
Proceedings of The 11th International Natural Language Generation Conference, pages 165–170,
Tilburg, The Netherlands, November 5-8, 2018. c©2018 Association for Computational Linguistics

165

Self-Learning Architecture for Natural Language Generation

Hyungtak Choi, Siddarth K. M., Haehun Yang, Heesik Jeon, Inchul Hwang, Jihie Kim
Samsung Research, Samsung Electronics Co. Ltd., Seoul, Korea

{ht777.choi, siddarth.km, haehun.yang, heesik.jeon,
inc.hwang, jihie.kim}@samsung.com

Abstract

In this paper, we propose a self-learning
architecture for generating natural lan-
guage templates for conversational assis-
tants. Generating templates to cover all the
combinations of slots in an intent is time
consuming and labor-intensive. We ex-
amine three different models based on our
proposed architecture - Rule-based model,
Sequence-to-Sequence (Seq2Seq) model
and Semantically Conditioned LSTM
(SC-LSTM) model for the IoT domain - to
reduce the human labor required for tem-
plate generation. We demonstrate the fea-
sibility of template generation for the IoT
domain using our self-learning architec-
ture. In both automatic and human evalua-
tion, the self-learning architecture outper-
forms previous works trained with a fully
human-labeled dataset. This is promis-
ing for commercial conversational assis-
tant solutions.

1 Introduction

Intelligent Conversational Assistants are prevalent
now. They have been integrated into a wide range
of IoT devices. Various recent studies on stochas-
tic language generation have been conducted in
NLG. Although these stochastic approaches out-
perform traditional LSTM language models, they
have drawbacks including the requirement of large
training datasets, low accuracy of trained mod-
els and lack of naturalness of generated sen-
tences. Therefore, Most of commercial conversa-
tional assistant services adopt template-based ap-
proach (Cheyer and Guzzoni, 2014; Mirkovic and
Cavedon, 2011) to implement natural language
generation. This approach is robust and feasi-
ble for commercialization, but requires creating a

large number of templates. In this approach, one
needs to manually generate NLG templates that
cover all the possible combinations of intents and
slots.1 There are statistical approaches for gen-
erating templates with 2, 3 and 4 slots (Narayan
et al., 2011), but they suffer from exponential com-
plexity as the number of slots increases. In addi-
tion, substitution-based implementation with Sim-
pleNLG (Gatt and Reiter, 2009) can handle some
of the cases, but this is not versatile enough. The
number of templates required to cover all possible
combinations of slots is:

No. Templatesn = 2n − 1 (1)

where n is the total number of possible slots. The
value is exponential as shown in equation 1. Man-
ually generating an exponential number of tem-
plates is undesirable, especially when the intents
get more complex.

We propose a self-learning architecture for
NLG which solves the problem of generating an
exponential number of templates. In order to gen-
erate informative and natural sentences, arguably,
it is more important to generate consistent sys-
tem responses with limited syntactic information
than to generate error prone system responses with
more variation in their grammatical form. In our
proposed solution, we start with an initial training
set containing less than or equal to 2 slots per in-
tent, and iteratively build our model to increase its
ability to cover more complex inputs. Thus, the re-

1Throughout this paper, intent denotes the intention of
user utterance and slot denotes the variable part (slot value)
and its name if any (slot name). Slot can be replaced by an-
other phrase in user utterances or responses. NLG will be
generated from dialog act and it will be written as Intent(
SlotName1 = SlotV alue1;SlotName2 = SlotV alue2
; · · ·). For example, from dialog act up(functionname=tem
perature;devicename=‘airconditioner’;location=‘bedroom’),
response “I turned up the temperature of the airconditioner in
the bedroom” is generated.

166

Figure 1: Proposed Self-Learning Architecture for NLG.

quired number of human generated templates de-
creases from 2n − 1 to

(
n
1

)
+
(
n
2

)
= O(n2).

2 Related Work

Several approaches have been studied for NLG
systems. The template-based approach (McRoy
et al., 2003; Channarukul et al., 2002) is most
commonly used, because it guarantees the advan-
tage of completely controlling the output quality.
However, that approach has two main disadvan-
tages. First, it is labor-intensive to generate and
maintain templates (Galley et al., 2001). Second,
it does not scale well when domains are changed
or expanded (Channarukul et al., 2002; Reiter,
1996). Recently, various stochastic NLG meth-
ods such as Sequence to Sequence generation with
attention (Seq2Seq w/ attn) (Dušek and Jurčı́ček,
2016) and Semantically Conditioned LSTM (SC-
LSTM) (Wen et al., 2015) have been studied to
overcome the disadvantages of template-based ap-
proaches. They also aim to remove the need for
manual alignment of training dataset. They are
directly trained on a data corpus and reduce the
human effort required for producing templates.
Other End-to-End deep learning approaches have
been studied (Gehrmann et al., 2018), along with
domain adaptation (Dethlefs, 2017), to solve the
problem of domain specificity. Though they pro-
duce state-of-the-art results among stochastic ap-
proaches, the generated sentences are not natural
enough for real-world conversational assistant ser-
vices, where even the slightest mistakes can be
detrimental. Another hurdle while training these
models is the issue of finding the right dataset

for training (Gatt and Krahmer, 2018). We show
that our proposed self-learning architecture can
outperform existing neural models and greatly re-
duce human effort compared to template-based ap-
proaches without compromising much on output
quality.

3 Self-Learning Architecture for NLG

In this section, we explain the proposed architec-
ture to resolve the problem discussed above. We
also briefly explain the models that we use for re-
sponse generation, namely, Rule-based, Seq2Seq
and SC-LSTM. Initially, all dialog acts in the
training dataset contain all the combinations of
slots with less than k2 slots per training instance.

As a preparation step, we manually generate the
initial training dataset as 〈DialogAct,Response〉
pairs for all the combinations of slots with up to
two slots per instance. With the initial value of k
as 2, see Algorithm 1.

Thus, we have successfully increased the size
of our training dataset. Sample data for succes-
sive training steps is shown in Table 1. We exper-
imented with three different models for response
generation task using Dialog Acts: Rule-based
model, Seq2Seq model and SC-LSTM model.

Figure 1 depicts the flow for the self-learning
architecture.

3.1 Rule-Based Approach
This method was inspired by (Filippova, 2010),
where shortest path finding algorithms are used

2All references to k in this paper denote the number of
slots present in a training instance

167

Algorithm 1 Self Learning Architecture

1: while k < max slots do
2: Train a new language generation model

that generates responses from dialog acts con-
taining up to k slots

3: Generate responses containing k + 1 slots
using Dialog Acts containing k + 1 slots and
the model trained above

4: Augment the training dataset with the in-
ferred sentences containing k + 1 slots from
the previous step

5: k = k + 1
6: end while

to summarize multiple sentences. Although
it is straightforward to understand and gives
good scores on metrics such as longest common
subsequence (LCS) metric used by (Zhao et al.,
2002), the approach is different from our objec-
tive. We need to conserve all information from
the source sentence. Consequently, we use the
shortest common supersequence (SCS) for our
task. Finding SCS of more than two sentences is
an NP-complete problem (Räihä and Ukkonen,
1981), therefore we simplify it by considering
SCS of two sentences.

Assumption 1: If sentence X is a good
response for slot combination A and sentence Y
is one for combination B, then their SCS Z will
be a good response for slot combination A ∪B.
An example of A,B,X and Y is
A : up(functionname=temperature;devicename=’
airconditioner’),
B : up(functionname=temperature;location=’bedr
oom’),
X : I will turn up the temperature for the aircon-
ditioner,
Y : I will turn up the temperature in the bedroom.
The SCS of X and Y is “I will turn up the tem-
perature for the airconditioner in the bedroom”,
which is plausible response sentence for A ∪B.

Assumption 2: SCS Z will be an even better
response if |A \B| and |B \A| are small.
Based on Assumptions 1 and 2 above, it is natural
to think of a simple algorithm (see Algorithm 2)
which generates natural response given slot com-
bination A. There can be numerous candidates, so
we opt for the shortest one.

Algorithm 2 Rule-Based Generation
1: procedure PROTO RULE BASED(A, i, j)
2: A1 = GET UTTERANCE(A \A[i])
3: A2 = GET UTTERANCE(A \A[j])
4: return SCS(A1, A2)
5: end procedure
6: procedure RULE BASED(A)
7: for (0 ≤ i < j < |A|) do
8: Yi,j = PROTO RULE BASED(A, i, j)
9: end for

10: Ŷ = argminYi,j{NUM WORDS(Yi,j)}
11: return Ŷ
12: end procedure

3.2 Sequence to Sequence with Attention
Seq2Seq model (Sutskever et al., 2014) has been
widely used in many machine learning tasks. For
our task, we use an LSTM-based encoder and de-
coder model with Attention mechanism (Dušek
and Jurčı́ček, 2016). The LSTM encoder takes
a sequence of Dialog Acts as input, where each
slot is a symbol in the vocabulary. While decod-
ing, they use an LSTM-based re-ranker at the end
to calculate slot errors and penalize responses that
have wrong slots as compared to the input Dialog
Act.

3.3 Semantically Conditioned LSTM
The SC-LSTM Model (Wen et al., 2015) deals
with the issue of repetitive word generation in
LSTM-based NLG. It receives the Dialog Act in
the form of a bit vector, where each bit in the vec-
tor denotes whether a particular slot-value pair ex-
ists in the Dialog Act. This model tries to mitigate
the issue by using additional control cell along
with the standard LSTM cell. The control cell pro-
duces a surface realization which accurately en-
codes the input information and helps in cutting
off repetitive words.

4 Experiments and Results

4.1 Dataset for Initial Training
We use a small domain-specific dataset for our
experiment. Our dataset is derived from the
one used by (Georgila et al., 2018), focused on
the domain of IoT Home Appliances. We ex-
tract a subset of the system responses, and ex-
tend them for increased coverage, and generate
〈DialogAct,Response〉 pairs. The generated
〈DialogAct,Response〉 pairs are given to our

168

Phase Data # of slots Sample training dataset

Phase 1
Training

data
1

Dialog Act: up(functionname=temperature;devicename=‘airconditioner’)
Response: I turned up the temperature of the airconditioner

2
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’;location=‘bedroom’)
Response: I turned up the temperature of the airconditioner in the bedroom

Test data 3
Dialog Act: up(functionname=temperature;location=‘bedroom’;date=‘saturday’;time=‘7 am’)
Response: I will turn up the temperature in the bedroom on Saturday at 7 am

Phase 2

1
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’)
Response: I turned up the temperature for the airconditioner

Training
data

2
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’;location=‘bedroom’)
Response: I turned up the temperature for the airconditioner in the bedroom

3
Dialog Act: up(functionname=temperature;location=‘bedroom’;date=‘saturday’;time=‘7 am’)
Response: I will turn up the temperature in the bedroom on Saturday at 7 am

Test data 4
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’;time=‘4 pm’;date=‘saturday’;location=‘living room’)
Response: I will turn up the temperature of the airconditioner in the living room on Saturday at 4 pm

Table 1: Sample data from IoT dataset. The first line of each example is Dialog Act and the next line is the corresponding
response. For test data, the second line is inferred response. Notice that the inferred response is being reused in Phase 2.

Category Model
BLEU Score (Slot count)

1∼2 slots trainset
/ 3 slots testset

1∼3 slots trainset
/ 4 slots testset

1∼4 slots trainset
/ 5 slots testset

1∼5 slots trainset
/ 6 slots testset

Fully Seq2Seq w/ attn 70.3 72.3 77.2 82.9

Human Labeled SC-LSTM 86.6 85.3 80.9 87.4

Self-Learning
Rule-Based 74.2 71.9 72.8 72.9

Seq2Seq w/ attn 65.3 54.4 45.9 42.9

SC-LSTM 86.6 85.8 84.0 94.9

Table 2: BLEU score Results. Test results for k = 2 to k = 5

Category Model
Mean Human

Ranking

Fully Seq2Seq w/ attn 3.16

Human Labeled SC-LSTM 2.02

Self-Learning
Rule-Based 2.39

Seq2Seq w/ attn 3.6

SC-LSTM 1.55

Table 3: Human Evaluation Results. For the
human ranking, 1 is highest ranked and 5 is

lowest ranked.

model as the training set. In the first training it-
eration, each 〈DialogAct,Response〉 pair in the
dataset consists of a maximum of two slots. For
each training iteration, we split the available train-
ing dataset into 4 : 1 partitions for training and
validation respectively. For testing, we use human
generated 〈DialogAct,Response〉 pairs which
contain one more slot compared to the dataset
used in the training step. For comparison, we also
trained our neural models using human generated
test pairs with less than k slots combined with
original train dataset. They are also evaluated us-
ing the test dataset which contains k + 1 slots per
pair.

4.2 Evaluation Metrics

To evaluate our models, we measure BLEU scores
and use a human evaluation. The BLEU score
is the n-gram similarity between the reference re-
sponse and the generated response. Higher BLEU
scores indicate a better model. The whole test set
was used to measure BLEU scores. For human rat-
ing, we asked 21 human evaluators to rank the out-
puts of all five models, considering the grammat-
ical correctness and informativeness of the gen-
erated responses. Then we calculated the Mean
Rank for each model. Lower Mean Rank indicates
a better model. Randomly chosen 10 responses
with 3 to 5 slots were used for human rating.

4.3 Results

The results can be found in Table 2 and Table 3.
We were able to train both deep learning mod-
els using our self-learning architecture success-
fully, which can be trained from small amounts
of data. The human labeled SC-LSTM model
has better scores than the corresponding Seq2Seq
model. When self-learning architecture is used,
SC-LSTM outperforms all the other models. We
think SC-LSTM model is more suitable for learn-
ing from structured data than the other models are.
This is because SC-LSTM model uses an addi-

169

tional gated cell which plays the role of sentence
planning to produce a surface realization which
accurately encodes the input information. When
the model encounters a Dialog Act with more slot-
value pairs than those in the training dataset, it rec-
ognizes the extra slot and generates the response.
The Seq2Seq model captures the same relation
above using attention. However Seq2Seq-model
could not outperform the SC-LSTM model, when
it encounters a Dialog Act with more slots than
the model was originally trained on. Therefore
it fails on our self-learning task. The Rule-based
model produces reasonable outputs, but its output
heavily depends on the nature of input data and
requires human effort. One interesting observa-
tion is that the BELU score was the highest when
the maximum number of slots was used. We think
the BLEU score can increase when the number
of target slots rises above a certain level, because
the dataset with more slots has more training re-
sponses and has responses about more complex
combinations of slots.

5 Conclusion

This paper presents a self-learning architecture for
NLG. We experimented with three different mod-
els: Rule-based, Seq2Seq and SC-LSTM models
in the IoT domain. Our data-efficient architecture
not only reduces human effort, but also outper-
forms models trained on the fully human labeled
dataset. We think the proposed method can reduce
the effort of building large-scale NLG systems for
commercial conversational assistant solutions. In
future work, we plan to apply other neural models
to our architecture, and extend that architecture to
cover multi-domain generation tasks.

Acknowledgments

We would like to thank Heriberto Cuayáhuitl and
Seonghan Ryu for helpful discussions.

References
Songsak Channarukul, Susan McRoy, and Syed S. Ali.

2002. Jyag & idey: A template-based generator and
its authoring tool. In AAAI/IAAI.

Adam Cheyer and Didier Guzzoni. 2014. Method and
apparatus for building an intelligent automated as-
sistant. US Patent 8,677,377.

Nina Dethlefs. 2017. Domain transfer for deep natural
language generation from abstract meaning repre-

sentations. IEEE Computational Intelligence Mag-
azine, 12:18–28.

Ondřej Dušek and Filip Jurčı́ček. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings.

Katja Filippova. 2010. Multi-sentence compression:
Finding shortest paths in word graphs. In COLING.

Michel Galley, Eric Fosler-Lussier, and Alexandros
Potamianos. 2001. Hybrid natural language gener-
ation for spoken dialogue systems. In Proceedings
of the 7th European Conference on Speech Commu-
nication and Technology (EUROSPEECH01), page
17351738, Aalborg, Denmark.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Int. Res.,
61(1):65–170.

Albert Gatt and Ehud Reiter. 2009. Simplenlg: A re-
alisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natu-
ral Language Generation, ENLG ’09, pages 90–93,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Sebastian Gehrmann, Falcon Dai, Henry Elder, and
Alexander Rush. 2018. End-to-end content and plan
selection for natural language generation.

Kallirroi Georgila, Carla Gordon, Hyungtak Choi, Jill
Boberg, Heesik Jeon, and David Traum. 2018. To-
ward low-cost automated evaluation metrics for in-
ternet of things dialogues. In Proceedings of the 9th
International Workshop on Spoken Dialogue Sys-
tems Technology (IWSDS).

Susan McRoy, Songsak Channarukul, and Syed S. Ali.
2003. An augmented template-based approach to
text realization. Natural Language Engineering,
9:381–420.

Danilo Mirkovic and Lawrence Cavedon. 2011. Di-
alogue management using scripts. US Patent
8,041,570.

Karthik Sankaran Narayan, Charles Lee Isbell, and
David L. Roberts. 2011. Dextor: Reduced effort au-
thoring for template-based natural language genera-
tion. In AIIDE.

Kari-Jouko Räihä and Esko Ukkonen. 1981. The
shortest common supersequence problem over bi-
nary alphabet is np-complete. Theor. Comput. Sci.,
16:187–198.

Ehud Reiter. 1996. Building natural-language genera-
tion systems. CoRR, cmp-lg/9605002.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. CoRR, abs/1409.3215.

170

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems.

Li Zhao, Sung Sam Yuan, Sun Peng, and Tok Wang
Ling. 2002. A new efficient data cleansing method.
In Proceedings of the 13th International Confer-
ence on Database and Expert Systems Applica-
tions, DEXA ’02, pages 484–493, London, UK, UK.
Springer-Verlag.

