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Abstract

In this paper, we propose an end-to-
end CNN-LSTM model for generating de-
scriptions for sequential images with a
local-object attention mechanism. To gen-
erate coherent descriptions, we capture
global semantic context using a multi-
layer perceptron, which learns the depen-
dencies between sequential images. A par-
alleled LSTM network is exploited for de-
coding the sequence descriptions. Exper-
imental results show that our model out-
performs the baseline across three differ-
ent evaluation metrics on the datasets pub-
lished by Microsoft.

1 Introduction

Recently, automatically generating image descrip-
tions has attracted considerable interest in the
fields of computer vision and nature language pro-
cessing. Such a task is easy to humans but highly
non-trivial for machines as it requires not only
capturing the semantic information from images
(e.g., objects and actions) but also needs to gener-
ate human-like natural language descriptions.

Existing approaches to generating image de-
scription are dominated by neural network-based
methods, which mostly focus on generating de-
scription for a single image (Karpathy and Li,
2015; Xu et al., 2015; Jia et al., 2015; You et al.,
2016). Generating descriptions for sequential im-
ages, in contrast, is much more challenging, i.e.,
the information of both individual images as well
as the dependencies between images in a sequence
needs to be captured.

Huang et al. (2016) introduce the first sequen-
tial vision-to-language dataset and exploit Gated
Recurrent Units (GRUs) (Cho et al., 2014) based
encoder and decoder for the task of visual sto-

rytelling. However, their approach only consid-
ers image information of a sequence at the first
time step of the decoder, where the local atten-
tion mechanism is ignored which is important for
capturing the correlation between the features of
an individual image and the corresponding words
in a description sentence. Yu et al. (2017) pro-
pose a hierarchically-attentive Recurrent Neural
Nets (RNNs) for album summarisation and sto-
rytelling. To generate descriptions for an image
album, their hierarchical framework selects repre-
sentative images from several image sequences of
the album, where the selected images might not
necessary have correlation to each other.

In this paper, we propose an end-to-end CNN-
LSTM model with a local-object attention mech-
anism for generating story-like descriptions for
multiple images of a sequence. To improve the co-
herence of the generated descriptions, we exploit
a paralleled long short-terms memory (LSTM)
network and learns global semantic context by
embedding the global features of sequential im-
ages as an initial input to the hidden layer of the
LSTM model. We evaluate the performance of
our model on the task of generating story-like de-
scriptions for an image sequence on the sequence-
in-sequence (SIS) dataset published by Microsoft.
We hypothesise that by taking into account global
context, our model can also generate better de-
scriptions for individual images. Therefore, in an-
other set of experiments, we further test our model
on the Descriptions of Images-in-Isolation (DII)
dataset for generating descriptions for each indi-
vidual image of a sequence. Experimental results
show that our model outperforms a baseline de-
veloped based on the state-of-the-art image cap-
tioning model (Xu et al., 2015) in terms of BLEU,
METEOR and ROUGE, and can generate sequen-
tial descriptions which preserve the dependencies
between sentences.
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Figure 1: The architecture of our CNN-LSTM model with global semantic context.

2 Related Work

Recent successes in machine translation using Re-
current Neural Network (RNN) (Bahdanau et al.,
2014; Cho et al., 2014) catalyse the adoption of
neural networks in the task of image caption gen-
eration. Early works of image caption generation
based on CNN-RNN networks have been made
great progress.Vinyals et al. (2014) propose an
encoder-decoder model which utilises a Convolu-
tional Neural Network (CNN) for encoding the in-
put image into a vector representation and a Recur-
rent Neural Network (RNN) for decoding the cor-
responding text description. Similarly, Karpathy
and Li (2015) present an alignment model based
on a CNN and a bidirectional RNN which can
align segment regions of an image to the corre-
sponding words of a text description. Donahue
et al. (2014) propose a Long-term Recurrent Con-
volutional Network (LRCN) which integrates con-
volutional layers and long-range temporal recur-
sion for generating image descriptions.

Recently, the attention mechanism (Xu et al.,
2015; You et al., 2016; Lu et al., 2016; Zhou et al.,
2016) has been widely used and proved to be ef-
fective in the task of image description generation.
For instance, Xu et al. (2015) explore two kinds
of attention mechanism for generating image de-
scriptions, i.e., soft-attention and hard-attention,
whereas You et al. (2016) exploits a selective se-
mantic attention mechanism for the same task.

There is also a surge of research interest in vi-
sual storytelling (Kim and Xing, 2014; Sigurds-
son et al., 2016; Huang et al., 2016; Yu et al.,

2017). Huang et al. (2016) collect stories using
Mechanical Turk and translate a sequence of im-
ages into story-like descriptions by extending a
GRU-GRU framework. Yu et al. (2017) utilise a
hierarchically-attentive structures with combined
RNNs for photo selection and story generation.
However, the above mentioned approaches for
generating descriptions of sequential images do
not explicitly capture the dependencies between
each individual images of a sequence, which is the
gap that we try to address in this paper.

3 Methodology

In this section, we describe the proposed CNN-
LSTM model with local-object attention. In or-
der to generate coherent descriptions for an im-
age sequence, we introduce global semantic con-
text and a paralleled LSTM in our framework as
shown in Figure. 1. Our model works by first
extracting the global features of sequential im-
ages using a CNN network (VGG16) (Simonyan
and Zisserman, 2014), which has been extensively
used in image recognition. Here a VGG16 model
contains 13 convolutional layers, 5 pooling lay-
ers and 3 fully connected layers. The extracted
global features are then embedded into a global
semantic vector with a multi-layer perceptron as
the initial input to the hidden layer of a paralleled
LSTM model. Our model then applies the last
convolutional-layer operation from the VGG16
model to generate the local features of each im-
age in sequence. Finally, we introduce a paralleled
LSTM model and a local-object attention mecha-
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nism to decode sentence descriptions.

3.1 Features Extraction and Embedding
Sequential image descriptions are different from
single image description due to the spatial cor-
relation between images. Therefore, in the en-
coder, we exploit both global and local features
for describing the content of sequential images.
We extract global features of the sequential im-
ages with the second fully connected layer (FC7)
from VGG16 model. The global features are de-
noted byGwhich are a set of 4096-dimension vec-
tors. Then, we select the features of the final con-
volutional layer (Cov 5) from the VGG16 model
to represent local features for each image in the
sequence. The local features are denoted as Lj (
j = 1,. . .,N ), whereN is the number of images in
the sequence. In our experiment, we follow Huang
et al. (2016) and set 5 as the number of images in
a sequence. Finally, we embed the global features
G into a 512-dimension context vector via a multi-
layer perceptron which is then used as the initial
input of the hidden layer in LSTM model.

3.2 Sequential Descriptions Generation
In the decoding stage, our goal is to obtain the
most likely text descriptions of a given sequence of
images. This can be generated by training a model
to maximize the log likelihood of a sequence of
sentences S, given the corresponding sequential
images I and the model parameters θ, as shown
in Eq. 1.

θ∗ = argmax
θ

N∑

j=1

∑

(I,sj)

log p(sj |I, θ) (1)

Here sj denotes a sentence in S, and N is the total
number of sentences in S.

Assuming a generative model of each sentence
sj produces each word in the sentence in order, the
log probability of sj is given by the sum of the log
probabilities over the words:

log p(sj |I) =
C∑

t=1

log p(sj,t|I, sj,1, sj,2...sj,t−1)

(2)
where sj,t represents the tth word in the jth sen-
tence and C is the total number of words of sj .

We utilize a LSTM network (Hochreiter and
Schmidhuber, 1997) to produce a sequence de-
scriptions conditioned on the local feature vectors,

the previous generated words, as well as the hid-
den state with a global semantic context. Formally,
our LSTM model is formulated as follows:

ijt = σ(Wxix
j
t−1 +Whih

j
t−1 +Wviv

j
t + bi)

f jt = σ(Wxfx
j
t−1 +Whfh

j
t−1 +Wvfv

j
t + bf )

ojt = σ(Wxox
j
t−1 +Whoh

j
t−1 +Wvov

j
t + bo)

qjt = ϕ(Wxqx
j
t−1 +Whqh

j
t−1 +Wvqv

j
t + bq)

cjt = f jt � cjt−1 + ijt � qjt
hjt = ojt � ϕ(cjt ) (3)

where ijt , f
j
t , ojt and cjt represents input gates,

forget gates, output gates and memory, respec-
tively. qjt represents the updating information in
the memory cjt . σ denotes the sigmoid activa-
tion function, � represents the element-wise mul-
tiplication, and ϕ indicates the hyperbolic tangent
function. W• and b• are the parameters to be esti-
mated during training. Also hjt is the hidden state
at time step t which will be used as an input to the
LSTM unit at the next time step.

Here, we utilize a multilayer perceptron to
model the global semantic context which can be
viewed as the initial input of the hidden state hj0,
where every initial value hj0 in the LSTM model is
equal and is defined as:

hj0 =W0 ϕ(WgG+ bg) (4)

When modelling local context, the local context
vector vjt is a dynamic representation of the rele-
vant part of the jth image in a sequence at time t.
In Eq. 6, we use the attention mechanism fatt pro-
posed by (Bahdanau et al., 2014) to compute the
local attention vector vjt , where the corresponding
weight kjt of each local features Lj is computed
by a softmax function with input from a multilayer
perceptron which considers both the current local
vector Lj and the hidden state hjt−1 at time t− 1.

kjt = softmax(Wk tanh(WlvL
j+Whvh

j
t−1+bv))

(5)

vjt =
M∑

i=1

kjitL
j
i (6)

4 Experiments

Dataset.
Both the SIS and DII datasets are published by

Microsoft1, which have a similar data structure,
1http://visionandlanguage.net/VIST/
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DII 

(our model) 

(1) a group of people that are on the beach. (2) a man and a woman pose for a picture together. (3) a

city at night with many buildings in the backgroud. (4) a bridge that is next to the water. (5) a large 

ship is being enjoyed by the crowd. 

DII 

(cnn-att-lstm) 

(1) a group of people that are next to each other. (2) a man and a woman sitting at a table. (3) a group

of friends pose for a picture. (4) the man is blowing out into the camera. (5) a woman is smilling. 

DII 

(ground truth) 

(1) a variety of people sitting in a window filled restanrant. (2) closeup of a woman looking to her

right in a restaurant setting. (3) many buildings by the beach. (4) a waterfront scence from an outside 

restaurant at night. (5) people on the ferris wheel.   

SIS 

(our model) 

(1) the family went to restaurant. (2) the family was very excited to have a party. (3) the sun was going

down to the beach. (4) the family decide to go to restaurant. (5) i was so excited to have a great time. 

SIS 

(cnn-att-lstm) 

(1) the city is a small windows. (2) the girls are ready to go to the day. (3) the beautiful fireworks. (4)

the city has a great view. (5) we drove up. 

SIS 

(ground truth) 

(1) me and my lover went on a vacation to see some sights. here we are getting something to eat. (2)

we liked the food but the place was rather crowded for our tastes. here is a view of the city from our 

hotel. (3) it was so lovely to look out every night as the sun went down. another shot from high up. (4) 

it was breath taking to watch the city light up as the sun went down. (5) we where in line for a ferris 

wheel. i thought that this would make a good pic, and i think it came out well. 

Figure 2: Example of sequential descriptions generated by our model, the baseline, and the ground truth.

Positive 

example 

(1) the kids had a lot of fun. (2) the people were very happy to celebrate. (3) the people brought their

favorite. (4) the people were enjoying themselves. (5) the people were very happy. 

Failure 

Example 

(1) there was a great time. (2) i had a great time. (3) we took a great time. (4) this is a picture. (5) we had a

great time. 

Figure 3: Error analysis of our model. First row: our model generates correct captions. Second row:
failure cases due to severe overfitting.
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Dataset Train Test Vocab. Size
DII 23,415 1,665 10,000
SIS 110,905 10,370 18,000

Table 1: Dataset statistics.

Dataset Method BLEU METEOR ROUGE

DII cnn-att-lstm 36.1 9.2 26.9
Our model 40.1 11.2 29.1

SIS cnn-att-lstm 15.2 4.6 13.6
Our model 17.2 5.5 15.2

Table 2: Evaluation of the quality of descriptions
generated for sequential images.

i.e., each image sequence consists of five images
and their corresponding descriptions. The key dif-
ference is that descriptions of SIS consider the de-
pendencies between images, whereas the descrip-
tions of DII are generated for each individual im-
age, i.e., no dependencies are considered. As the
full DII and SIS datasets are quite large, we only
used part of both datasets for our initial experi-
ments, where the dataset statistics are shown in
Table 1.
Evaluation. We compare our model with the
sequence-to-sequence baseline (cnn-att-lstm) with
attention mechanism (Xu et al., 2015). The cnn-
att-lstm baseline only utilises the local attention
mechanism which combines visual concepts of an
image with the corresponding words in a sentence.
Our model, apart from adopting a local-object at-
tention, can further model global semantic context
for capturing the correlation between sequential
images.

Table 2 shows the experimental results of our
model on the task of generating descriptions for
sequential images with three popular evaluation
metrics, i.e. BLEU, Meteor and ROUGE. It can
be observed from Table 2 that our model outper-
forms the baseline on both SIS and DII datasets
for all evaluation metrics. It is also observed that
the scores of the evaluation metric are generally
higher for the DII dataset than the SIS dataset. The
main reason is that the SIS dataset contains more
sentences descriptions in a sequence and more ab-
stract content descriptions such as “breathtaking”
and “excited” which are difficult to understand and
prone to overfitting.

Figure 2 shows an example sequence of five im-
ages as well as their corresponding descriptions
generated by our model, the baseline (cnn-att-
lstm), and the ground truth. For the SIS dataset,

it can observed that our model can capture more
coherent story-like descriptions. For instance, our
model can learn the social word “family” to con-
nect the whole story and learn the emotional words
“great time” to summarise the description. How-
ever, the baseline model failed to capture such im-
portant information. Our model can learn depen-
dencies of visual scenes between images even on
the DII dataset. For example, compared to the
descriptions generated by cnn-att-lstm, our model
can learn the visual word “beach” in image 1 by
reasoning from the visual word “water” in image
4.

Our model can generally achieve good results
by capturing the global semantics of an image se-
quence such as the example in the first row of Fig-
ure 3. However, our model also has difficulties in
generating meaningful descriptions in a number of
cases. For instance, our model generates fairly ab-
stractive descriptions such as “a great time” due
to severe overfitting, as shown in the second row
of Figure 3. We suppose the issue of overfitting
is likely to be alleviated by adding more training
data or using more effective algorithm for image
feature extraction.

5 Conclusion

In this paper, we present a local-object attention
model with global semantic context for sequen-
tial image descriptions. Unlike other CNN-LSTM
models that only employ a single image as input
for image caption, our proposed method can gen-
erate descriptions of sequential images by exploit-
ing the global semantic context to learn the de-
pendencies between sequential images. Extensive
experiments on two image datasets (DII and SIS)
show promising results of our model.
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