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Abstract

Recent neural models for response genera-
tion show good results in terms of general
responses. In real conversations, however,
depending on the speaker/responder, sim-
ilar utterances should require different re-
sponses. In this study, we attempt to con-
sider individual user’s information in ad-
justing the notable sequence-to-sequence
(seq2seq) model for more diverse, user-
specific responses. We assume that we
need user-specific features to adjust the re-
sponse and we argue that some selected
representative words from the users are
suitable for this task. Furthermore, we
prove that even for unseen or unknown
users, our model can provide more diverse
and interesting responses, while main-
taining correlation with input utterances.
Experimental results with human evalu-
ation show that our model can generate
more interesting responses than the popu-
lar seq2seqmodel and achieve higher rele-
vance with input utterances than our base-
line.

1 Introduction

Human-computer conversation is a challenging
task in Natural Language Processing (NLP). The
aim of conversation models is to generate fluent
and relevant responses given an input in a free
format, i.e., not just in the form of a question.
A large amount of available data on the Inter-
net has sparked the shift in conversation models.
Starting with Ritter et al. (2011), completely data-
driven models are now commonly used to gen-
erate responses. Furthermore, the sequence-to-
sequence (seq2seq) model initiated by Sutskever
et al. (2014) has been adapted to many NLP tasks,

input how are you ?
user1 good morning how are you
user2 i’m doing ok
user3 i’m good ! ! !
user4 not really good

input i am excited !
user1 are you sure ? !
user2 come to the party ?
user3 yay ! ! !
user4 are you gonna do it ?

Table 1: Sample responses from our proposed
model involving four different users.

notably to machine translation (MT) and response
generation.

Actual conversations involving humans would
be more engaging and the responses are not always
general and monotonic. However, neural conver-
sation models tend to generate safe, general, and
uninteresting responses, e.g., I don’t know or I’m
OK (Sordoni et al., 2015; Vinyals and Le, 2015;
Li et al., 2016b). We argue that, aside from adding
or understanding the context of a conversation,
speaking style and response diversity also play
an important role in delivering a more interesting
conversation.

Recent studies addressed the response diversity
and engagement issues and have attempted to gen-
erate responses better than the common and gen-
eral ones. Some tackled this issue by defining
and emphasizing context; previous utterances are
commonly used as context in a conversation (Sor-
doni et al., 2015; Li et al., 2016a). Other stud-
ies have attempted to diversify or manipulate re-
sponses using specific attributes such as user iden-
tification (Li et al., 2016b), profile information sets
(Zhang et al., 2018; Wang et al., 2017; Herzig
et al., 2017), topics (Xing et al., 2017), and speci-
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fied mechanisms (Zhou et al., 2017).
In this study, we focus on the issue of “response

style.” We intend to let the model learn to gener-
ate responses that resemble those of a real person.
Given an input utterance and user-specific infor-
mation, the model will generate a response rele-
vant to the input utterance based on the given user-
specific information.

The existing methods that exhibit the use of
user-specific information (Li et al., 2016b; Zhang
et al., 2018), usually require that the users ap-
pear in the training data. Therefore, these existing
methods cannot handle the unseen users, i.e., users
that do not exist in the training data. This is a lim-
itation that we want to address in this study. As
we intend to make our model versatile, we want
to cover also the users that are not present in the
training data. Hence, in this study, we propose a
model that also works with unseen users.

Since we need identifiers of users, we rely on
Twitter as the source of datasets. The dataset used
in this work was constructed by collecting tweets
and replies, i.e., responses to other tweets. Aside
from the user identity, to construct user-specific in-
formation, we retrieved individual public tweets
from each account that are not replies to other
tweets. We assume that some selected representa-
tive words from the retrieved individual tweets are
suitable as the user’s information. Therefore, we
use two types of user-specific information: user
identities and collections of users’ representative
words.

Unlike other tasks that can assume a finite set
of expected outputs, e.g., machine translation, in
response generation, an input utterance can elicit
various responses. Thus, measuring the quality of
the output becomes a formidable issue. To mea-
sure the quality of generated responses, we rely
on human judgment. Three evaluation criteria are
provided to the judges: fluency, relevance, and
style. The results show that our model is signif-
icantly better than the baseline in relevance and
style. Some examples of generated responses from
our model are shown in Table 1.

2 Related Work

Attempts to develop neural response generation
models have been increasing rapidly, providing
several options to further improve neural conver-
sation models. Some notable studies in this field
(Vinyals and Le, 2015; Shang et al., 2015; Sordoni

et al., 2015) follow the encoder-decoder frame-
work of Sutskever et al. (2014). For response gen-
eration, the encoder-decoder models are usually
supplemented by the attention mechanism, follow-
ing the implementation of Bahdanau et al. (2015)
or Luong et al. (2015).

As for response diversity, earlier researches
have acknowledged that responses to one input
utterance could be varied (Shang et al., 2015;
Li et al., 2016a). To address this issue, several
approaches have been proposed; some of these
attempts incorporate style or a persona into the
model while others focus only on increasing the
variety.

Li et al. (2016b) proposed a persona-based
model that uses a feature called speaker embed-
dings that are based on an individual user’s iden-
tity. They have integrated these embeddings into
the decoding phase. Despite showing positive re-
sults, this approach works only for the persona or
user identity that appears in the training data. If a
persona is absent from the training data, it would
behave like the normal seq2seq model. Our work
is similar to them in that we use the speaker iden-
tity in the decoding phase, but our work can gener-
ate user-specific responses even for unseen or un-
known users.

Similar efforts have been made by Zhang et al.
(2018), who attempted to personalize the out-
put style using a set of introductory sentences as
the user’s profile. They combined the encoder-
decoder model with the memory network, aiming
to enhance the model’s ability to “memorize” the
profile. A study from Wang et al. (2017) has also
attempted to “steer” the output style using addi-
tional information called scenting datasets. These
scenting datasets consist of a corpus, or a col-
lection of particular sentences, with each dataset
being exclusive to one character. In their study,
Wang et al. (2017) only focused on one character
(scenting dataset) for each model. Hence, their
model can only generate responses of one partic-
ular style at a time. We also use an additional
dataset to control the style, but we differ from
them in that we can deal with multiple characters
in one model.

A model focusing on increasing diversity with-
out using specific characteristic was devised by
Zhou et al. (2017). They defined some mecha-
nisms and generated latent features to divert the
context of input utterances before feeding them
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to the decoder. They also presented some corre-
sponding words to each mechanism.

3 Sequence-to-Sequence Setup

Following the popular approach in neural response
generation, we base our encoder-decoder model
on the seq2seq model with attention mechanism.
Given the input sequence X = (x1, x2, ..., xnX ),
the model will attempt to produce the output se-
quence Y = (y1, y2, ..., ynY ) as a generated re-
sponse. For the encoder, we adopt the LSTM
(Hochreiter and Schmidhuber, 1997) unit to com-
pute the representation of the input sequence. We
keep all the hidden states produced by the encoder.
Here, we use the notation h̄s for each hidden state.
Then, we adopt an attention-based model (Luong
et al., 2015; Bahdanau et al., 2015) for the de-
coder. In general, the decoding process for each
time step can be interpreted through the following
equations:

p(yt|y<t, x) = softmax(Wsh̃t), (1)

h̃t = tanh(Wc[ct;ht]), (2)

ht = LSTM(yt−1, ht−1), (3)

ct =

S∑
s=1

at(s)h̄s, (4)

at(s) = softmax(h>t Wah̄s), (5)

=
exp(h>t Wah̄s)∑
s′ exp(h>t Wah̄s′)

.

The attention-based model used in this work is
based on Luong et al. (2015). The weights Ws

and Wc are the learned parameters of the decoder.
With at(s) as the vector containing the alignment
score for each hidden state h̄s of the encoder, ct is
the context for the current decoder at time step ht.
In addition to the attention-based model, we also
apply the input-feeding approach by Luong et al.
(2015) as an attempt to make the model capture
the previous alignment. Input-feeding is done by
concatenating the current attentional vector h̃t to
the input to the decoder at the next time step. For
both the encoder and the decoder, we employ two-
layer LSTM architectures.

4 Response Generation with Attention to
Speaker Information

As mentioned in Section 1, we argue for the im-
portance of diversity in response style in creating
a more compelling conversation. Our intention is

to capture the characteristics of the users, i.e., the
responders, and to take them into account in re-
sponse generation. Our work can be considered as
an attempt to improve the persona-based model by
Li et al. (2016b). Their model represents individ-
ual users, or in their term speakers, in the training
data as a vector or embedding of speaker-specific
information. Adapting their work, we pick user-
names as one of the user-specific attributes, and
then convert them to embeddings to allow the
model to distinguish between users’ characteris-
tics. However, this approach can only accommo-
date users present in the training data. To over-
come this issue, we suggest a small dataset for
each user to serve as another characteristic feature.

4.1 User-Specific Information

In this study, we define two kinds of user-specific
information: user embeddings and user-info em-
beddings. User embeddings are derived from user-
names in the training data, while user-info em-
beddings are derived from separate collections of
words used by the users. User embeddings are
only useful for users present in the training data,
while user-info embeddings are independent of the
training data. The details about how these data are
retrieved will be explained in Section 5.

Following the setup described in Section 3, let
Itrain denote the set of users (responders) in the
training data, Kword the dimension of word em-
beddings, and Kuser the dimension of user embed-
dings. We convert words in each input sequence X
to embeddings with size Kword. Then, we define
a user identity, embedding ui with size Kuser for
each user i ∈ Itrain. The user embedding ui is
shared to all conversations involving user i.

The second type of user information involves
a collection of users’ selected words. In order to
capture the characteristic, especially the speaking
style, of each user, we argue that we need to de-
fine a feature or a set of information that can let
the model learn about the characteristic. Thus, we
assume that a carefully selected set of words from
each user’s conversation history is suitable for this
task.

Let I denote the set of users. Note that Itrain
is a subset of I. For each user in I, several sen-
tences can be collected. From this collection of
sentences, we then extract N words to represent
the characteristics of the user. To select those N
words, we need a particular approach to score the
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Figure 1: Overview of our neural conversation model with attention to user-specific information. We
use two-layer LSTM for both the encoder and the decoder. The attention layer attends to source hidden
states h̄s′
and user-info embeddings Pi for user i. User embeddings ui are concatenated with the decoder input at
every step.

words.
We compared several scoring methods that are

simple enough to employ: word frequency, TF-
IDF (Sparck Jones, 1988), and Pointwise Mutual
Information (PMI). To compare them, we treated
all the words in the selected sentences as the in-
put for every method. Then we ranked the words
according to the scores by every method and took
N words with the highest ranks for each method.
Hence, we have three sets of selected N words,
and then deployed them in the training and evalu-
ated the results preliminarily.

Two fluent speakers of English were asked to
compare the quality of generated responses. We
provided the two evaluators with three sets of gen-
erated responses using three different sets of N
words, then asked them to evaluate the fluency and
relevance to the input message. Based on their
evaluation, we decided to choose TF-IDF as the
scoring method to extract N words as the user-info
dataset. Each of these words is further converted
to an embedding of dimension Kword.

4.2 Attentional Conversation Model
Our attentional LSTM model takes three features
as input: input word embeddings, user embed-
dings, and user-info embeddings. Both user em-
beddings and user-info embeddings are used in
the decoder of the encoder-decoder model. Since
our model also incorporates the input-feeding ap-
proach, the input for the decoding phase is the con-
catenation of the output of the previous time step

yt−1, user embedding ui, and input-feeding h̃t−1.
The user-info embeddings will be used later as the
input for additional attention mechanism. Hence,
the decoding process can be described as follows:

ht = LSTM([yt−1;ui; h̃t−1], ht−1). (6)

The user-info embeddings are constructed from
the collection of top N ranked words uttered by
intended users, where the users are not necessarily
present in the training data. Using the same em-
beddings as input word embeddings, we compose
Pi = {pi1 , ..., piN } (∀k, pik ∈ RKword) as user-
info embeddings for user i.

The model is trained to attend not only to the
input source, i.e., the hidden states of the encoder,
but also to the user-info embeddings. Therefore,
since this model uses two contexts, we need to ad-
just Equation (3) to

h̃t = tanh(Wc[c
(X)
t ; c

(P )
t ;ht]), (7)

where we define c
(X)
t as the context for input

source and c
(P )
t as the context for user-info em-

beddings. This proposed model is illustrated in
Figure 1.

5 Datasets

Since our target is to incorporate and emphasize
the response styles of actual human responders,
we need to include user identification attributes in
the datasets. Therefore, for datasets, we collected
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tweets from Twitter API. Then, we constructed
two types of datasets: conversation dataset and
user-info dataset.

5.1 Conversation Dataset
This dataset is designated to train the model to
generate a response to a given input utterance in
general. We extracted this dataset from Twitter,
and retrieved only those tweets that satisfy the fol-
lowing conditions. We set a filter to select only
reply tweets, i.e., responses to other tweets, from
users who had engaged in conversations with a
minimum of three turns. We paired each reply
with the tweet that it is a response of, as response
and input utterance, respectively. We then used
the responders’ usernames as the user identifica-
tion attribute, hence user embeddings. Note that
the user embeddings can only be obtained from
this conversation dataset.

To improve data quality, we further cleaned
up the retrieved tweets to remove some noises,
such as tweets with non-ASCII characters, du-
plications, and non-English tweets. We also
removed URLs, hashtags, and mentions from
tweets. The final conversation dataset consists of
around 230,000 pairs of input utterances and re-
sponses.

5.2 User-Info Dataset
This dataset is an effort to capture more charac-
teristic of the users and also to handle the unseen
users in the training dataset. User-info embed-
dings mentioned in Section 4.1 are derived from
this dataset. To construct user-info dataset, we
retrieved tweets from the accounts of every user-
name in the conversation dataset. To ensure that
this dataset is independent from the conversation
dataset, we retrieved only individual tweets, i.e.,
non-replies as opposed to the reply tweets for con-
versation dataset. We retrieved all public tweets,
via Twitter API, from each account and then ap-
plied TF-IDF to find the most important words for
each user. For an individual user, we treated one
tweet (sentence) as one document and hence com-
puted the TF-IDF score for each word across all
sentences. Then, we kept the top 50 words accord-
ing to the TF-IDF scores.

The usage of this dataset is independent of the
conversation dataset. We can pair the user infor-
mation in the user-info dataset with the one, the
same user, in the conversation dataset or we can
disregard the relationship.

6 Experiments

6.1 Implementation Details
Both our encoder and decoder employed two-layer
stacked LSTMs. Some hyper-parameter details
are as follows:

• Each LSTM layer contains 300 hidden units.

• Embedding size is set to 300.

• Network parameters are initialized with uni-
form distribution [−0.05, 0.05].

• Training batch size is set to 128.

• Learning rate for the encoder is set to 0.0001,
multiplied by 2.5 for the decoder.

• Dropout rate is set to 0.1.

• Vocabulary size is 35,000.

We trained the model by using the Adam opti-
mizer (Kingma and Ba, 2014) with different learn-
ing rates between the encoder and decoder. We
conducted several procedures to determine the
training stop condition. We observed the decrease
in loss Hy′(y) := −

∑
i y
′
i log(yi). When the de-

crease was starting to converge, at around less than
7%, we asked two English fluent speakers to eval-
uate the generated responses. Finally, we stopped
the training at the 47th epoch. We also limited the
maximum length of an utterance to 15 words per
sentence. The training was run on a single Titan X
GPU for about three days.

The input utterance and user-info embeddings
were initialized with GloVe embeddings (Penning-
ton et al., 2014). We replaced the words not in the
vocabulary with UNK tokens. The same treatment
was applied to unseen users in user embeddings.
We set the UNK token embeddings to a vector of
all zeroes at the initial stage. To select the predic-
tion, we opted to use the greedy approach.

6.2 Baseline and Comparison Models
We adopted the speaker model of Li et al. (2016b)
to serve as the benchmark for our model. Their
work used persona (user-identification attribute) in
the decoding phase to let the model assimilate the
style of that user, or “nearby” users, into the re-
sponses.

In terms of using user embeddings in the decod-
ing phase, our model and theirs are similar. How-
ever, as mentioned in Section 5, user embeddings
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cannot cover unseen users. Our model overcomes
that issue by using user-info embeddings. The de-
coder input of both the models can be represented
by Equation (6). Since the baseline model does
not have user-info embeddings, our model’s atten-
tional hidden h̃t is different from theirs. The at-
tentional hidden of the baseline model would be
the same as Equation (3), while our model’s h̃t is
represented by Equation (7).

We also prepare a variant of our proposed
model, using unseen (UNK) users for user em-
beddings. The rationale for this setting is to in-
vestigate whether our model could generate bet-
ter responses against our baseline’s handicap. The
last comparison model was a vanilla seq2seq
model (without user and user-info embeddings).
For simplicity, we labeled the four models as
User + Info for our main model with user em-
beddings and user-info embeddings, UserOnly
for baseline, UNK + Info for our variant model
with unseen users and user-info embeddings, and
seq2seq for vanilla seq2seq model.

Figure 2: Example of a user’s Twitter bio and sam-
ple tweets used in style evaluation. We censored
any mentions of other accounts.

6.3 Evaluation Setup

Many previous studies on dialogue or response
generation models (Li et al., 2016b,a; Sordoni
et al., 2015; Xing et al., 2017) relied on BLEU
(Papineni et al., 2002) as their automatic evalua-
tion metric. To compute the score, BLEU mea-
sures the overlapping words or n-grams between
the generated output (hypothesis) and the target
output (reference). BLEU was initially intended
for machine translation, which tends to have a fi-
nite target; therefore, it might not be suitable for
evaluating conversation models.

According to Liu et al. (2016), BLEU is lowly
correlated with human judgments of dialogue sys-
tems. Additionally, some other work on response
generation (Shang et al., 2015; Li et al., 2016c;
Wang et al., 2017; Zhou et al., 2017) did not use
BLEU for their evaluation method, relying on hu-
man judgment instead. Thus, we opted to use only
human evaluation in our work.

We hired judges from Amazon Mechanical
Turk (AMT) to evaluate the quality of our gen-
erated responses. The following three judgment
criteria were defined:

• fluency or naturalness: Whether the re-
sponse could be produced by (an English
speaking) human.

• relevance or adequacy: Whether the re-
sponse could be accepted as a suitable answer
or contained useful information regarding the
input utterance.

• style: Whether the response could be pro-
duced by the same person if some profile in-
formation was provided.

The rationale behind measuring these criteria is as
follows. Even though our goal is to integrate styles
to the generated responses, we also want to assure
that the generated responses are correct and useful
to the input. Since we supposed that style is signif-
icantly harder to evaluate, the evaluation task was
done in two stages: the first stage was for fluency
and relevance, and the second stage was for style.

We randomly picked 12 users from the conver-
sation dataset and retrieved tweets that they replied
to. For each user, 5–10 tweets were obtained to be
used as input utterances. In total, 100 tweets were
collected, and each pair of an input utterance and
its response was then evaluated by 10 judges.
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Models Fluency (%) Relevance (%)
bad enough good bad enough good

UserOnly (Baseline) 19.5 27.3 53.2 51.8 25.2 23.0
seq2seq 8.2 25.8 66.0 40.1 29.4 30.5
User + Info 17.5 26.4 56.1 44.9 28.2 26.9
UNK + Info (with unseen users) 9.0 23.7 67.3 37.4 31.2 31.4

Table 2: Human evaluation results for fluency and relevance, presented as raw score percentages. Our
UNK + Info model with unseen users gains 26.5% more for fluency and 36.5% more for relevance
compared to the baseline.

For the first stage, we provided the judges with
only input utterance-response pairs. There were
four models in total, so one utterance had four re-
sponse alternatives. We employed a three-point
Likert scale, labeled {bad, enough, good}, which
were later converted to {−1, 0,+1}, respectively,
and asked the judges to score every response alter-
native in terms of fluency and relevance.

In the second stage, the judges were provided
with Twitter user bio, i.e., a user’s short biogra-
phy or profile information that commonly contains
keywords, and some sample tweets from the re-
spective users. We asked the judges to evaluate
the response alternatives on the basis of the pro-
vided information and to score them in the range
from 1 to 5, where a smaller number is better.
Since this time the judges have provided informa-
tion to compare to, we assume that ranking is more
appropriate to measure the similarity between re-
sponse alternatives and provided samples. Ties
in the score were permitted. For style evaluation,
since we intended to investigate the influence of
user-specific information to the response, we ex-
cluded the vanilla seq2seq model. An example of
the provided information is shown in Figure 2.

7 Results and Analysis

7.1 Human Judgment

We first evaluated the fluency and relevance of the
responses. In this stage, one utterance received
four responses from all models. We let the judges
score using three choices: bad, enough, and good.

To decide which model is the better one, first,
we counted the number of each score label ev-
ery model received. We call it raw scores. The
summary of raw scores by the judges is shown in
Table 2. According to these results, for both cri-
teria, UNK + Info (with unseen users) received
the highest good score, followed by the seq2seq

model. The UNK + Info gains 26.5% more flu-
ency point compared to the baseline. To calculate
this gain, we simply compared the percentage ob-
tained by UNK + Info (67.3%) against UserOnly
(53.2%).

While it is obvious that high good score is de-
sirable, we also want to see if our model can gen-
erate more “good enough” response compared to
other models. Then, we combined enough and
good scores as acceptable. As shown in Table 4,
seq2seq seems to achieve the highest score in
terms of fluency, even though it only gains 0.87%
more point than UNK + Info model. Therefore,
we argue that our UNK + Info can be considered
as fluent enough.

For relevance, the bad scores of all models are
higher than the good scores. This implies that rel-
evance is harder to achieve than fluency. Yet our
variant model, UNK + Info, achieved the high-
est acceptable score in this criteria, gaining 36.5%
compared to the baseline.

We calculated the average of the scores by con-
verting them to {−1, 0,+1} for each model and
criteria, as seen in Table 5. In this table, our variant
model, UNK + Info, wins in both criteria. Never-
theless, our model can get higher scores in both
criteria than the baseline model, UserOnly. Us-
ing one-way ANOVA as significance test, we con-
firmed that our model is significantly better than
the baseline in the relevance criteria.

In the second stage, we measured the similar-
ity in style among generated responses and users’
sample tweets. As in the first stage, each of
the 100 input-response pairs was evaluated by 10
judges, resulting in 1,000 samples, from which
we removed some results that did not show con-
sistency, e.g., the results with identical responses
with a different score. As explained in Section 6.3,
we evaluated only three models. This was done to
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User Input Responses
User + Info UNK + Info

User1

i’m going to have a cardiac
episode and my wife is not here

i love you what if i do

hate to burst your bubble it snowed
last night & this morning

and now you get to the
game

ahh ! ! ! i was so excited
!

they cut so much out of the finale ! i was thinking it was it was a good season ! !

User2

if lebron loses this series does he
leave and where does he go ?

he scored the house and
got his back house

he was playing with his rb
/ 3

he was five for his last 50 you liter-
ally had to pound the middle of the
zone three times

are you saying that were
no reason ?

he has a good draft ?

hey guess what ? the bills will draft
a few football players this weekend

lol you got that man ! ! !
! ! !

you beat me ?

User3

this is such a mood and i can’t even
explain why

did you get braces or wal-
mart ?

hello ! ! !

you can skip iron man 3 do i get some rest ? yeah i am
heard he cheated on her don’t forget she was a lesbian

Table 3: Examples of responses from different users generated by our model, using known users and
their user-info respectively, and its variant model, using unseen users and the same user-infos.

investigate the influence of user-specific informa-
tion. Additionally, we intended to perform a com-
parison with a baseline with the same objective.
The results can be observed in Table 6.

Based on the style evaluation results in Table 6,
the average scores appear to be positioned in the
middle of the range, i.e., around rank three. It
suggests that, in general all models only generate
“good enough” responses in term of style. Nev-
ertheless, our variant model is significantly bet-
ter than the baseline, proved by the Friedman
Test. Sample responses generated by our model
are shown in Table 3.

Models Fluency (%) Relevance (%)
acceptable acceptable

UserOnly 80.5 48.2
seq2seq 91.8 59.9
User + Info 82.5 55.1
UNK + Info 91.0 62.6

Table 4: Acceptable or “Good enough” results
with good and enough scores combined. seq2seq
tops fluency, but our model with unseen users gets
the highest relevance score.

Models Fluency Relevance
UserOnly 0.337 ± 0.06 -0.28 ± 0.06
seq2seq 0.578 ± 0.05 -0.09 ± 0.06
User + Info 0.386 ± 0.06 -0.18 ± 0.06
UNK + Info 0.583 ± 0.05 -0.06 ± 0.06

Table 5: Average scores for fluency and relevance
criteria. For relevance, our model achieved sig-
nificantly better scores than the baseline (one-way
ANOVA, p < 0.05).

Models Style Rank
UserOnly 3.37 ± 0.09
User + Info 3.29 ± 0.09
UNK + Info 3.16 ± 0.09

Table 6: Results of style evaluation. Smaller val-
ues are better. Our variant model was significantly
better than the baseline (Friedman Test, p < 0.05).

7.2 Analysis: External Resources and
Response Style

Our main intention is to incorporate an individual
user’s characteristics to generated responses. We
specifically attempted to incorporate more infor-
mation to emphasize the response style of different
users. Therefore, we conducted an experiment to
incorporate additional information, and the evalu-
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ation we performed proved that the judges recog-
nized a better change in style.

Furthermore, one aspect that distinguishes our
model from others is the application of external
resources. Usually, if a model was trained to pick
up some specific traits or characteristics, such fea-
tures should be included in the training. Our work
also serves as an evidence of usability of external
resources for response generation models. With
simple mechanisms such as attention, our model
can adjust the responses to be better with a small
“plug and play” dataset.

An interesting finding is that the variant
UNK + Info model achieved better scores than
our User + Info model. Through manual obser-
vation, we conceived that a model with more in-
jected information can become too “stylized” and
lose some relevance to the input utterance. How-
ever, the baseline, with less information, still re-
ceived lower scores. This indicates the strength of
the attention mechanism.

In conclusion, a problem still persists in styling
generated responses. Regardless of the results be-
ing better than the baseline for the previous work,
generating fluent and relevant responses with an
expected style is still challenging. It might be the
common case that either the responses are good
but general and timid, or they are interesting but
lacking some relevance.

8 Conclusion and Future Work

In this study, we conducted experiments to ad-
dress the response diversity issue, particularly in
response style. We employed user-specific infor-
mation to drive the generated responses to resem-
ble real user’s utterances. We considered user-
names and the user-info dataset as user-specific in-
formation.

Evaluation through human judgment showed
that the outputs of our model are better than the
baseline overall, especially our variant model with
unseen users. Our model also showed the poten-
tial of using external resources in encoder-decoder
models. Although we cannot declare that our
model architecture is sophisticated, our experi-
ments can serve as the evidence that a simple
but appropriate architecture can improve response
quality.

The remaining challenge is how to properly em-
phasize the response style without damaging the
content (context) or its relevance. If we can make

a good compromise between response content and
style and can control the use of these two elements,
we argue that it would substantially increase the
quality of conversation models.
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