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Abstract

Texts rating products and services of all kind are omnipresent on the internet.
They come in various languages and often in such a large amount that it is very
time-consuming to get an overview of all reviews. The goal of this work is to fa-
cilitate the summarization of opinions written in multiple languages, exemplified
on a corpus of English and Finnish reviews. To this purpose, we propose a frame-
work that extracts aspect terms from reviews and groups them to multilingual
topic clusters.

For aspect extraction we work on texts of each language separately. We eval-
uate three methods, all based on neural networks. One of them is supervised,
one unsupervised, based on an attention mechanism and one a rule-based hybrid
method. We then group the extracted aspect terms into multilingual clusters,
whereby we evaluate three different clustering methods and juxtapose a method
that creates clusters from multilingual word embeddings with a method that first
creates monolingual clusters for each language separately and then merges them.

We report on our results from a variety of experiments, observing the best
results when clustering aspect terms extracted by the supervised method, using
the k-means algorithm on multilingual embeddings.

Tiivistelmä

Tekstejä, jotka arvostelevat erilaisia tuotteita ja palveluja löytyy kaikkialta
netistä. Niitä on usealla kielellä ja niin monia, että on hyvin aikaa vievää luoda
yleiskuva kaikista arvosteluista. Tämän työn päämäärä on helpottaa objektiivisen
yhteenvedon luomistamielipiteistä, jotka ovat kirjoitettu useammalla kielellä, mi-
kä työssä on havainnollistettu niin englannin- kuin suomenkielisellä aineistolla.
Tähän tarkoitukseen työ ehdottaa viitekehystä joka poimii aspektisanat arvoste-
luista ja ryhmittää ne monikielisiin aiheklustereihin.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

johannes@trustyou.net
myra@ovgu.de
http://creativecommons.org/licenses/by/4.0/


155

Poimimivaihe tehtiin erikseen molempien kielien kohdalla. Vertailemme kol-
mea metodia, jotka kaikki käyttävät neuroverkkoja. Ensimmäinen metodi on val-
vottu ja toinen on hybridi, sääntöihin perustuvan poimimisen sekä valvotun opet-
tamisen välimuoto. Viimeinen metodi on valvomaton ja perustuu huomiointi-
mekanismiin. Sen jälkeen poimitut aspektitermit ryhmitetään monikielisiin ai-
heklustereihin. Testaamme kolme eri klusterointialgoritmia ja vertailemme kah-
ta eri metodia monikielisten klustereiden tekemiseen: yksikielisten sanaedustu-
misen kohdistamista yhteen vektoritilaan sekä erikseen yksikielisille klustereille
ryhmittämistä ja jälkeenpäin klustereiden kohdistamista.

Raporttina voimme muun muassa kertoa saaneemme parhaimmat tulokset
poimimalla aspektisanat valvotulla metodilla ja ryhmittämällä k-means algorit-
min monikielisten sanaedustumisen kanssa.

1 Introduction
Texts expressing opinions about products are becoming important for a constantly
increasing number of people. From 2011 to 2017, the percentage of customers in the
United States that reads online reviews to determine if a business is good or bad at
least occasionally has grown from 71% to 93% (Anderson, 2017). Summarizing these
reviews objectively can help customers in their choice of a product. As only about
40% of internet content is in English (Pimienta et al., 2009), analyzing reviews also
in other languages appears vital to give a full picture of opinions about an entity. In
this work, we propose a framework that derives aspect terms from reviews written in
different languages and then summarizes them into multilingual topics.

Aspect term extraction is a part of aspect-level sentiment analysis (ALSA). ALSA
is able to provide a detailed analysis of opinions conveyed in a text by extracting the
sentiment expressed towards eachmentioned aspect. For example, given the sentence
”the waitress was friendly”, it should extract a positive sentiment towards the aspect
”waitress”. As creating summaries or statistics on these aspects alone would result in
a lot of clutter, it is beneficial to group semantically similar words into ”topics”; for
example, aspect terms ”waitress”, ”waiter” and ”bartender” could form a topic ”staff”.

A survey by Schouten and Frasincar (2016) provides an overview about ALSA, but
reports nearly exclusively on research on English corpora. Indeed, the vast majority
of research on Sentiment Analysis and also natural language processing (NLP) in gen-
eral has been done with English. Crosslingual NLP tries to utilize resources from a
source language (generally English) for application on another target language. This
is of advantage for languages where resources (in our work: opinions) are very rare.
Multilingual NLP rather combines resources from different languages to analyze con-
tent written in them (Utt and Padó, 2014). In our work, we adhere to the second
approach, in order to make full use of documents available in each of the languages
under consideration.

We address the question ”How can we extract mono-lingual aspect terms from
reviews in different languages and then combine them into multilingual topics that
describe the multilingual corpus?”. We evaluate different methods for both the aspect
extraction and the clustering step, focusing on ways of reducing human involvement
and automating the learning process with minimal human input.

As proof of concept of our approach, we study a corpus containing English and
Finnish reviews of restaurants. These two languages belong to unrelated families (In-
doeuropean vs Uralic), differ in the amount of available resources (Finnish resources
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are sparse), and are linguistically very different: English is a language with com-
paratively little morphology, while Finnish is an agglutinative language with very
rich morphology (Pirkola, 2001). Our results show that multilingual topics can be ex-
tracted for even so different languages, making full use of the resources available in
each language.

This study is organized as follows. In the next section we discuss relevant research
advances. In section 3 we describe our framework, its components and the mecha-
nisms used to evaluate each component. Our experiments and results are presented
in section 4. In section 5 we discuss our findings. The last section concludes the paper
with and outlook on future work and extensions.

2 Current Research State

2.1 Aspect extraction

Schouten and Frasincar in their 2016 survey classify the approaches to aspect detec-
tion into five different general methods: frequency-based, syntax-based, based on
supervised learning, based on unsupervised learning and hybrids between the afore-
mentioned.

2.1.1 Unsupervised approaches

Theunsupervised methods presented in the survey are mostly based on Latent Dirich-
let Allocation (LDA), in variants to make it work on the aspect level, which is far finer
grained than the document level LDA was designed for. For example, the relatively
recent Amplayo and Song (2017) combine LDAwith Biterm TopicModels. Asnani and
Pawar (2017) use more or less default LDA but combines it with semantic information
from amultilingual dictionary, which allows them to extract aspects from code-mixed
text, in this case social media content written in a combination of Hindi and English.

There are also some unsupervised approaches not based on LDA. Schouten et al.
(2018) presents an unsupervised method based on association rule mining on co-
occurrence frequency data. Also very recently, Dragoni et al. (2018) use NLP methods
to get grammar dependencies and POS of a sentence and use rules based on that in-
formation to extract aspects from real-time stream data. A different approach is taken
in the paper by He et al. (2017), which is based on an attention model, and which is
the unsupervised method we decided to evaluate in this work.

2.1.2 Supervised approaches

For supervised approaches, we only examined methods that do not require the defi-
nition of a static set of aspects, but see the problem as a sequence labeling task.

State-of-the-art approaches train Deep Neural Networks on word embeddings for
aspect term extraction. Usually general purpose word embeddings are used, however
Pham et al. (2017) focuses on training word embeddings specifically for aspect extrac-
tion. The first deep learning based method was Poria et al. (2016), which uses word
embeddings enriched by POS tags to surpass all previous approaches to aspect extrac-
tion significantly. The Xu et al. (2018) builds up on that, using double embeddings,
which in this case means a combination of general-purpose embeddings with domain
specific ones. Other recent supervised approaches using deep learning include Luo
et al. (2018), which uses embeddings acquired from a bidirectional dependency tree
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network to train a classifier, and Li et al. (2018), which uses an attention-based model
in combination with selective transformation to not only extract aspect terms but also
the corresponding opinion words. The last three papers mentioned report very sim-
ilar performance values. We used (Xu et al., 2018) as the supervised method for our
experiments.

2.1.3 Hybrid approach

A hybrid system, combining unsupervised extraction with training a Neural Network
is described in Wu et al. (2018). We also tested this approach in our experiments.

2.2 Multi- and Crosslingual NLP

Multi- and crosslingual NLP has been dominated by methods utilizing word embed-
dings in the last years. A relatively recent not embedding-based approach is described
by Täckström et al. (2012), where crosslingual word clusters are used to transfer mod-
els to predict linguistic structure between languages. These semantic clusters are built
first for one language in the way described in by Brown et al. (1992) and then com-
bined by projection.

A survey on crosslingual word embeddings was compiled by Ruder et al. (2017). It
suggests a taxonomy of training crosslingual word-embedding models, which is clas-
sifying them based on the training data required: parallel or just comparable, aligned
on word, sentence or document level.

Dufter et al. (2018) claim the current state-of-the-art model for sentence-aligned
methods, called ”concept induction”. A parallel corpus is taken as input and used to
induce dictionary graphs. From the dictionary graphs, concepts and words-concept
pairs are then induced from the dictionary graph. Finally, embeddings are learned
from the word-concept pairs using the standard Word2Vec method (Mikolov et al.,
2013).

Word-aligned models usually use both bi- or multilingual dictionaries and big
monolingual corpora in the target languages. The method we used for our exper-
iments was presented by Joulin et al. in 2018. It is based on creating a restrained
mapping between the two target vector spaces using the entries from the bilingual
dictionary as anchor points. Artetxe et al. (2017) use a similar approach, but focus on
reducing the amount of training data required by a self-learning method.

Some recent papers present ways to align word embeddings without any training
data at all. Lample et al. (2018) and Zhang et al. (2017) use adversial training for this.
In adversial training, two networks are used to provide training signals for each other.
Lample et al. (2018) is also remarkable for presentingMUSE, an evaluation framework
for multilingual embeddings that we also used as the basis for some of our experi-
ments. Hoshen and Wolf (2018) instead of adversial training use iterative matching
methods and Alvarez-Melis and Jaakkola (2018) see the task as an optimal transport
problem and use the Gromov-Wasserstein distance to align embedding spaces.

3 Framework for extracting aspect terms and learning
multilingual topics

Figure 1 shows the components of the system and the data passed between them,
together with task descriptions for the more complex components. The tasks and
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Figure 1: Architecture of system components and passed data

Figure 2: Multilingual workflow of the system
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data printed in greyed out, italic letters are only relevant for some of the methods
evaluated for the Aspect Term Extractor. Figure 2 shows the workflow of the system,
with the focus put on exhibiting which parts are monolingual and which multilingual.

First, reviews are crawled from internet sources, then preprocessed and vectorized
as required by the method to be tested in the Aspect Term Extractor. Each method is
optimized, the best performing one is used to extract the set of aspect terms required
for the next steps. This happens independently for each language.

In parallel, a set of multilingual word embeddings is created by aligning monolin-
gual word embeddings of the target languages, using a dictionary that maps words
between the languages to train the alignment.

The Aspect Term Vectorizer uses the aspect terms as well as both the monolingual
and the previously obtained multilingual embeddings to create aspect term vectors
- for each aspect terms once with the monolingual and once with the multilingual
embeddings.

These vectors are then clustered to topics. From the monolingual embeddings,
monolingual clusters are formed and then combined; from the multilingual ones, the
multilingual clusters are formed directly. The performance of both the two ways of
getting multilingual clusters and of the three different clustering methods that are
evaluated is compared. The best performing method is used to create the final set of
multilingual topic clusters.

In the following subsections, the different components are outlined in detail.

3.1 Preparing review texts for classification

This section describes the ”Preprocessor” and ”Review Vectorizer” components.
The language of each review is identified using langid.py (Lui and Baldwin, 2012),

reviews not belonging to one of the target languages are filtered. Reviews are split
into sentences with the PUNKT sentence segmenter (Kiss and Strunk, 2006), using the
default NLTK (Bird et al., 2009) model for the respective language. The Penn Treebank
tokenizer (Marcus et al., 1993) was then used to split the sentence into tokens.

To improve the performance of both sentence segmentation and tokenization, if
a fullstop, colon, exclamation mark or quotation mark was directly followed by an
upper-case character, a space was inserted in between. Without this step, the sentence
segmenter would usually not split the sentence in case of this relatively common error.

The reason to choose these relatively simple methods over more sophisticated
ones is their applicability to many languages: PUNKT was specifically designed as a
multilingual method and the tokenizer is using relatively simple regular expressions
that work for most languages.

The tokens in each sentence are then vectorized by assigning them a word em-
bedding from a general-purpose dataset of pretrained word embeddings.

Some of the methods tested in the Aspect Term Extractor require additional pre-
processing steps or use additional data in their vectors. These method-dependent
preprocessing steps are outlined in the method descriptions.

3.2 Aspect term extraction

This section describes the ”Aspect Term Extractor” component. The task of this com-
ponent is to extract aspect terms from review sentences. We see aspects in the sense
of the SemEval Task 2016/5 (Pontiki et al., 2016), called there ”opinion target expres-
sion”:
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[…] an explicit reference (mention) to the reviewed entity of the [entity-
aspect] pair. This reference can be a named entity, a common noun or a
multi-word term […]

In other words, in a phrase expressing an opinion towards an aspect of the re-
viewed entity, it is the term explicitly referring to the aspect. It can be

• a named entity, like ”My Sprite was lukewarm when I got it.”

• a common noun, like ”The bartender excelled in his job.”

• a multi-word term, like ”I loved the meat balls with mashed potatoes!”

To represent the positions of aspects in a sentence, sequence labelling with la-
belling space {B, I,O} is performed. That means that each word in a sentence gets
assigned a tag: either O when it is not part of an aspect, B when it is a single-word
term or the first word of a multi-word term or I when it is a later word of a multi-word
aspect term. An example:

The/O chicken/Bwings/I were/O tasty/O and/O their/O price/Bmoderate./O

We evaluated the supervised method by Xu et al. (2018), the hybrid method by
Wu et al. (2018) and the unsupervised method by He et al. (2017) which we outlined
in the previous chapter. All methods evaluated operate on a sentence level, so each
sentence is seen as independent.

3.2.1 Supervised method: Xu et al. (2018)

The supervised method was presented by Xu et al. in the paper ”Double Embeddings
and CNN-based Sequence Labeling for Aspect Extraction”.

Their main contribution is to use what the authors call ”double embeddings” as
features. Double embeddings are concatenated general and domain-specific word em-
beddings. The general embeddings are trained on a huge, general dataset, the domain-
specific embeddings on a dataset matching the target domain as exactly as possible.
Labeled review sentences represented by these embeddings are used to train a rela-
tively simple convolutional neural network.

This method requires the creation of domain-specific word vectors in the Review
Vectorizer. We used this method without any changes. Besides in preprocessing, no
changes were required to use this method for Finnish.

3.2.2 Hybrid method: Wu et al. (2018)

Wu et al. presented the hybrid method we are evaluating in the paper ”A hybrid
unsupervised method for aspect term and opinion target extraction”.

The basic idea is to create training data for a deep-learning classifier by using
some linguistic rules to create possible candidates, which are then filtered according
to their domain correlation. The trained neural network is used to improve the domain
correlation filter, which results in better training data for the next iteration, and so
on. We evaluate the system performance either using the filtered candidates as the
prediction or using the neural network to predict the tags.

While we tried to implement the model following the description in the paper
as closely as possible, we had to make some adjustments in the selection of initial
aspect candidates and the domain correlation filtering. The general architecture and
the classifier remain unchanged.
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Figure 3: Constituency parse tree

English Since the original paper doesn’t describe the initial creation of candidates
to the last detail and we slightly diverged from it, we are presenting the full process
we implemented in the following paragraphs.

First, for each sentence a parse tree like the one displayed in figure 3 is created us-
ing the NTLK (Bird et al., 2009) interface to the Stanford CoreNLP phrase constituency
parser (Manning et al., 2014). All subtrees with ”NP” (noun phrase) as the root node
that have a height of 3 or 4 are extracted from the tree. A height of 3 means the level
directly over part-of-speech (POS) tags andmanages to capture mainly simple phrases
like those consisting of just a noun; a NP with a height of 4 could for example be two
nouns connected by a conjunction.

The noun phrases are filtered to only keep those which either include an adjective,
adverb or amodal verb themselves or have a verbal phrase which includes one of these
parts of speech as their right neighbor. Additionally, noun phrases that have a verb
in base form as their left neighbour are kept, this is meant to capture phrases like ”try
the sushi”.

Next, we remove overlapping phrases, which can exist because we initially picked
phrases of both height 3 and 4. This is done as follows: The tree of height 4 is discarded
if all of its NP-subtrees are also included in the set of trees eligible at this point. If that
is not the case, the subtrees of height 3 are discarded.

From the remaining phrases, we remove all words that are not nouns of some kind
or connectors. If connectors are at the beginning or the end of a phrase, they are, as
the next step, also removed. The remaining words are seen as the final aspect term
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candidates and passed to the domain correlation filter.

Figure 4: Dependency parse with TurkuNLP

Finnish For Finnish, we had to take a different approach to extracting initial
candidates, since no phrase constituency parser is available for that language. How-
ever, a good dependency parser, created by TurkuNLP group (Kanerva et al., 2018)
exists, which yields POS-tags and depencies between words as shown in figure 4.
That allowed us to extract candidates in the following way:

We first extract all nouns that either are modified by an adjective directly or had
a copula verb relation to any word. An example for a sentence with a copula verb
relation is ”palvelu oli upea” (”the service was great”), where ”oli” (”was”) is the copula
verb. In a second step, if another noun is either part of a compoundwith a noun chosen
in the first step or a nominal modifier of such, this other noun is added to the term.
The resulting noun phrases are the final aspect candidates.

Different than English, Finnish is a language with extremely many variations of
each word. Because of that, we experimented with doing domain correlation filtering
on lemmas instead of the word forms: all forms of a lemma should have the same do-
main correlation. The lemmas are created as part of the TurkuNLP parsing pipeline.
As it is not guaranteed that a meaningful word embedding exists for a lemma, we rep-
resent a lemma by the embedding of its most frequent form. We always used lemmas
to create the set of ”domain words” against which every other word is compared in
order to decide on its domain correlation. For the sentences used to train the classifier,
we did experiments both with and without lemmatizing each word in them.

Besides that, the architecture is the same as for English and as described in the
paper.

3.2.3 Unsupervised method: He et al. (2017)

The unsupervised method was presented in the paper ”An Unsupervised Neural At-
tention Model for Aspect Extraction” by He et al.. This method does not train any
classifier, but instead tries to compute representations for a set of topics1, in the same
vector space as the word embeddings. These topics are not predefined, but the num-
ber of topics is a fixed hyperparameter. The topic embeddings can be interpreted by
looking at the closest words around them, which should be a set of semantically re-
lated words. They are learned by first determining a sentence representation using
an attention model to determine the weight of each word in it and then reducing the
error of recreating this sentence from the topic embeddings. As the model extracts
the words that are most important both for a topic and in a sentence, this can be used
to extract aspect words as well.

1In the paper, the authors are using the term ”aspects” for what we call ”topics”. We adopted this to our
terminology for consistence.
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We used the method basically as suggested in the original paper. It requires
lemmatization, stopword removal and part-of-speech tagging as additional prepro-
cessing steps.

The focus of the paper is on forming coherent topic clusters fromwords and not on
extracting aspect terms in our sense. The clusters presented in their paper therefore
contain also many words that are not aspect terms in the sense desired for this work.
However, since the goal of the attention model is to put focus on words that have
a high importance both towards the sentence and towards the aspect, the vectors
representing the weight of each word in a sentence create a good basis to extract
aspect terms from them. We did so by simply using all nouns whose weight is over a
specified threshold as aspect terms.

3.2.4 Baseline values

To put the performance of the three models in relation, the following simple baseline
values are given:

• Taking all nouns as aspect terms; if multiple nouns follow in a row, the later
nouns get an I tag.

• Using the aspect term candidates extracted for the hybrid method as described
in section 3.2.2 directly.

3.2.5 Evaluation

As evaluation metrics for the aspect term extractor, precision, recall and F1-value
are computed by comparing the output of a classifier with labeled data. A correctly
identified aspect term is seen as a correct match, if it is not correctly identified it’s a
false one. This means that correctly set O tags do not increase the precision or recall.
This method is described for example in Tjong Kim Sang and Buchholz (2000).

For example, if one of the methods would return the following tag sequence:

B O B I O O O B

and the ground truth is the following sequence:

B O B O O B B O

the precision would be 0.333, since only one of three detected matches is correct; the
recall would be 0.250, since only one of four actual matches is found. The F1 score
would be 0.286, as it is the harmonic mean between precision and recall.

As seen in the example, only full matches are seen as correct, partial matches are
treated the same as wrong matches.

3.3 Training Multilingual Embeddings

This section describes the ”Embedding Aligner” component. The goal of training mul-
tilingual word embeddings is to create embeddings for words frommultiple languages
in the same vector space. These embeddings should have the same properties across
languages as embeddings for one language, i.e. similar words should appear closely
together in the vector space.

To obtain multilingual embeddings, we use pretrained monolingual embeddings
and use the method described by Joulin et al. (2018). It works as follows: First, a
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linear mapping between the vectors of the words that are in the training dictionary
is learned. The mapping is optimized by minimizing the average of the loss between
the mapped vectors of the source language and the vectors of the target language.
The used loss function is based on the cosine similarity between the two vectors and
symmetrically the average cosine similarity between one vector and the k nearest
neighbours of the other vector (with k being a hyperparameter). The mapping is
restrained to be orthogonal, which leads to the distances between the vectors being
preserved from the original monolingual embeddings.

We used the reference implementation provided by the authors completely un-
changed, also using their recommended hyperparameters.

3.4 Term Clustering

In this section, we describe the components ”Aspect Term Vectorizer” and ”Clusterer”.
The goal of the clustering task is to create groups of words that are semantically

coherent, i.e. describe the same topic. We are evaluating three different clustering
methods: k-means (in the k-means++ variant (Kanungo et al., 2004)), Affinity Propa-
gation (Frey and Dueck, 2007) and the attention-based method by He et al. described
in section 3.2.3. K-means and Affinity Propagation are widely used general cluster-
ing algorithms that have been successfully used for the clustering of word embed-
dings (e.g. Kutuzov (2018); Cha et al. (2017); Suárez-Paniagua et al. (2015)), while the
attention-based method was specifically developed for our target task.

We first vectorize the aspect terms, using either the multilingual embeddings ob-
tained from the aligner or the monolingual embeddings directly. Then we try the
different clustering methods and ways of obtaining multilingual clusters and use the
best performing one to create the desired multilingual clusters.

3.4.1 K-means

The k-means algorithm is based on determining k centroid points, each of which de-
fines a cluster as the points that are closer to it than to any other centroid. The distance
used is the euclidean distance. The centroids are initialized randomly and then in each
iteration chosen as the mean of the points in the centroid’s cluster. After updating
the centroids, the assignments of points to clusters are recomputed. This procedure is
repeated until updating the centroids no longer leads to changes in the clustering, i.e.
until the algorithm converged. The k-means++ variant we used differs from original
k-means in the initialization of centroids, which is optimized for faster convergence.

3.4.2 Affinity propagation

Affinity propagation is an algorithm that does not require specifying the number of
clusters. It uses the concept of passing messages between points in order to determine
which points are chosen as exemplar points. Each non-exemplar point is assigned to
exactly one exemplar point and all points that belong to the same exemplar form a
cluster.

The algorithm starts with considering all points as possible exemplars. In each
iteration, messages are passed between points in two steps, responsibility and avail-
ability. Responsibility values are sent towards candidate exemplar points, indicating
how likely a point considers the candidate to be its exemplar. Availability values are
the reverse, being sent from the candidate exemplars towards other datapoints and
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reflecting how suitable the exemplar would be as an exemplar for a point. Responsibil-
ity is calculated using the distance between the two points and takes both availability
of the previous iteration and distance towards other possible exemplars for the point
into account. This results in the responsibility value being lowered if there are many
other good exemplar candidates. Availability values are calculated from the respon-
sibility of an exemplar candidate with itself and with other points. This results in a
higher value if many other points see the candidate as suitable to be an exemplar.

The algorithm terminates either after a set number of iterations or when the num-
ber of clusters hasn’t changed for some iterations. After termination, for each point
the exemplar candidate with the highest value for summed availability and respon-
sibility is chosen as its exemplar. If this candidate is the point itself, that point is an
exemplar.

There are two main hyper-parameters for this algorithm to tune: The damping
factor is used to determine the extent to which responsibility and availability values
are updated over iterations, i.e. how big the impact of the value in the previous it-
eration is. A higher damping value indicates a higher weight to the previous value.
The second hyper-parameter is the preference, which indicates how likely each point
is chosen to be a exemplar. A higher preference value correlates with more clusters
being created.

3.4.3 Attention based clustering

Themethod for attention-based clustering has already been described in section 3.2.3.
Each topic embedding defines a cluster, with each point being assigned to the topic
embedding closest to it.

3.4.4 Assigning multi-word terms to a cluster

All of the clustering methods are done on word embeddings, assigning each embed-
ding of an aspect term to a cluster. This works well for single-word aspect terms, since
their embeddings are either directly in the embedding set or can be inferred from sub-
word information (Bojanowski et al., 2017). For aspects terms consisting of more than
one word, this is not possible. While in theory it is possible to train embeddings for
n-grams (Zhou et al., 2017), this would require training word embeddings specificially
for our dataset and wouldn’t allow us to use pretrained embeddings.

Therefore, we use the following approach: We train the clusterings on only single-
word terms. Then, we check for each word in the multi-word term which cluster it
would be assigned to. The full multi-word term is assigned to the cluster most of the
words in it are assigned to. In case there isn’t one cluster assigned more often than all
others, we assign one of the most frequent clusters randomly for affinity propagation.
For k-means and the attention-based method, we use the distances between the words
in the term and the centroid (resp. topic embedding) of the cluster as a tie-breaker;
the cluster with the lowest distance gets assigned.

3.4.5 Merging monolingual to multilingual clusters

To merge mono-lingual clusters of the different languages to multilingual ones, we
used the bilingual dictionary also used for creating the multilingual clusters. For each
cluster in the source language we checked in which clusters the translations of the
words in it are in the clustering of the target language. The cluster gets merged with
the cluster containing most translations.
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3.4.6 Evaluation

Clusterings are evaluated against a pre-defined clustering. While this is in some ways
slightly against the original purpose of dynamically creating topic clusters without
pre-defining the set of topics, it appears to be the only way of providing an objec-
tive evaluation. In order to maintain the sense of dynamic clustering, we are mainly
interested in seeing if clusters contain only terms belonging to one topic and not so
much if there are clusters that could maybe be merged. To give an example, we would
like to penalize if bartender and salmon steak are in the same cluster, since they very
clearly do not belong to the same topic. We do not care much though if salmon steak
and beef tenderloin are in the same cluster or not, since this is just a matter of how
fine-grained the topic clustering is.

In order to meet this evaluation goal, we only define very few, broad clusters to
evaluate against and see the homogeneity score (Rosenberg and Hirschberg, 2007) as
our primary evaluation metric. Homogeneity is maximized when all clusters contain
only elements from one ground-truth class, with 1 being the maximum and 0 the
minimum value. Homogeneity strongly prefers fine-grained clustering over coarse
grained ones; in the most extreme case, if a clustering would contain one cluster for
each datapoint, homogeneitywould bemaximised. We therefore don’t accept too fine-
grained clusterings and also report the complementing score, completeness, which is
maximized when all ground-truth classes contain only elements of one cluster.

This evaluation method is based on the way He et al. (2017) are evaluating their
results. The main difference is that they manually assign clusters to ground-truth
classes, which we avoid.

4 Experiments and Results

4.1 Implementation

All code is written in Python 3. We use PyTorch (Paszke et al., 2017) as the framework
for all deep learning methods except for the unsupervised aspect extraction method,
which uses TensorFlow (Abadi et al., 2016). The clustering methods use the imple-
mentations from the Scikit-learn framework (Pedregosa et al., 2011).

We implemented the crawling, preprocessing and vectorization components our-
selves. For the other components, we used existing implementations of the tested
methods as the base when they were available and extended and adjusted them to fit
into our architecture. The only method completely implemented from scratch is the
hybrid aspect extraction method, as no reference implementation has been published
for it.

4.2 Aspect Term Extraction

In this section we present the experiments done in the Aspect Term Extractor, which
are aimed at finding the best method of extracting aspect terms from review sentences.

4.2.1 Dataset

This subsection describes the datasets used for the experiments. Which data was used
for which experiment is explained in detail in the subsections for each method.
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English For English, we used SemEval 2016 Task 5 (Pontiki et al., 2016) as the an-
notated dataset. This dataset consists of 2674 sentences, of which 2000 are considered
training and 674 testing data. Some of these sentences are marked as ”out of scope”
in the dataset and not annotated, so these were removed here. 2579 sentences remain.
For the hybrid and unsupervised methods, an additional corpus of 75000 restaurant
reviews, which consist of 368551 sentences, was used. These reviews are a random
selection of reviews provided by TrustYou GmbH 2, which is a company focusing on
review management for hotels and restaurants . The reviews were collected from dif-
ferent public sources, including TripAdvisor, Google, OpenTable, Facebook and Zomato.

We use the pretrained word embeddings provided by the GloVe project (Penning-
ton et al., 2014), as this embedding set was used also in the original experiments for
the supervised method (Xu et al., 2018). It was trained on the CommonCrawl cor-
pus, a general-purpose text corpus that includes text from several billion web pages;
the GloVe embeddings were trained on 840 billion tokens. The GloVe set includes
embeddings for 2.2 million words, the embeddings have 300 dimensions. As domain-
specific embeddings for the supervised method, we use the embedding set provided
by the authors, which is 100-dimensional and was trained with FastText (Bojanowski
et al., 2017) on a dataset provided by Yelp.

Finnish For Finnish, it was more difficult to obtain a sizable corpus of restaurant
reviews. We ended up crawling the page eat.fi, a website for reviews of restaurants
in Finland. After filtering out all reviews written in a language different than Finnish
with langid.py (Lui and Baldwin, 2012), the obtained dataset consists of 71730 re-
views, or 346144 sentences. 250 of these reviews, consisting of 1076 sentences, were
labelled manually by the author. A subset of 70 reviews was additionally labelled by
a native speaker; no major discrepancies in annotation were discovered. As general
word embeddings, we use the Finnish word embeddings provided by FastText (Grave
et al., 2018), which are also 300 dimensional and were trained on both CommonCrawl
and Wikipedia data, together about 6 billion tokens. The provided dataset contains
embeddings for exactly 2 million words, but also includes sub-word information that
allows inferring embeddings for unknownwords (Bojanowski et al., 2017). We trained
domain-specific embeddings ourselves with FastText on the full dataset of restaurant
reviews. We used the default parameters of FastText to train 100-dimensional vectors.

4.2.2 Baseline

Table 1 shows the baseline values for the aspect extraction task. For both languages,
these values were computed on the complete annotated datasets, consisting of 2579
sentences for English and 1076 sentences for Finnish.

English Finnish
Nouns Rules Nouns Rules

Precision 0.204 0.375 0.355 0.520
Recall 0.802 0.563 0.822 0.554
F1 0.430 0.450 0.496 0.537

Table 1: Baseline values for English and Finnish

2www.trustyou.net
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4.2.3 Supervised

Datasets For the supervised method, the annotated data for Finnish was split to use
80% of the data for training and 20% for testing. This amounts to 216 testing and 860
training sentences. 128 of the training sentences were held out for choosing the best
model and optimizing hyperparameters. For English, we used the SemEval 2016 Task
4 (Pontiki et al., 2016) dataset as suggested. After filtering ”out-of-scope” sentences,
that’s 642 sentences for testing and 1937 for training. 150 training sentences were
used for optimization.

English We attempted to recreate the English results from the paper (which uses
the same dataset), but ended up with slightly worse values: With exactly the same
hyperparameters, the model got an F1-Value of 0.724 (average over 5 runs), compared
to the 0.747 reported in the paper. It is however to note that the performance deviation
between runs is relatively high, with values ranging from 0.713 to 0.731 in the 5 runs.
The best of the 5 runs had a precision of 0.674 and recall of 0.802. These values are
all created with the evaluation tool provided by SemEval, which calculates slightly
different values than our evaluation tool. With our evaluation script, the F1 value of
the best run is 0.730, the averaged one 0.722. Since the difference between the values
is very small and a detailed analysis of the differences is made difficult by the SemEval
tool not being Open Source, we omit a further investigation. All other values reported
in this paper are created with our evaluation script.

Finnish For Finnish, we tested different learning rates and dropout values. The re-
sults are displayed in table 2. All values are the average of three independent runs.
The other hyperparameters were kept the same as in the paper.

Dropout 40 55 70
Learning Rate 10−5 10−4 10−3 10−5 10−4 10−3 10−5 10−4 10−3

Precision 0.597 0.628 0.698 0.591 0.614 0.669 0.000 0.607 0.685
Recall 0.672 0.724 0.719 0.626 0.749 0.732 0.000 0.781 0.729
F1 0.632 0.672 0.707 0.608 0.675 0.699 0.000 0.683 0.706

Table 2: Results for different dropout and learning rate values in Finnish

The experiments show that the dropout rate has very little influence on the result.
The learning rate however has a significant influence, with performance generally
increasing with bigger learning rates, despite the high number of training iterations
(200). In all experiments, recall was at least slightly higher than precision. The result
for a dropout of 70 and a learning rate of 10−5 sticks out as the system in this case
learned to always predict the labelO. An explanation for this result could be the choice
of the loss function: The negative log-likelihood is calculated for every possible target
label, includingO. WithO being, naturally for this task, the by far most frequent label,
a slight bias towards choosing it can be expected. This is however contrary to our
evaluation method, for which always predicting O is the worst possible result. It is
unclear why this happens only for this specific combination of parameters.
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4.2.4 Hybrid

For the hybrid method, we trained the model with the full dataset (annotated and
unannotated) for both English and Finnish and evaluated it on the annotated dataset.
For English, we additionally did experimentswherewe used only the annotated dataset
for both training and evaluation.

We used a mini-batch size of 64 for all experiments. This value is not given in the
original paper, as well as the learning rate. The latter we optimized as explained in
the following subsection.

English For English, we first did some experiments to determine good hyper- pa-
rameters using only the annotated data for training. Training for six iterations (up-
dating the domain correlation filter and thereby the training data after each iteration)
and ten epochs per iteration, we optimized separately the learning rate and the min-
imum correlation required to pass the correlation filter. All other hyper-parameters
were kept as reported in the paper. Results for different learning rates can be found in
table 3; we used 0.50 as the minimum correlation here. Table 4 shows results for dif-
ferent minimum correlation values, with the learning rate set to the best value found,
0.001. The columns in the section ”Classifier” mean the performance of the trained
classifier, the columns in the ”Filter” section mean the performance when using the
filtered aspect candidates as the prediction.

Classifier Filter
Learning rate 0.0001 0.001 0.01 0.0001 0.001 0.01
Precision 0.263 0.299 0.266 0.390 0.390 0.704
Recall 0.668 0.685 0.582 0.333 0.331 0.086
F1 0.377 0.416 0.365 0.360 0.358 0.153

Table 3: Results for using different learning rates for English

Classifier Filter
Min correlation 0.40 0.45 0.50 0.55 0.40 0.45 0.50 0.55
Precision 0.300 0.301 0.299 0.286 0.373 0.373 0.390 0.508
Recall 0.725 0.712 0.685 0.685 0.473 0.414 0.331 0.241
F1 0.424 0.423 0.416 0.404 0.417 0.393 0.358 0.327

Table 4: Results for using different correlation value cut-offs for English

The experiments show that the influence of the learning rate is again relatively
big, similarly to the supervised method. On the other hand, changing the minimum
correlation value to pass the filter has a quite low influence. Using a lower minimum
correlation value slightly increases the recall and the F1 value, as the precision stays
about constant.

Using the best values of these two experiments, we also used the full dataset,
including both annotated and unannotated data, for training. We set the minimum
frequency to be included into the set of domain words to 75. The result barely changed
compared to training on only the annotated data: The classifier’s precision slightly
increased to 0.321, however recall fell to 0.626, resulting in an unchanged F1 value of
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0.424. For using the output after the filtering step, the precision rose to 0.580, but with
a significantly lower recall of 0.183, the F1 value dropped to 0.278.

Finnish Since the amount of annotated data available is significantly lower for Finnish
than for English, we for Finnish only ran experiments using the full dataset, both an-
notated and unannotated, for training. Using the same hyperparameters as for train-
ing on the full English dataset, we got the results for Finnish shown in table 5.

Classifier Filter
Not lemmatized Lemmatized Not lemmatized Lemmatized

Precision 0.391 0.367 0.851 0.678
Recall 0.703 0.657 0.196 0.471
F1 0.503 0.471 0.318 0.556

Table 5: Results for Finnish with and without lemmatization

4.2.5 Unsupervised

For the unsupervised, attention-based method we did most tests using the full dataset,
containing both annotated and unannotated data, for training and evaluated the per-
formance on the complete annotated dataset.

We kept all hyper-parameters as in the paper. We tested the influence of the num-
bers of created clusters on the performance, which turned out to be negligible, so we
kept it at 14 (which is the number used in the paper).

For our modification of the method to obtain aspect terms, we had to introduce
an additional hyper-parameter, which is the minimum weight of a word to be used as
an aspect term. The performance for different values, both for English and Finnish,
can be seen in table 6.

English Finnish
Min weight 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
Precision 0.346 0.415 0.433 0.453 0.409 0.471 0.489 0.507
Recall 0.696 0.555 0.510 0.462 0.744 0.588 0.546 0.507
F1 0.462 0.473 0.468 0.458 0.528 0.523 0.516 0.507

Table 6: Results for experiments with different minimum aspect weights

This shows a precision/ recall trade-off: The lower theminimumweight, the higher
the recall but the lower the precision. This result proves that the attention of a word
generally is correlated to the likelihood of it being a aspect term. However, since recall
decreases stronger than precision increases, a lower minimum weight leads generally
to a higher F1 score.

For English, we additionally tested the performance when training and testing
on only the annotated dataset. The F1 value was for all weight-cutoffs two to three
percentage points lower than when using the full dataset.
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4.2.6 Comparison

Table 7 shows a performance comparison between the three different methods and
the baseline.

English Finnish
Method Baseline Superv. Hybrid Unsup. Baseline Superv. Hybrid Unsup.
Precision 0.375 0.669 0.300 0.415 0.520 0.698 0.678 0.409
Recall 0.563 0.784 0.725 0.555 0.554 0.719 0.471 0.744
F1 0.450 0.722 0.424 0.473 0.537 0.707 0.556 0.528

Table 7: Summary of the best results for all methods

We see that the supervised method works best with a significant margin. The
hybrid and unsupervised methods are at about the level of the rule-based baseline.
Results for Finnish and English are comparable, with slightly better results for English
with the supervised method and for Finnish with the other methods.

4.3 Multilingual embeddings and clusterings

In this section, we present the experiments evaluating the different ways of clustering
and of creating multilingual clusters. This concerns primarily the ”Clusterer” compo-
nent, with additionally the ”Embedding Aligner” playing a role in the experiments
with multilingual embeddings.

4.3.1 Datasets

We use mainly the same datasets as for the aspect extraction task. The English labeled
data from SemEval already contains category information, assigning each aspect term
one of the classes ambiance, drinks, food, location, restaurant and service. The restau-
rant category is used for terms describing the restaurant in general and such that don’t
match one of the other categories. For the Finnish labeled data, we manually assigned
each unique aspect term to one of these six classes. The English dataset contains 874
unique aspect terms, the Finnish dataset 623.

Evaluation was done for all experiments with the full labeled datasets. We did
experiments both with training the clusters on only the labeled datasets and with
training them on the 5000 most frequent single-word aspect terms extracted by the
best performing aspect extraction method from the full datasets.

For both English and Finnish, we use as word embeddings the pretrained FastText
embeddings, which were trained on CommonCrawl and Wikipedia data and include
subword information. For Finnish, this is the same embedding set used as for the
aspect extraction task, for English, it is different. The reason for this is that we wanted
to have embeddings trained in the same way for both languages, since we assumed
that this would improve performance for the creation of multilingual embeddings
from them.

Both for creatingmultilingualword embeddings and for clusteringwe onlyworked
with the embeddings of words actually required. This includes

• all unique aspect terms,
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• the full vocabulary of our datasets, preprocessed as for the attention-based as-
pect extraction and clusteringmethod (which is lemmatized and reduced to only
include words that appear at least two times in the corpus),

• words from the evaluation datasets.

In total, this results in 25808 words for English and 28327 words for Finnish. We
did this mainly because the script to create multilingual embeddings is very memory-
intensive and was not possible to run with the full embedding sets on our machines.
Also, this procedure allowed us to utilize the sub-word information of the FastText
embeddings and create embeddings for all words in our vocabulary, also such that are
not part of the pretrained set.

4.3.2 Multilingual embeddings

We used the default parameters for training multilingual embeddings and ran the
training for 25 iterations. We tested if there is a performance difference between
aligning English embeddings to the Finnish embedding space or the other way round.
The performance was slightly better when treating English as the target embedding
space and aligning the Finnish embeddings into it, so we went with this direction.

4.3.3 Clustering

Figure 5: Performance of k-means for different k values. Straight lines: Homogeneity,
dotted lines: Completeness

k-means We tested clusterings from 8 to 50 clusters in steps of 3. Figure 5 shows ho-
mogeneity and completeness scores for English and Finnish monolingual clusterings,
as well as for multilingual clusterings, either based on multilingual embeddings or
on merged clusters. As expected, for all of these measurements homogeneity values
increased with an increasing number of clusters, up to around 0.60 for Finnish and
0.55 for English. Completeness values stayed more or less constant at a low value of
around 0.2.



173

Using multi-lingual embeddings results in homogeneity scores up to 0.53, the best
score when merging monolingual clusters is about 0.46.

Finnish English Multilingual Merged
Annotated only 0.493 0.524 0.475 0.418
Full dataset 0.366 0.493 0.381 0.380

Table 8: Homogeneity values for clusters trained on either the full or only the the
annotated dataset

Table 8 shows homogeneity values for cluster size 29, which seemed like a good
trade-off between a not too large number of clusters and a good homogeneity score.
It shows in comparison the results for training clusters on only aspect terms from the
annotated dataset and on also using the terms extracted by the supervised algorithm
from the full dataset. The difference is between 2 and 13 percentage points, with the
smallest difference for the monolingual English clusters and the biggest difference for
monolingual Finnish clusters. This performance trend is also valid for other cluster
sizes. For English, clusters trained on the full dataset work sometimes even slightly,
up to 3 percentage points, better than those trained on only the annotated dataset.
For Finnish, the performance is always at least 5 percentage points lower.

Affinity Propagation Initial experiments showed that the damping factor had nearly
no influence on the resulting performance, so we set it to 0.9, the value suggested by
the authors of the original paper (Rosenberg and Hirschberg, 2007).

The preference value however does have a very significant influence on the num-
ber of clusters created and therefore on our performance measurements.

We tested preference values from -42 to -6 in steps of 3, after that in steps of 1
until 0. We discarded any clustering with more than 30 clusters. Table 9 shows the
best homogeneity performance for each experiment setup, together with the number
of clusters created and the chosen preference value.

Annotated data only Full dataset
En Fi ML Mgd En Fi ML Mgd

Homogeneity 0.364 0.461 0.344 0.295 0.433 0.393 0.323 0.347
Completeness 0.150 0.158 0.142 0.123 0.171 0.138 0.119 0.145
Clusters 22 30 25 22 30 29 32 30
Preference -3 -3 -6 -3 -21 -24 -42 -21

Table 9: Best results for clustering with affinity propagation

The experiments show that the number of clusters created with the same pref-
erence value is strongly dependent on the amount of data. Comparing the optimal
preference values for the experiments with multilingual embeddings, which contain
about twice the amount of data, to the other experiments, we see that the required
preference value to get a similar number of clusters is also about twice as small.

Another thing to notice is that using the full dataset for training increases the per-
formance of the clustering for English and the merged clusters; it is to notice however
that the number of clusters with the full data is slightly larger for these experiments.
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Also it can be seen that merging monolingual clusters works worse than using mul-
tilingual embeddings when training on only the annotated dataset, but slightly better
when using the full dataset. Completeness scores are about constant for all experi-
ments at values around 0.15.

Attention Table 10 shows results for clustering with the attention model from He et
al. for different numbers of clusters. We ran tests for 14, 28 and 42 different clusters,
14 being the number chosen in the original paper. All other hyper-parameters we set
to the best results from the aspect extraction experiments, see section 4.2.5 for details.
We created the topic clusters from the complete review dataset.

14 28 42
English 0.218 0.258 0.125
Finnish 0.171 0.169 0.165
Multilingual 0.107 0.053 0.023
Merged 0.134 0.174 0.076

Table 10: Homogeneity values for clustering with the attention-based model, using
different numbers of clusters

Different to the other methods, homogeneity scores don’t generally increase with
more clusters here; the results for 42 clusters are significantly worse than for 14 or
28 clusters across all setups. 28 clusters work best for English and merged clusters,
for Finnish and when using multilingual embeddings 14 clusters work better. Using
multilingual embeddings results in significantly worse values than merging clusters,
English performs better than Finnish.

Comparison For all experiments we see that clustering with k-means works, for a
similar amount of clusters, better than the other methods. The difference to using
affinity propagation is relatively small, the attention based method works a lot worse.
This means that the simplest and fastest method works best in our experiments.

For creating multilingual clusters, we see better results when using multilingual
embeddings compared to creating monolingual clusters and merging them. Cluster-
ing with multilingual embeddings achieves nearly the same performance values as
monolingual clusterings. We see that the two languages have generally similar per-
formance in the monolingual experiments, with, depending on the setup, one or the
other language performing slightly better. For English and when merging clusters,
clustering on the full, automatically extracted set of aspect terms results in about the
same performance as clustering on only the manually annotated terms. For Finnish
and when using multilingual embeddings, using the full dataset yields worse results.

5 Discussion

5.1 Aspect Term Extraction

In the section about aspect term extraction, we showed that the supervised deep learn-
ing method is beating the performance of methods that don’t require annotated data
by a relatively big margin. This can partly be explained by the nature of the other
methods we used. The hybrid method is mainly based on filtering candidates from
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the rule-based system. However, as we achieve recall values of only about 0.55 with
the rule-based extraction, it doesn’t appear like focusing on removing candidates from
this set is the right approach to increase results. On the other hand, for using the fil-
tered rule-based output to train a classifier, the precision isn’t good enough, as can be
seen with the best performance value for the English hybrid model, which achieves
relatively high recall of 0.73 but a precision of only 0.3.

For the unsupervised model, reasons are similar: Since the model gives a weight
to every word in the sentence, not just those that would possibly be aspect terms in
our sense, we had to add some simple rules to get aspect terms comparable to the
other methods. While these rules on their own achieve a recall of about 80% (and a
very low precision), the method can under no circumstances find aspect terms that
don’t match these rules. While the attention model does appear to be meaningful in
some way, the precision gains from filtering candidates is lower than the loss of recall,
which results in a relatively poor overall performance.

The supervised model however achieves a good F1 score of about 0.7 both for
English and Finnish. This is especially remarkable with the strict criterion of only
treating exact matches as correct. There have been shared tasks (e.g. Wojatzki et al.
(2017)) that also counted aspect terms as correct when they were only overlapping
with a ground truth term. A subjective look at the terms extracted by the model ap-
pears to confirm that the percentage of matches that a human would consider ”okay”
is significantly above 70%. Worth noting is also that the performance is about equal
for English and Finnish, despite the very different language structure of English and
Finnish and the significantly lower amount of training data for Finnish.

5.2 Clustering and multilingual embeddings

We showed that clustering with k-means yields better results than the other methods.
The reason for the attention based method to work badly is most likely that the topic
centers it creates are not generally meaningful for the task we evaluate. This is due
to this method creating clusters on the full reviews, not only on the extracted aspect
terms. While in theory the attention mechanism should put weight only on the words
representing aspects, this doesn’t appear to always work well in practice. Looking
at the topic clusters the method created on the full dataset in the best performing
experiment (English, 28 clusters), we find for example one cluster containing mainly
first names and one cluster containing predominantly positive adverbs. While there
also are some clusters that look very good, like one containing mostly pasta dishes,
these cannot save the overall bad performance of the method when clustering aspect
terms.

It is not clear why affinity propagation gives worse results than k-means. Previous
works generally report better results for the former, also when working with textual
data, for example Guan et al. (2011). However, Kutuzov (2018), who also clustered
word embeddings, reports that the performance for his experiments was sometimes
better with k-means and sometimes with affinity propagation, so it seems to be highly
dependent on the data used.

The good performance when creating clusters on the set of terms extracted with
the supervised method from the first task further proves its quality.

We showed that by using multilingual embeddings, we can achieve results similar
to monolingual clusterings. Investigating the created clusters in detail, we can find
that while many clusters are nicely merged including related terms from both lan-
guages, there are also some clusters that only include words from one language. This
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shows that there is still further room for improvement in the task of creating multi-
lingual embeddings, either by tuning hyper-parameters or by testing or developing
new methods.

5.3 Extensibility to other languages

We showed that supervised aspect extraction methods work significantly better than
unsupervised ones, which means training data has to be created for each new lan-
guage to be added. However, we also show that about 1000 annotated sentences are
enough to train a well-performing model. It may well be possible to further reduce
this number by using active learning or transfer learning.

The method used for training multilingual embeddings was designed to work for
more than two languages; its authors show that aligning 28 languages into the same
vector space still works well on their evaluation tasks (Joulin et al., 2018). However,
since we noticed several clusters that only contained embeddings from one language,
the performance on our clustering task is likely to reduce by some extent. Besides
that, clustering would work the same as for two languages though. If clustering with
k-means, the number of clusters could just be kept constant, for affinity propagation,
the preference value would have to be adjusted for the additional data.

To summarize, our method is extensible, but some manual work to integrate an-
other language would be required.

6 Conclusion

6.1 Summary

In our work, we presented a framework to extract aspect terms from monolingual
reviews and cluster them to multilingual topics. We showed that for aspect term ex-
traction, the supervised method we tested worked significantly better than the hybrid
and unsupervised methods, which did not manage to exceed the performance of our
baselines. We showed that for the supervised method, performance for English and
Finnish is about equal, without any language-specific adjustments made.

For the clustering subtask, the best performing method was the simplest one we
tested, k-means. We showed that when using multilingual embeddings, the perfor-
mance of the clustering is just slightly worse compared to clustering only Finnish or
only English terms monolingually. We also showed that the results when clustering
on only annotated aspect terms are only slightly better than when clustering on the
set of aspect terms obtained from the supervised aspect extraction method.

6.2 Future work

6.2.1 Technical extensions

There are some smaller, technical improvements that could be done to potentially
improve the results in our experiments, mainly in the clustering part. While the ho-
mogeneity values for clusters created with multilingual embeddings already are close
to the performance of monolingual clusters, we still got some clusters that only in-
cluded words from one language, indicating further potential for improvements of
the alignment process. Potential areas for improvements could be extended training
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dictionaries (for example by using PanLex (Kamholz et al., 2014)) or a more extensive
search for the best hyper-parameters.

Another point for improvement of the clustering method is the evaluation method
we chose. While using the classification categories from the SemEval data provided
an objective truth to measure against and focusing on the homogeneity score allowed
for finer-grained clusterings, we still can’t really say which number of clusters yields
the actually best clustering for the task. Determining which is the best clustering
is a very subjective task, which points to a more detailed manual annotation of the
resulting clusters being required.

6.2.2 Conceptual extensions

Other directions of improvement are of larger scale. In the last months and years,
progress in the field of deep learning has been very rapid. Many of the new devel-
opments could also be applied to the tasks of this paper, especially to the part about
aspect term extraction. The supervised model which yielded the best performance
is based on a relatively simple and straightforward neural network. It is likely that
network architectures better suited for the task exist, but manually trying them is ex-
tremely time intensive. Methods like ENAS (Pham et al., 2018) optimize the architec-
ture search, for example by sharing trained parameters between related architectures.
The authors claim that using their method is 1000 times less computationally expen-
sive than trying different architectures without optimization. Also other aspects in
the suggested model could potentially be further improved, for example variational,
learned dropout rates have shown better results than static ones (Molchanov et al.,
2017).

For clustering, we found that one of the most simple clustering methods, k-means,
performs better than the more sophisticated methods we tried. Clustering with k-
means has several weaknesses, like not being able to handle noise points and expect-
ing non-overlapping clusters of similar sizes. However, especially when clustering the
aspect terms extracted automatically, noise points have to be expected in our dataset;
also the assumption of similar-sized clusters can not be made, since especially the
”food” category is far bigger than the others. This indicates that there should be clus-
tering methods that would be better suited for our problem than k-means. There are
many additional methods to cluster high-dimensional data that could be tried. An
overview is provided in Kriegel et al. (2009).

For real-world applications to make use of our work, mainly two changes appear
to be necessary: For one, the analysis and summarization of reviews is usually desired
on the level of the entity they refer to, in our case the restaurant. This is necessary
to provide a basis of comparison between the reviews for the different restaurants.
Also, it would probably be required to choose an representative name for each topic
cluster, so that for example a sentiment score could be displayed for each topic instead
of having to list all the aspect terms in this topic. With these extensions, a system to
dynamically detect and summarize the most relevant topics for a restaurant could be
built. Our work has hopefully provided the basis for that.
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