
nitions of expression meaning, ‘slots’ where supposed context-sensitive material is to be plugged in. The meaning of a scalar
adjective like “big”, for instance, would contain a slot for ‘standard of comparison’ to be filled by context in order to explain
why the same thing may be described as “big” in one context but not in another (e.g., Kennedy 2007). Bach (2005) notes that
this type of approach does not generalize to all the ways in which expression meaning underdetermines speaker meaning; the
meaning of each expression would essentially end up being a big empty slot, to be magically filled by context.
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not by definition but by family resemblance. More recent iterations of this argument can be found
in criticisms of the “classical”, definitional view of concepts (e.g., Rosch and Mervis 1975; Fodor et al.
1980; Margolis and Laurence 2014), and in criticisms of sense enumeration approaches to word meaning
(e.g., Kilgarriff 1997; Hanks 2000; Erk 2010; cf. Pustejovsky 1995), which we already mentioned briefly
before: it is unclear what constitutes a word sense, and no enumeration of senses covers all uses.

The only truly common core among all uses of any given expression is that they are all, indeed,
uses of the same expression. Hence, if expression meaning is to serve its purpose as a common core
among all uses, i.e., as a context-invariant starting point of semantic/pragmatic explanations, then it must
reflect all uses. As we argued in section 3, distributional semantics, conceived of as a model of expression
meaning (i.e., the ‘strong’ view of Lenci 2008), embraces exactly this fact. This makes the representa-
tions of distributional semantics, but not those of formal semantics, suitable for characterizing expression
meaning. By contrast, (largely) discrete notions like reference, truth and entailment are useful, at best, at
the level of speaker meaning – recall that our position is that words don’t refer, speakers do (Strawson,
1950).15 That is, one can fruitfully conceive of a particular speaker, in some individuated context, as
intending to refer to discrete things, communicating a certain determinate piece of information that can
be true or false, entailing certain things and not others. This still involves considerable abstraction, as
any symbolic model of a cognitive system would (Marr, 1982); e.g., speaker intentions may not always
be as determinate as a symbolic model presupposes. But the amount of abstraction required, in particular
the kind of determinacy of content that a symbolic model presupposes, is not as problematic in the case
of speaker meaning as for expression meaning. The reason is that a model of speaker meaning needs to
cover only a single usage, by a particular speaker situated in a particular context; a model of expression
meaning, by contrast, needs to cover countless interactions, across many different contexts, of a whole
community of speakers. The symbolic representations of formal semantics are ill-suited for the latter.

Despite the foregoing considerations being prominent in the literature, formal semantics has contin-
ued to assume that referents, truth conditions, etc., are core aspects of expression meaning. The main
reason for this is the traditional centrality of supposedly ‘semantic’ intuitions in formal semantics (Bach,
2002), either as the main source of data or as the object of investigation (‘semantic competence’, for
criticism see Stokhof 2011). In particular, formal semantics has attached great importance to intuitions
about truth conditions (e.g., “semantics with no treatment of truth conditions is not semantics”, Lewis
1972:169), a tenet going back to its roots in formal logic (e.g., Montague 1970 and the earlier work of
Frege, Tarski, among others). Clearly, if expressions on their own do not even have truth conditions, as
we have argued, these supposedly semantic intuitions cannot genuinely be about expression meaning.
And that is indeed what many authors have pointed out. Strawson (1950); Grice (1975); Bach (2002),
among others, have argued that what seem to be intuitions about the meaning of an expression are
really about what a stereotypical speaker would mean by it – or at least they are heavily influenced
by it. Again example (3) serves as an illustration here: intuitively “marry” means “marry each other”,
but to assume that this is therefore its expression meaning would be inadequate (as we discussed in sec-
tion 3.1). But we want to stress that this is not just an occasional trap set by particular kinds of examples;
just being a bit more careful doesn’t cut it. It is the foundational intuition that expressions can even
have truth conditions that is already inaccurate. Our intuitions are fundamentally not attuned to expres-
sion meaning, because expression meaning is not normally what matters to us; it is only an instrument
for conveying speaker meaning, and, much like the way we string phonemes together to form words, it
plays this role largely or entirely without our conscious awareness. The same point has been made in the
more psycholinguistic literature (Schwarz, 1996), occasionally in the formal semantics/pragmatics liter-
ature (Kadmon and Roberts, 1986), and there is increasing acknowledgment of this also in experimental
pragmatics, in particular of the fact that participants in experiments imagine stereotypical contexts (e.g.,
Westera and Brasoveanu 2014; Degen and Tanenhaus 2015; Poortman 2017).

Summing up, the standard that formal semantics has set for what a theory of expression meaning
15We are not discussing another long-standing criticism of formal semantics, namely that referring (and asserting something

that can be true or false) is not all that speakers do with language (e.g., Austin 1975; Searle 1969). We do not claim that formal
semantics would be sufficient as a model of speaker meaning; only that its notions are more adequate there than at the level of
expression meaning.
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ought to account for, and which makes distributional semantics appear to fall short, turns out to be
misguided. Reference, truth conditions and entailment belong at the level of speaker meaning, not ex-
pression meaning. It entails that distributional semantics on its own need not account for these aspects,
either theoretically or computationally; it should only provide an adequate starting point. Interestingly,
this corresponds exactly to its role in current neural network models, on tasks that involve identifying
aspects of speaker meaning. Consider the task of visual reference resolution (e.g., Plummer et al. 2015),
where the inputs are a linguistic description plus an image and the task is to identify the intended referent
in the image. A typical neural network model would achieve this by first activating word embeddings (a
form of distributional semantics; Section 2) and then combining and transforming these together with a
representation of the image into a representation of the intended referent – speaker meaning.

5 Compositionality

Language is compositional in the sense that what a larger, composite expression means is determined
(in large part) by what its components mean and the way they are put together. Compositionality is
sometimes mentioned as a strength of formal semantics and as an area where distributional semantics
falls short (a.o. Beltagy et al., 2013). But in fact both approaches have shown strengths and weaknesses
regarding compositionality (see Boleda and Herbelot 2016 for an overview). To illustrate, consider again:

(8) The red cat is chasing a mouse.

In this context the adjective “red” is used by the speaker to mean something closer to ORANGE (because
the “red hair” of cats is typically orange), unlike its occurrence in, say, “red paint”. Distributional seman-
tics works quite well for this type of effect in the composition of content words (e.g., Baroni et al. 2014;
McNally and Boleda 2017), an area where formal semantics, which tends to leave the basic concepts un-
analyzed, has struggled (despite efforts such as Pustejovsky 1995). Classic compositional distributional
semantics, in which distributional representations are combined with some externally specified algorithm
(which can be as simple as addition), also works reasonably well for short sentences, as measured for
instance on sentence similarity (e.g., Mitchell and Lapata 2010; Grefenstette et al. 2013; Marelli et al.
2014). But for longer expressions distributional semantics on its own falls short (cf. our clarification of
“on its own” in footnote 3), and this is part of what has inspired aforementioned works on integrating
formal and distributional semantics (e.g., Coecke et al. 2011; Grefenstette and Sadrzadeh 2011; Beltagy
et al. 2013; Erk 2013; Baroni et al. 2014; Asher et al. 2016).

However, that distributional semantics falls short of accounting for full-fledged compositionality does
not mean that it cannot be a sufficient model of expression meaning. For that, it should be established
first that compositionality wholly resides at the level of expression meaning – and it is not clear that it
does. Let us take a closer look at the main theoretical argument for compositionality, the argument from
productivity.16 According to this argument, compositionality is necessary to explain how a competent
speaker can understand the meaning of a composite expression that they have never before encountered.
However, in appealing to a person’s supposed understanding of the meaning of an expression, this argu-
ment is subject to the revision proposed in Section 4: it reflects speaker meaning, not expression meaning.
More correctly phrased, then, the type of data motivating the productivity argument is that a person who
has never encountered a speaker uttering a certain composite expression, is nevertheless able to under-
stand what some (actual or hypothetical) speaker would mean by it. And this leaves undetermined where
compositionality should reside: at the level of expression meaning, speaker meaning, or both.

To illustrate, consider again example (8), “The red cat is chasing a mouse”. A speaker of English
who has never encountered this sentence will nevertheless understand what a stereotypical speaker would
mean by it (or will come up with a set of interpretations) – this is an instance of productivity. One ex-
planation for this would be that the person can compositionally compute an expression meaning for the

16To clarify: the issue here is not whether distributed representations can be composed, but whether distributional representa-
tions – i.e., abstractions over distributions of use – can and should be composed. Sophisticated approaches exist for composing
distributed representations (notably the tensor product approach of Smolensky 1990).
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whole sentence, and from there infer what a speaker would mean by it. This places the burden of compo-
sitionality entirely on the notion of expression meaning. An alternative would be to say that the person
first infers speaker meanings for each word (say, the concept CAT for “cat”),17 and then composes these
to obtain a speaker meaning of the full sentence. This would place the burden of compositionality en-
tirely on the notion of speaker meaning (cf. the notion of resultant procedure in Grice 1968; see Borge
2009 for a philosophical argument for compositionality residing at the speaker meaning level). The two
alternatives are opposite extremes of a spectrum; and note that the first is what formal semantics pro-
claims, yet the second is what formal semantics does, given that the notions it composes in fact reside at
the level of speaker meaning (e.g., concepts like CAT as opposed to THEWORDCAT; and the end product
of composition in formal semantics is typically a truth value). There is also a middle way: The person
could in principle compositionally compute expression meanings for certain intermediate constituents
(say, “the red cat”, “a mouse” and “chases”), then infer speaker meanings for these constituents (say,
a particular cat, an unknown mouse, and a chasing event), and only then continue to compose these to
obtain a speaker meaning for the whole sentence. This kind of middle way requires that a model of
expression meaning (distributional semantics) accounts for some degree of compositionality (say, the
direct combination of content words), with a model of speaker meaning (say, formal semantics) carrying
the rest of the burden. The proposal in McNally and Boleda (2017) is a version of this position.

The foregoing shows that the productivity argument for compositionality falls short as an argument
for compositionality of expression meanings; that is, compositionality may well reside in part, or
even entirely, at the level of speaker meaning. We will not at present try to settle the issue of where
compositionality resides – though we favor a view according to which compositionality is multi-faceted
and doesn’t necessarily reside exclusively at one level.18 What matters for the purposes of this paper is
that the requirement imposed by formal semantics, that a theory of expression meaning should account
for full-fledged compositionality, turns out to be unjustified.

6 Outlook

We presented two strong reasons why distributional semantics is attractive as a model of expression
meaning, i.e., in favor of the ‘strong’ view of Lenci 2008: The parsimony of regarding expression mean-
ing as an abstraction over use; and the understanding of these abstractions as concepts and, thereby, as
a necessary starting point for interpretation. Moreover, although distributional semantics struggles with
matters like reference, truth conditions and entailment, we argued that a theory of expression meaning
should not account for these aspects: words don’t refer, speakers do (and likewise for truth conditions
and entailments). The referential approach to expression meaning of formal semantics is based on mis-
interpreting intuitions about stereotypical speaker meaning as being about expression meaning. The
same misinterpretation has led to the common view that a theory of expression meaning should be com-
positional, whereas in fact compositionality may reside wholly or in part (and does reside, in formal
semantics) at the level of speaker meaning. Clearing this up reveals that distributional semantics is the
more adequate approach to expression meaning. In between our mostly theoretical arguments for this
position, we have shown how a consistent interpretation of distributional semantics as a model of ex-
pression meaning sheds new light on certain applications: e.g., distributional semantic approaches to
entailment and attempts at integrating distributional and formal semantics.

17We discuss this here as a hypothetical possibility; to assume that individual words of an utterance can be assigned speaker
meanings may not be a feasible approach in general.

18The empirical picture is undecisive in this regard: just because distributional semantics appears to be able to handle certain
aspects of compositionality, that doesn’t mean it should. After all, word vectors like “cat” have been quite successfully used as
a proxy for extra-linguistic concepts like CAT, even though as we explained this is strictly speaking a misuse (conflating CAT

and THEWORDCAT; see section 3.2). Perhaps the moderate success of distributional semantics on for instance adjective-noun
composition like “red cat” reflects the fact that the extra-linguistic concepts RED and CAT compose (speaker meaning), even if
the linguistic concepts THEWORDRED and THEWORDCAT don’t (expression meaning).
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Abstract

Discourse connectives are known to be subject to both usage and sense ambiguity, as has already
been discussed in the literature. But discourse connectives are no different from other linguistic
expressions in being subject to other types of ambiguity as well. Four are illustrated and discussed
here.

1 Introduction

Discourse connectives, like other linguistic expressions, are subject to ambiguity. Two types of ambiguity
— usage ambiguity, whether or not a given token is serving as a discourse connective in its context, and
sense ambiguity, what discourse relation(s) a given token is signalling — were the subject of a study by
Pitler and Nenkova (2009), who showed how syntactic features could help resolve them both.

But discourse connectives are no different from other linguistic expressions in being subject to other
types of ambiguity as well. Four of them are discussed here, as a way of encouraging researchers to de-
termine whether existing disambiguation methods suffice to handle them or whether the methods need to
be extended. Ignoring the full range of ambiguity of discourse connectives can lead to discourse relations
being mis-labelled both manually (during annotation) and automatically (during discourse parsing).

As background to presenting these ambiguities, Section 2 briefly reviews the original Penn Discourse
TreeBank (the PDTB-2), the findings of Pitler and Nenkova (2009), and how the recently released PDTB-
3 extends and, in some cases corrects, annotation in the PDTB-2. We then turn to four additional types
of discourse connective ambiguity that have been discussed in the context of other linguistic forms. Sec-
tion 3 discusses part-of-speech ambiguity, which can affect how a given token functions as a discourse
connective. Section 4 discusses multi-word ambiguity, where a sequence of tokens can be ambiguous be-
tween a sequence of separate elements and a single multi-word discourse connective. Section 5 discusses
a scope ambiguity that affects the sense of discourse connectives. Finally, Section 6 discusses semantic
role ambiguity involving the arguments of certain CONCESSION relations.

2 Background

2.1 PDTB-2

The Penn Discourse Treebank (Prasad et al., 2008) was created as the largest public repository of an-
notated discourse relations (over 43K), including over 18.4K signalled by explicit discourse connectives
(coordinating or subordinating conjunctions, or discourse adverbials). All relations in the corpus are
labelled with either one or two senses from a three-level sense hierarchy, whose top level comprised four
non-terminal senses: EXPANSION, COMPARISON, CONTINGENCY and TEMPORAL. Most discourse re-
lations were labelled with terminal senses, except where annotators were unable to decide and backed off
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to a level-2 (or in some cases, a top-level) sense. Discourse relations consisted of two arguments labelled
Arg1 and Arg2, with each relation anchored by either an explicit discourse connective or adjacency. In
the latter case, annotators inserted one or more implicit connectives that signalled the sense(s) they in-
ferred to hold between the arguments. The approach in the PDTB-2 is agnostic about any higher-level
discourse structure, and as such, made no attempt to build a tree or graph structure of relations over the
text as a whole. The size and availability of the PDTB-2 spawned the field of shallow discourse parsing,
as in the 2015 and 2016 CoNLL shared tasks (Xue et al., 2015, 2016), as well as the development of
similar resources for other languages, including Chinese, Hindi, and Turkish. An in-depth discussion of
the PDTB-2 can be found in (Prasad et al., 2014).

2.2 Pitler & Nenkova (2009)

Pitler and Nenkova (2009) showed how syntactic features could be used in disambiguating both usage
ambiguity and sense ambiguity. To understand these types of ambiguity, consider the word since. Ex. 1
illustrates its non-discourse usage, where since is simply a temporal preposition. Both Ex. 2 and Ex. 3
illustrate discourse usages and also the sense ambiguity of since, signalling a purely temporal relation in
Ex. 2 and a purely causal relation in Ex. 3.

(1) She has been up since 5am.

(2) There have been over 100 mergers since the most recent wave of friendly takeovers ended.

(3) It was a far safer deal since the company has a healthier cash flow.

Using data in the PDTB-2, Pitler and Nenkova (2009) showed that usage ambiguity can be resolved
with high accuracy, as can sense ambiguity with respect to the four top-level sense classes (cf. Sec-
tion 2.1). (N.B. They took multi-labelled tokens to be classified correctly if at least one of the senses was
correctly identified.) They showed how high accuracy could be achieved in both disambiguation tasks
by using both the token itself and its syntactic features in classification. Features included the syntactic
category of the node dominating all and only the token itself, the category of its immediate parent, and
the categories of its siblings. When they added interactions between connectives and syntactic features,
and interactions between the features themselves, accuracy increased over 10 points and f-score, nearly
20 points.

Since Pitler & Nenkova’s results are not incompatible with other types of discourse connective am-
biguity, their work is a good jumping off point for experimenting with the additional types of discourse
connective ambiguity we discuss here.

2.3 PDTB-3

The PDTB-31 contains ∼12.5K more intra-sentential relations (i.e., ones that lie wholly within the pro-
jection of a top-level S-node) and ∼1K more inter-sentential relations than the PDTB-2 (Webber et al.,
2019). New senses have been added to the sense hierarchy (Table 1) and used for annotating new tokens,
as well as for re-annotating existing tokens.

Newly annotated intra-sentential relations include ones between the conjuncts of conjoined verb
phrases and conjoined clauses; ones between free or headed adjuncts and the clauses they adjoin to;
ones associated with subordinators such as in order, prepositions such as with, for, and in; and ones
between infinitival clauses (or other subordinating structures) and their matrix clause. New annota-
tion also includes explicitly marked question-response pairs, and lexico-syntactic constructions that are
unambiguous signals of particular discourse relations, such as the so-construction, signalling RESULT

(Ex. 4), the too-construction, signalling NEGATIVE-RESULT (Ex. 5), and auxiliary inversion, signalling
a CONDITIONAL relation (Ex. 6).2

1https://catalog.ldc.upenn.edu/LDC2019T05
2Discourse relations in the paper are formatted with Arg1 indicated in italics and Arg2 in bold, with the discourse connnec-

tive (explicit or implicit) or alternative lexicalization underlined.
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Level-1 Level-2 Level-3

TEMPORAL
SYNCHRONOUS –
ASYNCHRONOUS [PRECEDENCE,SUCCESSION]

REASON
CAUSE RESULT

NEGRESULT

CAUSE+BELIEF
REASON+BELIEF
RESULT+BELIEF

CAUSE+SPEECHACT
REASON+SPEECHACT
RESULT+SPEECHACT

CONTINGENCY CONDITION [ARG1,ARG2]-AS-COND
CONDITION+SPEECHACT –
NEGATIVE-CONDITION [ARG1,ARG2]-AS-NEGCOND
NEGATIVE-CONDITION+SPEECHACT –
PURPOSE [ARG1,ARG2]-AS-GOAL

CONCESSION [ARG1,ARG2]-AS-DENIER
COMPARISON CONCESSION+SPEECHACT ARG2-AS-DENIER+SPEECHACT

CONTRAST –
SIMILARITY –

CONJUNCTION –
DISJUNCTION –
EQUIVALENCE –
EXCEPTION [ARG1,ARG2]-AS-EXCPT

EXPANSION INSTANTIATION [ARG1,ARG2]-AS-INSTANCE
LEVEL-OF-DETAIL [ARG1,ARG2]-AS-DETAIL
MANNER [ARG1,ARG2]-AS-MANNER
SUBSTITUTION [ARG1,ARG2]-AS-SUBST

Table 1: PDTB-3 Sense Hierarchy. Only asymmetric senses extend to Level-3.

(4) The fit is so good, we see this as a time of opportunity. [wsj 0317]
(5) Things have gone too far for the government to stop them now [wsj 2454]
(6) . . . but would have climbed 0.6%, had it not been for the storm [wsj 0573]

Differences in how discourse relations are annotated in the PDTB-2 and the PDTB-3 reflect (1)
changes and/or additions to the sense hierarchy; (2) different criteria for choosing one sense label over
another; and (3) rigorous attention to semantic consistency (Hollenstein et al., 2016), checking that sim-
ilar tokens have been annotated in a similar way, thereby reducing annotation noise and improving what
can be induced from the corpus.

Note that additions to the sense hierarchy have introduced new sense ambiguities that weren’t present
in the PDTB-2. A case in point is the discourse adverbial as well, all of whose tokens were sense-
annotated EXPANSION.CONJUNCTION in the PDTB-2 (cf. Ex. 7 and Ex. 8). With the new sense COM-
PARISON.SIMILARITY, as well is now ambiguous between conveying EXPANSION.CONJUNCTION,
which Ex. 7 is still taken to do, and COMPARISON.SIMILARITY, which Ex. 8 was re-annotated as.

(7) There is speculation that property/casualty firms will sell even more munis as they scramble to raise cash to
pay claims related to Hurricane Hugo and the Northern California earthquake. Fundamental factors are
at work as well. [wsj 0671]

(8) “They continue to pay their bills and will do so,” says Ms. Sanger. “We’re confident we’ll be paying our
bills for spring merchandise as well.” [wsj 1002]

The PDTB-3 records the provenance of each token. This shows that, of the∼53600 tokens annotated
in the PDTB-3, ∼57% are unchanged from the PDTB-2, ∼19% (∼9900 tokens) have been changed in
some way from their earlier annotation, and the remaining 24% are new to the PDTB-3. Provenance
allows us to compare the use of new senses in annotating new tokens and in re-annotating existing tokens.
For example, the new sense COMPARISON.SIMILARITY was used in annotating 135 new tokens and in
re-annotating 68 tokens, of which 41 were associated with explicit connectives. Of the 41, 18 involved the
discourse adverbial similarly; 10, the subordinating conjunction as if ; while the rest involved tokens of
as, as though, as well, much as, just as meanwhile and while. While similarly thus unambiguously signals
COMPARISON.SIMILARITY, for these other connectives, the new sense has meant a new ambiguity.
These additional sense ambiguities argue for re-applying Pitler & Nenkova’s analysis to the PDTB-3.
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3 Part-of-Speech Ambiguity

Part-of-Speech (PoS) affects how three items function as discourse connectives: since, before, and how-
ever. Since is ambiguous between a subordinating conjunction (PoS=IN), as in Ex. 9, and an adverbial
(PoS=RB), as in Ex. 10.

(9) However, since Eastern first filed for Chapter 11 protection March 9, it has consistently promised to pay
creditors 100 cents on the dollar. [wsj 0475]

(10) His company, Misa Manufacturing Inc., was forced to seek protection from creditors under federal bankruptcy
law in 1987 and has since been liquidated. [wsj 1830]

This ambiguity also affects the sense of since. As a subordinating conjunction, since signals either
REASON or (temporal) SUCCESSION (cf. Ex 9), while as a discourse adverbial, its temporal sense is the
reverse — PRECEDENCE (cf. Ex. 10).

The same holds for before, which is also ambiguous between a subordinating conjunction (PoS=IN)
and an adverbial (PoS=RB). As a subordinating conjunction, it conveys PRECEDENCE (cf. Ex. 11), while
as a discourse adverbial, it conveys the reverse —SUCCESSION (cf. Ex. 12).

(11) They said they wanted to wait for the outcome of any government investigation before deciding what to do.
[wsj 0357]

(12) The Japanese are in the early stage right now,” said Thomas Kenney, . . . . “Before, they were interested in
hard assets and they saw magazines as soft. [wsj 1650]

Finally, however is ambiguous between a simple adverbial (PoS=RB) and a WH-Adverb subordinator
(Pos=WRB). The latter is shown in Ex. 13.

(13) The 1987 crash was ”a false alarm however you view it,” says University of Chicago economist Victor
Zarnowitz. [wsj 2397]

As a simple discourse adverbial, the most common sense of however is COMPARISON.CONCESSION.ARG2-
AS-DENIER. As a subordinator, the most common sense of however is the reverse,
COMPARISON.CONCESSION.ARG1-AS-DENIER.3

As for resolving these ambiguities, reliable disambiguation of their usage as discourse connectives
only requires correct PoS-tagging to disambiguate how they are functioning as discourse connectives.

4 Multi-word Expression Ambiguity

Another ambiguity arises when a multi-word sequence can be analyzed either as a sequence of separate
elements or as a single multi-word connective. Four sequences (but then, only to, or otherwise and but
also) are ambiguous in this way.

Take but then: It can be interpreted as as a sequence of connectives, with but conveying COM-
PARISON.CONTRAST or COMPARISON.CONCESSION.ARG2-AS-DENIER and then conveying TEMPO-
RAL.ASYNCHRONOUS.PRECEDENCE, as in

(14) Small businesses say a recent trend is like a dream come true: more-affordable rates for employee-health
insurance, initially at least. But then they wake up to a nightmare. [wsj 0518]

Alternatively, it can be interpreted as a single multi-word connective that expresses
COMPARISON.CONCESSION.ARG2-AS-DENIER, as in

(15) To many, it was a ceremony more befitting a king than a rural judge seated in the isolated foothills of the
southern Allegheny Mountains. But then Judge O’Kicki often behaved like a man who would be king –
and, some say, an arrogant and abusive one. [wsj 0267]

3 CONCESSION is annotated when a causal relation expected on the basis of one argument is cancelled or denied by the
situation described in the other.
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(N.B. The CONCESSION label corresponds to a paraphrase with even though – e.g. “Even though it
was a ceremony more befitting a king than a rural judge seated in the isolated foothills of the southern
Allegheny Mountains, Judge O’Kicki often behaved like a man who would be king . . . ”. Multi-word but
then also implies that “you shouldn’t be surprised at this because”, but this is not something that was
annotated in the PDTB-3.)

Another ambiguous sequence is only to. On the one hand, only can be interpreted as modifying to, as
it does in only because, only when, etc., indicating that Arg2 is the only thing in the given relation with
Arg1, cf.

(16) Tax-exempt airport and street-corner solicitations were intended only to provide start-up funds. [wsj 0282]

On the other hand, only to can be interpreted as a single multi-word connective conveying that Arg2 is a
surprising, unexpected situation that follows Arg1, as in

(17) Two former secretaries told the grand jury they were summoned to the judge’s chambers on separate occa-
sions to take dictation, only to find the judge in his bikini underwear. [wsj 0267]

This is indicated by only to being labelled both PRECEDENCE and CONCESSION.ARG2-AS-DENIER.
A third ambiguous sequence is or otherwise. It can be analyzed as two separate connectives, with

otherwise expressing CONTINGENCY.NEGATIVE-CONDITION.ARG1-AS-NEGCOND, as in Example 18
(paraphrasable as “if you don’t stay in the center of the path, you might trip and fall.”), or as a single
multi-word connective, with or otherwise conveying that the disjuncts are mutually exclusive and that
their union covers the full set, as in Example 19.

(18) Walk down the center of the path, or otherwise, you might trip and fall.

(19) A new Maryland law frees store owners of liability if a customer trips or otherwise gets hurt on the way to
the restroom. [wsj 1270]

The final ambiguous sequence that we note here, but also (or in some cases, just the word but),
sometimes appears as part of the paired connective not only . . . but also (cf. Ex. 20), usually sense-
annotated as CONJUNCTION.

(20) Market participants say investors are not only licking their wounds following the turbulence last week, but
they have also been made nervous by two events in West Germany. [wsj 1187]

Alternatively, the sequence can be analyzed as two distinct connectives — but, signalling CONTRAST

or CONCESSION.ARG2-AS-DENIER, and also, signalling CONJUNCTION. This is how they have been
labelled in wsj 0044 (Ex. 21).

(21) a. Editorials in the Greenville newspaper allowed that Mrs. Yeargin was wrong, but also said the case
showed how testing was being overused. [wsj 0044]

b. Editorials in the Greenville newspaper allowed that Mrs. Yeargin was wrong, but also said the case
showed how testing was being overused. [wsj 0044]

As with both usage and sense ambiguity, it would be useful to determine whether syntactic features
might help distinguish whether a particular multi-word span should be analyzed as a single connective
or separate elements.

5 Scope Ambiguity

Scope was only an issue in the PDTB-2 with respect to attribution, where a verb of attribution such as say
or think might be superficially negated, while having the negation actually work to reverse the polarity
of the attributed argument or relation (The PDTB Research Group, 2008). But scope is also a source of
ambiguity in the PDTB-3, where it can affect the sense of to-clause constructions.

Absent modality or negation, a to-clause construction has a simple sense ambiguity. The to-clause
can be Arg2 of either a CONTINGENCY.PURPOSE.ARG2-AS-GOAL relation (Ex. 22), or of a CONTIN-
GENCY.CAUSE.RESULT relation (Ex. 23).
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(22) The Galileo project started in 1977, and a number of project veterans were on hand to watch the launch.
[wsj 1817]

(23) Georgia Gulf stock rose $1.75 a share yesterday to close at $51.25 a share. [wsj 0080]

(By definition, PURPOSE requires a volitional agent, and generally can be paraphrased by inserting in
order, while with RESULT, inserting therefore leads to a more appropriate paraphrase.)

However, in the context of a modal (e.g., need, have to, must, require. etc.) or future tense (or present
tense used as future), an additional ambiguity appears, whose disambiguation depends on whether the
scope of the modal or future tense includes just Arg1 or both arguments. Specifically, if the scope
includes just Arg1, annotators have taken the sense as being conditional (ARG2-AS-COND), because
while the situation specified in the to-clause (Arg2) might be the agent’s purpose, there is no assertion
that it is so. This can be seen in the use of if as an appropriate paraphrase, as in Ex. 24–25

(24) Banks need a competitive edge to sell their products. [wsj 0238]
paraphrase: Banks need a competitive edge if they are to sell their products.

(25) He said the index would have to be in the low 40% range for several months to be considered a forecast of
recession. [wsj 0036]
paraphrase: He said the index would have to be in the low 40% range for several months if it is to be
considered a forecast of recession.

In contrast, if the modal or future operator seems best interpreted as scoping both arguments, as in

(26) The two companies have been discussing a transaction under which Fresenius would buy Delmed stock for
cash to bring its beneficial ownership to between 70% and 80% of Delmed’s fully diluted common
stock. [wsj 1066]
paraphrase: . . . under which it would be the case that Fresenius buys Delmed stock for cash to bring its
beneficial ownership to . . .

then we are back to the original sense ambiguity between PURPOSE.ARG2-AS-GOAL and RESULT.
This same CONDITIONAL sense ambiguity also arises when there is negation or a question in Arg1,

because its scope is again ambiguous between being just over Arg1 or over both arguments. This can be
manually disambiguated by seeing whether if can be appropriately inserted in a positive paraphrase of
Arg1 (in the case of negation) or a non-question paraphrase of Arg1 (in a question context). If so, scope
only extends over Arg1, and the sense is CONDITION.ARG2-AS-COND, as in

(27) . . . which, unlike utilities, aren’t regulated and therefore don’t need government approval to construct new
plants. [wsj 0560]
paraphrase: . . . and therefore they need government approval if they are to construct new plants

In the case of the question in Ex. 28,

(28) Do you really need this much money to put up these investments? [wsj 0629]

“You really need this much money if you are to put up these investments” was not considered an ap-
propriate non-question paraphrase of the original: The question was taken to scope both arguments. As
such, one is back to the original sense ambiguity of to-clause constructions between PURPOSE.ARG2-
AS-GOAL and RESULT. Since here, an appropriate paraphrase involves in order — “You really need
this much money in order to put up these investments” — PURPOSE.ARG2-AS-GOAL was taken to be an
appropriate sense label. In all, of over 1600 relations whose Arg2 was a to-clause construction, about
9% were sense-labelled CONDITION.ARG2-AS-COND.

While scope cannot be disambiguated by purely syntactic means, disambiguating these cases may
require methods that go beyond the purely syntax-based approach of Pitler and Nenkova (2009).

6 Semantic Role Ambiguity

In English, semantic role ambiguity has mainly been discussed in the context of “garden path” sentences
(Konstas et al., 2014), where in
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(29) a. The horse raced past the barn . . .

b. The man served the potatoes . . .

there is an ambiguity as to whether the horse (the man) is in the agent role of main verb raced (served)
or the patient role of raced (served) as head of a reduced relative clause. Where listeners consistently
make the wrong choice, it is considered a “garden path” sentence.

A few verbs in English such as shame demonstrate semantic role ambiguity even without considering
reduced relative clauses. As shown in Ex. 30, even after processing the direct object of shame (i.e., me),
there is still an ambiguity as to who plays the role of shamer and who, the shamee.

(30) My son shamed me . . .
a. into giving some of our cookies to the other children.
paraphrase: My son made me feel ashamed of myself (causing me to do something)
b. by keeping all the cookies for himself.
paraphrase: My son made me feel ashamed of him (by keeping the cookies for himself)

With discourse connectives, four subordinating conjunctions that can signal a CONCESSION relation
— although, though, even though, and while — show a similar ambiguity when they head a postposed
subordinate clause. The ambiguity here is which clause raises the causal inference and which denies it.
It is an ambiguity that does not appear with preposed subordinate clauses.

More specifically, we noted in Section 2.3 that some senses are asymmetric, meaning that the relation
is directional. To capture this directionality, each asymmetric relation has two Level-3 senses, in one of
which Arg1 plays the specified role, while in the other case, Arg2 does so (cf. Table 1).

In general, an explicit connective that signals an asymmetric sense does so unambiguously. For
example, when otherwise signals exception, the exception is Arg1 (EXPANSION.EXCEPTION.ARG1-
AS-EXCPT), as in Ex. 31. In contrast, when except signals exception, the exception is Arg2
(EXPANSION.EXCEPTION.ARG2-AS-EXCPT), as in Ex. 32.

(31) Twenty-five years ago the poet Richard Wilbur modernized this 17th-century comedy merely by avoiding
”the zounds sort of thing,” as he wrote in his introduction. Otherwise, the scene remained Celimene’s
house in 1666. [wsj 0936]

(32) Boston Co. officials declined to comment on Moody’s action on the unit’s financial performance this year
except to deny a published report that outside accountants had discovered evidence of significant
accounting errors in the first three quarters’ results.

While CONCESSION relations are asymmetric, the subordinating conjunctions although, though,
even though and while are not always unambiguous signals. That is, when they head a preposed sub-
ordinate clause (402 tokens in the PDTB-3), they were taken as unambiguously signalling the relation
COMPARISON.CONCESSION.ARG1-AS-DENIER, where the matrix clause (Arg1) denies the causal in-
ference raised by the subordinate clause, Arg2, as in Ex. 33.

(33) The documents also said that although the 64-year-old Mr. Cray has been working on the project for
more than six years, the Cray-3 machine is at least another year away from a fully operational prototype.
[wsj 0018]

However, when postposed with respect to its matrix clause, there is an ambiguity as to whether the
matrix clause (Arg1) plays the role of denying the causal inference raised in Arg2, as in Ex. 34, or
whether the subordinate clause (Arg2) plays the role of denying the causal inference raised in Arg1, as
in Ex. 35.

(34) The company’s research suggests that its name recognition among most consumers remains unusually low,
although (CONCESSION.ARG1-AS-DENIER)] its array of brands – including Maxwell House coffee, Jell-
O, Cheez Whiz, and Miller beer – blanket supermarket shelves. [wsj 0326]

(35) Unemployment still is officially recorded at 16.5%, the highest rate in Europe,
although (CONCESSION.ARG2-AS-DENIER) actual joblessness may be lower. [wsj 0456]
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In the PDTB-3, there are 324 tokens of postposed CONCESSION relations with one of these four con-
nectives. Of these, 260 have been labelled CONCESSION.ARG1-AS-DENIER, as with comparable pre-
posed subordinate clauses, while the remaining 64 have been labelled CONCESSION.ARG2-AS-DENIER.
The only differences between the four connectives is their relative frequency with which they appear in
post-position and the degree of ambiguity when they do.

Conn total labelled Proportion in ARG1-AS-DENIER ARG2-AS-DENIER
CONCESSION post-position

even though 95 0.74 44 26
though 219 0.60 7 125
although 311 0.37 11 103
while 237 0.03 2 6

While further analysis should identify features that will help disambiguate the sense of post-posed CON-
CESSIVES, it is nevertheless worth establishing that semantic role ambiguity is not limited to verbs.

7 Conclusion

We hope to have shown that discourse connectives are no different from other linguistic expressions in
being subject to many types of ambiguity. Besides usage ambiguity and sense ambiguity (Pitler and
Nenkova, 2009), we hope to have shown that discourse connectives are subject to ambiguities associated
with parts-of-speech, multi-word expressions, scope and semantic roles. We hope this will now encour-
age researchers to explore whether existing disambiguation methods suffice to handle this larger range
of discourse connective ambiguities or whether such methods need to be extended.

References

Hollenstein, N., N. Schneider, and B. Webber (2016). Inconsistency detection in semantic annotation. In
Proceedings, Language Resources and Evaluation Conference (LREC 2016), Potoroz, Slovenia.

Konstas, I., F. Keller, V. Demberg, and M. Lapata (2014). Incremental semantic role labeling with tree
adjoining grammar. In Proceedings, Empirical Methods in Natural Language Processing.

Pitler, E. and A. Nenkova (2009). Using syntax to disambiguate explicit discourse connectives in text. In
ACL-IJCNLP ’09: Proceedings of the 47th Meeting of the Association for Computational Linguistics
and the 4th International Joint Conference on Natural Language Processing.

Prasad, R., N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Webber (2008). The Penn
Discourse TreeBank 2.0. In Proceedings, 6th International Conference on Language Resources and
Evaluation, Marrakech, Morocco.

Prasad, R., B. Webber, and A. Joshi (2014). Reflections on the Penn Discourse Treebank, comparable
corpora and complementary annotation. Computational Linguistics 40(4), 921–950.

The PDTB Research Group (2008). The Penn Discourse TreeBank 2.0 Annotation Manual. Available at
http://www.seas.upenn.edu/˜pdtb/, or as part of the download of LDC2008T05.

Webber, B., R. Prasad, A. Lee, and A. Joshi (2019). The Penn Discourse Treebank
3.0 Annotation Manual. Technical report, University of Pennsylvania. Available at
https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf.

Xue, N., H. T. Ng, S. Pradhan, R. Prasad, C. Bryant, and A. Rutherford (2015). The CoNLL-2015 shared
task on shallow discourse parsing. In Proc 19th Conference on Computational Natural Language
Learning – Shared Task, Beijing, pp. 1–16.

Xue, N., H. T. Ng, S. Pradhan, A. Rutherford, B. Webber, C. Wang, and H. Wang (2016). CoNLL 2016
shared task on multilingual shallow discourse parsing. In Proc 20th Conference on Computational
Natural Language Learning – Shared Task, Berlin, pp. 1–19.

141



Aligning Open IE Relations and KB Relations using a Siamese
Network Based on Word Embedding

Rifki Afina Putri
School of Computing, KAIST

rifkiaputri@kaist.ac.kr

Giwon Hong
School of Computing, KAIST
gch02518@kaist.ac.kr

Sung-Hyon Myaeng
School of Computing, KAIST
myaeng@kaist.ac.kr

Abstract

Open Information Extraction (Open IE) aims at generating entity-relation-entity triples from a
large amount of text, aiming at capturing key semantics of the text. Given a triple, the relation
expresses the type of semantic relation between the entities. Although relations from an Open IE
system are more extensible than those used in a traditional Information Extraction system and a
Knowledge Base (KB) such as Knowledge Graphs, the former lacks in semantics; an Open IE relation
is simply a sequence of words, whereas a KB relation has a predefined meaning. As a way to provide
a meaning to an Open IE relation, we attempt to align it with one of the predefined set of relations
used in a KB. Our approach is to use a Siamese network that compares two sequences of word
embeddings representing an Open IE relation and a predefined KB relation. In order to make the
approach practical, we automatically generate a training dataset using a distant supervision approach
instead of relying on a hand-labeled dataset. Our experiment shows that the proposed method can
capture the relational semantics better than the recent approaches.

1 Introduction

Open Information Extraction (Open IE) aims at extracting key information from a large amount of text
into a structured format, commonly in the form of triples, (subject entity, relation, object entity), where
the relation denotes the type of a semantic relation between the entities. As opposed to the traditional
Information Extraction that generates triples over a predefined relation set, Open IE can extract all pos-
sible relations without having to be restricted to a predefined set of relations. However, a relation from
an Open IE system is merely a sequence of words coming from the sentence containing the entities, re-
sulting in ambiguous and semantically redundant relations. For example, Open IE may extract ”died in”
and ”location of death” as two distinct relations although they should be treated as semantically equal
and expressed (or canonicalized) with a single relation type.

In order to address this problem, some methods have been proposed to canonicalize Open IE re-
lations (Yates and Etzioni, 2009; Galárraga et al., 2014; Vashishth et al., 2018). Given that they rely
on a clustering method, however, they tend to suffer from over-generalization. For example, the latest
canonicalization method called CESI (Vashishth et al., 2018) would put ”is brother of,” ”is son of,” ”is
main villain of,” and ”was professor of ” into the same relation cluster. While these relation phrases
have a common pattern (to be + noun + of) and expresses that the subject entity has a certain role, the
overarching relational category is too general to be useful.

Besides Open IE, Knowledge Base (KB) systems such as DBpedia, Freebase, and Wikidata, also
store general facts in a triple format. Different from Open IE, the relations in a KB are already classified
into distinct semantic categories. Although KB relations are better defined semantically than Open IE
relations, they are limited in terms of quantity and coverage. Dutta et al. (2015) attempted to mitigate
the weaknesses of the two approaches by aligning the relations of Open IE triples to those in DBpedia,
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thereby adding semantics to Open IE triples. While useful, their approach is primarily based on the
frequency of triples without explicitly taking into account the relational semantics.

In this paper, we propose a new model using a Siamese network for aligning relations from Open IE
to those from KB (i.e. relation alignment task) for the purpose of providing more semantics to Open IE
relations, which are to be used for question answering as in TriviaQA (Joshi et al., 2017). The Siamese
network, a form of a neural network, takes two sequences of word embeddings representing an Open IE
relation and a KB relation and compares them. The network is trained to learn the semantic similarities
between an Open IE relational phrase and a KB relation type name that are considered identical in their
meanings. By utilizing word embeddings as the input of the network and encode relational descriptions,
we can incorporate their semantics information without an extra process of extracting linguistic features
from the training data. In order to mitigate the problem of manually constructing training data, i.e. pairs
of an Open IE relational phrase and a KB relation type name, we propose a distant supervision method
that does not require manual annotations. Our contributions in this paper are:

• We propose a novel method of applying a Siamese network for the relation alignment task. To the
best of our knowledge, our model is the first attempt that incorporates the semantic information of
the textual descriptions of relations, specifically for the relation alignment task.

• We propose to automatically generate a training dataset using a distant supervision approach so that
we avoid manual creation of training data, which can be prohibitive, thereby making the proposed
approach practical.

• We experimentally confirm that our model better captures relational semantics than the clustering
and the statistical rule-based approaches with a significant margin. We also analyze different
variations of the Siamese network to provide insights about the relation alignment task.

2 Related Work

Open IE Canonicalization. Yates and Etzioni (2009) proposed a simple probabilistic method for iden-
tifying Open IE triples which has a similar meaning. They calculated similarity between two relation
phrases and clustered them with a greedy agglomerative clustering method. Although their model works
well in finding synonyms for relation phrases, it still suffers from the polysemy problem. Galárraga et al.
(2014) canonicalized relation phrases by employing a rule mining algorithm called AMIE (Galárraga
et al., 2013) to mine the relationship rules between relation phrases and clustered the relation phrases
based on the generated rules. Recently, Vashishth et al. (2018) improved Dutta’s model by using relation
embeddings and side information as the features for the clustering method. They canonicalized the Open
IE relations by clustering the embedding. Our task is different from their task since we focus on adding
more semantics to the Open IE relations by aligning them to the KB relations.

Instead of relying on only one Open IE systems, Bovi et al. (2015) proposed a method called KB-
Unify to integrate the triples from different Open IE systems into a single repository. Our work differs
from their work since we attempt to align the Open IE and KB relations. Our task is mostly similar to
the alignment task presented by Dutta et al. (2015), which was introduced in Section 1. They aimed to
bring the benefits of Open IE and KB by mapping the Open IE triples to existing KB triples (DBpedia)
by using a statistical rule-based approach. While their result seems promising, it only relies on frequency
of the triples without considering semantics. Besides, it suffers from an efficiency problem arising from
frequency calculation.

Word Sense Alignment. Gurevych et al. (2016) define Word Sense Alignment as linking senses or
concepts that has an identical meaning from multiple Lexical Knowledge Bases (LKB). There has been
a lot of work with various goals such as aligning WordNet, Cyc, and VerbNet for building knowledge
representation (Crouch and King, 2005), aligning FrameNet, VerbNet, and WordNet for semantic pars-
ing (Shi and Mihalcea, 2005), and building large-scale LKB alignments (Matuschek, 2015; Gurevych
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et al., 2012; Navigli and Ponzetto, 2012). Although this task is conceptually similar with our relation
alignment task, we focus on aligning the relation meaning of Open IE and KB, not word sense in general.

Relation Extraction using Distant Supervision. There are many works that used distant supervision
method to generate the dataset for relation extraction task such as Mintz et al. (2009) and Riedel et al.
(2010). Sorokin and Gurevych (2017) proposed a LSTM-based neural network to extract relation using
another relation in the same sentence as a contextual information and utilized Wikidata to construct the
dataset. Even though we also use Wikidata in our dataset generation method, however, we aim to align
the Open IE relations to the extracted relations in Wikidata.

3 Model Description

3.1 Task Description

Let xOIE be an Open IE triple and xKB be a KB triple. Given xOIE and xKB as the input, the goal
is to determine whether the relation in xOIE can be aligned to (i.e. expressed with) that of xKB . If
they can be aligned, the model will give 0 (”semantically same”) as the output, or 1 (”not semantically
same” or ”semantically different”) otherwise. For example, given (English, are language of, England)
as the Open IE triple and (English, official language, England) as the KB triple, we want to determine
whether the relation are language of is semantically close enough to and hence can be replaced by the
KB relation official language. Given the task, our proposed model essentially gives the distance of the
Open IE and KB relations based on the weights learned for the network so that it predicts whether the
pair is semantically same or not.

3.2 A Siamese Network for Relation Alignment

The concept of a Siamese network was introduced by Bromley et al. (1993) and typically used for mea-
suring the similarity of two inputs. It consists of two identical sub-networks that extract the features
from two inputs, respectively. Then the distance from the two sub-network outputs is calculated to deter-
mine the input similarity. Note that the two sub-networks will have been learned at the training stage in
such a way that the distance between the semantically identical inputs is minimized. The overall model
architecture is in Figure 1.

Figure 1: General architecture of the proposed model including the input and output example. The blue
text represents positive example and the red text represents negative example.

In the proposed network, the first and second sub-networks attempt to capture the features from the
Open IE and the KB relations, respectively. The embeddings of the input words on each sub-network are
encoded to produce a new vector. Note that the encoders share the same weights. For training, we use a
contrastive loss function. The details of the model are described in the following sub-section.
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(a) Relational Phrase (b) Relation Definition

(c) Entity Information

Figure 2: The illustration of input representation.

3.2.1 Input Representation

Before an input is fed into the encoder, each word in the input is converted into a fixed size n-dimensional
word embedding. Given that relation phrases from Open IE and names (from a KB) can be too short to
carry enough semantics, we also utilize relation definitions and entity information when input represen-
tations are computed. Therefore, we have three input representations as follows:

• Relational Phrase. For a relational phrase input (Figure 2a), each word w is transformed into
real-valued vector rw ∈ Rd where d is the dimension of the word embedding. For the encoding of
the entire phrase, we concatenate the word vectors for the phrase to generate a phrase embedding,
x = [rw1 , r

w
2 , ..., r

w
n ], where n is the number of words in the phrase.

• Relation Definition. For a relation definition input (Figure 2b), we utilize WordNet to obtain an
Open IE relation phrase definition and Wikidata for additional relation description of each KB
relation. For an Open IE relation, we transform each word in the relation phrase into WordNet
synset using the Lesk algorithm1. The definition of each synset is then obtained from the WordNet
dictionary. For a KB relation, we utilize Wikidata API2 to get its description that serves as the
definition. Finally, the input representation is formed by concatenating of the word vectors in the
definition text, i.e., x = [rw1 , r

w
2 , ..., r

w
n ] where n is the number of words in the definition.

• Entity Information. Besides relation information, we consider entity information as an additional
feature in our model (Figure 2c). The entity information is construed as the context surrounding the
relation and hence providing the semantics of the relation. The subject and the object entity phrases
are concatenated to the relation phrase or definition, i.e., x = [S,R,O] where S = [sw1 , s

w
2 , ..., s

w
t ],

R = [rw1 , r
w
2 , ..., r

w
u ], O = [ow1 , o

w
2 , ..., o

w
v ]; t and v denotes the number of words in the subject and

object entities, respectively, and u denotes the number of words in the relation phrase.
1https://www.nltk.org/_modules/nltk/wsd.html
2https://query.wikidata.org
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3.2.2 Encoder

After we have the input representations for Open IE and KB relations, the next step is to feed them to the
encoder. Considering the past success of CNN in extracting appropriate features for relation extraction
from a sequence of words (Nguyen and Grishman, 2015), we opt for two encoders as follows:

• Convolutional Neural Network (CNN). CNN has three main parts: convolution, max-pooling,
and fully-connected linear layers. In the convolution layer, we aim to extract the local features
from the given input text. By extracting local features, we can create a subject, a relation, and an
object representation similar to n-gram features. The max-pooling layer selects the most important
features contained in the phrase. The output from the max-pooling layer is fed to a feed-forward
fully-connected linear layer. Finally, its output is used as our final relation representation.

• Piecewise Convolutional Neural Network (PCNN). In PCNN, which was first introduced by
Zeng et al. (2015), the original max-pooling layer is modified into piecewise max-pooling. We
apply a max operation over a segment of the phrase so that the model can extract the important
features without losing the information coming from the subject entity, the relation, and the object
entity, separately. Finally, similar to the CNN encoder, the output from the feed-forward linear
layer is used as the final relation representation.

3.3 Contrastive Loss Function

For learning, we apply a contrastive loss function defined as the sum of the loss of positive examples
(semantically same relations) and the loss of negative examples (semantically different relations). More
formally, the loss function is defined as:

L = (1− Y )D2 + Y (max(0,m−D))2;m > 0 (1)

D = |x’OIE − x’KB| (2)

where Y and D denote the label of the input pairs (0 for semantically same, 1 for semantically different)
and the euclidean distance between the Open IE and the KB relation vectors (i.e. the output from the
encoder explained in the previous section) respectively, with m being a margin. Note that the first term
of Equation 1 is used for positive examples and the second term for negative examples. When training,
we want to make the distance of the positive pairs smaller and the distance of the negative pairs inside
the margin larger.

4 Dataset Generation using Distant Supervision

The distant supervision method for the task of relation extraction was first introduced by Mintz et al.
(2009). It assumes that any sentence containing an entity pair participating in a triple of a known KB
is likely to contain a relevant expression of the relation of the triple. As a result, it becomes possible to
construct positive training instances for the relation in the triple by taking the expressions between the
occurrences of the two entities. The collection of textual expressions can be used as revealing the target
relation. By adopting this approach, we can obtain the sentences containing the target relation in KB and
use them to extract Open IE triples with the relation. Once the Open IE triples are generated, we apply
some rules to annotate them as positive or negative automatically so that we obtain training data for the
KB relations used in collection the Open IE triples. The training data generation steps are as follows:

1. Select the top 200 most frequent relations3 in the KB and collect the KB triples containing one of
the relations. We utilize Wikidata (Vrandečić and Krötzsch, 2014) as our KB.

3As of October, 2018
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2. Crawl the sentences for each triple using the distant supervision method. In other words, we pick
the sentences containing the two entities of the triple. In order to reduce ambiguities associated
with the occurrences of the entities, we retrieve sentences from the Wikipedia page of each entity.

3. Apply Open IE to each sentence to extract Open IE triples. In this paper, we use the existing
Stanford Open IE system (Angeli et al., 2015).

4. Align Open IE and KB triples. The triples sharing the same entity pair are labeled as semantically
same or positive (0). But if one of the entities is different, it labeled as different or negative (1).

5. From the previous step, we will get a small amount of positive examples but a high number of
negative examples. To handle the data imbalance problem, we add more positive examples by
swapping a pair of alignments when the other sides of the two alignments share the same relation
but with different entities. For example, when we have positive examples as follows:

(Inn, country, Switzerland), (Inn, is river in, Switzerland), 0
(Villavicencio, country, Colombia), (Villavicencio, is city in, Colombia), 0

we generate two additional positive examples by swapping the right hand side triples as follows:

(Inn, country, Switzerland), (Villavicencio, is city in, Colombia), 0
(Villavicencio, country, Colombia), (Inn, is river in, Switzerland), 0

5 Experiments

The goal of our experiments are two-fold: the first is to examine the influence of different input repre-
sentations and encoder variations of our model in capturing the semantics of the relations of the Open IE
and the KB and the second is to compare our model against the existing approaches for aligning Open
IE and KB relations. The existing approaches that serve as the baselines are:

• CESI (Vashishth et al., 2018): For this model, we adjust the clustering result so that it can be
compared with our model for the evaluation tasks to be described below. If two relations are in the
same cluster, then they are labeled as semantically same; otherwise different.

• Dutta et al. (2014): This model uses a statistical rule-based approach for aligning relations. It
calculates a confidence score of every possible Open IE relations mapping to a KB relations based
on occurrence statistics of the particular mapping. If the mapping has a higher confidence than the
threshold determined by linear regression, it is labeled as semantically same; otherwise different.
Because the code has not been shared by the authors, we implemented their method on our own.

Besides the above baselines, we also apply our alignment rule (denotes as rule-based in Table 2)
used in the dataset generation process (see Section 4) for predicting the label, i.e., the triples sharing the
same entity pair are labeled as semantically same; otherwise different. Note that this case is used as a
reference point in explaining the performance of the proposed method and the other baselines. It also
can be used to measure the quality of the distant supervision dataset.

Since there is no standard evaluation suit available for the relation alignment task, we provide three
evaluations to reveal different aspects of the proposed model and compensate for the limitations of each.

1. Internal Evaluation with Automatically Generated Dataset. The goal is to examine different
variations of the proposed model using automatically generated test data of a large quantity. It
is internal because we only compare different variations of the proposed model, not against other
methods. We split our automatically generated dataset into training, validation, and testing datasets
(see Table 1 for details).
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• CNN no def: This version uses CNN as the encoder and relational phrases and relation
names (no definitions) as the input representation for both Open IE and KB relations.

• CNN def: This is the same as CNN no def except that relation definitions are added.

• CNN def ent: This version is the same as CNN def except that entity information is added.

• PCNN no def ent: This version uses PCNN as the encoder and relational phrases and rela-
tion names for Open IE and KB relations as the input, respectively, as well entity information.

• PCNN def ent: This is the same as PCNN no def ent except relation definitions are added.

Set # triples # sentences # alignments
Positive Negative Total

Training 86,178 102,863 430,364 430,364 860,728
Validation 34,726 42,874 184,621 184,621 369,242
Testing 32,309 39,477 168,257 168,257 336,514

Table 1: Statistics of our dataset generated by the distant supervision method.

Since we use a large number of sentences and triples extracted thereof, this evaluation allows us to
test different variations for all the relations exhaustively.

2. Manual Evaluation. This evaluation is intended to overcome a drawback of the internal evalu-
ation, which relies on the assumption that the gold standard generated by distant supervision is
always correct. Another limitation is that it does not include external evaluation. Therefore, in this
evaluation, we use a manually annotated test data set and use it as the gold standard to make the
evaluation more reliable and compare the performance of the proposed model with the two exist-
ing approaches mentioned above.4 An added value is that we can indirectly examine the reliability
of the internal evaluation method by comparing the relative ordering of the variations. To build
the dataset, we randomly sampled 400 alignments from the distant supervision testing data. The
dataset has all unique entity pairs and it covers 90 unique KB relations. For each pair of relations,
one from Open IE and the other from KB, we asked three annotators to decide whether the rela-
tions were semantically same or not, resulting in 258 ”same” and 142 ”different” relation pairs.
The inter-judge agreement was 81.88% in Fleiss’ Kappa.

3. Qualitative Analysis. The goal is to examine the strengths and weaknesses of the proposed model
by looking at different lexico-syntactic complexities of the relational phrase patterns, relative to
the two baselines. We chose a smaller sample of the alignment result than the above ”manual
evaluation”, including ten semantically same relation pairs and five semantically different ones.
For the semantically same relation pairs, we divide the set into two categories: lexical similarity
vs difference. Lexical similarity means the relations share at least one similar word, for example
”died in” and ”place of death” relations. Lexical difference means the relational phrases do not
share a lexically similar word at all, for example ”’s son is” and ”child” relations.

For the evaluation metric, we use precision (P ), recall (R), F1, and accuracy (Acc) scores.

P =
TP

TP + FP
R =

TP
TP + FN

F1 = 2 · P ×R
P +R

Acc =
ncorrect
ntotal

(3)

where TP denotes the number of true positives, FP the number of false positives, FN the number of false
negatives, ncorrect the number of correct predictions, and ntotal the number of total testing data. Note
that the score presented in this paper is the best score over multiple runs.

In the training process, we applied the filter height of 1 and 2 with 100 feature maps for the convo-
lutional layer. For the input, we used pre-trained fastText (Bojanowski et al., 2017) with 300 dimension
size and update the weight of the word embeddings. For learning, we applied a stochastic gradient de-
scent algorithm using Adam optimizer (Kinga and Adam, 2015) with 0.001 as the learning rate. The

4The dataset and code are available at: https://github.com/rifkiaputri/rel-aligner
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batch with size was 128. Also, we employed dropout in the feed-forward linear layer with a probability
of 0.5. For the loss function, we set the margin m as 2.

6 Result and Discussion

6.1 Internal Evaluation

The relative performance differences among the five versions are summarized in Figure 3a. In addition
to the ordering of the five variations, the difference between CNN and PCNN encoders is most notable.
Detailed analyses are as follows.

(a) P-R curve (b) Improvement with definitions (c) Performance drop with definitions

Figure 3: Internal evaluation result.

Relational Phrase vs. Relation Definition. While our intuition was that the additional information ob-
tainable from the relation definitions would help compensate for the lack of semantics in a short relation
phrases and names, it turns out that the overall gain shown in Figure 3a is not as significant as our expec-
tation. A further analysis shows, however, that definitions help reduce incorrect predictions as in Figure
3b. Out of 137 errors (82 false positives and 55 false negatives) made by CNN no def, 40 were predicted
correctly by including definitions (CNN def), resulting in 29.2% improvement. On the other hand, out
of 263 correct prediction in CNN no def (203 true positives and 60 true negatives), 52 were predicted
incorrectly in CNN def, resulting in 19.77% drop. This suggests that adding definition has potential to
enrich the semantics; more sophisticated approaches are left for future research.

Impact of entity information. We observe that the performance of CNN def ent is significantly higher
than that of the CNN def model. From this result, we can conclude that adding entity information con-
tributes to predicting the similarity between two relations. It suggests that entity information provides the
context with which relation phrases and names can be aligned more accurately. It is consistent with the
result in Zeng et al. (2015) that also shows the importance of including entities in relation classification.

CNN vs. PCNN. Compared to the performance CNN def ent, PCNN def ent is clearly better, strongly
suggesting that for the relation alignment task, the PCNN encoder is better than CNN, regardless of
whether relation definitions are used. A rational explanation for this result is that we lose important in-
formation when we apply max-pooling to the entire input representation including entities and relational
phrases in CNN. Note that in PCNN, piecewise max-pooling allows the model to extract major features
from three different segments of the representation (i.e. subject entity, relation, and object entity). There-
fore, this result confirms that the piecewise max-pooling helps in preserving more meaningful features
resulting from the convolutional layer for the relation alignment task.

6.2 Manual Evaluation

For more reliable evaluation of the proposed model, we compared it against the baselines using the 400
gold standards labeled by human. The summary result for predicting the semantically same and different
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Model Semantically Same Semantically Different Overall
P R F1 P R F1 Acc

Dutta 0.740 0.496 0.594 0.427 0.683 0.526 56.25%
CESI 1.000 0.066 0.124 0.371 1.000 0.541 39.75%
Rule-based 0.645 1.000 0.784 0.000 0.000 0.000 64.50%
CNN no def 0.742 0.547 0.629 0.443 0.655 0.528 58.50%
CNN def 0.726 0.678 0.701 0.478 0.535 0.505 62.75%
CNN def ent 0.659 0.891 0.758 0.451 0.162 0.238 63.25%
PCNN no def ent 0.678 0.880 0.766 0.523 0.239 0.329 65.25%
PCNN def ent 0.669 0.922 0.775 0.545 0.169 0.258 65.50%

Table 2: Manual evaluation result.

relation pairs in Table 2 clearly shows the proposed model (CNN and PCNN) outperforms the baselines,
CESI and Dutta, in predicting the semantically same pairs. Although CESI has the highest precision
score, it has the lowest recall among all models variations due to the bias of predicting most of the data as
semantically different. While it is possible to apply a different threshold in forming clusters for different
precision and recall pairs, the low F1 value precludes its moderate performance for relation alignment.
Compared to CESI models, Dutta’s model shows better performance, especially in recall and F1 scores
for predicting semantically same pairs. Based on this result, it is obvious that using a simple probabilistic
rule-based approach is better than using the clustering approach for the relation alignment task. However,
it is much worse than our model variations, with a high number of false negatives, resulting in the low
recall and F1 scores.

The scores of the rule-based model in Table 2 is provided as a reference point of our proposed mod-
els. Since the rule-based model predicts the label using the alignment rules in our distant supervision
dataset generation, a pair (one from Open IE and the other from KB) sharing the same entities in respec-
tive triples is judged to be semantically same by this model. That is, all the 400 pairs are predicted to be
semantically same. From the alignment task perspective, it gives 100% recall for the semantically same
case (all of the 258 ”same” pairs are predicted correctly) and 0% recall for semantically different case.
Since all the 142 ”different” pairs are predicted as ”same”, the overall accuracy score is 64.5%. It shows
that the training process is still needed since we cannot only rely on the alignment rules in our dataset
generation. Moreover, since the rule-based model predictions are made with the distant supervision rule,
we can also infer the quality of our distant supervision dataset based on the scores of the model (64.5%
alignments are correctly labeled by distant supervision). Note that the low F1 score for predicting se-
mantically different pairs in the proposed model is attributed to the high number of false negatives in the
dataset. However, it still has the highest overall accuracy score compared to the two baselines.

6.3 Qualitative Analysis

We selected a sample of the alignment result and examined the label of each model to obtain insights
about success and failure cases. As in Table 3, the variations of the proposed model tend to perform
very well in predicting positive examples. For negative examples (labeled as ”semantically different” in
Table 3), almost no model predicts the alignment label perfectly, with an exception of the CESI model.
Note that CESI has the tendency of predicting most alignments as semantically different, generating
many false negatives. The ”correct” decisions made for the semantically different pairs are likely to be
attributed to this tendency.

Furthermore, the proposed model appears to make correct predictions for a pair where the relation
expressions are lexically different but semantically same, as in 〈’s son is, child〉, 〈’s serial is, notable
work〉, and 〈was first married to, spouse〉. However, CESI and Dutta’s fail to predict them correctly
because they are difficult to be predicted the models using symbolic representation of words. This result
indicates that distributed representation of words as in embeddings has a clear advantage in dealing
with semantics even when radically different words are used in relation phrases. For semantically and
lexically similar relational phrase pairs such as 〈died in, place of death〉, 〈died of, cause of death〉, and
〈was filmed in, filming location〉, almost all models predict the alignment correctly, except CESI, again
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Open IE Relation KB Relation Dutta CESI CNN PCNN Goldno def def def ent no def ent def ent
Semantically same - lexically similar

died in place of death 0 1 0 0 0 0 0 0
died of cause of death 0 1 0 0 0 0 0 0
founding member of member of 1 0 0 0 0 0 0 0
was filmed in filming location 0 1 0 0 0 0 0 0
permanent capital of capital of 1 0 0 0 0 0 0 0

Semantically same - lexically different
’ son is child 1 1 0 0 0 0 0 0
’s serial is notable work 1 1 0 0 0 0 0 0
was first married to spouse 1 1 0 0 0 0 0 0
is main villain of present in work 0 1 0 1 0 0 0 0
first aired with original language of work 1 1 1 1 0 0 0 0

Semantically different
was born in place of death 0 1 0 0 0 0 0 1
have won nominated for 1 1 0 0 0 0 0 1
began trip to place of death 1 1 1 0 1 1 0 1
was born in work location 0 1 0 0 0 0 0 1
leave father 1 1 1 1 1 1 1 1

Table 3: Alignment results of some Open IE and KB relations.

due to its tendency of judging pairs as semantically different. In another example, 〈founding member of,
member of 〉 and 〈permanent capital of, capital of 〉, Dutta’s model makes an incorrect prediction which
attributed to the fact that the model relies heavily on the frequency of the training instance and that the
frequency of the pairs is low.

Note that most models fail to correctly predict the cases where the pairs look similar but are in fact
semantically different as in 〈was born in, place of death〉. We argue that this is caused by the existence
of noisy instances in our training dataset. As explained in Section 4, when we automatically labeled the
dataset with distant supervision, it assumed that the triples sharing the same subject and object entities
would have a semantically same label. Obviously, this assumption does not always hold. Out of 4,274
examples of 〈was born in, place of death〉 pair in the training set, around 96% of the instances are
labeled as semantically same because the triples share the same entities. In other words, the false positive
problem is due to the distance supervision used for constructing training instances.

7 Conclusion and Future Works

In this paper, we present a Siamese network for aligning the relations of Open IE (Stanford Open IE) and
relations of KB (Wikidata). As a way to overcome the difficulty of acquiring a large number of training
instances, we built an extensive amount of training dataset using the distant supervision method which
does not require manual annotation. In the experiments, we first confirm that using word embedding
as the input of Siamese network is effective in extracting the semantics information compared to the
probabilistic rule-based model and the clustering-based model. Adding a textual definition and entity
information as the additional feature may also help to reduce the false positive and false negative errors
that occur when we only use short relational phrases input.

Despite the superiority of the performance over the baselines, the dataset resulting from the distant
supervision method still suffers from noises, i.e., incorrectly labeled alignment instances. The model
variations presented in this paper have not been able to handle this problem, which we leave for future
work. Another thing to consider is the number of KB relations. In this paper, we covered the top-200
most frequent relations over a total of more than 1000 relations in Wikidata. Even though we can include
all the relations, the number of triples and sentence examples of the last relation is not as much as those
of the first relation. Future work will have to investigate on how to handle the imbalance number of
relation instances and increase the number of KB relations that are aligned through it.

Finally, relation alignment can be useful for several downstream tasks such as KB completion and
question answering. In KB completion, we can combine the Open IE and KB relations by aligning
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semantically same relations to the existing KB and adding new relations from Open IE, which are not
semantically the same as any of the KB relations. In question answering task, less ambiguous triples
resulting from the alignment process can be also used for question answering systems.
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Vrandečić, D. and M. Krötzsch (2014, September). Wikidata: A free collaborative knowledgebase.
Commun. ACM 57(10), 78–85.

Yates, A. and O. Etzioni (2009, March). Unsupervised methods for determining object and relation
synonyms on the web. J. Artif. Int. Res. 34(1), 255–296.

Zeng, D., K. Liu, Y. Chen, and J. Zhao (2015). Distant supervision for relation extraction via piecewise
convolutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1753–1762.

153



Language-Agnostic Model for Aspect-Based Sentiment Analysis

Md Shad Akhtar†, Abhishek Kumar†, Asif Ekbal†, Chris Biemann? and Pushpak Bhattacharyya†
†Department of CSE, Indian Institute of Technology Patna

{shad.pcs15,abhishek.ee14,asif,pb}@iitp.ac.in
?Universität Hamburg, Germany

biemann@informatik.uni-hamburg.de

Abstract

In this paper, we propose a language-agnostic deep neural network architecture for aspect-based
sentiment analysis. The proposed approach is based on Bidirectional Long Short-Term Memory
(Bi-LSTM) network, which is further assisted with extra hand-crafted features. We define three dif-
ferent architectures for the successful combination of word embeddings and hand-crafted features.
We evaluate the proposed approach for six languages (i.e. English, Spanish, French, Dutch, German
and Hindi) and two problems (i.e. aspect term extraction and aspect sentiment classification). Ex-
periments show that the proposed model attains state-of-the-art performance in most of the settings.

1 Introduction

Sentiment analysis (Pang and Lee, 2008) is often target-centric. In aspect-based sentiment analysis
(ABSA), we aim to identify the polarity of expressed sentiments towards a feature or aspect. These
features or aspects are usually explicitly mentioned in the text. Also, a sentence may contain more
than one aspect terms, and the task is to assign separate sentiments to each of them, e.g. in “The food
was great! But service was below par.” there are two aspects (‘food’ and ‘service’), and the expressed
sentiment towards food and service are positive and negative, respectively. Such analysis offers fine-
grained information to a user or an organization who seeks users opinion towards any specific entity. For
example, based on the users’ feedback, an individual can draw a general perception about the specific
attribute or aspect of a product or service, and he/she can make an informed decision about the product or
service under observation. Similarly, an organization can utilize the feedback to refine its product/service
or to take a decision in the business model.

Aspect-based sentiment analysis (Pontiki et al., 2014, 2016) has two subproblems at its core, i.e.,
aspect term identification (or opinion target extraction) and aspect sentiment classification. Given a text,
aspect term identification task aims to find the boundaries of all the aspect terms present in the text,
whereas aspect sentiment classification task classifies each of these identified aspect terms into one of
the predefined sentiment classes (e.g., positive, negative, neutral etc.). A sentence may contain any num-
ber of aspect terms or no aspect term at all. The terms ‘aspect term‘ and ‘opinion target‘ are often used
interchangeably and refer to the same span of text.

Motivation and Contribution

A survey of the literature for ABSA suggests a number of works for different languages (Kumar et al.,
2016; Brun et al., 2016; Çetin et al., 2016). Although the reported performance for these works are
good, they usually suffer in handling the language diversity, i.e., the systems that reported state-of-the-
art performance for one language typically do not work well for the other languages. The unavailability
of such a generic system motivates us to build a language-agnostic model for aspect based sentiment
analysis. We propose a generic deep neural network architecture that handles the language divergence
to a great extent. Our model is based on Bidirectional Long Short-Term Memory (Bi-LSTM) network
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(Graves et al., 2005) that also utilizes extra hand-crafted features. We evaluate our proposed approach for
four European (i.e., Spanish, French, Dutch & German), one Indian (i.e., Hindi) and English languages.
The contributions of our work are three-fold: a) we propose an efficient and generic neural network
architecture that works across multiple languages; b) we utilize a small set of handcrafted features (one
each for aspect extraction and aspect classification) for the training and evaluation; and c) we provide the
new state-of-the-art performance for two problems of ABSA across six different languages.

Rest of the paper is organized as follows: In Section 2, we present the literature survey. The proposed
methodology has been discussed in detail in Section 3. In Section 4, we furnished experimental results
and provided the necessary analysis. Finally, we conclude in Section 5.

2 Related Works

Sentiment analysis is a well-studied problem of natural language processing for English language (Tur-
ney, 2002; Pang et al., 2002, 2005; Pang and Lee, 2008; Jagtap and Pawar, 2013; Kim and Hovy, 2006).
However, in recent times, researchers have focused on various extensions of sentiment analysis, e.g.,
aspect based sentiment analysis (Pontiki et al., 2014; Kiritchenko et al., 2014; Akhtar et al., 2016),
multi-lingual sentiment analysis (Balamurali et al., 2012; Mishra et al., 2017; Brun et al., 2016; Kumar
et al., 2016), multi-modal sentiment analysis (Poria et al., 2017; Zadeh et al., 2018; Ghosal et al., 2018),
sentiment analysis in Twitter (Ghosh et al., 2015; Mohammad et al., 2013) etc.

For ABSA, System GTI (Alvarez-López et al., 2016) used a Support Vector Machine (SVM) and
Conditional Random Field (CRF) based approach for aspect extraction and sentiment classification, re-
spectively. They used language-dependent features like lemmas and Part-of-Speech (PoS) tags to achieve
the state-of-the-art score for aspect extraction in Spanish. IIT-TUDA (Kumar et al., 2016) also used a
number of hand-crafted features like character n-grams, dependency relations, prefix and suffix for SVM
and CRF. They achieved comparable performance for Spanish, French & Dutch. System XRCE (Brun
et al., 2016) used a feedback ensemble network that obtained the best performance for aspect classifi-
cation on the French dataset. System TGB (Çetin et al., 2016) used a Logistic Regression based model
to address the aspect sentiment classification and reported to achieve the best score on Dutch dataset.
Mishra et al. (2017) used a Bi-LSTM based model, whereas Naderalvojoud et al. (2017) adopted a deep
recurrent neural network model for the German dataset. Akhtar et al. (2016) developed an aspect based
sentiment analysis datasets for Hindi. They employed CRF and SVM for aspect term extraction and
aspect sentiment classification, respectively. For aspect based sentiment analysis in English, Kiritchenko
et al. (2014) reported the best performance in SemEval-2014 shared task on ABSA (Pontiki et al., 2014).

There have been few attempts at injecting handcrafted features into the neural network architecture
for enhancing the overall performance (Akhtar et al., 2016; Araque et al., 2017) of sentiment analysis.
Akhtar et al. (2016) combined CNN representation and optimized features for learning a Support Vector
Machine. Authors in (Araque et al., 2017) proposed a classifier ensemble model that combines surface-
level features and generic word vectors for the sentiment classification. However, our work differs from
these systems in the following ways: a) we perform aspect level sentiment analysis for six different lan-
guages (belong to different language family); b) we propose four different architectures to successfully
combine the neural network learned representations and the handcrafted features; c) the proposed archi-
tectures handle both aspect extraction (a sequence labelling task) and aspect sentiment classification (a
classification task); and d) we achieve better performance for most of the problem/language pairs.

3 Proposed Method

Overall, aspect based sentiment analysis can be thought of as a two-step process, i.e. aspect term ex-
traction and aspect sentiment classification. Aspect term extraction is a sequence labelling task where
each token of a sentence needs to be classified as either inside the boundary of an aspect term or out-
side. We adopted BIO notation to mark each token as either Begin, Intermediate or Outside of an aspect
term. A ‘B’ signifies the beginning of an aspect term and successive ‘Is’ signify a multi-token aspect
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term (e.g. spicy tuna rolls). A single-token aspect term will be tagged as ‘B’. For the second problem,
i.e. aspect sentiment classification, we define a context window of size ±5 around each aspect term and
consider all the tokens within the window for an instance. The intuition behind such an approach is that
the sentiment-bearing clue words often occur close to the aspect terms. An example scenario is depicting
in Table 1.

Review: Rice was good but the main attraction was spicy tuna rolls .
BIO Notation: B O O O O O O O B I I O
Aspect Terms: Rice and Spicy tuna rolls

Context window (±5) Prev5 Prev4 Prev3 Prev2 Prev1 Aspectterm Next1 Next2 Next3 Next4 Next5
Rice null null null null null Rice was good but the main
Spicy tune roll but the main attraction was spicy tuna roll . null null nulll null
Aspect Sentiment: Positive for Rice and Positive for Spicy tuna rolls.

Table 1: An example review from restaurant domain and its respective processing for aspect term extrac-
tion (i.e. BIO notations) and aspect sentiment classification (i.e. contextual processing).

Our proposed neural network architecture employs a Bi-LSTM network for learning sentence em-
beddings, which are then fed to a fully-connected dense layer for classification. Given a sentence, we first
compute the word embeddings of each word and feed them into the Bi-LSTM network at different time
steps for the prediction. We refer to this architecture as A1. In addition, we inject extra hand-crafted
manual features to assist the neural architecture. We design three architectures (i.e. A2, A3 & A4 in
Figure 1) for the successful combination of word embeddings and the hand-crafted features. The basic
difference among these three architectures are the way features are injected into the model. A high-level
architecture of our proposed method is depicted in Figure 1.

Figure 1: Proposed architectures for aspect identification and classification. A1: Only word embeddings
are fed to Bi-LSTM network; A2: Word embeddings and extracted features are combined and fed into
single Bi-LSTM network. A3: Extracted features are directly merged with Bi-LSTM output of word
embedding. A4: One Bi-LSTM network each for word embeddings and extracted features. All the four
architectures are language-agnostic in nature.
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Architecture A1 makes use of word embeddings as the sole input for the network. In A2, we con-
catenate the word embeddings with the hand-crafted features at the input and then feed this combined
input to the network for learning. In comparison, architecture A3 learns the sentence embedding through
Bi-LSTM network on top of word embedding only, which is then merged with the hand-crafted fea-
tures before feeding into the fully connected layers for prediction. In contrast, architecture A4 utilizes
two separate Bi-LSTM networks for word embeddings and hand-crafted features, respectively. Subse-
quently, the learned sequences of each Bi-LSTM are concatenated and fed into the fully-connected layers
for further prediction. The choice of separate Bi-LSTMs for the hand-crafted features in architecture A4
is driven by the fact that the dimension of a word embedding is usually very high as compared to its
corresponding hand-crafted features. If trained together, as in architecture A2, extracted features of low
dimension usually get overshadowed by the high-dimensional word embeddings. Thus making it non-
trivial for the network to learn from the extracted features. Further, to exploit the sequence information
of words in a sentence, we pass hand-crafted features of each word through a separate Bi-LSTM layer.
E.g. in the following sentence there is one negative word (i.e. horrible) and one negation (i.e. not) but
no positive words. However, in a model that takes into account only the simple polar word score, the
sentence would have high relevance towards the negative sentiment. However, the sequence information
of the phrase “not any more” dictates the positive sentiment of the sentence.

“It was used to be a horrible place to eat but not any more.”

In contrast to A4, architecture A3 does not rely on the sequence information of the extracted features
and allows the network to learn on its own. We use 300 dimension Word2Vec (Mikolov et al., 2013)
word embeddings for the experiments. Each Bi-LSTM layer contains 100 neurons while two dense lay-
ers contain 100 and 50 neurons, respectively.

Features

As additional features, we extract the following information for each token in an instance.

– Aspect term extraction: Distributional thesaurus (DT)1 (Biemann and Riedl, 2013) defines the lexicon
expansion of a token based on a similar context. It is usually very effective for the handling of unseen
text. If a token in the test set never appears in the training set, it becomes a non-trivial task for the
classifier to make a correct prediction. By employing DT feature, the classifier can additionally utilize
lexical expansion of the current token for mapping with the training set, thus minimize the chance of
unseen text. For each token, we use its top 3 DT expansions as features.

Language Train Test
#sent. #aspects pos neg neu #sent. #aspects pos neg neu

English 2,000 2,507 1,657 749 101 676 859 611 204 44
Spanish 2,070 2,720 1,925 674 120 881 1,072 750 274 48
French 1,733 2,530 1,164 1,212 154 696 954 441 434 79
Dutch 1,711 1,860 1,062 646 152 575 613 369 211 33
German 19,432 19,432 1,179 5,045 13,208 2,566 2,566 105 780 1,681
Hindi 5,417 4,469 1,986 569 1,914 10-fold cross validation

Table 2: Dataset statistics

– Aspect sentiment classification: We employ publicly available lexicons of Chen and Skiena (2014)
for extracting the polar information of each token. It contains a list of positive and negative words
for 136 different languages. Additionally, we append the positive and negative words of 4 well-known

1http://ltmaggie.informatik.uni-hamburg.de/jobimtext/documentation/
calculate-a-distributional-thesaurus-dt/
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Datasets Aspect Extraction (F1-score) Aspect Classification (Acc)
A1 A2 A3 A4 A1 A2 A3 A4

English 62.0 63.1 62.4 64.9* 82.4 82.7 82.1 83.4
Spanish 72.0 71.8 72.4 73.0* 86.4 86.3 86.1 87.1*
French 67.1 67.8* 63.6 64.9 75.0 75.3* 75.2 74.3
Dutch 65.2 65.6 65.7+ 64.2 80.9 80.7 81.9* 81.4
German 23.1 22.0 22.4 24.0* 86.7 87.2* 86.6 87.2*
Hindi 50.0 49.3 50.4 53.5* 64.5 66.3 65.8 66.9*

Table 3: Comparison of various models for aspect extraction and aspect classification on test dataset.
A1, A2, A3 & A4 refers to four architectures depicted in Figure 1. *Statistically significant (T-test) w.r.t.
other architectures (p-values< 0.05). +Significant w.r.t. A4.

lexicons of English language (Bing Liu opinion lexicon, Ding et al. 2008; MPQA subjectivity lexicon,
Wilson et al. 2005; SentiWordNet, Baccianella et al. 2010; and Vader sentiment, Hutto and Gilbert 2014)
through the application of Google Translator. For German, we additionally use GermanPolarityClues
lexical resource (Waltinger, 2010). The final list contains 2757, 2164, 3271, 1615, 17627 and 11874
positive words for English, Spanish, Dutch, French, German and Hindi, respectively. Similarly, there are
5112, 1735, 5834, 3038, 19962 and 2225 negative words in the list.

4 Experiments, Results and Analysis

4.1 Datasets

We evaluate our proposed approach on the benchmark datasets of SemEval-2016 shared task on aspect
based sentiment analysis (Pontiki et al., 2016) (Task 5), which contain user reviews across multiple
languages. The datasets of English, Spanish, French and Dutch are related to the reviews of consumer
electronics and restaurants. We also evaluate our approach on the GermEval-2017 shared task on ABSA
(Wojatzki et al., 2017), which comprises of reviews in the German language. The training datasets
contain 2,070, 1,733, 1,711 & 19,432 reviews in Spanish, French, Dutch and German, respectively.
Whereas, test datasets contain 881, 696, 575 & 2,566 reviews for the respective languages. For Hindi,
we employed ABSA dataset developed by Akhtar et al. (Akhtar et al., 2016). There are total 4469 aspect
terms in 5417 sentences across 12 domains. We perform 10-fold cross validation for the evaluation in
this work. Table 2 lists the brief statistics of the various datasets for different languages.

4.2 Preprocessing

We extract each instance from the SemEval and the GermEval dataset to take into account only the
relevant information and remove the XML tags. We use NLTK2 (Shallow parser3 for Hindi) to tokenize
each sentence of the dataset. The aspect terms can span over multiple words in a sentence and hence,
we use the BIO encoding scheme. In this notation, B, I and O denote the beginning, internal and outside
tokens of aspect term respectively.

4.3 Results

We use Python based deep learning library Keras 4 with Tensorflow5 for implementing the systems. The
weight matrices were initialized randomly using numbers from a truncated normal distribution. Model is

2https://www.nltk.org/
3http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php
4https://keras.io/
5https://www.tensorflow.org/
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trained with 32 batch size and 0.25 Dropout (Srivastava et al., 2014) with Adam (Kingma and Ba, 2014)
optimizer. We employ Relu (Glorot et al., 2011) as activation function for the hidden layers, whereas
for the output layer we use softmax classifier. Following the guidelines of SemEval-2016 (Pontiki et al.,
2016) and GermEval-2017 (Wojatzki et al., 2017), we employ F1-score as the evaluation metric for
aspect term extraction. For classification, we compute accuracy and F1-score for SemEval-2016 and
GermEval-2017, respectively. Similarly, we adopt F1-score and accuracy for the aspect term extraction
and aspect sentiment classification in Hindi. In Table 3, we present the results of all the four architectures

Systems Aspect Extraction (F1-score) Aspect Classification (Accuracy)
En Es Fr Du De Hi En Es Fr Du De* Hi

State-of-the-art systems at SemEval-2016 (Pontiki et al., 2016)

Baseline (Pontiki et al., 2016) 44.0 51.9 45.4 50.6 - - 76.4 77.7 67.4 69.3 - -
NLANGP (Toh and Su, 2016) 72.3† - - - - - - - - - - -
GTI (Alvarez-López et al., 2016) 66.5 68.5† - - - - 69.9 - - - - -
IIT-TUDA (Kumar et al., 2016) 42.6 64.3 66.6† 56.9† - - 86.7 83.5† 72.2 76.9 - -
XRCE (Brun et al., 2016) 61.98 - 65.3 - - - 88.1† - 78.8† - - -
TGB (Çetin et al., 2016) 55.0 55.7 - 51.7 - - 80.9 82.0 - 77.8† - -

State-of-the-art systems at GermEval-2017 (Wojatzki et al., 2017)

Baseline (Wojatzki et al., 2017) - - - - 17.0 - - - - - 48.1* -
System (Mishra et al., 2017) - - - - 22.0 - - - - - 42.1* -
System (Ji-Ung Lee and Gurevych, 2017) - - - - 20.3 - - - - - 48.2* -

State-of-the-art systems for Hindi (Akhtar et al., 2016)

System (Akhtar et al., 2016) - - - - - 41.0 - - - - - 54.0
System (Akhtar et al., 2016) - - - - - - - - - - - 65.9

Proposed Approach 64.9 73.0 67.8 65.7 24.0 53.5 83.4 87.1 75.3 81.9 87.2* 66.9
Architecture A4 A4 A2 A3 A4 A4 A4 A4 A2 A3 A4 A4

Table 4: Comparison with the state-of-the-art systems of SemEval-2016 and GermEval-2017. *F1-
score. Official evaluation metric for aspect classification at GermEval-2017 was F1-score. †Best system
for respective language-problem pair.

for each language/problem pair. In aspect extraction problem, architecture A4 yields the best F1-score for
Spanish (73.0%), German (24.0%), English (64.9%) and Hindi (53.5%), whereas for French and Dutch
we obtain the best F1-score with architectures A2 (67.8%) and A3 (65.7%), respectively. We observe
similar trends for aspect classification as well with architecture A4 performing better for Spanish (87.2%
accuracy), German (87.2% F1-score), English (83.4% accuracy) and Hindi (66.9% accuracy). Similar
to aspect extraction, architectures A2 and A3 report better performance for French (75.34%) and Dutch
(81.9%), respectively. Among all four architectures, architecture A1 has the least performance across
all six languages for both the problems. It suggests that the hand-crafted features -when fused into the
network- assist the system to learn in a better way than the system learnt with only word embeddings. We
also perform statistical significance test (T-test) on the obtained results and observe that the performance
of the architecture A4 is significant with 95% confidence for English, Spanish, German and Hindi for
both the problems.

Further, we compare our proposed system with state-of-the-art systems as listed in Table 4. Our pro-
posed system shows an improvement over the existing state-of-the-art for 9 out of 12 language/problem
pairs. For aspect extraction, the system achieves an improvement of 4.5, 1.2, 8.8, 2 and 12.5 points for
Spanish, French, Dutch, German and Hindi, respectively. Our system manages to improve the score of
sentiment classification for Spanish, Dutch, German, and Hindi by 3.56, 4.17, 12.3 and 1 points, re-
spectively. Improvement of the system performance across the language/problem pairs suggests about
the generic nature of our proposed approach. Also, significance T-test shows that improvement of the
proposed method over the state-of-the-art systems are statistically significant with p-values< 0.05.

From Table 3, we observe that architecture A4 performs the best for four languages, i.e., Spanish,
German, English and Hindi irrespective of the problems. Similarly, the performance of the architectures
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A2 & A3 is best for French and Dutch, respectively. Since architecture A4 is the clear winner in 8 out of
12 language/problem pairs and also reports comparable performance in other cases - with maximum 2.9
points below the best architecture as reported in Table 3 -, we recommend it as the default choice for all
the languages and problems.

4.4 Error Analysis

We perform error analysis on the predicted outputs, using automatic translations (Google) for languages
we are not proficient in. Following are the few cases where our proposed system often faces challenges.

Aspect term extraction: Aspect term extraction is a quite challenging task. The BIO notation is an
effective solution for tagging an aspect term; however, it is highly skewed towards the O class, i.e., only
a small percentage of tokens in the vocabulary qualify for the aspect term. Despite this limitation, BIO
notations result in decent outputs with the few exceptions. In Table 5, we list a few common error patterns
along with the examples. Our system faced difficulties when one or more terms can independently
qualify as an aspect term. In the first two examples, our system misclassifies the multi-token aspect
terms ‘customer service’ and ‘atencin del personal’ (attention of the staff) as single aspect terms. It
predicts the first token of the aspect term (i.e., ‘customer’ (first example) and ‘atencin’ (attention) (second
example)) as one aspect term and the last token (i.e., ‘service’ and ‘personal’ (staff)) as the other aspect
term. Despite both the tokens of aspect term ‘customer service’ is identified as aspect terms, it results in
recall=0 and precision=0.

Table 5: Common error pattern for aspect term extraction.
Language Review Gold Aspect Terms Predicted Aspect Terms Possible Reason
Source (EN) Best restaurant in the world, great decor, great

customer service, friendly manager
restaurant, decor, cus-
tomer service, manager

restaurant, decor, customer,
service, manager, pizza

Individual tokens in
a multi-token
aspect term qualify
for aspect terms .

Source (ES) La atención del personal impecable. atención del personal atención, personal
Translation (EN) Attention of the staff was impeccable. Attention of the staff Attention, staff
Source (EN) I had yummy lamb korma, saag paneer, samosas,

naan, etc.
lamb korma, saag pa-
neer, samosas, naan

lamb korma
Sequence of dishes
(rare occurrence)Source (FR) Ravioles et tartiflette correctes, crłpe suzette pass-

able.
Ravioles, tartiflette,
crłpe suzette

Ravioles

Translation (EN) Ravioles and tartiflette correct, crepe suzette pass-
able.

Ravioles, tartiflette,
crepe suzette

Ravioles

Source (FR) ...le riz arborio aux truffes apparaissant dans le
menu...

riz arborio aux truffes riz arborio
Presence of
subordinating
conjunction in
between an aspect
term.

Translation (EN) ...the arborio rice with truffles appearing in the
menu...

arborio rice with truffles arborio rice

Source (EN) Great draft and bottle selection and the pizza
rocks.

draft and bottle selec-
tion, pizza

bottle selection, pizza

In the third and fourth examples of Table 5, a number of dishes which are served in the restaurant
are mentioned. For both examples, our system manages to identify only some dishes. A possible reason
would be the rare occurrence of these dishes in the training set. The last two examples suffer from
the presence of subordinating conjunctions (i.e. ‘and’, ‘with’ etc.) in the multi-token aspect terms (i.e.
‘riz arborio aux truffles’ (arborio rice with truffles)). In general, ‘and’, ‘with’ or other conjunctions
does not qualify for the aspect term except in the company of multi-token aspect terms. However, such
occurrences are not very common, and the underlying system misclassifies them as outside aspect term,
i.e., O. The second example (i.e. ‘atención del personal’ (attention of the staff)) may also qualify for the
similar reason.

Aspect sentiment classification: For aspect sentiment classification, we observed two most common
sources of errors across languages, i.e., lack of polar information inside the defined context window (±5
neighbouring words) and presence of the sarcastic or metaphoric phrase in the review. We list a few
error cases in Table 6. The first example belongs to the Spanish language, which contains an aspect term
‘calidad-precio’ (quality-price). The actual sentiment towards the aspect term is positive; however, in
the absence of clue words (i.e. ‘restaurantes de referencia de Zaragoza’ (recommended restaurants of
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Table 6: Common error pattern for aspect sentiment classification.
Language Review Aspect Term Actual

Sentiment
Predicted
Sentiment Possible Reason

Source (ES) En lo referente a calidad-precio y dentro de su cat-
egora, desde mi punto de vista, debe ser uno de los
restaurantes de referencia de Zaragoza.

calidad-precio

Positive Neutral
Lack of polar
information inside
context window

Translation (EN) Regarding quality-price and within its category,
from my point of view, it must be one of the rec-
ommended restaurants of Zaragoza.

quality-price

Source (EN) Finally, my wife stood face to face in front of one
of the staff and she asked, Are you waiting for a
table?”.

staff Negative Positive Sarcasm

Source (EN) The lemon chicken tasted like sticky sweet donuts.
lemon chicken Negative Positive Metaphor

Zaragoza)) inside the context window, our proposed system predicts its sentiment as neutral.
Predicting sentiment for the sarcastic and metaphoric text are usually challenging due to the dif-

ference in its textual-meaning and actual-meaning (i.e., what is said is not meant or vice-versa). Our
system also finds it non-trivial to correctly classify an aspect term in the presence of sarcastic (second
example of Table6) or metaphoric (third example) text. In the second example, the staff’s unresponsive-
ness behaviour irked the writer, who had to ask for a table sarcastically. Similarly, in the third example
writer was not amused by the quality of lemon chicken and compared it with the sticky sweet donuts as
figure-of-speech.

5 Conclusion

In this paper, we have proposed a language-agnostic deep neural network approach for solving the prob-
lems of aspect-based sentiment analysis. Our system employs Bi-LSTM network for learning the sen-
tence embeddings, which is assisted by a few handcrafted features. To show the effectiveness, we evalu-
ated the proposed approach on six languages (i.e. English, Spanish, French, Dutch, German and Hindi)
and two problems (i.e. aspect term extraction and aspect sentiment classification). We also evaluated dif-
ferent ensemble architectures to combine sentence embeddings and handcrafted features. Comparisons
with the existing system suggest that our proposed approach attains the state-of-the-art performance for
almost each of the language/problem pair.
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Abstract

We conduct two experiments to study the effect of context on metaphor paraphrase aptness judg-
ments. The first is an AMT crowd source task in which speakers rank metaphor-paraphrase candidate
sentence pairs in short document contexts for paraphrase aptness. In the second we train a composite
DNN to predict these human judgments, first in binary classifier mode, and then as gradient ratings.
We found that for both mean human judgments and our DNN modeling, adding document context
compresses the aptness scores towards the centre of the scale, raising low out of context ratings
and decreasing high out of context scores. We briefly consider two possible explanations for this
compression effect.

1 Introduction

A metaphor is a way of forcing the normal boundaries of words’ meaning in order to better express an
experience, a concept or an idea. At least to a native speaker’s ear, some metaphors sound more conven-
tional (like the usage of the words ear and sound in this sentence), others more original. This is not the
only way to judge a metaphor. One of the most important qualities of a metaphor is its appropriateness,
its aptness. This poses the question of how good a metaphor is for conveying a given experience or
concept. While a metaphor’s degree of conventionality can be measured through probabilistic methods,
like language models, it is harder to model its aptness. Chiappe et al. (2003) define aptness as “the extent
to which a comparison captures important features of the topic”.

It is possible to express an opinion about some metaphors’ and similes’ aptness (at least to a degree)
without previously knowing what they are trying to convey, or the context in which they appear1. For
example, we don’t need a particular context or frame of reference to construe the simile She was scream-
ing like a turtle as strange, and less apt for expressing the quality of a scream, than She was screaming
like a banshee. In this case, the reason why the simile in the second sentence works better is intuitive. A
salient characteristic of a banshee is a powerful scream. Turtles are not known for screaming, and so it
is harder to define the quality of a scream through such a comparison, except as a form of irony.2 Other
cases are more complicated. The simile crying like a fire in the sun (It’s All Over Now, Baby Blue, Bob
Dylan) is powerfully apt for many readers, but simply odd for others. Fire and sun do not cry in any
way. But at the same time the simile can express the association we draw between something strong and
intense in other sensory modes, such as vision and touch, on one hand and a loud cry on the other.

Nevertheless, most metaphors and similes need some kind of context, or external reference point to
be interpreted. The sentence The old lady had a heart of stone is apt if the old lady is cruel or indifferent,
but it is unreasonable as a description of a situation in which the old lady is kind and caring. We assume
that, to an average reader’s sensibility, the sentence models only the first situation appropriately.

1While it can be argued that metaphors and similes at some level work differently and cannot always be considered as
variations of the same phenomenon (Sam and Catrinel, 2006; Glucksberg, 2008), for this study we treat them as belonging to
the same category of figurative language.

2It is important not to confuse aptness with transparency. The latter measures how easy it is to understand a comparison.
Chiappe et al. (2003) claim, for example, that many literary or poetic metaphors score high on aptness and low on transparency,
in that they capture the nature of the topic very well, but it is not always clear why they work.
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This is the view of metaphor aptness that we adopt in this paper. Following Bizzoni and Lappin
(2018), we treat a metaphor as apt in relation to a literal expression that it paraphrases.3 If the metaphor
is judged to be a good paraphrase, then it closely “models” the core information of the literal sentence
through its metaphorical shift. We refer to the prediction of readers’ judgments on the aptness candidates
for the literal paraphrase of a metaphor as the metaphor paraphrase aptness task (MPAT). Bizzoni and
Lappin (2018) address the MPAT by using Amazon Mechanical Turk (AMT) to obtain crowd sourced an-
notations of metaphor-paraphrase candidate pairs. They train a composite Deep Neural Network (DNN)
on a portion of their annotated corpus, and test it on the remaining part. Testing involves using the DNN
as a binary classifier on paraphrase candidates. They derive predictions of gradient paraphrase aptness
for their test set, and assess them by Pearson coefficient correlation to the mean judgments of their crowd
sourced annotation of this set. Both training and testing are done independently of any document context
for the metaphorical sentence and its literal paraphrase candidates.

In this paper we study the role of context on readers’ judgments concerning the aptness of metaphor
paraphrase candidates. We look at the accuracy of Bizzoni and Lappin (2018)’s DNN when trained and
tested on contextually embedded metaphor-paraphrase pairs for the MPAT. In Section 2 we describe an
AMT experiment in which annotators judge metaphors and paraphrases embedded in small document
contexts, and in Section 3 we discuss the results of this experiment. In Section 4 we describe our MPAT
modeling experiment, and in Section 5 we discuss the results of this experiment. Section 6 surveys some
work on metaphor aptness and computational methods to deal with it. In Section 7 we draw conclusions
from the studies presented in this paper, and we indicate directions for future work in this area.

2 Annotating Metaphor-Paraphrase Pairs in Contexts

Bizzoni and Lappin (2018) have recently produced a dataset of paraphrases containing metaphors de-
signed to allow both supervised binary classification and gradient rankings. This dataset contains several
pairs of sentences, where in each pair the first sentence contains a metaphor, and the second is a literal
paraphrase candidate.

This corpus was constructed with a view to representing a large variety of syntactic structures and
semantic phenomena in metaphorical sentences. Many of these structures and phenomena do not occur
as metaphorical expressions, with any frequency, in natural text and were therefore introduced through
hand crafted examples.

Each pair of sentences in the corpus has been rated by AMT annotators for paraphrase aptness on
a scale of 1-4, with 4 being the highest degree of aptness. In Bizzoni and Lappin (2018)’s dataset,
sentences come in groups of five, where the first element is the “reference element” with a metaphorical
expression, and the remaining four sentences are “candidates” that stand in a degree of paraphrasehood
to the reference.

Here is an example of a metaphor-paraphrase candidate pair.

1a. The crowd was a roaring river.

b. The crowd was huge and noisy.

3Bizzoni and Lappin (2018) apply Bizzoni and Lappin (2017)’s modeling work on general paraphrase to metaphor.
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The average AMT paraphrase score for this pair is 4.0, indicating a high degree of aptness.
We extracted 200 sentence pairs from Bizzoni and Lappin (2018)’s dataset and provided each pair

with a document context consisting of a preceding and a following sentence,4 as in the following exam-
ple.

2a. They had arrived in the capital city. The crowd was a roaring river. It was glorious.

b. They had arrived in the capital city. The crowd was huge and noisy. It was glorious.

One of the authors constructed most of these contexts by hand. In some cases, it was possible to
locate the original metaphor in an existing document. This was the case for

(i) Literary metaphors extracted from poetry or novels, and

(ii) Short conventional metaphors (The President brushed aside the accusations, Time flies) that can
be found, with small variations, in a number of texts.

For these cases, a variant of the existing context was added to both the metaphorical and the literal
sentences. We introduced small modifications to keep the context short and clear, and to avoid copyright
issues. We lightly modified the contexts of metaphors extracted from corpora when the original context
was too long, ie. when the contextual sentences of the selected metaphor were longer than the maximum
length we specified for our corpus. This was necessary due to the fact that the original, natural contexts
can have an excessive length and include far-reaching references to previous content. In such cases we
reduced the length of the sentence and we slightly simplified the text, while sustaining its meaning. We
tried to sustain “naturalness” of the context. Since the same context is used for metaphors and their literal
candidate paraphrases, we specified short contexts that make sense for both the figurative and the literal
sentences, even when the pair had been judged as non-paraphrases. We kept the context as neutral as
possible in order to avoid biasing effects on crowd source judgments.

For example, in the following pair of sentences, the literal sentence is not a good paraphrase of the
figurative one (a simile).

3a. He is grinning like an ape.

b. He is smiling in a charming way. (average score: 1.9)

We opted for a context that is natural for both sentences.

4a. Look at him. He is grinning like an ape. He feels so confident and self-assured.

b. Look at him. He is smiling in a charming way. He feels so confident and self-assured.

We sought to avoid, whenever possible, an incongruous context for one of the sentences that could
influence our annotators’ ratings.

We collected a sub-corpus of 200 contextually embedded groups of two sentences. We tried to keep
our data as balanced as possible, drawing from all four “classes” of paraphrase aptness ratings (between
1 to 4) that Bizzoni and Lappin (2018) obtained. We selected 44 pairs of 1 ratings, 51 pairs of 2, 43 pairs
of 3 and 62 pairs of 4.

We then used AMT crowd sourcing to rate the contextualized paraphrase pairs, so that we could
observe the effect of document context on assessments of metaphor paraphrase aptness.

To test the reproducibility of Bizzoni and Lappin (2018)’s ratings, we launched a pilot study for 10
original, non-contextually embedded pairs, selected from all four “categories” of aptness. We observed
that the annotators provided mean ratings very similar to those reported in Bizzoni and Lappin (2018).

4Our annotated data set and the code for our model is available at
https://github.com/yuri-bizzoni/Metaphor-Paraphrase .
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The Pearson coefficent correlation between the mean judgments of our out-of-context pilot annotations
and Bizzoni and Lappin (2018)’s annotations for the same pair was over 0.9.

We then conducted an AMT annotation task for the 200 contextualized pairs. On average, 20 different
annotators rated each pair. We considered as “rogue” those annotators who rated the large majority of
pairs with very high or very low scores, and those who responded inconsistently to two “trap” pairs.
After filtering out the rogues, we had an average of 14 annotators per pair.

3 Annotation Results

We found a Pearson correlation of 0.81 between the in-context and out-of-context mean human para-
phrase ratings for our two corpora. This correlation is virtually identical to the one that Bernardy et al.
(2018) report for mean acceptability ratings of out-of-context to in-context sentences in their crowd
source experiment. It is interesting that a relatively high level of ranking correspondence should occur in
mean judgments for sentences presented out of and within document contexts, for two entirely distinct
tasks.

Our main result concerns the effect of context on mean paraphrase judgment. We observed that it
tends to flatten aptness ratings towards the centre of the rating scale.

Of the metaphors that had been considered highly apt (average rounded score of 4) in the context-less
pairs, 71.1% received a more moderate judgment (average rounded score of 3). On the other hand, the
reverse movement was rare: only 5% of pairs rated 3 out of context (2 pairs) was boosted to a mean
rating of 4 in context.

At the other end of the scale, 68.2% of the metaphors judged at 1 category of aptness out of context
were raised to a mean of 2 in context, while only the 3.9% of pairs rated 2 out of context were lowered
to 1 in context.

Ratings at the middle of the scale - 2 (defined as semantically related non-paraphrases) and 3 (im-
perfect or loose paraphrases) - remained largely stable, with little movement in either direction. 9.8% of
pairs rated 2 were re-ranked as 3 when presented in context, and 10% of pairs ranked at 3 changed to 2.

It seems that context tends to “improve” metaphors with a low level of aptness, but lowers the judg-
ments on metaphors with a high level of aptness.

The division between 2 and 3 separates paraphrases from non-paraphrases. Our results suggest that
this binary rating of paraphrase aptness was not strongly affected by context. Context operates at the
extremes of our scale, raising low aptness ratings and lowering high aptness ratings. This effect is clearly
indicated in the regression chart in Fig 1.

This effect of context on human ratings is very similar to the one reported in Bernardy et al. (2018).
They find that sentences rated as ill formed out of context are in part improved when they are presented
in their document contexts. However the mean ratings for sentences judged to be highly acceptable out
of context declined when assessed in context. Bernardy et al. (2018)’s linear regression chart for the
correlation between out-of-context and in-context acceptability judgments as collected in their survey
looks remarkably like our Fig 1. There is, then, a striking parallel in the compression pattern that context
appears to exert on human judgments for two entirely different linguistic properties.

This pattern requires an explanation. Bernardy et al. (2018) suggest that adding context causes
speakers to focus on broader semantic and pragmatic issues of discourse coherence, rather than simply
judging syntactic well formedness (measured as naturalness) when a sentence is considered in isolation.
On this view, compression of rating results from a pressure to construct a plausible interpretation for any
sentence within its context. If this is the case, an analogous process may generate the same compression
effect for metaphor aptness assessment of sentence pairs in context. Speakers may attempt to achieve
broader discourse coherence when assessing the metaphor-paraphrase aptness relation in a document
context. Out of context they focus more narrowly on the semantic relations between a metaphorical
sentence and its paraphrase candidate. Therefore, this relation is the centre of a speaker’s concern and
receives more fine-grained assessment when considered out of context than in context.

However, a second possibility is that adding context to the aptness task increases the general cognitive
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Figure 1: In-context and out-of-context mean ratings. Points above the broken diagonal line represent
sentence pairs which received a higher rating when presented in context. The total least-square linear
regression is shown as the second line.

load involved in processing the sentence. This effect may also cause hearers/readers to focus less on the
properties of the sentences for which a judgment is solicited, and more on processing the entire discourse
unit. Such a shift in focus might also produce the observed compression effect, but for different reasons
than those that the pragmatic discourse coherence explanation proposes. This issue clearly requires
further research. We discuss these two possible interpretations in more in detail in Section 7.

4 Modelling Paraphrase Judgments in Context

We use the DNN model described in Bizzoni and Lappin (2018) to predict aptness judgments for in
context paraphrase pairs. It has three main components:

1. Two encoders that learn the representations of two sentences separately

2. A unified layer that merges the output of the encoders

3. A final set of fully connected layers that operate on the merged representation of the two sentences
to generate a score. Our pairs are evaluated through this final score.

The encoder for each pair of sentences taken as input is composed of two parallel ”Atrous” Convo-
lutional Neural Networks (CNNs) and LSTM RNNs, feeding two sequenced fully connected layers.

The encoder is preloaded with the lexical embeddings from Word2vec Mikolov et al. (2013). The se-
quences of word embeddings that we use as input provides the model with dense word-level information,
while the model tries to generalize over these embedding patterns.

The combination of a CNN and an LSTM allows us to capture both long-distance syntactic and
semantic relations, best identified by a CNN, and the sequential nature of the input, most efficiently
identified by an LSTM. Several existing studies, cited in Bizzoni and Lappin (2017), demonstrate the
advantages of combining CNNs and LSTMs to process texts, and show that using these two architectures
together has a positive effect on language processing.

The model produces a single classifier value between 0 and 1. We transform this score into a binary
output of 0 or 1 by applying a threshold of 0.5 for assigning 1. In this way, we can use the model’s output
for two evaluation methodologies: classification and ranking.
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Figure 2: DNN encoder for predicting metaphorical paraphrase aptness from Bizzoni and Lappin (2018).
Each encoder represents a sentence as a 10-dimensional vector. These vectors are concatenated to com-
pute a single score for the pair of input sentences.

The architecture of the model is given in Fig 2.
We use the same general protocol as Bizzoni and Lappin (2018) for training with supervised learning,

and testing the model.
Following the methodology applied in Bernardy et al. (2018), the input to the encoders is the con-

catenation of the word embeddings of the whole paragraph (context and focus sentence).
Using Bizzoni and Lappin (2018)’s out-of-context metaphor dataset and our contextualized extension

of this set, we apply four variants of the training and testing protocol.

1. Training and testing on the in-context dataset.

2. Training on the out-of-context dataset, and testing on the in-context dataset.

3. Training on the in-context dataset, and testing on the out-of-context dataset.

4. Training and testing on the out-of-context dataset (Bizzoni and Lappin (2018)’s original experi-
ment provides the results for out-of-context training and testing).

When we train or test the model on the out-of-context dataset, we use Bizzoni and Lappin (2018)’s
original annotated corpus of 800 metaphor-paraphrase pairs. The in-context dataset contains 200 anno-
tated pairs. As for the baseline, we rely on Bizzoni and Lappin (2018)’s earlier work on paraphrase,
where, together with several alternative versions of the neural model, a baseline relying on vector cosine
similarity between sentences is provided, and outperformed by the model.

5 MPAT Modelling Results

We use the model both to predict binary classification of a metaphor paraphrase candidate, and to gen-
erate gradient aptness ratings on the 4 category scale (see Bizzoni and Lappin (2018) for details). A
positive binary classification is accurate if it is ≥ a 2.5 mean human rating. The gradient predictions
are derived from the softmax distribution of the output layer of the model. The results of our modelling
experiments are given in Table 1.

The main result that we obtain from these experiments is that the model learns binary classification
to a reasonable extent on the in-context dataset, both when trained on the same kind of data (in-context

170



Training set Test set F-score Correlation
With-context* With-context* 0.68 -0.01
Without-context With-context 0.72 0.3
With-context Without-context 0.6 0.02
Without-context Without-context 0.74 0.75

Table 1: F-score binary classification accuracy and Pearson correlation for three different regimens of
supervised learning. The * indicates results for a set of 10-fold cross-validation runs. This was necessary
in the first case, when training and testing are both on our small corpus of in-context pairs. In the second
and third rows, since we are using the full out-of-context and in-context dataset, we report single-run
results. The fourth row is Bizzoni and Lappin (2018)’s best run result. (Our single-run best result for the
first row is an F-score of 0.8 and a Pearson correlation 0.16).

pairs), and when trained on Bizzoni and Lappin (2018)’s original dataset (out-of-context pairs). However,
the model does not perform well in predicting gradient in-context judgments when trained on in-context
pairs. It improves slightly for this task when trained on out-of-context pairs.

By contrast, it does well in predicting both binary and gradient ratings when trained and tested on
out-of-context data sets.

Bernardy et al. (2018) also note a decline in Pearson correlation for their DNN models on the task of
predicting human in-context acceptability judgments, but it is less drastic.

They attribute this decline to the fact that the compression effect renders the gradient judgments less
separable, and thus harder to predict. A similar, but more pronounced version of this effect may account
for the difficulty that our model encounters in predicting gradient in-context ratings. The binary classifier
achieves greater success for these cases because its training tends to polarise the data in one direction or
the other.

We also observe that the best combination seems to consist in training our model on the original
out-of-context dataset and testing it on the in-context pairs. In this configuration we reach an F-score
(0.72) only slightly lower than the one reported in Bizzoni and Lappin (2018) (0.74), and we record the
highest Pearson correlation, 0.3 (which is still not strong, compared to Bizzoni and Lappin (2018)’s best
run, 0.755). This result may partly be an artifact of the the larger amount of training data provided by the
out-of-context pairs.

We can use this variant (out-of-context training and in-context testing) to perform a fine-grained
comparison of the model’s predicted ratings for the same sentences in and out of context. When we do
this, we observe that out of 200 sentence pairs, our model scores the majority (130 pairs) higher when
processed in context than out of context. A smaller but significant group (70 pairs) receives a lower score
when processed in context. The first group’s average score before adding context (0.48) is consistently
lower than that of the second group (0.68). Also, as Table 2 indicates, the pairs that our model rated,
out of context, with a score lower than 0.5 (on the model’s softmax distribution), received on average a
higher rating in context, while the opposite is true for the pairs rated with a score higher than 0.5. In
general, sentence pairs that were rated highly out of context receive a lower score in context, and vice
versa. When we did linear regression on the DNNs in and out of context predicted scores, we observed
substantially the same compression pattern exhibited by our AMT mean human judgments. Figure 3
plots this regression graph.

6 Related Cognitive Work on Metaphor Aptness

Tourangeau and Sternberg (1981) present ratings of aptness and comprehensibility for 64 metaphors
from two groups of subjects. They note that metaphors were perceived as more apt and more compre-
hensible to the extent that their terms occupied similar positions within dissimilar domains. Interestingly,

5It is also important to consider that their ranking scheme is different from our design: the Pearson correlation reported
there is the average of the correlations over all groups of 5 sentences present in the dataset.
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OOC
score

Number of
elements

OOC Mean OOC Std IC Mean IC Std

0.0-0.5 112 0.42 0.09 0.54 0.1
0.5-1.0 88 0.67 0.07 0.64 0.07

Table 2: We show the number of pairs that received a low score out of context (first row) and the number
of pairs that received a high score out of context (second row). We report the mean score and standard
deviation (Std) of the two groups when judged out of context (OOC) and when judged in context (IC)
by our model. The model’s scores range between 0 and 1. As can be seen, the mean of the low-scoring
group rises in context, and the mean of the high-scoring group decreases in context.

Figure 3: In-context and out-of-context ratings assigned by our trained model. Points above the broken
diagonal line represent sentence pairs which received a higher rating when presented in context. The
total least-square linear regression is shown as the second line.

Fainsilber and Kogan (1984) present experimental results in support of the claim that imagery does not
clearly correlate with metaphor aptness. Aptness judgments are also subject to individual differences.

Blasko (1999) points to such individual differences in metaphor processing. She asked 27 partici-
pants to rate 37 metaphors for difficulty, aptness and familiarity, and to write one or more interpretations
of the metaphor. Subjects with higher working memory span were able to give more detailed and elab-
orate interpretations of metaphors. Familiarity and aptness correlated with both high and low span sub-
jects. For high span subjects aptness of metaphor positively correlated with number of interpretations,
while for low span subjects the opposite was true.

McCabe (1983) analyses the aptness of metaphors with and without extended contexts. She finds
that domain similarity correlates with aptness judgments in isolated metaphors, but not in contextualized
metaphors. She also reports that there is no clear correlation between metaphor aptness ratings in isolated
and in contextualized examples.

Chiappe et al. (2003) study the relation between aptness and comprehensibility in metaphors and
similes. They provide experimental results indicating that aptness is a better predictor than comprehen-
sibility for the “transformation” of a simile into a metaphor. Subjects tended to remember similes as
metaphors (i.e. remember the dancer’s arms moved like startled rattlesnakes as the dancer’s arms were
startled rattlesnakes) if they were judged to be particularly apt, rather than particularly comprehensible.
They claim that context might play an important role in this process. They suggest that context should
ease the transparency and increase the aptness of both metaphors and similes.

Tourangeau and Rips (1991) report a series of experiments indicating that metaphors tend to be
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interpreted through emergent features that were not rated as particularly relevant, either for the tenor or
for the vehicle of the metaphor. The number of emergent features that subjects were able to draw from a
metaphor seems to correlate with their aptness judgments.

Bambini et al. (2018) use Event-Related Brain Potentials (ERPs) to study the temporal dynamics of
metaphor processing in reading literary texts. They emphasize the influence of context on the ability of
a reader to smoothly interpret an unusual metaphor.

Bambini et al. (2016) use electrophysiological experiments to try to disentangle the effect of a
metaphor from that of its context. They find that de-contextualized metaphors elicited two different
brain responses, N400 and P600, while contextualized metaphors only produced the P600 effect. They
attribute the N400 effect, often observed in neurological studies of metaphors, to expectations about
upcoming words in the absence of a predictive context that “prepares” the reader for the metaphor. They
suggest that the P600 effect reflects the actual interpretative processing of the metaphor.

This view is supported by several neurological studies showing that the N400 effect arises with
unexpected elements. This happens, for example, when new presuppositions are introduced into a text
in a way not implied by the context (Masia et al. (2017)). It can also occur because of unexpected
associations with a noun-verb combination, not indicated by previous context, as when it is preceded by
a neutral context (Cosentino et al. (2017)).

7 Conclusions and Future Work

We have observed that embedding metaphorical sentences and their paraphrase candidates in a document
context generates a compression effect in human metaphor aptness ratings. Context seems to mitigate
the perceived aptness of metaphors in two ways. Those metaphor-paraphrase pairs that were given a
very low score out of context tend to receive an increased score in context, while those with very high
scores out of context decline in rating when presented in context. At the same time, the demarcation
line between paraphrase and non-paraphrase is not particularly blurred by the introduction of extended
context around the expression.

As previously observed by McCabe (1983), we found that context has an influence on humans’
aptness ratings for metaphors, although, unlike them, we did find a correlation between the two sets
of ratings. Chiappe et al. (2003)’s expectation that context should facilitate a metaphor’s aptness was
supported only in one sense. Aptness increases for low-rated pairs. But it decreases for high-rated pairs.

We applied Bizzoni and Lappin (2018)’s DNN for the MPAT to an in-context test set, experimenting
with both out-of-context and in-context training corpora. We obtained reasonable results for binary
classification of paraphrase candidates for aptness, but the performance of the model declined sharply for
the prediction of human gradient aptness judgments, relative to its performance on a corresponding out-
of-context test set. This appears to be the result of the increased difficulty in separating rating categories
introduced by the compression effect.

Strikingly, the linear regression analyses of human aptness judgments for in- and out-of-context
paraphrase pairs, and of Bizzoni and Lappin (2018)’s DNN predictions for these pairs reveal similar
compression patterns. These patterns produce ratings that cannot be clearly separated along a linear
ranking scale.

To the best of our knowledge ours is the first study of the effect of context on metaphor aptness on
a corpus of this dimension, using crowd sourced human judgments as the gold standard for assessing
the predictions of a computational model of paraphrase. We also present the first comparative study of
both human and model judgments of metaphor paraphrase for in-context and out-of-context variants of
metaphorical sentences.

Finally, the compression effect that context induces on paraphrase judgments corresponds closely
to the one observed independently in another task, which is reported in Bernardy et al. (2018). We
regard this effect as a significant discovery that increases the plausibility and the interest of our results.
The fact that it appears clearly with two tasks involving different sorts of DNNs and distinct learning
regimes (unsupervised learning with neural network language models for the acceptability prediction
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task, as opposed to supervised learning with our composite DNN for paraphrase prediction) reduces the
likelihood that this effect is an artefact of our experimental design.

It is important to note that this shift towards the centre of the scale, recorded both for humans and for
our model, is not consistent with a simple homogenization effect for the compared items. If the addition
of identical context to both sentences just made it harder for the network to see the differences between
the two items, we would expect the shift in aptness judgment to go in one direction on the scale. All
contextualized pairs should be rated as better paraphrases than their decontextualized equivalents. The
same effect should hold for human annotators.

As we suggested earlier, two explanations for the compression effect come to mind. On the first
compression is the result of a specifically linguistic phenomenon. In the presence of a larger textual
context speakers concentrate on the pragmatic coherence of the discourse, and so they pay less attention
to the properties of the sentence for which assessment is solicited. This is the approach that Bernardy
et al. (2018) propose. On the second explanation compression is the result of the increase in cognitive
load that processing the context imposes.

To distinguish between these accounts it would be interesting to experiment with two different kinds
of contexts: a natural one for each sentence, and a random context that is unrelated in content to the
sentence. If the cognitive load hypothesis is correct, the compression effect should be present with both
types of context, as they each increase processing. However, if the effect appears only with natural
contexts, then this result would lend support to the pragmatic coherence hypothesis. Random contexts
do not generally facilitate coherent discourse interpretations, and so we would expect speakers to exhibit
a tendency to focus on the naturalness of the test sentence in isolation. This should reduce or cancel the
observed compression effect. One of our main concerns in future research will be to achieve a better
understanding of the compression effect of context on human judgments and DNN models.

While our dataset is still small, we are presenting an initial investigation of a phenomenon which is,
to date, little studied. We are working to enlarge the dataset. In future work we will expand both our in-
and out-of-context annotated metaphor-paraphrase corpora. While the corpus we used contains a number
of hand crafted examples, it would be preferable to find these example types in natural text, and we are
working on this. We are seeking to expand the size of the data set. It will also be useful to conduct
qualitative analyses on the kinds of metaphors and similes that are more prone to a context-induced
rating switch. We intend to improve the reliability of our modelling experiments by using alternative
DNN architectures for the MPAT.
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Abstract

Concreteness of words has been studied extensively in psycholinguistic literature. A
number of datasets has been created with average values for perceived concreteness of words.
We show that we can train a regression model on these data, using word embeddings and
morphological features. We evaluate the model on 7 publicly available datasets and show
that concreteness and imagery values can be predicted with high accuracy. Furthermore,
we analyse typical contexts of abstract and concrete words and review the potentials of
concreteness prediction for image annotation.

1 Motivation
Concreteness and imagery of words has been studied for several decades in the field of psycho-
linguistics and psychology. Values for concreteness and imagery of words are obtained by
instructing and asking experimentees to score words on a numeric scale for these aspects.

We assume that concrete nouns occur in other contexts than abstract nouns do and that nouns
with a high imagery value occur together with other words than nouns with a low imagery. This
is not as simple as it might sound, since most words can be used in different senses: e.g., nouns
with high imagery might be accompanied by colour adjectives, but colours also fit perfectly with
political parties and ideas. Nevertheless, we expect that there are differences in the distribution
of abstract and concrete words and words with high and low imagery. If these differences indeed
exist, and if concreteness and imagery are important aspects of the meaning of a word, we
would expect that the characteristics of the context of concrete words are present in learned
distributional representations of word meanings. This finally, can be verified quite easily and is
exactly what we will test in the following: it should be possible to read off the concreteness and
imagery of a word from its distributional representation.

If it is possible to predict the concreteness and imagery of a word from its distributional
representation, this also has a very practical aspect: Retrieving these values from experiments
is an expensive and time consuming task. If these values are needed for a psycholinguistic
experiment or for some application it would be an advantage if we could compute them instead.

A practical application, that in fact was our initial motivation for this research, is the
annotation of images (Charbonnier et al., 2018). We need to find terms in the caption (and
surrounding text) of an image that describe that image. We expect that nouns with high
concreteness and imagery values are much more likely to refer to concepts depicted in the image
than abstract words do. Our basic intuition is illustrated by the image caption pair shown in
Fig. 1. Here the noun robot in the caption is very concrete, while the other nouns (systems,
platform, research, development) are much more abstract. The most concrete noun in this
example describes quite well what is shown by the image.

The remainder of the paper is organised as follows: Section 2 gives an overview of common
definitions of concreteness and imagery. In section 3 we review the most relevant literature on
this topic. Section 4 gives an overview of the available datasets with human judgements on
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Image Caption
The iCub humanoid robot: an open-systems platform for re-
search in cognitive development.

Source
Vernon, David, Michael Beetz, and Giulio Sandini. ”Prospec-
tion in cognition: the case for joint episodic-procedural memory
in cognitive robotics.” Frontiers in Robotics and AI 2 (2015).

Figure 1: Typical image and caption from a scientific publication.

concreteness and imagery of words. In section 5 we present our method for predicting concreteness.
The results are given in section 6. The source code for all experiments is available on GitHub1.

2 Concreteness and Imagery
Concreteness of words has received a lot of attention in psycholinguistic research. Here concrete-
ness refers to the degree to which the concept denoted by a word refers to a perceptible entity
(Brysbaert et al., 2014). Brysbaert et al. (2014) found that subjects largely rated the haptic and
visual experiences, even if they were explicitly asked to take into account experiences involving
any senses. Friendly et al. (1982) define concrete words as words that “refer to tangible objects,
materials or persons which can be easily perceived with the senses”. They define imagery2 as
the ease with which a word arouses a mental image. Many studies found that there is a high
correlation between concreteness and imagery (Friendly et al., 1982; Algarabel et al., 1988; Clark
and Paivio, 2004).

It is assumed that concreteness influences learning, recognition memory and the speed of
visual recognition, reading and spelling (Spreen and Schulz, 1966). A recent overview of research
in this area is e.g. given by Borghi et al. (2017).

3 Related Work
A few studies deal with the question whether values for concreteness can be predicted by machine
learning techniques. Rabinovich et al. (2018) predict the concreteness of words indirectly by
assigning a concreteness value to sentences in which a word occurs. The concreteness value of a
sentence is based on the presence of seed words. The set of seed words is constructed by selecting
words with derivational suffixes that are typical for highly abstract nouns. The correlation
between manual assigned values from various subsets of the dataset from Brysbaert et al. (2014)
(MT40k, see also Section 4.1) and the MRC database (see Section 4.2) and predicted values
ranges from 0.66 to 0.74

Rothe et al. (2016) try to find low dimensional feature representations of words in which at
least some dimensions correspond to interpretable properties of words. One of these dimensions
is concreteness. For training and testing they use GoogleNews embeddings and two subsets of
frequent words from the concreteness data by in MT40k. For their test set of 8,694 frequent
words they found a moderate correlation with the human judgements and a value for Kendall’s τ
of 0,623.

Tanaka et al. (2013) use word concreteness to determine the reading difficulty of a text. Like
we will do below, they train a regression model to predict concreteness values. As features they
use a small number of manually constructed co-occurrence features, like co-occurrence with sense

1https://github.com/textmining-hsh/Concreteness
2Most authors seem to use the term imagery, while others also use imageability and visualness. We will use

imagery throughout this paper, even when describing datasets using one of the other terms.
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verbs. For training and evaluation they use a subset of 3,455 nouns from the Medical Research
Council Psycholinguistic Database (see Section 4 for details). Pearson’s correlation and Kendall’s
τ between the values from the database and their predictions are 0.675 and 0.502, respectively,
for imagery, and 0.688 and 0.508, respectively, for concreteness.

Turney et al. (2011) proposed to use distributional vector representations as features to train
a classifier that distinguishes abstract from concrete nouns. Turney constructed word embeddings
for each word especially for this task. The recent work of Ljubešić et al. (2018) builds on this
idea and tries to predict concreteness values instead of only considering two classes and uses
standard word embeddings instead of training specialized word embeddings for the task. They
found a Spearman correlation coefficient of 0.887 between the predicted concreteness values and
the values form MT40k. The focus of their work is on transferring concreteness values form one
to another language. In the current paper we will investigate this approach in more detail and
evaluate on more datasets.

Hessel et al. (2018) use image captions to predict the likelihood of the occurrence of a word in
the image and thus indirectly the concreteness or imagery of the word. In fact this exactly inverse
method of our approach to annotating images: while Hessel et al. (2018) use likely descriptive
terms to predict concreteness, we aim to find terms describing the image using concreteness.

4 Data
In order to support psycholinguistic research on differences of human processing of concrete and
abstract words, for almost half a century researchers have collected concreteness values for words.
The typical way to obtain these values is by averaging concreteness rates from several subjects in
a controlled setting (Paivio et al., 1968). Recently, Amazon Mechanical Turk was used to get
ratings for a large number of words (Brysbaert et al., 2014).

Despite the overlap between the available datasets we decided to evaluate our predictions on
several, but not all collections, since all of them have their specific characteristics and have been
used in other studies.

4.1 Datasets used for training and testing concreteness and imagery

We used four datasets for evaluation and one, the largest, for training. All datasets have values
for concreteness, three of them also have values for imagery. To avoid confusion, we will treat
the datasets with imagery and concreteness values as different datasets. Thus we have a total
number of seven datasets. Table 1 gives an overview of the size of these datasets and their
pairwise overlap. The table also shows for how many of the words in each of the datasets we find
word embeddings in two common used resources of pretrained embeddings. Though we do not
have enough imagery data to train a good model, we can, given the high correlation between
imagery and concreteness values, also evaluate our concreteness model on imagery data. An
overview of the correlation for words occurring in different data sets is provided in Table 2.

MT40k The dataset provided by Brysbaert et al. (2014) consist of 37,058 words and 2,896
two-word phrases rated by over 4,000 persons located in the USA using the online crowd sourcing
tool Amazon Mechanical Turk (therefore we call this dataset MT40k). Each word was rated
by at least 20 people. In the experiment 60,099 single words and 2,940 two-word expressions
were used. Words that did not receive enough valid ratings got discarded. The remaining set of
almost 40,000 English lemmas were known by at least 85% of the participants.

The results were validated with the concreteness values from the database of Coltheart (1981).
For 3,935 words that are found in both collections, the Pearson correlation of the concreteness
scores is r = 0.919. Unlike the other datasets below that use a scale from 1 to 7, MT40k ranges
from 1 to 5. This scale was used because it was shown that 5 is the maximum number of
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categories humans can work with reliably. The data is available as a CSV file3 with all 60,099
words included. Words that did not receive enough valid ratings, are included in the file with a
missing concreteness value.

PYMC The dataset created by Paivio et al. (1968) (PYM) consists of 925 nouns with ratings
for concreteness, imagery and meaningfulness and was one of the first datasets for these values.
Many other datasets are extension of this collection or used the same methodology to construct
the dataset. In the following we denote words and concreteness values form this data set as
PYMC . The data for PYM and CP are available as a CSV file 4.

PYMI PYMI denotes the set all 925 nouns in PYM and their imagery values.

CPA Clark and Paivio (2004) collected and published various ratings and norms they could
find for the 925 words from PYM. These ratings include also a previously unpublished set of
imagery ratings (called IMG2 in their paper) that are different from the imagery values in PYM.
We refer to this additional imagery ratings as CPA.

CPE Clark and Paivio (2004) also extended the word pool of Paivio et al. (1968) with more
words, also including words with other part of speech than noun. The total size of the word pool
is 2,311. For the new words ratings were collected in the same way as for the original words,
including imagery ratings for 2,111 words. We refer to this extended dataset as CPE .

TWPI The Toronto Word Pool (TWP) by Friendly et al. (1982) consists of 1,080 common
English words selected from the Thorndike-Lorge word count5. It includes not only nouns but
also verbs, adjectives, adverbs and prepositions. Furthermore, the selected words all have a
frequency of 20+ in Thorndike-Lorge and have a maximum of two syllables or eight letters. Only
20% of the words from PYM fulfil these restrictions. Hence the overlap between PYM and TWP
is quite small. We refer to the TWP imagery ratings as TWPI The experiment was done by
400 volunteering (160 male, 240 female) undergraduate psychology participants between 1977
and 1978. Every participant got one of 4 different lists with 270 words to rate. The values from
TWP were extracted by using OCR and parsing from the scanned original paper.

TWPC TWPC denotes the concreteness values for all 1,080 words from TWP.

Newcombe Newcombe et al. (2012) constructed a dataset of 200 abstract and 200 concrete
nouns, handpicked from TWP and PYM. The selected words have a concreteness and imagery
rating of 5.0 or higher, whereas the abstract nouns are rated below 3.9. These data do not
include any words with unclear concreteness and thus are intended to be used for experiment in
which concrete and abstract words have to be contrasted. The words where extracted from the
appendix of the paper with OCR and are manually corrected.

Training Corpus We constructed a set for training from the MT40K data set by removing
all words from MT40K that also occur in either TWP, CP, PYM or Newcombe. In this way, we
make sure that the words for which we predict imagery and concreteness, are never included in
the training data. Furthermore we removed all two-phrase words and all words that are not part
of the two resources for pretrained embeddings.

3http://crr.ugent.be/papers/Concreteness_ratings_Brysbaert_et_al_BRM.txt
4https://link.springer.com/article/10.3758/BF03195584#SupplementaryMaterial
5The dataset TWP is available in the appendix of the original paper
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Table 1: Size of datasets and the overlap with other data set.

Size ∩ Google ∩ fastText ∩ MT40k ∩ TWP ∩ PYM ∩ CPE

MT40k 39954 33975 37058
TWP 1080 1080 1080 1077
PYM 925 921 925 877 167
CPE 2111 2100 2111 1905 340 925
Train 32783 31246 32783 32783 0 0 0

Table 2: Pearson correlation between the values for concreteness and imagery for the words in
the intersection of two datasets.

MT40k TWPC PYMC TWPI PYMI CPA

TWPC 0.896
PYMC 0.936 0.899
TWPI 0.816 0.822 0.789
PYMI 0.857 0.836 0.831 0.929
CPA 0.717 0.731 0.596 0.897 0.803
CPE 0.834 0.851 0.831 0.917 1.000 0.803

4.2 Further sources for concreteness

Besides the used datasets described above there are a number of further data sets that are
aggregations of other datasets, very small, specialized or similar to newer data sets.

Spreen and Schulz (1966) determined concreteness ratings for 329 nouns. Gilhooly and Hay
(1977) selected 205 five letter words with single-solution anagram with imagery and concreteness
to analyse their effect on anagram solving. The Handbook of Semantic Word Norms (Toglia
and Battig, 1978) gives concreteness values for 2,854 words. Gilhooly and Logie (1980) selected
1,944 nouns from Thorndike-Lorge word count and tried to have an even distribution over word
length and frequency. Coltheart (1981) collected data from different publications to construct
the Medical Research Council Psycholinguistic Database (MRCDB), a database with 98,538
words, 8,288 of which have values for imagery and concreteness originating from PYM, Toglia
& Batting and Gilhooly & Logie. The Colorado Meaning Norms (Nickerson and Cartwright,
1984) contain 90 nouns from PYM and Toglia & Batting put into three concreteness groups
(Low, Medium, High).

4.3 Embeddings

As distributional models for the words we use precomputed word embeddings from GoogleNews
and fastText. The regression model will use the latent feature valures from these embeddings
to predict the concreteness values. GoogleNews embeddings were trained on a part of the
GoogleNews dataset, which is about 100 billion words. The model contains 300-dimensional
vectors for 3 million words and phrases (Mikolov et al., 2013).

The fastText embeddings (Mikolov et al., 2018) are available in four versions. Two versions
(with and without subword information) with 1 million word vectors are trained on Wikipedia
2017, UMBC webbase and statmt.org news with 16 billion tokens available. The other two version
(also available with and without subword information) with 2 million word vectors trained on the
Common Crawl with 600B tokens. In our experiments we used the version trained on Common
Crawl without subword information, as it yields the best results.

5 Determining Word Concreteness
Given the availability of labelled data, the obvious way to predict concreteness is to train a
regression model.
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(a) Predictions by the classifier trained with
GoogleNews word embeddings

(b) Predictions by the classifier trained with
fastText word embeddings

Figure 2: Relative number of predicted concreteness values for abstract words (green) and
concrete words (orange) from the Newcombe data.

5.1 Feature Selection

We identified three types of features, that could be useful for this task. In the first place, concrete
words might occur in specific contexts, e.g. as object of to see or with adjectives like green or
wet, etc. This fact was already used by Tanaka et al. (2013). Since the best context information
for words currently available are word embeddings, we use word embeddings as features.

Furthermore, as noted by Rabinovich et al. (2018), certain suffixes can be important for
determining concreteness. E.g. the suffix -ness, used to form a noun from an adjective, often
refers to abstract concepts. Thus we take every possible suffix from within our training data with
at least 1 character and at most 4 characters. We use the 200 most frequent suffixes as features.

Finally, the part of speech (POS) of a word might give a cue. Proper nouns, e.g., might more
often refer to something concrete than verbs. Each word gets for each POS a value that is the
relative frequency of all its lemmata for that POS found in WordNet.

5.2 Experimental setup

We trained a SVM to build a regression model. For the training we used γ = 0.01, C = 1.0 and
an rbf kernel as parameters, found by grid search. We use the training corpus described above to
train the regression model.

We evaluated the classifier using different sets of features with tenfold cross validation on the
training data. Using all available features we evaluated the classifier on other datasets as well.
In most datasets used for evaluation, there are a small number of words for which there are no
pretrained word embeddings (see Table 1). For these words the SVM cannot predict a value.
Hence, we will predict the value 3 (neutral, neither concrete nor abstract) for these words in the
evaluation.

For the evaluation of all datasets with concreteness values we use Pearson’s r and Kendall’s
τ to measure the correlation between the true values and the model’s predictions. We took the
output of our regression model as is, even if its prediction is outside of the target interval [1, 5]
of our training data.

The dataset from Newcombe contains only binary data. Here we can order the words according
to the predicted concreteness value and use the Area under the ROC Curve (AUC) as evaluation
measure.
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Figure 3: Original and predicted values (using 10 fold cross validation) for MT40K data using
SVM with FastText word embeddings.

6 Results
Fig. 2 gives the distribution of predicted concreteness values for the concrete and abstract words
from Newcombe and shows that the predicted values can distinguish quite well between concrete
and abstract words. The AUC for this binary classification is 0.990 using fastText embeddings,
POS and suffixes and 0.981 using GoogNews embeddings, POS and suffixes.

The correlation between the original and predicted MT40k concreteness values (aggregated
from cross validation) is visualized in Fig. 3, and clearly shows the strong linear correlation.
The corresponding correlation strength is given in Table 3. We see that the model trained
with fastText gives consistently higher correlations that using GoogleNews embeddings. Adding
the suffix or POS helps increasing the correlation for GoogleNews. Combining suffix and POS
increases the performance also slightly, even for the already well performing fastText embeddings.
Using only GoogeNews embeddings for cross validation on MT40k data, the (average) value
for Kendall’s τ is only 0.652, which is still in the same order of magnitude as the correlation
found by Rothe et al. (2016) using the same features and a subset of frequent words from the
MT40k data. Furthermore we see that the correlations found are much higher that those found
by Tanaka et al. (2013) and Rabinovich et al. (2018). The result is comparable and just slightly
higher than the correlation found by Ljubešić et al. (2018), who found a Spearman coefficient of
0.887. The Spearman coefficient for our best feature combination using fastText vectors is 0.900
with 10 fold cross validation.

The correlation of the predicted concreteness with the data from the other data sets is given
in Table 4. Table 5 gives the correlation with the imagery datasets. Since the model was trained
with concreteness values the smaller correlation for imagery scores is as expected. In fact, we see
that the correlation values we found are consistently slightly below the correlation values for the
overlapping parts of each dataset with MT40k, which shows that we are very close to the highest
reasonably possible result. Note, that we excluded all words in the intersection of the datasets
from the training data.

Finally, Table 6 gives some examples of predicted and original values for some abstract and
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Table 3: Pearson (r) and Kendall (τ) correlation results using our training corpus with cross-
validation and different features.

Embedding fastText GoogleNews
Correlation r τ r τ

pos + suffix 0.604 0.428 (0.604) (0.428)
emb 0.905 0.711 0.856 0.652
emb + suffix 0.908 0.716 0.872 0.671
emb + pos 0.908 0.717 0.870 0.671
emb + pos + suffix 0.911 0.721 0.879 0.680

Table 4: Pearson (r) and Kendall (τ) correlation between our concreteness estimations on the
concreteness values of the TWP and PYM datasets using fastText and GoogleNews embeddings.

Embedding fastText GoogleNews
Correlation r τ r τ

TWPC 0.881 0.698 0.852 0.656
PYMC 0.902 0.741 0.877 0.703

concrete words from the MT40k dataset in order to get an impression of involved words and
values. We could not detect any pattern in the words for which the predictions differ a lot from
the experimental values. We expected that the predictions might make many mistakes for those
words where the experimentees disagreed a lot. In the MT40k the variance of all concreteness
values is given, so this can be checked easily. We found that there is no correlation (Pearson
correlation coefficient is 0.132) between the variance in the original data and the prediction error.

Table 5: Pearson (r) and Kendall (τ) correlation between our imagery estimations on the imagery
values of the TWP, PYM and CP datasets using fastText and GoogleNews embeddings.

Embedding fastText GoogleNews
Correlation r τ r τ

TWPI 0.774 0.559 0.731 0.514
PYMI 0.813 0.618 0.770 0.568
CPA 0.676 0.499 0.619 0.453
CPE 0.796 0.569 0.745 0.521

7 Discussion and Future Work
We have shown that concreteness of words as perceived by a subject of a rating experiment can
be predicted on the base of word embeddings. Besides contextual information, morphological
cues turn out to help somewhat.

Word embeddings essentially encode information about the contexts a word appears in. Thus
we can conclude that concrete words appear in different contexts than abstract words. Tanaka
et al. (2013) e.g. assume that concrete words occur often in the context of sense verbs. In order to
get an impression of the words that are typical for the context of abstract and concrete words we
computed the concreteness values for a random selection of 5,000 words from ukWaC (Ferraresi
et al., 2008) and selected the 200 most abstract and 200 most concrete words. For each of these
400 words we computed the positive pointwise mutual information (ppmi) with a set of 17,400
mid-frequency words for co-occurrence within a window of 2 words. For each word of this set of
17,400 words we compute the average ppmi with the abstract and concrete words, respectively.
The words with high average ppmi values for concrete or abstract words are typical for the
context of these 200 words. The words with the highest ppmi value are given in Table 7. As one
can see, we found mainly material properties for very concrete words. For abstract words we
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Table 6: Overview of high, medium and low concreteness for words from MT40K with their
original and our predicted values.

rank word MT40k predicted
1 watermelon 4.89 5.3246
2 hamburger 5.00 5.3123
3 postbox 4.54 5.2518
4 surfboard 4.57 5.2468
5 typewriter 4.88 5.2311

17711 magnetically 2.96 2.7366
17712 evenness 2.43 2.7364
17713 undrafted 2.63 2.7364
17714 distorted 2.57 2.7363
17715 amusement 2.07 2.7361
32779 inconceivable 1.38 1.2549
32780 irrelative 1.81 1.2532
32781 transcendental 1.48 1.2449
32782 notwithstanding 1.38 1.2225
32783 behooves 1.58 1.1129

Table 7: 30 words with highest pointwise mutual information in ukWaC with prototype of
abstract and concrete words, resp.

Concrete Abstract
stuffed plastic dried notions purely notion
wooden lined underneath conceptions theories reasoning
giant topped coated interpretation manner theory
black leather shaped manifestations concepts rationality
underside coloured rubber understanding profound nature
metal bamboo glass rational philosophical expression
homemade blue washed conception analysis utterly
bowl red mounted discourses manifestation linguistic
decorated yellow steel significance aspects aesthetic
white bag powder expressions psychological discourse

found words such as philosophical, conception, linguistic, discourse and theories.
One of the goals of our project is to find good keywords for images from scientific publications.

These images often have very long captions (see Sohmen et al., 2018). Thus, the captions and
eventually the sentences explicitly referring to an image usually will provide enough text for
extracting words describing the image (Josi et al., 2018).

To get a first impression of the potential of concreteness for finding words describing scientific
images we consider the image that was also used by Josi et al. (2018), here shown in Fig. 4.
Initially, 53 words and phrases (noun phrases that are titles of Wikipedia articles) were selected
from the caption and referring context. Table 8 shows 10 terms with the highest idf values (in
the complete collection of 2,9 million image captions) and the highest predicted concreteness
values, resp. For two word phrases we used the maximum of the (predicted) concreteness values
of the parts as the concreteness of the phrase. The idf values were computed directly for the
phrases. In this example we clearly see the different aspects of both weighting schemes: idf
favours specific terms that do not describe the image, like Griffith university and Queensland.
Most words selected by high concreteness, describe quite well what can bee seen on the image
(except the most concrete word, wood), but are not specific enough: an arm and a rib are clearly
present in the image, deep fascia is nevertheless a more adequate key word. Thus we expect that
we will need to combine concreteness with other relevance measures for this application.
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Image Caption
Schematic drawing of the left thorax and upper limb, demon-
strating the chondroepitrochlearis muscle (CEM) inserting into
the deep brachial fascia (bf) and the fibrous band (tuberoepi-
condylar band, tb) (PM: pectoralis major; fs: fascial sling; cj:
costochondral junction; and Me: medial epicondyle).

Source
Sujeewa P. W. Palagama, Raymond A. Tedman, Matthew
J. Barton, and Mark R. Forwood, “Bilateral Chon-
droepitrochlearis Muscle: Case Report, Phylogenetic Analysis,
and Clinical Significance,” Anatomy Research International,
vol. 2016, Article ID 5402081, 2016.

Figure 4: Image and caption from a scientific publication used in Josi et al. (2018) to illustrate
keyword extraction form image captions.
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Table 8: Ranking of potential keywords selected from the caption and referring context of the
images shown in Fig. 4 based on idf concreteness.

(a) Terms ranked by idf (in a collection
of 2,9 Million image captions).

rank term idf
1 axillary fascia 20.0
2 griffith university 18.1
3 brachial fascia 17.5
4 quartus 15.7
5 medical literature 14.4
6 common name 13.9
7 deep fascia 13.9
8 epicodyle 12.7
9 joint capsule 12.4

10 queensland 12.2

(b) Terms with predicted concreteness and concrete-
ness values from MT40k.

rank term pred. concr. MT40k
1 wood 4.93 4.85
2 arm 4.80 4.96
3 biceps 4.68 4.93
4 rib 4.65 4.90
5 cartilage 4.43 4.71
6 thorax 4.43 4.56
7 tendon 4.40 4.47
8 cadaver 4.39 4.48
9 joint capsule 4.32 4.52

10 septum 4.26 4.48
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Abstract

Implicit discourse relation classification is one of the most difficult steps in discourse parsing.
The difficulty stems from the fact that the coherence relation must be inferred based on the content
of the discourse relational arguments. Therefore, an effective encoding of the relational arguments
is of crucial importance. We here propose a new model for implicit discourse relation classification,
which consists of a classifier, and a sequence-to-sequence model which is trained to generate a repre-
sentation of the discourse relational arguments by trying to predict the relational arguments including
a suitable implicit connective. Training is possible because such implicit connectives have been an-
notated as part of the PDTB corpus. Along with a memory network, our model could generate more
refined representations for the task. And on the now standard 11-way classification, our method out-
performs the previous state of the art systems on the PDTB benchmark on multiple settings including
cross validation.

1 Introduction

Discourse relations describe the logical relation between two sentences/clauses. When understanding a
text, humans infer discourse relation between text segmentations. They reveal the structural organization
of text, and allow for additional inferences. Many natural language processing tasks, such as machine
translation, question-answering, automatic summarization, sentiment analysis, and sentence embedding
learning, can also profit from having access to discourse relation information. Recent years have seen
more and more works on this topic, including two CoNNL shared tasks (Xue et al., 2015, 2016).

Penn Discourse Tree Bank (Prasad et al., 2008, PDTB) provides lexically-grounded annotations of
discourse relations and their two discourse relational arguments (i.e., two text spans). Discourse relations
are sometimes signaled by explicit discourse markers (e.g., because, but). Example 1 shows an explicit
discourse relation marked by “because”; the presence of the connective makes it possible to classify
the discourse relation with high reliability: Miltsakaki et al. (2005) reported an accuracy of 93.09% for
4-way classification of explicits.

Discourse relations are however not always marked by an explicit connective. In fact, implicit dis-
course relations (i.e. relations not marked by an explicit discourse cue) outnumber explicit discourse
relations in naturally occurring text. Readers can still infer these implicit relations, but automatic clas-
sification becomes a lot more difficult in these cases, and represents the main bottleneck in discourse
parsing today. Example 2 shows an implicit contrastive relation which can be inferred from the two text
spans that have been marked Arg1 and Arg2. When annotating implicit relations in the PDTB, annotators
were asked to first insert a connective which expresses the relation, and then annotate the relation label.
This procedure was introduced to achieve higher inter-annotator agreement for implicit relations between
human annotators. In the approach taken in this paper, our model mimics this procedure by being trained
to explicitate the discouse relation, i.e. to insert a connective as a secondary task.
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1. [I refused to pay the cobbler the full $95]Arg1 because [He did poor work.]Arg2
— Explicit, Contingency.Cause

2. [In the energy mix of the future, bio-energy will also have a key role to play in boosting rural employment
and the rural economy in Europe .]Arg1 (Implicit = However) [At the same time , the promotion of bio-
energy must not lead to distortions of competition.]Arg2

— Implicit, Comparison.Contrast

The key in implicit discourse relation classification lies in extracting relevant information for the
relation label from (the combination of) the discourse relational arguments. Informative signals can
consist of surface cues, as well as the semantics of the relational arguments. Statistical approaches have
typically relied on linguistically informed features which capture both of these aspects, like temporal
markers, polarity tags, Levin verb classes and sentiment lexicons, as well as the Cartesian products of the
word tokens in the two arguments (Lin et al., 2009). More recent efforts use distributed representations
with neural network architectures (Qin et al., 2016a).

The main question in designing neural networks for discourse relation classification is how to get the
neural networks to effectively encode the discourse relational arguments such that all of the aspects rele-
vant to the classification of the relation are represented, in particular in the face of very limited amounts
of annotated training data, see e.g. Rutherford et al. (2017). The crucial intuition in the present paper is
to make use of the annotated implicit connectives in the PDTB: in addition to the typical relation label
classification task, we also train the model to encode and decode the discourse relational arguments, and
at the same time predict the implicit connective. This novel secondary task forces the internal represen-
tation to more completely encode the semantics of the relational arguments (in order to allow the model
to decode later), and to make a more fine-grained classification (predicting the implicit connective) than
is necessary for the overall task. This more fine-grained task thus aims to force the model to represent
the discourse relational arguments in a way that allows the model to also predict a suitable connective.
Our overall discourse relation classifier combines representations from the relational arguments as well
as the hidden representations generated as part of the encoder-decoder architecture to predict relation
labels. What’s more, with an explicit memory network, the network also has access to history represen-
tations and acquire more explicit context knowledge. We show that our method outperforms previous
approaches on the 11-way classification on the PDTB 2.0 benchmark.

The remaining of the paper is organized as follows: Section 2 discusses related work; Section 3
describes our proposed method; Section 4 gives the training details and experimental results, which is
followed by conclusion and future work in section 5.

2 Related Work
2.1 Implicit Discourse Relation Classification

Implicit discourse relation recognition is one of the most important components in discourse parsing.
With the release of PDTB (Prasad et al., 2008), the largest available corpus which annotates implicit
examples with discourse relation labels and implicit connectives, a lot of previous works focused on
typical statistical machine learning solutions with manually crafted sparse features (Rutherford and Xue,
2014).

Recently, neural networks have shown an advantage of dealing with data sparsity problem, and many
deep learning methods have been proposed for discourse parsing, including convolutional (Zhang et al.,
2015), recurrent (Ji et al., 2016), character-based (Qin et al., 2016a), adversarial (Qin et al., 2017) neural
networks, and pair-aware neural sentence modeling (Cai and Zhao, 2017). Multi-task learning has also
been shown to be beneficial on this task (Lan et al., 2017).

However, most neural based methods suffer from insufficient annotated data.Wu et al. (2016) ex-
tracted bilingual-constrained synthetic implicit data from a sentence-aligned English-Chinese corpus.
Shi et al. (2017, 2018) proposed to acquire additional training data by exploiting explicitation of connec-
tives during translation. Explicitation refers to the fact that translators sometimes add connectives into
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Figure 1: The Architecture of Proposed Model.

the text in the target language which were not originally present in the source language. They used ex-
plicitated connectives as a source of weak supervision to obtain additional labeled instances, and showed
that this extension of the training data leads to substantial performance improvements.

The huge gap between explicit and implicit relation recognition (namely, 50% vs. 90% in 4-way
classification) also motivates to incorporate connective information to guide the reasoning process. Zhou
et al. (2010) used a language model to automatically insert discourse connectives and leverage the infor-
mation of these predicted connectives. The approach which is most similar in spirit to ours, Qin et al.
(2017), proposed a neural method that incorporates implicit connectives in an adversarial framework to
make the representation as similar as connective-augmented one and showed that the inclusion of implicit
connectives could help to improve classifier performance.

2.2 Sequence-to-sequence Neural Networks

Sequence to sequence model is a general end-to-end approach to sequence learning that makes minimal
assumptions on the sequence structure, and firstly proposed by Sutskever et al. (2014). It uses multi-
layered Long Short-Term Memory (LSTM) or Gated Recurrent Units (GRU) to map the input sequence
to a vector with a fixed dimensionality, and then decode the target sequence from the vector with another
LSTM / GRU layer.

Sequence to sequence models allow for flexible input/output dynamics and have enjoyed great suc-
cess in machine translation and have been broadly used in variety of sequence related tasks such as
Question Answering, named entity recognition (NER) / part of speech (POS) tagging and so on.

If the source and target of a sequence-to-sequence model are exactly the same, it is also called Auto-
encoder, Dai and Le (2015) used a sequence auto-encoder to better represent sentence in an unsupervised
way and showed impressive performances on different tasks. The main difference between our model
and this one is that we have different input and output (the output contains a connective while the input
doesn’t). In this way, the model is forced to explicitate implicit relation and try to learn the latent pattern
and discourse relation between implicit arguments and connectives and then generate more discriminative
representations.

3 Methodology
Our model is based on the sequence-to-sequence model used for machine translation (Luong et al., 2015),
an adaptation of an LSTM (Hochreiter and Schmidhuber, 1997) that encodes a variable length input as a
fix-length vector, then decodes it into a variable length of outputs. As illustrated in Figure 1, our model
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consists of three components: Encoder, Decoder and Discourse Relation Classifier. We here use different
LSTMs for the encoding and decoding tasks to help keep the independence between those two parts.

The task of implicit discourse relation recognition is to recognize the senses of the implicit relations,
given the two arguments. For each discourse relation instance, The Penn Discourse Tree Bank (PDTB)
provides two arguments (Arg1, Arg2) along with the discourse relation (Rel) and manually inserted
implicit discourse connective (Conni). Here is an implicit example from section 0 in PDTB:

3. Arg1: This is an old story.
Arg2: We’re talking about years ago before anyone heard of asbestos having any questionable properties.
Conni: in fact
Rel: Expansion.Restatement

During training, the input and target sentences for sequence-to-sequence neural network are [Arg1;Arg2]
and [Arg1;Conni;Arg2] respectively, where “;” denotes concatenation.

3.1 Model Architecture

3.1.1 Encoder

Given a sequence of words, an encoder computes a joint representation of the whole sequence.
After mapping tokens to Word2Vec embedding vectors (Mikolov et al., 2013), a LSTM recurrent

neural network processes a variable-length sequence x = (x1, x2, ..., xn). At time step t, the state of
memory cell ct and hidden ht are calculated with the Equations 1:




it
ft
ot
ĉt


 =




σ
σ
σ

tanh


W · [ht−1, xt]

ct = ft � ct−1 + it � ĉt
ht = ot � tanh(ct)

(1)

where xt is the input at time step t, i, f and o are the input, forget and output gate activation respec-
tively. ĉt denotes the current cell state, σ is the logistic sigmoid function and � denotes element-wise
multiplication. The LSTM separates the memory c from the hidden state h, which allows for more
flexibility incombining new inputs and previous context.

For the sequence modeling tasks, it is beneficial to have access to the past context as well as the
future context. Therefore, we chose a bidirectional LSTM as the encoder and the output of the word
at time-step t is shown in the Equation 2. Here, element-wise sum is used to combine the forward and
backward pass outputs.

ht =
[−→
ht ⊕

←−
ht

]
(2)

Thus we get the output of encoder:

he = [he1, h
e
2, ..., h

e
n] (3)

3.1.2 Decoder

With the representation from the encoder, the decoder tries to map it back to the targets space and predicts
the next words.

Here we used a separate LSTM recurrent network to predict the target words. During training, target
words are fed into the LSTM incrementally and we get the outputs from decoder LSTM:

hd =
[
hd1, h

d
2, ..., h

d
n

]
(4)
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Global Attention

In each time-step in decoding, it’s better to consider all the hidden states of the encoder to give the
decoder a full view of the source context. So we adopted the global attention mechanism proposed in
Luong et al. (2015). For time step t in decoding, context vector ct is the weighted average of he, the
weights for each time-step are calculated with hdt and he as illustrated below:

αt =
exp(hdt

>
Wαhe)

n∑
t=1

exp(hdt
>
Wαhe)

(5)

ct = αhe (6)

Word Prediction

Context vector ct captured the relevant source side information to help predict the current target word yt.
We employ a concatenate layer with activation function tanh to combine context vector ct and hidden
state of decoder hdt at time-step t as follows:

ĥdt = tanh(Wc

[
ct;h

d
t

]
) (7)

Then the predictive vector is fed into the softmax layer to get the predicted distribution p̂(yt|s) of the
current target word.

p̂(yt|s) = softmax(Wsĥd + bs)

ŷt = arg max
y

p̂(yt|s) (8)

After decoding, we obtain the predictive vectors for the whole target sequence ĥd =
[
hd1, h

d
2, ..., h

d
n

]
.

Ideally, it contains the information of exposed implicit connectives.

Gated Interaction

In order to predict the coherent discourse relation of the input sequence, we take both the hencoder and
the predictive word vectors hd into account. K-max pooling can “draw together” features that are most
discriminative and among many positions apart in the sentences, especially on both the two relational
arguments in our task here; this method has been proved to be effective in choosing active features in
sentence modeling (Kalchbrenner et al., 2014). We employ an average k-max pooling layer which takes
average of the top k-max values among the whole time-steps as in Equation 9 and 10:

h̄e =
1

k

k∑

i=1

topk(he) (9)

h̄d =
1

k

k∑

i=1

topk(ĥd) (10)

h̄e and h̄d are then combined using a linear layer (Lan et al., 2017). As illustrated in Equation 11, the
linear layer acts as a gate to determine how much information from the sequence-to-sequence network
should be mixed into the original sentence’s representations from the encoder. Compared with bilinear
layer, it also has less parameters and allows us to use high dimensional word vectors.

h∗ = h̄e ⊕ σ(Wih̄d + bi) (11)

Explicit Context Knowledge

To further capture common knowledge in contexts, we here employ a memory network proposed in Liu
et al. (2018), to get explicit context representations of contexts training examples. We use a memory
matrix M ∈ RK×N , where K,N denote hidden size and number of training instances respectively.
During training, the memory matrix remembers the information of training examples and then retrieves
them when predicting labels.
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Given a representation h∗ from the interaction layer, we generate a knowledge vector by weighted
memory reading:

k = Msoftmax(MTh∗) (12)

We here use dot product attention, which is faster and space-efficient than additive attention, to
calculate the scores for each training instances. The scores are normalized with a softmax layer and the
final knowledge vector is a weighted sum of the columns in memory matrix M .

Afterwards, the model predicts the discourse relation using a softmax layer.

p̂(r|s) = softmax(Wr[k;h∗] + br)

r̂ = arg max
y

p̂(r|s) (13)

3.2 Multi-objectives

In our model, the decoder and the discourse relation classifier have different objectives. For the decoder,
the objective consists of predicting the target word at each time-step. The loss function is calculated with
masked cross entropy with L2 regularization, as follows:

Lossde = − 1

n

n∑

t=1

yt log(p̂y) +
λ

2
‖ θde ‖22 (14)

where yt is one-hot represented ground truth of target words, p̂y is the estimated probabilities for each
words in vocabulary by softmax layer, n denotes the length of target sentence. λ is a hyper-parameter of
L2 regularization and θ is the parameter set.

The objective of the discourse relation classifier consists of predicting the discourse relations. A rea-
sonable training objective for multiple classes is the categorical cross-entropy loss. The loss is formulated
as:

Losscl = − 1

m

m∑

i=1

ri log(p̂r) +
λ

2
‖ θcl ‖22 (15)

where ri is one-hot represented ground truth of discourse relation labels, p̂r denotes the predicted prob-
abilities for each relation class by softmax layer, m is the number of target classes. Just like above, λ is
a hyper-parameter of L2 regularization.

For the overall loss of the whole model, we set another hyper-parameterw to give these two objective
functions different weights. Larger w means that more importance is placed on the decoder task.

Loss = w · Lossde + (1 − w) · Losscl (16)

3.3 Model Training

To train our model, the training objective is defined by the loss function we introduced above. We use
Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) with different learning rate for different
parts of the model as our optimizer. Dropout layers are applied after the embedding layer and also on the
top feature vector before the softmax layer in the classifier. We also employ L2 regularization with small
λ in our objective functions for preventing over-fitting. The values of the hyper-parameters, are provided
in Table 2. The model is trained firstly to minimize the loss in Equation 14 until convergence, we use
scheduled sampling (Bengio et al., 2015) during training to avoid “teacher-forcing problem”. And then
to minimize the joint loss in Equation 16 to train the implicit discourse relation classifier.

4 Experiments and Results
4.1 Experimental Setup

We evaluate our model on the PDTB. While early work only evaluated classification performance be-
tween the four main PDTB relation classes, more recent work including the CoNLL 2015 and 2016
shared tasks on Shallow Discourse Parsing (Xue et al., 2015, 2016) have set the standard to second-level
classification. The second-level classification is more useful for most downstream tasks. Following other
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Settings Train Dev Test
PDTB-Lin 13351 515 766
PDTB-Ji 12826 1165 1039

Cross valid. per fold avg. 12085 1486 14861

Table 1: Numbers of train, development and test set on different settings for 11-way classification task.
Instances annotated with two labels are double-counted and some relations with few instances have been
removed.

works we directly compare to in our evaluation, we here use the setting where AltLex, EntRel and NoRel
tags are ignored. About 2.2% of the implicit relation instances in PDTB have been annotated with two
relations, these are considered as two training instances.

To allow for full comparability to earlier work, we here report results for three different settings.
The first one is denoted as PDTB-Lin (Lin et al., 2009); it uses sections 2-21 for training, 22 as dev and
section 23 as test set. The second one is labeled PDTB-Ji (Ji and Eisenstein, 2015), and uses sections 2-20
for training, 0-1 as dev and evaluates on sections 21-22. Our third setting follows the recommendations
of Shi and Demberg (2017), and performs 10-fold cross validation on the whole corpus (sections 0-23).
Table 1 shows the number of instances in train, development and test set in different settings.

The advantage of the cross validation approach is that it addresses problems related to the small cor-
pus size, as it reports model performance across all folds. This is important, because the most frequently
used test set (PDTB-Lin) contains less than 800 instances; taken together with a lack in the community
to report mean and standard deviations from multiple runs of neural networks (Reimers and Gurevych,
2018), the small size of the test set makes reported results potentially unreliable.

Preprocessing
We first convert tokens in PDTB to lowercase and normalize strings, which removes special characters.
The word embeddings used for initializing the word representations are trained with the CBOW archi-
tecture in Word2Vec2 (Mikolov et al., 2013) on PDTB training set. All the weights in the model are
initialized with uniform random.

To better locate the connective positions in the target side, we use two position indicators (〈conn〉,
〈/conn〉) which specify the starting and ending of the connectives (Zhou et al., 2016), which also indicate
the spans of discourse arguments.

Since our main task here is not generating arguments, it is better to have representations generated
by correct words rather than by wrongly predicted ones. So at test time, instead of using the predicted
word from previous time step as current input, we use the source sentence as the decoder’s input and
target. As the implicit connective is not available at test time, we use a random vector, which we used
as “impl conn” in Figure 2, as a placeholder to inform the sequence that the upcoming word should be a
connective.

Hyper-parameters
There are several hyper-parameters in our model, including dimension of word vectors d, two dropout
rates after embedding layer q1 and before softmax layer q2, two learning rates for encoder-decoder lr1
and for classifier lr2, top k for k-max pooling layer, different weights w for losses in Equation (16) and λ
denotes the coefficient of regularizer, which controls the importance of the regularization term, as shown
in Table 2.

1Cross-validation allows us to test on all 15057 instances.
2https://code.google.com/archive/p/word2vec/

d q1 q2 lr1 lr2 k w λ
100 0.5 0.2 2.5e−3 5e−3 5 0.2 5e−4

Table 2: Hyper-parameter settings.
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Methods PDTB-Lin PDTB-Ji Cross Validation

Majority class 26.11 26.18 25.59
Lin et al. (2009) 40.20 - -
Qin et al. (2016a) 43.81 45.04 -
Cai and Zhao (2017) - 45.81 -
Qin et al. (2017) 44.65 46.23 -
Shi et al. (2017) (with extra data) 45.50 - 37.84

Encoder only (Bi-LSTM) (Shi et al., 2017) 34.32 - 30.01
Auto-Encoder 43.86 45.43 39.50
Seq2Seq w/o Mem Net 45.75 47.05 40.29
Proposed Method 45.82 47.83 41.29

Table 3: Accuracy (%) of implicit discourse relations on PDTB-Lin, PDTB-Ji and Cross Validation
Settings for multi-class classification.

4.2 Experimental Results

We compare our models with six previous methods, as shown in Table 3. The baselines contain feature-
based methods (Lin et al., 2009), state-of-the-art neural networks (Qin et al., 2016a; Cai and Zhao, 2017),
including the adversarial neural network that also exploits the annotated implicit connectives (Qin et al.,
2017), as well as the data extension method based on using explicitated connectives from translation to
other languages (Shi et al., 2017).

Additionally, we ablate our model by taking out the prediction of the implicit connective in the
sequence to sequence model. The resulting model is labeled Auto-Encoder in Table 3. And seq2seq
network without knowledge memory, which means we use the output of gated interaction layer to predict
the label directly, as denoted as Seq2Seq w/o Mem Net.

Our proposed model outperforms the other models in each of the settings. Compared with perfor-
mances in Qin et al. (2017), although we share the similar idea of extracting highly discriminative fea-
tures by generating connective-augmented representations for implicit discourse relations, our method
improves about 1.2% on setting PDTB-Lin and 1.6% on the PDTB-Ji setting. The importance of the
implicit connective is also illustrated by the fact that the “Auto-Encoder” model, which is identical to our
model except it does not predict the implicit connective, performs worse than the model which does. This
confirms our initial hypothesis that training with implicit connectives helps to expose the latent discrim-
inative features in the relational arguments, and generates more refined semantic representation. It also
means that, to some extent, purely increasing the size of tunable parameters is not always helpful in this
task and trying to predict implicit connectives in the decoder does indeed help the model extract more
discriminative features for this task. What’s more, we can also see that without the memory network,
the performances are also worse, it shows that with the concatenation of knowledge vector, the training
instance may be capable of finding related instances to get common knowledge for predicting implicit
relations. As Shi and Demberg (2017) argued that it is risky to conclude with testing on such small test
set, we also run cross-validation on the whole PDTB. From Table 3, we have the same conclusion with
the effectiveness of our method, which outperformed the baseline (Bi-LSTM) with more than 11% points
and 3% compared with Shi et al. (2017) even though they have used a very large extra corpus.

For the sake of obtaining a better intuition on how the global attention works in our model, Figure 2
demonstrates the weights of different time-steps in attention layer from the decoder. The weights show
how much importance the word attached to the source words while predicting target words. We can
see that without the connective in the target side of test, the word filler still works as a connective to
help predict the upcoming words. For instance, the true discourse relation for the right-hand example is
Expansion.Alternative, at the word filler’s time-step, it attached more importance on the negation “don’t”
and “tastefully appointed”. It means the current representation could grasp the key information and try
to focus on the important words to help with the task. Here we see plenty room for adapting this model
to discourse connective prediction task, we would like to leave this to the future work.
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Figure 2: Visualization of attention weights during predicting target sentence in train and test, x-axis
denotes the source sentence and the y-axis is the targets. First two figures are examples from training
set with implicit connectives inside, while the following one, in which the implicit connective has been
replaced by the word filler “impl conn”, is from test.

In recent years, U.S. steelmakers have supplied about 80% of the 100 million tons of steel used annually by the nation. (in
addition,) Of the remaining 20% needed, the steel-quota negotiations allocate about 15% to foreign suppliers.

— Expansion.Conjunction

1. The average debt of medical school graduates who borrowed to pay for their education jumped 10% to $42,374 this year
from $38,489 in 1988, says the Association of American Medical Colleges. (furthermore) that’s 115% more than in 1981

— Expansion.Conjunction
2. ... he rigged up an alarm system, including a portable beeper, to alert him when Sventek came on the line. (and) Some
nights he slept under his desk.

— Expansion.Conjunction

Prices for capital equipment rose a hefty 1.1% in September, while prices for home electronic equipment fell 1.1%. (Mean-
while,) food prices declined 0.6%, after climbing 0.3% in August.

— Comparison.Contrast

1. Lloyd’s overblown bureaucracy also hampers efforts to update marketing strategies. (Although) some underwriters have
been pressing for years to tap the low-margin business by selling some policies directly to consumers.

— Comparison.Contrast
2. Valley National ”isn’t out of the woods yet. (Specifically), the key will be whether Arizona real estate turns around or at
least stabilizes

— Expansion.Restatement

Table 4: Example of attention in Context Knowledge Memory. The sentences in italic are from PDTB
test set and following 2 instances are the ones with top 2 attention weights from training set.

Relation Train Dev Test
Comparison 1855 189 145
Contingency 3235 281 273
Expansion 6673 638 538
Temporal 582 48 55

Total 12345 1156 1011

Table 5: Distribution of top-level implicit discourse relations in the PDTB.

We also try to figure out which instances’ representations have been chosen from the memory matrix
while predicting. Table 4 shows two examples and their context instances with top 2 memory attentions
among the whole training set. We can see that both examples show that the memory attention attached
more importance on the same relations. This means that with the Context Memory, the model could fa-
cilitate the discourse relation prediction by choosing examples that share similar semantic representation
and discourse relation during prediction.
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Methods Four-ways One-Versus-all Binary (F1)
F1 Acc. Comp. Cont. Expa. Temp.

Rutherford and Xue (2014) 38.40 55.50 39.70 54.42 70.23 28.69
Qin et al. (2016b) - - 41.55 57.32 71.50 35.43
Liu et al. (2016) 44.98 57.27 37.91 55.88 69.97 37.17
Ji et al. (2016) 42.30 59.50 - - - -
Liu and Li (2016) 46.29 57.17 36.70 54.48 70.43 38.84
Qin et al. (2017) - - 40.87 54.46 72.38 36.20
Lan et al. (2017) 47.80 57.39 40.73 58.96 72.47 38.50
Our method 46.40 61.42 41.83 62.07 69.58 35.72

Table 6: Comparison of F1 scores (%) and Accuracy (%) with the State-of-the-art Approaches for four-
ways and one-versus-all binary classification on PDTB. Comp., Cont., Expa. and Temp. stand for
Comparison, Contingency, Expansion and Temporal respectively.

4.2.1 Top-level Binary and 4-way Classification

A lot of the recent works in PDTB relation recognition have focused on first level relations, both on
binary and 4-ways classification. We also report the performance on level-one relation classification for
more comparison to prior works. As described above, we followed the conventional experimental settings
(Rutherford and Xue, 2015; Liu and Li, 2016) as closely as possible. Table 5 shows the distribution of
top-level implicit discourse relation in PDTB, it’s worth noticing that there are only 55 instances for
Temporal Relation in the test set.

To make the results comparable with previous work, we report the F1 score for four binary classifi-
cations and both F1 and Accuracy for 4-way classification, which can be found in Table 6. We can see
that our method outperforms all alternatives on COMPARISON and CONTINGENCY, and obtain compa-
rable scores with the state-of-the-art in others. For 4-way classification, we got the best accuracy and
second-best F1 with around 2% better than in Ji et al. (2016).

5 Conclusion and Future Work

We present in this paper a novel neural method trying to integrate implicit connectives into the represen-
tation of implicit discourse relations with a joint learning framework of sequence-to-sequence network.
We conduct experiments with different settings on PDTB benchmark, the results show that our proposed
method can achieve state-of-the-art performance on recognizing the implicit discourse relations and the
improvements are not only brought by the increasing number of parameters. The model also has great
potential abilities in implicit connective prediction in the future.

Our proposed method shares similar spirit with previous work in Zhou et al. (2010), who also tried
to leverage implicit connectives to help extract discriminative features from implicit discourse instances.
Comparing with the adversarial method proposed by Qin et al. (2017), our proposed model more closely
mimics humans’ annotation process of implicit discourse relations and is trained to directly explicitate
the implicit relations before classification. With the representation of the original implicit sentence and
the explicitated one from decoder, and the help of the explicit knowledge vector from memory network,
the implicit relation could be classified with higher accuracy.

Although our method has not been trained as a generative model in our experiments, we can see
potential for applying it to generative tasks. With more annotated data, minor modification and fine-
tuned training, we believe our proposed method could also be applied to tasks like implicit discourse
connective prediction, or argument generation in the future.
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Abstract
We describe a transfer method based on annotation projection to develop a dependency-based

semantic role labeling system for languages for which no supervised linguistic information other
than parallel data is available. Unlike previous work that presumes the availability of supervised
features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of
word and character features. Our deep model considers using character-based representations as well
as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments
outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7
languages in the Universal Proposition Bank.

1 Introduction

Despite considerable efforts on developing semantically annotated resources for semantic role labeling
(SRL) (Palmer et al., 2005; Erk et al., 2003; Zaghouani et al., 2010), majority of languages do not have
such annotated resources. The lack of annotated resources for SRL has led to a growing interest in
transfer methods for developing semantic role labeling systems. The ultimate goal of transfer meth-
ods is to transfer supervised linguistic information from a rich-resource language to a target language
of interest. Amongst transfer methods, annotation projection is a method that projects supervised an-
notation from a rich-resource language to a low-resource language through automatic word alignments
in parallel data (Hwa et al., 2002; Padó and Lapata, 2009). Recent work on annotation projection for
SRL (Kozhevnikov and Titov, 2013a; van der Plas et al., 2014; Akbik et al., 2015; Aminian et al., 2017)
presumes the availability of accurate supervised features such as lemmas, part-of-speech (POS) tags and
syntactic parse trees. However, this is not a realistic assumption for truly low-resource languages, for
which (accurate) supervised features are hardly available.

This paper considers the problem of annotation projection of dependency-based SRL in a scenario
for which only parallel data is available for the target language. Recent state-of-the-art SRL systems
have shown a significant reliance on the predicate lemma information while in a low-resource language,
a lemmatizer might not be available. We first demonstrate that unsupervised stems can be used as an
alternative to supervised lemma features. We further show that we can obtain a robust and simple SRL
model for the target language without relying on any explicit linguistic feature (including lemmas), either
supervised or unsupervised. We achieve this goal by changing the structure of a state-of-the-art deep SRL
system (Marcheggiani et al., 2017) to make it independent of supervised features. Our model solely rely
on word and character level features in the target language.

The main contribution of this work is on applying annotation projection without relying on supervised
features in the target language of interest. To the best of our knowledge, this is the first study that builds
a cross-lingual SRL transfer model in the absence of any explicit linguistic information in the target
language. We make use of the recently released Universal Proposition Banks (Akbik et al., 2016)1,

1https://github.com/System-T/UniversalPropositions
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congratulate.01 report.01
I congratulate him on his excellent report

Ich beglückwünsche ihn zu seinem ausgezeichneten Bericht
congratulate.01 report.01

A0 A1

AM-ADV

AM-ADJ

A0

A0 A1 AM-ADJ

A0

Figure 1: An example of annotation projection for an English-German sentence pair from the Europarl
corpus (Koehn, 2005). Supervised predicate-argument structure of the English sentence (edges on top)
is generated using our supervised SRL system trained on PropBank 3 (Palmer et al., 2005). Dashed lines
in the middle show intersected word alignments from Giza++ (Och and Ney, 2003). Dashed edges at the
bottom show the projected predicate-arguments.

a semi-automatically annotated data that unifies the annotation scheme for all languages. We show
the effectiveness of our method on a range of languages, namely German, Spanish, Finnish, French,
Italian, Portuguese, and Chinese. We compare our model to a state-of-the-art baseline that uses a rich
set of supervised features and show that our model outperforms on six out of seven languages in the
Universal Proposition Banks. Furthermore, for Finnish, a morphologically rich language, our model
with unsupervised features improves over the model that relies on a supervised lemmatizer.

This paper is structured as the following: §2 briefly overviews the dependency-based SRL task and
annotation projection, §3 describes our approach, §4 shows the experimental results and analysis, §5
gives overviews about the related work, and §6 concludes the paper and proposes suggestions for future
work.

2 Background

In this section, we provide a brief overview of dependency-based SRL and annotation projection.

Dependency-based SRL In dependency-based SRL, the goal is to find arguments along with their roles
for each predicate in a sentence. Formally, in a sentence x = [xi]

n
i=1 with n words, and m predicates

P = [(pi, ψi); 1 ≤ pi ≤ n]mi=1 where ψi is the sense of the predicate with index pi in the sentence, we
find the semantic dependencies between each word in the sentence with respect to each predicate:

Lx = [(pi
r−→ j|ψi); 1 ≤ j ≤ n, pi ∈ P]

where r is the role of the jth word as an argument for the predicate word xpi . In case that a word is
not an argument, r is NULL. Evaluation of the system output is conducted on semantic dependencies
(pi

r−→ j|ψi); thus the SRL system should find predicate senses as well as argument roles. During
training, these dependencies are used as training instances for a machine learning algorithm. Previous
work (Björkelund et al., 2009; Roth and Lapata, 2016; Marcheggiani et al., 2017) factorized this task
into predicate sense disambiguation, argument identification, and argument classification.

Annotation Projection In annotation projection, we assume that we have a parallel dataP = [(s(1), t(1)),
· · · , (s(k), t(k))] such that each sentence s(i) is a translation of sentence t(i). Here, we assume that s(i)

belongs to a rich-resource language in which annotated resources are available. In contrast, t(i) belongs
to a low-resource target language where annotated data and tools such as semantic roles, dependency
trees, part-of-speech tags, word senses, and lemmas might not be available.
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For every sentence s(i), we run a supervised SRL system to obtain its supervised argument structure
Ls(i) . Assuming that s(i) = [s

(i)
1 , · · · , s(i)li

] and t(i) = [t
(i)
1 , · · · , t(i)

l′i
], we use an automatic word alignment

system to obtain one-to-one word alignments. We define 0 ≤ a
(i)
j ≤ li as the index of the source word

that is aligned to the jth word in the ith target sentence, where a(i)j = 0 indicates a missing alignment.
We use the following conditions to project a semantic dependency from a source sentence to a target
sentence:

(a(i)p
r−→ a(i)m |y) ∈ Ls(i) ⇒ add (p

r−→ m|y) to Lt(i)

where Ls(i) is the supervised argument structure and Lt(i) is the projected argument structure for the ith
sentence. We assume that there is a universal predicate sense that is common across languages (this is the
case in the Universal Propositon Banks). Figure 1 shows an example for an English-German translation
pair. We use the projected data as training data in a supervised learning system to train a SRL system in
the target language. In practice, many words do not receive any projected label mainly due to missing
alignments. Thus, Lt(i) usually contains sentences with partially projected semantic dependencies.

3 Our Model

Our goal is to train a SRL system on the projected predicate-argument structures without having super-
vised features such as supervised lemmas, dependency parse trees, and part-of-speech tags. Our model
has two main components: 1) joint argument identification and classification which we simply refer to
as argument classifier , and 2) predicate sense disambiguation. Our argument classifier is inspired by the
model of Marcheggiani et al. (2017): we use predicate-specific BiLSTM encoders, and a role+predicate-
specific decoder. However, unlike the model of Marcheggiani et al. (2017), which relies heavily on POS
tags and predicate lemmas, we do not use a supervised lemmatizer and POS tagger in any layer. Instead,
we benefit from character representations and unsupervised stems to bring in unsupervised features to
our model.

3.1 Joint Argument Identification and Classification

Given a sentence s = [si]
n
i=1 that contains n tokens with m predicates in the predicate set P, we run m

separate predicate-specific deep BiLSTM encoders [Ej ]
m
j=1 to extract contextualized representations for

each token given a predicate index pj .

Input Representation For each encoder [Ej ]
m
j=1, we represent each token si as the concatenation of its

word embedding (xrei and xpei ), character embedding (xchari ) and predicate lemma embedding (xlemi,j ):2

xi,j = [xrei ;xpei ;xchari ;xlei,j ]

∀i ∈ [1, · · · , n]; j ∈ [1, · · · ,m]

where:

• xrei ∈ Rdw is a randomly initialized word embedding vector;

• xpei ∈ Rdw is an external pre-trained word embedding that is fixed during training;

• xchari ∈ Rdch is character representation of each token si. For every token, we obtain xchari by
running a deep bidirectional LSTM (Hochreiter and Schmidhuber, 1997) on top of each word. We
use the concatenation of the final backward representation of the first character, and final forward
representation of the last character to represent each token:

xchari = BiLSTM(xci [1 : |si|]; |si|)
2We use [;] notation to show vector concatenation.
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where xci ∈ Rdc is a randomly initialized character embedding and |si| is the number of characters
in token si;

• xlei,j ∈ Rdle is a lemma vector for each word si with respect to the predicate that is targeted in Ej .
xlei,j is active if si is the predicate word, otherwise, a zero vector is used to represent the lemma
embedding:

xlei,j =

{
[xlei ; 1] if i = pj

[
−→
0 ; 0] otherwise

where the concatenated zero/one value is a flag to indicate if the current token is the targeted
lemma. In our model, we use one of the following options to represent predicate lemma:

– Represent each lemma by a deep character BiLSTM. This BiLSTM is different from the
character BiLSTM in xchar.

– Use an unsupervised morphological analyzer to give the surface-form stem of each word.
This way, we can use a lemma embedding dictionary without requiring a lemmatizer.

Predicate-Specific Encoder A deep BiLSTM is used to get the final representation for each token in
a sentence. In the following notation, hi,j is the final hidden state from the deep BiLSTM model for the
ith token with respect to the jth predicate:

hi,j = BiLSTM(s1:n,j ; i) ∈ Rdh

Role+Predicate-Specific Decoder Given the BiLSTM representations, we perform an affine transfor-
mation on the concatenation of hpj ,j (predicate representation) and hi,j (argument representation) to find
the probability of having the ith token as the argument of predicate pj with role r (including the NULL
role):

p(r|hpj ,j , hi,j) = softmaxr(Wj,r[hpj ,j ;hi,j ])

where xj,r is a parameter matrix that encodes the information of role r and the jth predicate. This matrix
is calculated as follows:

Wj,r = RELU(U [ulj , vr])

where ulj ∈ Rd′l is another predicate lemma embedding parameter which is specifically used for the
decoder layer, vr ∈ Rdr is a randomly initialized role embedding, U is a parameter matrix, and RELU
is the rectified linear units activation function (Nair and Hinton, 2010). Similar to the input layer, we
represent ulj by 1) a different deep character BiLSTM, or 2) a surface-form stem obtained from an
unsupervised morphological analyzer.

A graphical depiction of the network in a case for which lemmas are represented by character BiL-
STMs is shown in figure 2. As shown in the figure, we use two different character BiLSTMs in order to
represent lemmas: one for the input representation and the other for the decoder representation.

4 Experiments

Datasets and Tools We use English as the source language and project SRL annotations to the follow-
ing languages: German, Spanish, Finnish, French, Italian, Portuguese, and Chinese. We use the Europarl
parallel corpus (Koehn, 2005) for the European languages and a random sample of 2 million sentence
pairs from the MultiUN corpus (Eisele and Chen, 2010) for Chinese. We use the Giza++ tool (Och and
Ney, 2003) with its default setting for word alignment. We run Giza++ in source-to-target and the reverse

203



Figure 2: A graphical de-
piction of our joint argument
identification and classification
model without using part-of-
speech tags, lemmas, and syn-
tax. In this example, the
predicate-specific encoder con-
siders word eats as the sentence
predicate and the goal is to score
the assignment of argument ap-
ple with label A0. Our model
contains three different charac-
ter BiLSTMs; at the bottom, a
character BiLSTM is run to ac-
quire a character-based repre-
sentation for all the words in the
sentence in the absence of POS
tags. There are two character
BiLSTMs for predicate lemma:
one in the encoder level (next to
the second word) to model pred-
icate lemma in the input layer
and the other in the decoder level
(top left). In this example, we
just show one layer of BiLSTM
but we use a deep BiLSTM in
our experiments.
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direction and get the intersection of alignment links. For English, we use the pre-trained embedding vec-
tors generated using the structured skip-gram model of Ling et al. (2015). For the target languages, we
train Word2vec (Mikolov et al., 2013) on Wikipedia data to generate embedding vectors.

We implement our deep network using the Dynet library (Neubig et al., 2017). We use the dimension
of 100 for word embeddings, 50 for characters, 512 for LSTM encoders, 128 for role and lemma embed-
dings in the decoder, and 100 for decoder lemma embedding. We pick random minibatches of size 1000
with a fixed learning rate of 0.001 for learning the parameter values with the Adam optimizer (Kingma
and Ba, 2014). The depth of BiLSTM network is set to one for character representation (xchar) and three
for predicate-specific representations (xle, ul).

Predicate Disambiguation Our model is agnostic to predicate senses but since our automatic evalua-
tion relies on automatic predicate senses, we need a disambiguation module. Predicate disambiguation
systems typically contains separate classifiers for each predicate lemma (Björkelund et al., 2009). Since
we do not have a reliable lemmatizer in the target language, we train a single classifier for all predicates.
We encode a sentence with a three-layer deep BiLSTM and run a softmax layer on top of each predicate
to disambiguate the predicate sense of each predicate.

Predicate identification on the source side For projection experiments, first of all we need to identify
predicates in the source language. Input to our predicate identifier is the concatenation of word embed-
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Lang. #Sent. #Tokens #Types #Pred.
de 332K 6M 90K 867K
es 903K 25M 120K 3M
fi 558K 8M 243K 1M
fr 924K 26M 93K 3M
it 617K 17M 88K 2M
pt 632K 17M 98K 2M
zh 821K 21M 183K 1M

Table 1: Sizes of the projected data.

ding, pre-trained fixed word embedding, POS embedding3, and character representation (obtained from
a character BiLSTM) for every token in the sentence. We use a deep BiLSTM to get the final repre-
sentation for each token. The ultimate predictions are made by performing an affine transform on the
BiLSTM hidden output.

4.1 Projection Experiments

Our supervised SRL system is a reimplementation of the model of Marcheggiani et al. (2017). We gen-
erate automatic English predicate senses using a system similar to the predicate disambiguation module
of Björkelund et al. (2009) except that we replace the logistic regression classifier with the averaged Per-
ceptron algorithm (Collins, 2002). In order to comply with the Universal Proposition Bank annotation
scheme, we convert the argument spans in the English PropBank v3 (Palmer et al., 2005) to dependency-
based arguments by labeling the syntactic head of each span.

For annotation projection, we define density of alignments to find sentences with relatively-dense
alignments:

density(i) =

∑l′j
j=1 I(a

(i)
j > 0)

l′i

where l′i is the length of the ith target sentence in parallel data, a(i)j is the alignment index for the jth

word in the target sentence, and I(a(i)j > 0) is an indicator for a non-NULL alignment. We prune
the target sentence pairs with density less than 80% for all European languages. We set this threshold
to 60% for Chinese in order to obtain a comparable number of sentences to the European languages.
Table 1 summarizes the sizes of projected datasets after applying the density filter. We set the number of
training epochs to 2 for all languages based on development results obtained from the English to German
projections.

Since the original model of Marcheggiani et al. (2017) heavily relies on the predicate lemma infor-
mation for making robust prediction, we further assess the influence of using explicit linguistic features
in our model by using a) supervised lemma from the UDPipe pre-trained models (Straka and Straková,
2017), and b) unsupervised stems obtained from unsupervised morphological analyzer. We use the un-
supervised morphological analyzer of Virpioja et al. (2013), and obtain morpheme classes by running
Morfessor FlatCat (Grönroos et al., 2014) on the output of the analyzer. We run the fixed-affix finite-state
machine of (Rasooli et al., 2014) to obtain a single stem for all words including the out-of-vocabularies.

Results We compare our character-based approach (CModel) with three different models: 1) The cross-
lingual model of Aminian et al. (2017) (Bootstrap) that uses a rich set of supervised features including
supervised lemmas, POS tags, and dependency parse information, 2) a variant of our model that uses
supervised lemmas (SLem) generated by a lemmatizer to represent predicate lemmas in the input and the
decode layers, and 3) a model similar to the second model but using unsupervised stems (UStem) gener-
ated by an unsupervised morphological analyzer to represent predicate lemmas. Here, we aim to asses

3Since this is only used for a supervised setting, we are able to use POS features.
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System de es fi fr it pt zh
Bootstrap 59.8 (55.0) 60.6 (52.2) 59.0 (53.1) 71.0 (63.4) 59.2 (52.3) 61.2 (53.9) 50.3 (42.5)

SLem 61.7 (57.0) 62.4 (55.7) 62.5 (59.2) 65.0 (58.9) 61.8 (56.4) 63.0 (56.8) 52.1 (43.7)

UStem 62.0 (57.4) 63.0 (56.0) 64.5 (58.8) 65.3 (59.2) 61.3 (55.4) 62.8 (56.8) 52.6 (43.2)

CModel 61.0 (57.0) 62.5 (56.0) 64.6 (58.9) 65.1 (58.5) 61.0 (55.5) 62.9 (56.5) 52.7 (42.7)

Supervised 74.5 (72.0) 77.8 (75.2) 74.0 (69.6) 88.9 (87.5) 77.9 (75.9) 66.6 (62.4) 68.8 (68.6)

Table 2: Results of projection experiments using our character based model (CModel) on the Universal
PropBank test sets compared to different baselines: the SRL system of Aminian et al. (2017) (Bootstrap),
SLem that shows the results of our model when supervised lemma is used and UStem that show the results
of our model with unsupervised stem. Numbers in parenthesis show results with automatic predicate
senses.

the effects of using different levels of explicit linguistic features ranging from fully specified supervised
features to unsupervised features in our model. The Bootstrap model uses an iterative bootstrapping
approach by utilizing a special cost function and benefiting from a rich set of supervised lexico-syntactic
features, thereby, it is considered a hard baseline. Since Bootstrap has a large number of features, the
model is not memory-wise scalable to our projection data sizes. Therefore we train the Bootstrap model
on a random sample of 20K sentences. This number is similar to the number of sentences used in the
original experiments (Aminian et al., 2017).

Table 2 shows labeled F-scores using both gold and automatic predicate senses on the test portion
of the Universal Proposition Banks. The last raw in the table shows results from the supervised SRL
systems trained on the training portion of the Universal Proposition Banks for each language, thereby
can servr as an upper bound for our model. As shown in Table 2, our model (CModel) outperforms
the Bootstrap model for all languages except French. Additionally, our model performs on par to the
supervised lemma and unsupervised stem models. This demonstrates the power of our approach even
though our model has access to fewer linguistic features in the target language. Using unsupervised stems
outperforms supervised lemma on all languages except Portuguese and Italian. This further highlights
the reliance of the model on the accuracy of lemmatizer.

Analysis As shown in Table 2, using automatic predicate senses leads to a significant reduction in ac-
curacy. This degradation is caused by two reasons. First, training a single classifier for all predicates in
the absence of explicit predicate lemma information, and second, using unified predicate senses for all
languages leads to lower precision for out-of-vocabulary words. This happens due to the fact that we
cannot make use of the default sense of predicate (lemma.01). Among all the languages in our experi-
ments, French is the only language that our model underperforms the Bootstrap model. Our analysis on
French shows that our model has not been able to correctly predict A0 and A1 arguments in 20% and
30% of cases, and labeled them as NULL.

5 Related Work

There has been a great deal of interest in using transfer methods for SRL by different techniques such
as enhancing the quality of projections (Padó and Lapata, 2005, 2009), joint learning of syntax and
semantics (van der Plas et al., 2011; Kozhevnikov and Titov, 2013b), and iterative bootstrapping to learn
a robust model from erroneous projections (Akbik et al., 2015; Aminian et al., 2017). Previous work
presumes availability of a wide range of supervised lexico-syntactic features for the target language.
Consequently, their performance heavily relies on accuracy of the available tagging tools (Akbik et al.,
2015). For instance, Akbik et al. (2015) reports lower argument precision for languages that do not have
accurate syntactic parsers such as Arabic and Hindi. In contrary to the previous studies, our work builds
a cross-lingual SRL system without having any supervised features for the target language.
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One obstacle for developing transfer models is the absence of a unified annotation scheme for all
languages. There has been a great deal of work in developing universal annotation schemes for a variety
of tasks such as POS tagging (Petrov et al., 2011), dependency parsing (Nivre et al., 2017), morphol-
ogy (Kirov et al., 2018), and SRL (Kozhevnikov and Titov, 2013a; Wang et al., 2017). Our work makes
use of the recently released Universal Proposition Bank (Akbik et al., 2016). This dataset maps every
predicate lemma in every language to its corresponding English lemma following the frame and role
label schemes of the English Proposition Bank 3.0 (Palmer et al., 2005)

In the realm of supervised SRL methods, however, there have been several efforts to build SRL
models that do not need a wide range of linguistic features (specifically syntactic features) (Marcheggiani
et al., 2017; Zhou and Xu, 2015; He et al., 2017, 2018; Cai et al., 2018; Mulcaire et al., 2018). In a more
recent study, Mulcaire et al. (2018) proposed a polyglot SRL system that benefits from the similarities
between the semantic structures of different languages to improve monolingual SRL. All those studies,
however, assume the availability of semantically annotated datasets for the target language, thus making
them non-applicable to low-resource languages.

6 Conclusion

We have described a method for cross-lingual transfer of dependency-based SRL systems via annotation
projection. Our model is agnostic to linguistic features leading to a robust model that can be trained
on projected text on a target language without annotated data. We have shown that our model achieves
comparable performance in annotation projection and also supervised SRL. In addition to improving
the performance of our model with the current setting, future work should study more effective ways
to apply the transfer methods; e.g. combining with the direct transfer method in the absence of large
parallel corpora.
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Abstract

The multimodal models used in the emerging field at the intersection of computational linguistics
and computer vision implement the bottom-up processing of the “Hub and Spoke” architecture pro-
posed in cognitive science to represent how the brain processes and combines multi-sensory inputs.
In particular, the Hub is implemented as a neural network encoder. We investigate the effect on this
encoder of various vision-and-language tasks proposed in the literature: visual question answering,
visual reference resolution, and visually grounded dialogue. To measure the quality of the representa-
tions learned by the encoder, we use two kinds of analyses. First, we evaluate the encoder pre-trained
on the different vision-and-language tasks on an existing diagnostic task designed to assess multi-
modal semantic understanding. Second, we carry out a battery of analyses aimed at studying how
the encoder merges and exploits the two modalities.

1 Introduction

In recent years, a lot of progress has been made within the emerging field at the intersection of com-
putational linguistics and computer vision thanks to the use of deep neural networks. The most com-
mon strategy to move the field forward has been to propose different multimodal tasks—such as visual
question answering (Antol et al., 2015), visual question generation (Mostafazadeh et al., 2016), visual
reference resolution (Kazemzadeh et al., 2014), and visual dialogue (Das et al., 2017)—and to develop
task-specific models.

The benchmarks developed so far have put forward complex and distinct neural architectures, but
in general they all share a common backbone consisting of an encoder which learns to merge the two
types of representation to perform a certain task. This resembles the bottom-up processing in the ‘Hub
and Spoke’ model proposed in Cognitive Science to represent how the brain processes and combines
multi-sensory inputs (Patterson and Ralph, 2015). In this model, a ‘hub’ module merges the input pro-
cessed by the sensor-specific ‘spokes’ into a joint representation. We focus our attention on the encoder
implementing the ‘hub’ in artificial multimodal systems, with the goal of assessing its ability to compute
multimodal representations that are useful beyond specific tasks.

While current visually grounded models perform remarkably well on the task they have been trained
for, it is unclear whether they are able to learn representations that truly merge the two modalities and
whether the skill they have acquired is stable enough to be transferred to other tasks. In this paper, we in-
vestigate these questions in detail. To do so, we evaluate an encoder trained on different multimodal tasks
on an existing diagnostic task—FOIL (Shekhar et al., 2017)—designed to assess multimodal semantic
understanding and carry out an in-depth analysis to study how the encoder merges and exploits the two
modalities. We also exploit two techniques to investigate the structure of the learned semantic spaces:
Representation Similarity Analysis (RSA) (Kriegeskorte et al., 2008) and Nearest Neighbour overlap
(NN). We use RSA to compare the outcome of the various encoders given the same vision-and-language
input and NN to compare the multimodal space produced by an encoder with the ones built with the
input visual and language embeddings, respectively, which allows us to measure the relative weight an
encoder gives to the two modalities.
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In particular, we consider three visually grounded tasks: visual question answering (VQA) (Antol
et al., 2015), where the encoder is trained to answer a question about an image; visual resolution of
referring expressions (ReferIt) (Kazemzadeh et al., 2014), where the model has to pick up the referent
object of a description in an image; and GuessWhat (de Vries et al., 2017), where the model has to
identify the object in an image that is the target of a goal-oriented question-answer dialogue. We make
sure the datasets used in the pre-training phase are as similar as possible in terms of size and image
complexity, and use the same model architecture for the three pre-training tasks. This guarantees fair
comparisons and the reliability of the results we obtain.1

We show that the multimodal encoding skills learned by pre-training the model on GuessWhat and
ReferIt are more stable and transferable than the ones learned through VQA. This is reflected in the
lower number of epochs and the smaller training data size they need to reach their best performance on
the FOIL task. We also observe that the semantic spaces learned by the encoders trained on the ReferIt
and GuessWhat tasks are closer to each other than to the semantic space learned by the VQA encoder.
Despite these asymmetries among tasks, we find that all encoders give more weight to the visual input
than the linguistic one.

2 Related Work

Our work is part of a recent research trend that aims at analyzing, interpreting, and evaluating neural
models by means of auxiliary tasks besides the task they have been trained for (Adi et al., 2017; Linzen
et al., 2016; Alishahi et al., 2017; Zhang and Bowman, 2018; Conneau et al., 2018). Within language
and vision research, the growing interest in having a better understanding of what neural models really
learn has led to the creation of several diagnostic datasets (Johnson et al., 2017; Shekhar et al., 2017;
Suhr et al., 2017).

Another research direction which is relevant to our work is transfer learning, a machine learning
area that studies how the skills learned by a model trained on a particular task can be transferred to
learn a new task better, faster, or with less data. Transfer learning has proved successful in computer
vision (e.g. Razavian et al. (2014)) as well as in computational linguistics (e.g., Conneau et al. (2017)).
However, little has been done in this respect for visually grounded natural language processing models.

In this work, we combine these different research lines and explore transfer learning techniques in
the domain of language and vision tasks. In particular, we use the FOIL diagnostic dataset (Shekhar
et al., 2017) and investigate to what extent skills learned through different multimodal tasks transfer.

While transfering the knowledge learned by a pre-trained model can be useful in principle, Conneau
et al. (2018) found that randomly initialized models provide strong baselines that can even outperfom
pre-trained classifiers (see also Wieting and Kiela (2019)). However, it has also been shown that these
untrained, randomly initialized models can be more sensitive to the size of the training set than pre-
trained models are (Zhang and Bowman, 2018). We will investigate these issues in our experiments.

3 Visually Grounded Tasks and Diagnostic Task

We study three visually grounded tasks: visual question answering (VQA), visual resolution of referring
expressions (ReferIt), and goal-oriented dialogue for visual target identification (GuessWhat). While
ReferIt was originally formulated as an object detection task (Kazemzadeh et al., 2014), VQA (Antol
et al., 2015) and GuessWhat (de Vries et al., 2017) were defined as classification tasks. Here we opera-
tionalize the three tasks as retrieval tasks, which makes comparability easier.

• VQA: Given an image and a natural language question about it, the model is trained to retrieve the
correct natural language answer out of a list of possible answers.

1The datasets are available at https://foilunitn.github.io/.
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VQA
Q: How many cups are there?
A: Two.

ReferIt
The top mug.

GuessWhat
Q: Is it a mug?
A: Yes
Q: Can you see the cup’s handle?
A: Yes.

FOIL Diagnostic Task

original caption
Bikers approaching a bird.

foiled caption
Bikers approaching a dog.

Figure 1: Illustrations of the three visually-grounded tasks (left) and the diagnostic task (right).

• ReferIt: Given an image and a natural language description of an entity in the image, the model is
asked to retrieve the bounding box of the corresponding entity out of a list of candidate bounding
boxes.

• GuessWhat: Given an image and a natural language question-answer dialogue about a target
entity in the image, the model is asked to retrieve the bounding box of the target among a list of
candidate bounding boxes. The GuessWhat game also involves asking questions before guessing.
Here we focus on the guessing task that takes place after the question generation step.

Figure 1 (left) exemplifies the similarities and differences among the three tasks. All three tasks require
merging and encoding visual and linguistic input. In VQA, the system is trained to make a language-
related prediction, while in ReferIt it is trained to make visual predictions. GuessWhat includes elements
of both VQA and ReferIt, as well as specific properties: The system is trained to make a visual prediction
(as in ReferIt) and it is exposed to questions (as in VQA); but in this case the linguistic input is a coherent
sequence of visually grounded questions and answers that follow a goal-oriented strategy and that have
been produced in an interactive setting.

To evaluate the multimodal representations learned by the encoders of the models trained on each of
the three tasks above, we leverage the FOIL task (concretely, task 1 introduced by Shekhar et al. (2017)),
a binary classification task designed to detect semantic incongruence in visually grounded language.

• FOIL (diagnostic task): Given an image and a natural language caption describing it, the model
is asked to decide whether the caption faithfully describes the image or not, i.e., whether it contains
a foiled word that is incompatible with the image (foil caption) or not (original caption). Figure 1
(right) shows an example in which the foiled word is “dog”. Solving this task requires some degree
of compositional alignment between modalities, which is key for fine-grained visually grounded
semantics.

4 Model Architecture and Training

In cognitive science, the hub module of Patterson and Ralph (2015) receives representations processed
by sensory-specific spokes and computes a multimodal representation out of them. All our models have a
common core that resembles this architecture, while incorporating some task-specific components. This
allows us to investigate the impact of specific tasks on the multimodal representations computed by the
representational hub, which is implemented as an encoder. Figure 2 shows a diagram of the shared model
components, which we explain in detail below.

4.1 Shared components

To facilitate the comparison of the representations learned via the different tasks we consider, we use
pre-trained visual and linguistic features to process the input given to the encoders. This provides a
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Figure 2: General model architecture, with an example from VQA as input. The encoder receives as input
visual (ResNet152) and linguistic (USE) embeddings and merges them into a multimodal representation
(h). This is passed on to a task-specific component: an MLP in the case of the pre-training retrieval tasks
and a fully connected layer in the case of the FOIL classification task.

common initial base across models and diminishes the effects of using different datasets for each specific
task (the datasets are described in Section 5).

Visual and language embeddings To represent visual data, we use ResNet152 features (He et al.,
2016), which yield state of the art performance in image classification tasks and can be computed effi-
ciently. To represent linguistic data, we use Universal Sentence Encoder (USE) vectors (Cer et al., 2018)
since they yield near state-of-the-art results on several NLP tasks and are suitable both for short texts
(such as the descriptions in ReferIt) and longer ones (such as the dialogues in GuessWhat).2

In order to gain some insight into the semantic spaces that emerge from these visual and linguistic
representations, we consider a sample of 5K datapoints sharing the images across the three tasks and use
average cosine similarity as a measure of space density. We find that the semantic space of the input
images is denser (0.57 average cosine similarity) than the semantic space of the linguistic input across
all tasks (average cosine similarity of 0.26 among VQA questions, 0.35 among ReferIt descriptions, and
0.49 among GuessWhat dialogues). However, when we consider the retrieval candidates rather than the
input data, we find a different pattern: The linguistic semantic space of the candidate answers in VQA
is much denser than the visual space of the candidate bounding boxes in ReferIt and GuessWhat (0.93
vs. 0.64 average cosine similarity, respectively). This suggests that the VQA task is harder, since the
candidate answers are all highly similar.

Encoder As shown in Figure 2, ResNet152 visual features (V ∈ R2048×1) and USE linguistic features
(L ∈ R512×1) are input in the model and passed through fully connected layers that project them onto
spaces of the same dimensionality. The projected representations (Vp and Lp) are concatenated, passed
through a linear layer, and then through a tanh activation function, which produces the final encoder
representation h:

h = tanh (W · [Vp; Lp]) (1)

where W ∈ R1024×1024, Vp ∈ R512×1, Lp ∈ R512×1, and [·; ·] represents concatenation.

4.2 Task-specific components

The architecture described above is shared by all the models we experiment with, which thus differ only
with respect to their task-specific component.

2The dialogues in the GuessWhat?! dataset consist of 4.93 question-answer pairs on average (de Vries et al., 2017).
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Pre-training task component For the three tasks we consider, the final encoder representation h is
given to a Multi-Layer Perceptron (MLP), which generates either a language embedding (VQA model)
or a visual embedding (ReferIt and GuessWhat models). The three task-specific models are trained with
a cosine similarity loss, which aims to get the generated embedding closer to the ground truth embedding
and farther away from any other embeddings in the list of candidates. Details of how, for each datapoint,
the list of candidates is selected are provided in Section 5. The embeddings of such candidates are
obtained with USE (for VQA) and ResNet (for ReferIt and GuessWhat). As mentioned above, the high
density of the VQA candidate answers’ space makes the task rather hard.

FOIL task component To evaluate the encoder representations learned by the pre-trained models, the
task-specific MLPs are replaced by a fully connected layer, which is trained on the FOIL task using a
cross-entropy loss. We train the FOIL task component using the following settings:

• Random2 The encoder weights are randomly initialized and the FOIL classifier layer is untrained.
This provides a lower-bound baseline with random performance.

• Random The encoder weights are randomly initialized and then frozen while the FOIL classifier
layer is trained on the FOIL task. This provides a strong baseline that is directly comparable to the
task-specific setting explained next.

• Pre-trained (VQA, ReferIt, GuessWhat) The encoder weights are initialized with the Random
setting’s seeds and the model is trained on each of the tasks. The weights of the task-specific
encoders are then frozen and the FOIL classifier layer is trained on the FOIL task. With this
setting, we are able to diagnose the transfer and encoding properties of the pre-trained tasks.

• Fully trained on FOIL The encoder weights are initialized with the Radom setting’s seeds. Then
the full model is trained on the FOIL task, updating the weights of the projected vision and lan-
guage layers, the encoder, and the FOIL layer. This provides the upper bound on the FOIL classi-
fication performance, as the entire model is optimized for this task from the start.

5 Experimental Setup

We provide details on the data sets and the implementation settings we use in our experiments.

Pre-training datasets For the three visually grounded tasks, we use the VQA.v1 dataset by Antol et al.
(2015), the RefCOCO dataset by Yu et al. (2016), and the GuessWhat?! dataset by de Vries et al. (2017)
as our starting point. All these datasets have been developed with images from MS-COCO (Lin et al.,
2014). We construct common image datasets for by taking the intersection of the images in the three
original datasets. This results in a total of 14,458 images. An image can be part of several data points,
i.e, it can be paired with more than one linguistic input. Indeed, the 14,458 common images correspond
to 43,374 questions for the VQA task, 104,227 descriptions for the ReferIt task, and 35,467 dialogues
for the GuessWhat task.

To obtain datasets of equal size per task that are as similar as possible, we filter the resulting data
points according to the following procedure:

1. For each image, we check how many linguistic items are present in the three datasets and fix the
minimum number (k) to be our target number of linguistic items paired with that image.

2. We select n data points where the descriptions in ReferIt and dialogues in GuessWhat concern the
same target object (with n ≤ k).

3. Among the n data points selected in the previous step, we select the m data points in VQA where
the question or the answer mention the same target object (computed by string matching).

4. We make sure all the images in each task-specific dataset are paired with exactly k linguistic items;
if not, we select additional ones randomly until this holds.
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common image datasets FOIL dataset
training validation training validation testing

# images 13,058 1,400 63,240 13,485 20,105
# language 27,374 2,942 358,182 37,394 126,232

Table 1: Statistics of the datasets used for the pre-training tasks and the FOIL task.

This results in a total of 30,316 data points per dataset: 14,458 images shared across datasets, paired with
30,313 linguistic items. We randomly divided this common image dataset into training and validation sets
at the image level. The training set consists of 13,058 images (paired with 27,374 linguistic items) and
the validation set of 1,400 images (paired with 2,942 linguistic items). Table 1 provides an overview of
the datasets.

As mentioned in Section 3, we operationalize the three tasks as retrieval tasks where the goal is to
retrieve the correct item out of a set of candidates. In the VQA.v1 dataset (multiple choice version), there
are 18 candidate answers per question. In GuessWhat?! there are on average 18.71 candidate objects per
dialogue, all of them appearing in the image. We take the same list of candidate objects per image for
the ReferIt task.

FOIL dataset The FOIL dataset consists of image-caption pairs from MS-COCO and pairs where the
caption has been modified by replacing a noun in the original caption with a foiled noun, such that the
foiled caption is incongruent with the image—see Figure 1 for an example and Shekhar et al. (2017) for
further details on the construction of the dataset.3 The dataset contains 521,808 captions (358,182 in
training, 37,394 in validation and 126,232 in test set) and 96,830 images (63,240, 13,485 and 20,105, in
training, validation and test set, respectively) – see Table 1. All the images in the test set do not occur
either in the FOIL training and validation set, nor in the common image dataset described above and used
to pre-train the models.

Implementation details All models are trained using supervised learning with ground truth data. We
use the same parameters for all models: batch size of 256 and Adam optimizer (Kingma and Ba, 2014)
with learning rate 0.0001. All the parameters are tuned on the validation set. Early stopping is used while
training, i.e., training is stopped when there is no improvement on the validation loss for 10 consecutive
epochs or a maximum of 100 epochs, and the best model is taken based on the validation loss.

6 Results and Analysis

We carry out two main blocks of analyses: one exploiting FOIL as diagnostic task and the other one
investigating the structure of the semantic spaces produced by the pre-trained encoders when receiving
the same multimodal inputs.

Before diving into the results of these analyses, we evaluate the three task-specific models on the tasks
they have been trained for. Since these are retrieval tasks, we compute precision at rank 1 (P@1) on the
validation sets and compare the results to chance performance. Given the number of candidate answers
and objects per task in our datasets, chance P@1 is 0.055 for VQA and 0.05 for ReferIt and GuessWhat.
Our task-specific models obtain P@1 values of 0.14 for VQA (mean rank 2.84), 0.12 for ReferIt (mean
rank 3.32), and 0.08 for GuessWhat (mean rank 4.14). Not surprisingly given the challenging nature of
these tasks, the results are not high. Nevertheless, the representations learned by the models allow them
to perform above chance level and thus provide a reasonable basis for further investigation.

3Madhysastha et al. (2018) found that an earlier version of the FOIL dataset was biased. We have used the latest version of
the dataset available at https://foilunitn.github.io/, which does not have this problem.

216



6.1 Analysis via diagnostic task

In this first analysis, we assess the quality of the multimodal representations learned by the three mul-
timodal tasks considered in terms of their potential to perform the FOIL task, i.e., to spot semantic
(in)congruence between an image and a caption. Besides comparing the models with respect to task ac-
curacy, we also investigate how they learn to adapt to the FOIL task over training epochs, how much data
they need to reach their best performance, and how confident they are about the decisions they make.

FOIL accuracy Table 2 shows accuracy results on the FOIL task for the different training settings
described in Section 4.2. We report accuracy for the task overall, as well as accuracy on detecting original
and foiled captions. As expected, the Random2 setting yields chance performance (≈50% overall, with
a surprisingly strong preference for classifying captions as foiled). The model fully trained on FOIL
achieves an accuracy of 67.59%. This confirms that the FOIL task is challenging, as shown by Shekhar
et al. (2017), even for models that are optimized to solve it. The Random setting, where a randomly
initialized encoder is trained on the FOIL task, yields 53.79% accuracy overall – higher than the chance
lower bound by Random2, but well below the upper bound set by the fully trained model.

The key results of interest for our purposes in this paper are those achieved by the models where
the encoder has been pre-trained on each of the three multimodal tasks we study. We observe that, like
the Random encoder, the pre-trained encoders achieve results well below the upper bound. The VQA
encoder yields results comparable to Random, while ReferIt and GuessWhat achieve slightly higher
results: 54.02% and 54.18%, respectively. This trend is much more noticeable when we zoom into the
accuracy results on original vs. foiled captions. All models (except Random2) achieve lower accuracy on
the foil class than on the original class. However, the GuessWhat encoder performs substantially better
than the rest: Its foil accuracy is not only well above the Random encoder, but also around 2% points
over the fully trained model (49.34% vs. 47.52%). The ReferIt encoder also performs reasonably well
(on a par with the fully trained model), while the VQA encoder is closer to Random.

This suggests that the ReferIt and the GuessWhat encoders do learn a small degree of multimodal
understanding skills that can transfer to new tasks. The VQA encoder, in contrast, seems to lack this
ability by and large.

overall original foiled

Random2 49.99 0.282 99.71
Random 53.79 65.33 42.25
VQA 53.78 66.09 41.48
ReferIt 54.02 60.39 47.66
GuessWhat 54.18 59.02 49.34
Fully FOIL 67.59 87.66 47.52

Table 2: Accuracy on the FOIL task for the best model of each training setting.

Learning over time In order to better understand the effect of the representations learned by the pre-
trained encoders, we trace the evolution of the FOIL classification accuracy over time, i.e., over the first
50 training epochs. As shown in Figure 3a, all the pre-trained models start with higher accuracy than the
Random model. This shows that the encoder is able to transfer knowledge from the pre-trained tasks to
some extent. The Random model takes around 10 epochs to catch up and after that it does not manage
to improve much. The evolution of the accuracy achieved by the ReferIt and GuessWhat encoders is
relatively smooth, i.e., it increases progressively with further training epochs. The one by the VQA
model, in contrast, is far less stable.
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(a) Training epochs. (b) Size of FOIL training set (log scaled). (c) AUC indicating confidence.

Figure 3: Comparisons among the pre-trained encoders and the randomly initialized encoder, regarding
their accuracy over training epochs, with varying data size, and across different decision thresholds.

Size of FOIL training data Next, we evaluate how the accuracy achieved by the models changes when
varying the size of the FOIL training set. By controlling the amount of training data, we can better tease
apart whether the performance of the pre-trained models is due to the quality of the encoder representa-
tions or simply to the amount of training the models undergo on the FOIL task itself. Figure 3b gives an
overview. The GuessWhat encoder has a clear advantage when very little training data is available, while
the other encoders start at chance level. Both GuessWhat and ReferIt increase their accuracy relatively
smoothly as more data is provided, while for the VQA model there is a big jump in accuracy once enough
FOIL data is available. Again, this suggests that the representations learned by the GuessWhat encoder
are of somewhat higher quality, with more transferable potential.

Confidence Finally, we analyse the confidence of the models by measuring their Area Under the Curve
(AUC). We gradually increase the classification threshold from 0.5 to 0.7 by an interval of 0.01. This
measures the confidence of the classifier in making a prediction. As shown in Figure 3c, all models
have rather low confidence (when the threshold is 0.7 they are all at chance level). The Random model
exhibits the lowest confidence, while the ReferIt model is slightly more confident in its decisions than
the rest, followed by the GuessWhat model.

6.2 Analysis of the multimodal semantic spaces learned by the encoders

In this section, we analyse the encoders by comparing the similarity of the multimodal spaces they learn
and by comparing the learned multimodal spaces to the visual and linguistic representations they receive
as input in terms on nearest neighbours.

Representation similarity analysis Representation Similarity Analysis (RSA) is a technique from
neuroscience (Kriegeskorte et al., 2008) that has been recently leveraged in computational linguistics, for
example to compare the semantic spaces learned by artificial communicating agents (Bouchacourt and
Baroni, 2018). It compares different semantic spaces by comparing their internal similarity relations,
given a common set N of input data points. Each input k ∈ N is processed by an encoder for a given
task Ti, producing vector hkT i. Let HN

Ti be the set of vector representations created by the encoder
of Ti for all the items in N ; and let HN

Tj be the corresponding set of representations by the encoder
of task Tj. These two semantic spaces, HN

Ti and HN
Tj , are not directly comparable as they have been

produced independently. RSA remedies this by instead comparing their structure in terms of internal
similarity relations. By computing cosine similarity between all pairs of vectors within each semantic
space, we obtain a vector of cosine similarities per space, which captures its internal structure. These
similarity vectors have identical dimensionality, namely N(N − 1)/2) values, and hence can be directly
compared by computing Spearman correlation between them. The resulting RSA scores (corresponding
to the aforementioned Spearman correlation coefficients) tell us the extent to which the two sets of
representations are structurally similar.
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Figure 4: RSA scores indicating degree of structural similarity between the multimodal semantic spaces
produced by the various encoders when receiving 5,000 data points from the FOIL test set consisting of
unique images paired with their original captions.

The outputs of the encoders are compared when the same set of inputs is given. We give as input
5,000 data points from the FOIL test set, randomly sampled from only the ones with original captions
and containing unique images, and compare the representations produced by the encoders under investi-
gation. Figure 4 shows that the semantic space produced by the encoder fully trained on FOIL is rather
different from all the other models, and that the VQA semantic space is very similar to the one produced
by the randomly initialized encoder.

Nearest neighbour overlap We analyse the encoder representations using nearest neighbour overlap.
Collell and Moens (2018) proposed this measure to compare the structure of functions that map concepts
from an input to a target space. It is defined as the number of k nearest neighbours that two paired
vectors share in their respective semantic space. For instance, if k = 3 and the 3 nearest neighbours of
the vector for ‘cat’ vcat in space V are {vdog, vtiger, vlion}, and those of the vector of ‘cat’ zcat in space
Z are {vmouse, vtiger, vlion}, the nearest neighbour overlap (NN) is 2. The value is then normalized with
respect to the number of data points and the number of k nearest neighbours.

k = 1 k = 10
ResNet152 USE ResNet152 USE

Random 0.829 0.363 0.876 0.365
VQA 0.638 0.350 0.703 0.386
ReferIt 0.754 0.346 0.780 0.366
GuessWhat 0.658 0.329 0.689 0.359
Fully FOIL 0.171 0.254 0.246 0.291

Table 3: Average nearest neighbour overlap between the encoder multimodal representations and the
ResNet152 and USE embeddings, respectively.

We take the encoder to be a mapping function from each of the modality-specific representations to
the multimodal space, and we use the NN measure to investigate whether the structure of the multimodal
space produced by the encoder is closer to the visual ResNet152 embeddings or to the linguistic USE
embeddings given as input. We use simple visual and language inputs, namely, objects and the word
corresponding to their object category. We consider the 80 object categories of MS-COCO (e.g., dog,
car, etc.) and obtain their USE representations. We build their visual ResNet152 embedding by selecting
100 images for each category from MS-COCO, and then compute their average. We compute the NN
by setting k = 1 and k = 10. The results, given in Table 3, show that the multimodal spaces learned
by all the models (except the model with the encoder fully trained on the FOIL task) are much closer to
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the visual input space than to the linguistic one. This behaviour could be related to the different density
of the visual and linguistic semantic spaces of the input data we pointed out in Section 4.1, where we
observed that input images have higher average cosine similarity than input questions, descriptions, and
dialogues, respectively.

7 Conclusion

Our goal in this paper has been to evaluate the quality of the multimodal representations learned by
an encoder—the core module of all the multimodal models used currently within the language and vi-
sion community—which resembles the cognitive representational hub described by Patterson and Ralph
(2015). Furthermore, we investigated the transfer potential of the encoded skills, taking into account
the amount of time (learning epochs) and training data the models need to adapt to a new task and with
how much confidence they make their decisions. We studied three multimodal tasks, where the encoder
is trained to answer a question about an image (VQA), pick up the object in an image referred to by a
description (ReferIt), and identify the object in an image that is the target of a goal-oriented question-
answer dialogue (GuessWhat). To carry out this analysis, we have evaluated how the pre-trained models
perform on a diagnostic task, FOIL (Shekhar et al., 2017), designed to check the model’s ability to detect
semantic incongruence in visually grounded language.

Overall, we found that none of the three tasks under investigation leads to learning fine-grained
multimodal understanding skills that can solve the FOIL task, although there are differences among
tasks. Our analysis shows that the VQA task is easier to learn (the model achieves a rather high mean
rank precision). However the multimodal encoding skills it learns are less stable and transferable than
the ones learned through the ReferIt and GuessWhat tasks. This can be seen by the large amount of data
the model has to be exposed to in order to learn the FOIL classification task and by the unstable results
over training epochs. None of the models transfers their encoding skills with high confidence, but again
the VQA model does it to a lower extent.

The RSA analysis confirms the higher similarity of the multimodal spaces generated by the ReferIt
and GuessWhat encoders and the high similarity between the VQA space and the space produced by
the randomly initialized encoder. From the NN analysis, it appears that for all models (except for the
one fully trained on the FOIL task) the visual modality has higher weight than the linguistic one in the
construction of the multimodal representations.

These differences among tasks could be due to subtle parallelisms with the diagnostic task: ReferIt
and GuessWhat may resemble some aspects of FOIL, since these three tasks revolve around objects (the
foiled word is always a noun), while arguably the VQA task is more diverse as it contains questions
about, e.g., actions, attributes, or scene configurations. In future work, it would be interesting to evaluate
the models on different diagnostic datasets that prioritise skills other than object identification.
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Abstract

Learning to follow human instructions is a long-pursued goal in artificial intelligence. The task
becomes particularly challenging if no prior knowledge of the employed language is assumed while
relying only on a handful of examples to learn from. Work in the past has relied on hand-coded
components or manually engineered features to provide strong inductive biases that make learning
in such situations possible. In contrast, here we seek to establish whether this knowledge can be
acquired automatically by a neural network system through a two phase training procedure: A (slow)
offline learning stage where the network learns about the general structure of the task and a (fast)
online adaptation phase where the network learns the language of a new given speaker. Controlled
experiments show that when the network is exposed to familiar instructions but containing novel
words, the model adapts very efficiently to the new vocabulary. Moreover, even for human speakers
whose language usage can depart significantly from our artificial training language, our network
can still make use of its automatically acquired inductive bias to learn to follow instructions more
effectively.

1 Introduction

Learning to follow instructions from human speakers is a long-pursued goal in artificial intelligence,
tracing back at least to Terry Winograd’s work on SHRDLU (Winograd, 1972). This system was capable
of interpreting and following natural language instructions about a world composed of geometric figures.
While this first system relied on a set of hand-coded rules to process natural language, most of recent
work aimed at using machine learning to map linguistic utterances into their semantic interpretations
(Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Andreas and Klein, 2015). Predominantly, they
assumed that users speak all in the same natural language, and thus the systems could be trained offline
once and for all. However, recently Wang et al. (2016) departed from this assumption by proposing
SHRDLURN, a coloured-blocks manipulation language game. There, users could issue instructions
in any arbitrary language to a system that must incrementally learn to interpret it (see Figure 1 for an
example). This learning problem is particularly challenging because human users typically provide only
a handful of examples for the system to learn from. Therefore, the learning algorithms must incorporate
strong inductive biases in order to learn effectively. That is, they need to complement the scarce input
with priors that would help the model make the right inferences even in the absence of positive data.
A way of giving the models a powerful inductive bias is by hand-coding features or operations that are
specific to the given domain where the instructions must be interpreted. For example, Wang et al. (2016)
propose a log-linear semantic parser which crucially relies on a set of hand-coded functional primitives.
While effective, this strategy severely curtails the portability of a system: For every new domain, human
technical expertise is required to adapt the system. Instead, we would like these inductive biases to be
learned automatically without human intervention. That is, humans should be free from the burden of
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Figure 1: Illustration of the SHRDLURN task of Wang et al. (2016)

thinking what are useful primitives for a given domain, but still obtain systems that can learn fast from
little data.

In this paper, we introduce a neural network system that learns domain-specific priors directly from
data. This system can then be used to quickly learn the language of new users online. It uses a two phase
regime: First, the network is trained offline on easy-to-produce artificial data to learn the mechanics of a
given task. Next, the network is deployed to real human users who will train it online with just a handful
of examples. While this implies that some of the manual effort needed to design useful primitive func-
tions would go in developing the artificial data, we envision that in many real-world situations it could
be easier to provide examples of expected interactions than thinking of what could be useful primitives
involved in them. On controlled experiments we show that our system can recover the meaning of sen-
tences where some words where scrambled, even though it does not display evidence of compositional
learning. On the other hand, we show that the offline training phase allows it to learn faster from limited
data, compared to a neural network system that did not go through this pre-training phase. We hypoth-
esize that this system learns useful inductive biases, such as the types of operations that are likely to be
requested. In this direction, we show that the performance of our best-performing system correlates with
that of Wang et al., where these operations were encoded by hand.

The work in this paper is organized as follows: We first start by creating a large artificially generated
dataset to train the systems in the offline phase. We then experiment with different neural network
architectures to find which general learning system adapts best for this task. Then, we propose how
to adapt this network by training it online and confirm its effectiveness on recovering the meaning of
scrambled words and on learning to process the language from human users, using the dataset introduced
by Wang et al. (2016).

2 Related Work

Learning to follow human natural language instructions has a long tradition in NLP, dating at least back
to the work of Terry Winograd Winograd (1972), who developed a rule-based system for this endeavour.
Subsequent work centered around automatically learning the rules to process language (Shimizu and
Haas, 2009; Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Vogel and Jurafsky, 2010; Andreas
and Klein, 2015). This line of work assumes that users speak all in the same language, and thus a
system can be trained on a set of dialogs pertaining to some of those speakers and then generalize to
new ones. Instead, Wang et al. (2016) describe a block manipulation game in which a system needs
to learn to follow natural language instructions produced by human users using the correct outcome of
the instruction as feedback. What distinguishes this from other work is that every user can speak in their
own –natural or invented– language. For the game to remain engaging, the system needs to quickly adapt
to the user’s language, thus requiring a system that can learn much faster from small data. The system
they propose is composed of a set of hand-coded primitives (e.g., remove, red, with) that can
manipulate the state of the block piles and a log-linear learning model that learns to map n-gram features
from the linguistic instructions (like, for instance, ‘remove red’) to expressions in this programming
language (e.g., remove(with(red))). Our work departs from this base in that we provide no hand-
coded primitives to solve this task, but aim at learning an end-to-end system that follows natural language
instructions from human feedback. Another line of research that is closely related to ours, is that of fast
mapping (Lake et al., 2011; Trueswell et al., 2013; Herbelot and Baroni, 2017), where the goal is to
acquire a new concept from a single example of its usage in context. While we don’t aim at learning
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S → VERB COLOR at POS tile
VERB → add | remove
COLOR → red | cyan | brown | orange
POS → 1st | 2nd | 3rd | 4th |

5th | 6th | even | odd |
leftmost | rightmost | every

(a) Grammar of our artificially generated language

Instruction remove red at 3rd tile
Initial Config. BROWN X X # RED X X # ORANGE RED X
Target Config. BROWN X X # RED X X # ORANGE X X

(b) Example of an entry in our dataset. We
show three rather than six columns for con-
ciseness.

Figure 2: Artificially generated data

new concepts here, we do want to learn from few examples to draw an analogy between a new term
and a previously acquired concept. Finally, our work can be seen as an instance of the transfer learning
paradigm (Pan and Yang, 2010), which has been successful in both linguistic (Mikolov et al., 2013;
Peters et al., 2018) and visual processing (Oquab et al., 2014). Rather than transferring knowledge from
one task to another, we are transferring between artificial and natural data.

3 Method

A model aimed at following natural language instructions must master at least two skills. First, it needs
to process the language of the human user. Second, it must act on the target domain in sensible ways (and
not trying actions that a human user would probably never ask for). Whereas the first aspect is dependent
on each specific user’s language, the second requirement is not related to a specific user, and could –
as illustrated by the successes of Wang et al.’s log-linear model – be learned beforehand. To allow a
system to acquire these skills automatically from data, we introduce a two-step training regime. First,
we train the neural network model offline on a dataset that mimics the target task. Next, we allow this
model to independently adapt to the language of each particular human user by training it online with the
examples that each user provides.

3.1 Offline learning phase

The task at hand is, given a list of piles of coloured blocks and a natural language instruction, to produce
a new list of piles that matches the request. The first step of our method involves training a neural
network model to perform this task. We used supervised learning to train the system on a dataset that
we constructed by simulating a user playing the game. In this way, we did not require any real data to
kick-start our model. Below we describe, first, the procedure used to generate the dataset and, second,
the neural network models that were explored in this phase.

Data The data for SHRDLURN task takes the form of triples: a start configuration of colored blocks
grouped into piles, a natural language instruction given by a user and the resulting configuration of
colored blocks that comply with the given instruction1 (Figure 1). We generated 88 natural language
instructions following the grammar in Figure 2a. The language of the grammar was kept as minimal as
possible, with just enough variation to capture the simplest possible actions in this game. Furthermore,
we sampled as many as needed initial block configurations by building 6 piles containing a maximum
of 3 randomly sampled colored blocks each. The piles in the dataset were serialized into a sequence
by encoding them into 6 lists delimited by a special symbol, each of them containing a sequence of
color tokens or a special empty symbol. We then computed the resulting target configuration using a
rule-based interpretation of our grammar. An example of our generated data is depicted in Figure 2b.

1The original paper produces a rank of candidate configurations to give to a human annotator. Since here we focus on
pre-annotated data where only the expected target configuration is given, we will restrict our evaluation to top-1 accuracy.
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Model To model this task we used an encoder-decoder (Sutskever et al., 2014) architecture: The en-
coder reads the natural language utterance w = w1, . . . , wm and transforms it into a sequence of feature
vectors h1, . . . ,hm, which are then read by the decoder through an attention layer. This latter module
reads the sequence describing the input block configurations x = x1, . . . , xn and produces a new se-
quence ŷ = ŷ1, . . . , ŷn that is construed as the resulting block configuration. To pass information from
the encoder to the decoder, we equipped the decoder with an attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015). This allows the decoder, at every timestep, to extract a convex combination of the
hidden vectors h. We trained the system parameters θ = (θenc, θdec) so that the output matches the target
block configuration y = y1, . . . , yn (represented as 1-hot vectors) using a cross-entropy loss:

h = encoderθenc(w)

ŷ = decoderθdec(x|h)

L(y, ŷ) =
n∑

i=1

yi log ŷi

Both the encoder and decoder modules are sequence models, meaning that they read a sequence of inputs
and compute, in turn, a sequence of outputs, and that can be trained end-to-end. We experimented with
two state-of-the-art sequence models: A standard recurrent LSTM (Hochreiter and Schmidhuber, 1997)
and a convolutional sequence model (Gehring et al., 2016, 2017), which has been shown to outperform
the former on a range of different tasks (Bai et al., 2018). For the convolutional model we used kernel
size k = 3 and padding to make the size of the output match the size of the input sequence. Because
of the invariant structure of the block configuration that is organized into lists of columns, we expected
the convolutional model (as a decoder) to be particularly well-fit to process them. We explored all
possible combinations of architectures for the encoder and decoder components. Furthermore, as a
simple baseline, we also considered a bag-of-words encoder that computes the average of trainable word
embeddings.

3.2 Online learning phase

Once the model has been trained to follow a specific set of instructions given by a simulated user, we
want it to serve a new, real user, who does not know anything about how the model was trained and is
encouraged to communicate with the system using her own language. To do so, the model will have
to adapt to follow instructions given in a potentially very different language from the one it has seen
during offline training. One of the first challenges it will encounter is to quickly master the meaning of
new words. This challenge of inferring the meaning of a word from a single exposure goes by the name
of ‘fast-mapping’ (Lake et al., 2011; Trueswell et al., 2013). Here, we take inspiration from the method
proposed by Herbelot and Baroni (2017), who learn the embeddings for new words with gradient descent,
freezing all the other network weights. We further develop it by experimenting with different variations of
this method: Like them, we try learning only new word embeddings, but also learning the full embedding
layer (thus allowing words seen during offline training to shift their meaning). Additionally, we test what
happens when the full encoder weights are unfrozen, allowing to adapt not only the embeddings but also
how they are processed sequentially. In the latter two cases, we incorporate L2 regularization over the
embeddings and the model weights.

Human users interact with the system by asking it in their own language to perform transformations
on the colored block piles, providing immediate feedback on what was the intended target configuration.2

In our system, each new example that the model observes is added to a buffer B. Then, the model is
further trained with a fixed number of gradient descent steps S on predicting the correct output using
examples randomly drawn from a subset BTR ⊆ B of this buffer.

In order to reduce the impact of local minima that the model could encounter when learning from
just a handful of examples, we train k different copies (rather than training a single model) each with

2In our experiments, we use pre-recorded data from Wang et al. (2016).
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a set of differently initialized embeddings for new words. In this way, we can pick the best model to
make a future prediction, not only based on how well it has fitted previously seen data, but also by
how well it generalizes to other examples. For choosing which model to use, we use a different (not
necessarily disjoint) subset of examples called BVA ⊆ B. We experimented with two model selection
strategies: greedy, by which we pick the model with the lowest loss computed over the full training
buffer examples (BVA = BTR = B); and 1-out, where we save the last example for validation and
pick the model that has the lowest loss on that example (BVA = B[LAST], BTR = B[0 : LAST − 1]) 3.
Algorithm 1 summarizes our approach.

Algorithm 1 Online Training
1: Initialize models m1, . . . ,mk

2: Let B be an empty training buffer
3: for t = 1,2,...,T do
4: Observe the input utterance wt and block configuration xt
5: SELECT best model mi using data BVA
6: Predict ŷt = mi(wt,xt)
7: Observe feedback yt.
8: Record prediction accuracy (yt == ŷt)
9: Add (wt,xt,yt) to B

10: TRAIN m1, . . . ,mk on data BTR

11: procedure SELECT(m1, . . . ,mk, BVA)
12: Let Ci ←

∑
(w,x,y)∈BVA

L(y,mi(w,x))
13: return mi having minimal Ci
14: procedure TRAIN(m1, . . . ,mk, BTR)
15: for i = 1, . . . , k, s = 1, . . . , S do
16: Draw w,x,y ∼ BTR
17: Predict ŷt = mi(wt,xt)
18: Compute∇θiL(y, ŷt)
19: Update mi by a gradient step on θi

4 Experiments

We seek to establish whether we can train a neural network system to learn the rules and structure of
a task while communicating with a scripted teacher and then having it adapt to the particular nuances
of each human user. We tackled this question incrementally. First, we explored what is the best archi-
tectural choice for solving the SHRDLURN task on our large artificially-constructed dataset. Next, we
ran multiple controlled experiments to investigate the adaptation skills of our online learning system. In
particular, we first tested whether the model was able to recover the original meaning of a word that had
been replaced with a new arbitrary symbol – e.g. “red” becomes “roze”– on an online training regime.
Finally, we proceeded to learn from real human utterances using the dataset collected by Wang et al.
(2016).

4.1 Offline training

We used the data generation method described in the previous section to construct a dataset to train our
neural network systems. To evaluate the models in a challenging compositional setting, rather than pro-
ducing a random split of the data, we create validation and test sets that have no overlap with training
instructions or block configurations. To this end, we split all the 88 possible utterances that can be gener-
ated from our grammar into 66 utterances for training, 11 for validation and 11 for testing. Similarly, we
split all possible 85 combinations that make a valid column of blocks into 69 combinations for training,

3Other than these, there is wealth of methods in the literature for model selection (see, e.g. Claeskens et al., 2008). To limit
the scope of this work, we leave this exploration for future work.
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Model Val. Accuracy Test Accuracy
seq2seq 78 79

seq2conv 99 100
conv2seq 73 67

conv2conv 64 74
bow2seq 57 63

Table 1: Model’s accuracies (in percentages) evaluated on block configurations and utterances that were
completely unseen during offline training. Results expressed in percentages.

8 for validation and 8 for testing, sampling input block configurations using combinations of 6 columns
pertaining only to the relevant set. In this way, we generated 42000 instances for training, 4000 for
validation and 4000 for testing.

We explored all possible combinations of encoder and decoder models: LSTM encoder and LSTM
decoder (seq2seq), LSTM encoder and convolutional decoder (seq2conv), convolutional encoder and
LSTM decoder (conv2seq), and both convolutional encoder and decoder (conv2conv). Furthermore, we
explored a bag of words encoder with an LSTM decoder (bow2seq). We trained 5 models with our
generated dataset and use the best performing for the following experiments. We conducted a hyperpa-
rameter search for all these models, exploring the number of layers (1 or 2 for LSTMs, 4 or 5 for the
convolutional network), the size of the hidden layer (32, 64, 128, 256) and dropout rate (0, 0.2, 0.5). For
each model, we picked the hyperparameters that maximized accuracy on our validation set and report
validation and test accuracy in Table 1.

As it can be noticed, seq2conv is the best model for this task by a large margin, performing perfectly
or almost perfectly on this challenging test split featuring only unseen utterances and block configura-
tions. Furthermore, this validates our hypothesis that the convolutional decoder is better fitted to process
the structure of the block piles.

4.2 Recovering corrupted words

Next, we ask whether our system could adapt quickly to controlled variations in the language. To test
this, we presented the model with a simulated user producing utterances drawn from the same grammar
as before, but where some words have been systematically corrupted so the model cannot recognize them
anymore. We then evaluated the model on whether it can recover the meaning of these words during on-
line training. For this experiment, we combined the validation and test sections of our dataset, containing
in all 22 different utterances, to make sure that the presented utterances were completely unseen during
training time. We then split the vocabulary in two disjoint sets of words that we want to corrupt, one for
validation and one for testing. For validation, we take one verb (“add”), 2 colors (“orange” and “red”),
and 4 positions (“1st”, “3rd; ; “5th” and “even”), keeping the remaining alternatives for testing. We then
extracted a set of 15 utterances containing these words and corrupted each occurrence of them by replac-
ing them with a new token (consistently keeping the same new token for each occurrence of the word). In
this way, we obtained a validation set where we can calibrate hyper-parameters for all the test conditions
that we describe below. We further extracted, for each of these utterances, 3 block configurations to pair
them with, resulting in a simulated session with 45 instruction examples. For testing, we created con-
trolled sessions where we corrupted: one single word, two words of different type (e.g. verb and color),
three words of different types and finally, all words from the test set vocabulary45. Each condition allows
for different a number of sessions because of the number of ways one can chose words from these sets.
By keeping the two vocabularies disjoint we make sure that by optimizing the hyperparameters of our
online training scheme, we don’t happen to be good at recovering words from a particular subset.

We use the validation set to calibrate the hyperparameters of the online training routine. In particular,
4We also experimented with different types of corrupted words (verbs, colors or position numerals) but we found no obvious

differences between them.
5The dataset is available with the supplementary materials at https://github.com/rezkaaufar/fast-and-flexible.
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we vary the optimization algorithm to use (Adam or SGD), the number of training steps (100, 200 or 500),
the regularization weight (0, 10−2, 10−3, 10−4), the learning rate (10−1, 10−2, 10−3), and the model
selection strategy (greedy or 1-out), while keeping the number of model parameters that are trained in
parallel fixed to k = 7. For this particular experiment, we considered learning only the embeddings
for the new words, leaving all the remaining weights frozen (model 1). To assess the relative merits of
this model, we compared it with ablated versions where the encoder has been randomly initialized but
the decoder is kept fixed (model 2) and a fully randomly initialized model (model 3). Furthermore, we
evaluated the impact of having multiple (k = 7) concurrently trained model parameters by comparing
it with just having a single set of parameters trained (model 4). We report the best hyperparameters for
each model in the supplementary materials. We use online accuracy as our figure of merit, computed as
1
T

∑T
t=1 I[ŷt == yt], where T is the length of the session. We report the results in Table 2.

N. of corrupted words
Transfer Adapt 1 2 3 all

k = 7
1. Enc+Dec Emb. 90.9 88.1 86.1 73.3
2. Dec. Enc. 93.8 85.9 82.4 55.5
3. ∅ Enc + Dec 43.3 35.5 36.1 36.7

k = 1
4. Enc+Dec Emb. 86.1 84.3 81.8 55

Table 2: Online accuracies (in percentages) for the word recovery task averaged over 7 sessions for
1 word, 17 for 2 words, 10 for 3 words and a single interaction for the all words condition, having 45
instructions each. “Transfer” stands for the components whose weights were saved (and not reinitialized)
from the offline training. “Adapt” stands for the components whose weights get updated during the online
training.

First, we can see that –perhaps not too surprisingly– the model that adapts only the word embeddings
performs best overall. Notably, it can reach 73% accuracy even when all words have been corrupted
(whereas, for example, the model of Wang et al. (2016) obtains 55% on the same task). The only
exception comes in the single corrupted word condition, where re-learning the full encoder seems to be
performing even better. A possible explanation is given by the discrepancy between this condition and
the validation set, which was more akin to the “all” condition, resulting in suboptimal hyperparameters
for the condition with a single word changed. Nevertheless, it is encouraging to see that the model can
quickly learn to perform the instructions even in the most challenging setting where all words have been
changed. In addition, we can observe the usefulness of having multiple sets of parameters trained, by
comparing the “Embeddings” models by default trained with k = 7 models and when k = 1, noting that
the former is consistently better.

4.3 Adapting to human speakers

Having established our model’s ability to recover the meaning of masked known concepts, albeit in
similar contexts as those seen seen during training, we moved to the more challenging setting where the
model needs to adapt to real human speakers. In this case, the language can significantly depart from
the one seen during the offline learning phase, both in surface form and in their underlying semantics.
For these experiments we used the dataset made available by Wang et al. (2016), collected from turkers
playing SHRDLURN in collaboration with their log-linear/symbolic model. The dataset contains 100
sessions with nearly 8k instruction examples. We first selected three sessions in this dataset to produce
a validation set to tune the online learning hyperparameters. All the remaining 97 sessions were left for
testing. In order to assess the relative importance of our pre-training procedure on each of our model’s
components, we explored 6 different variants of our model. On one hand, we varied which set of pre-
trained weights were kept without reinitializing them: (a) All the weights in the encoder plus all the
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weights of the decoder; (b) only the decoder weights while randomly initializing the encoder; or (c) no
weights and thus, resetting them all (this taking the role of a baseline for our method). On the other
hand, we explored which subset of weights we adapt, leaving all the rest frozen: (1) Only the word
embeddings6, (2) the full weights of the encoder or (3) the full network (both encoder and decoder).
Among the 9 possible combinations, we restricted to the 6 that wouldn’t result on random components
not being updated (for example (c-2) would result in a model with a randomly initialized decoder that is
never trained), thus leaving out (c-1), (c-2) and (b-1). For each of the remaining 6 valid training regimes,
we ran an independent hyperparameter search choosing from the same pool of candidate values as in the
word recovery task (see Section 4.2). We picked the hyperparameter configuration that maximized the
average online accuracy on the three validation sessions. The best hyperparameters are reported on the
supplementary materials.

Adapt
(1) Embeddings (2) Encoder (3) Encoder+Decoder
acc. r acc. r acc. r

R
eu

se (c) Nothing (Random) - - - - 13.5 0.58
(b) Decoder (Random Encoder) - - 23 0.83 21 0.7

(a) Encoder + Decoder 18.2 0.74 22.6 0.84 21.3 0.72

Table 3: For each (valid) combination of set of weights to re-use and weights to adapt online, we report
average online accuracy on Wang et al. (2016) dataset and pearson-r correlation between online accu-
racies obtained by our model and those reported by the author. Results obtained on 220 sessions, with
about 39 ± 31 interactions each.

.

We then evaluated each of the model variants on the 97 interactions in our test set using average
online accuracy as figure of merit. Furthermore, we also computed the correlation between the online
accuracy obtained by our model on every single session and that obtained by Wang et al.’s system which
was endowed with hand-coded functions. The higher the correlation, the more our model behaves in a
similar fashion to theirs, learning or failing to do so on the same sessions.

The results of these experiments are displayed in Table 3.
In the first place, we observe that models using knowledge acquired in the offline training phase

(rows a and b) perform (in terms of accuracy) better than a randomly initialized model (c-3), confirming
the effectiveness of our offline training phase. Second, a randomly initialized encoder with a fixed
decoder (b-2) performs slightly better than the pre-trained one (a-2). This result suggests that the model
is better off ignoring the specifics of our artificial grammar7 and learning the language from scratch,
even from very few examples. Therefore, no manual effort is required to reflect the specific surface
form of a user’s language when training the system offline on artificial data. Finally, we observe that
the models that perform the best are those in column (2) which adapt the encoder weights and freeze the
decoder ones. This is congruent to what would be expected if the decoder is implementing task-specific
knowledge because the task has remained invariant between the two phases and thus, the components
presumedly related to solving it should not need to change. Interestingly, variants in these column also
correlate the most with the symbolic system. Moreover, performance scores seem to be strongly aligned
with the correlation coefficients. As a matter of fact the 7 entries of online accuracy and pearson r are
themselves correlated with r = 0.99, which is highly significant even for these few data points. This
result is compatible with our hypothesis that the symbolic system carries learning biases which, the
better our models are at capturing, the better they will perform in the end task. Still, evidence for our
hypothesis, based both on the effectiveness of the pre-training step and on the fact that similar systems
should succeed and fail on similar situations, is still indirect. We leave for future work the interesting

6Here we report adapting the full embedding layer, which for this particular experiment performed better than just adapting
the embeddings for new words.

7Recall that the encoder is the component that reads and interprets the user language, while the decoder processes the block
configurations conditioned on the information extracted by the encoder.
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(3a) Cosine similarities of the newly learned word
embedding for the corrupted version of the words
“brown”, “remove” and “every” with the rest of the
vocabulary.

(3b) Example of failing case for our system. During
offline training it had not seen other colored blocks
to be used as referring expressions for locations.

question of through which mechanisms the decoder is implementing useful task-specific information,
and whether they mimic the functions that are implemented in Wang et al.’s system, or whether they are
of a different nature.

Furthermore, to test whether the model was harnessing similarities between our artificial and the
human-produced data, we re-trained our model on our artificial dataset after scrambling all words and
shuffling word order in all sentences in an arbitrary but consistent way, thus destroying any existing
similarity at lexical or syntactic levels. Then, we repeated the online training procedure keeping the
decoder weights, obtaining 20.7% mean online accuracy, which is much closer to the results of the
models trained on the original grammar than it is to the randomly initialized model. With this, we
conclude that a large part of the knowledge that the model exploits comes from the tasks mechanics than
from specifics of the language used.

Finally, we note that the symbolic model attains a higher average online accuracy of 33% in this
dataset, showing that there is still room for improvement in this task. Yet, it is important to remark that
since this model features hand-coded domain knowledge it is expected to have an advantage over a model
that has to learn these rules from data alone, and thus the results are not directly comparable but rather
serve as a reference point.

5 Analysis

Word recovery To gain some further understanding of what our model learns, we examined the word
embeddings learned by our model in the word recovery task. In particular, we wanted to see whether
the embedding that the model had re-learned for the corrupted word was similar to the embedding of
the original word. We analyzed a session in which 3 words had been corrupted: “brown”, “remove”
and “every”. Recall from Section 4.2 that these sessions are 45-interactions-long with 15 different ut-
terances issued on 3 different inputs each. We then evaluated how close each of the corrupted versions
of these words (called “braun”, “rmv” and “evr”) were to their original counterparts in terms of cosine
similarity. Interestingly, the model performs very well, with an online accuracy of about 80%, with 50%
of the errors concentrated on a single utterance that contains all corrupted words together: “rmv braun
at evr tile”. However, as shown on Figure 3a, the system seems to be assigning most of the semantics
associated to “brown” to the embedding for “rmv” (“brown” has much higher cosine similarity to “rmv”
than to “braun”), implying that the system is confounding these two words. This is consistent with pre-
vious findings on machine learning systems (Sturm, 2014), showing that systems can easily learn some
spurious correlation that fits the training data rather than the ground-truth generative process. Similar
observations were brought forward on a linguistic context by Lake and Baroni (2017), where the authors
show that, after a system has learned to perform a series of different instructions (e.g., “run”, “run twice”,
“run left”), a new verb is taught to it (“jump”), but then it fails to generalize its usage to previously known
contexts (“jump twice”, “jump left”). While our system seems to be capable of compositional process-
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ing, as suggested by the high accuracy on our compositional split shown in Section 4.1, it is not able to
harness this structure during learning from few examples, as evidenced by this analysis. In other words,
it is not capable of compositional learning. One possible route to alleviate this problem could include
separating syntax and semantics as is customary on formal semantic methods (Partee et al., 1990) and, as
recently suggested in the context of latent tree learning (Havrylov et al., 2019), so that syntax can guide
semantics both in processing and learning.

Human data On the previous section we have shown that the performance of our system correlates
strongly with the symbolic system of Wang et al. Yet, this correlation is not perfect, and thus, there are
sessions in which our system performs comparatively better or worse on a normalized scale. We looked
for examples of such sessions in the dataset. Figure 3b shows a particular case that our system fails to
learn. Notably it is using other blocks as referring expressions to indicate positions, a mechanism that
the model had not seen during offline training, and thus it struggled to quickly assign a meaning to it.

On more realistic settings, language learning does not take the form of our idealized two-phase
learning process, but it is an ongoing learning cycle where new communicative strategies can be proposed
or discovered on the fly, as this example of using colors as referring expressions teaches us. Tackling this
learning process requires advances that are well out of the scope of this work 8. However, we see these
challenges as exciting problems to pursue in the future.

6 Conclusions

Learning to follow human instructions is a challenging task because humans typically (and rightfully so)
provide very few examples to learn from. For learning from this data to be possible, it is necessary to
make use of some inductive bias. Whereas work in the past has relied on hand-coded components or
manually engineered features, here we sought to establish whether this knowledge can be acquired auto-
matically by a neural network system through a two phase training procedure: A (slow) offline learning
stage where the network learns about the general structure of the task and a (fast) online adaptation
phase where the network needs to learn the language of a new specific speaker. Controlled experiments
demonstrate that when the network is exposed to a language which is very similar to the one it has been
trained on except for some new synonymous words, the model adapts very efficiently to the new vocab-
ulary, albeit making non-compositional inferences. Moreover, even for human speakers whose language
usage can considerably depart from our artificial language, our network can still make use of the in-
ductive bias that has been automatically learned from the data to learn more efficiently. Interestingly,
using a randomly initialized encoder on this task performs equally well or better than the pre-trained
encoder, hinting that the knowledge that the network learns to re-use is more specific to the task rather
than discovering language universals. This is not too surprising given the minimalism of our grammar.

To the best of our knowledge we are the first to present a neural model to play the SHRDLURN task
without any hand-coded components. We believe that an interesting direction to explore in the future is
adopting meta-learning techniques (Finn et al., 2017; Ravi and Larochelle, 2017), to tune the network
parameters having in mind that they should serve for adaptation, or adopting syntax-aware models, which
may improve sample efficiency for learning instructions. We hope that bringing together these techniques
with the presented here, we can move closer to having fast and flexible human assistants.
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Abstract
The embedding of words and documents in compact, semantically meaningful vector spaces is a

crucial part of modern information systems. Deep Learning models are powerful but their hyperpa-
rameter selection is often complex and they are expensive to train, and while pre-trained models are
available, embeddings trained on general corpora are not necessarily well-suited to domain specific
tasks. We propose a novel embedding method which extends random projection by weighting and
projecting raw term embeddings orthogonally to an average language vector, thus improving the dis-
criminating power of resulting term embeddings, and build more meaningful document embeddings
by assigning appropriate weights to individual terms. We describe how updating the term embed-
dings online as we process the training data results in an extremely efficient method, in terms of both
computational and memory requirements. Our experiments show highly competitive results with var-
ious state-of-the-art embedding methods on different tasks, including the standard STS benchmark
and a subject prediction task, at a fraction of the computational cost.

1 Introduction

Modern information systems rely extensively on the embedding of words and documents in compact,
semantically meaningful vector spaces, where semantic similarity/relatedness can be computed and used
efficiently. Various embedding methods are essentially all based on the Distributional Hypothesis (Har-
ris, 1954; Sahlgren, 2008), and rely on co-occurrence evidence found in a corpus — whether computed
globally or in a local context.

The recent success of local context predictive models such as Word2Vec (Mikolov et al., 2013) have
initiated the development of more complex and powerful deep learning models (Bojanowski et al., 2016;
Peters et al., 2018). The resulting embeddings combine compactness and discriminating ability, but the
associated computational requirements are substantial and the optimal hyperparameter settings are not
easy to find. It is, therefore, more common that embeddings are pre-trained on large corpora and plugged
into a variety of downstream tasks (sentiment analysis, classification, translation, etc.). However, such
transfer learning might fail to capture crucial domain-specific semantics.

Revisiting the methods based on global co-occurrence counts, high dimensional spaces built from the
raw global co-occurrence counts are normally mapped to a more compact, lower-dimensional space of
embeddings, using dimensionality reduction methods such as Principal Component Analysis (Pearson,
1901), Locally Linear Embeddings (Roweis and Saul, 2000), and Random Projection (Achlioptas, 2003;
Johnson and Lindenstrauss, 1984). The latter has the unique advantage of being computationally cheap
in the creation of the low-dimensional space, while being a linear projection method for which no optimi-
sation is required at test time. On the flip side, the lack of optimisation means separation of datapoints is
obtained by a comparatively larger increase of the dimensionality, and the linearity of the method further
limits how compact the low-dimensional representation can be. However, thanks to the simplicity of the
model, very efficient optimisations can be made to the algorithms and the resulting embeddings can be
made to be effective even in high-dimensional spaces.
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In our approach, we use a two-step process where we first reduce the dimensionality of the term
vectors by an extremely efficient implementation of random projection. We then project the term vectors
on the hyperplane orthogonal to the average language vector, which improves how discriminative the
vector representations are, and assign appropriate weights for building document embeddings.

The main contributions of this papers are:

• a method that computes the Random Projection of terms as expressed in terms of their co-occurrences
in documents without storing the matrix of term co-occurrences,

• a method to compensate for uninformative language elements by projection on the hyperplane
orthogonal to the average language vector,

• an effective weighing, adaptable to the domain and empirically verified, of the resulting vectors
which optimises the discriminative power of terms, and

• on the whole, a practical method which requires no iterative parameter optimisation and computes
embeddings and associated weights in a single pass through the documents of the training corpus.

As we show in our experiment section, the resulting method is highly competitive with the state-of-
the-art, in terms of sentence similarity computation and downstream classification task, and has much
lower computational space and time requirements.

2 Related work

Term embedding Much research has adopted the notion of Statistical Semantics (Furnas et al., 1983;
Weaver, 1955) or in Linguistics the Distributional Hypothesis (Harris, 1954; Sahlgren, 2008). Various
distributional semantic models have been proposed to represent (embed) words in a continuous vec-
tor space where semantically similar words are mapped to nearby points (‘are embedded nearby each
other’). The approaches fall into two main categories (Baroni et al., 2014). First, methods based on
global co-occurrence counts (e.g., Latent Semantic Analysis (Dumais, 2005)) which compute statis-
tics of how often some word co-occurs with its neighbour words in a large text corpus, and then use
dimensionality-reduction methods (e.g., Singular-Value Decomposition (Trefethen and Bau III, 1997),
Random Projection (Achlioptas, 2003; Johnson and Lindenstrauss, 1984; QasemiZadeh et al., 2017)) to
map the co-occurrence statistics of each word to a small, dense vector. Second, local context predic-
tive methods (e.g. neural probabilistic language models) which directly try to predict a word from its
neighbours or vice versa in terms of learned small, dense embedding vectors. The recent successes in the
latter models, e.g. Word2Vec (Mikolov et al., 2013; Baroni et al., 2014) have initiated the development
of more complex models with deep learning, such as FastText (Bojanowski et al., 2016), ElMO (Peters
et al., 2018). However, that also brings high computational cost and complex parameters to optimise.

Document embedding There are currently many competing deep learning schemes for learning
sentence/document embeddings, such as Doc2Vec (Le and Mikolov, 2014), lda2vec (Moody, 2016),
FastText (Bojanowski et al., 2016), Sent2Vec (Pagliardini et al., 2018), InferSent (Conneau et al., 2017),
etc. These are generally powerful, but are comparatively computationally very expensive. A simple
baseline such as averaged word embeddings is fast and still gives strong results in the annual Semantic
Textual Similarity task, as reported by Cer et al. (2017). However, assigning the proper weights to
words when calculating the sentence/document embedding is non-trivial. Arora et al. (2017) proposed to
remove a common component (remove the projection of the vectors on the first principal component of
the test set’s representation) after sentences are embedded as the weighted average of word embeddings.
This is a relatively cheap but effective improvement, but 1) it requires re-adapting the term vectors to
each new set of sentences, 2) it requires performing Singular-Value Decomposition, which is O(n3) and
therefore still quite challenging in the case of large datasets, and 3) the subtraction of the first principal
component does not reduce the rank of the model: it improves the discriminative power in practice, but
does not combat over-fitting.
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We propose a model that addresses these three issues: it is only trained on the training set; it does
not require any optimisation (its computational time is linear in the size of the training set and can be
implemented extremely efficiently); it uses linear projection to reduce the rank of the model. With only
two straightforward parameters to tune — the term vectors’ dimensionality and the minimum threshold
below which rare words are discarded — the simplicity of our model is also a desirable feature in practice.

3 Algorithm

Let a document be a set of words for which co-occurance is relevant,1 and nD be the total number of
documents and nV the number of frequent terms.2 A term is frequent when it occurs in more than
K documents in the corpus, where K is flexible depending on the size of the corpus. As we show in
Section 5.1.2, however, with the weightings we propose in our approach, K can be very low. D is the
chosen dimensionality of the embedding vectors.

Further, let va be the D-dimensional average vector of the training documents. For each frequent
term t ∈ V , we have the following parameters: ct(d), The number of occurrences of term t in document
d; dt the number of documents that term t occurs in; ~vt the raw embedding vector of term t; ~rt a D-
dimensional “random vector” for term t, i.e., ~rt is a row of R (In our approach, this vector is binary and
contains an equal number of +1 and -1); wt the weight assigned to term t for document embedding.

Algorithm 1 Computing term embeddings
1: procedure COMPUTING TERM EMBEDDINGS

2: ∀t : ~vt ← ~0 . Initialise a D-dimensional zero vector for each term t
3: ∀t : wt ← 0 . Initial weight for each term is 0
4: ~va ← ~0 . Initialise a D-dimensional zero vector as the average vector
5: for all documents d do
6: ~v ← ~0 . Initialise a D-dimensional zero vector
7: for all terms t in document d do
8: δ ← 1+log (ct(d))√

dt
. Section 3.2

9: ~v ← ~v + δ ~rt . Section 3.1 and Section 3.2
10: for all terms t in document d do
11: ~vt ← ~vt + ~v . Section 3.1
12: ~va ← ~va + ~v . Section 3.3
13: for all terms t do
14: wt ← 1− cos(~vt, ~va) . Section 3.4
15: ~vt ← ~vt − (~vt · ~va)~va . Section 3.3
16: ~v∗t ← ~vt/||~vt||2

3.1 Fast Random Projection

Traditional random projection starts by computing a matrix of (weighted) term co-occurrences C of size
nV × nV , where nV is the total number of terms. This matrix contains, for each pair of terms ti and
tj , the number of documents (or paragraphs, or sentences) of the corpus in which both ti and tj occur.
Using a matrix of random projection vectors R of size nV ×D, we can then project our nV -dimensional
representation of each term to a lower D-dimensional space:

C′[nV ×D] = C[nV ×nV ]R[nV ×D] (1)

1In this context, a document could therefore be a sentence, a paragraph, a fixed-size window, a bibliographic record, etc.
2Terms could be words or phrases. Common phrases are automatically detected using a method similar to that described by

Mikolov et al. (2013).
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However, computing C′ requires us to store both C and R, which can be challenging in terms of storage
space and unacceptably expensive for large vocabularies. Instead, we propose a method to compute C′

without ever explicitly representing C, simply by leveraging the linear nature of the projection (Eq. 1),
updating C′ directly as we go through the corpus.

Algorithm 1 does this by decomposing C in Eq. 1 into the sum of individual documents’ co-
occurrence matrices, C =

∑
dCd, so that

C′ =
∑

d

CdR (2)

where Cd is a matrix of zeros and ones indicating whether two terms co-occurred in the document.
Importantly, we can further decompose the matrix multiplication by relying on the properties of Cd:
every term in the document co-occurs equally with every other term in the document, so that all of the
document’s terms contribute equally to the projection. We can, therefore, sum all the relevant rows of R
and add the result to the relevant rows of C′, making the time complexity linear in the size of the corpus,
and the space complexity linear in the vocabulary size and constant in the number of documents .

3.2 Weighted counts

To improve the robustness of the approach, we weight the co-occurrence matrix C to reduce the effect
of terms that are extremely common in certain documents and of terms that occur in the vast majority of
documents. We use the term’s average modified TF.IDF score in the training documents. Experimentally,
we verified that the traditional IDF term of log N

dt
suppresses frequent terms too much, and replace it by

a factor of
√
N/dt, which has a similar effect but a longer tail and can also be seen as the normalisation

constant of the t-test statistic (Manning and Schütze, 1999). For the TF term, we use a factor of 1 +
log ct(d) and ignore the constant N which cancels out in the subsequent normalisation. Each row of R
is therefore weighted accordingly in the decomposition outlined above.

3.3 Orthogonal projection

Traditional models discard both very infrequent words (because they are too rare for the model to be
able to capture their semantics from the training data) and very frequent words (so-called “stop words”
because they do not provide any semantically useful information). In our approach, we give a continuous
weight to terms based on how frequently they occur and compute the average “language vector” of the
corpus, ~va. Unsurprisingly, this vector is very similar to the average vector of stop words. Intuitively,
words are increasingly more informative as they differ more from the average vector. By this reasoning,
we project word vectors on the orthogonal hyperplane to ~va (Algorithm 1 line 15),3 resulting in a repre-
sentation where the uninformative component of terms is eliminated, and normalise the vectors to have
unit length. When computing document vectors, we down-weight terms according to their similarity to
~va (see Section 3.4). This step is crucial to get distinctive document embeddings.

As a nice side effect, projection makes it possible to handle multilingual corpora. The vocabulary
of one language tends to be largely orthogonal to that of other languages (since words of one language
tend to co-occur almost exclusively with words of the same language), so that projection using one
language’s average vector does not have much effect on the terms in other languages. This makes it
possible to handle different languages effectively, within the same vector space.

3.4 Term weight assignment

Using the projection described above, the component that differentiates a term from the average vector is
kept as its final embedding. Similarly, how different a term is from ~va also indicates how much that term
contributes to the semantics of a document it is part of. In fact, we can interpret the cosine similarity as

3 We use projection rather than subtracting ~va to prevent orthogonal vectors from gaining undue importance.
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a lower bound on the mutual information (MI) between the two vectors (Foster and Grassberger, 2011).
In order to give a higher weight to the most informative terms, we assign a higher weight to words with
lower MI by setting the final weight of each term to be wt = 1− cos(~vt, ~va).

3.5 Text embedding

With the frequent terms’ embedding vectors and their proper weights, we can compute text embedding
as the weighted average of its component term embeddings. For a text T , we obtain a set of vectors
V = {~v∗t1 , . . . , ~v∗tn}, where n is the number of terms in text T and ~v∗ti is the final embedding vector for
term ti. The embedding of text T is calculated as follows:

~vd =

∑n
i=1wti · ~v∗ti∑n

i=1wti

. (3)

where wti is the weight for term ti and out-of-vocabulary words are ignored. Note how term and docu-
ment vectors all have unit length, making similarity computations elegant and effective.

4 Experimental methodology

We performed three experimental evaluations: in Experiment 1, we compare our method to the state-of-
the-art on the standard STS benchmark; in Experiment 2, we qualitatively evaluate the weights assigned
to terms; in Experiment 3, we evaluate our embedding method in terms of subject prediction. For our
experiments, we implemented a parallelised version of the algorithm in C. All experiments were carried
out on the same server with 2 Intel Xeon Silver 4109T 8-core processors and 384GB memory.

For meaningful evaluation, we trained all methods on the same two datasets using publicly available
code for the state-of-the-art methods, and compared the resulting models on the standard STS benchmark.
One dataset is the generic Simple English Wikipedia.4 The other domain-specific one is a subset of the
MEDLINE database that consists of 106 MEDLINE articles, randomly selected from WorldCat.org.
In the latter dataset, each article is written in English and has a title and an abstract, to ensure sufficient
textual information for computing the word embeddings. This dataset is of interest to our research
and provides an interesting use case, as it consists of scientific articles and contains an above-average
proportion of technical terms and jargon. Very rare terms carry critical meaning and make the task of
word embedding particularly challenging.

5 Experimental results

5.1 Experiment I: STS Benchmark and Computational efficiency

The Semantic Textual Similarity (STS) Benchmark5 is a SemEval task organized between 2012 and
2017. It consists of 8628 pairs of English sentences, selected from image captions, news headlines
and user forums. The similarity between these sentence pairs was annotated using a five point scale via
crowdsourcing (Agirre et al., 2016). Participating systems calculate the similarity between these sentence
pairs and are evaluated based on their Pearson correlation with the gold standard STS annotations.

We trained our method on the September 2018 datadump of Simple English Wikipedia, where we
applied a sliding window of 80 terms, with 50% overlap. This resulted in 628,382 windows, each be-
ing considered as a separate document for co-occurrence counting. A total of 199,430 unique 256-
dimensional term vectors were obtained, their weights were calculated (Section 3.4), and used to embed
the sentences in the STS benchmark (Section 3.5). The results are listed in Table 1, together with several
state-of-the-art methods on the STS benchmark as published by Cer et al. (2017).

4https://dumps.wikimedia.org/other/cirrussearch/20180910/
5http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Table 1: STS scores and train times of different methods and different settings.
Method Dev Test Dataset used Train time
Doc2Vec (PV-DBOW) 72.2 64.9 AP-NEWS Unknown

31.0 27.0 S.E. Wikipedia 23m
53.7 49.8 MEDLINE 2h3m

FastText 65.3 53.6 Wikipedia Unknown
48.6 38.9 S.E. Wikipedia 51m
52.8 41.1 MEDLINE 3h4m

Sent2Vec 78.7 75.5 Twitter Unknown
68.8 62.2 S.E. Wikipedia 18m
65.4 55.0 MEDLINE 3h10m

Our method 75.1 64.6 S.E. Wikipedia 17s
73.6 58.9 MEDLINE 43s

Effect of projection and weighting in our method
No projection, no weighting 31.4 34.2 MEDLINE 43s
No projection, TFIDF weighting 45.3 46.3 MEDLINE 43s
With projection, no weighting 57.3 45.2 MEDLINE 43s
With projection, TFIDF weighting 68.4 55.8 MEDLINE 43s
With projection, our weighting 73.6 58.9 MEDLINE 43s

We then ran the publicly available implementations of Word2Vec (Mikolov et al., 2013), Doc2Vec (Le
and Mikolov, 2014), GloVe (Pennington et al., 2014), FastText (Bojanowski et al., 2016) and Sent2Vec
(Pagliardini et al., 2018) and trained them on the two datasets using the same machine. The common
hyperparameters were chosen to generally maximise the different methods’ performance for this task,
and are: a vector size of 256, a minimal number of word occurrences of 10, number of negative samples
of 10, window size of 10, using hierarchical softmax, a learning rate of 1.0 and a number of threads of
16. All the other parameters were kept to their default values. When trained on the MEDLINE dataset,
for word embedding only, it took Word2Vec and GloVe 29 and 35 minutes, respectively. As sentence-
level embedding methods, Doc2Vec cost more than 2 hours to train. FastText and Sent2Vec also required
more than 3 hours. In contrast, our combined term and document embedding — which includes the 106

Medline articles and 340×103 unique terms — requires only 43 s.
In analysing the STS benchmark results (Table 1), it is apparent that our method substantially outper-

forms all baseline methods when trained on the same dataset. Also notice how the training dataset has
a clear impact on each method’s performance, and even though the Simple English Wikipedia dataset is
more limited, both in vocabulary and in size, than the datasets used for publication by the other meth-
ods, our method still outperforms the published results of the other baselines in terms of STS scores,
and is very competitive with Sent2Vec. All methods suffer a drop of performance on the generic STS
benchmark when trained on the MEDLINE dataset, as a consequence of the domain-specific nature of
the dataset, but this drop is least pronounced in the case of our method. This suggests that a careful
search for a more appropriate training set would improve the method’s performance even further.

Finally, we should emphasise how low the train times are for our method. Since we do not require
any iterative optimisation of the model parameters, our method’s results are deterministically determined
by the training data, they do not depend on parameter initialisation, and training is orders of magnitudes
faster than the other methods.

5.1.1 Effect of projection and weighting

We here report the effects of projection on the hyperplane orthogonal to ~va (see Section 3.3) and weight-
ing (see Section 3.4) in our method. As shown in Table 1, the projection greatly improves our method
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Table 2: STS scores and train times w.r.t. K
K Dev Test Train time(s) #terms
5 73.9 60.5 55s 753,422

10 73.6 58.9 43s 339,729
20 71.5 57.8 37s 183,058
40 69.0 55.2 35s 109,662
80 65.7 52.1 32s 68,461

in terms of STS scores. Our weighting also substantially outperforms TFIDF weighting (both with and
without projection), which itself outperforms no weighting. The difference in train time is negligible.

5.1.2 Effect of K

Decreasing the threshold K below which terms are ignored, results in a disproportionate increase of the
number of terms that are included, with the computed vectors for those added terms being increasingly
noisy. Because of the added computational burden and the noisiness of the estimation, traditionally
a comparatively large cutoff value for K is chosen. With our proposed method, however, very small
values for K are practical and the runtime does not grow much when a smaller K is chosen.

Table 2 reports the effect of K on the STS benchmark and the corresponding runtime, when training
with the 106 MEDLINE articles. With a K as small as 5, the runtime stays reasonable, while it brings
real benefits in terms of the STS benchmark, beyond those reported in Table 1 (where all methods use
K = 10), because more infrequent terms get embedded.

5.2 Experiment II: Qualitative evaluation of weights for individual terms

Table 3 gives examples of terms with their raw document counts and final weights. As expected, tradi-
tional stop words such as “for” and “also” have extremely low weights. Frequent terms such as “treat-
ment,” “analysis,” “system,” and “subsequent” are to some extent domain-specific stop words which have
low semantic value and therefore low weights too. However, more meaningful or discriminative terms
such as “inflammatory,” “mRNA,” “antibodies” and “immune” have much higher weights even when
they are also used very frequently.

At the other end of the spectrum, less frequent terms are likely to carry discriminative information
for representing the semantics of the whole documents; however not all equally infrequent words have
equally high weights. For example, “comprised” and “clarify” have much lower weights than “cytome-
try,” “spleen,” “cox” and “embryos” which are expected to be key topics for documents which contain
them. The orthogonal projection and weighting help to give discriminative terms a boost when calculat-
ing the document embedding, no matter how frequently these terms are used.

In addition, we observed that the average cosine similarity between all documents is smaller by
orders of magnitude when orthogonal projection and weighting is performed compared to when it is not,
suggesting the documents are distributed in more compact clusters. That being said, without a proper
evaluation with domain experts, it is not easy to evaluate the genuine validity of such operation. Our
future work will include conducting such user-in-the-loop evaluation.

5.3 Experiment III: Subject prediction

In most digital library catalogs, bibliographic records are indexed using controlled vocabularies or the-
sauri to improve the discoverability of the content. These vocabularies are either generic, such as Library
of Congress Subject Headings (LCSH),6 or domain-specific, such as Medical Subject Headings (MeSH)7

which is used for indexing articles in the MEDLINE database. Traditionally, assigning a most relevant
6http://id.loc.gov/authorities/subjects.html
7https://www.nlm.nih.gov/mesh/
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Table 3: Examples of term counts and their adjusted weights

t dt wt

for 720,776 0.003322
also 230,896 0.024318
treatment 171,984 0.079871
analysis 170,669 0.042365
system 99,582 0.077036
inflammatory 27,743 0.356823
mRNA 27,681 0.318550
achieved 27,382 0.114748
antibodies 27,379 0.433778
subsequent 27,289 0.060512

t dt wt

comprised 6099 0.293460
timing 6098 0.336269
artificial 6093 0.465012
cytometry 6086 0.776044
adjuvant 6085 0.501349
spleen 6080 0.523253
mucosal 6080 0.505713
cox 6072 0.608585
embryos 6055 0.724599
clarify 6053 0.298637

subset of subject headings to describe a record is done manually by professional taxonomists. However,
such manual assignment is very time-consuming and can no longer keep up with the speed at which new
records are produced. Therefore automatically assigning a set of relevant subjects to articles becomes
increasingly important.

We evaluated our embedding method on the use case of subject prediction. This remains a difficult
problem and is a form of Extreme Multi-label Text Classification (XMTC) (Prabhu and Varma, 2014;
Bhatia et al., 2015; Liu et al., 2017), where the prediction space normally consists of hundreds of thou-
sands to millions of labels and data sparsity and scalability are the major challenges. In our MEDLINE
dataset, there are more than 324,619 MeSH headings indexing 896,300 articles (the other articles do not
have any subjects) with on average 16 headings per article. However, only 102,484 MeSH headings are
used to index more than 10 articles.

We propose to treat the MeSH headings as terms in the documents they are associated with, so that
terms, documents and MeSH headings are all embedded in the same D-dimensional semantic space.
Our assumption is that an article would be indexed by its most related subject headings, i.e., the MeSH
headings with the highest cosine similarities to the document itself. To evaluate this, we computed
embeddings for term and MeSH headings using the training dataset (previously selected 106 MEDLINE
articles). We then prepared a separate testing dataset which contains 104 articles randomly selected from
WorldCat.org. The articles in the testing dataset all have an abstract and are indexed by at least one
MeSH heading. For each of these articles, we computed the document embedding using the terms in its
title and abstract, following Eq. 3. We then computed their most similar MeSH headings and compared
them with the actual ones. Notice how this method is, therefore, not biased towards predicting the more
common (and often less informative) subjects.

For FastText and Sent2Vec, we did the same, i.e., using the document-subject similarities to select the
potential candidates. Since FastText and Sent2Vec can be used to train a supervised text classifier (Joulin
et al., 2017), we additionally trained a classifier where each article’s title and abstract were concatenated
as a text, and their actual MeSH subject headings were used as the labels to predict. We trained a
separate FastText and Sent2Vec text classifier, which we used to predict the most likely subjects for the
documents in the testing dataset, based on their title and abstract. The parameters for training a classifier
were exactly the same as those for generating word embeddings, but the train time was dramatically
shorter, less than 5 minutes with the same machine.

All candidate subjects were ranked, by their similarities to the document or by the probabilities
according to the corresponding classifiers, as appropriate. Figure 1 shows the precision@n and recall@n
for different methods/settings. Both FastText and Sent2Vec perform much worse than our method if
using document-subject similarities for subject prediction. As multi-label classifiers, their performance
are nearly identical to each other and the quality of the predicted subjects are comparable with our
similarity-based prediction. Their precision@n is higher than our method for low values of n while it
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Figure 1: The performance comparison when predicting subjects

quickly decreases to be almost the same as ours. Up to top 20 candidates, the recall for three methods
are more or less the same, but our method is able to predict more actual subjects at lower ranks, where
the recall outperforms FastText and Sent2Vec.

Table 4 lists the 23 actual MeSH headings of an example article.8 The MeSH terms that reflect the
major points of this article are marked with an asterisk (*). The 25 most relevant MeSH headings pre-
dicted by three methods are also listed. It is not surprising that subjects such as “Humans” and “Female”
are predicted first by FastText and Sent2Vec, because they are the most frequent ones used in the training
dataset. In fact, many of the subjects predicted by these two classifiers are very common (see their docu-
ment counts in Table 4). These classifiers have trouble finding subjects which describe the articles more
precisely, while our method ranks specific subjects such as “Lens Capsule, Crystalline/Surgery” high in
the list, even though fewer than 100 articles in the training set are indexed by this subject.

We realise that this evaluation has its limitations. As shown in Table 4, highly related MeSH headings
such as “Lenses Intraocular” and “Phacoemulsification Methods” are predicted as good candidates for
this article, both of which are reasonable and potentially useful. But since they are not the subject
headings that the professional taxonomists have chosen, their value cannot be easily assessed. This
illustrates how precision/recall may not be a very meaningful evaluation metric in this application. It
also shows how this method could provide good recommendations to cataloguers.

6 Conclusion

We have described a novel, simple, effective and efficient method for term and document embeddings.
As we have shown, our method has important practical benefits: 1) it is fast and has low hardware
requirements, having linear time complexity and constant space complexity in function of the number
of documents, resulting in very short run-times in practice. 2) Since no iterative optimisation is needed,
the resulting embeddings are not affected by parameter initialisation and there is no uncertainty about
the quality of the results of a run. 3) It computes semantically discriminative term embeddings and
weightings with a single pass through the training data, and has the capacity to effectively include very
rare words. Our experiments show it outperforms state-of-the-art methods in terms of the STS benchmark
and subject prediction when trained on the same datasets, while at the same time being computationally
cheaper by orders of magnitude.

In the future, we will integrate sub-word information into the embedding process and evaluate how
effectively previously unseen words can be embedded. We will consider a wider variety of evaluation
methods, especially getting domain experts involved.

8https://www.ncbi.nlm.nih.gov/pubmed/14670424
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Abstract

Popular word embedding methods such as word2vec and GloVe assign a single vector represen-
tation to each word, even if a word has multiple distinct meanings. Multi-sense embeddings instead
provide different vectors for each sense of a word. However, they typically cannot serve as a drop-in
replacement for conventional single-sense embeddings, because the correct sense vector needs to be
selected for each word. In this work, we study the effect of multi-sense embeddings on the task of
reverse dictionaries. We propose a technique to easily integrate them into an existing neural network
architecture using an attention mechanism. Our experiments demonstrate that large improvements
can be obtained when employing multi-sense embeddings both in the input sequence as well as for the
target representation. An analysis of the sense distributions and of the learned attention is provided
as well.

1 Introduction

One problem with popular word embedding methods such as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014) is that they assign polysemic or homonymic words the same vector representa-
tion, i.e., words that share the same spelling but have different meanings obtain the same representation.
For example, the word “kiwi” can signify either a green fruit, a bird or, in informal contexts, the New
Zealand dollar, which are three semantically distinct concepts. If only a single vector representation is
used, then this representation is likely to primarily reflect the word’s most prominent sense, while ne-
glecting other meanings (see Figure 1). More generally, a word vector may be a linear superposition of
features of multiple unrelated meanings (Arora et al., 2018), resulting in incoherent vector spaces.

In recent years, several ideas have been proposed to overcome this problem. They have in common that
they obtain different vector representations for the different meanings of polysemes or homonyms. Most
prior work only evaluates these multi-sense vectors on single word benchmarks, however, and there is
comparably little evidence for the benefits of using these embeddings in other applications.

One multi-word task that suffers from the presence of polysemy and homonymy is the building of a
reverse dictionary that can take definitions of words as input and infers the corresponding words. In
this work, we present the following contributions: (1) We show that multi-sense vectors are a better
representation for the target words in this task. (2) We propose a technique to select multi-sense vec-
tor embeddings for the words in the input sequence. It is based on an attention mechanism and can be
incorporated into an existing end-to-end neural network architecture outperforming single-sense vector
representations. (3) We provide a comparison between pre-trained and task-specific multi-sense embed-
dings as well as contextual word embeddings. (4) We analyze the distribution of multi-sense words in
the data and the attention the network learns.
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kiwi

fruitbanana
papaya pear

lemonguava

kiwifruit

bird
emu

tui

bellbird
kiwi chick

NZD

greenback
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lender
banker

depositor

money
shoreline

riversideriverbank

streambank

creek
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(b)

Figure 1: 2D projections of Google News word2vec vectors using t-SNE (Maaten and Hinton, 2008).
The vector for the word kiwi is located near the embedding for the New Zealand dollar (violet) and not
near other birds (blue) or fruits (green). For bank, the vector lies in a neighborhood of financial terms
(blue), further apart from other river related terms (green).

w1

es(wi)

w2

d1 d2

w1

em(wi)

w2

d11 d12 d13 d21 d22

Figure 2: Single-sense embedding es compared to multi-sense embedding em for a sequence of input
words w1, w2.

2 Task and Architecture

In this section, we give further details on the different embeddings, the reverse dictionary task and the
corresponding architecture. We also motivate the use of multi-sense embeddings for the target and input
vectors with qualitative examples and a quantitative analysis.

2.1 Single- and Multi-Sense Word Embeddings

A single-sense word embedding es maps a word or token to an l-dimensional vector representation, i.e.
es(wi) = di ∈ Rl for a word wi. They are often pre-trained on large amounts of unlabeled text and
serve as a fundamental building block in many neural NLP models. Popular word embeddings include
word2vec, GloVe and fastText (Bojanowski et al., 2017). If a word has several meanings, these are still
mapped to just a single vector representation.

Multi-sense word embeddings em overcome this limitation by mapping each word wi to a list of sense
vectors em(wi) = (di1, ...,dik), where k is the number of senses that one considers wi to have. The
vector dij then represents one sense of the given word. This difference is visualized in Figure 2. Often,
these embeddings can also be pre-trained on unlabeled text. A discussion of different multi-sense word
embeddings is given in Section 5.

2.2 Reverse Dictionaries

A reverse dictionary is a tool for authors and writers seeking a word that is on the tip of their tongue.
Given a user-provided definition or description, a reverse dictionary attempts to return the corresponding
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word (Zock and Bilac, 2004). We create a dataset for this task using the WordNet resource (Miller,
1995). For each word sense in this lexical database, we consider the provided gloss description as the
input, and the word as the target.

the size of something as given by the distance around it→ circumference

More details about the dataset are given in Section 4.1. Hill et al. (2016) presented a neural network
approach for this task and also set it in the wider context of sequence embeddings. Each instance consists
of a description, i.e. a sequence of words (w1, ..., wn), and a target vector t. Each word of the input
sequence wi is mapped with a single-sense word embedding function es (e.g. word2vec) to a vector
representation es(wi). This sequence of vectors is then transformed into a single vector

t̂ = f(es(w1), ..., es(wn)). (1)

For f , the authors use—among others—a combination of an LSTM (Hochreiter and Schmidhuber, 1997)
and a dense layer. The network is trained with the cosine loss between t and t̂. During testing or when
employed by a user, the model produces a ranking of the vocabulary words (α1, ..., α|V |) by comparing
the vector representation es(αi) of each vocabulary word αi with the prediction t̂ in terms of the cosine
similarity measure. The k most similar words are returned to the user. We choose this task and architec-
ture to show which benefits multi-sense vectors can bring to a downstream application and how they can
easily be incorporated into an existing architecture. Two major limitations of single-sense vectors in this
approach are presented in the following two subsections.

2.3 Target Vectors

The first limitation is that of the target vector, as exposed in Figure 1b. For the single-sense embedding,
the vector for bank lies in a neighborhood consisting of financial terms with words such as banker,
lender and money. Given a description of a river bank as input (the slope beside a body of water), a
model trained on single-sense vectors as targets would have to produce a vector t (red point) that resides
in a region of the semantic space that relates to financial institutions (blue points), rather than to nature
and rivers (green points) with terms such as riverside or streambank.

In Figure 3a, we observe that 68% of the target words in our training data have more than one possible
sense in WordNet. While the sense distinctions in WordNet tend to be rather fine-grained, this shows
that in general the phenomenon of encountering multiple senses for a target word is not limited to only a
few instances but affects a large portion of the data.

To cope with this, we propose to rely on multi-sense vectors for the target t. Using these, we can assign
the vector corresponding to the correct sense to each target in the training data. During testing, the correct
target sense should obviously not be known to the model. We hence use for the ranking a vocabulary that
consists of all sense vectors of all words.

2.4 Input Vectors

The second limitation of the existing architecture is the fact that it uses single-sense vectors for the input
sequence. For example, within the definition of a bluff, a high steep bank usually formed by river erosion,
the word bank refers to the phenomenon in nature. Therefore, the vector embedding for bank should also
semantically reflect this and should not reside in a semantic region relating to the dominating, financial
meaning.
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(b) Description words

Figure 3: Number of possible senses, according to WordNet (see Section 4.2), of the target words (left)
and input words (rights) in the training data. Out-of-vocabulary words are listed as having 0 senses.

wi
em(wi)

di1
di2

di3
ai2

ai1

ai3

di1
di2

di3

sum vi

context

Figure 4: Visualization of the multi-sense vector selection using attention.

The analysis in Figure 3b shows that 38% of the words in the input sequence have more than one possible
sense. This is a smaller percentage than in the case of target vectors, mostly due to out-of-vocabulary
words and frequently occurring single-sense words such as stopwords. Nevertheless, this shows that
multi-sense considerations are relevant for over a third of the words in the input definitions.

In contrast to the target vectors, we cannot directly link each input word to the correct sense vector be-
cause annotating every description word with the corresponding sense would be very expensive. Instead,
we propose to provide the model with all possible sense vectors for each description input word and
to perform the selection directly within the neural network architecture in an end-to-end fashion. Our
approach to achieve this in a differentiable way, employing an attention mechanism, is given in the next
section.

3 Multi-Sense Vector Selection

The process of selecting multi-sense vectors is visualized in Figure 4. For an input sequence of words
(w1, ..., wn), first a representation of the context is computed. For this, a single-sense word embedding
function es is used and an LSTM transforms this sequence into a context vector c:

c = LSTM(es(w1), ..., es(wn))

For each word wi, the multi-sense embedding function em provides one or more sense vectors em(wi) =
(di1, ...,dik). Each sense vector dij is compared to the context by computing the raw attention
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rij = f(σ(c,dij)), (2)

where σ is a similarity function (dot product or cosine similarity in our case) and f is a non-linear
function (ReLU in our experiments). The raw attention is normalized to yield attention weights

aij =
exp(rij)∑
h exp(rih)

, (3)

and we obtain a new representation

vi =
k∑

j=1

aijdij . (4)

For each input word, instead of es(wi), the vector vi is used in the task architecture. Equation 1 then
becomes

t̂ = f(v1, ...,vn). (5)

4 Experimental Evaluation

In the following, we will detail our experiments to evaluate the effect of multi-sense embeddings both
for the input description and for the target words.

4.1 Data

The dataset was created by extracting all single word lemmas from WordNet version 3.01. Each instance
consists of a lemma as the target word and its corresponding definition as the description. We make this
dataset publicly available2. When creating the data, we used an 80%/10%/10% train/dev/test split of the
WordNet synsets. The data was split along synsets and not words to avoid any leakage of information
from the test to the training data. For a fairer comparison with the single-sense baseline, we only used
instances where the target word was in the vocabulary of the single-sense embedding. This resulted
in 85,136 train, 10,521 development and 10,502 test instances. The descriptions were tokenized using
SpaCy version 2.0.11 (Honnibal and Montani, 2017). The distribution of the part-of-speech tags of the
target words is given in Table 1.

1We do not use the original dataset by Hill et al. (2016) as it contains a flaw where a substantial part of the ”unseen” test
instances are also part of the training data.

2https://github.com/uds-lsv/Multi-Sense-Embeddings-Reverse-Dictionaries
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noun verb adj adv

target words by POS 59% 17% 20% 4%

target word with 1 sense 38% 6% 34% 54%
target word with 2 senses 21% 13% 26% 21%
target word with 3+ senses 41% 81% 40% 25%

Table 1: The first row shows the distribution of the part-of-speech tags (POS) of the target words in the
dataset. The rest of the table contains the distribution of the number of senses, according to WordNet,
given a specific POS.

4.2 Embeddings

In this work, we consider as our single-sense embedding es the popular 300-dimensional word2vec
vectors trained on the Google News corpus3. For the multi-sense embedding em, we chose the DeConf
embeddings by Pilehvar and Collier (2016), which reside in the same space as the word2vec embeddings.
It should be noted that DeConf uses the WordNet graph structure for the pre-training of the embeddings,
while for our reverse dictionary data we only use the WordNet glosses as definitions.

4.3 Baselines

We compare our multi-sense approach that we introduced in the previous sections to the following
baselines:

• For the single-sense baseline, we use the reverse dictionary architecture proposed by Hill et al. (2016),
which also serves as the foundation of all the multi-sense models.

• In first multi-sense, we experiment with using the first multi-sense vector for every word as a single-
sense vector, i.e. vi = di1. This is motivated by the fact that the WordNet-based multi-sense vectors
tend to be roughly ordered by frequency of occurrence (see analysis in Section 4.7).

• Random multi-sense evaluates using a randomly selected multi-sense vector.

• The model not-pretrained is based on the approach of Kartsaklis et al. (2018). They recently proposed
a method to obtain single-sense and multi-sense vector embeddings during training (in contrast to our
use of pre-trained embeddings for both). While one of their experiments also evaluates on a reverse-
dictionary setting, their results are unfortunately not directly comparable, as their targets are WordNet
synsets and not words. We, therefore, integrate their proposed technique into our architecture in two
ways: For the model not pre-trained, we use their equivalent version of vi. This means that we use
their code for the training of the single and multi-sense embeddings as well as for the creation of vi

based on the context and the multi-sense embedding. The model only es pre-trained differs from this
in that we use the pre-trained single-sense embedding instead of training it from scratch.

• The BERT model belongs to the class of contextual word embeddings. This approach has been rapidly
become popular with works by Peters et al. (2018), Radford et al. (2018), Peters et al. (2018b) and
Devlin et al. (2018). Instead of using a direct mapping of words to vector representations, these
approaches pre-train a neural language model on a large amount of text. The language model’s internal
state for each input word is then used as a corresponding word vector representation for a different
task. They can be viewed as inducing word vector representations that are specific to the surrounding
context. We compare against the current state-of-the-art model BERT (Devlin et al., 2018). For this,
the output of BERT’s last Transformer layer is used as the sequence (v1, ...,vn).

3https://code.google.com/archive/p/word2vec/
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Input Vectors Target Vector MR ↓ Acc@10 ↑ Acc@100 ↑ MRR ↑
single-sense single-sense 535.5 0.115 0.301 0.067
single-sense multi-sense 135 0.203 0.458 0.131

multi-sense single-sense 481 0.121 0.315 0.069
multi-sense multi-sense 107 0.224 0.490 0.144

Table 2: Median rank, accuracy @10 and @100 and mean reciprocal rank of single- compared to multi-
sense target vectors. The first row is the model architecture proposed by Hill et al. (2016).

4.4 Hyperparameters

We follow the choices of Hill et al. (2016) with an LSTM layer size of 512, a linear dense layer that
maps to the size of the target vector and a batch size of 16. The input descriptions are clipped to a
maximum length of 20 words and the number of senses per word is limited to 20. If a word does not
exist in the multi-sense embedding, we fall back to the single-sense embedding. The pre-trained single
and multi-sense word embeddings have a dimensionality of 300 and are fixed during training. For the
embeddings created during training with the method of Kartsaklis et al., we experiment with the same
dimensionality of 300 as well as with an embedding size of 150 (as suggested in their work). Apart
from this, we follow the configuration of Kartsaklis et al. for their components. For the contextual BERT
embeddings, the authors’ pre-trained, uncased model is used in the “base” and “large” variation and the
pre-trained embeddings are again fixed. Since the BERT embeddings have a higher dimensionality (768
and 1024 respectively), the model architecture might underfit. We, therefore, experiment with different
LSTM layer sizes up to 5,120, as well as with 2 LSTM layers and with adding a layer that transforms
the embeddings to the same dimensionality of 300. For optimization, Adam (Kinga and Adam, 2015) is
used for all models except for only es pre-trained, which achieved better results using stochastic gradient
descent with a fixed learning rate of 0.01.

4.5 Metrics

For evaluation, the vocabulary is ranked according to the cosine similarity of the produced vector t̂
as explained in Section 2.2. As the vocabulary, we use the union of all target words of the training,
development, and test sets. Following Hill et al. (2016), we report the median rank as well as the mean
accuracy @10 and @100. We also computed the mean reciprocal rank, which is a common metric in
information retrieval.

4.6 Results

Table 2 shows the difference in performance between using single-sense and using multi-sense vectors
as targets t, as detailed in Section 2.3. Although the number of candidates is larger when every target
word has multiple candidate target vectors, the separation of the representation of the target words into
different vectors according to their senses clearly helps the model to produce a reasonable representation
of the input sequence. This effect is independent of whether the input is encoded using single- or multi-
sense vectors. It should be noted again that the model does not have access to the true sense during
testing and that instead all possible sense vectors are used for ranking. The pre-trained, contextual BERT
vectors perform very poorly as target vectors. This might be due to the larger vector size, the more
complex representation or the missing or uncommon context. In fact, we found that BERT obtains only
0.009 mean reciprocal rank even if we provide it with the ground truth definitions as contexts to generate
the target representations.
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Input Vectors MR ↓ Acc@10 ↑ Acc@100 ↑ MRR ↑
single-sense (Hill et al., 2016) 135 0.203 0.458 0.131

first multi-sense 126 0.216 0.470 0.139
random multi-sense 137.5 0.208 0.457 0.136

not pre-trained 150 dim (Kartsaklis et al., 2018) 818 0.060 0.208 0.037
not pre-trained 300 dim (Kartsaklis et al., 2018) 574 0.087 0.260 0.053
only es pre-trained 162 0.198 0.439 0.128

BERT base LSTM 512 (Devlin et al., 2018) 253.5 0.151 0.373 0.091
BERT base LSTM 4096 (Devlin et al., 2018) 183 0.181 0.423 0.109
BERT large LSTM 512 (Devlin et al., 2018) 249 0.156 0.375 0.093
BERT large LSTM 2048 (Devlin et al., 2018) 220 0.159 0.391 0.098

multi-sense (cosine similarity) 117 0.221 0.480 0.143
multi-sense (dot product similarity) 107 0.224 0.490 0.144

Table 3: Median rank, accuracy @10 and @100 and mean reciprocal rank for the experiments with
different input vectors. The multi-sense vectors are used as target vectors.

In Table 3, we report the results for different approaches of handling the input vectors, as introduced in
Sections 2.4 and 3. As target vectors, we use multi-sense vectors. Picking a random sense vector tends
to perform slightly worse than using the single-sense vector embedding and both are outperformed by
picking the first multi-sense vector of every word. This might be due to the fact that the first sense-vector
tends to correspond to the most frequently occurring sense and that the representation of this sense is
better in the multi-sense setting because it can focus on this meaning.

Using the same LSTM size of 512, the contextual BERT embeddings do not perform well. Adding a
learnable linear or ReLU layer to transform them to a lower dimensionality or adding a second LSTM
layer does not help either. Increasing the size of the LSTM improves performance until a certain point
before it drops again. This might be due to a trade-off between the model underfitting and the learnability
of the additional parameters. In the table, we report the best configuration for the ”base” and ”large”
variation. In future work, it might also be interesting to experiment with fine-tuning the language model
component of this architecture.

The model that uses the embedding training and multi-sense vector selection of Kartsaklis et al. seems to
struggle with building good embeddings in this setting with the 300-dimensional embeddings performing
somewhat better but still not well. Providing pre-trained single-sense embeddings improves the perfor-
mance considerably. Although they are not trained task-specifically, the pre-training of the single-sense
embeddings on large amounts of unlabeled data seems to result in a very useful embedding space. This
is consistent with other works in the literature, e.g. Qi et al. (2018).

Our attention based multi-sense vector approach using pre-trained single- and multi-sense embeddings
obtains the best results with respect to all four metrics, with the dot product similarity function perform-
ing somewhat better than cosine similarity. This shows that using pre-trained multi-sense vectors and
selecting the right sense vectors can be beneficial in sequence embedding tasks.

4.7 Study of Senses and Attention

In this section, we present a small study to gain more insight into the different senses occurring in the
input sequences as well as into the learned attention. This is also intended as guidance for future work.
For a subset of the input definitions from the training data, we manually labeled to which sense from the
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Model L

random multi-sense 0.25
first multi-sense 0.53
attention 0.31
attention-argmax 0.39

Table 4: Result of the analysis of the probability assigned to the true sense of multi-sense words for
different models.

multi-sense embedding each word belongs. This data is made publicly available. Out of 275 words, 157
(57%) only had one vector representation, 18 words (7%) had a sense that was not covered by the corre-
sponding multi-sense embedding entry, and 100 (37%) had one sense of the multiple possible meanings
provided by the multi-sense embedding. On the latter, we calculated similarly to data likelihood the sum
of the probabilities that different models assign to the correct sense:

L(m) =
∑

w

pm(τ(w) | w), (6)

where m is the model, w is a word and τ(w) is the true sense of the word. For random multi-sense, the
probability was the reciprocal of the number of senses of a word. For first multi-sense, the probability
was 1 if it was the first sense of a word in the multi-sense embedding and 0 otherwise. For attention, we
used the normalized attention a of the true sense. For attention-argmax, probability 1 was assigned to
the sense that had the maximum attention. The results are given in Table 4.

As mentioned earlier, the first sense of the multi-sense embedding often reflects the dominant usage,
being correct in about half of the cases. The attention approach suffers from the dilution that a soft
attention entails. Due to the use of the soft-max function, all senses get at least a small amount of the
probability mass. An attention mechanism that uses a more skewed probability distribution might be
beneficial here. From attention-argmax, we see that the attention method also does not always assign the
largest amount of attention to the correct sense. The fact that this architecture still outperforms the others
can be explained by the compositional nature of the attention mechanism. Also, some of the senses in the
DeConf multi-sense embeddings tend to be very fine-grained. This means that even if not the exact sense
is given the most attention, a similar sense might be. For future work, it would be interesting to improve
on the context creation and sense selection component, explore options to fine-tune the embeddings as
well as experiment with other multi-sense embeddings that might have a smaller number of different
senses per word.

5 Related Work

Hill et al. (2016) proposed to map dictionary definitions to vectors both for the practical application
of reverse dictionaries as well as to study representations of phrases and sequences. In this setting,
Bastos (2018) experimented with recursive neural networks and additional part-of-speech information.
Independently of Hill et al., Scheepers et al. (2018) also used dictionary definitions to evaluate ways to
compose sequences of words. They studied different single-sense word embeddings and composition
methods such as vector addition and recurrent neural networks. The work by Bosc and Vincent (2018)
improves word embeddings with an auto-encoder structure that goes from the target word embedding
back to the definition. We consider these three works complementary to ours, as they study different
single-sense architectures.
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In recent years, several approaches to creating multi-sense vector embeddings have been proposed. Rothe
and Schütze (2015), Pilehvar and Collier (2016) and Dasigi et al. (2017) use an existing single-sense word
embedding and a lexical resource to induce vectors representing different senses of a word. The latter also
employ an attention-based approach for creating vectors based on the context for predicting prepositional
phrase attachments. Pilehvar et al. (2017) use the same DeConf multi-sense embedding for integrating
them in a downstream application. In contrast to our work, they require, however, a semantic network to
do the disambiguation. In Sense2Vec (Trask et al., 2015), the authors create embeddings that distinguish
between different meanings given the corresponding part-of-speech or named entity tag. They obtain
an embedding that distinguishes e.g. between the location Washington and the person with the same
name. The method requires the input data to be tagged with POS or NE tags. Athiwaratkun and Wilson
(2017) represent multiple meanings as a mixture of Gaussian distributions. The number of senses per
word is fixed globally to the number of Gaussian components. Raganato et al. (2017) and Pesaranghader
et al. (2018) use bidirectional LSTMs to learn a mapping between words and multiple senses (not sense
vectors) as a supervised sequence prediction task requiring sense-tagged text. An extensive survey on
further ideas and work regarding vector representations of meaning is given by Camacho-Collados and
Pilehvar (2018).

Tang et al. (2018) analyzed different attention mechanisms in the specific context of ambiguous words
in machine translation. They limit their approach, however, to single-sense vectors and the established
method of using attention over other parts of the sentence to improve the translation process.

6 Conclusion

In this work, we study the use of multi-sense vector embeddings for the reverse dictionary task. We show
that single-sense embeddings such as word2vec do not adequately reflect all meanings of polysemes and
homonyms and that improvements can be obtained by using multi-sense embeddings both for the target
words and for the words in the input description. For the latter, we proposed a method based on attention
that automatically selects the correct sense from a set of pre-trained multi-sense vectors depending on the
context in an end-to-end fashion. It outperforms single-sense vectors, multi-sense embeddings trained
in a task-specific way as well as pre-trained contextual embeddings. Our analysis of the sense selection
process shows avenues for interesting future work.
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Abstract

As opposed to word sense induction, word sense disambiguation (WSD), whether supervised or
semi-supervised, has the advantage of using interpretable senses, but requires annotated data, which
are quite rare for most languages except English (Miller et al., 1993). In this paper, we investigate
which strategy to adopt to achieve WSD for languages lacking data that was annotated specifically
for the task, focusing on the particular case of verb disambiguation in French. We first study the us-
ability of Eurosense (Bovi et al. 2017), a multilingual corpus extracted from Europarl (Kohen, 2005)
and automatically annotated with BabelNet (Navigli and Ponzetto, 2010) senses. Such a resource
opened up the way to supervised and semi-supervised WSD for resourceless languages like French.
While this perspective looked promising, our evaluation showed the annotated senses’ quality was
not sufficient for supervised WSD on French verbs. Instead, we propose to use Wiktionary, a col-
laboratively edited, multilingual online dictionary, as a new resource for WSD. Wiktionary provides
both sense inventory and manually sense tagged examples which can be used to train supervised and
semi-supervised WSD systems. Yet, because senses’ distribution differ in lexicographic examples
as found in Wiktionary with respect to natural text, we then focus on studying the impact on WSD
of the training data size and senses’ distribution. Using state-of-the art semi-supervised systems, we
report experiments of wiktionary-based WSD for French verbs, evaluated on FrenchSemEval (FSE),
a new dataset of French verbs manually annotated with wiktionary senses.

1 Introduction

Word Sense Disambiguation (WSD) is a NLP task aiming at identifying the sense of a word occurrence
from its context, given a predefined sense inventory. Although the task emerged almost 70 years ago
with the first work on Automatic Machine Translation (Weaver, 1955), it remains unresolved. The recent
breakthrough in neural net models allowed a better representation of the context and thus improved the
quality of supervised disambiguation systems (Melamud et al., 2016; Yuan et al., 2016; Peters et al.,
2018). Nevertheless, although WSD has the advantage of providing interpretable senses (as opposed
to the unsupervised task of word sense induction), it also has the drawback of heavily relying on the
availability and quality of sense-annotated data, even in the semi-supervised setting.

Now, such data is available in English, essentially with SemCor (Miller et al., 1993), a corpus man-
ually sense-annotated with Wordnet (Miller, 1995) senses. But for most languages, sense disambiguated
data are very rare or simply don’t exist. This is mainly due to the fact that manual semantic annotation
is very costly in time and resources (Navigli, 2009). Nevertheless, Bovi et al. (2017) recently presented
Eurosense, a multilingual automatically sense-disambiguated corpus extracted from Europarl (Koehn,
2005) and annotated with BabelNet (Navigli and Ponzetto, 2012) senses.

In this article, we focus on supervised WSD for French verbs and investigate a way to perform the
task when no manually sense-annotated training data specifically designed for the task are available.We
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focus on verbs because they are known to be central to understanding tasks, but also known to lead to
lower WSD performance (Raganato et al., 2017). In section 2 we report a study on the suitability of
using Eurosense as training data for our task. Because the results of our evaluation were inconclusive,
we decided to explore Wiktionary, a free collaboratively edited multilingual online dictionary which pro-
vides a sense inventory and manually sense tagged examples, as resource for WSD. We give a general
description of Wiktionary in section 3. In section 4, we present FrenchSemEval, a new manually sense
annotated dataset for French verbs, to serve as evaluation data for WSD experiments using Wiktionary as
sense inventory and training examples. Because senses’ distribution differ in the lexicographic examples
found in Wiktionary with respect to natural text, we provide in section 5 a descriptive statistical compar-
ison of the wiktionary example corpus and SemCor. The WSD first experiments are reported in section
6 and we provide an analysis of the results in section 7. We finally conclude and give insights of future
work in section 8.

2 Eurosense

In this section we present our investigation on the suitability of using Eurosense as training data for
supervised WSD on French verbs. We first present Eurosense and then describe our manual evaluation
of the resource regarding French verbs.

Eurosense is a multilingual Europarl-based corpus that was automatically sense-annotated using the
BabelNet (Navigli and Ponzetto, 2012) multilingual sense inventory. This sense inventory was origi-
nally built by merging the English Wordnet and the English Wikipedia. Subsequent releases integrate
senses (mapped or added) from other resources, as listed in BabelNet statistics page1. Two versions of
Eurosense are available: the “high coverage” corpus and the “high precision” corpus. Both result from
jointly disambiguating the parallel Europarl corpus using the Babelfy (Moro et al., 2014) WSD system.
A further refinement step was then performed to obtain the high precision version. The refinement aims
at enforcing the intra-sentence coherence of annotated senses, in terms of similarity of their correspond-
ing Nasari distributional vectors (Camacho-Collados et al., 2016). The resource was evaluated both
intrinsically and extrinsincally.

The intrinsic evaluation was carried out through a manual evaluation of the annotation on four lan-
guages (English, French, German and Spanish). Fifty sentences present in all four languages were ran-
domly sampled and manually evaluated both before and after the refinement step. The results showed a
good inter-annotator agreement the judges agreed 85% of the time, and the average Kappa score (Cohen,
1968) was 67.7 %) and an improvement of the precision of the annotation after refinement at the expense
of a lower coverage. For English, the high-precision Eurosense annotations cover 75% of the content
words and have a 81.5% precision2. As For French results are lower though: coverage is 71.8% and
precision is 63.5%.

Closer to our WSD objective, Bovi et al. (2017) report an extrinsic evaluation of Eurosense that uses
it as additional training data for all-words WSD, evaluated on two standard datasets for English, the
SemEval 2013 task 12 (Navigli et al., 2013) and the SemEval 2015 task 13 (Moro and Navigli, 2015).
The authors compared results of the It Make Sense (IMS) system (Zhong and Ng, 2010) when trained
on SemCor alone versus SemCor augmented with examples sampled from the high precision Eurosense
corpus (up to 500 additional training examples per sense). They report a slight improvement in the latter
case, the Fscore rising from 65.3 to 66.4 on SemEval-2013, and from 69.3 to 69.5 on SemEval-2015.

These results give a contrasted picture of the usability of Eurosense as training data for WSD for
French: the extrinsic evaluation concerns English, and a setting that uses Eurosense as additional data
(picking examples from Eurosense annotated with senses present in SemCor only). For French, the
situation is necessarily worse, given that (i) the intrinsic evaluation of Eurosense is lower for French, (ii)
we focus on verbs, whose disambiguation is known to be more difficult (Raganato et al., 2017), and (iii),

1https://babelnet.org/stats
2Note the precision is computed as an average between the two annotators, and not with respect to an adjudicated version.
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most importantly, Eurosense would be used as sole training data and not as additional data. This poses
extra constraints on the quality of the annotations, hence in order to further investigate the usability of
Eurosense for our purpose, we decided to first perform another evaluation of the Eurosense annotations,
focused on French verbs.

Evaluation of Eurosense on French verbs We randomly selected 50 sentences from the French ver-
sion of Eurosense’s high coverage corpus, and for all the non-auxiliary verbs (160 occurrences), we
manually judged whether the Eurosense automatic sense tag was correct : we split the 160 occurrences
in three sets, each set being independently annotated by two judges and adjudicated by a third one. The
judges were asked to answer “correct” if the Eurosense tag seemed correct, even if some other tag in
the BabelNet inventory3 was possible or even more precise. The agreement between the two judges was
0.72, and the kappa was 0.67, a level described as good in the literature. Note this is a binary task only,
which is different from asking the judges to annotate the correct tag as Bovi et al. (2017) did for all
parts-of-speech. Yet our agreement score is even lower, shedding light on an overall greater difficulty
of judging the annotated sense of verbs. Indeed, we were then able to measure that the proportion of
Eurosense automatic annotations that we judged correct after our adjudication is 44% only. Moreover,
during this annotation task we could notice that because BabelNet aggregates several data sources (in-
cluding Wordnet, Verbnet, FrameNet, Wiktionary among others), the BabelNet sense inventory exhibits
a high number of senses per verb. To better quantify this observation, we sampled 150 sentences, and
measured that the average number of BabelNet senses per verb type occurring in these sentences is 15,5.
More importantly, we could notice that the frontiers of the various senses sometimes appeared difficult to
judge, making it difficult to grasp the exact perimeter of a sense.These mixed results led us to investigate
other sources of sense-annotated data for French.

3 Wiktionary as data for WSD

Wiktionary is a collaboratively edited, open-source multilingual online dictionary, hosted by the Wiki-
media Foundation. It provides an interesting open-source resource and several studies already showed
its usefulness for various NLP tasks (e.g. lemmatization (Liebeck and Conrad, 2015)), especially in the
lexical semantic field, for extracting or improving thesauri (Navarro et al., 2009; Henrich et al., 2011;
Miller and Gurevych, 2014). In this section we briefly present Wiktionary’s most interesting features
along with our motivations to investigate the use of this resource for WSD on French verbs.

Wiktionary’s main advantages is that it is entirely open-source, multilingual and has a good coverage
for a substantial number of languages (according to wiktionary statistics4, 22 languages have more than
50, 000 wiktionary entries each). Each entry consists of a definition and one or several examples, either
attested or created, each example being a potential sense-annotated example for the lemma at hand. Def-
initions and examples point to other wiktionary pages, which can be useful, although not as useful as if
links to wiktionary senses (not pages) would be provided. The structured nature of wiktionary makes
it possible to extract wordnets rather easily (as was done for English, German and French by Sérasset
(2012), in the RDF format). On the qualitative level, our interest for wiktionary rose after studying ran-
dom verbal entries for French: we could observe that in general the granularity level is “natural” and that
the sense distinctions are easy to grasp. On the quantitative level, we report in table 1 several statistics
for the French wiktionary5, in which it can be seen that the resource is large (we will see in the next
section that the coverage in corpus is good indeed).

3The sense inventory had been previously extracted via the HTTP API see https://babelnet.org/guide
4https://en.wiktionary.org/wiki/Wiktionary:Statistics
5In all the following, all the statistics and work on the French wiktionary corresponds to the 04-20-2018 dump available via

Dbnary (Sérasset, 2012).
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POS Nb of entries Nb of senses Mean nb of senses per entry Nb of examples
Noun 81099 112428 1.39 1511517
Verb 27271 41207 1.51 55206
Adj 25865 33732 1.30 46212
Adv 5904 6012 1.29 5904

Table 1: Statistics from French Wiktionary of the 04-20-2018 dump available via the tool of Sérasset
(2012)

These advantages come at the cost of Wiktionary’s main potential drawback, namely its crowd-
sourced nature. Firstly, this means that it is constantly evolving, since any user can edit pages at any time
(unless pages that users with more editing rights might have protected). Indeed, new pages are created
every day while already existing pages are deleted, modified, merged (note though that every change
occurring in the resource is kept in track). Secondly, this means that the resource is not curated by skilled
lexicographers only, and the “guidelines” are themselves collaboratively built.

Despite this potential disadvantage, several features of Wiktionary seemed particularly suitable for
the task of WSD and this, combined with the fact that sense-annotated data for French verbs are quasi-
inexistent6, makes it a serious candidate for a new resource of WSD. To investigate this opportunity for
our objective of French verb WSD, we present FrenchSemEval, a new dataset manually annotated for
WSD of French verbs which we used to carry out several evaluations, we describe the new resource in
the next section.

4 FrenchSemEval : An evaluation corpus for French verb disambigua-
tion

Since the first Senseval evaluation serie in 1998 (Kilgarrif, 1998), a various number of evaluation frame-
works were proposed to evaluate different WSD tasks, but only a few include French test datasets
(Lefever and Hoste, 2010; Navigli et al., 2013) and unfortunately these only focus on nouns7. In this
section we present FrenchSemEval8 a new French dataset in which verb occurrences were manually an-
notated with Wiktionary senses. Our objective was to evaluate whether Wiktionary’s sense inventory
is operational for humans to sense-annotate a corpus, and if so, to use it as evaluation data for WSD
experiments. We describe the annotation process along with several statistics about the resulting dataset
and the quality of the annotations.

4.1 Data selection

To build FrenchSemEval, we chose to focus on moderately frequent and moderately ambiguous verbs.
Rare verbs are often monosemous, and very frequent verbs tend to be very polysemous and extremely
difficult to disambiguate (we thus left these for future work). FrenchSemEval was built using the follow-
ing steps: we first selected a vocabulary of verbs based on their frequency in corpus. We selected verbs
appearing between 50 and 1000 times in the French Wikipedia (dumped on 2016-12-12 hereafter fr-
Wikipedia). Secondly, from this pre-selected list of verbs we extracted those having a number of senses
comprised between two and ten in Wiktionary’s sense inventory. For these verbs, we chose to extract 50
occurrences primarily from corpora comprising other annotations (the French TreeBank (FTB) (Abeillé

6Verbs are annotated with frames in the French FrameNet data (Djemaa et al., 2016), but in such data, only some notional
domains were considered, and verb occurrences not pertaining to such domains were not disambiguated.

7Except for SensEval1 but only the English dataset was given to public domain.
8The dataset is available here http://www.llf.cnrs.fr/dataset/fse/
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Number of sentences 3121
Number of annotated verb tokens 3199
Number of annotated verb types 66
Mean number of annotations per verb type 48.47
Mean number of senses per verb type 3.83

Table 2: Statistics for the FrenchSemEval corpus (FSE).

and Barrier, 2004) and the Sequoia (Candito and Seddah, 2012) treebank9), supplementing the corpus
when necessary by occurrences sampled from fr-Wikipedia, in order to reach 50 occurrences per verb.

4.2 Annotation process

The annotation has been performed by three students10 for nearly a month. We used WebAnno (Yi-
mam et al., 2014; de Castilho et al., 2016) an open-source adaptable annotation tool. Sentences had
already been pre-processed into CoNLL format (Nivre et al., 2007) with the Mind The Gap (MTG)
parser (Coavoux and Crabbé, 2017) and were plugged in WebAnno. We were thus able to provide files
(one file per verb) containing sentences in which occurrences of the specific verb were marked for anno-
tation. The annotators were asked to annotate only the marked occurrences. We integrated in WebAnno
the sense inventory from Wiktionary, including definitions and examples of senses, and added two extra
tags: ”OTHER POS” and ”MISSING SENSE”. The former was to use when an occurrence was wrongly
tagged as verb, and the latter was to use when the sense of an occurrence didn’t exist in the sense in-
ventory. As Wiktionary is constantly evolving through time, we used the 04-20-2018 dump available via
Dbnary (Sérasset, 2012). The annotation was performed in double annotation and adjudication.

4.3 Resulting resource

Table 2 reports various statistics about the resulting dataset. It contains 3199 occurrences for 66 different
verbs, which means nearly 50 annotated instances per verb (about 100 OTHER POS occurrences were
discarded). The annotators agreed more than 70% of the time and obtained a Kappa score of 0.68 which
is good according to the literature. We believe that these metrics indicate an annotation quality which
may not be extremely high but still sufficient to validate the coherence of the Wiktionary sense inventory,
definitions and examples, despite its non-expert crowd-sourced nature.

5 Descriptive statistical study of the datasets

The best-suited data for training a supervised WSD system is a corpus with sense tags for all content
words. Training on such a corpus benefits from basic frequency information found in the corpus. This
is particularly striking for WSD, as the “most frequent sense” baseline is known to be very high. In
the case of French, as for the majority of languages, we lack such a corpus, and turn to the Wiktionary
examples to serve as training examples for a significant portion of the lexicon. Yet, because senses’
distribution differ in the lexicographic examples found in Wiktionary with respect to natural text, we first
provide some statistics for a running text sense-annotated corpus such as SemCor (for English) versus a
lexicographic training set such as Wiktionary examples (for French).

9The FTB contains 18500 sentences, from articles from Le Monde newspaper, and Sequoia contains 3099 sentences from
Europarl, the European Medicine Agency, a regional newspaper (L’Est Républicain) and fr-Wikipedia.

10None of them had previous experience in annotation.
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AMBIG trainSI AMBIG fullSI
Language Corpus (# annotations) type token type token
English SemCor (88334) 1.97 7.91 3.24 10.94

SenseEval2 (517) 4.90 6.7 7.58 10.28
SemEval 2007 (296) 5.15 6.89 7.78 10.17
SenseEval 2015 (251) 5.69 6.25 8.48 9.16

French Wiktionary (55206) 1.66 5.49 1.74 5.68
FSE (3199) 6.02 6.74 6.15 6.91

Table 3: Ambiguity rates for verbs, in the English usual training set (SemCor) and usual evaluation
sets, and in the French training set (Wiktionary) and evaluation set (FSE). AMBIG trainSI corresponds
to using for the number of senses the sense inventory in the corresponding training corpus, whereas
AMBIG fullSI corresponds to using the full sense inventory.

5.1 Comparison of the sense distribution in training examples

We study here the distribution of the annotated senses in training data. When looking at the number
of training examples per sense, we obtain an average of 9.6 and a mean absolute deviation of 11.9 for
SemCor, whereas the average is only 2.0 for FR-Wiktionary, and the mean absolute deviation is 0.9. It
is clear that using wiktionary examples will lack the genre-dependent but nonetheless very informative
information of sense frequency in corpus.

5.2 Evaluation of the task difficulty: comparison of ambiguity rates

We now turn to comparing the difficulty of the WSD task, when tested on English SenseEval datasets
versus on FrenchSemEval. Note that performance of WSD systems cannot be used for that purpose,
given that it is not comparable across languages and datasets. For a corpus consisting in a sequence of
tokens t1 . . . tN , we rather compute the average ambiguity rate that a WSD system has to face, in two
settings:

• token AMBIG fullSI: the ambiguity rate per token, using the full sense inventory:

1

N

N∑

i=1

n senses(ti)

• token AMBIG trainSI: the ambiguity rate per token, using the sense inventory found in the train-
ing corpus

1

N

N∑

i=1

attested n senses(ti)

For further information, although not directly measuring corpus WSD difficulty, we also provide the
ambiguity rate per verb type, both using the full inventory or that attested in the training set (shown in
the “type” columns in Table 3).

We report these metrics in Table 3. When studying the difference between the “fullSI” versus
“trainSI” modes, namely when using the full sense inventory versus that found in the training set, we
have a different trend for the English corpora (containing natural text) and the French ones: for Sem-
Cor and the English evaluation sets, there is a drop of ambiguity in trainSI mode. This illustrates the
usual difficulty to cover rare senses in a corpus of natural text. Note though that for the French corpora,
based on the wiktionary inventory, there is almost no difference between the two modes of computation,
illustrating that almost all senses have examples in wiktionary.

When comparing, for each language, the figures for the training corpora (SemCor and Wiktionary
examples) and for the evaluation datasets, it can be noted that the average ambiguity per token is similar
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for training and evaluation datasets, but the average ambiguity per type is much smaller for the training
corpora (3.24 for SemCor, and 1.74 for Wiktionary). This is because the lexicon covered in the training
corpora is much larger, and contains many more monosemic verbs. .

As far as training corpora are concerned, it can be seen that the overall average ambiguity is higher
for SemCor than for Wiktionary (e.g. in fullSI mode, 10.94 per token ambiguity for SemCor, versus
5.68 for Wiktionary). It shows that the sense inventory for Wiktionary is slightly less ambiguous than
Wordnet’s (both for the senses found in SemCor, and overall).

6 Experiments on supervised WSD

To investigate the suitability of using Wiktionary for supervised WSD on French verbs, we evaluated
state-of-the-art supervised WSD systems on FrenchSemEval, using the examples of Wiktionary’s senses
as training data. As for the representation of the instances we used two different models that we describe
below. We then applied a supervised disambiguation method to evaluate the performance of the models.
We first describe the models we used to obtain vector representations of the instances and the disam-
biguation algorithm we used for evaluation. Then we propose several experiments based on FSE and
finally we evaluate the models using Wiktionary as input for disambiguation.

6.1 Models for context representations

AWE We implemented a simple model that we use as baseline. We first train a word2vec (Mikolov
et al., 2013) model on fr-Wikipedia11 to obtain non contextual word vectors. We then represent the
context of an occurrence by averaging the vectors of the words found in its context window, which we
defined as the 5 words on the left and 5 words on the right of the target word. This is a common model
often referred in the literature as averaged-word-embeddings (AWE).

C2V Context2vec (Melamud et al., 2016) is a recurrent neural model that learns a function mapping the
context around a target word to a vectorial representation. The context2vec model represents the context
using a bi-directional recurrent neural network (Hochreiter and Schmidhuber, 1997) that allow us to take
the context of the sentence into account, thus contrasting with AWE. All codes and implementations are
available publicly so we only adapted it and trained the model on the whole French Wikipedia. We then
applied the learnt model to obtain vectorial representations of our target verb occurrences.

6.2 Supervised disambiguation algorithm

We replicated the supervised WSD method used in (Yuan et al., 2016): a sense representation is com-
puted from annotated data by averaging the context vector representation of its instances, in our case
the Wiktionary examples or instances from FSE. Then each test instance is sense tagged with the sense
whose representation is the closest, based on cosine similarity.

6.3 Protocol

Wiktionary experiment We did a first experiment simply using the examples of the senses in the
Wiktionary sense inventory as training data and then we performed disambiguation on FSE.

In domain experiments In order to better identify the potential error sources, we also performed ex-
periments with “in-domain” training instances, namely instances directly taken from FSE. To evaluate
the impact of the number of training examples per sense, a property that is quite different for a lexico-
graphic training set as opposed to a corpus-based training set, we performed experiments on different
sets, using Nmax a varying maximum number of examples per sense. More precisely, for each verb we

11We used the fr-Wikipedia dump of 10-20-2017
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selected respectively 1, 2, 5 and 10 maximum training examples per sense from the dataset and evaluated
the disambiguation on the remaining examples.

6.4 Results and Analysis

The results of our experiments on Wiktionary are presented in table 4. Although both automatic systems
perform better than the Most Frequent Sense baseline (MFS), using only the literary Wiktionary examples
to build a classifier for newspaper and Wikipedia test instances remains a rather adversarial setup12. We
thus investigated two potential ways to leverage the hardness of this initial setup: domain adaptation and
the amount of training examples.

Models score
MFS 0.30
AWE 0.40
C2V 0.43

Table 4: WSD accuracies when training on Wiktionary examples, and testing on FSE.

To study the effect of the amount of training instances, since Wiktionary is limited in terms of number
of examples per sense, we switched to using FSE both for training and testing. We used a variable number
of maximum training examples per sense from Nmax = 1 to Nmax = 10 and we used the remaining
examples as test set13. The results of these experiments are summarized in Table 5 and illustrated in
Figure 1.

Let us observe first the impact the amount of training data. The mean number of examples in Wik-
tionary for the verbs occurring in FSE is Navg = 3.1 and the results show that all classifiers dramatically
improve when the available training examples per verb grows up to Nmax = 10. This means that if we
were able to expand with absolute certainty the small amount of examples in Wiktionary, we could get a
much higher disambiguation performance.

Second, using the same setup we can compare the behaviour of the classifiers when predicting out
of domain (Table 4) with in domain predictions (Table 5). Recall that Wiktionary examples are often
long literary sentences whereas the test instances are sampled from newspaper or Wikipedia. Again as
Wiktionary has Navg ≈ 3 training examples per sense we can see that the domain adaptation effect is
worth roughly 20 points in accuracy.

Models Nmax = 1 Nmax = 2 Nmax = 3 Nmax = 5 Nmax = 10
MFS 0.32 0.38 0.45 0.52 0.70
AWE 0.44 0.53 0.58 0.64 0.70
C2V 0.5 0.57 0.62 0.68 0.74
Mean number of training ex. per sense 1 1.81 2.61 3.86 6.30
Mean size training data per verb 3.83 6.95 9.81 14.8 24.15
Mean size test data per verb 44.63 41.51 38.65 33.66 24.31

Table 5: Training on FSE examples, with varying maximum number of examples per sense (Nmax).
Top: WSD accuracies. Bottom: training / test sets statistics.

Third, we can observe that the 3 classifiers (MFS, AWE,C2V) do behave consistently in the different
configurations. To understand why MFS is a rather weak predictor in our setup, we have to recall that

12As a comparison, results for supervised WSD for English verbs are around 0.55 in the benchmark of Raganato et al. (2017).
13We say that we use Nmax as a maximum number of training examples because some senses may have only K < Nmax

annotated instances in the whole data set.
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Figure 1: Illustration of results reported in table 5.

contrary to Semcor and Senseval, FSE is built following a lexicographic perspective: the sentences are
sampled in a non natural way (e.g. monosemic words are excluded). We observe (table 5) that in these
conditions the MFS is a weaker (although still strong) baseline and that standard sequential neural models
are able to outperform it, especially when there are few training examples. Among the neural models
C2V performs consistently better than AWE but we believe that these models or some extensions of these
models to be designed in the future might well still show significant improvements.

Lastly, we can observe that among all models, C2V performs best on every test setup. It supports
(Melamud et al., 2016)’s results, especially regarding the fact that Context2vec succeeds better in cap-
turing context information than the common averaging of word vector representations.

7 Conclusions and future work

Word Sense Disambiguation is a task rarely seen for languages other than English. One obvious reason
to explain that is the lack of costly sense annotated resources for those languages. In this paper we
provide some elements seeking to set up a methodology to perform word sense disambiguation for other
languages than English, such as French, without requiring the cost of annotating sense disambiguated
corpora.

For this purpose we considered using Eurosense and Wiktionary as training data for Verb Sense
Disambiguation. As our first experiments with Eurosense turned out to be inconclusive, we then turned
our attention to Wiktionary. We studied how to use it as a resource for Word Sense Disambiguation
and we develop FrenchSemEval, a new French WSD evaluation dataset, thanks to which we were able to
extract preliminary evaluation results. Our current results showed that the Wiktionary sense inventory has
an appropriate granularity for a good quality sense annotation, and that training on Wiktionary examples
only leads to encouraging WSD results for verbs. But we could also quantify the gain in performance
that could be obtained by adding a moderate number of seed instances. Hence automating the selection
and annotation of additional instances might pay off to improve verb sense disambiguation.
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Abstract

Word embedding representations provide good estimates of word meaning and give state-of-the art
performance in semantic tasks. Embedding approaches differ as to whether and how they account
for the context surrounding a word. We present a comparison of different word and context repre-
sentations on the task of proposing substitutes for a target word in context (lexical substitution). We
also experiment with tuning contextualized word embeddings on a dataset of sense-specific instances
for each target word. We show that powerful contextualized word representations, which give high
performance in several semantics-related tasks, deal less well with the subtle in-context similarity
relationships needed for substitution. This is better handled by models trained with this objective in
mind, where the inter-dependence between word and context representations is explicitly modeled
during training.

1 Introduction

Contextualized word representations model complex characteristics of word usage, and give state-of-the-
art performance in a variety of NLP tasks involving syntactic and semantic processing. Each proposed
model accounts for context in a different way depending on the underlying architecture, and might ac-
count for local or long-distance phenomena. In this work, we compare different word representations
on the lexical substitution (LexSub) task, which involves proposing meaning-preserving substitutes for
words in specific contexts (McCarthy and Navigli, 2007). The importance of context in defining the
meaning of word instances, and selecting the substitutes that best fit specific sentences, makes of the
LexSub task an ideal testbed for a direct comparison of the contextualized representations built by dif-
ferent models.

We compare representations that model context in different ways: they exploit context embeddings
generated within the skip-gram model (Melamud et al., 2015), learn a generic context embedding func-
tion using a bidirectional Long Short-Term Memory (LSTM) network (Melamud et al., 2016), or use
vectors that are learned functions of the internal states of a deep bidirectional language model (biLM)
(Peters et al., 2018a). Additionally, we experiment with a way to tune these state-of-the-art context-
sensitive representations to sense-specific contexts of use, using a dataset of sentences containing each
LexSub target word that are carefully chosen to reflect the senses of their potential substitutes. We
explore the impact of this tuning on the LexSub task. Finally, we compare the performance of contex-
tualized models to baseline models that exploit standard word embedding representations for measuring
semantic similarity without directly accounting for context, such as Glove (Pennington et al., 2014) and
FastText (Mikolov et al., 2018).

The results of this study highlight the importance of the architecture used for model training in cap-
turing information relevant for lexical substitution. We show that contextualized representations that
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Substitutes Sentences
shoot (5) The panther fired at the bridge and hit a truck.

sack (5), dismiss (1)
While both he and the White House deny he was fired, Frum is so insistent on the
fact that he quit on his own that it really makes you wonder.

trainer (3), teacher (2),
instructor (1), tutor (1)

As a coach, we speak and listen with the intent of helping people surface,
question and reframe assumptions.

bus (5), carriage (1) We hopped back onto the coach - now for the boulangerie!

Table 1: Examples of manually proposed substitutes for the verb fire and the noun coach in the SemEval-
2007 Lexical Substitution dataset (McCarthy and Navigli, 2007). Numbers in brackets indicate the num-
ber of annotators who proposed each substitute.

have been shown to be very powerful in other semantics-related tasks perform less well in the LexSub
task, while others that explicitly model the inter-dependence of words and their context manage to pro-
pose the best substitutes as measured by comparing their choices to human annotations in a gold standard
dataset.

2 Related Work

The lexical substitution task consists in selecting meaning-preserving substitutes for words in context.
Initially proposed as a testbed for word sense disambiguation systems (McCarthy and Navigli, 2007),
in recent works it is mainly seen as a way of evaluating the in-context lexical inference capacity of
vector-space models without explicitly accounting for sense (Kremer et al., 2014; Melamud et al., 2015).
Examples of substitutes of words in context proposed by annotators in the SemEval-2007 Lexical Sub-
stitution dataset are presented in Table 1. The main idea behind these sense-unaware models is that the
basic (out-of-context) representation of a word is adapted to each specific context of use. This is done
by combining the basic vector of the word with the vectors of words found in its immediate context, or
having a specific syntactic relation. Appropriate substitutes are synonyms or paraphrases of the word
that are similar to this contextualized representation.

Melamud et al. (2015) use word embeddings generated using the word2vec skip-gram model (Mikolov
et al., 2013). word2vec learns for every word type two distinct representations, one as a target and another
as a context, both embedded in the same space. The context representations are generally discarded after
training, considered internal to the model, and the output word embeddings represent context-insensitive
target word types. Melamud et al. use the context embeddings in conjunction with the target word
embeddings to model word instances in context, identify appropriate substitutes by measuring their sim-
ilarity to the target and the context, and obtain state-of-the-art results on the LexSub task.

In later work, Melamud et al. (2016) propose context2vec, a model that uses a neural network archi-
tecture based on word2vec CBOW (Mikolov et al., 2013). context2vec replaces CBOW’s representation
of a word’s surrounding context as a simple average of the embeddings of the context words in a fixed
window, with a full sentence neural representation of context obtained using a bidirectional LSTM. Sen-
tential contexts and target words are embedded in the same low-dimensional space, which is optimized
to reflect inter-dependencies between them. This rich representation gives context2vec high performance
in tasks involving context, such as lexical substitution, word sense disambiguation and sentence comple-
tion.

Peters et al. (2018a) propose a new type of deep contextualized word representations called ELMo
(Embeddings from Language Models), where each token is assigned a representation that is a function
of the entire input sentence. Vectors are derived from a bidirectional LSTM that is trained with a coupled
language model (LM) objective on a large test corpus. ELMo representations are deep in the sense that
they are a function of all of the internal layers of the biLM, which improves performance in several
syntax and semantics-related tasks compared to using the top LSTM layer. The best combination of
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layers is learnt jointly with a supervised NLP task. An analysis on different tasks shows that lower layers
efficiently encode syntactic information, while higher layers capture semantics (Peters et al., 2018b).
The gains observed in syntactic tasks outweigh those on semantic-related tasks, such as coreference
resolution, Semantic Role Labeling and word sense disambiguation. In this work, we apply the ELMo
vectors for the first time to the lexical substitution task and compare their performance to the context-
sensitive models of Melamud et al. (2015) and Melamud et al. (2016). We also propose a way to tune
the ELMo representations to the LexSub task, by using a dataset containing a high number of sentences
for words in context that represent meanings close to that of their possible substitutes.

3 Substitute-focused Contexts

Contextualized word embeddings for a given target word vary based on the sense of a target word in-
stance. Unlike the variation in discrete sense-level embeddings (e.g. Iacobacci et al. (2015); Rothe and
Schütze (2015); Flekova and Gurevych (2016), and others), this variation is continuous. One of our
experiments aims to see whether incorporating discrete fine-grained sense information into our LexSub
models, where senses are defined at the level of substitute paraphrases, can improve performance. For
this purpose, we generate a dataset of “focused contexts” (hereafter abbreviated FC) for each target word
which are specifically chosen to represent the specific sense that target word shares with each of its
potential substitutes.

The starting point for our focused contexts dataset is the Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013; Pavlick et al., 2015), a collection of over 80M English paraphrase pairs. PPDB was automat-
ically built using the pivot method (Bannard and Callison-Burch, 2005), which discovers same-language
paraphrases by ‘pivoting’ over bilingual parallel corpora. Specifically, if two English phrases such as
“under control” and “in check” are each translated to the same German phrase “unter kontrolle” in some
contexts, then this is taken as evidence that “under control” and “in check” have approximately similar
meaning. Because PPDB was constructed using the pivot method, it follows that each paraphrase pair
x ↔ y in PPDB has a set of shared foreign translations. This idea is core to the method for extracting
substitute-focused sentences.

The sentences for paraphrase pair x ↔ y are extracted from the English side of English-to-foreign
bitext corpora as follows. We assume there exists some set F xy of foreign phrases to which x and y
have both been independently translated. To find sentences containing x that correspond to its sense as a
paraphrase of y, we simply enumerate English sentences containing x from the parallel corpora where x
is aligned to some f ∈ F xy. Sentences for y are extracted symmetrically. We refer to the set of English
sentences containing x as Sẋy, and the set of English sentences containing y as Sxẏ. Note that for some
other paraphrase pair involving x, say x↔ z, there may be sentences that appear in both Sẋy and Sẋz if
their sets of shared translations, F xy and F xz , overlap.

Intuitively, we would like the sentences containing x in Sẋy to be “highly characteristic” of the
meaning of y, and vice versa. However, not all pivot translations f ∈ F xy produce equally character-
istic sentences. For example, consider the paraphrase pair bug ↔ worm. Their shared translation set,
F bug,worm, includes the French terms ver (worm) and espèce (species), and the Chinese term虫 (bug).
In selecting sentences for S ˙bug,worm, the FC dataset should prioritize English sentences where bug has
been translated to the most characteristic translation for worm – ver – over the more general虫 or espèce.

The degree to which a foreign translation is “characteristic” of an English term can be quantified by
the pointwise mutual information (PMI) of the English term with the foreign term. To avoid unwanted
biases that might arise from the uneven distribution of languages present in our bitext corpora, we treat
PMI as language-specific. Given language l containing foreign words f ∈ l, we use shorthand notation
fl to indicate that f comes from language l. The PMI of English term e with foreign word fl can be
computed as:

PMI(e, fl) =
p(e, fl)

p(e) · p(fl)
=
p(fl|e)
p(fl)
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Substitutes Substitute-focused sentences

sack
Yet what are proclamations on employment rights worth, when company bosses have a ‘divine
right’ to hire and fire?

dismiss They chose to fire a lot of people; to throw people out who weren’t needed.
shoot We hope that the generals and civilian oligarchs will not fire on the honduran people.

launch
A security source said electrical wiring found at the site suggested plans to fire the rockets by
remote control.

Table 2: Examples of substitute-focused sentences for the verb fire corresponding to its substitutes.

The term in the numerator is the translation probability p(fl|e), which indicates the likelihood that En-
glish word e is translated to foreign term fl in an English-l parallel corpus. Maximizing this term pro-
motes the most frequent foreign translations for e. It is calculated as:

p(fl|e) =
count(e→ fl)∑
f ′∈l count(e→ f ′)

where (e→ fl) indicates the event that e is aligned to fl in a bitext sentence pair. The term in the denom-
inator is the likelihood of the foreign word, p(fl). Dividing by this term down-weights the emphasis on
frequent foreign words. This is especially helpful for mitigating errors due to mis-alignments of English
words with foreign stop words. The foreign word probability is calculated as:

p(fl) =
count(fl)∑
f ′∈l count(f ′)

To extract Sẋy, the set of English sentences containing x for paraphrase pair x ↔ y, we first order their
shared translations, f ∈ F xy, by decreasing PMI(y, f). Then, for each translation f in order, we extract
up to 2500 sentences from the bitext corpora where x is translated to f . This process continues until a
maximum of 10k sentences containing x are generated. As a result of selecting sentences containing x
in decreasing order of PMI(y, f), the dataset includes contexts where the sense of x is most closely
related to its paraphrase y.

To compile our dataset, we select sentences pertaining to all paraphrases of each target word in the
LexSub datset. We extract sentences from the same English-to-foreign bitext corpora used to generate
English PPDB (Ganitkevitch et al., 2013).

3.1 Deriving contextualized vectors from focused contexts

The focused context dataset groups sentences where a target word appears with a specific meaning,
that of one of its paraphrases (possible substitutes) in PPDB. This makes the resource useful for lexical
substitution, as it provides numerous examples of sentences for each target-substitute pair. In Table 2, we
give examples of sentences for the word fire and its candidate substitutes (sack, dismiss, shoot, launch).

We use the sets of sentences available for each target-substitute pair to create contextualized repre-
sentations for the candidate substitutes, using the approach proposed by Peters et al. (2018a) for applying
the biLM representations to a supervised word sense disambiguation task. More precisely, we tune pre-
trained contextualized (ELMo) embeddings to the LexSub task using contexts from the FC dataset. A
representation for a substitute of a target word is the average of the ELMo vectors obtained from the
FC sentences corresponding to that substitute. For each substitute, we use the 100 sentences with the
highest PMI, avoiding sentences with a high overlap in words.1 The ELMo language model contains
three layers, so each token in text has three different representations, one per layer. It is important to note
that we do not train a neural model on this dataset, so we do not learn a linear combination of the biLM
layers in the way ELMo is typically used. Instead, we experiment with the top layer (FC-ELMo-top) and

1We use an overlap threshold of 60%. This cleaning serves to discard highly similar sentences and ensure a varied vocabulary
in the retained dataset. If for some substitutes less than 100 sentences are available after this filtering, we keep them all.
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an average of the three layers (FC-ELMo-avg) of the biLM (5.5B) released by Peters et al. (2018a)2. We
also use FC to tune context2vec embeddings released by Melamud et al. (2016) and pre-trained on the
UkWac corpus3 (FC-c2v). We create context representations from the high quality sentences retained for
a target-substitute pair by replacing the target word with a blank slot. A representation for the substitute
is then created by taking the average of all generated context representations. The obtained candidate
vectors are used in the lexical substitution methods described in Section 4.

4 Lexical Substitution Methods

We present a head-to-head comparison of different context representations on the LexSub task. We
evaluate all models on the SemEval Lexical Substitution task test set (McCarthy and Navigli, 2007).
Given an instance of a target word t and a set of candidate substitutes (S = {s1, s2, ..., sn}), each
model provides a ranking of the substitutes depending on how well they describe the meaning of t in
each specific sentence. Higher ranked substitutes are both good paraphrases of the target and a good
fit in the context. In our experiments, candidate substitutes S = {s1, s2, ..., sn} for a target word t are
its paraphrases in the Paraphrase Database (PPDB) XXL package (Pavlick et al., 2015)4 that are also
present in the gold standard annotations. This is a ranking variant of the LexSub task where systems are
not expected to identify substitutes from the whole vocabulary, but rather to estimate the suitability of
items in a specific pool of substitutes and rank them accordingly (Kremer et al., 2014). In what follows,
we describe how the different methods represent words and contexts, and perform substitute ranking for
new instances. An illustration of the different methods can be found in Figure 1.

4.1 Target-to-substitute similarity

ELMo representations are contextualized, in the sense that the embedding of a token is a function of the
full sentence in which it appears. We propose a substitute ranking method that uses target-to-substitute
(tTs) similarity, as measured by the cosine similarity of the corresponding ELMo representations. We
use the top layer (ELMo-top) and the average of the three layers (ELMo-avg) of the biLM (5.5B) (Peters
et al., 2018a) in the following way.

Given a new sentenceC with an instance of the target word to be substituted, we first obtain an ELMo
representation from this context corresponding to the target word. Then, we replace the target with all its
potential substitutes, one at a time, and obtain the ELMo vector for each substitute in the context of C
by feeding the new sentence as input to the biLM. Substitutes are then ranked by the cosine similarity of
the target word’s ELMo vector in C with that of the ELMo vector of each substitute in the same context.

We use this method with FC-ELMo as well. For each sentence, possible substitutes are ranked
according to the similarity of their FC-ELMo embedding to the ELMo embedding of the target word
in the sentence. We expect context to be indirectly taken into account by using such contextualized
representations.

4.2 AddCos: skip-gram word and context embeddings

Melamud et al. (2015)’s method for lexical substitution is based on the skip-gram word embedding
model. The novelty of the approach is that it explicitly leverages the context embeddings generated
within skip-gram, generally considered as internal and discarded at the end of the learning process. The
proposed context-sensitive substitutability measures for potential substitutes reflect a combination of
two types of similarity: a) target-to-substitute, showing how similar a potential substitute is to the target
word, and b) target-to-context, reflecting the substitute’s compatibility with a given sentential context.
Similarities are estimated using the vector Cosine distance between the respective skip-gram word and

2https://allennlp.org/elmo
3http://u.cs.biu.ac.il/ nlp/resources/downloads/context2vec/
4http://paraphrase.org
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Figure 1: Illustration of the type of context information the different methods use: a) tTs uses target to
substitute similarity only (Section 4.1); b) AddCos also uses similarities between a candidate and each
of the words in the surrounding context (Section 4.2); c) c2vf makes use instead of a unique embedding
representing the whole sentential context (Section 4.3).

context embeddings. The proposed measures differ in the way they combine the score elements together,
using either an arithmetic or geometrical mean. We choose the more flexible additive approach which,
contrary to the multiplicative variants, does not require high similarities in all elements of the product to
highly rank a substitute, but can yield a high score even if one of the elements in the sum is zero. The
Add measure (equation (1), hereafter called AddCos because of the Cosine function applied to the vector
representations of words and contexts) estimates the substitutability of a candidate substitute s of the
target word t in context C, where C corresponds to the set of the target word’s context elements in the
sentence, and c corresponds to an individual context element.

AddCos(t, s, C) =
cos(s, t) +

∑
c∈C cos(s, c)

|C|+ 1
(1)

The vectors used by the original method are syntax-based embeddings created with word2vecf (Levy and
Goldberg, 2014). We use the lighter adaptation proposed by Apidianaki et al. (2018) which circumvents
the need for syntactic analysis, and use 300-dimensional skip-gram word and context embeddings trained
on the 4B words of the Annotated Gigaword corpus (Napoles et al., 2012).

We apply the AddCos method to ELMo as well as to FC-ELMo embeddings. When using standard
ELMo embeddings, the target and context word representations of a sentence are their corresponding
ELMo vector, and the vector of a candidate substitute is obtained by substituting the target word by the
candidate in the sentence, as described in Section 4.1. To adapt this to FC-ELMo embeddings, substitute
representations are replaced by their corresponding FC-ELMo vectors.

4.3 The context2vec-based model

The context2vec (c2v) model jointly learns context and word embeddings using bidirectional LSTM
(Melamud et al., 2016). The proposed neural network is based on word2vec’s CBOW architecture
(Mikolov et al., 2013), but replaces its naive context modeling of averaged word embeddings in a
fixed window with a full-sentence neural representation of context obtained using bidirectional LSTM.
Words and contexts are embedded in the same space, which allows for calculating target-to-context (t2c),
context-to-context (c2c) and target-to-target (t2t) similarities. A score for a candidate substitute is com-
puted using the following formula:

c2v score =
cos(s, t) + 1

2
× cos(s, C) + 1

2
(2)
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where t and s are the word embeddings of the target and the substitute, and C is the c2v context vector
of the sentence with an empty slot at the target’s position. We use the 600-dimensional c2v embeddings
released by Melamud et al. (2016).

We also use Equation (2) (hereafter called c2vf ) with standard ELMo and FC-ELMo vectors. As with
the AddCos method, we represent the target word in context by its ELMo embedding, and the substitute
vectors are obtained with the in-place substitution approach described above (cf. Sections 4.1, 4.2). The
context vector (C) is the average of the ELMo embeddings of all words in the context. To test FC-ELMo
embeddings in this setting, each substitute is represented by its FC-ELMo embedding.

Finally, we experiment with FC-c2v embeddings, i.e. standard context2vec embeddings (Melamud
et al., 2016) tuned on the FC dataset. Target and context are represented with standard c2v embeddings,
and substitutes are represented with FC-c2v embeddings.

4.4 Baselines

We compare our models to two context-insensitive baselines that solely rely on the target-to-substitute
similarity of standard, pre-trained word embeddings: 300-dimensional GloVe vectors (Pennington et al.,
2014)5 and 300-dimensional FastText vectors, both trained on Common Crawl (Mikolov et al., 2018).6

Similar to tTs (Section 4.1), this approach only considers target-to-substitute similarity. With these
uncontextualized embeddings the ranking proposed for each target word is always the same regardless
of context.

We also propose an enriched version of the two baseline models by adding a simple representation
of context consisting of the average of the embeddings of words in a sentence. We then compare target
and substitute vectors to the generated context vector using the context2vec formula (Equation 2).

5 Evaluation

We compare the performance of the proposed models on a ranking task, where models assign scores
to all candidate substitutes for a target word (S = {s1, s2, ..., sn}) according to their suitability in new
contexts. For evaluation, we use the dataset from the SemEval-2007 Lexical Substitution task (McCarthy
and Navigli, 2007). The full dataset consists of 2,010 sentences, 10 for each of 201 target words (nouns,
verbs, adjectives and adverbs), extracted from the English Internet Corpus (Sharoff, 2006), and annotated
by five native English speakers. Words in this lexical sample were selected to ensure variety of senses.
We filter the test set to preserve target words and substitutes present in PPDB 2.0 (XXL) and having a
vector available in all tested models, to ensure all methods use exactly the same substitute pool per target
word. Target words for which none or only one substitute was left were removed. The filtered test set
used in our experiments includes 158 target words and 1,584 sentences.

The ranking performed by each model is compared to the gold ranking by means of Generalized
Average Precision (GAP) (Kishida, 2005). GAP measures the quality of a ranking by comparing the
resulting ranked list with the gold standard annotation, using substitution frequency as weights (i.e.
number of annotators that suggested each substitute). GAP scores range between 0 and 1. A score of
1 indicates a perfect ranking where all correct substitutes precede all incorrect ones, and high-weight
substitutes precede low-weight ones (Thater et al., 2010). We use the GAP implementation in Melamud
et al. (2015)7.

6 Results

The results of the proposed methods in the substitute ranking task are given in Table 3. The standard
context2vec (c2v) model (Melamud et al., 2016) outperforms other methods, including those based on

5https://nlp.stanford.edu/projects/glove
6https://fasttext.cc/docs/en/english-vectors.html
7https://github.com/orenmel/lexsub
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Method Vectors GAP

AddCos (c=1)

Skip-gram (Apidianaki et al., 2018) 0.527
ELMo-avg 0.527
ELMo-top 0.513
FC-ELMo-avg 0.494
FC-ELMo-top 0.491

AddCos (c=4)

Skip-gram (Apidianaki et al., 2018) 0.520
ELMo-avg 0.498
ELMo-top 0.476
FC-ELMo-avg 0.481
FC-ELMo-top 0.478

c2vf

UkWac c2v (Melamud et al., 2016) 0.587
FC-c2v 0.492
ELMo-avg 0.529
ELMo-top 0.516
FC-ELMo-avg 0.490
FC-ELMo-top 0.480

tTs

ELMo-avg (Peters et al., 2018a) 0.534
ELMo-top (Peters et al., 2018a) 0.531
FC-ELMo-avg 0.493
FC-ELMo-top 0.488

Glove + context Glove (Pennington et al., 2014) 0.467
Fasttext + context Fasttext (Mikolov et al., 2018) 0.491

Baselines
Glove (Pennington et al., 2014) 0.465
Fasttext (Mikolov et al., 2018) 0.485

Table 3: Results of the substitute ranking experiment with all methods and embedding types. For AddCos
models, c refers to the size of the window.

ELMo vectors. The superiority of context2vec is due to its training objective: context2vec is explicitly
trained with pairs of target words and sentential contexts, optimizing the similarity of context vectors and
potential fillers. This training objective makes the model highly suited for the LexSub task. In contrast,
ELMo representations are trained as a general language model that predicts the immediate next tokens,
while other types of similarity (e.g. target-to-substitute and substitute-to-context) used by the other
methods are not explicitly accounted for. The underlying assumption of the AddCos and context2vec
models that these similarities need to be high for good substitutes, does not thus apply in the case of
ELMo embeddings.

The ELMo-avg and ELMo-top configurations – which use the top layer or an average of the three
layers of the biLM – give comparable results, with ELMo-avg performing slightly better in all settings.
Peters et al. (2018b) present a thorough analysis of the performance of different layers of the biLM
models in different tasks, which shows that top layers are better suited for semantic-related tasks than
lower layers. In the supervised word sense disambiguation (WSD) evaluation presented in Peters et al.
(2018a) results obtained using the top layer were also slightly better than those of the middle layer. We
believe the slight advantage of the ELMo-avg models, compared to ELMo-top, in LexSub, highlights an
important difference between the two tasks. In LexSub, the selected substitute needs to correctly describe
the meaning of the target word instance and to be a good fit in the context, producing a natural-sounding
sentence. Substitute candidates for a word are often near-synonyms that would be preferred in different
contexts. On the contrary, selection in WSD mainly relies on semantic adequacy. For example, when
selecting one among available senses of a word in a resource like WordNet, the synonyms found in the
selected synset might not all be good in-context substitutes. We believe the ELMo representation ob-
tained by averaging the three layers to contain information regarding both the semantic and the syntactic
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Sentence on the way out of the parking lot johnny felt a thump
Candidate substitutes
for way.n

sense, means, aspect, technique, passage, respect, di-
rection, characteristic, journey, method, route, practice,
fashion, manner

Gold ranking route (3), passage (1), journey (1)

Table 4: A new instance of the target noun way (way.n) from the SemEval-2007 test set, the candidate
substitutes extracted for the word from the PPDB XXL package, and the gold substitute ranking used for
evaluation.

Method Vectors Ranked substitutes

c2vf UkWac c2v (Melamud et al., 2016)
route, journey, manner, passage, direction,
means, sense, aspect, method, fashion, respect,
technique, characteristic, practice

tTs ELMo-avg (Peters et al., 2018a)
route, journey, manner, direction, passage,
method, means, respect, technique, sense, prac-
tice, aspect, fashion, characteristic

Baseline Glove (Pennington et al., 2014)
sense, means, manner, journey, route, direction,
respect, aspect, practice, method, technique, fash-
ion, passage, characteristic

Baseline + ctxt Glove (Pennington et al., 2014)
sense, means, manner, direction, respect, jour-
ney, aspect, route, practice, method, passage,
technique, fashion, characteristic

Table 5: Examples of substitute rankings for the instance of the noun “way” given in Table 4 of the two
best-performing methods (c2vf with standard c2v embeddings and tTs with ELMo-av embeddings) and
the two methods with lowest GAP (baseline and baseline + context with Glove embeddings). Correct
substitutes are marked in boldface to highlight their position in the ranking proposed by each model.

adequacy of a word. This does not contradict previous findings, since the semantics tasks in which the
top ELMo layer was found to perform best were tasks that involve longer range dependencies and a more
general notion of semantic similarity (e.g. coreference resolution).

The results obtained for FC-ELMO-* configurations show that ELMo representations do not benefit
from the addition of discretized sense representations, rather the contrary. Whereas it looks like FC is
introducing confusion to an already good model, we believe this could be due to the small amount of
FC sentences used for tuning (100), which biases the model toward those sentences. Another reason
could be that FC sentences selected using the PMI metric for a target-substitute pair are not always high
quality, i.e. they might not contain, or not be representative enough, of the sense being expressed. In
future work, we intend to experiment with a larger number of sentences for tuning, and with different
ways for measuring the quality of sentences to be included in the FC resource.

The baseline methods that use uncontextualized word embeddings are not very far behind most FC-
ELMo-* models. However, they do seem to slightly benefit from adding context. FastText vectors are
trained with word2vec’s CBOW architecture using position-dependent weighting, which results in richer
context representations and is, we believe, the main reason of its advantage over Glove on this task.

Finally, we observe that, for the AddCos method, a smaller context window around the target word
(c=1) is consistently slightly more effective than a bigger one (c=4). This suggests that the most relevant
context clues for lexical substitution are found in the close vicinity of a target word.

In Tables 4 and 5, we give an example of a new target word instance and the substitute ranking
proposed by some of the models. In Table 4, we also provide the candidate substitutes considered for the
target word way, which are its paraphrases in PPDB XXL that are also present among the gold standard
annotations for this word. Numbers in parentheses denote the number of annotators that proposed each
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substitute. We observe that the stronger models which use the c2v formula with the standard context2vec
vectors (trained on UkWac) or the tTs method with ELMo-avg rank substitutes better than the baseline
models.

7 Conclusion

We analyzed the behavior of different word and context representations in an in-context substitute rank-
ing task. The compared methods differ as to the type of similarity they consider between words (target-to-
substitute) and contexts (substitute-to-context). We experiment with the standard representations released
for each approach, and fine-tune them to the LexSub task using an automatically compiled collection of
sentences representing target-substitute pairs. Our results show that models trained with a slot-filling ob-
jective that optimizes the inter-dependencies between candidate substitutes and context, like context2vec,
are a better fit for the LexSub task than purely context-based models, like ELMo. This is because they
encode target-to-substitute similarity and local context appropriately for this task, which ensures the
semantic and syntactic adequacy of the selected substitutes. The importance of these two parameters is
also highlighted in our experiments by the performance of different combinations of ELMo layers, which
shows that the substitute ranking task involves both semantic (top-layer) and syntactic (lower-layer) in-
formation.

In its current form, tuning on the sentences of the FC dataset does not seem to help the models.
In future work, we plan to improve the quality of the substitute-focused contexts, to ensure a better
representation of the meaning of target-substitute pairs that would be beneficial for this task. A large-
scale resource of this type will be highly useful for training neural models for lexical substitution.
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Abstract
Propelling, and propelled by, the “deep learning revolution”, recent years have seen the introduc-

tion of ever larger corpora of images annotated with natural language expressions. We survey some
of these corpora, taking a perspective that reverses the usual directionality, as it were, by viewing the
images as semantic annotation of the natural language expressions. We discuss datasets that can be
derived from the corpora, and tasks of potential interest for computational semanticists that can be
defined on those. In this, we make use of relations provided by the corpora (namely, the link between
expression and image, and that between two expressions linked to the same image) and relations that
we can add (similarity relations between expressions, or between images). Specifically, we show
that in this way we can create data that can be used to learn and evaluate lexical and compositional
grounded semantics, and we show that the “linked to same image” relation tracks a semantic implica-
ture relation that is recognisable to annotators even in the absence of the linking image as evidence.
Finally, as an example of possible benefits of this approach, we show that an exemplar-model-based
approach to implicature beats a (simple) distributional space-based one on some derived datasets,
while lending itself to explainability.

1 Introduction
In model-theoretic formal semantics, the central semantic notion “truth” is explicated as a relation be-
tween a sentence and a mathematical structure, its model. Semantics textbooks are surprisingly evasive
about what exactly this structure is meant to be, other than hinting at that it in some way represents the
general “situation”, or “world”, that the sentence is taken to be talking about. In any case, what the model
as a mathematical structure does is to provide a collection of individuals about which the sentence could
be talking, and an interpretation of the non-logical lexical items occurring in the sentence, in terms of
sets of individuals (or tuples of individuals). The collection of individuals is typically called the domain
D, and the set of interpretations I , so that a model M = 〈D, I〉.

It is this intended relation with the world that allows us to see an analogy between these structures
and photographic images. A photograph is a frozen moment in time, a representation of how the world
was (or looked like) at a certain moment, at a certain place and from a certain perspective. And just as
a sentence in formal semantics is evaluated relative to a model, a sentence describing a situation can be
seen as true relative to an image — if (and only if) the image depicts a situation of the described type.
Hence, in a slight reversal of our usual way of talking, we can say that a given image does (or does not)
make a given sentence true (instead of saying that the sentence is a true description of the image), and
we can see the image as a model of the sentence.1

What does this sleight of hand buy us? A very large amount of data to play with! The field of
computer vision has as one of its central aims to find meaning in pixels – see e.g., Davies (2012), Marr

∗Work done while author was at Bielefeld University.
1There are interesting subtleties here. In our everyday language, we are quite good at ignoring the image layer, and say

things like “the woman is using a computer”, instead of “the image shows a woman using a computer”, or “this is a computer”,
instead of “this is an image of a computer”. This also seems to carry over to tense, where we can say “is using”, instead of “was
using at the time when the picture was taken”. There are however contexts in which talk about the image as image is relevant,
and this can happen in large corpora such as discussed here. So this is something to keep in mind.
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(1982) – and a convenient way of representing meaning is with natural language. It is also a field
that has been data-driven for a long time, and so there is a large number of data sets available that
in some way pair images with natural language expressions.2 Recent years have specifically seen the
creation of large scale corpora where images are paired with ever more detailed language (e.g., single
sentence or even full paragraph captions describing the image content; facts about the image spread over
question and answer; detailed descriptions of parts of the image in terms of agents and patients; see
references below).3 Given the understanding that all these expressions are meant to “fit” to the images
that they are paired with, and using the slight conceptual inversion of treating the images as “truthmakers”
(Fine, 2017) for the sentences, this gives us an unprecedentedly large set of language expressions that
are “semantically annotated.”4,5 As we will show, this gives us material to learn about the lexical and
compositional semantics that underlies the use of the expressions.

The contributions of this paper are as follows: 1.) To make explicit a perspective that so far has been
taken only implictly in the literature, which is to view images as models of natural language expressions;
2.) to show by example that taking this perspective opens up interesting data sets for computational se-
mantics questions; 3.) specifically, to look at how grounded interpretation functions could be learned
from and tested on this data, and; 4.) how data can be derived that expresses various implicature rela-
tionships; and 5.) to show how exemplar-based model building can be used to predict some of those
relations. Our code for working with the corpora mentioned here (and some others) is available at
http://purl.com/cl-potsdam/sempix.

2 Background
2.1 The Approach: Learning Semantics From Relations in Corpora

e1

I1
e2

Re/I

Re/I
Re/e

e3
I2Re/I

Re/e

RI/I

M ⊨ e ?

e1 ⊨ e2 ? 
e1 ⊢ e2 ?

Figure 1: Relations in cor-
pora & to be derived

Our general approach will be to look at relations that are expressed in the
data or can be added using computational methods, and then to ask what
these can tell us about semantic relations like truth and entailment, and in
turn what these tell us about the meanings of expressions. Figure 1 illustrates
the idea. The corpora provide us with an “annotates” relation between im-
ages and expressions; in the Figure, holding between I1 and e1 and e2, and
I2 and e3, where the expressions for example could be captions. Implicitly,
there is also an “annotates same image” relation that holds between expres-
sions; here, e1 and e2, as alternative captions of the same image. Standard
natural language processing and computer vision techniques (see below) al-
low us to compute similarity relations between pairs of images (e.g., I1 and
I2) and between pairs of expressions (e1, e3). The question then is whether these relations can tell us
something about satisfaction / denotation (|=, [[·]]) and entailment (|=,`).

2.2 Corpora Used Here
We make use of data from the following corpora:
•MSCOCO / RefCoco / GoogleREX: The “Microsoft Common Objects in Context (COCO)” col-

lection (Lin et al., 2014) contains over 300k images with object segmentations (of objects from 80 pre-
specified categories), object labels, and nearly 400,000 image captions. It was augmented with 280,000

2See for example the (incomplete) lists at http://www.cvpapers.com/datasets.html and https://
riemenschneider.hayko.at/vision/dataset/.

3While there are by now some non-English or even multi-lingual corpora, the majority provide English language annota-
tions, including all of those that we discuss here.

4The corpora we discuss here provide almost 8 million distinct natural language expressions (with many more that can be
derived from them). In comparison, the largest “classical” semantics resource, the Groningen Meaning Bank (Bos et al., 2017),
provides some 10,000 annotated sentences, and the Parallel Meaning Bank (Abzianidze et al., 2017) another 15,000. There is
no competition here, though: the Meaning Bank annotations are obviously much deeper and much more detailed; the proposal
in this paper is to view the image corpora discussed here as complementary.

5The relation between images and models is implicit in (Young et al., 2014), from where we took inspiration, but not further
developed there in the way that we are attempting here. Hürlimann and Bos (2016) make an explicit connection between image
and models, but only look at denotations; as do Schlangen et al. (2016).
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referring expressions by Yu et al. (2016), using the ReferitGame where one player needs to get another
to identify a predetermined object in the image, with the players getting feedback on their success. Mao
et al. (2016) also provide expressions for COCO objects, but collected monologically with the instruc-
tions to provide an expression that uniquely describes the target object.
• Flickr30k / Flickr30kEntities: Flickr30k (Young et al., 2014) is a collection of 30,000 images

from a public image website which were augmented with 160,000 captions; Plummer et al. (2015) anno-
tated these captions with positions of the objects in the images that they mention (Flickr30kEntities).
• Visual Genome: This dataset by Krishna et al. (2016) combines images from COCO and another

data set (yielding around 100k images), and augments them with 2 million “region descriptions”, which
are statements true about a part of an image, and resolved for the entities mentioned and their relations.
These descriptions are parsed into object names and attributes, and normalised by reference to the Word-
Net ontology (Fellbaum, 1998). Krause et al. (2017) added 20,000 image description paragraphs (i.e.,
extended, multi-sentence captions) for some of the images.

All these data sets give us images paired with natural language expressions; in most of them, the
relation between image and expression is annotated more fine-grainedly by linking regions within the
image to (parts of) the expressions.6 Also, some corpora provide an additional layer that could be seen
as corresponding to the logical form of the expression, for example by normalising nouns to a resource
like WordNet (Fellbaum, 1998) or by annotating the predicate / argument structure.

3 Expressions and Denotations
3.1 Images as Semantic Models: An Example

Figure 2: A Segmented Image from COCO

Above, we have introduced our analogy be-
tween semantic models and images. An ex-
ample shall make it clearer. Figure 2 shows
an image (from COCO) with object segmen-
tations (rectangular patches indicating the po-
sition of an object in the image) and identi-
fiers, as provided by the corpus. We can di-
rectly treat this as the domain provided by the
model, so that here D = {o92839, o93793, o387589,
o387727, o505664, o510191, o660005, o1168354, o1587273,
o1716887, o1863940, o1864058, o1864291}.

The corpus also provides natural language
annotations for these objects, for example “the
woman in white” and “the woman in black” (for o505664, o510191, respectively). We can use this
to “reverse engineer” the interpretation functions covering these words, and in particular derive that
I(woman) ⊆ {o505664, o510191}. If we make an additional exhaustivity assumption over the set of an-
notations, we can strengthen this to I(woman) = {o505664, o510191}; that is, make the assumption that
these are the only objects (in this image / the set of segmented objects from that image) to which this
term can be applied. We will need to make this assumption when we want to generate negative instances
used in machine learning, but need to keep in mind that in general, this assumption is unwarranted, as
exhaustivity was not a goal when creating the corpora. o505664 =

Figure 3: Invidual

Continuing with the discussion, we can think more about what this view on
the corpora offers for doing semantics. Our domain D is now populated not just
with identifiers or symbols from a vocabulary, but rather with objects that have
an internal structure. In the example above we were able simply to read off the
interpretation function for the word from the annotation. But we can try to use

6This makes working with the images easier, as it allows us to assume that the task of object recognition (detecting contigu-
ous regions of pixels that belong to the same object) has already been successfully performed. This is not a strict requirement
for working with images these days, however, as high-performing models are available that do this job (Redmon and Farhadi,
2018), (He et al., 2017), but these still add noise from which one might want to abstract for the purposes discussed here.
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Figure 4: Object “names” (left) and “attributes” (right) from Visual Genome, for an example image

instances like this to generalise this function. That is, we can try to turn I into a “constructive” function
that not just records a fact (“object o is in the denotation of predicate φ”), but rather produces a judgement,
given a (structured, visually represented) object; we may write Iwoman(D) to make this explicit.7

With this in hand, we can now explore how the available data could help us learn and evaluate lexical
interpretation functions and their composition. We will look at the available expression types in order of
increasing syntactic complexity. The relation that we will make use of first is the “annotates” relation
between expressions e and (parts of) images I . This relation gives us the value of [[e]]〈D,I〉 (which is an
entity or a truth value); the interest is in learning about [[·]]〈·,I〉 as it covers the constituents of e and their
composition.

3.2 Expression Types Found in Corpora
3.2.1 Sub-Sentential Expressions
Of the corpora discussed here, only Visual Genome provides open-class single word annotations. Ob-
jects in the corpus are associated with “names” (typically nouns), and “attributes” (typically adjectives),
which were semi-automatically segmented out of larger expressions provided by annotators (to be dis-
cussed below). Figure 4 shows this for one image from the set. (It illustrates at the same time how
fine-grainedly the corpus is segmented—on average it provides 36 object bounding boxes per image.)

The Visual Genome annotation provides over 105,000 word form types, of which about 10,500
have at least 10 instances. Using the normalisation to WordNet synsets in the corpus, this reduces to
roughly 8,000 types, of which 3,500 occur at least 10 times. The distribution (not shown here) is roughly
Zipfian—and reveals a certain bias in the data, with “man” occuring twice as often as “woman”, for
example. This is a sizeable vocabulary for which interpretation functions can be learned from this data.

We have briefly mentioned the problem of getting negative instances of word denotations, as re-
quired by typical machine learning methods. One method is to sample from the set of objects in a given
image that are not annotated with a word; but this requires making the aforementioned (non-warranted)
exhaustivity assumption. Schlangen et al. (2016) have shown this to be unproblematic for the data that
they used; establishing to what degree it would be here we leave to future work. It is likely to be more
of a problem for adjectives, where the choice of what to mention is governed much more by the context
than the choice of which name to use for an object.

This data can be assembled into simple nominal phrases (ADJ + N; e.g. “brown window” for top
right of Figure 4). Semantically, these would be indefinite noun phrases, as all that is guaranteed is
that they are appropriate for the object that they apply to (but there may be others of that type in a given
image). With the denotation being known, this can be used to evaluate the semantic composition.

7This perspective has previously been taken by Schlangen et al. (2016) and developed for simple expressions; the present
section builds on that work.
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More interesting and complex are the noun phrases found in the referring expression corpora (the
ReferIt variants; see above). These expressions were produced in the form that they are recorded in the
corpora (unlike the single word expressions discussed above), and in an actual context of use, namely
with the aim to single out an object to a present interlocutor. This makes this data set also interesting
from a pragmatic point of view, as one can ask how the context (in the image, but also in the production
situation) may have influenced the linguistic choices. The following shows the referring expressions
available for the tennis player on the right in the image from Figure 2 above; also shown is the annotation
from the GoogleREX corpus:

(1) a. RefCoco: lady in black on right | girl in black | woman in black
b. RefCoco+: black shirt | girl in black | player in black
c. GoogleREX: woman in black tank top and shorts holding tennis racket | woman in black

outfit shaking other tennis player hand

Contrasting the GoogleREX expressions illustrates the influence of the context of use on the shape of the
expressions. The GoogleREX annotators did not have interlocutors and were just tasked with producing
expressions that describe the object uniquely. The ReferIt expressions do this as well, but additionally,
they do this in the most efficient and effective way, as the players had an incentive to be as fast as
possible, while ensuring referential success. This shows: The average length of RefCOCO expressions
is 3.5 token, that of GoogleREX 8.3.8

We also find relational expressions like the following in these corpora, which identify the target
object by relating it to another one (the landmark):

(2) woman under suitcase | laptop above cellphone right | black van in front of cab

To learn the interpretation of such relational items (here, “under”, “above”, “in front of”), it would be
good to have grounding information also about the landmark. The corpora mentioned so far do not give
us this,9 and so we turn to Visual Genome, and away from referring expressions.

Figure 5: A region description from Visual Genome

Visual Genome was collected with the explicit
purpose of providing material for learning “inter-
actions and relationships between objects in an
image” (Krishna et al., 2016). The starting point
of the annotation was the marking of a region of
interest in the image, and the annotation of that
region with a “region description”, ie. an expres-
sion that is true of that region. Note the difference
to referring expressions: no stipulation is made
about whether it is or is not true of other objects
in the image. Annotators were encouraged to pro-
vide region descriptions that are relational, and
these then form the basis of an abstracted repre-
sentation of that relation. Figure 5 shows an example of such a region description; the corresponding
annotation is shown in (3), slightly re-arranged to make clearer its similarity to classical logical forms
(LFs).10

(3) "next to a":be.v.01(1060704:puzzle.n.01, 1060699:computer monitor.n.01)

8These corpora have been used by Kazemzadeh et al. (2014), Yu et al. (2016), Mao et al. (2016), Schlangen et al. (2016),
Cirik et al. (2018) to train and test models of referring expression resolution.

9For a portion of GoogleREX, this was added by Cirik et al. (2018).
10What this also illustrates is that the normalisation decisions made in the corpus can occasionally be somewhat questionable.

Here, the part “next to a” is normalised to the verb “be”; presumably, the annotator added the elided copula here and rather
ignored the spatial relation.
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Figure 7: “A man standing in the snow with skis on.” (left), and distractors (visual similarity, middle;
semantic similarity, right)

Figure 6: “there are desktop computers on the desk”

There are over 5 million region descriptions
in Visual Genome, of which almost 2 million are
parsed into this logical form. There are around
37,000 different relational terms in this set, of
which around 3,100 occur more than 10 times.
From this, a sizable number of relational interpre-
tation functions could be learned.

Before we move on, we note that in about
6.8% of the region descriptions there is more than
one object associated with an expression; as in the
example in Figure 6, where “desktop computers”
is resolved to four different bounding boxes. Such
configurations could be used to learn the function
of the plural morpheme. Looking at the expressions, there are also more than 1,000 instances each of
quantifiers and numerals such as “several”, “two”, “many”, which provides opportunity to learn their
meaning.
3.2.2 Sentences
We now turn to expressions that need to be evaluated relative to the image as a whole. Such expressions
can be constructed for example by plugging the nominal phrases from above into the sentence frame
“there is NPindef” (e.g., “there is a brown window” for Figure 4), to yield existential assertions. Nega-
tive examples (where the constructed sentence is false) can be selected by sampling an image that is not
annotated as containing an object of that type, again making use of an exhaustivity assumption.

Constructing examples in this way gives us control over the complexity of the expression, at the cost
of a loss in naturalness. Some of the corpora, however, also come with attested examples of expressions
that are meant to describe the image as a whole; COCO for example provides over 400,000 of such
captions. Figure 7 (left) gives an example of an image/caption pair.

How can we sample negative instances, where the image is not described by the caption? One method
is to simply sample an arbitrary image from the corpus: there will be a good chance that it does not fit
the caption. Too good a chance, perhaps, in that we are likely to hit an image that does not even contain
any of the entity types mentioned in the expression. To make the task harder, we can now make use of
one of the derived relations described above, namely a simiarity relation between images.

We looked at two ways of defining such a relation. Visual similarity (simvis
I/I ) is the inverse of the

cosine distance in image representation space, using a pre-trained convolutional neural network (we
used VGG-19, Simonyan and Zisserman (2014), pre-trained on ImageNet Russakovsky et al. (2015)).
We compute content-based or semantic similarity (simsem

I/I ) by vectorising the image annotation (in a
many-hot representation with the object types as dimensions), using SVD to project the resulting matrix
into a lower-dimensional space. Given our analogy between semantic models and images, with this we
then have a similarity relation between models, and we can select distractor images / models that are
more challenging to refute. Figure 7 shows distractors selected via visual (middle) and semantic (right)
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Figure 8: Image described by paragraph (see text; left), and distractors (visual similarity, middle; seman-
tic similarity, right)

similarity. As this illustrates, quite fine-grained resolution abilities are required to recognise these as not
fitting the caption. (Man, but skis not on; man with skis on, but not standing.)

Captions from COCO are not finely grounded (no links between objects in the image and parts of
the expression). Flickr30kEntities provides this; for reasons of space, we do not show an example here.
We also skip over the wh-questions (with answers) that are available for COCO and Visual Genome,
noting only that they add an interesting generation challenge (if set up as open answer task; if set up as
multiple-choice task, this reduces to making a decision for a proposition).
3.2.3 Discourses
Finally, example (4) shows an image description paragraph for a Visual Genome image. The associated
image and two distractors are shown in Figure 8. The semantic challenge here when evaluating such a
paragraph relative to an image, at least when a probabilistic approach is taken, is that a decision must be
made on how to combine the uncertain judgements from each constituent sentence.

(4) The baseball player is swinging the bat. The ball is in the air. The dirt on the ground is light
brown. The baseball player is wearing blue pants. The other baseball players are watching from
The Dugout. The baseball player swinging the bat is wearing a dark-colored baseball hat. He’s
also wearing a bright red belt.

As this survey has shown, there is plenty of data available for learning grounded interpretation func-
tions for individual words (nouns, adjectives, prepositions), and for evaluating (or even learning) how
these functions must be put together to yield interpretations for larger expressions (NPs, sentences, and
even discourses).

4 Expressions and Implications
4.1 Images as Implicit Link between Expressions
Besides the question of whether a statement is true of a given situation, an interesting question often
is whether a statement follows from another one. There are various ways of tying down what exactly
“follows” may mean. A very general one is given by Chierchia and McConnell-Ginet (1990), who use
“A implies B” for cases where (the statement and acceptance of) A provides reason to also accept B.11

This covers cases where a proof can be given that connects B to A (where the relation would be syntactic
consequence, `), cases where an argument can be made that any model that makes A true will also
make B true (semantic consequence, |=), but also cases where A may just make B very plausible, given
common sense knowledge (which we might call common sense implicature, and denote with |=cs).

Here, we look at relations that we can take from the corpora and ask whether these can help us get
at these semantic implicature relations. We make use of the fact that for most of the image objects in

11This is also how later the influential “recognising textual entailment” challenge (Dagan et al., 2006) would describe the
relation, however also starting the tradition in natural language processing to overload the term “entailment” to cover all of what
could more generally be called “implication”. Young et al. (2014) call their task, defined via images as well and our inspiration
for the work described here, with a qualifier as “approximate entailment”.
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the corpora, we have available more than one expression of the same type, e.g., more than one referring
expression, or more than one caption. In the following, we take a look at some examples, sorting the
discussion by the type of expressions that we pair.12 We will argue that to predict the presence (or not)
of an implicature relation, a different, complementary kind of lexical knowledge is required than for
evaluation relative to an image (or situation); cf. Marconi (1997).

4.2 Types of Relations
4.2.1 Same Level / Rephrasing
Example (5) shows referring expressions from RefCOCO (left) paired with another expression referring
to the same object (middle) and with one referring to a randomly sampled other object from the corpus.
The prediction task is to identify the left/middle pair as standing in an implicature relation, and the
left/right pair as not standing in this relation. (To put a practical spin on it, this could be seen as detecting
whether the second pair part could be a reformulation of the first, perhaps as response to a clarification
request.)

(5) a. right girl on floor || lady sitting on right | guy on right
b. woman || left person | pizza on bottom right
c. man trying to help with suitcase || man in jacket | very top zebra

Despite the brevity of the expressions, as this example indicates, this task seems to require quite detailed
lexical knowledge, for example detecting incompatiblity between “guy” and “girl” in (5-a), but compat-
iblity between “lady” and “girl”. (If this knowledge were available, perhaps a natural logic-type (Moss,
2015) approach could then be taken.) Creating this dataset only requires that several referring expres-
sions are available for the same object, and indeed RefCOCO for example provides on average 7.1 per
object, for a total of over 140,000 referring expressions.

We randomly sampled 60 instances of such pairings (balanced pos/neg) and presented each to three
workers on Amazon Mechanical Turk, asking for a semantic relatedness judgement (on a 4 step Likert-
scale). Using the majority label and binning at the middle of the scale, the accuracy is 0.68. This indicates
that while noisy, this method creates a recognisable semantic relation between these expressions.13

Example (6) shows similar pairings of captions, with the negative instance (the final part of each sub-
example) taken from a distractor image selected for semantic image similarity. As this illustrates, the task
only becomes harder, with the caption that is intended to be non-matching occasionally accidentally even
intuitively being compatible after all. (Crowd accuracy, henceforth AMT, with same setup as described
above: 0.63.)

(6) a. A woman with a painted face riding a skateboard indoors. || A woman with face paint on
standing on a skateboard. | There are men who are skateboarding down the trail.

b. Man and woman standing while others are seated looking at a monitor. || A man and woman
play a video game while others watch. | Two people standing in a living room with Wii
remotes in their hands.

4.2.2 More Specific / Entailment
Since some of the corpora overlap in their base image data, we can intersect the annotation and create
derived data sets. (7) shows examples of a caption from COCO (left) paired with an object from Visual
Genome (slotted into a “there is (a) ” frame for presentation) taken from the same image (middle),
and a randomly sampled object (right) in (7-a) and (7-b), and with region descriptions (also from Visual
Genome) in the other examples.

12Our inspiration for this approach comes from two sources. As mentioned, Young et al. (2014) used image captions to create
their “approximate entailment” data sets; our proposals here can be seen as a generalisation of this to other pairings. Further,
the original “natural language inference” dataset by Bowman et al. (2015) used captions as seeds, but had the entailments and
contradictions manually generated and not derived via image relations, as we do here.

13Note that the task was to judge pairs, not to decide between two hypotheses, which would presumably be a simpler task.
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(7) a. A man wearing a black cap leaning against a fence getting ready to play baseball. || there is
(a) man | there is (a) cow

b. Rice, broccoli, and other food items sitting beside each other || there is (a) health foods |
there is (a) granite

c. A man playing Wii in a room || there is/are (a) a plant that sits on a desk | there is/are (a)
field covered in green grass

d. A woman is riding a wave on a surfboard. || there is/are (a) Woman with the surfboard. |
there is/are (a) Students sitting at their desks

Judging from these examples, quite detailed knowledge about situations and possible participants seems
to be required to predict these relations. (AMT accuracy caption/object: 0.58, caption/region: 0.6.)
4.2.3 More Detailed / Elaboration
Finally, (8) shows examples of a caption (from COCO) paired with a paragraph (from Visual Genome-
paragraphs) describing the same (middle) or another, but similar image. The task here is to detect whether
the extended description fits with the short description or not, which again seems to require quite detailed
knowledge about situations and likely sub-events. (AMT: 0.6.)

(8) two people lying in a bunk bed in a bedroom.
A boy and girl are sitting on bunk beds in a room. The boy is wearing a red shirt and dark pants.
The girl is wearing a gray shirt and blue jean pants. There is a green and pink blanket behind the
boy on the top bunk. The girl is sitting on a rolled up blanket. She is wearing red glasses on her
eyes.
A woman is sitting on a bed beside a little girl. She is wearing a sweater and black bottoms. The
woman has eyeglasses on her eyes. The girl is wearing a colorful jacket. The girl is looking at
a book that is opened on her lap. The bed is sitting against a white painted wall. There is a red
blanket on the bed.

Using this general recipe, further datasets can be created with other combinations, for example pairing
sets of region descriptions with further descriptions either from the same or from a different scene, or for
the task of predicting the number of distinct entities introduced by a sequence of region descriptions. For
reasons of space, we do not show examples here.

5 A Case Study: Model-Building for Predicting Entailment

Figure 9: A Retrieved Abstract Exemplar Situation

Entailment tasks, triggered by the aforementioned
“natural language inference” dataset (Bowman
et al., 2015) have in recent years become a sta-
ple NLP task. They are typically tackled with
very high-capacity machine learning models that
classify distributed representations of the candi-
date relata, e.g., as in (Devlin et al., 2018). With
the perspective developed here, we can liken such
approaches to the syntactic way of defining en-
tailment (`), in that these approaches only take
the surface form into account (and implicitly learn
and use the required common sense knowledge).

A semantic approach seems possible as well,
however. In its brute force form, it would implement the typical way in which semantic consequence
is defined, by quantification over all models. Here, this would mean testing, along the lines developed
in Section 3, whether all images (in a sub-corpus held for that purpose) that make the premise true also
make the hypothesis true. We try something else here, which is more like model-building (Bos, 2003),
for data of the type illustrated in (7) above.

The idea is as follows. Given the premise (in our case, always a caption), we retrieve a set of images
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(other than that from which the caption was taken), via captions that are nearest neighbours in a text
embedding space (for which we used the “universal sentence encoder” by Cer et al. (2018)). That is, we
make use of a derived expression/expression relation, to create a relation between an expression and a set
of retrieved models. (One can think of these as situation exemplars stored in memory and retrieved via
their short descriptions.) Figure 9 shows such a retrieved model (abstracted away from the actual image
content, which is not used), for the trigger caption “An airplane flying through the sky on a cloudy day.”
and retrieved via its most similar caption “White and blue airplane flying in a grey sky.”.

We then test the candidate expressions (or rather, their “logical forms”, as given by Visual Genome)
against this set of models. For objects (as in (7-a) and (7-b) above), this checks whether an object
of the appropriate type is in the retrieved models; for relations, this additionally checks whether the
relation is also present. If the required types are present in all models, this would yield a score of 1.
We set a threshold (in our experiments, at 0.2), above which a positive decision is made. As baseline,
we use token overlap between premise and hypothesis for objects and intersection over union for the
longer region descriptions, and distance in the embedding space. We created 10,000 triples each for the
caption/object and the caption/region task.

The results in Table 1 indicate that this rather simple model captures cases that the baselines do not.
An example where this is the case is shown in (9); here the retrieved models seem to have provided the
entities (“umpire” and “jacket”) which are likely to be present in a baseball scene, but aren’t literally
mentioned in the premise.

Task Model Strg.Bsln Embd.Bsln Task Model Strg.Bsln Embd.Bsln
Captions / Objects 0.67 0.58 0.64 Captions / Regions 0.65 0.54 0.50

Table 1: Results for Predicting Entailment via model retrieval (and baselines)

(9) Baseball batter hitting ball while other players prepare to try and catch it. || jacket worn by umpire
| silverware on a napkin

This is clearly not more than a first proof-of-concept. We’ve included it here to motivate our tentative
conclusion that the perspective introduced in this paper might have value not only for deriving interesting
data sets, but also for tackling some of the tasks. In future work, we will explore methods that directly
predict image layouts [e.g., (Tan et al., 2018)], comparing them to direct prediction approaches and
evaluating whether the former methods offer a plus in interpretability through the step of predicting
abstract models.

6 Conclusions
Our goal with this paper was to show, with detailed examples and descriptive statistics, that language /
vision corpora can be a fertile hunting ground for semanticists interested in grounded lexical semantics.
There is data pairing various, ever more complex, kinds of expressions with image objects (either parts
of images, or images as a whole). Moreover, using these corpora, data sets can be derived that pair
expressions, where a semantic relation holds between the parts that is recognisable to naive annotators
(if not alway very clearly). As an example, we’ve used the perspective of treating images as models to
retrieve exemplar models via language descriptions (captions), and probe those for the likely presence of
entities and relations in a mentioned situation. It is our hope that this perspective might be useful to other
researchers, and with the code released with this paper, we invite everyone to ask their own questions of
the data, and to implement ideas on how to learn grounded interpretation.
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Abstract

Categorization is a central capability of human cognition, and a number of theories have been
developed to account for properties of categorization. Despite the fact that many semantic tasks
involve categorization, theories of categorization do not play a major role in contemporary research
in computational linguistics. This paper follows the idea that embedding-based models of semantics
lend themselves well to being formulated in terms of classical categorization theories. The benefit is
a group of models that enables (a) the formulation of hypotheses about the impact of major design
decisions, and (b) a transparent assessment of these decisions.

We instantiate this idea on the frame-semantic frame identification task. We define four models
that cross two design variables: (a) the choice of prototype vs. exemplar categorization, corresponding
to different degrees of generalization applied to the input, and (b) the presence vs. absence of a
fine-tuning step, corresponding to generic vs. task-adaptive categorization. We find that for frame
identification, generalization and task-adaptive categorization both yield substantial benefits. Our
prototype-based, fine-tuned model, which combines the best choices over these variables, establishes
a new state-of-the-art in frame identification.

1 Introduction

Categorization is the process of forming categories and assigning objects to them, and is a central capability
of human cognition (Murphy, 2002). Not surprisingly, cognitive psychology has shown substantial interest
in theories of categorization. Two such prominent theories are prototype and exemplar models. In
prototype theory, categories are characterized in terms of a single representation, the prototype, which is
an abstraction over individual objects and captures the ‘essence’ of the category (Posner and Keele, 1968;
Rosch, 1975). In computational models, the prototype is often computed as the centroid of the objects of a
category, and new objects are classified by their similarity to different categories’ prototypes. As a result,
the decision boundary between every pair of categories is linear. In contrast, exemplar theories represent
categories in terms of the potentially large set of objects, called exemplars, that instantiate the category
(Nosofsky, 1986; Hintzman, 1986). New objects are classified by similarity to nearby exemplars, so in a
computational model this becomes similar to a nearest-neighbor classification. In exemplar models, the
decision boundary between categories can become non-linear, enabling more complex behavior to be
captured, but at the cost of higher training data requirements.

Prototype and exemplar theories are typically not at the center of attention in contemporary compu-
tational linguistics. One reason is arguably that, due to their origin in psychology, they tend to restrict
themselves to cognitively plausible parameters and learning mechanisms (Nosofsky and Zaki, 2002; Lieto
et al., 2017), whereas the focus of computational linguistics is very much on the use of novel machine
learning techniques for applications. We nevertheless believe that categorization theory is still relevant
for computational linguistics, and lexical semantics in particular. In fact, the emergence of distributed
representations (embeddings) as a dominant representational paradigm has had a unifying effect on work
in lexical semantics. The properties of high-dimensional embeddings provide a good match with the

295



assumption behind much of categorization theory – namely, that categories arise naturally from the
similarity structure of individual objects (Erk, 2009).

Given this context, the exemplar–prototype dichotomy is a useful dimension on which models can
be situated in terms of how much they generalize over objects: low for exemplar-inspired, but high for
prototype-inspired models. Regarding the representation of word meaning in context, for example, the
additive models first considered by Mitchell and Lapata (2008) fall into the prototype camp, while Erk
and Padó (2010) propose exemplar-based models, and Reisinger and Mooney (2010) explore dynamic
generalization in what they called ‘multi-prototype’ categorization models. However, for many tasks,
such comparisons – on a level playing field – are missing.

An interesting recent development in the embedding literature is the emergence of the distinction
between pre-training and fine-tuning (e.g., in BERT (Devlin et al., 2018), OpenAI’s GPT (Radford et al.,
2018), or ULM (Howard and Ruder, 2018)): pre-training constructs embeddings that are supposedly
general and are robust across many tasks. Fine-tuning can then further optimize embeddings for one
particular task, at the cost of robustness. Importantly, pre-training takes advantage of massive amounts
of unlabeled data, while fine-tuning can leverage small amounts of task-specific labeled data. This
distinction ties in nicely with open questions in the categorization literature concerning the respective roles
of “bottom-up” similarity information and “top-down” theory information (Smith and Sloman, 1996):
task-independent pre-training embeddings, and their similarities which shape the categorization process,
can be understood as “bottom-up” information, while the transformations that fine-tuning introduces
to optimize these embeddings for a specific task, arguably represent “top-down” information. Notably,
such transformations can be understood equivalently as learning task-specific similarity metrics (Bellet
et al., 2013). By learning general representations in a bottom-up pre-training phase and then comparing
performance with additional top-down fine-tuning, we can discriminate how much general semantic
knowledge is necessary to perform a categorization task and how much task-specific learning is required.

In this paper, we investigate a lexical semantic task, specifically the identification of frame-semantic
frames (Baker et al., 1998) in running text, from this categorization perspective. Frames can be understood
as semantic classes that are sensitive both to the topic of the context and to specific properties of the
predicate-argument structure. We present four categorization models for the task, all of which are based on
the state-of-the-art BERT model (Devlin et al., 2018) but which differ in how they use its embeddings. Two
models are prototype-based (i.e., compute a representation for each frame), and two are exemplar-based
(i.e., represent a frame solely in terms of its instances). Within each group, we compare the use of
embeddings without fine-tuning (“bottom-up”) and with fine-tuning (“top-down”).

Contributions and Findings. This setup enables us to gauge, on a lexical semantic analysis task, (a)
whether generalization helps, and what the size of the effect is; (b) whether there are benefits of top-down
task adaptation; (c) whether there is an interaction between generalization and adaptation. We find that
generalization indeed helps, as does top-down adaptation. Overall, our best model establishes a new
state-of-the-art in frame identification.

Structure of the paper. In Section 2, we provide details on frame semantics and frame identification, as
well as the current work in distributed semantic representations. We additionally outline the architecture
of BERT its pre-training and fine-tuning steps. Section 3 defines the four models that we experiment with,
and Section 4 describes the experimental setup. Finally, we describe and discuss results and analysis in
Sections 5 and 6.

2 Background

2.1 Frame Semantics and Frame Identification

Frame Semantics is a theory of semantics that groups predicates in terms of the situations that they
describe and their relevant participants (Fillmore, 1982). These situations, or scenarios, are formalized in
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terms of frames, conceptual categories which have a set of lexical units that evoke the situation, and a set
of frame elements that categorize the participants and that are expected to be realized linguistically. For
instance, tell, explain, and say are all capable of expressing the STATEMENT frame which describes the
situation where SPEAKER communicates a MESSAGE to a RECIPIENT.

Frame Semantics has been implemented in a number of NLP applications thanks to the Berkeley
FrameNet resource (Baker et al., 1998). The latest FrameNet lexicon release provides definitions for
over 1.2k frames, and 13,640 lexical units (i.e., predicate–frame pairs), where there are approximately 12
lexical units per frame. FrameNet also provides sentence annotations that mark, for each lexical unit, the
frame that is evoked as well as its frame elements in running text. This annotated corpus has sparked a lot
of interest in computational linguistics, and the prediction of frame-semantic structures (frames and frame
elements) has become known as (frame-)semantic parsing (Gildea and Jurafsky, 2002; Das et al., 2014).

2.1.1 Frame Identification

In this paper, we focus on the first step of frame-semantic parsing called frame identification or frame
assignment, where an occurrence of a predicate in context is labeled with its FrameNet frame. This is a
categorization task that presents two main challenges:

Ambiguity Most predicates in FrameNet are ambiguous, that is, they can evoke different frames depend-
ing on the context that they occur in. For example, treat has a medical sense (treat a disease) that
evokes the MEDICAL INTERVENTION frame and a social sense (treat a person in some manner)
that evokes the TREATING AND MISTREATING frame. These distinctions can be relatively subtle:
say can evoke (among others) the frames STATEMENT and TEXT CREATION which differ mainly
in the modality of the communicative act (said to his friend vs. said in his book).

Generalization As conceptual categories, frames are clearly open classes. No resource can exhaustively
list all frames or the predicates that can evoke them.

Frame identification was first modeled as a supervised classification task, based on linguistic features (Das
et al., 2010). While such systems address the ambiguity problem to some degree, they tend to struggle
with generalization. An alternative approach investigated the use of other machine-readable dictionaries
(Green et al., 2004), but was not able to fundamentally overcome the generalization problem.

Recent progress in supervised frame identification has come out of neural networks and distributed
word representations (Peng et al., 2018; Hartmann et al., 2017). In these studies, frame-labeled corpora are
used to learn embeddings for the frames as a side product of representation learning with different objective
functions. Hermann et al. (2014) learned embeddings jointly for frames and the sentential contexts in which
they were evoked. The current state-of-the-art in frame identification performs full-fledged semantic role
labeling, i.e., it jointly assigns frames as well as frame elements, using a bi-directional LSTM architecture
(Peng et al., 2018).

2.2 Distributed Representations of Word Meaning

Distributed representations of word meanings (embeddings) have become a standard representation format
in semantics. These models are grounded in the distributional hypothesis (Harris, 1954), according to
which similar words are expected to appear in similar contexts. Based on this hypothesis, word (and
phrase) meaning is represented as vectors (embeddings) in a semantic space whose dimensions correlate
with properties of the context, and in which closeness between two vectors indicates semantic relatedness.

Traditionally, “count” vectors were created by simply counting co-occurring context features, with the
option of additional weighting and compression over those count vectors. Neural network-based “predict”
vectors are learned by treating contextual features as parameters of an objective function that is optimized
on a corpus. One of the first, and still popular, “predict” models is the word2vec Skipgram model (Mikolov
et al., 2013). It optimizes a word embedding using a context bag of words. This model, however, learns
representations only at the lexical level, so that occurrences of a word in different contexts (cf. treat
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in Section 2.1.1) are represented equally. This has changed with the latest generation of embedding
models, such as AllenNLP’s ELMo (Gardner et al., 2018) and Google’s BERT (Devlin et al., 2018), which
build contextualized embeddings for occurrences of words based on the context as well as their relative
positions.

A second important recent development concerns the objective(s) used to learn the embedding. While
traditional count vectors and early embedding models like Skipgram assume that embeddings are general,
and trained in an task-agnostic fashion, there is an alternative thread of research that sees the training
of embeddings as a side product of training task-specific neural network models on tasks like sentiment
analysis or machine translation (Socher et al., 2013; Hill et al., 2017). The most recent models reconcile
these two directions with a two-phase transfer learning setup. The first phase is pre-training, where task-
agnostic embeddings are learned from large, unlabeled corpora. The second phase is fine-tuning, which
adapts the pre-trained embeddings to a specific task using comparatively small amounts of task-specific
labeled corpora.

2.2.1 Bidirectional Encoder Representations from Transformers (BERT)

BERT (Devlin et al., 2018) is a state-of-the-art embedding model that provides contextualized embeddings
in a pre-training/fine-tuning setup. BERT is essentially a deep network of Transformer blocks (Vaswani
et al., 2017) which use stacked self-attention mechanisms to capture relationships across different positions
in a sequence. The two tasks that are used for pre-training are language modeling and recognition of
discourse continuation. Representations from the pre-training step are then pooled and fed to the fine-
tuning stage for classification. Fine-tuning proceeds by adding an additional, task-specific layer on top
of the pre-trained BERT embeddings that maps embeddings onto the desired task output. In addition to
learning weights for this final, task-specific classification layer, this procedure also updates the pooled,
pre-trained embedding through backpropagation.

3 Categorization Approaches to Frame Identification

This section defines our four embedding-based models for frame identification. As motivated in Section 1,
we based our model space on two well-known dichotomies from categorization research: exemplar vs.
prototype theory, and pure bottom-up processing vs. a combined bottom-up plus top-down processing.
This setup results in a 2x2 matrix and a total of four models, as sketched in Figure 1. To focus solely on
the problem of frame identification as a categorization task, we assume that the frame-evoking predicates
have already been identified in the texts of interest.

The first dimension distinguishes prototype vs exemplar models, shown in the figure as columns. We
consider models to be exemplar-based when they only use representations for individual instances for
their predictions (here, predicates in context), but do not compute aggregate embeddings at the category
level (here, frames). One of the most straightforward implementations of this approach is nearest-neighbor
classification (Daelemans and van den Bosch, 2005). In contrast, prototype-models do not use instance
representations at prediction time, but instead aggregate them into category-level representations. The
standard softmax classification, for example, is a clear prototype approach by virtue of learning a weight
vector for each class whose dot product with an input represents the probability of that class. The
geometric interpretation of this computation is a distance between the prototype vector and the input,
using dot product.

The second dimension, shown in the figure as rows, distinguishes pure bottom-up from bottom-up
plus top-down models. In categorization research, bottom-up models assume that general similarity
information “as given” is sufficient to perform the classification. In an embedding-based setup, this
corresponds to models where embeddings are (pre-)trained in a task-independent fashion and applied
to the task as-is. Thus, the bottom-up models form categories purely from contextual features that have
been learned in a generalized, unsupervised fashion. In contrast, combined bottom-up plus top-down
models assume that top-down information, such as a preconceived notion of a category or similarity
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Figure 1: Four categorization models for frame identification, showing processing of the same predicate
in context (He got apples) across model architectures. Blue stands for frame COMMERCE BUY, light red
for frame STATEMENT. Triangles are instances, dots are prototypes.

metric, influences processing for this task. In the context of current embedding-based models, we treat the
fine-tuning procedure in BERT (cf. Section 2.2.1), where representations are fine-tuned using a small
amount of task-specific data as an approximate top-down effect on categorization.

3.1 Bottom-up (Pre-trained Embeddings)

Bottom-up frame identification models use only the pre-trained embeddings to predict the frame of a
lexical unit in context. The classification performed by these models shows how well frame classification
can be carried out by relying on general lexical semantic relatedness, without explicit knowledge about
frame-semantic grouping.

Bottom-up Exemplar. In exemplar theories, categorization proceeds by comparing a target instance
to prior seen instances, and the target is assigned the same class as its closest seen instance. To classify
a predicate in context, we perform single nearest neighbor classification: we compare its pre-trained,
contextualized embedding to all pre-trained, contextualized embeddings of predicates in the training set,
and assign the frame label of the closest training predicate. We use the standard embedding similarity
metric, cosine similarity. In the example in Figure 1 (top left), the nearest neighbor to the test instance He
got apples is I got one recently, which leads to the assignment of the COMMERCE BUY frame.

Bottom-up Prototype. In the prototype model, the frame categories are formed by building a summary
representation of all known instances in a category. We take advantage of the general effectiveness of
averaged representations and compute frame prototypes as the unweighted centroid of all pre-trained,
contextualized predicate embeddings for the frame’s training instances. Frame classification then assigns
a novel instance to the category of its most similar prototype. We again use cosine similarity, which is
identical (modulo normalization) to softmax classification. The example in Figure 1 (top right) shows
the prototypes of the two frames as dots, the “regions” of the two frames by background color, as well
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as the (linear) decision boundary between prototypes. The test instance He got apples is assigned to the
COMMERCE BUY frame because it is closest to the prototype of that frame.

3.2 Combined Bottom-up plus Top-down (Pre-trained and Fine-tuned Embeddings)

Bottom-up plus top-down frame identification models optimize the embeddings according to task-specific
data and a loss function during a fine-tuning phase. Prediction then uses the fine-tuned embeddings instead
of pre-trained ones.

Bottom-up plus Top-down Exemplar. For our exemplar-based model, we apply fine-tuning to make
the embeddings for predicates that evoke the same frame more similar, and embeddings evoking different
frames less similar. We frame the fine-tuning step as a binary classification task that decides, for a pair of
predicates in sentence context, whether they evoke the same or different frames. The input consists of
the concatenated contextualized embeddings of the two predicates. An example of the training input is
below, where the BERT model adds a special [SEP] token between the text pair. The treated predicate
from the first sentence evokes the MEDICAL INTERVENTION frame, whereas the got predicate in the
second sentence evokes COMMERCE BUY.

Input Sequence The doctor treated the patient [SEP] He got apples
Label different

Formally, for each predicate in context i with frame f(i), we define P+(i) as a set of (positive)
instances with the same frame, P−(i) as a set of (negative) instances with different frames, and same(i, i′)
as the binary prediction of the model. We then define the objective function as a cross-entropy loss
between the gold label (same / different) and same(i, i′).

Lex = −
∑

i

[
∑

i′∈P+(i)

log p(same(i, i′)) +
∑

i′∈P−(i)
log(1− p(same(i, i′)))] (1)

We select P−(i) from the set of frame candidates for a given lexical unit. For predicates with only a single
frame, we randomly select a negative instance from the entire frame class inventory. For each predicate in
the training data, we use two positive and negative instances, which we obtain by random sampling.

At prediction time, we pair the target predicate with all instances of all frame candidates for this
predicate and run them through the trained classification model, as shown in the bottom-left corner of
Figure 1. For Unseen predicates (see Section 4), we pair target predicates with one randomly selected
example from each frame in the entire frame inventory. We then label the target predicate with the frame
of the instance with the highest same-frame probability. In this model, the top-down knowledge that is
passed to the network corresponds to the similarity metric between frame-evoking predicates.

Bottom-up plus Top-down Prototype. For the prototype model, we fine-tune the embeddings specif-
ically to learn frame classes (cf. the bottom right hand example in Figure 1). Since we will train on
full-text annotation (described in further detail in Section 4), frame identification proceeds as a token
sequence classification, where each token is assigned a frame prediction. An example of the training data
is shown below, where the input to the model is the sequence of plain text tokens, and the gold class labels
are the sequence of correct frame assignments. In the gold label sequence, non-predicates are assigned an
outside (O) label.

Input Sequence The doctor treated the patient
Label O MEDICAL MEDICAL O MEDICAL

PROFESSIONALS INTERVENTION INTERACTION SCENARIO

The loss function is a straightforward multi-class cross-entropy loss averaged over each class for
every token. Here, the set of labels are the entire set of frames in the FrameNet lexicon, plus the added
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‘outside’ class label – resulting in a large set of possible classes (1,021 classes). At prediction time,
the model predicts a frame label for each token in the input sequence independently. As is the case in
the bottom-up prototype model, no global optimization takes place. We only consider predictions for
predicates (according to the gold standard) for the purposes of evaluation.

4 Experiments

4.1 Dataset

We work with the dataset sampled by Das et al. (2014) from the FrameNet Release 1.5 full-text annotations.
This dataset contains a total of 78 documents with frame-annotated sentences drawn from the British
National Corpus. In total, 39 documents were selected for training and 16 for development with a total of
19,582 target predicates, and 23 documents for testing with 4,458 target predicate annotations. This is the
standard dataset used for evaluation of frame identification systems.

4.2 Model Setup and Hyperparameters

BERT provides several pre-trained models for English that were trained on the concatenation of the
BooksCorpus (Zhu et al., 2015) and Wikipedia. We use the pre-trained BERT-large, cased model, trained
with the highest number of layers (L=24), hidden units (H=1024), and self-attention heads (A=16). The
final layer of the BERT transformer provides embeddings for each token in the sentence that can be
interpreted as contextualized meaning representations. According to the authors of the BERT model,
performance is shown to improve when the n final layers for each token are concatenated. We use n=4.

For the fine-tuned models, we re-used the hyperparameters of the pre-trained model. Since both of our
fine-tuning tasks are classification tasks, we add a standard softmax classification layer with cross-entropy
loss on top of BERT (described earlier in Section 3.2). Due to the computational cost of attention
mechanisms, the fine-tuned models require a limit on the maximum sequence length. We set the sequence
length to 180 in the prototype model, which in this case means that even long sentences can be fed to the
model. The exemplar model, on the other hand, takes two text sequences as input (see Section 3.1) which
doubles the overall size of the input sequence. We increased the maximum sequence length to 200 for this
model to keep as many tokens as possible in training while also being computationally feasible.

We note that our prototype model required a significant number of epochs to converge. Most tasks in
the BERT paper achieve near-optimal accuracy with 3–4 training epochs, while our model required about
30 epochs. We attribute this to the number of classes (at most 4 classes in the BERT paper, more than
1000 classes for frame identification). The exemplar model follows more closely with other BERT tasks,
and we perform 5 training epochs for the exemplar model.

4.3 Evaluation Metrics

The general evaluation metric for frame identification is accuracy: the relative frequency of correct
assignments to predicates. Since the task of frame identification is moot for single-frame lexical units,
frame identification systems standardly (Das et al., 2014; Peng et al., 2018; Hermann et al., 2014) report
accuracy on two different subsets of the data: (1) all instances from the test set, called “Full Lexicon”,
because it includes lexical units that are unambiguous; and (2) only instances of predicates from the test
set that can evoke multiple frames, called “Ambiguous”. In the data set we use, the test partition contains
2,029 ambiguous predicates out of a total of 4,458 predicate instances.

In addition, some prior work reports specific metrics on infrequent predicates, for which prediction
is particularly challenging. “Unseen” reports accuracy for predicates that are completely unseen in the
training data and their predictions over all possible frames – meaning the frame lexicon is not used for
evaluation at test time1. “Rare” reports accuracy on predicates that occur less than 11 times in the training

1(Das et al., 2014) improve their Unseen results with a graph that was constructed over a large corpus of sentences in
combination with the FrameNet lexical unit example sentences. We only report Unseen results which where produced over the
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Model Full Lexicon Ambiguous Rare Unseen
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Das et al. (2014) 83.60 69.19 82.31 23.08
Hermann et al. (2014) 88.41 73.10 85.04 44.67
Hartmann et al. (2017) 87.63 73.8 NA NA
Yang and Mitchell (2017) 88.2 75.7 NA NA
Peng et al. (2018) 90.0 78.0 NA NA

Model Full Lexicon Ambiguous Rare Unseen

O
ur

W
or

k Bottom-up Exemplar 82.52 64.44 81.09 11.07
Bottom-up Prototype 84.67 69.18 83.68 09.59
Bottom-up + Top-down Exemplar 84.09 65.06 84.18 18.89
Bottom-up + Top-down Prototype 91.26 80.77 91.85 30.20

Table 1: Accuracy results for Frame Identification on Das et al. (2014) benchmark dataset (test partition)

data. The test set contains 144 unseen and 2,555 rare predicates.

5 Results

Table 1 shows the performance of the four models as well as prior results from recent literature. Regarding
the impact of the exemplar and prototype dimensions that we introduced in Section 3, we find that
the exemplar model does worse overall than the prototype model in both configurations (overall “Full
Lexicon” accuracy: 2% for bottom-up, 7% for bottom-up plus top-down). This indicates that the prototype
setup appears better suited to the task than the exemplar one, at least on the data we experimented with.
Second, we see a substantial effect of top-down processing (fine-tuning): 1.5% for exemplars, over 6%
for prototypes. The clear winner is the bottom-up plus top-down (fine-tuned) prototype model: with an
accuracy of 91.26%, it outperforms the previous state of the art (Peng et al., 2018). This shows that frame
categorization can indeed profit from task-based optimization. That being said, it is worth noting that
even the bottom-up prototype model with only generic pre-training performs at or above the level of the
supervised SEMAFOR model (Das et al., 2014) which incorporated linguistic and ontological features in
a log-linear model. Thus, the bottom-up vector space models do have a claim to robust performance.

Accuracy on “Ambiguous” predicates largely mirrors the patterns we find on “Full Lexicon” accuracy.
They bolster the interpretation that both prototype representation and fine-tuning lead to clear gains.
Results on “Rare” and “Unseen” predicates are more difficult to compare due to lack of reported results
(marked as NA). The numbers for “Rare”, again, seem to follow the “Full Lexicon” trend, and outperform
the state of the art. The results for the “Unseen” category do so too, but are below the previously reported
results. The reason is that Das et al. (2014) employ additional processing to unseen predicates based on a
context similarity graph. For simple supervised classification without the extra component, comparable to
our 30.20% setting, they report an Accuracy of 23.08%.

5.1 Sentence Length

Next, we aim to determine how much the sentence length affects predictions of classes in the bottom-up
versus the bottom-up plus top-down models. Results are shown in Figure 2. We find that the performance
of the bottom-up models declines as sentence length increases, and the opposite is seen in the top-down
prototype model.

The most natural explanation for this pattern starts from the realization that the BERT model incorpo-
rates long-range dependencies via its self-attention mechanisms. That is, these long-range dependencies,
coupled with the bidirectionality in the BERT model, introduces a rich notion of context. However, in the

full-text annotations for fair comparison.
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Figure 2: Impact of sentence length on accuracy

Frame BU+TD BU+TD BU BU
Prototype Exemplar Prototype Exemplar

CAPABILITY 1.00 0.73 0.48 0.73
POSSESSION 1.00 0.94 0.92 0.81
WEAPON 1.00 0.97 0.98 1.00
LOCATIVE RELATION 0.97 0.84 0.89 0.79
TEMPORAL COLLOCATION 0.89 0.76 0.76 0.71

Table 2: Accuracies for top 5 frames from Bottom-up+Top-down Prototype model across all four model

bottom-up models these self-attention weights have the potential to introduce noise for long sentences,
which is exactly what we observe. In contrast, fine-tuning of the self-attention weights can apparently
turn long sentences into an asset by providing rich context hints for improved frame classification.

The outlier in this analysis is the fine-tuned bottom-up plus top-down exemplar model whose perfor-
mance fluctuates between the fine-tuned prototype model and the bottom-up models. Given the analysis
of the previous paragraph, this may not be surprising: the supervision provided to the fine-tuned exemplar
model is less informative than that for the prototype model (cf. Section 3.2): the exemplar supervision
does not name the frame(s) involved, and only provides information for one predicate pair in a potentially
long sequence. Arguably, this makes it much more difficult for BERT to properly adapt its self-attention
weights.

5.2 Frame-level and Predicate-level Analysis

We now look at the most accurate frames and predicates from our best model and compare the accuracies
for these inputs across our four models. This analysis gives us insight regarding what types of semantic
information are already learned by the bottom-up models versus the knowledge that is gained by learning
frame-specific semantics in the top-down setting.

Table 2 shows the analysis at the frame level. The best model assigns three frames perfectly. For one
of them, CAPABILITY, there is a dramatic performance gap, where the other models show accuracies of
0.73 and less. This frame includes lexical units such as can.v and able.a, which are both frequent and
unspecific and therefore somewhat difficult to learn without frame-specific tuning. The same is true for
three other frames, POSSESSION, and TEMPORAL COLLOCATION, and LOCATIVE RELATION, which
also have a high number of frequent, ambiguous predicates including modals and prepositions (have.v,
in.prep, on.prep). The final frame, WEAPON, behaves rather differently in that the models perform almost
equally well. Since the predicates in this frame form a coherent topic and tend to be low in ambiguity
(bomb.n, missile.n, shotgun.n), they are quite easily learned with only generalized embeddings.

The analysis at the predicate level is shown in Table 3. We see a distinction very similar to the frame
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Predicate BU+TD BU+TD BU BU
Prototype Exemplar Prototype Exemplar

people.n 1.00 1.00 0.97 0.97
know.v 0.96 0.89 0.90 0.87
have.v 0.92 0.85 0.85 0.74
in.prep 0.91 0.69 0.80 0.59
can.v 0.91 0.59 0.29 0.62

Table 3: Accuracies for top 5 predicates from Bottom-up+Top-down Prototype model across four model

level between high-ambiguity and low-ambiguity predicates. Highly frequent, ambiguous predicates such
as have.v, know.v, can.v, and in.prep profit hugely from frame-specific fine-tuning since their pre-trained,
contextualized embeddings are presumably more widely spread out. In contrast, the people.n predicate
performs well in all models including the bottom-up ones.

6 Discussion and Conclusions

In this paper, we have taken up an old strand of research in cognitive psychology, categorization, and
demonstrated how such research contributes to computational lexical semantics. We have argued that
theories of categorization have something valuable to offer to neural embedding-based models of nat-
ural language semantics, namely a framework in which to ground model design and understand their
consequences. We have considered two dimensions: (a) the distinction between prototype and exemplar
categorization, where prototype models produce a summary representation of its categories, while exem-
plar models represent the input objects themselves; and (b) the decision between pure similarity-driven
“bottom-up” categorization, and task-specific “top-down” categorization, which finds its direct counterpart
in current embedding models in the distinction between pre-trained and fine-tuned embeddings.

Along these two dimensions, we have defined four models for frame-semantic frame identification
with BERT embeddings. Empirically, we found that for this task it worked best (a) to learn category
representations via a prototype, and (b) to fine-tune the representations with a small amount of frame-
labeled data. Further analysis showed that the benefit of the fine-tuning was in particular to improve model
performance in the face of abstractness and ambiguity: while all models work well on frames describing
coherent, concrete topics and containing concrete predicates drawn from their topics (WEAPONS), only
fine-tuned models perform well on frames that capture abstract semantic generalizations that do not
correspond to coherent regions in embedding space (LOCATIVE RELATION) or ambiguous predicates such
as the predicate can.v, which is able to evoke five frames: PRESERVING, CAPABILITY, LIKELIHOOD,
and POSSIBILITY.

While the benefit of fine-tuning is expected based on previous work, the relative performance of
prototype and exemplar models was less predictable. Our analysis indicates that the outcome of our study
– a win for prototypes – is presumably tied to the studies’ use of full-text frame annotation, which can
be exploited straightforwardly in a prototype setting to tune the long-distance dependencies captured by
BERT’s self-attention mechanisms.
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