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Abstract

Semi-supervised sequence labeling is an effective way to train a low-resource
morphological segmentation system. We show that a feature set augmentation
approach, which combines the strengths of generative and discriminative mod-
els, is suitable both for graphical models like conditional random field (CRF) and
sequence-to-sequence neural models. We perform a comparative evaluation be-
tween three existing and one novel semi-supervised segmentation methods. All
four systems are language-independent and have open-source implementations.
We improve on previous best results for North Sámi morphological segmentation.
We see a relative improvement in morph boundary F1-score of 8.6% compared
to using the generative Morfessor FlatCat model directly and 2.4% compared to a
seq2seq baseline. Our neural sequence tagging system reaches almost the same
performance as the CRF topline.

Tiivistelmä

Puoliohjattu sekvenssiluokitus on tehokas tapa opettaa morfologinen pilkon-
tajärjestelmä kielelle, jolle on saatavilla niukasti lingvistisiä resursseja. Osoitam-
me, että generatiivisen mallin tuottamien piirteiden käyttäminen soveltuu paitsi
graafisille malleille kuten ehdollinen satunnaiskenttä (CRF), myös sekvenssistä-
sekvenssiin (seq2seq) -neuroverkkomalleille. Vertailemme kolmea olemassaole-
vaa ja yhtä uutta puoliohjattua menetelmää. Kaikki menetelmät ovat kieliriippu-
mattomia, ja niille on avoimen lähdekoodin toteutus. Parannamme aikaisempia
tuloksia pohjoissaamen morfologisen pilkonnan tehtävässä. Suhteelliset paran-
nukset morfirajojen osumien F1-mittaan ovat 8.6% verrattuna generatiiviseen
Morfessor FlatCat -malliin ja 2.4% verrattuna seq2seq-verrokkimalliin. Ehdotta-
mammeuusi neuroverkkomalli saavuttaa lähes saman tason kuin paras CRF-malli.
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1 Introduction
Subword models have enjoyed recent success in many natural language processing
(NLP) tasks, such as machine translation (Sennrich et al., 2015) and automatic speech
recognition (Smit et al., 2017). Uralic languages have rich morphological structure,
making morphological segmentation particularly useful for these languages. While
rule-based morphological segmentation systems can achieve high quality, the large
amount of human effort needed makes the approach problematic for low-resource
languages. As a fast, cheap and effective alternative, data-driven segmentation can
be learned based on a very small amount of human annotator effort. Using active
learning, as little as some hundreds of annotated word types can be enough (Grönroos
et al., 2016).

Adopting neural methods has lead to a large performance gain formanyNLP tasks.
However, neural networks are typically data-hungry, reducing their applicability to
low-resource languages. Most research has focused on high-resource languages and
large data sets, while the search for new approaches to make neural methods applica-
ble to small data has only recently gained attention. For example, the workshop Deep
Learning Approaches for Low-Resource NLP (DeepLo¹) was arranged first time in the
year of writing. Neural methods have met with success in high-resource morpholog-
ical segmentation (e.g. Wang et al., 2016). We are interested to see if data-hungry
neural network models are applicable to segmentation in low-resource settings, in
this case for the Uralic language North Sámi.

Neural sequence-to-sequence (seq2seq) models are a very versatile tool for NLP,
and are used in state of the art methods for a wide variety of tasks, such as text sum-
marization (Nallapati et al., 2016) and speech synthesis (Wang et al., 2017). Seq2seq
methods are easy to apply, as you can often take e.g. existing neural machine trans-
lation software and train it with appropriately preprocessed data. Kann et al. (2018)
apply the seq2seq model for low-resource morphological segmentation.

However, arbitrary length sequence-to-sequence transduction is not the optimal
formulation for the task of morphological surface segmentation. We return to formu-
lating it as a a sequence tagging problem instead, and show that this can be imple-
mented with minor modifications to an open source translation system.

Moreover, we show that the semi-supervised training approach of Ruokolainen
et al. (2014) using feature set augmentation can also be applied to neural networks to
effectively leverage large unannotated data.

2 Morphological processing tasks
There are several related morphological tasks that can be described as mapping from
one sequence to another. Morphological segmentation is the task of splitting words
into morphemes, meaning-bearing sub-word units. In morphological surface segmen-
tation, the word w is segmented into a sequence of surface morphs, substrings whose
concatenation is the word w.

e.g. achievability 7→ achiev ◦ abil ◦ ity

Canonical morphological segmentation (Kann et al., 2016) instead yields a sequence
of standardized segments. The aim is to undo morphological processes that result in

¹https://sites.google.com/view/deeplo18/home

https://sites.google.com/view/deeplo18/home
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allomorphs, i.e. different surface morphs corresponding to the same meaning.

w 7→ y; w ∈ Σ∗, y ∈ (Σ ∪ {◦})∗

e.g. achievability 7→ achieve ◦ able ◦ ity

where Σ is the alphabet of the language, and ◦ is the boundary marker.
Morphological analysis yields the lemma and tags representing the morphological

properties of a word.
w 7→ yt; w, y ∈ Σ∗, t ∈ τ∗

e.g. took 7→ take PAST

where τ is the set of morphological tags.
Two related morphological tasks are reinflection and lemmatization. In morpho-

logical reinflection (see e.g. Cotterell et al., 2016), one or more inflected forms are given
to identify the lexeme, together with the tags identifying the desired inflection. The
task is to produce the correctly inflected surface form of the lexeme.

wt 7→ y; w, y ∈ Σ∗, t ∈ τ∗

e.g. taken PAST 7→ took

In lemmatization, the input is an inflected form and the output is the lemma.

w 7→ y; w, y ∈ Σ∗

e.g. better 7→ good

Morphological surface segmentation can be formulated in the same way as canon-
ical segmentation, by just allowing the mapping to canonical segments to be the iden-
tity. However, this formulation fails to capture the fact that the segments must con-
catenate back to the surface form. The model is allowed to predict any symbol from
its output vocabulary, although only two symbols are valid at any given timestep:
the boundary symbol or the actual next character. If the labeled set for supervised
training is small, the model may struggle with learning to copy the correct characters.
Kann et al. (2018) address this problem by a multi-task training approach where the
auxiliary task consists of reconstructing strings in a sequence auto-encoder setting.
The strings to be reconstructed can be actual words or even random noise.

Surface segmentation can alternatively be formulated as structured classification

w 7→ y; w ∈ Σk, y ∈ Ωk, k ∈ N

e.g. uses 7→ BMES

whereΩ is the segmentation tag set. Note that there is no need to generate characters
from the original alphabet, instead a small tag setΩ is used. The fact that the sequence
of boundary decisions is of the same length k as the input has also been made explicit.

Different tag sets Ω can be used for segmentation. The minimal sets only include
two labels: BM/ME (used e.g. by Green and DeNero, 2012). Either the beginning (B)
or end (E) of segments is distinguished from non-boundary time-steps in the middle
(M). A more fine-grained approach BMES² (used e.g. by Ruokolainen et al., 2014) uses

²Also known as BIES, where I stands for internal.
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Figure 1: Model architectures. To prevent the figure from becoming too large, the
seq2seq model is drawn with only one LSTM layer in both encoder and decoder. The
attention is only shown for the fist time step.

four labels. In addition to marking both beginning and end of segments, a special
label is used for single-character (S) segments.

Morphological analysis or canonical segmentation resolve ambiguity, and aremore
informative than surface segmentation. Learning to resolve such ambiguity is a more
challenging task to learn than surface segmentation. Surface segmentation may be
preferred over the other tasks e.g. when used in an application that needs to generate
text in a morphologically complex language, such as when it is the target language
in machine translation. If surface segments are generated, the final surface form is
easily recovered through concatenation.

To summarize, arbitrary-length sequence transduction is a formulationwell suited
for many morphological tasks. Morphological surface segmentation is an exception,
being more appropriately formulated as sequence tagging.

3 Models for semi-supervised segmentation
Our semi-supervised training follows the approach of Ruokolainen et al. (2014). The
training data consists of a large unlabeled set, and a smaller labeled training set. The
labeled training set is further divided into two parts. A generative model, in our
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Factor Emb
character 350 b i e b m o r á h k a d e a m i s
boundary 10 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
category 10 M M M M M M M M M M M M f f f f f

Table 1: Example input factors with embedding dimension. The example word
biebmoráhkadeamis is segmented as biebmo/STM ráhkad/STM eami/SUF s/SUF. Stem
(STM) is abbreviated M, and suffix (SUF) is f.

case Morfessor FlatCat, is trained in a semi-supervised fashion using the first part of
the labeled training set. The words in the second part of the labeled training set are
segmented using the generative model. Now these words are associated with two seg-
mentations: predicted and gold standard. A discriminative model is then trained on
the second part of the labeled training set. The predictions of the generative model
are fed into the discriminative model as augmented features. The gold standard seg-
mentation is used as the target sequence.

At decoding time a two-step procedure is used: first the features for the desired
words are produced using the generative model. The final segmentation can then be
decoded from the discriminative model.

The idea is that the features from the generative model allow the statistical pat-
terns found in the large unannotated data to be exploited. At the same time, the capac-
ity of the discriminative model is freed for learning to determine when the generative
model’s predictions are reliable, in essence to only correct its mistakes.

3.1 Morfessor FlatCat

We produce the features for our semi-supervised training using Morfessor FlatCat
(Grönroos et al., 2014). Morfessor FlatCat is a generative probabilistic method for
learning morphological segmentations. It uses a prior over morph lexicons inspired
by the Minimum Description Length principle (Rissanen, 1989). Morfessor FlatCat
applies a simple Hidden Markov model for morphotactics, providing morph category
tags (stem, prefix, suffix) in addition to the segmentation. The segmentations are more
consistent compared to Morfessor Baseline, particularly when splitting compound
words.

Morfessor FlatCat producesmorph category labels in addition to the segmentation
decisions. These labels can also be used as features. An example of the resulting
3-factor input is shown in Table 1.

3.2 Sequence-to-sequence

Our sequence-to-sequence (seq2seq) baseline model follows Kann et al. (2018) with
some minor modifications. It is based on the encoder-decoder with attention (Bah-
danau et al., 2014). The encoder is a 2-layer bidirectional Long Short-Term Mem-
ory (LSTM) layer (Hochreiter and Schmidhuber, 1997), while the decoder is a 2-layer
LSTM. The model is trained on the character level.

Figure 1a shows the basic structure of the architecture. For simplicity a single
layer is shown for both encoder and decoder.
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3.3 Conditional random fields

Conditional random fields (CRF) are discriminative structured classification models
for sequential tagging and segmentation (Lafferty et al., 2001). They are expressed as
undirected probabilistic graphical models. Figure 1c shows the model structure. CRFs
can be seen as generalizing the log-linear classifier to structured outputs. They bear
a structural resemblance to hidden Markov models, while relaxing the assumption of
the observations being conditionally independent given the labels.

We use the implementation of linear-chain CRFs by Ruokolainen et al. (2014)³.

3.4 Neural sequence tagger

The encoder is a standard single-layer bidirectional LSTM. The decoder is a single-
layer LSTM, which takes as input at time t the concatenation of the encoder output at
time t and an embedding of the predicted label at t− 1. There is no attention mecha-
nism. However, the time-dependent connection to the encoder could be described as
a hard-coded diagonal monotonic attention that always moves one step forward. The
architecture can be seen in Figure 1b.

The most simple fixed-length decoding strategy is to forego structured prediction
and instead make a prediction at each time-step based only on the encoder output st.
The prediction at each time-step is then conditionally independent given the hidden
states. We choose to instead feed the previous decision back in, causing a left-to-right
dependence on previous decisions.

The proposedmodel has only 5% of the number of parameters of the seq2seqmodel
(469 805 versus 8 820 037). The proposedmodel requires no attentionmechanism, and
the target vocabulary is much smaller. We also found that the optimal network size
in terms of number of layers and vector dimensions was smaller.

We use factored input for the additional features. The FlatCat segmentation deci-
sion andmorph category label are independently embedded. These factor embeddings
are concatenated to the character embedding.

Because our human annotations include the category labels, we use a simple
target-side multi-task setup to predict them in addition the the segmentation bound-
aries. The output vocabulary is extended to cover all combinations of segmentation
decision and category label. Because our data set contains twomorph categories, STM
and SUF, this only increases the size of the output vocabulary from 5 (BMES + end
symbol) to 10.

We use a modified beam search to ensure that the output sequence is of the correct
length. This is achieved by manipulating the probability of the end symbol, setting it
to zero if the sequence is still too short and to one when the correct length is reached.

The system is implemented by extending OpenNMT (Klein et al., 2017). Our im-
plementation is open source⁴.

4 North Sámi
North Sámi (davvisámegiella) is a Finno-Ugric language, spoken in the northern parts
of Norway, Sweden, Finland and Russia. With around 20 000 speakers, it is biggest of
the nine Sámi languages.

³Available from http://users.ics.tkk.fi/tpruokol/software/crfs_morph.zip
⁴Available from https://github.com/Waino/OpenNMT-py/tree/same_length_decoder

http://users.ics.tkk.fi/tpruokol/software/crfs_morph.zip
https://github.com/Waino/OpenNMT-py/tree/same_length_decoder
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Purpose Subset Component Word types Labels
Training Unlabeled FlatCat 691190 No
Training Feature train FlatCat 200 Yes

Main train System 844 Yes
Development Both 199 Yes
Testing 796 Yes

Table 2: Subdivision of data sets, with size in word types. The component column
indicates which components use the data during training.

North Sámi is a morphologically complex language, featuring both rich inflection,
derivation and productive compounding. It has complicated although regular mor-
phophonological variation. Compounds are written together without an intermediary
space. For example nállošalbmái (“into the eye of the needle”), could be segmented as
nállo ◦ šalbmá ◦ i.

The morphology of Sámi languages has been modeled using finite state methods
(Trosterud and Uibo, 2005; Lindén et al., 2009). The Giellatekno research lab⁵ provides
rule-based morphological analyzers both for individual word forms and running text,
in addition to miscellaneous other resources such as wordlists and translation tools. A
morphological analyzer is not a direct replacement for morphological segmentation,
as there is no trivial way to map from analysis to segmentation. In addition to this,
rule-based analyzers are always limited in their coverage of the vocabulary.

For an overview into the Giellatekno/Divvun and Apertium projects, including
their work on Sámi languages, see Moshagen et al. (2014).

5 Data
We use version 2 of the data set collected by (Grönroos et al., 2015; Grönroos et al.,
2016) as the labeled data, and as unlabeled data a word list extracted fromDen samiske
tekstbanken corpus⁶.

The labeled data contains words annotated for morphological segmentation with
morph category labels. The annotations were produced by a single Sámi scholar, who
is not a native speaker of Sámi. In total 2311 annotated words were available. The de-
velopment and test sets contain randomly selected words. The training set set of 1044
annotations is the union of 500 randomly selected words and and 597 using different
active learning approaches. There was some overlap in the sets. Due to the active
learning, it should be assumed that the data set is more informative than a randomly
selected data set of the same size.

Table 2 shows how the data was subdivided. The unlabeled data, the development
set and the test set are the same as in Grönroos et al. (2016). To produce the two la-
beled training sets, we first combined the labeled training data collected with different
methods. From this set, 200 word types were randomly selected for semi-supervised
training of Morfessor FlatCat, and the remaining 844 were used for training the dis-

⁵http://giellatekno.uit.no/
⁶Provided by UiT, The Arctic University of Norway.

http://giellatekno.uit.no/
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criminative system. These two labeled data sets must be disjoint to avoid the system
overestimating the reliability of the FlatCat output.

6 Training details
Tuning of FlatCat was performed following Grönroos et al. (2016). The corpus likeli-
hood weight α was set to 1.4. The value for the annotation likelihood weight β was
set using a heuristic formula optimized for Finnish:

logβ = 1.9 + 0.8 log |D| − 0.6 log |A|, (1)

where |D| and |A| are the numbers of word types in the unannotated and annotated
training data sets, respectively. Using this formula resulted in setting β to 13000.
Perplexity threshold for suffixes was set to 40. For prefixes we used a high threshold
(999999) to prevent the model from using them, as there are no prefixes in North Sámi.

The neural networks were trained using SGD with learning rate 1.0. Gradient
norm was clipped to 5.0. Batch size was set to 64 words. Embeddings were dropped
out with probability 0.3. Models were trained for at most 5000 steps, and evaluated
for early stopping every 250 steps.

For the neural sequence tagger, the embedding size was 350 for characters and 10
for other input factors, and 10 for target embeddings. The encoder single bi-LSTM
layer size was set to 150.

All neural network results are the average of 5 independent runs with different
seeds.

7 Evaluation
The segmentations generated by the model are evaluated by comparison with anno-
tated morph boundaries using boundary precision, boundary recall, and boundary F1-
score (see e.g., Virpioja et al., 2011). The boundary F1-score equals the harmonic mean
of precision (the percentage of correctly assigned boundaries with respect to all as-
signed boundaries) and recall (the percentage of correctly assigned boundaries with
respect to the reference boundaries).

Precision =
#(correct)
#(proposed) ; Recall = #(correct)

#(reference) (2)

Precision and recall are calculated using macro-averages over the words in the
test set. In the case that a word has more than one annotated segmentation, we take
the one that gives the highest score.

In order to evaluate boundary precision and recall, a valid segmentation is needed
for all words in the test set. The seq2seq model can fail to output a valid segmentation,
in which case we replace the output with the input without any segmentation bound-
aries. To include an evaluation without this source of error we also report word type
level accuracy. A word in the test set is counted as correct if all boundary decisions
are correct. Output that does not concatenate back to the input word is treated as
incorrect.
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system Pre Rec F1 w-acc
FlatCat (200 words) 78.20 77.60 77.90 57.20
Seq2seq (s) 86.94 78.62 82.54 64.60
NST (s) 83.26 83.92 83.58 69.12
CRF (s) 87.70 83.30 85.40 69.30
FlatCat (full) 74.30 84.10 78.90 61.80
Seq2seq (ss) 87.66 80.16 83.72 68.36
NST (ss) 84.28 85.58 84.94 71.02
CRF (ss) 86.30 85.20 85.70 71.10

Table 3: Results on the test set. Boundary precision (Pre), recall (Rec), and F1-scores,
together with word-type level accuracy (w-acc). NST is short for neural sequence
tagger. FlatCat (200 words) shows the performance of the FlatCat system used to
produce the input features. FlatCat (full) line shows FlatCat trained using the full
training set. Fully supervised models, i.e. without using FlatCat features, are marked
(s). Semi-supervised models are marked (ss).

STM STM + STM STM + SUF STM + SUF + SUF
Pre Pre Rec F1 Pre Rec F1 Pre Rec F1

FlatCat (200) 71.50 78.50 70.90 74.50 77.60 69.90 73.50 78.90 56.70 66.00
Seq2seq (s) 82.02 89.82 66.54 76.08 88.22 74.78 80.94 81.44 56.10 66.32
NST (s) 76.74 83.84 78.20 80.90 86.04 79.82 82.82 80.30 58.34 67.58
CRF (s) 79.80 95.50 60.00 73.70 89.40 82.70 85.90 83.30 62.70 71.60
FlatCat (full) 62.70 82.50 92.70 87.30 76.70 76.40 76.60 72.90 61.90 67.00
Seq2seq (ss) 82.46 91.08 68.00 77.80 88.46 76.46 82.00 84.74 57.60 68.56
NST (ss) 78.78 87.90 86.56 87.20 85.28 80.12 82.60 78.20 59.54 67.58
CRF (ss) 77.20 96.40 85.50 90.60 86.60 79.40 82.80 88.60 67.90 76.90

Table 4: Boundary precision (Pre), recall (Rec), and F1-scores for different subsets
of the evaluation data. NST stands for Neural sequence tagger. (s) stands for fully
supervised, (ss) for semi-supervised.

8 Results
Table 3 shows results on the full test set. The semi-supervised CRF shows the best per-
formance both according to F1-score and word-type level accuracy. Semi-supervised
seq2seq has high precision but low recall, indicating under-segmentation. The neural
sequence tagger shows the opposite behavior, with the highest recall.

All semi-supervised methods improve on the quality of the semi-supervised Flat-
Cat trained on 200 annotated words which is used as input features. All three dis-
criminative methods also outperform FlatCat trained on the whole training set, on F1

and accuracy. All three semi-supervised methods outperform their fully supervised
variants. These results show that two-step training is preferable over using only Mor-
fessor FlatCat or one of the discrinative methods.
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The seq2seq model frequently fails to output a valid segmentation, either gener-
ating incorrect characters, stopping too early, or getting stuck repeating a pattern of
characters. For 10.7% of the test set, the seq2seq output does not concatenate back to
the input word.

Table 4 shows results for subsets of the evaluation data. The subsets include all
words were the gold standard category labels follow a particular pattern: No inter-
nal structure (STM), uninflected compound (STM+STM), single-suffix inflected word
(STM+SUF) and two-suffix inflected word (STM+SUF+SUF).

The seq2seq model has the best performance for the STM-pattern. This is only
partly explained by the bias towards not segmenting at all caused by the replacement
procedure for the invalid outputs.

The seq2seq model has high precision for all category patterns. Fully supervised
CRF has superior precision and recall for the STM+SUF pattern, while semi-supervised
CRF is superior for the STM+SUF+SUF pattern. CRF is good at modeling the bound-
aries of suffixes. Adding the FlatCat features improves the modeling of the boundary
between multiple suffixes, while slightly deteriorating the modeling of the boundary
between stem and suffix. The left-to-right decoding is a possible explanation for the
weaker performance of the neural sequence tagger on the STM+SUF+SUF pattern.
Fully supervised CRF is poor at splitting compound words, evidenced by the low re-
call for the STM+STM pattern. This deficiency is effectively alleviated by the addition
of the FlatCat features.

The neural sequence tagger is good at modeling the ends of stems, indicated by
high recall on the STM+STM and STM+SUF patterns.

9 Conclusions and future work
Semi-supervised sequence labeling is an effective way to train a low-resourcemorpho-
logical segmentation system. We recommend training a CRF sequence tagger using
a Morfessor FlatCat-based feature set augmentation approach. This setup achieves a
morph boundary F1-score of 85.70, improving on previous best results for North Sámi
morphological segmentation. Our neural sequence tagging system reaches almost the
same word-type level accuracy as the CRF system, while having better morph bound-
ary recall.

The bidirectional LSTM-CRF model (Huang et al., 2015) uses the power of a re-
current neural network to combine contextual features, and stacks a CRF on top for
sequence level inference. The performance of this architecture on the North Sámi
morphological segmentation task should be explored in future work.
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