
Modeling Clausal Complementation for a Grammar Engineering
Resource

Olga Zamaraeva
University of Washington
olzama@uw.edu

Kristen Howell
University of Washington
kphowell@uw.edu

Emily M. Bender
University of Washington
ebender@uw.edu

Abstract

We present a grammar engineering library
for modeling objectival declarative clausal
complementation patterns attested cross-
linguistically. Our primary contribution is
positing a set of syntactico-semantic analyses
couched within a variant of the HPSG syntactic
formalism and integrating them with a variety
of phenomena already implemented in a gram-
mar engineering toolkit. We evaluate the addi-
tion to the system on testsuites from genetically
diverse languages that were not considered dur-
ing development.

1 Introduction

Grammar engineering is the modeling of language
rules in a machine-readable fashion, such that the
resulting system (the grammar) can parse gram-
matical strings while not overgenerating (licensing
incorrect or spurious analyses). Linguistic gram-
mar engineering prioritizes precision (how many
parses are syntactically and semantically correct
with respect to the linguistic formalism) over re-
call (how many input strings get parsed).

A precision grammar documents and models
linguistic phenomena on the one hand, and is a pro-
gram that parses and generates, on the other. This
makes precision grammars a resource for rigorous
linguistic hypothesis testing as well as for NLP
tasks. While precision grammars are expensive—
broad-coverage grammars like Flickinger 2000,
2011 or Siegel et al. 2016 take years to build—
there are e�orts to automate this process. We
present a contribution to one such initiative, adding
a clausal complements library to a grammar engi-
neering starter toolkit.

Clausal complements are a kind of subordinate
clause. Modeling subordinate clauses in general
and clausal complements in particular is important
not only because of their corpus frequency, but also

because of their interaction with other phenomena.
A grammar that cannot support subordinate clauses
will fail to provide analyses for a big portion of a
typical corpus and will not support the grammar
engineer in exploring how well the analyses used
for modeling simple clauses generalize.

To fill this gap, we incorporate a cross-linguistic
account of clausal complements into a grammar
engineering questionnaire and customization sys-
tem. The questionnaire elicits typological infor-
mation about hypothetically any language and the
customization system outputs a starter precision
grammar to specifications. In this way, the toolkit
supports the rapid development of precision gram-
mars, giving both novice and experienced grammar
developers a means to create a grammar fragment
customized to their language of interest and ready
for extension to broader coverage.

In the meta-grammar engineering context, an
analysis is a set of theoretically-grounded elements
which comply with the requirements of the spe-
cific implementation framework and are used by
the grammar engineering system so as to produce
functioning grammars. In our case, the analysis
is couched within Head-Driven Phrase Structure
Grammar (HPSG; Pollard and Sag, 1994) and
Minimal Recursion Semantics (MRS; Copestake
et al., 2005) and is implemented as an extension to
the LinGO Grammar Matrix (Bender et al., 2002,
2010). Our main challenges lie in accounting for
a large space of typological possibilities while at
the same time integrating our analysis of clausal
complements into a complex system which out-
puts streamlined grammars. We start by motivat-
ing the choice of the grammar engineering system
and briefly summarizing the formal underpinnings
associated with this choice (§2). We then present
a concise summary of the typological literature on
clausal complementation (§3), and describe our
analysis and implementation in §4. The evaluation

39
Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pages 39-49.

New York City, New York, January 3-6, 2019

results featuring held-out languages from di�erent
families are given in §5. All of the resources men-
tioned in the paper are freely available.1

2 Background
2.1 The Grammar Matrix
We develop a cross-linguistic analysis of clausal
complements as part of the LinGO Grammar Ma-
trix2 (Bender et al., 2002, 2010). Other examples
of multilingual grammar engineering projects in-
clude ParGram (Butt and King, 2002) and Core-
Gram (Müller, 2015). What is unique about the
Grammar Matrix, however, is that it allows the
user to obtain a starter grammar customized from
typological choices, making it possible to easily
test the analysis on multiple languages, including
systematic testing of each part of the analysis using
artificially constructed languages (see §4.3).

The Grammar Matrix consists of a web-based
questionnaire and a back-end customization sys-
tem. The input to the system is user answers to
the typological questions (elicited in the question-
naire and serialized as a choices file) and the out-
put is an implemented starter precision grammar.
There are currently multiple libraries, including
word order (Bender and Flickinger, 2005; Fokkens,
2014); person, number, gender, and case systems
(Drellishak, 2009); tense, aspect, and mood (Poul-
son, 2011); argument optionality (Saleem and Ben-
der, 2010); matrix yes/no questions, lexicon, (Ben-
der and Flickinger, 2005); morphotactics (O’Hara,
2008; Goodman and Bender, 2010); nominalized
clauses (Howell et al., 2018), and clausal modifiers
(Howell and Zamaraeva, 2018).3 The contribution
of this paper is the clausal complements library.
In the context of the Grammar Matrix, our analysis
consists of a new web questionnaire page with a set
of choices describing clausal complements cross-
linguistically, a set of new types available for the
back-end customization logic, and revisions to the
types already existing in the system.

Building on the existing resource of the Gram-
mar Matrix to develop our library has dual bene-
fits: On the one hand, we can reuse existing im-
plementations of phenomena that occur in embed-
ded clauses and focus our attention primarily on

1svn://lemur.ling.washington.edu/shared/
matrix/trunk, revision 42067 (code and testsuites).

2http://matrix.delph-in.net/customize/
matrix.cgi

3The nonexhaustive list of cited libraries includes the ones
with which we tested the interaction of our library.

clause embedding itself. On the other hand, we are
able to explore the interaction of our analyses with
the existing analyses of other phenomena in or-
der to validate both the existing and new libraries.
Finally, because we contribute our library to the
Grammar Matrix code base, it can in turn serve
as part of the background infrastructure for future
library development.

2.2 DELPH-IN Joint Reference Formalism,
HPSG and MRS

The Grammar Matrix uses the DELPH-IN Joint
Reference Formalism (Copestake, 2000), a version
of the HPSG syntactic formalism (Pollard and Sag,
1994), developed to balance expressive power with
computational e�ciency. Every part of the gram-
mar (lexical items, lexical rules, and phrase struc-
ture rules) is encoded with typed feature struc-
tures.4 Phrase structure rules can have any fixed
number of daughters in a fixed order,5 but are typ-
ically either binary branching or unary construc-
tions. Lexical rules are always unary projections
and are furthermore restricted to the lower parts of
the tree, i.e. below any phrase structure rules.

A customized grammar consists of a type hier-
archy where typed feature structures (types) inherit
constraints from other types and add their own con-
straints. The typed feature structures defined by the
grammar are combined using the operation of uni-
fication in order to build analyses of sentences. If
no analysis can be found for a string using a gram-
mar, then the string is deemed ungrammatical by
that grammar. Because the feature structures en-
code both syntactic and semantic constraints, any
derivation tree produced by the grammar also in-
cludes an MRS semantic representation (Copes-
take et al., 2005). When evaluating a grammar
created via the Grammar Matrix customization sys-
tem, the correctness of both syntactic and semantic
representations of strings is taken into account.

2.3 Clausal Complements in HPSG
To our knowledge, there is no previous
cross-linguistic account of clausal complements
in HPSG. Language-specific analyses include
Ginzburg and Sag 2000 for English and Crysmann
2013 for German, among others. We could not di-

4These are exemplified in §4.2 in (4)-(10).
5This contrasts with other versions of HPSG formalisms

which separate immediate dominance from linear precedence
(e.g. Engelkamp et al., 1992) as well as those that allow
variable-arity rules, like Sag et al. 2003.

40

rectly incorporate them for two reasons. First, most
of the existing theoretical analyses are not within
the DELPH-IN JRF. Second, the literature mostly
concerns itself with the level of clause complex-
ity which is beyond the Grammar Matrix’s cur-
rent scope. The analyses which informed us the
most are actual grammar implementations within
the DELPH-IN JRF and include Siegel et al. 2016
for Japanese and Flickinger 2000, 2011 for English.

3 The Typology of Clausal Complements

Clausal arguments are clauses which serve as core
arguments to verbs (Noonan, 2007). They can be
subjects or complements (objects) and typically oc-
cur with verbs of thought, perception, knowledge,
etc. An example of an objectival clausal argument
is given in (1).

(1) Kim thinks [that Sandy left]. [eng]

Clausal complements can be finite clauses that
can occur on their own (1) or they can be reduced.
Reduced clauses can share the subject with the
matrix clause, have the verb in a dependent form
or have case marking on the arguments that dif-
fers from what is normal for finite clauses in the
language (ibid.). Complementation strategies in-
clude parataxis (several clauses joined without sub-
ordination); complementizer + finite complement;
nominalization; infinitival and participial comple-
ments.

Here we focus on the complementation phe-
nomena which involve embedded clauses that are
declarative, objectival and clearly marked as subor-
dinate, and that contain a full proposition. Embed-
ded clauses that are subjects, interrogative clauses,
subject sharing, paratactic, infinitival or participial
complements are not covered at this point. Our
library supports clausal complements marked by
special morphology on the verb, special word or-
der, and/or a complementizer attaching to one of
the edges of the embedded clause. Special mor-
phology on the embedded verb is illustrated in (2),
a Turkish example with nominalization. Special
word order in the matrix clause6 is illustrated by
(3): Uzbek is a SOV language, but clausal com-
plements can be extraposed to the end of the sen-
tence. Note that the order of the complementizer
and the embedded clause here also does not follow
the same rule as, for example, a transitive verb and

6See §4.2.4 regarding the word order in subordinate
clauses in German.

its nominal object. Complementizers can be seen
in both (3) and (1).

(2) [senin
[2��.���

sinema-ya
cinema-���

gel-me-n-i]
come-���-2��-���]

isti-yor-um
want-����-1��
‘I want you to come to the movies.’ [tur] (adapted
from Kornfilt 2013, p. 48)

(3) Men
I

bilamen
know-1��

[ki
[����

bu
this

Odam
man

�̆o�̆a-ni
chicken-���

o�irladi]
stole-3��]
‘I know that the man stole the chicken.’ [uzb] (Noo-
nan, 2007)

4 Developing the Library
Development starts with mapping typological de-
scriptions of the phenomenon to a set of choices to
be presented to the user via the web questionnaire
(§4.1). This characterizes our analysis in the broad
sense. In particular, upon reviewing the typologi-
cal literature and restricting the scope of the library
as outlined in §3, we provide an analysis for lan-
guages that mark clausal complements in a set of
certain ways, e.g. with complementizers, nominal-
ization, aspect or other marking on the embedded
verb.7 We posit HPSG analyses for all combina-
tions of the choices we target, without claiming
to have identified or modeled all dimensions of
variation. We start with basic analyses for com-
plementizers and clause-embedding verbs (§4.2)
and implement a holistic analysis in a test-driven
fashion (§4.3).

4.1 Web Questionnaire
As summarized in §3, clausal complements can be
marked with a complementizer, special morphol-
ogy on the embedded verb, or word order changes
in either the matrix or the embedded clause. Com-
binations of these phenomena are also possible.
There may be several distinct strategies in a lan-
guage and clausal complement-taking verbs may
select for specific ones. We add a web page to the
questionnaire which elicits all the relevant choices
from the user.

A language may have multiple complementizers
which belong to distinct complementation strate-
gies (i.e. with di�erent word order consequences,
di�erent selecting verbs, or di�erent morphologi-
cal requirements on the embedded verb). To ac-

7While our analysis draws on a comprehensive review of
typological literature, we do not make any typological claims
as part of this work.

41

count for this, we generalize the ���� feature, pre-
viously available for verbs to distinguish di�erent
syntactically relevant inflected forms, to comple-
mentizers, and reflect this in the questionnaire.

To handle complementation strategies that re-
quire specific morphology on the embedded verb,
we leverage several existing libraries: The mor-
photactics library (Goodman, 2013) provides a
means of associating morphological features with
inflected forms of verbs; the tense/aspect/mood li-
brary (Poulson, 2011) allows users to define mor-
phology associated with those features (as well as
additional arbitrary features on the ‘Other Features’
page) and the nominalization library (Howell et al.,
2018) accounts for nominalized clauses. In all
cases, the lexical rules defined by these libraries
include morphosyntactic or morphosemantic fea-
tures which allow an embedding verb or comple-
mentizer to select for a clausal complement headed
by a verb with appropriate morphology. This lex-
ically introduced information is available at the
clause level thanks to constraints in the shared core
grammar that pass the information up the tree.

We also provide an analysis of clause-bounded
extraposition of clausal complements. One of the
salient syntactic characteristics of clausal com-
plements is that they tend to be dispreferred in
sentence-medial position, as seen in (3). We allow
the user to choose this type of extraposition and
indicate whether it is obligatory or optional.8

Finally, the user must add lexical types for
clause-embedding verbs, at least one per comple-
mentation strategy, as we operate within a lexicalist
view of syntax and the lexical type of the clause-
embedding verb is therefore responsible for choos-
ing which type of clausal complement to take.
Here, we extended an already existing part of the
questionnaire (the Lexicon) so that verb types can
select for a complementation strategy.

4.2 Syntactic Analysis
As discussed in §2.3, there appears to be little in
the theoretical HPSG literature focused on a cross-
linguistic account of basic complementation that
can be directly incorporated into our library. How-
ever, we can leverage the existing Grammar Matrix
analyses of various phenomena as well as those
from other implemented grammars and extend or
adapt them to cover clausal complementation; the

8Displacement to sentence-initial position is less men-
tioned in the typological literature, though it appears to be
possible. We leave it to future work.

Grammar Matrix provides us with a theoretical as
well as an engineering basis. As is consistent with
the Grammar Matrix’s overarching goal, the main
goal of our analysis is to provide the user-linguist
with a range of typologically motivated possibil-
ities rather than to focus on specific predictions
of what is possible vs. what is not possible in the
world’s languages. In this section, we describe the
building blocks of our analysis.

4.2.1 Lexical Types
Complementizers can be treated as semantically
empty elements that take a proposition as a com-
plement (e.g. Siegel et al. 2016). The Grammar
Matrix already had a complementizer type which
did not contribute its own predication but raised
its complement’s semantic identifier via the ����
identity, as shown in (4).9

(4) 26666666666666666666666664

comp-lex-item

HEAD

"
comp
MOD h i

#

SUBJ h i

COMPS h 1

266666664

HEAD verb
SUBJ h i
COMPS h i
HOOK 2

377777775
i

ARG-ST h 1 i
RELS h! !i
HOOK 2

37777777777777777777777775
While posited originally for question parti-

cles in the yes/no questions library (Bender and
Flickinger, 2005), it was intended to generalize
to clausal complementizers. In order to have
clausal complementizers inherit from this super-
type we move the �� (‘main clause’) value from
the supertype (4) where it was posited originally
to the clausal complementizer subtypes (5). This
way question particles (not shown) can take main
clauses as their complements but clausal comple-
mentizers cannot. Another change implemented to
support our analysis is that complementizers now
have the ���� feature (with user-specified array of
values). This is used to license certain comple-
mentizers only in combination with certain verb
types. 10

9Empty semantic relations (����) lists and ���� identities
as in (4) are characteristic of semantically empty elements.

10AVMs are abbreviated to focus on the primary points of
interest. Note also that all such feature structures are arranged
into a type hierarchy, such that more specific types, like (5),
inherit all of the constraints of their supertypes, like (4).

42

(5) 266666664

ccomp-lex-item

HEAD
h
FORM form

i
COMPS h

h
MC �

i
i

377777775
To model clausal complement-taking verbs,11

we introduce new lexical types. Lexical types in
the Grammar Matrix typically specify both syntac-
tic and semantic requirements on their dependents.
Because cross-linguistically clausal complement-
taking verbs can take both verbal and nominal-
ized complements, our supertype in this space (6)
leaves both underspecified. Otherwise, it is simi-
lar to transitive-verb-lex, which also specifies two
arguments.12

(6) 2666666666664

cl-verb-lex
SUBJ h 1 i

COMPS h 2

"
SUBJ h i
COMPS h i

#
i

ARG-ST h 1
h
HEAD noun

i
, 2 i

3777777777775
Further subtypes inheriting from cl-verb-lex are

based on the specific choices made by the user and
make use of one of two already existing types: ei-
ther transitive-lex-item, for nominalized comple-
ments, or clausal-second-arg-trans-lex-item, for
all other types of clausal complements. This al-
lows us to model the primary semantic e�ect of
nominalization: the introduction of an individual-
type variable corresponding to the nominalized
clause, which in turn allows for e.g. adjectival
modifiers of that clause. In the semantic com-
position, transitive-lex-item takes the individual-
type index of its complement as a semantic argu-
ment. Clausal-second-arg-trans-lex-item, on the
other hand, expects an argument with an event-type
index and combines with it semantically via a han-
dle constraint to accommodate the MRS analysis
of quantifier scope (Copestake et al., 2005).

For proper interaction with the case library
(Drellishak, 2009), clausal complement-taking
verbs require a hierarchy which is aware of various
case frames. In modeling a language with case,
the user must specify a case frame for each verb
type. For example, a verb can have nominative-
accusative argument structure, meaning the type
will constrain its syntactic subject to bear nomi-
native case and its object accusative. We added

11Often called the ���, complement-taking predicate, in
syntactic and typological literature.

12In future work, we will extend the lexical types available
to provide for more valence patterns with clausal comple-
ments, such as Kim told me that Sandy left.

clausal complement strategies as argument struc-
ture choices and allowed the case frames that are
available for non-clause-embedding verbs to be
available for clausal complement strategies as well.
The option which specifies a case constraint on the
verb’s object is not always available: it only makes
sense for nominalized clausal objects.

4.2.2 Lexical Rules, Features, Nominalization
As noted in §4.1 above, we leverage existing li-
braries to account for constraints on the morphol-
ogy of embedded verbs imposed by complemen-
tizers or clausal-complement verbs. The result is
that users can specify, for example, that the clausal
complement be nominalized, at which point the re-
sulting clausal-complement verb type will include
the constraint shown in (7). We also extended the
Morphotactics library to allow nominalized verbs
to bear case inflections.

(7) 266664
cl-verb-lex

COMPS h
h
NMZ +

i
i

377775
For a specific example of how we accommo-

date lexical variation in complementation, consider
Turkish, which has several complementation strate-
gies. The verb isti (‘want’) can not only take nom-
inalized complements like in (2) but also clauses
headed by verbs in the optative form, as in (8).

(8) herkes
everybody

[yarin
[tomorrow

ben-im-le
I-���-����

sinema-ya
cinema-���

gel-esin]
come-2��.���]

isti-yor
want-����.����

‘Everybody wants you to come along to the movies
with me tomorrow.’ [tur] (from Kornfilt 2013, p. 48)

To model this, the user can add separate comple-
mentation strategies in the questionnaire for nom-
inalization and for optative on the embedded verb,
and a corresponding clausal complement-taking
verb type to go with each strategy. The resulting
grammar will include two lexical entries for isti,
each belonging to a di�erent type. One will only
take complements with [��� +, ���� nonfinite]
and the other [��� �, ���� opt].

4.2.3 Phrase Structure Rules, ���� and �����
The most intricate part of this library is its in-
teraction with the existing analysis of word order.
To account for basic word order, any Grammar
Matrix-generated grammar will have some basic
head-subject and head-complement rules, one of
each when the word order is strict (e.g. SOV) and
more if the order is flexible.

43

When the complementizer or the main verb par-
ticipates in a word order that is di�erent from other
verbs, we posit an additional head-complement
rule (HCR) and, in some cases, an additional head-
subject rule (HSR). Then we constrain them (as
well as all lexical types that use the HCRs and
HSRs) for one or both Boolean features, ���� and
�����. While similar features have been used be-
fore (Keller 1995; Crysmann 2013; see also Siegel
et al. 2016, 59), we incorporate them into a new
customization logic so that sets of correct con-
straints are emitted automatically based on user
choices. Examples (9)–(10) illustrate the general
HCR and the additional one for extraposition that
are emitted for one of many possible user-defined
languages: an OVS language with extraposition.

(9) 26666666666666664

HCR1
COMPS 1

H-DTR

2666664
INIT �
SUBJ h i
COMPS h 3 i � 1

3777775
NH-DTR 3

ARGS h 3 , 2 i

37777777777777775

TopHCR1

O VHSR

V S

(10) 26666666666666664

HCR2
COMPS 1

H-DTR

2666664
INIT +
SUBJ h i
COMPS h 3 i � 1

3777775
NH-DTR 3

ARGS h 2 , 3 i

37777777777777775

TopHCR2

VHSR

V S

O

We use ���� (a ���� feature) on lexical types and
on the head daughters of phrase structure rules to
account for word order variations associated with
subordinator attachment and with extraposition of
objects from OV languages. [���� +] is associ-
ated with head-initial rules and [���� �] with head-
final rules. We need a separate feature, �����
(not shown), to handle extraposition in VOS and
V-initial languages, because the order in these lan-
guages remains head-initial despite extraposition
to the end of sentence. ����� is constrained on
����� list elements of clausal-complement select-
ing heads and on the non-head daughter of head-
initial HCRs.13

4.2.4 German-like V2/V-final Variation
In German, the word order is verb second (V2),
but in clausal complements marked by a comple-

13For an example of how ����� is used, see Zamaraeva
et al. 2018.

mentizer the order is verb final. Fokkens (2014)
implemented this type of word order variation in
the Grammar Matrix framework but did not fully
integrate it into the customization system. We in-
corporate part of her analysis so that the user can
choose this type of word order variation directly
via the questionnaire.

4.3 Implementation
Encoding any particular structure is straightfor-
ward; the challenge is in emitting the right sets
of structures with the right constraints given user
choices, where the space of possible combinations
is large. Furthermore, any additions need to be
well integrated so that the constraints the new code
emits should not interfere with what other libraries
create. At the same time, it is not desirable to
add unique structures where an existing one can
be adapted, since this leads to unnecessarily large,
complex and potentially overgenerating grammars.
The goal is to implement an analysis that is su�-
ciently general to handle any typologically plausi-
ble language while at the same time emitting rea-
sonably streamlined grammars.

4.3.1 Test-driven Development
We begin by describing the procedure we use for
creating test cases, both in development and in
evaluation (§5). Test-driven development in the
context of the Grammar Matrix relies on two com-
ponents: the testsuites and the test choices files
(i.e. grammar specifications). There is a testsuite
and a choices file for each language that is used
in development or evaluation. While the testsuite
and the choices file are created separately, both
are based on the descriptive grammar for the lan-
guage in question (with the exception of artificial
pseudolanguages discussed below which function
more like ‘unit tests’ for the bits of our analysis).
Specifically, we first collect the sentences illustrat-
ing clausal complementation from the descriptive
grammar to compile the testsuites. Then, in a sep-
arate iteration, we read the descriptive grammar to
the extent necessary to fill out the Grammar Matrix
questionnaire for this language.

We build testsuites and choices files for pseu-
dolanguages (defined by combinations of choices)
and for 5 development languages (see §5 for the
details). The number of possible pseudolanguages
is large: a conservative estimate which treats some
bundles of choices as single dimensions is 2300,
assuming one strategy per language. In testing we

44

work with a 50 language sample which includes
several languages with more than one complemen-
tation strategy. A testsuite consists of grammatical
and ungrammatical sentences illustrating what is
possible/impossible with respect to clausal com-
plements in a given language.

For pseudolanguages testsuites, we construct all
possible nonrecursive sentences14 illustrating the
clausal complementation strategies that this lan-
guage has. For development languages, the sen-
tences either come directly or are adapted from the
sections in descriptive grammars explaining how
clausal complements work in this language. Here
the sentences feature interacting phenomena such
as tense and case.15 Crucially, we include cor-
responding impossible (ungrammatical) sentences
to make sure they are not parsed. Consider a
language with one strict strategy: SOV word or-
der, obligatory complementizer attaching before
the embedded clause, and obligatory extraposition
of clausal complements. The testsuite will con-
sist of 2 grammatical sentences, one for a simple
SOV sentence and another that has an extraposed
clausal complement with the complementizer. The
ungrammatical sentences will include: a complex
sentence with no complementizer, one with a com-
plementizer attaching after the clause, one with a
non-extraposed clausal complement, and a simple
clause with SVO order. The more flexible the lan-
guage, the more grammatical and fewer ungram-
matical examples the testsuite will have.

From the choices files which are created inde-
pendently from the testsuites, grammar fragments
are created with the original customization sys-
tem. The grammars are loaded into the LKB soft-
ware(Copestake, 2002) which can parse strings.
Then we edit these grammars by hand until they be-
have correctly with respect to the yet unsupported
clausal complements choices (as reflected by the
grammars’ coverage and overgeneration over the
corresponding testsuites). Then we generalize the
solutions in the resulting grammars and incorpo-
rate them in the customization system, continually
testing with the regression tests. The result of this
development is frozen before evaluation on held-

14The vocabulary is minimal.
15In developing these testsuites, we sometimes must adapt

the sentences to exclude phenomena that are not supposed to
be supported by the system or to capture the full spectrum
described by the grammar’s author in prose but not fully il-
lustrated by examples. This, along with the initial selection
of which sentences to include in the grammar, introduces a
certain amount of bias to the testsuites.

out languages, described in §5 below.

4.3.2 Adding Types
We update the customization system as follows.
A supertype for clausal-complement verbs (de-
scribed in §4.2) is now added in all cases when
any clausal complement strategy is specified. A
supertype for a complementizer is added whenever
the user says there is a complementizer associated
with any of the strategies. Appropriate subtypes
are added based on the user choices, one per strat-
egy, and constrained as described in §4.3.3.16

Additional phrase structure rules are added ac-
cording to the user choices. An additional HSR
is added for VOS orders with extraposition. An
additional HCR is added whenever the comple-
mentizer or the clause-embedding verb cannot use
the basic HCR. In general, this means all situations
when the basic order is e.g. head-final but there is
either extraposition or the complementizer can at-
tach clause-initially (or symmetrically, if the basic
order is head-initial but the complementizer can at-
tach clause-finally). In practice, it means checking
combinations of choices: 8 for the word orders;17
3 for complementizer (obligatory, no, optional); 3
for complementizer attachment (before the clause,
after, or both); 3 for extraposition (obligatory, no,
optional).

4.3.3 Adding Constraints
After adding the types, we constrain them for the
grammar to generate only grammatical strings (e.g.
for features ����, ���, ����, �����). We need to
add constraints so that they do not clash with those
placed by other libraries while not positing new
types unless necessary.

The information about whether ���� or ���
(nominalization) constraints are needed on the rel-
evant types comes directly from the choices files:
the user would have specified a ���� value or a
nominalization strategy associated with the com-
plementation strategy. The treatment of ���� and
����� however must be inferred from a fairly large
space of choices combinations.

Figure 1 shows the logic that we add to the cus-
tomization system that lets it decide whether to
use the ���� feature.18 The decision depends on

16A type can be instantiated by multiple lexical entries.
17Excluding V2 and free.
18Abbreviations for Figure and Tables: comp (comple-

mentizer); extrap (extraposition); fam (family); morph (mor-
pheme); neg (ungrammatical sentences); nmz (nominaliza-
tion); oblig (obligatory); opt (optional); OV (object pre-

45

Complementizer (comp)

oblig.

OV

S comp

extrap

����

no extrap

no ����

comp S

����

both

strict extrap

����

flex. extrap

����

no extrap

no ����

VO

S comp

����

comp S

no ����

both

����

opt.

OV

extrap

����

no extrap

comp S

����

S comp

no ����

both

����

VO

comp S

no ����

S comp

����

both

����

no

extrap

OV

����

VO

no ����

no extrap

no ����

Figure 1: Decision tree illustrating the logic of using the ���� feature based on user choices

whether there is a complementizer, whether it is
obligatory or optional, what is the basic word or-
der, is there extraposition and is it strict or flex-
ible, and how does the complementizer attach to
the clause. If the ���� feature is used, then all HCR
and all lexical items which can go through the HCR
must be properly constrained for ���� + or �. The
logic associated with the ����� feature is simpler:
it is used only with VOS and V-initial word orders
when there is extraposition.

4.3.4 Summary
This section described the process and the main
techniques used to implement the Clausal Com-
plements library for the Grammar Matrix. We
operate in a large space of theoretically possi-
ble user choices combinations (over 2300) where
the ultimate goal is to emit streamlined grammars
which behave correctly for any valid combination
of choices (and a language defined by them). The
development was driven by a sample of pseudo-
and illustrative (development) languages and was
evaluated as described in the next section.

5 Testing, Evaluation, and Error
Analysis

To test the typological legitimacy and the rigor of
our analysis, we apply a three-stage process where
we test grammars against testsuites. The process
used in all stages is described in §4.3.1. The first
two stages involving 50 pseudolanguages and 5 de-
velopment languages are part of the test-driven de-
velopment. We chose the development languages
which exhibited the full range of in-scope comple-
mentation phenomena and for which we had both
some sentences and a description su�cient for us
to fill out the questionnaire. Table 1 summarizes
cedes verb); pos (grammatical sentences); S comp (clause
followed by complementizer); strat (strategy); VO (verb pre-
cedes object); WO (word order). Language families: AA
(Afro-Asiatic); Astrn (Austronesian); Awk (Arawak); IE
(Indo-European); NS (Nilo-Saharan); NC (Niger-Congo); PN
(Pama-Nyungan); PP (Plateau Penutian); Tur (Turkic).

the phenomena covered by the development lan-
guages.19

As for testing the interaction with other libraries,
we included all the choices that were relevant to
the testsuites. For example, if the language has
case and the sentences with clausal complements
showed this, we filled out the Case portion of the
questionnaire and added appropriate lexical rules
on the Morphology page. Case, word order, mor-
phology, and tense, aspect and mood choices came
up most often.

After addressing a few issues uncovered by the
pseudo- and development languages, we achieve
100% coverage and 0% overgeneration on their
testsuites (Table 1). Furthermore, we checked
that all parses for each sentence are warranted, i.e.
there is no unwanted ambiguity. At the same time,
the library was used in a course where students
implemented grammar fragments for 5 more lan-
guages,21 which helped us discover an issue in the
interaction with the information structure library
(Song, 2014).

Finally, we evaluate the library on 5 held-out
languages from di�erent language families than
the development languages.22 The results are pre-
sented in Table 2. Coverage and overgeneration
are given in numbers of sentences in the testsuite
(4/8 means 4 out of 8 were parsed).

In Jalkunan (SOV), there is a kind of clausal

19German (Sapp, 2006), Tagalog (Hoenigswald et al.,
1975), Lango (Noonan, 2007), Turkish (Kornfilt, 2013). The
first author, a native speaker of Russian, provided the testsuite
and the choices for Russian.

20We targeted a fragment of German with obligatory com-
plementizers and V2/V-final word order variation.

21Akuntsu [aqz] (Tupian); Lhasa Tibetan [bod] (Tibeto-
Burman), Dzongkha [dzo] (Tibeto-Burman), Dagaare [gur]
(Niger-Congo), Yolmo [scp] (Tibeto-Burman).

22The number of languages is limited by time constraints.
We pick held-out languages randomly from a pool of de-
scriptive grammars and reject them if they come from a lan-
guage family already used or if the grammars do not cover
basic clausal complements. Grammars: Jalkunan (Heath,
2017), Paresi-Haliti (Brandão), Sahaptin (Jansen, 2010), He-
brew (Zuckermann, 2006), Wangkangurru (Hercus, 1994).

46

Language iso639-3 fam WO comp order morph extrap # strat pos neg
Russian rus IE free opt comp S nmz,form - 3 6 11
German deu IE V2/V-fin oblig20 comp S. - - 1 6 4
Tagalog tgl Astrn. V-in oblig comp S - flexible 1 3 4
Lango laj NS SVO oblig comp S mood - 3 4 4
Turkish tur Tur SOV opt both nmz, form strict 4 7 9

Table 1: Phenomena covered in the development languages. Coverage is 100%, overgeneration is 0%.

Language iso639-3 fam WO comp order morph extrap # strat. Cov. Overgen.
Jalkunan bxl NC SOV opt comp S - strict 1 4/8 0/12
Paresi-Haliti pab Awk SOV - - nmz strict 1 5/5 0/5
Yakima Sahaptin yak PP free - - nmz - 1 10/10 0/6
Modern Hebrew heb AA SVO oblig comp S - - 1 2/2 0/9
Wangkangurru wgg PN free - - aspect - 1 10/10 0/3

Table 2: Coverage and overgeneration on sentences from held-out language families.

complement extraposition where a “dummy” 3��
pronoun (similar to it in English) stays in the
sentence-medial position while the clausal com-
plement is extraposed (Heath, 2017). We had not
considered this strategy during the development
since we hadn’t come across it in the literature, so
we could not parse those items. In addition, we
discovered a bug in the interaction with the word
order library which places constraints on the or-
der of auxiliaries and their complements. Some of
the Jalkunan sentences had auxiliaries, and we also
could not parse them due to the bug; hence the 50%
coverage. On all other languages we achieve 100%
coverage and 0% overgeneration (again, with no
spurious ambiguity).

The testsuites represent typologically diverse
languages, and so one testsuite may emphasize
word order variation, another morphology, etc.
The descriptive grammars for held-out languages
only included one in-scope strategy per language.
In general, our held-out grammars contain rela-
tively few examples which illustrated basic com-
plementation.23 Our source for Modern Hebrew,
Zuckermann 2006, for example, identified a sin-
gle strict complementation strategy, and so for that
language we have just one grammatical sentence
illustrating simple noun complementation and one
grammatical sentence illustrating clausal comple-
mentation. The more strategies in a language, the
more flexible they are, and the clearer the author
of the grammar describes them in isolation from
other phenomena, the more sentences we can in-
clude. The point of the evaluation is to approx-

23Descriptive grammars seem to prioritize complicated ex-
amples of complex clauses. This di�ers from the data from
development languages which were picked so as to better in-
form the implementation of the library.

imate quantitatively how well a system would do
for a linguist working from a reasonably thorough
description of a language we had not worked with.

6 Conclusion

We presented a clausal complements library for
the LinGO Grammar Matrix. To this end, we im-
plemented an HPSG-based analysis of a range of
complementation phenomena attested in the typo-
logical literature. The library allows the grammar
engineer to include basic clausal complements in
their starter grammar in a streamlined system with
appropriate interaction with other phenomena, thus
extending the initial coverage of the grammar frag-
ment that can be obtained automatically. Available
choices define thousands of possible combinations
for which the library needs to emit correct code.
We make sure we have correct behavior on a sam-
ple of 50 choices combinations and 5 development
languages; on testsuites from 5 held-out languages,
we achieve 88% coverage and no overgeneration.

In the future, we plan to extend the system to
handle such related phenomena as subject shar-
ing, sentential subjects, embedded questions, and
displacement to the beginning of the clause. In
terms of interactions with other libraries, we will
look at complex sentences combining clausal com-
plements and clausal modifiers and coordinated
clausal complements. Our library will also serve
as a foundation for testing future additions to the
Grammar Matrix for their interaction with subor-
dinate clauses, e.g. wh-questions. Finally, we plan
to explore how to infer answers to our additions
to the questionnaire from collections of interlinear
glossed text, along the lines of Bender et al. (2013)
and Bender et al. (2014).

47

Acknowledgements

We thank the anonymous reviewers for SCiL 2019
for helpful discussion.

This material is based upon work supported by
the National Science Foundation under Grant No.
BCS-1561833. Any opinions, findings, and con-
clusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily
reflect the views of the National Science Founda-
tion.

References
Emily M. Bender, Joshua Crowgey, Michael Wayne

Goodman, and Fei Xia. 2014. Learning grammar
specifications from IGT: A case study of Chintang.
In Proceedings of the 2014 Workshop on the Use of
Computational Methods in the Study of Endangered
Languages, pages 43–53. Association for Computa-
tional Linguistics.

Emily M Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

Emily M. Bender and Dan Flickinger. 2005. Rapid
prototyping of scalable grammars: Towards modu-
larity in extensions to a language-independent core.
In Proceedings of the 2nd International Joint Con-
ference on Natural Language Processing IJCNLP-05
(Posters/Demos), Jeju Island, Korea.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The Grammar Matrix: An open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
Proceedings of the Workshop on Grammar Engineer-
ing and Evaluation at the 19th International Con-
ference on Computational Linguistics, pages 8–14,
Taipei, Taiwan.

Emily M. Bender, Michael Wayne Goodman, Joshua
Crowgey, and Fei Xia. 2013. Towards creating pre-
cision grammars from interlinear glossed text: Infer-
ring large-scale typological properties. In Proceed-
ings of the 7th Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Human-
ities, pages 74–83, Sofia, Bulgaria. Association for
Computational Linguistics.

Ana Paula Barros Brandão. A Reference Grammar of
Paresi-Haliti (Arawak). Ph.D. thesis, The University
of Texas at Austin.

Miriam Butt and Tracy Holloway King. 2002. Urdu
and the Parallel Grammar project. In Proceedings of
the 3rd workshop on Asian language resources and
international standardization-Volume 12, pages 1–3.
Association for Computational Linguistics.

Ann Copestake. 2000. Appendix: Definitions of typed
feature structures. Natural Language Engineering,
6(01):109–112.

Ann Copestake. 2002. Implementing typed feature
structure grammars. CSLI publications Stanford.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal recursion semantics:
An introduction. Research on language and compu-
tation, 3(2-3):281–332.

Berthold Crysmann. 2013. On the locality of com-
plement clause and relative clause extraposition.
Rightward movement in a comparative perspective,
200:369–395.

Scott Drellishak. 2009. Widespread but Not Universal:
Improving the Typological Coverage of the Grammar
Matrix. Ph.D. thesis, University of Washington.

Judith Engelkamp, Gregor Erbach, and Hans Uszko-
reit. 1992. Handling linear precedence constraints
by unification. In Proceedings of the 30th annual
meeting on Association for Computational Linguis-
tics, pages 201–208. Association for Computational
Linguistics.

Dan Flickinger. 2000. On building a more e�cient
grammar by exploiting types. Natural Language En-
gineering, 6(01):15–28.

Dan Flickinger. 2011. Accuracy v. robustness in gram-
mar engineering. In Emily M. Bender and Jennifer E.
Arnold, editors, Language from a Cognitive Perspec-
tive: Grammar, Usage and Processing, pages 31–50.
CSLI Publications, Stanford, CA.

Antske Sibelle Fokkens. 2014. Enhancing Empiri-
cal Research for Linguistically Motivated Precision
Grammars. Ph.D. thesis, Department of Computa-
tional Linguistics, Universität des Saarlandes.

Jonathan Ginzburg and Ivan Sag. 2000. Interrogative
investigations. Stanford: CSLI publications.

Michael Wayne Goodman. 2013. Generation of
machine-readable morphological rules from human-
readable input. Seattle: University of Washington
Working Papers in Linguistics, 30.

Michael Wayne Goodman and Emily M. Bender. 2010.
What’s in a word? Refining the morphotactic infras-
tructure in the LinGO Grammar Matrix customiza-
tion system. In Workshop on Morphology and For-
mal Grammar, Paris.

Je�rey Heath. 2017. A grammar of Jalkunan (Mande,
Burkina Faso). Language Description Heritage Li-
brary.

Luise A Hercus. 1994. A grammar of the Arabana-
Wangkangurru language: Lake Eyre Basin, South
Australia. Australian National Univ.

Henry M Hoenigswald, Paul Schachter, and Fe T
Otanes. 1975. Tagalog Reference Grammar.

48

Kristen Howell and Olga Zamaraeva. 2018. Clausal
modifiers in the grammar matrix. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 2939–2952.

Kristen Howell, Olga Zamaraeva, and Emily M. Bender.
2018. Nominalized clauses in the Grammar Matrix.
In Proceedings of the 25th International Conference
on Head-Driven Phrase Structure Grammar, pages
68–88.

Joana Worth Jansen. 2010. A Grammar of Yakima
Ichishkíin/Sahaptin. Ph.D. thesis, University of Ore-
gon.

Frank Keller. 1995. Towards an account of extraposi-
tion in HPSG. In Proceedings of the seventh con-
ference on European chapter of the Association for
Computational Linguistics, pages 301–306. Morgan
Kaufmann Publishers Inc.

Jaklin Kornfilt. 2013. Turkish. Routledge, London.

Stefan Müller. 2015. The CoreGram project: Theoreti-
cal linguistics, theory development and verification.
Journal of Language Modelling, 3(1):21–86.

Michael Noonan. 2007. Complementation. In Timothy
Shopen, editor, Language Typology and Syntactic
Description, volume 2. Cambridge University Press,
Cambridge, UK.

Kelly O’Hara. 2008. A morphotactic infrastructure for
a grammar customization system. Ph.D. thesis, Uni-
versity of Washington.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press
and CSLI Publications, Chicago, IL and Stanford,
CA.

Laurie Poulson. 2011. Meta-modeling of tense and as-
pect in a cross-linguistic grammar engineering plat-
form. University of Washington Working Papers in
Linguistics (UWWPL), 28.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender.
2003. Syntactic Theory: A Formal Introduction,
second edition. CSLI, Stanford, CA.

Safiyyah Saleem and Emily M Bender. 2010. Argu-
ment optionality in the LinGO Grammar Matrix.
In Proceedings of the 23rd international conference
on computational linguistics: posters, pages 1068–
1076. Association for Computational Linguistics.

Christopher D Sapp. 2006. Verb order in subordinate
clauses from Early New High German to Modern
German. Indiana University.

Melanie Siegel, Emily M. Bender, and Francis Bond.
2016. Jacy: An Implemented Grammar of Japanese.
CSLI Studies in Computational Linguistics. CSLI
Publications, Stanford CA.

Sanghoun Song. 2014. A grammar library for informa-
tion structure. Ph.D. thesis, University of Washing-
ton.

Olga Zamaraeva, Kristen Howell, and Emily M Ben-
der. 2018. A cross-linguistic account of subordinator
and subordinate clause position. Poster presented at
The 25th International Conference on Head-Driven
Phrase Structure Grammar, Tokyo, Japan.

Ghil‘ad Zuckermann. 2006. Complement clause types
in Israeli. Oxford University Press.

49

