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Preface

We are proud to present the Proceedings of the 11th International Natural Language Generation
Conference (INLG 2018)!

INLG 2018 was organised by the Tilburg University Language Production (TULP) research group, part
of the Department of Communication and Cognition (DCC) of the Tilburg School of Humanities and
Digital Sciences (TSHD). The event took place under the auspices of the Special Interest Group on
Natural Language Generation (SIGGEN) of the Association for Computational Linguistics (ACL) as
well as the International Speech Communication Association (ISCA).

In view of the long Dutch tradition of automatically generating soccer reports (e.g., Theune et al., 2001;
van der Lee et al., 2017), we felt it was wholly appropriate that the conference was organised in the
Willem II stadium, home of the best soccer team in The Netherlands (in 1916, 1952 and 1955).

The INLG conference is the main international forum for the presentation and discussion of all aspects
of Natural Language Generation (NLG), including data-to-text, concept-to-text, text-to-text and vision-
to-text approaches. Special topics of interest for the 2018 edition included:

• Generating Text with Affect, Style and Personality,

• Conversational Interfaces, Chatbots and NLG, and

• Data-driven NLG (including the E2E Generation Challenge).

Related to these three topics, we invited three international experts to contribute to the conference:

• Lillian Lee (Cornell University, Ithaca, USA)

• Piek Vossen (Vrije Universiteit Amsterdam, The Netherlands)

• Yoav Goldberg (Bar Ilan University, Israel)

The latter opened the conference with an invited tutorial on Neural NLG. In addition to the main
conference, five workshops were accepted following a Call for Workshop Proposals:

• 3rd Workshop on Computational Creativity in Language Generation (CC-NLG 2018),

• Workshop on Intelligent Interactive Systems and Language Generation (2IS&NLG),

• MyNLG: 1st Workshop on Style, Affect and Character,

• Workshop on Natural Language Generation for Human-Robot Interaction and

• Workshop on Text adaptation.

Additionally, the conference hosted the third SIGGEN Hackathon which, for the first time, is a full day
event.

For the main conference, we received a record number of 102 submissions, of which 20 were accepted for
oral presentation, 4 as demo presentations and 38 as posters (including 5 related to the E2E challenge).
All accepted papers are included in these proceedings.
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We received financial support from the Netherlands Organisation for Scientific Research (NWO), via
grant Grant PR-14-87 (Producing Affective Language: Content Selection, Message Formulation and
Computational Modelling). Additionally, the conference was sponsored by (in alphabetical order):

• Arria NLG;

• flow.ai;

• Microsoft Research; and

• Philips.

We would like to thank all our sponsors for their support, and want to extend our gratitude to all speakers
and reviewers for their excellent work.
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Albert Gatt
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Abstract

Most previous work on neural text gen-
eration from graph-structured data relies
on standard sequence-to-sequence meth-
ods. These approaches linearise the input
graph to be fed to a recurrent neural net-
work. In this paper, we propose an alterna-
tive encoder based on graph convolutional
networks that directly exploits the input
structure. We report results on two graph-
to-sequence datasets that empirically show
the benefits of explicitly encoding the in-
put graph structure.1

1 Introduction

Data-to-text generators produce a target natu-
ral language text from a source data representa-
tion. Recent neural generation approaches (Mei
et al., 2016; Lebret et al., 2016; Wiseman et al.,
2017; Gardent et al., 2017b; Ferreira et al., 2017;
Konstas et al., 2017) build on encoder-decoder
architectures proposed for machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015).

The source data, differently from the machine
translation task, is a structured representation of
the content to be conveyed. Generally, it describes
attributes and events about entities and relations
among them. In this work we focus on two genera-
tion scenarios where the source data is graph struc-
tured. One is the generation of multi-sentence de-
scriptions of Knowledge Base (KB) entities from
RDF graphs (Perez-Beltrachini et al., 2016; Gar-
dent et al., 2017a,b), namely the WebNLG task.2

The number of KB relations modelled in this sce-
nario is potentially large and generation involves

1Code and data available at github.com/diegma/
graph-2-text.

2Resource Description Framework https://www.w3.
org/RDF/

solving various subtasks (e.g. lexicalisation and
aggregation). Figure (1a) shows and example of
source RDF graph and target natural language de-
scription. The other is the linguistic realisation
of the meaning expressed by a source dependency
graph (Belz et al., 2011), namely the SR11Deep
generation task. In this task, the semantic rela-
tions are linguistically motivated and their number
is smaller. Figure (1b) illustrates a source depen-
dency graph and the corresponding target text.

Most previous work casts the graph structured
data to text generation task as a sequence-to-
sequence problem (Gardent et al., 2017b; Ferreira
et al., 2017; Konstas et al., 2017). They rely on
recurrent data encoders with memory and gating
mechanisms (LSTM; (Hochreiter and Schmidhu-
ber, 1997)). Models based on these sequential en-
coders have shown good results although they do
not directly exploit the input structure but rather
rely on a separate linearisation step. In this work,
we compare with a model that explicitly encodes
structure and is trained end-to-end. Concretely,
we use a Graph Convolutional Network (GCN;
(Kipf and Welling, 2016; Marcheggiani and Titov,
2017)) as our encoder.

GCNs are a flexible architecture that allows
explicit encoding of graph data into neural net-
works. Given their simplicity and expressiveness
they have been used to encode dependency syntax
and predicate-argument structures in neural ma-
chine translation (Bastings et al., 2017; Marcheg-
giani et al., 2018). In contrast to previous work,
we do not exploit the sequential information of the
input (i.e., with an LSTM), but we solely rely on a
GCN for encoding the source graph structure.3

The main contribution of this work is show-
ing that explicitly encoding structured data with

3Concurrently with this work, Beck et al. (2018) also
encoded input structures without relying on sequential en-
coders.
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(a) Above the Veil is an Australian novel and the sequel to Aenir and

Castle . It was followed by Into the Battle and The Violet Keystone .
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(b) Giant agreed last month to purchase the carrier .

Figure 1: Source RDF graph - target description (a). Source dependency graph - target sentence (b).

GCNs is more effective than encoding a linearized
version of the structure with LSTMs. We eval-
uate the GCN-based generator on two graph-to-
sequence tasks, with different level of source con-
tent specification. In both cases, the results we ob-
tain show that GCNs encoders outperforms stan-
dard LSTM encoders.

2 Graph Convolutional-based Generator

Formally, we address the task of text generation
from graph-structured data considering as input a
directed labeled graph X = (V, E) where V is
a set of nodes and E is a set of edges between
nodes in V . The specific semantics of X de-
pends on the task at hand. The output Y is a
natural language text verbalising the content ex-
pressed by X . Our generation model follows the
standard attention-based encoder-decoder archi-
tecture (Bahdanau et al., 2015; Luong et al., 2015)
and predicts Y conditioned on X as P (Y |X) =∏|Y |

t=1 P (yt|y1:t−1, X).

Graph Convolutional Encoder In order to ex-
plicitly encode structural information we adopt
graph convolutional networks (GCNs). GCNs are
a variant of graph neural networks (Scarselli et al.,
2009) that has been recently proposed by Kipf and
Welling (2016). The goal of GCNs is to calcu-
late the representation of each node in a graph
considering the graph structure. In this paper we
adopt the parametrization proposed by Marcheg-
giani and Titov (2017) where edge labels and di-
rections are explicitly modeled. Formally, given a
directed graph X = (V, E), where V is a set of
nodes, and E is a set of edges. We represent each
node v ∈ V with a feature vector xv ∈ Rd. The
GCN calculates the representation of each node h′v
in a graph using the following update rule:

h′v=ρ
(∑

u∈N (v)

gu,v
(
Wdir(u,v) hu + blab(u,v)

))
,

where N (v) is the set of neighbours of v,
Wdir(u,v) ∈ Rd×d is a direction-specific param-
eter matrix. As Marcheggiani and Titov (2017);
Bastings et al. (2017) we assume there are three
possible directions (dir(u, v) ∈ {in, out, loop}):
self-loop edges ensure that the initial representa-
tion of node hv affects the new representation h′v.
The vector blab(u,v) ∈ Rd is an embedding of
the label of the edge (u, v) . ρ is a non-linearity
(ReLU). gu,v are learned scalar gates which weight
the importance of each edge. Although the main
aim of gates is to down weight erroneous edges
in predicted graphs, they also add flexibility when
several GCN layers are stacked. As with stan-
dard convolutional neural networks (CNNs, (Le-
Cun et al., 2001)), GCN layers can be stacked to
consider non-immediate neighbours.4

Skip Connections Between GCN layers we add
skip connections. Skip connections let the gradi-
ent flows more efficiently through stacked hidden
layers thus making possible the creation of deeper
GCN encoders. We use two kinds of skip connec-
tions: residual connections (He et al., 2016) and
dense connections (Huang et al., 2017). Resid-
ual connections consist in summing input and out-
put representations of a GCN layer hr

v = h′v +
hv. Whilst, dense connections consist in the con-
catenation of the input and output representations
hd
v = [h′v;hv]. In this way, each GCN layer is

directly fed with the output of every layer before
itself.

Decoder The decoder uses an LSTM and a soft
attention mechanism (Luong et al., 2015) over

4We discovered during preliminary experiments that with-
out scalar gates the model ends up in poor local minima, es-
pecially when several GCN layers are used.
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the representation induced by the GCN encoder
to generate one word y at the time. The pre-
diction of word yt+1 is conditioned on the pre-
viously predicted words y1:t encoded in the vec-
tor wt and a context vector ct dynamically cre-
ated attending to the graph representation in-
duced by the GCN encoder as P (yt+1|y1:t, X) =
softmax(g(wt, ct)), where g(·) is a neural net-
work with one hidden layer. The model is trained
to optimize negative log likelihood: LNLL =

−∑|Y |t=1 log P (yt|y1:t−1, X)

3 Generation Tasks

In this section, we describe the instantiation of the
input graphX for the generation tasks we address.

3.1 WebNLG Task
The WebNLG task (Gardent et al., 2017a,b) aims
at the generation of entity descriptions from a set
of RDF triples related to an entity of a given cate-
gory (Perez-Beltrachini et al., 2016). RDF triples
are of the form (subject relation object), e.g.,
(Aenir precededBy Castle), and form a graph
in which edges are labelled with relations and ver-
tices with subject and object entities. For instance,
Figure (1a) shows a set of RDF triples related to
the book Above the Veil and its verbalisation. The
generation task involves several micro-planning
decisions such as lexicalisation (followedBy is
verbalised as sequel to), aggregation (sequel to Aenir

and Castle), referring expressions (subject of the
second sentence verbalised as pronoun) and seg-
mentation (content organised in two sentences).

Reification We formulate this task as the gener-
ation of a target description Y from a source graph
X = (V, E) where X is build from a set of RDF
triples as follows. We reify the relations (Baader,
2003) from the RDF set of triples. That is, we see
the relation as a concept in the KB and introduce
a new relation node for each relation of each RDF
triple. The new relation node is connected to the
subject and object entities by two new binary rela-
tions A0 and A1 respectively. For instance, (pre-
cededBy A0 Aenir) and (precededBy A1 Cas-
tle). Thus, E is the set of entities including reified
relations and V a set of labelled edges with labels
{A0, A1}. The reification of relations is useful in
two ways. The encoder is able to produce a hidden
state for each relation in the input; and it permits
to model an arbitrary number of KB relations effi-
ciently.

3.2 SR11Deep Task

The surface realisation shared task (Belz et al.,
2011) proposed two generation tasks, namely shal-
low and deep realisation. Here we focus on the
deep task where the input is a semantic depen-
dency graph that represents a target sentence using
predicate-argument structures (NomBank; (Mey-
ers et al., 2004), PropBank; (Palmer et al., 2005)).
This task covers a more complex semantic repre-
sentation of language meaning; on the other hand,
the representation is closer to surface form. Nodes
in the graph are lemmas of the target sentence.
Only complementizers that, commas, and to infini-
tive nodes are removed. Edges are labelled with
NomBank and PropBank labels.5 Each node is
also associated with morphological (e.g. num=sg)
and punctuation features (e.g. bracket=r).

The source graph X = (V, E) is a semantic de-
pendency graph. We extend this representation to
model morphological information, i.e. each node
in V is of the form (lemma, features). For this
task we modify the encoder, Section 2, to repre-
sent each input node as hv = [hl;hf ], where each
input node is the concatenation of the lemma and
the sum of feature vectors.

4 Experiments

We tested our models on the WebNLG and
SR11Deep datasets. The WebNLG dataset con-
tains 18102 training and 871 development data-
text pairs. The test dataset is split in two sets, test
Seen (971 pairs) and a test set with new unseen
categories for KB entities. As here we are inter-
ested only in the modelling aspects of the struc-
tured input data we focus on our evaluation only
on the test partition with seen categories. The
dataset covers 373 distinct relations from DBPe-
dia. The SR11Deep dataset contains 39279, 1034
and 2398 examples in the training, development
and test partitions, respectively. It covers 117 dis-
tinct dependency relations.6

Sequential Encoders For both WebNLG and
SR11Deep tasks we used a standard sequence-
to-sequence model (Bahdanau et al., 2015; Lu-
ong et al., 2015) with an LSTM encoder as base-
line. Both take as input a linearised version of

5There are also some cases where syntactic labels appear
in the graphs, this is due to the creation process (see (Belz
et al., 2011)) and done to connect graphs when there were
disconnected parts.

6 In both datasets we exclude pairs with >50 target words.
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the source graph. For the WebNLG baseline, we
use the linearisation scripts provided by (Gardent
et al., 2017b). For the SR11Deep baseline we fol-
low a similar linearisation procedure as proposed
for AMR graphs (Konstas et al., 2017). We built a
linearisation based on a depth first traversal of the
input graph. Siblings are traversed in random or-
der (they are anyway shuffled in the given dataset).
We repeat a child node when a node is revisited by
a cycle or has more than one parent. The base-
line model for the WebNLG task uses one layer
bidirectional LSTM encoder and one layer LSTM
decoder with embeddings and hidden units set to
256 dimensions . For the SR11Deep task we used
the same architecture with 500-dimensional hid-
den states and embeddings. All hyperparameters
tuned on the development set.

GCN Encoders The GCN models consist of
a GCN encoder and LSTM decoder. For the
WebNLG task, all encoder and decoder embed-
dings and hidden units use 256 dimensions. We
obtained the best results with an encoder with four
GCN layers with residual connections. For the
SR11Deep task, we set the encoder and decoder
to use 500-dimensional embeddings and hidden
units of size 500. In this task, we obtained the best
development performance by stacking seven GCN
layers with dense connections.

We use delexicalisation for the WebNLG
dataset and apply the procedure provided for the
baseline in (Gardent et al., 2017b). For the
SR11Deep dataset, we performed entity anonymi-
sation. First, we compacted nodes in the tree cor-
responding to a single named entity (see (Belz
et al., 2011) for details). Next, we used a name
entity recogniser (Stanford CoreNLP; (Manning
et al., 2014)) to tag entities in the input with type
information (e.g. person, location, date). Two
entities of the same type in a given input will be
given a numerical suffix, e.g. PER 0 and PER 1.

A GCN-based Generator For the WebNLG
task, we extended the GCN-based model to use
pre-trained word Embeddings (GloVe (Penning-
ton et al., 2014)) and Copy mechanism (See et al.,
2017), we name this variant GCNEC . To this end,
we did not use delexicalisation but rather repre-
sent multi-word subject (object) entities with each
word as a separate node connected with special
Named Entity (NE) labelled edges. For instance,
the book entity Into Battle is represented as (Into

Encoder BLEU METEOR TER

LSTM .526±.010 .38±.00 .43±.01
GCN .535±.004 .39±.00 .44±.02

ADAPT .606 .44 .37
GCNEC .559±.017 .39±.01 0.41±.01
MELBOURNE .545 .41 .40
PKUWRITER .512 .37 .45

Table 1: Test results WebNLG task.

Encoder BLEU METEOR TER

LSTM .377±.007 .65±.00 .44±.01
GCN .647±.005 .77±.00 .24±.01
GCN+feat .666±.027 .76±.01 .25±.01

Table 2: Test results SR11Deep task.

NE Battle). Encoder (decoder) embeddings and
hidden dimensions were set to 300. The model
stacks six GCN layers and uses a single layer
LSTM decoder.

Evaluation metrics As previous works in these
tasks, we evaluated our models using BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) and TER (Snover et al., 2006) au-
tomatic metrics. During preliminary experiments
we noticed considerable variance from different
model initialisations; we thus run 3 experiments
for each model and report average and standard
deviation for each metric.

5 Results

WebNLG task In Table 1 we report results on
the WebNLG test data. In this setting, the model
with GCN encoder outperforms a strong base-
line that employs the LSTM encoder, with .009
BLEU points. The GCN model is also more sta-
ble than the baseline with a standard deviation
of .004 vs .010. We also compared the GCNEC

model with the neural models submitted to the
WebNLG shared task. The GCNEC model out-
performs PKUWRITER that uses an ensemble of
7 models and a further reinforcement learning step
by .047 BLEU points; and MELBOURNE by .014
BLEU points. GCNEC is behind ADAPT which
relies on sub-word encoding.

SR11Deep task In this more challenging task,
the GCN encoder is able to better capture the
structure of the input graph than the LSTM en-
coder, resulting in .647 BLEU for the GCN vs.
.377 BLEU of the LSTM encoder as reported in
Table 2. When we add linguistic features to the
GCN encoding we get .666 BLEU points. We also
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WebNLG (William Anders dateOfRetirement 1969 - 09 - 01) (Apollo 8 commander Frank Borman) (William Anders was a crew member of Apollo 8) (Apollo
8 backup pilot Buzz Aldrin)

LSTM William Anders was a crew member of the OPERATOR operated Apollo 8 and retired on September 1st 1969 .
GCN William Anders was a crew member of OPERATOR ’ s Apollo 8 alongside backup pilot Buzz Aldrin and backup pilot Buzz Aldrin .
GCNEC william anders , who retired on the 1st of september 1969 , was a crew member on apollo 8 along with commander frank borman and backup pilot

buzz aldrin .
SR11Deep (SROOT SROOT will) (will P .) (will SBJ temperature) (temperature A1 economy) (economy AINV the) (economy SUFFIX ’s) (will VC be) (be

VC take) (take A1 temperature) (take A2 from) (from A1 point) (point A1 vantage) (point AINV several) (take AM-ADV with) (with A1 reading)
(reading A1 on) (on A1 trade) (trade COORD output) (output COORD housing) (housing COORD and) (and CONJ inflation) (take AM-MOD will)
(take AM-TMP week) (week AINV this)

Gold The economy ’s temperature will be taken from several vantage points this week , with readings on trade , output , housing and inflation .
Baseline the economy ’s accords will be taken from several phases this week , housing and inflation readings on trade , housing and inflation .
GCN the economy ’s temperatures will be taken from several vantage points this week , with reading on trades output , housing and inflation .

Table 3: Examples of system output.

BLEU SIZE
Model none res den none res den

LSTM .543±.003 - - 4.3 - -

GCN
1L .537±.006 - - 4.3 - -
2L .545±.016 .553±.005 .552±.013 4.5 4.5 4.7
3L .548±.012 .560±.013 .557±.001 4.7 4.7 5.2
4L .537±.005 .569±.003 .558±.005 4.9 4.9 6.0
5L .516±.022 .561±.016 .559±.003 5.1 5.1 7.0
6L .508±.022 .561±.007 .558±.018 5.3 5.3 8.2
7L .492±.024 .546±.023 .564±.012 5.5 5.5 9.6

Table 4: GCN ablation study (layers (L) and skip-
connections: none, residual(res) and dense(den)).
Average and standard deviation of BLEU scores
over three runs on the WebNLG dev. set. Number
of parameters (millions) including embeddings.

compare the neural models with upper bound re-
sults on the same dataset by the pipeline model of
Bohnet et al. (2011) (STUMBA-D) and transition-
based joint model of Zhang et al. (2017) (TBDIL).
The STUMBA-D and TBDIL model obtains re-
spectively .794 and .805 BLUE, outperforming
the GCN-based model. It is worth noting that
these models rely on separate modules for syn-
tax prediction, tree linearisation and morphology
generation. In a multi-lingual setting (Mille et al.,
2017), our model will not need to re-train some
modules for different languages, but rather it can
exploit them for multi-task training. Moreover,
our model could also exploit other supervision sig-
nals at training time, such as gold POS tags and
gold syntactic trees as used in Bohnet et al. (2011).

5.1 Qualitative Analysis of Generated Text

We manually inspected the outputs of the LSTM
and GCN models. Table 3 shows examples
of source graphs and generated texts (we in-
cluded more examples in Section A). Both mod-
els suffer from repeated and missing source con-
tent (i.e. source units are not verbalised in
the output text (under-generation)). However,
these phenomena are less evident with GCN-

based models. We also observed that the LSTM
output sometimes presents hallucination (over-
generation) cases. Our intuition is that the strong
relational inductive bias of GCNs (Battaglia et al.,
2018) helps the GCN encoder to produce a more
informative representation of the input; while the
LSTM-based encoder has to learn to produce use-
ful representations by going through multiple dif-
ferent sequences over the source data.

5.2 Ablation Study

In Table 4 (BLEU) we report an ablation study on
the impact of the number of layers and the type
of skip connections on the WebNLG dataset. The
first thing we notice is the importance of skip con-
nections between GCN layers. Residual and dense
connections lead to similar results. Dense connec-
tions (Table 4 (SIZE)) produce models bigger, but
slightly less accurate, than residual connections.
The best GCN model has slightly more parame-
ters than the baseline model (4.9M vs.4.3M).

6 Conclusion
We compared LSTM sequential encoders with a
structured data encoder based on GCNs on the
task of structured data to text generation. On
two different tasks, WebNLG and SR11Deep, we
show that explicitly encoding structural informa-
tion with GCNs is beneficial with respect to se-
quential encoding. In future work, we plan to
apply the approach to other input graph repre-
sentations like Abstract Meaning Representations
(AMR; (Banarescu et al., 2013)) and scoped se-
mantic representations (Van Noord et al., 2018).
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A Supplemental Material

A.1 Training details
We implemented all our models using OpenNMT-
py (Klein et al., 2017). For all experiments we
used a batch size of 64 and Adam (Kingma and
Ba, 2015) as the optimizer with an initial learning
rate of 0.001. For GCN models and baselines we
used a one-layer LSTM decoder, we used dropout
(Srivastava et al., 2014) in both encoder and de-
coder with a rate of 0.3. We adopt early stopping
on the development set using BLEU scores and we
trained for a maximum of 30 epochs.

A.2 More example outputs
Table 5 shows additional examples of generated
texts for source WebNLG and SR11Deep graphs.
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WebNLG (Acharya Institute of Technology sportsOffered Tennis) (Acharya Institute of Technology established 2000) (Tennis
sportsGoverningBody International Tennis Federation)

LSTM The Acharya Institute of Technology was established in 2000 and is governed by the International Tennis Federation
.

GCN The sport of tennis , governed by the International Tennis Federation , is offered at the Acharya Institute of Tech-
nology which was established in 2000 .

GCNEC the acharya institute of technology was established in 2000 and is governed by the international tennis federation .
WebNLG (Acharya Institute of Technology officialSchoolColour Blue , White and Orange) (Acharya Institute of Technology

was given the ’ Technical Campus ’ status by All India Council for Technical Education)
LSTM The Archarya Institute of Technology are blue , white and was given the Acharya Institute of Technology .
GCN The Acharya Institute of Technology was given the ’ Technical Campus ’ status by the All India Council for

Technical Education in LOCATION . The Institute was given the ” Technical Campus ” status by the Acharya
Institute of Technology .

GCNEC acharya institute of technology was given the ’ technical campus ’ status by the all india council for technical
education which has blue , white and orange .

WebNLG (Saranac Lake , New York isPartOf Harrietstown , New York) (Saranac Lake , New York isPartOf Essex County
, New York) (Adirondack Regional Airport cityServed Lake Placid , New York) (Adirondack Regional Airport
cityServed Saranac Lake , New York) (Saranac Lake , New York country United States)

LSTM Adirondack Regional Airport serves the cities of Lake Placid and Saranac Lake ( Harrietstown ) in the United States
.

GCN Adirondack Regional Airport serves the city of Saranac Lake , which is part of Harrietstown , Essex County , New
York , United States .

GCNEC adirondack regional airport serves the cities of lake placid and saranac lake , essex county , new york , united states
. adirondack regional airport serves the city of saranac lake , essex county , new york , united states .

WebNLG (Adisham Hall location Sri Lanka) (Adisham Hall architecturalStyle Tudor Revival architecture) (Adisham Hall
completionDate 1931) (Adisham Hall buildingStartDate 1927)

LSTM Adisham Hall was built in 1927 and completed in 1931 . It was built in the Tudor Revival architecture style and is
located in Sri Lanka .

GCN Construction of Adisham Hall , Sri Lanka began in 1927 and was completed in 1931 .
GCNEC adisham hall , sri lanka , constructed in 1931 , is located in sri lanka . the hall has the architectural style ’ tudor

revival ’ .
SR11Deep (SROOT SROOT say) (say A0 economist) (say A1 be) (be SBJ export) (be VC think) (think A1 export) (think

C-A1 have) (have VC rise) (rise A1 export) (rise A2 strongly) (strongly COORD but) (but CONJ not) (not AINV
enough) (not AINV offset) (offset A1 jump) (jump A1 in) (in A1 import) (jump AINV the) (offset A2 export) (not
AINV probably) (strongly TMP in) (in A1 august) (say P .)

Gold Exports are thought to have risen strongly in August , but probably not enough to offset the jump in imports ,
economists said .

LSTM exports said exports are thought to have rising strongly , but not enough to offset exports in the imports in august .
GCN exports was thought to have risen strongly in august but not probably to offset the jump in imports , economists said

.
SR11Deep (SROOT SROOT be) (be P ?) (be SBJ we) (be TMP be) (be SBJ project) (project A1 research) (be VC curtail) (cur-

tail A1 project) (curtail AM-CAU to) (to A1 cut) (cut A0 government) (cut A1 funding) (funding A0 government)
(to DEP due) (to R-AM-TMP when) (be VC catch) (catch A1 we) (catch A2 with) (with SUB down) (down SBJ
grant) (grant AINV our) (catch P ”) (catch P “)

Gold When research projects are curtailed due to government funding cuts , are we “ caught with our grants down ” ?
LSTM is when research projects is supposed to cut “ due ” projects is caught with the grant down .
GCN when research projects are curtailed to government funding cuts due to government funding cuts , were we caught

“ caught ” with our grant down ?

Table 5: Examples of system output.
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Abstract

We aim to automatically generate nat-
ural language descriptions about an in-
put structured knowledge base (KB). We
build our generation framework based on
a pointer network which can copy facts
from the input KB, and add two attention
mechanisms: (i) slot-aware attention to
capture the association between a slot type
and its corresponding slot value; and (ii)
a new table position self-attention to cap-
ture the inter-dependencies among related
slots. For evaluation, besides standard
metrics including BLEU, METEOR, and
ROUGE, we propose a KB reconstruction
based metric by extracting a KB from the
generation output and comparing it with
the input KB. We also create a new data
set which includes 106,216 pairs of struc-
tured KBs and their corresponding natu-
ral language descriptions for two distinct
entity types. Experiments show that our
approach significantly outperforms state-
of-the-art methods. The reconstructed KB
achieves 68.8% - 72.6% F-score.1

1 Introduction

Show and tell, showing an audience something
and telling them about it, is a common classroom
activity for early elementary school kids. As a
similar practice for knowledge propagation, we of-
ten need to describe and/or explain the informa-
tion in a structured knowledge base (KB) in natu-
ral language, in order to make the knowledge ele-
ments and their connections easier to comprehend.

1We make all data sets and programs of vari-
ous models publicly available for research purposes
at https://github.com/EagleW/Describing_a_
Knowledge_Base.

For example, (Cawsey et al., 1997) presents a nat-
ural language generation system to convert struc-
tured medical records to natural language text de-
scriptions, which enables more effective commu-
nication between health care providers and their
patients and among health care providers them-
selves.

Moreover, 51% of entity attributes in the cur-
rent English Wikipedia Infoboxes are not de-
scribed in English articles in the Wikipedia dump
of April 1, 2018. The availability of vast amounts
of Linked Open Data (LOD) and Wikipedia de-
rived resources such as DBPedia, WikiData and
YAGO encourages pursuing a new direction of
knowledge-driven (Whitehead et al., 2018; Lu
et al., 2018) or semantically oriented (Bouayad-
Agha et al., 2013) Natural Language Generation
(NLG). We aim to fill in this knowledge gap by
developing a system that can take a KB (consisted
of a set of slot types and their values) about an
entity as input (see example in Table 1), and auto-
matically generate a natural language description
(Table 2).

Slot Type Row Slot Value
Name 1 Silvi Jan

2 ASA Tel Aviv University

Member of 3 Hapoel Tel Aviv F.C.(women)

Sports team 4 Maccabi Holon F.C. (women)

5 Israel women’s na- Matches 22
tional football team Goals 29

Date of Birth 6 27 October 1973

Country of
Citizenship

7 Israel

Position 8 Forward (association football)

Table 1: Input: Structured Knowledge Base

Neural generation to generalize linguistic ex-
pressions. One major challenge lies in generaliz-
ing a wide variety of expressions, patterns, tem-
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Reference Silvi Jan (born 27 October 1973 ) is a retired female Israeli . Silvi Jan has been a
Forward (association football) for the Israel women’s national football team for many years appear-

ing in 22 matches and scoring 29 goals. After Hapoel Tel Aviv F.C.(women) folded, Jan signed

with Maccabi Holon F.C. (women) where she played until her retirement in 2007. In January 2009,

Jan returned to league action and joined ASA Tel Aviv University . In 1999, with the establishment of

the Israeli Women’s League, Jan returned to Israel and signed with Hapoel Tel Aviv F.C.(women) .

Seq2seq (born 23 April 1981) is a retired Israeli footballer. He played for the Thailand ’s (scoring one goal)
and was a member of the team that won the first ever player in the history of the National Basketball
League. She played for the team from 1997 to 2001 scoring 29 goals. She played for the team from
1997 to 2001 scoring 29 goals. She played for the team from 1999 to 2001 and played for the team in
the 1997 and 2003 seasons.

Pointer Silvi Jan the fourth past the Maccabi Holon F.C. (women). On 27 October 1973 in 29 2014)
(born 22) is a former Israel . She was a Forward (association football) and currently plays for

Hapoel Tel Aviv F.C.(women) in the Swedish league. She played for the ASA Tel Aviv University in

the Swedish league. She was a member of the Israel women’s national football team at the beginning
of the 2008 season.

+ Type Silvi Jan (born 27 October 1973 ) is a former Israeli footballer. He played for Hapoel Tel Aviv

F.C.(women) and ASA Tel Aviv University .

+ Type & Position Silvi Jan (born 27 October 1973 ) is a former Israel . He played for Israel women’s nation-
al football team , Hapoel Tel Aviv F.C.(women) , ASA Tel Aviv University and Maccabi Holon

F.C. (women) . He was capped 22 times for the Israel women’s national football team .

Table 2: Human and System Generated Descriptions about the KB in Table 1

plates and styles which human use to describe the
same slot type. For example, to describe a foot-
ball player’s membership with a team, we can
use various phrases including member of, traded
to, drafted by, played for, face of, loaned to and
signed for. Instead of manually crafting patterns
for each slot type, we leverage the existing pairs
of structured slots from Wikipedia infoboxes and
Wikidata (Vrandečić and Krötzsch, 2014) and the
corresponding sentences describing these slots in
Wikipedia articles as our training data, to learn a
deep neural network based generator.

Pointer network to copy over facts. The pre-
vious work (Liu et al., 2018) considers the slot
type and slot value as two sequences and applies a
sequence to sequence (seq2seq) framework (Cho
et al., 2014) for generation. However, the task of
describing structured knowledge is fundamentally
different from creative writing, because we need
to cover the knowledge elements contained in the
input KB, and the goal of generation is mainly to
clearly describe the semantic connections among
these knowledge elements in an accurate and co-
herent way. The seq2seq model fails to capture
such connections and tends to generate wrong in-
formation (e.g., Thailand in Table 2). To address
this challenge, we choose a pointer network (See
et al., 2017) to copy slot values directly from the

input KB.
Slot type attention. However, the copying

mechanism in the pointer network is not able to
capture the alignment between a slot type and its
slot value, and thus it often assigns facts to wrong
slots. For example, 22 in Table 2 should be the
number of matches instead of birth date. It also
tends to repeat the same slot value based on lan-
guage model, e.g., “Uroplatus ebenaui is a of
gecko endemic to Madagascar. The Uroplatus is
a member of the species of the genus Madagas-
car.”. We propose a Slot-aware Attention mech-
anism to compute slot type attention and slot value
attention simultaneously and capture their corre-
lation. Attention mechanism in deep neural net-
works (Denil et al., 2012) is inspired from human
visual attention, which refers to human’s capabil-
ity to focus on a certain region of an image with
high resolution while perceiving the surrounding
image in low resolution. It allows the neural net-
work to have access to the hidden state of the en-
coder, and thus learn what to attend to. For exam-
ple, for a Date of Birth slot type, words such as
born may receive higher attention than female. As
we can see in Table 2 (+Type), the output with slot
type attention contains more precise slots.

Table position attention. Multiple slots are of-
ten interdependent. For example, a football player
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may join multiple teams, with each team associ-
ated with a certain number of points, goals, scores
and games participated. We design a new table po-
sition based self-attention to capture correlations
among interdependent slots and put them in the
same sentence. For example, our model success-
fully associates the number of matches 22 with the
Israel women’s national football team as shown in
Table 2.

The major contributions of this paper are:

• For the first time, we propose a new table po-
sition attention which proves to be effective
at capturing inter-dependencies among facts.
This new approach achieves 2.5%-7.8% F-
score gain at KB reconstruction.

• We propose a KB reconstruction based met-
ric to evaluate how many facts are correctly
expressed in the generation output.

• We create a large dataset of KBs paired with
natural language descriptions for 106,216 en-
tities, which can serve as a new benchmark.

2 Model

We formulate the input structured KB
to the model as a list of triples: L =
[(s1, v1, (r1, r̂1)), ..., (sn, vn, (rn, r̂n))], where
si denotes a slot type (e.g., Country of Citizen-
ship), vi denotes the corresponding slot value
(e.g., Israel), and (ri, r̂i) denotes the position
of the triple in the input list and consists of the
forward position ri and the backward position
r̂i = n − ri + 1. The outcome of the model is
a paragraph Y = [y1, y2, ..., ym]. The training
instances for the generator are provided in the
form of: T = [(L1, Y1), ..., (Lk, Yk)].

2.1 Sequence-to-Sequence with Slot-aware
Attention

Following previous studies on describing struc-
tured knowledge (Lebret et al., 2016; Sha et al.,
2018; Liu et al., 2018), we apply a sequence-to-
sequence based approach, and incorporate a slot-
aware attention to generate the descriptions.

Encoder Given a structured KB input: L =
[(s1, v1, (r1, r̂1)), ..., (sn, vn, (rn, r̂n))], where si,
vi, ri, r̂i are randomly embedded as vectors si, vi,
ri, r̂i2 respectively, we concatenate the vector rep-

2We use bold mathematical symbols to denote vector rep-
resentations for the whole paper.

resentations of these fields as li = [si, vi, r1, r̂1],
and obtain L = [l1, l2, ..., ln].

We attempted to apply the average of L as the
representation for the input KB. However, such
flat representation vectors fail to capture the struc-
tured contextual information in the entire KB.
Therefore, we apply a bi-directional Gated Re-
current Unit (GRU) encoder (Cho et al., 2014)
on L to produce the encoder hidden states H =
[h1,h2, ...,hn], where hi is a hidden state for li.

Decoder with Slot-aware Attention The de-
coder is a forward GRU network with an initial
hidden state hn, which is the encoder hidden state
of the last token. In order to capture the associ-
ation between a slot type and its slot value, we
design a Slot-aware Attention. At each step t,
we compute the attention distribution over the se-
quence of input triples. For each triple i, we assign
it an attention weight:

eti = v> tanh
(
Whh̃t

+Wssi +Wvvi +Wcc
t
i + be

)

αt = Softmax
(
et
)

where h̃t
is the decoder hidden state at step t.

si and vi denote the embedding representations
of slot type si and slot value vi respectively.
cti =

∑t−1
k=0 α

k
i is a coverage vector, which is the

sum of attention distributions over all previous de-
coder time steps and can be used to reduce repeti-
tion (See et al., 2017).

The source attention distribution αt can be con-
sidered as the contribution of each source triple to
the generation of the target word. Next we use αt

to compute two context vectors L∗s and L∗v as the
representation of the slot types and values respec-
tively:

L∗s =
∑n

i=1
αt
isi

L∗v =
∑n

i=1
αt
ivi

(1)

At step t, the vocabulary distribution Pvocab is
computed with the context vectors L∗s, L∗v and the
decoder hidden state h̃t

, using an affine-Softmax
layer:

Pvocab = Softmax
(
V [h̃t

;L∗s;L∗v] + bvocab

)

The loss function is computed as:

Loss =
∑

t

{
− logPvocab(yt) + λ

∑
imin

(
αt
i, c

t
i

)}

where Pvocab(y
t) is the prediction probability of

the ground truth token yt. λ is a hyperparameter.
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Figure 1: KB-to-Language Generation Model Overview

2.2 Table Position Self-attention

Although the sequence-to-sequence attention
model takes into account the information of input
triples, it still encodes the structured knowledge
as sequential facts while ignoring the correlations
between facts. In our task, multiple inter-
dependent slots should be described within one
sentence. For example, in Table 1, the sport team
Israel women’s national football team should be
described together with 22 matches and 29 goals.
Previous studies (Lin et al., 2017; Vaswani et al.,
2017) applied self-attention on sentence level
to capture the correlation between continuous
tokens. Inspired by these approaches, we design
a new table position based self-attention and
incorporate it into the slot-aware attention.

In our task, since most triples are organized
in temporal order, we use the row index r
and the reverse row index r̂ to denote the po-
sition information of each triple in the input
KB. Given a structured KB as input: L =
[(s1, v1, (r1, r̂1)), ..., (sn, vn, (rn, r̂n))], we obtain

a sequence of row index embeddings R =
[r′
1, r

′
2, ..., r

′
n] with random initialization, where

r′
i = [ri; r̂i]. We model the inter-dependencies

among slots as a latent structure, where for each
position i we assume it has a latent in-link and an
out-link to denote where it is linked to or from.
This assumption is similar to the structure atten-
tion applied in Liu and Lapata (2018), which as-
sumes each word within a sentence can be a parent
node or a child node in a latent tree structure. For
each pair of slots i and j, we compute the attention
score fij as follows:

gin = tanh
(
Winr

′
i

)

gout = tanh
(
Woutr

′
j

)

fij = Softmax
(
g>inWggout

)

where Win,Wout, and Wg are learnable parame-
ters. The attention score will not change during
the decoding process.
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fij can be viewed as the contribution from a
context triple j to triple i. For each slot si and
value vi, we obtain a context vector by collecting
information from other slot types and their values:

s∗i =
∑n

k=1
fiksk

v∗i =
∑n

k=1
fikvk

We further encode position-aware representa-
tion of each slot type and value, and update their
context vectors L∗t and L∗v in Equation 1 as:

L∗s =
∑n

i=1
αt
is
∗
i

L∗v =
∑n

i=1
αt
iv
∗
i

2.3 Structure Generator
Traditional sequence-to-sequence models predict
a target sequence by only selecting words from a
vocabulary with a fixed size. However, in our task,
we regard the slot value as a single information
unit. Therefore, there is a certain amount of out-
of-vocabulary (OOV) words during the test phase.
Inspired by the pointer-generator (Gu et al., 2016;
See et al., 2017), which is designed to automat-
ically locate particular source words and directly
copy them into the target sequence, we design a
structure-aware generator as follows.

We first obtain a source attention distribution
of all unique input slot values. Since one partic-
ular slot value may occur in the structure input for
many times, we aggregate the attention weights for
each unique slot value vj fromαt and obtain its ag-
gregated source attention distribution P j

source by

P j
source =

∑

m|vm=vj

αt
m

The gates in neural networks act on the sig-
nals they receive, and block or pass on informa-
tion based on its strength. In order to combine two
types of attention distribution Psource and Pvocab,
we compute a structure-aware gate pgen ∈ [0, 1] as
a soft switch between generating a word from the
fixed vocabulary and copying a slot value from the
structured input:

pgen = σ
(
W>s L∗s +W>v L∗v +W>h h̃t

+W>y yt−1 + bgen

)

where yt−1 is the embedding of the previous gen-
erated token at time t−1, and σ is a Sigmoid func-
tion.

The final probability of a token y at time t can
be computed by pgen, Pvocab and Psource:

P (yt) = pgenPvocab + (1− pgen)Psource

The loss function, combining with the coverage
loss (See et al., 2017), is presented as:

Loss =
∑

t

{
− logP (yt) + λ

∑
imin

(
αt
i, c

t
i

)}

where P (yt) is the prediction probability of the
ground truth token y. λ is a hyperparameter.

3 Experiments

3.1 Data
Using person and animal entities as case studies,
we create a new dataset based on Wikipedia dump
(2018/04/01) and Wikidata (2018/04/12) as fol-
lows: (1). Extract Wikipedia pages and Wiki-
data tables about person and animal entities, and
align them according to their unique KB IDs.
(2). For each Wikidata table, filter out the slot
types of which frequency is less than 3. For each
Wikipedia article, use its anchor links (clickable
texts in hyperlinks) to locate all the entities and
determine their KB IDs. (3). For each Wiki-
data table, search each value (including Number,
Date) and entity contained in the table in the cor-
responding Wikipedia article according to its KB
ID, and remove the values and entities which can-
not be found in the corresponding Wikipedia arti-
cle. (4). For each Wikipedia article, remove the
sentences which contain no values, and remove
sentences which only contain entities that do not
exist in the Wikidata table. The remaining sen-
tences will be taken as ground-truth reference de-
scriptions. (5). Index the row numbers for each
slot type according to their orders in the Wikidata
table. The ground-truth structured KB is then cre-
ated. (6). Build a fixed vocabulary for the whole
corpus of ground-truth descriptions and label the
words with frequency < 5 as OOV.

We further randomly shuffle and split the
dataset into training (80%), development (10%)
and test (10%) subsets for person and animal enti-
ties respectively. Table 3 shows the detailed statis-
tics. Compared with the Wikibio dataset used in
previous studies (Lebret et al., 2016; Sha et al.,
2018; Liu et al., 2018), which contains one sen-
tence only as the ground-truth description, our
dataset contains multiple sentences to cover as
many facts as possible in the input structured KB.
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Entity
type

# entity # types before
filtering

# types after
filtering

# slots /
sentence

# words /
sentence

# slots /
table

# words /
entity

# sentence
/ entity

Person 100,000 109 76 1.9 16.8 8.0 70.9 4.2
Animal 6,216 30 12 1.3 17.1 3.2 42.2 2.5

Table 3: Data Statistics

Slot Type Slot Value
Name Kim Da-som

Date of Birth 6 May 1993
Place of Birth Gwangju

Occupation Singer
Occupation Actress

Genres K-pop
Start Active 

Year
3 June 
2010

Start Active 
Place Seoul Start Active 

Song
PUSH 
PUSH

Agent King Kong by Starship
Associated acts Sistar

G
en

er
at

e

R
ec

on
st

ru
ct

Kim Da-som (born 6 
May 1993 in Seoul) is a 
singer. She is a member 
of Sistar under King 
Kong by Starship. On 3 
June 2010, she made her 
debut.

Slot Type Slot Value
Name Kim Da-som

Date of Birth 6 May 1993
Place of 

Birth Seoul

Occupation Singer
Associated 

acts Sistar

Agent King Kong by 
Starship

Start Active 
Year 3 June 2010

Figure 2: KB Reconstruction based Evaluation (Scores for the example: Overall Slot Filling P=6
7=85.7%,

R= 6
11=54.5%, F1=66.7%; Inter-dependent Slot Filling P=5

7=71.4%, R=5
9=55.6%, F1=62.5%)

It makes the generation task more challenging,
practical and interesting.

3.2 Evaluation Metrics

We apply the standard BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014),
and ROUGE (Lin, 2004) metrics to evaluate the
generation performance, because they can mea-
sure the content overlap between system output
and ground-truth and also check whether the sys-
tem output is written in sufficiently good English.

In addition, we can also consider natural lan-
guage as the most expressive way for knowledge
transmission via a noisy channel. If we are able
to reconstruct the input KB from the generated de-
scription, our generator achieves a 100% success
rate at knowledge propagation. We propose a KB
reconstruction based metric as follows: for each
entity, construct a KB from the generated para-
graph, and compute precision, recall and F-score
by comparing it with the input KB from two as-
pects: (1). Overall Slot Filling: If a pair of slot
type and its slot value exists in both of the recon-
structed KB and the input KB, it’s considered as a
correct slot. (2). Inter-dependent Slot Filling: If
a row that consists one or multiple slot types and
their slot values exist in both of the reconstructed
KB and the input KB, it’s considered as a correct
row.

If the same slot/row is correctly described mul-
tiple times in the system generation output, it’s
only counted as correct once, i.e., redundant de-
scriptions will be penalized. This metric is further

illustrated in Figure 2. It’s similar to the relation
extraction based generation evaluation metric pro-
posed by (Wiseman et al., 2017) and entity/event
extraction based metric proposed by (Whitehead
et al., 2018; Lu et al., 2018). They compared auto-
matic Information Extraction results from the ref-
erence description and the system generation out-
put. However, the performance of state-of-the-
art open-domain slot filling (Wu and Weld, 2010;
Fader et al., 2011; Min et al., 2012; Xu et al., 2013;
Angeli et al., 2015; Bhutani et al., 2016; Yu et al.,
2017) is still far from satisfactory to serve as an
automatic extraction tool for evaluating generation
results. Therefore for the pilot study in this pa-
per we manually reconstruct KBs from the gen-
eration output for evaluation. Notably none of the
above automatic metrics is sufficient to capture ad-
equacy, grammaticality and fluency of the gener-
ated descriptions. However extrinsic metrics such
as system purpose and user task are expensive,
while cheaper metrics such as human rating do not
correlate with extrinsic metrics (Gkatzia and Ma-
hamood, 2015). Moreover the task we address in
this paper requires essential domain knowledge for
a human user to assess the generated descriptions.

3.3 Baseline Models

We compare our approach with the following
models: (1). Seq2seq attention model (Bahdanau
et al., 2015). We concatenate slot types and val-
ues as a sequence, e.g., {Name, Silvi Jan, Sports
team, ASA Tel Aviv University, Hapoel Tel Aviv
F.C. ...} for Table 1, and apply the sequence to
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sequence with attention model to generate a de-
scription. (2). Pointer-generator (See et al.,
2017) which introduces a soft switch to choose
between generating a word from the fixed vocabu-
lary and copying a word from the input sequence.
Here, we concatenate all slot values as the input
sequence, e.g., {Silvi Jan, ASA Tel Aviv Univer-
sity, Hapoel Tel Aviv F.C. ...} for Table 1. (3).
Pointer-generator + slot type attention which
incorporates the slot type attention (Section 2.1)
into the pointer-generator. We use the sequence of
(slot type, slot value) pairs as input, e.g., {(Name,
Silvi Jan), (Sports team, ASA Tel Aviv University),
(Sports team, Hapoel Tel Aviv F.C.) ...} for Table 1.

3.4 Hyperparameters
Table 4 shows the hyperparameters of our model.

Parameter Value
Vocabulary size (|s|+|v|) 46,776
Value\type embedding size 256
Position embedding size 5
Slot embedding size 522
Decoder hidden size 256
Coverage loss λ 1.5
Optimization Adam (Hu et al., 2009)
Learning rate 0.001

Table 4: Hyperparameters

3.5 Results and Analysis
Table 5 shows the performance of various models
with standard metrics. We can see that our atten-
tion mechanisms achieve consistent improvement.
We conduct paired t-test between our proposed
model and all the other baselines on 10 randomly
sampled subsets. The differences are statistically
significant with p ≤ 0.016 for all settings.

As shown in Table 6 and Table 7, the KBs re-
constructed from models with these two attention
mechanisms achieve much higher quality.

Figure 3 and Figure 4 visualize the attentions
applied to the walk-through example in Table 1.

Impact of Slot-aware Attention. The same
string can be filled into various slots of multiple
types. For example, dates, ages, the number of
matches and goals can all be presented as num-
bers. The pointer network often mistakenly mixes
them up. For example, it produces “24 Septem-
ber 1979 was born 3 October 1903 in 17 on 33
October 1906”, where 33 should be the number

Figure 3: Slot Type Attention Visualization (Con-
text words strongly associated with certain slot
types receive high weights, e.g., capped to de-
scribe member of sports team, and times to de-
scribe the number of matches played. )

of matches and 17 should be the number of goals.
In contrast our model with slot type attention cor-
rectly generates “he made 33 appearances and
scored 17 goals”. In addition, as mentioned ear-
lier, the pointer network often produces redundant
slot values because it loses control of slot types,
e.g., “He was born in the city of Association foot-
ball. In the late 1990s he was appointed manager
of the Association football team of the team.”.

Impact of Table Position Attention. The ta-
ble position attention successfully captures inter-
dependent slots, such as a membership with a
sports team and its corresponding number of
matches and games: “Bill Sampy ... who played
for Sheffield United F.C. 41 times.”; “Giancarlo
Antognoni ... he was also a member of the Italy
national football team at the 1982 FIFA World
Cup.”.

Remaining Challenges. Some remaining errors
are trivial to fix, such as fixing a country name to
its adjective form when it appears right before a
position slot (e.g., Italian professional Association
football player instead of Italy professional Asso-
ciation football player). The KB reconstruction
recall of person entities is relatively low mainly
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Model Person Animal
BLEU METEOR ROUGE BLEU METEOR ROUGE

Seq2seq 11.3 16.9 28.8 5.8 11.5 20.5
Pointer 17.2 21.1 37.4 6.6 13.7 37.8
+Type 23.1 22.2 39.5 17.2 17.3 42.8
+Type & Position 23.2 23.4 42.0 14.8 17.2 45.0

Table 5: Generation Performance based on Standard Metrics %)

1
2
3
4
5
5
5
6
7
8

1 2 3 4 5 5 5 6 7 8

Table Position

1
2
3
4
5
5
5
6
7
8

1 2 3 4 5 5 5 6 7 8

Table Position

<member of sports team> : ASA Tel Aviv University : 
<member of sports team> : Hapoel Tel Aviv F.C. (women) : 
<member of sports team> : Maccabi Holon F.C. (women) : 

<member of sports team> : Israel women's national football team : 
<number of matches played> : 22 : 

<number of points/goals/set scored> : 29 : 
<date of birth> : 27 October 1973 : 
<country of citizenship> : Israel : 

<position played on team/speciality> : Forward (association football) : 

<name> : Silvi Jan :  1
2
3
4
5
5
5
6
7
8

1 2 3 4 5 5 5 6 7 8

Table Position

<member of sports team> : ASA Tel Aviv University : 
<member of sports team> : Hapoel Tel Aviv F.C. (women) : 
<member of sports team> : Maccabi Holon F.C. (women) : 

<member of sports team> : Israel women's national football team : 
<number of matches played> : 22 : 

<number of points/goals/set scored> : 29 : 
<date of birth> : 27 October 1973 : 
<country of citizenship> : Israel : 

<position played on team/speciality> : Forward (association football) : 

<name> : Silvi Jan :  

Figure 4: Table Position Self Attention Visualization (the highlighted inter-dependent slots appear in the
same row and the same sentences, and thus they receive the same high weight.)

Model Person Animal
P R F1 P R F1

Seq2seq 74.6 29.3 42.0 82.5 27.8 41.6
Pointer 72.6 56.4 62.8 58.5 37.5 45.7
+Type 75.9 58.8 66.3 65.9 63.8 64.8
+Type & Position 76.3 62.7 68.8 73.4 71.8 72.6

Table 6: Overall Slot Filling Precision (P), Recall
(R), F-score (F1) (%)

Model Person Animal
P R F1 P R F1

Seq2seq 74.7 30.0 43.4 82.5 27.9 41.7
Pointer 73.0 56.4 63.6 57.7 37.2 45.2
+Type 75.8 58.9 66.3 66.3 64.2 65.2
+Type & Position 77.2 63.5 69.7 72.6 71.0 71.8

Table 7: Inter-dependent Slot Filling Precision (P),
Recall (R), F-score (F1) (%)

because we don’t have enough training data for
some rare slot types.

Contextual words generated by the LM intro-
duces some incorrect facts, especially temporal
expressions. For example, the generator does
not have the commonsense knowledge that foot-
ball players could not play before they were born:
“Aleksei Gasilin ( born 1 March 1996 ) is a
Russian Association football Forward (associa-
tion football). He made his professional debut in

the Russian Second Division in 1992 for Russia
national under-19 football team. ”. Similarly, a
football player would probably not be still active
when he was already 72 years old: “Basil Rigg (
born 12 August 1926 ) is a former Australian rules
football Rigg played for the Perth Football Club
in the Western Australia cricket team from 1998 to
1998.”.

Our approach sometimes fails to detect person
gender so as to generate incorrect pronouns. For
animal entities, human writers are able to elab-
orate more details. For example, human writes
the specific endemic places for Brown treecreeper:
“The bird endemic to eastern Australia has a
broad distribution occupying areas from Cape
York Queensland throughout New South Wales
and Victoria to Port Augusta and the Flinders
Ranges South Australia.” while our system is
only able to cover the generic location informa-
tion “It is endemic to Australia.” from the input
KB.

4 Related work

Our task is similar to the WebNLG challenge gen-
erating text from DBPedia data (Gardent et al.,
2017a). Previous approaches on generating nat-
ural language sentences from structured input KB
can be divided into two categories: the first is to

17



induce templates and then fill appropriate content
into slots (Kukich, 1983; Cawsey et al., 1997; An-
geli et al., 2010; Duma and Klein, 2013; Kon-
stas and Lapata, 2013a; Flanigan et al., 2016a).
These methods can generate high-quality descrip-
tions but heavily rely on information redundancy
to create templates. The second category is to
directly generate a sequence of words using lan-
guage model (Belz, 2008; Chen and Mooney,
2008; Liang et al., 2009; Angeli et al., 2010;
Konstas and Lapata, 2012a,b, 2013a,b; Mahapatra
et al., 2016) or deep neural networks (Sutskever
et al., 2011; Wen et al., 2015; Kiddon et al., 2016;
Mei et al., 2016; Gardent et al., 2017b; Wiseman
et al., 2017; Wang et al., 2018; Song et al., 2018).
Several studies (Lebret et al., 2016; Chisholm
et al., 2017; Kaffee et al., 2018a,b; Liu et al., 2018;
Sha et al., 2018) generate a person’s biography
from an input structure, which are closely related
to our task. However, instead of modeling the in-
put structure as a sequence of facts and generat-
ing one sentence only, we introduce a table posi-
tion self-attention, inspired from structure atten-
tion (Lin et al., 2017; Kim et al., 2017; Vaswani
et al., 2017; Shen et al., 2018a,b), to capture the
dependencies among facts and generate a para-
graph to describe all facts.

In contrast to some recent work on converting
structured Abstract Meaning Representation (Ba-
narescu et al., 2013) into natural language (Pour-
damghani et al., 2016; Flanigan et al., 2016b), our
task requires us to capture inter-dependent relation
links in a knowledge base and use them to generate
multiple sentences in most cases. Our work is also
related to attention mechanisms for sequence-to-
sequence generation (Bahdanau et al., 2015; Mei
et al., 2016; Ma et al., 2017). Different from pre-
vious studies, our task requires the slot type and
slot value to appear in the generated sentences in
pairs. Thus we design a slot-aware attention to ob-
tain two context vectors for both slot type and slot
value simultaneously. To deal with OOV words,
we use a structure generator, which is similar
to the pointer-generator networks (Vinyals et al.,
2015; Luong et al., 2015; Gulcehre et al., 2016;
See et al., 2017) and copy mechanism (Gu et al.,
2016).

5 Conclusions and Future Work

We develop an effective generator to produce a
natural language description about an input knowl-

edge base. Our experiments show that two at-
tention mechanisms focusing on slot type and ta-
ble position advance state-of-the-art on this task,
and provide a KB reconstruction F-score up to
73%. We propose a new KB reconstruction based
evaluation metric which can be used for other
knowledge-driven NLG tasks such as news im-
age/video captioning. In the future, we aim to
address the remaining challenges as summarized
in Section 3.5, and tackle the setting where mul-
tiple facts of the same slot type are not presented
in temporal order in the input KB. We also plan to
extend the framework to cross-lingual cross-media
generation, namely to produce a foreign language
description or an image/video about the KB.
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Abstract

Natural Language Generation plays an im-
portant role in the domain of dialogue sys-
tems as it determines how users perceive
the system. Recently, deep-learning based
systems have been proposed to tackle this
task, as they generalize better and re-
quire less amounts of manual effort to im-
plement them for new domains. How-
ever, deep learning systems usually adapt a
very homogeneous sounding writing style
which expresses little variation.
In this work, we present our system for
Natural Language Generation where we
control various aspects of the surface re-
alization in order to increase the lexical
variability of the utterances, such that they
sound more diverse and interesting. For
this, we use a Semantically Controlled
Long Short-term Memory Network (SC-
LSTM), and apply its specialized cell to
control various syntactic features of the
generated texts. We present an in-depth
human evaluation where we show the ef-
fects of these surface manipulation on the
perception of potential users.

1 Introduction

In this paper, we describe our end-to-end train-
able neural network for producing natural lan-
guage descriptions of restaurants from meaning
representations (MR). Recently, data-driven nat-
ural language generation (NLG) systems have
shown great promise, especially as they can be
easily adapted to new data or domains. End-to-
end systems based on deep learning can jointly
learn sentence planning and sentence realization
from unaligned data. However, a recurrent prob-
lem, which we found with the existing solutions

for NLG, is that the generated utterances express
a very homogeneous writing style. More pre-
cisely, most utterances start by using the restaurant
name, the follow-up sentences usually begin with
the pronoun “It”, and each attribute-value pair is
expressed using the same formulation across dif-
ferent utterances (see Table 1).

Green Man is a family friendly japanese restaurant in riverside
near Express by Holiday Inn.
Clowns is a pub near Crowne Plaza Hotel with a customer rating of 5 out of 5.
Wildwood is an italian pub located near Raja Indian Cuisine in the city centre.
It is not family-friendly.
The Cricketers provides chinese food in the 20-25 price range.
It is located in the riverside. It is near All Bar One. Its customer rating is high.

Table 1: Examples to highlight the homogeneity of the utter-
ances generated by state-of-the-art systems.

The publicly available E2E dataset by
(Novikova et al., 2017) provides pairs of
Meaning Representations (MR’s) and several
human generated reference utterances for the
restaurant-domain. It is the first dataset to provide
large amounts of training data with an open
vocabulary, complex syntactic structures, and
more variabilty in expressing the attributes. In
this work, we exploit these characteristics of
the dataset to generate utterances which express
a higher diversity in their writing style. For
this, we extend the Semantically Conditioned
Long Short-term Memory Network (SC-LSTM)
proposed by (Wen et al., 2015b) with surface
features to control the manipulation of the surface
realization.
Since the data contains a large variety of for-
mulations for an attribute-value pair, a simple
delexicalization of the utterance is not possible.
This fact also increases the difficulty of evaluating
the utterances for their correctness. Thus, we in-
troduce a semantic reranking procedure based on
classification algorithms trained to rate whether
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the attributes are rendered correctly.
We evaluate our model on the E2E dataset and
report the BLEU, NIST, METEOR, ROUGE-L
and CIDEr scores. We measure the diversity of
the generated utterances by counting the number
of different uni- and bi-grams. Further, to evaluate
the correctness of the generated utterances, we
employ a soft metric based on the aforementioned
classifiers. Finally, we present an in-depth human
evaluation where we measured the effects of these
more diverse utterances on the perceptions of
potential users. More precisely, humans evaluated
the quality and naturalness of an utterance, which
of the attributes comprehensible, concise, elegant,
and professional fits to the text, and which of the
different systems generated the most preferred
outputs. We release the code and all the scripts.1

2 Related Work

The task of NLG is usually divided into separate
subtasks such as content selection, sentence plan-
ning, and surface realization (Stent et al., 2004).
Traditionally, the task has been solved by relying
on rule-based methods, but these methods do not
scale and are hardly adaptable to new domains.
Recently, deep learning techniques have become
more prominent for NLG. With these techniques,
there now exists a large variety of different net-
work architectures, each tackling a different aspect
of NLG: (Wen et al., 2015b) propose an extension
to the vanilla LSTM (Hochreiter and Schmidhu-
ber, 1997) to control the semantic properties of
an utterance, whereas (Hu et al., 2017) use varia-
tional autoencoder (VAE) and generative adversar-
ial networks to control the generation of texts by
manipulating the latent space; (Mei et al., 2016)
employ an encoder-decoder architecture extended
by a coarse-to-fine aligner to solve the problem of
content selection; (Wen et al., 2016) apply data
counter-fitting to generate out-of-domain training
data for pretraining a model where there is little
in-domain data available; (Semeniuta et al., 2017;
Bowman et al., 2015) use a VAE trained in an
unsupervised fashion on large amounts of data to
sample texts from the latent space; and (Dušek and
Jurcicek, 2016) use a sequence-to-sequence model
with attention to generate natural language strings
as well as deep syntax dependency trees from di-
alogue acts. All these approaches solve different
aspects of the NLG task.

1https://github.com/jderiu/e2e nlg

In our work, we tackle the aspect of generating
texts that display more complex and diverse syn-
tactic structures. The dialogue system commu-
nity has proposed most work on this topic, as
the end-to-end trainable algorithms tend to pro-
duce the same universal answer to each input. In
(Li et al., 2016a) the authors develop a new loss
function based on mutual information, (Li et al.,
2016b) propose a new decoding algorithm based
on a modified beam search, which favors hypothe-
ses from different parent nodes. In (Li et al., 2017)
the authors aim to increase the diversity by remov-
ing training examples, which are similar to the
most commonly used utterances. In (Shao et al.,
2017) the authors propose a sequence-to-sequence
model with an augmented attention mechanism,
which takes into account parts of the target sen-
tence. Finally, the authors adapt the beam-search
ranking to work at a segment level and, thus, in-
jecting diversity earlier during the decoding.

3 Task Definition

Natural language generation for dialogue systems
describes the task of converting a meaning repre-
sentation (MR) into an utterance in a natural lan-
guage. The E2E training data consist of 50k in-
stances in the restaurant domain, where one in-
stance is a pair of a MR and an example utter-
ance or reference. The data is split into training,
development and test in a 76.5%-8.5%-15%-ratio.
Each MR consists of 3-8 attributes and their val-
ues, see Table 2 for the domain ontology. The split
ensures that the MRs in the different dataset-splits
are distinct. The dataset contains an open vocab-
ulary and more complex syntactic structures than
other similar datasets, as shown in the dataset def-
inition (Novikova et al., 2017). Especially, it con-
tains various ways of expressing a single value of
an attribute: for instance, the value 1 of 5 is ex-
pressed in the data as “one star rated”, “rated with
1 of 5 stars”, or “rated one out of five”. In this
work, we exploit this variety of formulation to pro-
duce utterances that express a more varied writing
style.

4 Model

The goal of our model is to generate a text while
providing the ability of controlling various seman-
tic and syntactic properties of this text. Our model
has two components: i) the generator and ii) se-
mantic classifiers that rate the correctness of an ut-
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Attribute Type Example Values

name verbatim string Alimentum, ..
eatType dictionary restaurant, pub, coffee shop
familyFriendly boolean yes, no
food dictionary Italian, French, English, ...
near verbatim string Burger King
area dictionary riverside, city center

customerRating dictionary
1 of 5, 3 of 5, 5 of 5,
low, average, high

priceRange dictionary
<£20, £20-25, >£30
cheap, moderate, high

Table 2: Domain ontology of the E2E dataset.

terance.
We use the Semantically Conditioned Long Short-
term Memory Network (SC-LSTM) proposed by
(Wen et al., 2015b) as our generator, which has
a specialized cell to process the one-hot encoded
MR-vector. The semantic classifiers (SC) are
trained for each attribute separately: they classify
which value the generator rendered. With this,
the correctness of an utterance can be determined,
which is relevant when dealing with contradictory
constraints during the generation of more diverse
texts.

4.1 Semantically Conditioned LSTM

The SC-LSTM (Wen et al., 2015b) extends the
original LSTM (Hochreiter and Schmidhuber,
1997) cell with a specialized cell, which processes
the MR. The MR is represented as a one-hot en-
coded MR-vector d0, which represents the value
for each attribute. This cell assumes the task of
the sentence planner, as it treats the MR-vector as
a checklist to ensure that the information is fully
represented in the utterance. The cell acts as a for-
get gate, keeping track of which information has
already been consumed.
We briefly introduce the SC-LSTM as defined in
(Wen et al., 2015b), which we will later on mod-
ify to meet our needs. Let wt ∈ RM be the input
vector at time t, dt ∈ RD the MR-vector at time
t, and N be the number of units of an SC-LSTM
cell, then the formulation of the forward pass is
defined as:
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(
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ht−1

)

dt = rt ∗ dt−1
ct = it ∗ gt + ft ∗ ct−1 + tanh(Wddt)

ht = ot ∗ tanh(ct)

where σ is the sigmoid function, and it, ft, ot, rt ∈
[0, 1]N are the input, forget, output, and MR-
reading gates, and ht, ct ∈ [0, 1]N are the hid-
den state and the cell state. The weights W5n,2n

and Wd ∈ RD×M are the model parameters to be
learned.
The prediction of the next token is performed by
sampling from the probability distribution:

wt ∼ P (wt|w0:t−1, dt) = softmax(Wsht)

where Ws ∈ RN×M is a weight matrix to be
learned during training. During the training pro-
cedure the inputs to the SC-LSTM are the original
tokens wt from the training set. On the other hand,
when generating new utterances we use the previ-
ously generated token as input to generate the next
token.

Loss To ensure that the SC-LSTM consumes the
MR correctly, two conditions are defined: i) the
MR-vector at the last time step dT has to be zero,
which ensures that all the required information has
been rendered, and ii) the gate should not con-
sume too much of the dialogue act in one time
step, i.e. the difference ‖dt − dt−1‖ should be
minimised. From these criteria, the reconstruction
loss is adapted to:

F (θ) =
∑

t

pTt log(yt) + ‖dT ‖+
T−1∑

t=0

ηξ‖dt−dt−1‖

where the first term is the reconstruction error,
which sums the cross-entropy loss for each time
step and the following two terms ensure the two
criteria defined above.

Semantic Classifiers For each attribute a we
train a CNN-based classifier Da. Each classifier
is trained to detect which of the possible values
for the attribute a is rendered in the utterance or if
the attribute is present in the utterance at all. We
train the classifiers on the training set, where the
input is the utterance and the output is the value for
the attribute a, which is defined in the MR. These
classifiers measure the semantic correctness of the
produced utterances by comparing the output of
the classifier to the MR. If the classifier output cor-
responds to the value defined in the MR then we
regard the attribute as being rendered correctly.
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5 Syntactic Control

The utterances produced by the basic model de-
scribed in Section 4 lack syntactic variety, they all
follow the trivial structure. To control the syntac-
tic expressions of an utterance we expand the MR-
vector with syntax specific features. More specif-
ically, in this work we control three different sur-
face features: i) the first word of the utterance, ii)
the first word of each follow-up sentence in the ut-
terance, and iii) for each attribute-value pair the
formulation used to express it. For each of these
control mechanisms, we produce one-hot encoded
vectors and append these vectors to the MR-vector
d0. Through this mechanism, we provide the SC-
LSTM with more prior information on the struc-
ture of the utterance. Thus, it learns to correlate
how to render the surface based on the surface in-
formation provided. In the following, we describe
the three control mechanisms in detail.

First Word Control Most utterances generated
by the vanilla SC-LSTM begin by using the restau-
rant name. The main reason for this behaviour
is that 59% of all utterances in the dataset have
this characteristic. All the other starting words are
used much less frequently: e.g. only 7% of all
utterances start with the word “There”, which is
the second most used word. The model optimizes
to generate the utterance, which yields the low-
est average loss. Without additional information,
this equates to the most common structure of utter-
ances found in the training set. The first word used
in an utterance greatly impacts how the rest of the
utterance is rendered. Thus, using different first
words increases the diversity of the rendered ut-
terances. To generate more uncommon utterances,
we provide the model with the information about
the first word in the utterance during training. For
this, we select all the words that appear more than
t = 60 times as first word in the training data,
which results in a set of n = 20 different words2.
We then extend the MR-vector by adding a one-
hot encoded vector u0 ∈ Rn+1, where the vector
is set to ’1’ at the index of the first word in the
utterance of the training sample. During the train-
ing, we use a dummy-index at n + 1 in case the
first word of the utterance is not present in the list
of first words. During test-time the first word is
sampled from the set of n first words. To improve

2$Name, Located, For, In, A, $Near, An, Near, There, On,
$Food,The ,With ,Serving , If, At, Riverside, By, You, Family

the semantic correctness we use the sampling pro-
cedure to over-generate, i.e. m different words are
sampled to generate m different utterances. Using
the semantic classifiers, the produced utterances
are ranked by their correctness score.

Follow-up First Word Control We observe that
the follow-up sentences in an utterance, which
are produced by the vanilla SC-LSTM also follow
the same pattern. More precisely, in cases where
the utterance uses multiple sentences, the follow-
up sentences usually begin with the pronoun ’It’
which refers to the restaurant name mentioned in
the first sentence. Similarly, to the First-Word-
Control, we control the first word of follow-up
sentences by using one-hot encoded vectors. The
encoding states which word is used as first word
of each follow-up sentence. As most utterances
are composed between one and four sentences, we
use three vectors to encode the first word of the
first three follow-up sentences.
There are n = 22 different first words used in
follow-up sentences, thus, each vector fi is of
length n+ 1, where i ∈ {2, 3, 4} denotes the sen-
tence enumeration. We add an extra dimension to
denote the case where the number of sentences is
less than i. This representation provides the abil-
ity to control the first word used in each follow-up
sentence as well as the number of sentences ren-
dered.

Attribute-Value Formulation Control We ob-
serve that the vanilla SC-LSTM learns to use the
most common formulation for an attribute-value
pair. On average over all the attribute-value pairs,
the most common formulation is used in 76% of
the cases in the training set. It turns out that
the most used formulation for most attribute-value
pairs is equivalent to the surface form of the value
itself. For example, the value “5 out of 5” is
mostly expressed using the formulation: “... with a
customer rating of 5 out of 5”, instead of “It has an
excellent customer rating” or other formulations.
To extract the different formulations of an
attribute-value pair, we use a simple TF-IDF ap-
proach based on unigrams. For the complete list
of formulations refer to Table 11 in Appendix A.
For each attribute, we treat the utterances for each
value as one document, thus, the corpus is made
of as many documents as there are values for this
attribute. The score is computed as 1 + log(tfaiv) ∗
log(1 + N

dfai
) where tfaiv is the term frequency of
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term i for value v and dfai is the document fre-
quency of term i in the documents of attribute a.
We keep only those terms whose score is higher
than 3. We apply manual filtering to clean the list
from terms, which do not describe the attribute-
value pair. With this method, we get on average
4.2 terms per attribute-value pair. We extend the
MR-vector with one one-hot encoded vector for
each attribute-value pair.

6 Experimental Setting

The goal for our application is to generate descrip-
tions for restaurants. The dataset from (Novikova
et al., 2017) contains 50k utterances for 5,751 dif-
ferent MRs. On average, each MR is composed
of 5.43 attributes and there are 8.1 different ref-
erences for each MR on average. For the eval-
uation, we report various corpus-based metrics:
BLEU-4 (Papineni et al., 2002), NIST (Dodding-
ton, 2002) METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015). Furthermore, we report various mea-
sures for lexical diversity: number of different to-
kens (#tokens), the type-token ratio (TTR) (Chot-
los, 1944), the moving average type-token ratio
(MSTTR) (Covington and McFall, 2010), and the
measure of lexical diversity(MLTD) (McCarthy,
2005). Finally, we perform a human evaluation to
measure the effect of the proposed manipulations
on the user’s perception.

Preprocessing Each utterance is treated as a
string of characters, where each character is repre-
sented as a one-hot encoded vector. We replace the
name and near values with the tokens ‘X-name”
and “X-near” respectively. The high diversity of
the various formulations found for the attribute-
value pairs, impedes us from replacing other at-
tributes with placeholders. To generate the lexical
features, we apply the Spacy-API3 for word and
sentence tokenization.

System Setup We train the SC-LSTM and the
classifiers using AdaDelta (Zeiler, 2012) to opti-
mize the loss function. We apply a softmax with
decreasing temperature as proposed in (Hu et al.,
2017) to approximate the discrete representation,
which is used as input to the LSTM during the de-
coding stage. For the LSTM cell we use a hidden
state of size 1024 and apply dropout as suggested

3https://spacy.io/

System BLEU NIST METEOR ROUGE L CIDEr
vanilla 0.634 8.270 0.428 0.653 1.9281
tgen 0.661 8.550 0.446 0.687 2.201
utt-fw 0.581 7.983 0.427 0.591 1.810
follow-fw 0.572 7.665 0.436 0.643 1.819
form 0.623 8.161 0.432 0.657 1.992
full 0.505 7.455 0.422 0.558 1.616

Table 3: Scores achieved for the corpus-based metrics by the
different systems. The value of the best system for each score
is highlighted in bold.

in (Yarin and Ghahramani, 2016). For the classi-
fiers we use a 2-layer CNN with 256 kernels of
length 3.
We use our character-based version of the SC-
LSTM (vanilla) as well as the sequence-to-
sequence model by (Dušek and Jurcicek, 2016)
(tgen) as baseline. We evaluate different ver-
sions of our model: the model where we control
only the first word of the utterance (utt-fw), the
model where we only control the first words of the
follow-up sentences (follow-fw), the model where
we only control the formulations of the attribute-
value pairs (form), and the model where we con-
trol all three factors (full).

Output Generation The input to the system is a
meaning representation (MR) which is converted
into the MR-vector d0. For each MR, the system
samples the syntactic control values at random, i.e.
it samples the first word of the utterance, the first
words of each of the follow-up sentences and the
formulation for each attribute-value pair randomly
from the list of their respective possibilities. Then,
these syntactic features are encoded into the one-
hot format as described above. The input to the
SC-LSTM is composed of both the MR-vector and
the syntactic control vector. To ensure that the
sampling of the syntactic features did not intro-
duce semantic error, the system samples 10 differ-
ent values for each of the three control types and
produces one utterance for each combination, e.g.
the full system produces 1000 sentences for each
MR. We then use the classifiers (previously trained
to evaluate if the utterance rendered the MR cor-
rectly) to rank the 1000 utterances w.r.t. their cor-
rectness. Finally, the system samples the final ut-
terance from the set of utterances with the highest
score (as there can be multiple utterances with the
same score).
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name eatType price rating near food area fam.
1.0 0.97 0.90 0.84 0.99 0.95 0.94 0.91

Table 4: Validation Accuracy scores for each classifier.

System vanilla tgen utt-fw follow-fw form full
ERRsc 0.158 0.192 0.093 0.100 0.100 0.056
ERRrule 0.086 0.059 0.028 0.054 0.040 0.015

Table 5: Error Rate for each system, best system is high-
lighted in bold. The sc subscript denotes the scores computed
by the classifiers.

7 Results

7.1 Evaluation Metrics
We report the scores for the automatic evaluation.
This includes the metrics BLEU, ROUGE-L, ME-
TEOR, NIST, and CIDEr score, which rely on the
comparison between the predicted utterance and
multiple reference utterances. Table 3 shows that
the surface manipulation leads to a decrease in all
of these scores. The best scores for each metric
is achieved by the tgen system. Its BLEU score
is 3 points above the score achieved by vanilla.
The full system achieved the lowest scores in each
metric. Generally speaking, the deeper the impact
of the syntactic manipulation the lower the word-
overlap based score. This behaviour is explained
by the fact that the baseline systems generate utter-
ances which are syntactically similar to the most
used structure in the gold-standard. The other sys-
tems generate sentences whose style and structure
is much rarer in the gold-standard. For example,
59% of the reference utterances start with the stan-
dard pattern, whereas only 3% of the sentences
generated by the full system follow this pattern.
Although there are multiple reference utterances,
it is not likely that one of these follows the syntac-
tic choices of the syntactically controlled systems.
Table 6 displays the various lexical diversity
scores for each system as well as for the human-
written text for reference. As expected, the

System #tokens TTR MATTR MTLD
vanilla 106 0.0070 0.5410 31.4811
tgen 120 0.0081 0.5175 30.5444
utt-fw 131 0.0082 0.5980 34.2865
follow-fw 141 0.0084 0.5745 33.5055
form 155 0.0098 0.5748 33.4892
full 224 0.0134 0.6310 35.7831
human 425 0.0280 0.6373 36.4466

Table 6: Diversity scores for each system and the human
texts. The highest score of a system is marked in bold.

human-written texts display the highest diversity
across all scores. The full system achieves the
highest scores out of all systems. Furthermore,
both the vanilla and the tgen system obtain the
lowest scores, thus, showing that the syntactic
control mechanisms generate more diverse texts.

7.2 Classifier Performance

Since we use semantic classifiers to evaluate the
correctness of the generated sentences, it is impor-
tant to assess the quality of these classifiers. Table
4 shows the accuracy score for each of the clas-
sifiers on the testset. We note that all classifiers
have a score greater than 0.9 except for the cus-
tomer rating. The errors of the customer rating
and the price classifiers stem from the semantic
equivalence between the numerical and the verbal
values which were used interchangeably in the ref-
erences, e.g. when “price range is over £30” is
expressed as “high-priced”.

7.3 Correctness

We evaluate the correctness using a rule based sys-
tem. We report the average error rate achieved
by a system, as proposed by (Wen et al., 2015a),
in Table 5, line ERRrule . The best error-rate is
achieved by the full system, followed by utt-fw and
form. This shows that our approach to rerank the
utterances with the semantic classifiers works very
well. For comparison, we also report the error-
rates when using the semantic classifiers them-
selves to determine the correctness of an utterance
ERRsc . It turns out that there is a mismatch be-
tween the scores achieved by the two metrics, es-
pecially for the tgen and vanilla system. This is
due to the fact that the classifiers are used to fil-
ter the incorrect utterances, which leads the scores
to be biased. Thus, it shows that the classifiers
themselves are not suitable to compute a correct-
ness score.

7.4 Qualitative Evaluation

In Table 8 two representative (cherry picked) ex-
amples are shown. For one MR we compare the
outputs of all systems. In both examples the tgen
and vanilla system produce utterances which fol-
low the trivial pattern. The uff-fw and full systems
produce a different style of utterance by starting
the sentence with a preposition. The follow-fw
system adds more variability to the utterance by
starting the follow-up sentences with verbs (e.g.
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“Located”) or nouns (“Children”) instead of pro-
nouns referring to the restaurant name. The form
system adds more variability by using different
ways of phrasing an attribute-value pair (e.g. re-
placing “high price range” with “expensive”). We
added a list of randomly sampled (non-cherry-
picked) examples in Appendix B.

System Quality Naturalness
vanilla 3.979 2.732∗

tgen 4.013 2.591
utt-fw 4.007 2.605
follow-fw 3.992 2.576
form 4.035 2.577
full 4.033 2.540

Table 7: Quality and naturalness results from the user study.
Here, * implies a statistical significant difference between a
system and the tgen system, measured with two-tailed Stu-
dent’s t-test with p < 0.05

7.5 Human Evaluation

To measure the effectiveness of our approach, we
performed an extensive human evaluation. For
this, we recruited judges from the Figure-Eight4

platform. For each experiment the sentence is
rated by three different judges.

Quality and Naturalness To show that the syn-
tactic manipulations do not deteriorate the utter-
ances, we evaluated the quality and naturalness of
the utterances produced by the different systems.
Here, quality is defined to measure the grammat-
ical correctness, the fluency and the correctness
of the content, whereas naturalness measures the
likelihood that the utterance was written by a hu-
man. For this, we sampled 250 MR’s and gener-
ated the respective utterances for each system. The
judges rated all utterances on a Likert scale from
1 to 5 for quality and on a scale from 1 to 3 for
naturalness5. Table 7 shows the results for both
the quality and naturalness evaluation. Statistical
significance is measured by means of a two-tailed
Student’s t-test between the tgen system and the
other systems. For quality there is no statistically
significant difference between the tgen system and
any other system. For naturalness there is no sta-
tistically significant between tgen and the syntac-
tically controlled systems. However, there is a

4www.figure-eight.com
5For naturalness we asked if the utterance is likely to be

written by a human, by a machine or if it is not clear

significant difference between tgen and vanilla.
In fact, the vanilla system is rated significantly
higher in terms of naturalness than any other sys-
tem. For both metrics, the scores of all systems
are very high, thus, we conclude that the syntacti-
cal control mechanisms do not deteriorate the ut-
terances.

Subjective Analysis The main goal of the hu-
man evaluation is to understand how humans per-
ceive the new utterances. For this, we compare
the utterances of tgen and the full system by first
sampling a MR, generate the utterance for each
system, and let the human judges decide which
of the two utterances they prefer. Since prefer-
ence is a very subjective measure that might not
give complete insight, we asked the judges to also
state which utterance they find more comprehensi-
ble (is the utterance easier to understand), more
concise (does the utterance convey the informa-
tion clearly with as little text as possible), more
elegant (is the utterance more nicely written, more
poetic, display higher variability) and more profes-
sional (could this text be written by an experienced
and well trained writer). Table 9 shows the ratio
at which the system was selected for each of the
five aforementioned categories alongside the inter-
annotator agreement computed with the Fleiss’ κ.
The results show that none of the two systems is
significantly preferred by the judges, nor is any of
the two systems rated as being more comprehen-
sible. However, the judges perceive the full sys-
tem to produce significantly more elegant and pro-
fessional utterances, i.e. in 71.6% of the compar-
isons the utterances by the full system were rated
as more elegant and in 66.6% as being more pro-
fessional. On the other hand, the judges rate the
utterances of the tgen system as being significantly
more concise (75%).
There is a moderate correlation between the pref-
erence of an utterance and the elegance (Spear-
man’s Rho ρ = 0.557 ) or professionalism (
ρ = 0.569 ). Furthermore, there is a weak corre-
lation between comprehensibility of a system and
the professionalism ( ρ = 0.468). However, we
found that there is a strong correlation between the
preference and the comprehensibility of an utter-
ance (ρ = 0.719). The evaluation shows that al-
though the utterances by the full system are rated
as being more elegant and professional, they are
not necessarily preferred. The strongest indicator
for preference is, thus, the comprehensibility.
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# System Utterance
1 MR name=The Punter, eatType=pub, food=English, priceRange=high, area=city-centre, fami-

lyFriendly=no, near=Raja Indian Cuisine

vanilla The Punter is a pub that serves English food in the high price range and is located in the city centre
near Raja Indian Cuisine.

tgen The Punter is an english pub in the city centre near Raja Indian Cuisine. It has a high price range and
is not child friendly.

utt-
fw

In the city centre near Raja Indian Cuisine is a pub called The Punter. It serves English food and is
not children friendly. The price range is high.

follow-
fw

The Punter is a pub that serves English food. Located in the city centre near Raja Indian Cuisine, it is
not children friendly and has a high price range.

form The Punter is an expensive English Pub near Raja Indian Cuisine in the city centre. It is not child
friendly.

full If you are looking for a pub serving English food, try The Punter. It is located in the city centre near
Raja Indian Cuisine. Prices are on the higher end and it is not child friendly.

2 MR name=Giraffe, eatType=restaurant, food=French, area=riverside, familyFriendly=yes, near=Raja In-
dian Cuisine

vanilla Giraffe is a family friendly restaurant that serves French food. It is located near Raja Indian Cuisine.

tgen Giraffe is a family friendly french restaurant near Raja Indian Cuisine in riverside.

utt-
fw

A French restaurant called Giraffe is located in the riverside area near Raja Indian Cuisine. It is child
friendly.

follow-
fw

Giraffe is a restaurant that serves French food. The restaurant is located near Raja Indian Cuisine in
the riverside area. Children are welcome.

form Giraffe is a French restaurant in the riverside area near Raja Indian Cuisine. It is family friendly.

full In the riverside area there is a French restaurant called Giraffe. You will find it near Raja Indian
Cuisine. Yes, it is family friendly.

Table 8: Sample output of the vanilla SC-LSTM (V) and the First Word Control (F) for four different MRs where one attribute-
value is changed.

Question tgen full κ

Preference 0.476 0.523 0.587
Comprehensibility 0.476 0.523 0.555
Conciseness 0.750∗ 0.250 0.545
Elegance 0.283 0.716∗ 0.545
Professional 0.333 0.666∗ 0.529

Table 9: Results of the native speaking preference test.
Significance is computed using a two-tailed binomial test.
Where * denotes p < 0.005 and N = 200

Question tgen full κ

Preference 0.593 0.406 0.456
Comprehensibility 0.682∗ 0.317 0.453
Conciseness 0.949∗∗ 0.050 0.312
Elegance 0.424 0.575 0.497
Professional 0.740∗∗ 0.259 0.342

Table 10: Results of the non-native speaking preference test.
Significance is computed using a two-tailed binomial test,
here * denotes p < 0.05 and ** denotes p < 0.005 and
N = 200

Native vs. non-native speakers We observed
that depending on whether the judges were native
speaker or not the results were different. Thus, we
repeated the same experiment by recruiting judges

from non-native speaking countries6. Table 10
shows the results of the evaluation performed by
the non-native speaking group. The differences of
the ratings are significant. The non-native speak-
ers rate the tgen system as significantly more com-
prehensible, more concise as well as more profes-
sional. There is still a high correlation between
the preference and the comprehensibility of an ut-
terance (Spearman’s Rho ρ = 0.709). However,
for the non-native group there is a significantly
higher correlation between the comprehensibility
and the professionalism of an utterance (Spear-
man’s Rho ρ = 0.628) and a very high correla-
tion between the preference and the professional-
ism (Spearman’s Rho ρ = 0.714). This shows that
the non-native speaking group finds it easier to un-
derstand the utterances produced by tgen and rates
them as more preferable and more professional.
The evaluation shows that the two groups have
different preferences and perceptions of the utter-
ances. An in-depth analysis on the reasons behind
these differences is left to future work. Our ex-
periments indicate that the differences are due to
the differences in language proficiency, as there is

6Judges were mostly recruited from eastern European
countries and Asia.
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a high correlation between the preference and the
comprehensibility. However, to test this assump-
tion, more characteristics about the judges need to
be known.

8 Conclusion

In this work, we presented an end-to-end train-
able deep-learning based system for the natural
language generation task. With a simple control
mechanism the utterances can be rendered more
diverse and interesting. The human evaluation re-
vealed that this control mechanism does not de-
teriorate the quality of the utterances in terms of
semantic or grammatical errors. It further revealed
that more diverse utterances are perceived as being
more elegant and professional sounding to native
speakers. Not surprisingly, the corpus-based met-
rics deteriorate when a more diverse vocabulary is
used. One major challenge of this approach is the
fact that during the generation the syntactic control
features have to be sampled randomly to generate
many utterances which have to be ranked and fil-
tered. The solution to this inefficiency is part of
future work.
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A Formulations of Attribute-Values

Attribute Value Formulations

customer rating

1 out of 5 1, one, poor
3 out of 5 3, three
low low, one, poor, poorly
5 out of 5 5, five, excellent
average average, an, three, averagely
high high, highly, between, ranging

familyFriendly no not, non, adult, adults, no, allowed, allow

food

English English, British, breakfast, traditional
Fast food fast, fries, joint, American, burger
French French, wine, cheese, fine, drinks
Italian Italian, pasta
Japanese Japanese, sushi, bar

priceRange

cheap cheap, inexpensive
high high, expensive, higher, end
moderate moderate, moderately, mid, medium, pricing

less than£20
20, less, than, under, pounds,
inexpensive, below, lower

£20-25 20, from, between, mid, 20-25, ranging, around

more than £30
30, more, than, expensive, over,
higher, above, costs, euros, costing

Table 11: The most important formulations that appear in the training set for each attribute-value pair. Pairs with just a single
formulation were omitted.
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B Sampled Utterances

# System Utterance
1 MR name=The Wrestlers, eatType=restaurant, food=Italian, priceRange=moderate, area=riverside, fami-

lyFriendly=no, near=Raja Indian Cuisine,

vanilla The Wrestlers is a moderately priced Italian restaurant near Raja Indian Cuisine that is not kid friendly.

tgen The Wrestlers is a moderately priced italian restaurant in riverside near Raja Indian Cuisine. It is not
kid friendly.

utt There is a moderately priced Italian restaurant called The Wrestlers in the riverside area near Raja
Indian Cuisine. It is not kid friendly.

follow The Wrestlers is a restaurant providing Italian food in the moderate price range. The are located in
the riverside area near Raja Indian Cuisine. The restaurant is not kid friendly.

form The Wrestlers is a restaurant that serves Italian food at a moderate price range. It is located in riverside
near Raja Indian Cuisine and is not kid friendly.

full With a moderate price range, The Wrestlers is a restaurant that serves Italian food. It is located near
Raja Indian Cuisine in the riverside area. No children allowed.

human The Wrestlers is a restaurant that serves Italian food. Has a moderate price range, and is kids friendly.
Located in the riverside area near Raja Indian Cuisine.

2 MR name=Zizzi, eatType=coffee shop, customer rating=average, near=Burger King,

vanilla Zizzi is a coffee shop near Burger King with an average customer rating.

tgen Zizzi is a coffee shop near Burger King. It has an average customer rating.

utt If you are looking for a coffee shop near Burger King, try Zizzi. It has an average customer rating.

follow Zizzi is a coffee shop near Burger King. Zizzi has an average customer rating.

form Zizzi is a coffee shop near Burger King. It has an average customer rating.

full If you are looking for a coffee shop near Burger King, then you could try Zizzi. It has an average
customer rating.

human Customers rate Zizzi coffee shop, near Burger King, average.

3 MR name=The Punter, eatType=restaurant, food=Italian, priceRange=cheap, customer rating=average,
area=city centre, familyFriendly=yes, near=Rainbow Vegetarian Café,

vanilla The Punter is a family-friendly restaurant located in the city centre near Rainbow Vegetarian Café. It
is cheap and has an average customer rating.

tgen The Punter is an italian restaurant near Rainbow Vegetarian Café in the city centre. It is family-friendly
and has a cheap price range and an average customer rating.

utt Rainbow Vegetarian Café is a family-friendly restaurant called The Punter that serves Italian food and
has an average customer rating. It is located in the city centre.

follow The Punter is a cheap Italian restaurant in the city centre near Rainbow Vegetarian Café. The Punter
is family friendly and has an average customer rating.

form The Punter is an inexpensive Italian restaurant in the city centre near Rainbow Vegetarian Café. It is
family friendly and has an average customer rating.

full In the city centre is a family-friendly restaurant called The Punter. This is a cheap Italian restaurant
near Rainbow Vegetarian Café. It has an average customer rating.

human There is a cheap, restaurant that serves Italian, named The Punter, in the city centre near Rainbow
Vegetarian Café. It has an average customer rating and is family friendly

Table 12: Randomly sampled output. A meaning representation is sampled at random, the respective utterance from each
system is displayed.
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# System Utterance
1 MR name=The Cricketers, eatType=coffee shop, customer rating=average, familyFriendly=yes,

near=Café Sicilia,

vanilla The Cricketers is a coffee shop near Café Sicilia. It is family friendly and has an average customer
rating.

tgen The Cricketers is a family friendly coffee shop near Café Sicilia with an average customer rating.

utt If you are looking for a child friendly coffee shop near Café Sicilia, try The Cricketers. It has an
average customer rating.

follow The Cricketers is a coffee shop near Café Sicilia that is family friendly and has an average customer
rating.

form The Cricketers is a coffee shop near Café Sicilia. It is family friendly and has an average customer
rating.

full For a family friendly coffee shop near Café Sicilia, try The Cricketers. Customers have rated it as
average.

human Near Café Sicilia there is a coffee shop named The Cricketers. It’s family friendly with an average
rating.

2 MR name=The Waterman, eatType=restaurant, food=Italian, priceRange=less than 20, area=riverside,
familyFriendly=no, near=Raja Indian Cuisine,

vanilla The Waterman is a restaurant providing Italian food in the less than 20 price range. It is located in the
riverside. It is near Raja Indian Cuisine.

tgen The Waterman is an italian restaurant in the riverside area near Raja Indian Cuisine. It is not family-
friendly and has a price range of less than 20.

utt Italian restaurant The Waterman is located in the riverside area near Raja Indian Cuisine. It is not
family-friendly and has a price range of less than 20.

follow The Waterman is a restaurant located near Raja Indian Cuisine in the riverside area. The price range
is less than 20. They serve Italian food and are not family-friendly.

form The Waterman is a restaurant providing Italian food in the low price range. It is located in the riverside
area near Raja Indian Cuisine. It is not family friendly.

full Italian food is served at The Waterman restaurant in the riverside area near Raja Indian Cuisine. Prices
are under 20. Not family-friendly.

human The Waterman is a mature Italian restaurant near the riverside with a competitive menu for under 20,
near the Raja Indian Cuisine.

3 MR name=The Wrestlers, eatType=pub, food=Italian, priceRange=less than 20, area=riverside, fami-
lyFriendly=yes, near=Raja Indian Cuisine,

vanilla The Wrestlers is a family friendly pub near Raja Indian Cuisine in the riverside area that serves Italian
food for less than 20.

tgen The Wrestlers is a family-friendly pub near Raja Indian Cuisine in the riverside area. It serves italian
food for less than 20.

utt Italian food is served at The Wrestlers pub located near Raja Indian Cuisine in the riverside area. It is
family friendly and has a price range of less than 20.

follow The Wrestlers is a pub that serves Italian food. They are located in the riverside area near Raja Indian
Cuisine. They are family friendly and the price range is less than 20.

form The Wrestlers is a family friendly pub serving Italian food in the low price range. It is located in the
riverside area near Raja Indian Cuisine.

full On the riverside near Raja Indian Cuisine is a family friendly pub called The Wrestlers. The price
range is less than 20 and they serve Italian food.

human The Wrestlers is a pub in the low price range that serves pasta. It is located near Raja Indian Cuisine
and has a public restroom.

Table 13: Randomly sampled output. A meaning representation is sampled at random, the respective utterance from each
system is displayed.
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Abstract

The current study investigated novel tech-
niques and methods for trainable ap-
proaches to data-to-text generation. Neu-
ral Machine Translation was explored for
the conversion from data to text as well as
the addition of extra templatization steps
of the data input and text output in the con-
version process. Evaluation using BLEU
did not find the Neural Machine Trans-
lation technique to perform any better
compared to rule-based or Statistical Ma-
chine Translation, and the templatization
method seemed to perform similarly or
sometimes worse compared to direct data-
to-text conversion. However, the human
evaluation metrics indicated that Neural
Machine Translation yielded the highest
quality output and that the templatization
method was able to increase text quality in
multiple situations.

1 Introduction

Most approaches to data-to-text generation fall
into one of two broad categories: rule-based or
trainable (Gatt and Krahmer, 2018). Rule-based
systems are often characterised by a template-
based design: texts with gaps that can be filled
with information. The application of these tem-
plates generally results in high quality text (e.g.
van Deemter et al., 2005). The text quality of
trainable systems — e.g. statistical models that
select content based on what is the most likely
realization according to probability — is gener-
ally lower (Reiter, 1995) and their development
slower (Sanby et al., 2016). However, trainable
systems use data-driven algorithms and do not
rely on manually written resources for text gener-
ation, while most template systems require man-

ually written templates and rules for text gener-
ation. This makes trainable systems potentially
more adaptable and maintainable. Different ap-
proaches have been tried to decrease the building
time and cost of data-to-text systems associated
with trainable approaches, while limiting the drop
in output quality compared to rule-based data-to-
text systems (e.g. Adeyanju, 2012; Liang et al.,
2009; Mahapatra et al., 2016) by experimenting
with the trainable method.

The goal of the current study was to explore the
combination of template and trainable approaches
by giving statistical and deep learning-based sys-
tems templatized input to create templatized out-
put. The more homogeneous nature of this tem-
platized form was expected to make production of
output that is fluent and clear as well as an accurate
representation of the data more feasible compared
to their untemplatized counterpart, generally used
for trainable approaches. Furthermore, the usage
of statistical and deep learning methods reduces
the reliance on manually written resources that is
associated with most template based systems. The
approach of the current study was tested on four
corpora in the sports and weather domain, each
with divergent characteristics, to assess the use-
fulness in different situations. The output of these
systems is compared using automated metrics (i.e.
BLEU) as well as human evaluation.

2 Background

2.1 Data-to-text

Historically, most data-to-text systems use rule-
based approaches which select and fill templates
in order to produce a natural language text (e.g.
Goldberg et al., 1994; van der Lee et al., 2017)
and these approaches are still the most widely used
in practical applications (Gkatzia, 2016). This is
partly because rule-based approaches are robust
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and can produce high quality output given suf-
ficient development time and cost. In addition,
the output of these approaches is fully controlled
by humans, which make them generally accurate
in their representation of the data (e.g. van der
Lee et al., 2018). However, capturing data using
rules may be feasible for simple situations, but re-
ports in several domains often describe more com-
plex situations which would require an extensive
set of rules. Writing these rules is time intensive
and covering all distinct rules is nearly impossi-
ble for many situations. Furthermore, develop-
ing and maintaining these systems is cost intensive
and most systems are difficult to extend to other
domains. Statistical approaches may provide a so-
lution for these shortcomings. These approaches
are trained using a parallel corpus, thus require
no handcrafted rules. This also makes conversion
to other domains less time-intensive compared to
rule-based approaches.

2.2 Trainable approaches

Producing output by using such trainable ap-
proaches can be exercised in different ways.
Retrieval-based models (e.g. Adeyanju, 2012), sta-
tistical approaches, such as Hidden Markov Mod-
els (e.g. Barzilay and Lee, 2004; Liang et al.,
2009), and classification methods (Duboue and
McKeown, 2002; Barzilay and Lapata, 2005) have
all been successfully implemented. Another way
of approaching the problem is by treating it as
a translation challenge, where a machine transla-
tion system translates a data representation string
into a target language string. Several authors
have implemented Statistical Machine Translation
(SMT) methods to generate natural language using
aligned data-text test sets (e.g. Wong and Mooney,
2007; Belz and Kow, 2009, 2010; Langner et al.,
2010; Pereira et al., 2015) all obtaining promising
results. Furthermore, an SMT model was consis-
tently among the higher scores in the WEB NLG
Challenge, where the goal is to convert RDF data
to text (Castro Ferreira et al., 2017; Gardent et al.,
2017), thus showing the potential of SMT-based
methods as a viable approach to data-to-text NLG.
However, this SMT approach was less successful
in other studies in which the SMT-based method
was often outscored by other statistical approaches
according to automated metrics as well as human
evaluation (Belz and Kow, 2010).

The impressive performance of deep learning

methods on various tasks such as text summariza-
tion and machine translation suggests that Neu-
ral Machine Translation methods (NMT) might
have the potential to outperform its SMT coun-
terpart. This is also supported by results in the
WEB NLG Challenge where NMT approaches ob-
tained the highest scores on automated metrics and
among the highest on human evaluation. Wise-
man et al. (2017) found that various Neural data-
to-Text models performed relatively well on auto-
mated metrics as well as human evaluations, al-
though they still noted a significant performance
gap between these models and their baselines.

One possible reason for this performance dif-
ference Wiseman et al. (2017) found might be the
nature of the datasets used. The authors noted
that their data for one corpus was noisy and that
many texts contained information that was not
captured in the data. Other authors have also
noted that the dataset is often a bottleneck of most
trainable approaches, since many aligned data-
text corpora are relatively small (Richardson et al.,
2017). Furthermore, several data-text aligned cor-
pora used for these tasks are the input and output
of a (rule-based) data-to-text system, which means
that experiments using these corpora are perform-
ing reverse-engineering and that these results may
not reflect performance on human-written datasets
(Reiter, 2017).

2.3 Current work

The current work investigated the potential limi-
tations of automatically generated corpora by us-
ing several corpora with differing characteristics,
but also attempted to address the issue of small
datasets by exploring templatization as a possi-
ble solution. Templatization is similar to what
others call a delexicalization step, which means
that an extra step was added in the conversion
from data to text: using simple rules, gaps were
added in place of the data points in the aligned
data and text documents. After this step, SMT and
NMT techniques were trained on the aligned data-
text set and new templates were produced. Fi-
nally, these templates were filled based on a sim-
ilar ruleset that was responsible for templatizing
the data and texts. By using such an approach, the
data and texts are likely to become more homo-
geneous, which could help trainable approaches
to find data-text connections more quickly. This
means that the trainable approaches could be more

36



robust on smaller datasets and datasets with high
variety in language. Whether this hypothesis holds
true is also investigated using BLEU scores as well
as human assessment on clarity, fluency and cor-
rectness.

Combining trainable approaches with a tem-
plate representation has been done previously, but
such systems are scarce. Kondadadi et al. (2013)
are one of the first and only researchers that
have attempted this combination. However, their
research experimented with automated sentence
templatization and sentence aggregation rather
than automatically generated sentences from data
points. The aim of the current work can be seen
as an exploratory first step in building a system
that integrates these other automation techniques
to generate text from data in a fully unsupervised
fashion.

Weather.gov Prodigy- Robocup Dutch
METEO Soccer

Lines 29,792 601 1,699 6,414
Words 258,856 6,813 9,607 116,796
Tokens 955,959 32,448 45,491 524,196
Domain Weather Weather Sports Sports
Writer type Computer Human Computer Human

Table 1: Characteristics of the (text-part of the) corpora used
in this study.

3 Datasets and approaches

3.1 Datasets
A total of four different datasets were used in the
current study, two datasets contain weather re-
ports and two contain sports reports. Furthermore,
one weather dataset and one sports dataset con-
tain texts that resulted from (mainly) rule-based
data-to-text generation, while the other weather
and sports datasets contain human-written texts.
Characteristics of these datasets are described in
Table 1 and below.

3.1.1 Weather.gov
For this dataset, Liang et al. (2009) col-
lected weather forecasts from http://www.
weather.gov. These weather forecasts contain
information on weather aspects, such as temper-
ature, wind speed, and cloudiness. The original
data representation was modified to reduce noise
and to ensure that the data input representation and
text documents both represented the same data.
Furthermore, tags were added since previous re-
search found this to be the representation result-
ing in the highest quality output (Belz and Kow,
2010). The complete forecast texts were reduced

Data type Example
Original input temperature.time:17-30 temperature.min:24 temperature.mean:28
representation temperature.max:38 (...) sleetChance.mode:–
Tagged input skyCover mode: 0-25 temperature minmeanmax
representation temperature mode: 24-28-38
Templatized tagged skyCover mode: <cloud data> temperature minmeanmax
input representation temperature mode: <temperature>
Retrieval (direct) mostly clear , with a low around 21 .
Retrieval (templatized) <cloud data> , with a

<high near low around steady temperature> <temperature> .
Retrieval (filled) sunny , with a high near 38 .
SMT (direct) mostly clear , with a low around 22 .
SMT (templatized) <cloud data> , with a

<high near low around steady temperature> <temperature> .
SMT (filled) sunny , with a high near 38 .
NMT (direct) mostly clear , with a low around 22 .
NMT (templatized) <cloud data> , with a

<high near low around steady temperature> <temperature> .
NMT (filled) sunny , with a high near 38 .

Table 2: Examples of the (original and applied) data represen-
tation and text output examples for the Weather.gov corpus

to the first sentence to enable equal sentence-
based data-to-text generation across all domains.
This resulted in a total of 29,792 data-text pairs.
The texts were most likely computer-generated,
with possibly some human post-processing (Re-
iter, 2017).

3.1.2 Prodigy-METEO

Data type Example
Original input [[1, SSW,10,14,-,-,0600],[2, WSW,14,18,-,-,1200],
representation [3, W,10,14,-,-,0000]]
Tagged input WindDir.1: SSW WindSpeedMin.1: 10 WindSpeedMax.1: 14
representation Time.1: 0600 (...) Time.3: 0000
Templatized tagged WindDir.1: <wind direction> WindSpeed.1: <wind speed min>
input representation WindSpeed.1: <wind speed max> (...) Time.3: <time>
Retrieval (direct) ssw 10-14 veering wsw 14-18 by midday easing w’ly 10-14 by

late evening
Retrieval (templatized) <wind direction> <wind speed> <wind direction change>

<wind direction> <wind speed> <time> ,
<wind speed change> <wind direction> <wind speed>
<time>

Retrieval (filled) ssw 10-14 veering wsw 14-18 by midday, rising w 10-14 by
late evening

SMT (direct) ssw 10-14 veering wsw 14-18 by midday easing w’ly 10-14 by
late evening

SMT (templatized) <wind direction> <wind speed> <wind direction change>
<wind direction> <wind speed> <time>
<wind direction change> <wind direction> <wind speed>
<time>

SMT (filled) ssw 10-14 veering wsw 14-18 by midday veering w 10-14 later
NMT (direct) ssw 10-14 veering wsw 14-18 by midday easing w’ly 10-14 by

late evening
NMT (templatized <wind direction> <wind speed> <wind direction change>

<wind direction> <wind speed> <time> then
<wind direction change> <wind direction> <wind speed>
<time>

NMT (filled) ssw 10-14 veering wsw 14-18 by afternoon then veering w 10-14
later

Table 3: Examples of the (original and applied) data repre-
sentation and text output examples for the Prodigy-METEO
corpus

Prodigy-METEO — a dataset derived from
SumTime-Meteo — was used as the second
weather dataset (Belz, 2008; Sripada et al., 2002).
This dataset contains human-written texts on wind
data. The dataset contains a total of 601 lines. The
original input vector representation was also mod-
ified to a tagged input representation inspired by
the tagged input vector of Belz and Kow (2010).
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Data type Example
Original input badPass.arg1: purple11 badPass.arg2: pink9 turnover.arg1:
representation purple11 turnover.arg2: pink9
Tagged input turnover.arg1: purple11 turnover.arg2: pink9 badPass
representation
Templatized tagged turnover.arg1: <player 1 team 1> turnover.arg2:

<player 1 team 2> badPass
Retrieval (direct) purple11 tries to pass to purple10 but was picked off by pink3
Retrieval (templatized) <player 1 team 1> turned the ball over to <player 1 team 2>
Retrieval (filled) purple11 makes a bad pass that picked off by pink9
SMT (direct) purple11 makes a bad pass that was intercepted by pink9
SMT (templatized) <player 1 team 1> makes a bad pass that was picked off by

<player 1 team 2>
SMT (filled) purple11 makes a bad pass that was picked off by pink9
NMT (direct) purple11 loses the ball to pink9
NMT (templatized) <player 1 team 1> makes a bad pass that was picked off by

<player 1 team 2>
NMT (filled) purple11 makes a bad pass that was picked off by pink9

Table 4: Examples of the (original and applied) data represen-
tation and text output examples for the Robocup Sportscast-
ing corpus

3.1.3 Robocup Sportscasting

This dataset — created by Chen and Mooney
(2008) — provides data and texts on the 2001-
2004 Robocup finals. Each sentence represents
one match event and commentary fragment of the
game. These sentences were created using a data-
to-text system. The original dataset was slightly
altered by removing data-text lines where the data
did not (fully) represent the content of the text and
a tagged input representation similar to the other
datasets was added, resulting in 1699 aligned data-
text lines. These lines represent match events such
as passes, goals, interceptions, tackles, and pos-
session.

3.1.4 Dutch Soccer

In addition to the other corpora, an aligned data-
text corpus was created for this work. Dutch soc-
cer reports on Eredivisie matches from the 15/16
and 16/17 season were scraped from ten news
websites. Additionally, texts from the Dutch part
of the MeMo FC corpus (Braun et al., in press)
were added, which are soccer texts scraped from
Eredivisie club websites (season 15/16). Data was
scraped from Squawka for these Eredivisie sea-
sons.1 After collecting the data, a script was writ-
ten to tokenize the soccer reports, align the match
data and soccer matches, and connect match sen-
tences to specific match events in the data input us-
ing data-text overlap and simple word occurrence
heuristics. After running this alignment script, a
total of 6,414 sentences were found that described
goals (regular, penalty and own goals), yellow
cards and red cards.

1https://github.com/emanjavacas/
squawka-scraper

Data type Example
Original input –
representation
Tagged input CardPlayer Name: Jurgen Mattheij CardPlayer Surname: Mattheij
representation (...) OtherTeam: Roda JC Kerkrade ; home
Templatized tagged CardPlayer Name: <card player> CardPlayer Surname:
input representation <card player> (...) OtherTeam: <other team>
Retrieval (direct) rood voor jurgen mattheij , die wel knuffels van zijn

ploeggenoten ontvangt
red card for jurgen mattheij, who does receive hugs from his
teammates

Retrieval (templatized) <team> speelden <time> met tien man na een rode kaart voor
<card player> en bezitten momenteel de twaalfde positie in de
eredivisie .
<team> played with ten men <time> after a red card for
<card player> and posses the twelfth place in the eredivisie .

Retrieval (filled) excelsior speelden vlak voor tijd met tien man na een rode kaart
voor Jurgen Mattheij en bezitten momenteel de twaalfde positie
in de eredivisie .
excelsior played with ten men at the end after a red card for
Jurgen Mattheij and posses the twelfth place in the eredivisie .

SMT (direct) na een rode kaart voor een Jurgen Mattheij Mattheij ook bij de
eerste rode kaart kreeg , maar zijn roda jc .
after a red card for Jurgen Mattheij Mattheij also received with
the first red card , but his roda jc .

SMT (templatized) na <time> minuten met tien man verder nadat <card player>
met zijn eerste doelpunt voor <team>
continue with ten men after <time> minutes after <card player>
with his first goal for <team>

SMT (filled) na zeventien minuten met tien man verder nadat Jurgen Mattheij
met zijn eerste doelpunt voor excelsior

NMT (direct) tien minuten voor tijd kreeg milot rashica zijn tweede gele kaart .
milot rashica received his second yellow card ten minutes before
the end .

NMT (templatized) <card player> kreeg zijn tweede gele kaart .
<card player> received his second yellow card .

NMT (filled) Jurgen Mattheij kreeg zijn tweede gele kaart .
Jurgen Mattheij received his second yellow card .

Table 5: Examples of the (original and applied) data represen-
tation and text output examples for the Dutch Soccer corpus

3.2 Applied methods

Texts and data from the aforementioned datasets
served as input and as training (80%), develop-
ment (10%) and test (10%) set for three forms of
trainable data-to-text approaches. Two of them are
translation based (NMT and SMT), while the third
was a retrieval-based method that served as a base-
line. These methods are described in more detail
below.

3.2.1 Sentence retrieval

The first method used was a retrieval-based
method. Lines from the data representation in
the test-set were matched with lines from the
data representation in the train-set and assigned
a score based on cosine similarity. Cosine simi-
larity scores were obtained by converting the data
representation of the target sentence into a bag of
words, and doing the same for the data represen-
tations in the training set. Subsequently, the (nor-
malized) similarity between the unweighted target
data representation and the data representations in
the training set is calculated. The line from the
train-set with the highest score was chosen and
the aligned text sentence was produced as output.
A random choice was made between sentences
if there were multiple sentences with the highest
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Corpus Distor- LM Word Phrase Translation Unknown
tion Penalty Penalty Model Word

Penalty
Weather.gov 0.6 0.8 -1 1e-4 0.6, 1e-4 2

0.6, 1e-4
Prodigy-METEO 0.19 0.69 0 0.29 0.2 0.13

0.13, 0.36
Robocup 0.3 0.5 -1 0.2 0.2, 0.2 0

0.2, 0.2
Dutch Soccer 1e-4 0.8 -3 1e-4 1e-4, 0.6 3

0.6, 0.6

Table 6: MOSES parameters per corpus.

Corpus Layers RNN Word Drop- Learn- Learning Batch Beam
Size Vec out ing Rate Size Size

Size Rate Decay
Weather.gov 1 850 1000 0.15 0.4 0.51 32 5
Prodigy-METEO 1 440 620 0.6 0.4 0.6 1 15
Robocup 1 1230 770 0.39 1 0.6 32 15
Dutch Soccer 2 520 1000 0.15 0.72 0.44 41 14

Table 7: OpenNMT parameters per corpus.

score.

3.2.2 Statistical Machine Translation
The MOSES toolkit (Koehn et al., 2007) was used
for SMT. This Statistical Machine Translation sys-
tem uses Bayes’s rule to translate a source lan-
guage string into a target language string. For
this, it needs a translation model and a language
model. The translation model was obtained from
the parallel corpora described above, while the
language model used in the current work is ob-
tained from the text part of the aligned corpora.
Translation in the MOSES toolkit is based on a
set of heuristics. Parameters of these heuristics
were tuned for each corpus using Bayesian Op-
timization2 (Snoek et al., 2012). The parameters
that returned the highest BLEU score for the non-
templatized data were chosen as default parame-
ters for the non-templatized as well as the tem-
platized SMT model. See Table 6 for parameter
information.

3.2.3 Neural Machine Translation
Besides Statistical Machine Translation, a Neu-
ral Machine Translation approach was explored as
well for the current work. These models were
trained using the OpenNMT-py toolkit (Klein
et al., 2017). Parameters were chosen using the
same Bayesian optimization method as was used
for SMT. For the smaller corpora (i.e. Prodigy-
METEO and Robocup), pre-trained word embed-
dings were also added to the train model, since
these are known to boost performance in low-
resource scenarios (Qi et al., 2018). The detailed
parameter settings are in Table 7.

2https://github.com/fmfn/
BayesianOptimization

4 Templatization and lexicalization
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Figure 1: Direct method of data-to-text conversion.
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Figure 2: Templatization method of data-to-text conversion.

The current work investigated differences in out-
put quality for data-to-text generation using ’di-
rect’ data-to-text conversion and extended models
(see figure 1). For this extended model, the input
representation and the text examples in the train
and development set were ’templatized’. This
means that the natural language sentences were
converted to templates by replacing (sets of) words
that directly represent (pieces of) data with slots.
This replacement was done using a simple set
of rules derived from consistencies in the text
and data. After this templatization step the data-
to-template generation was performed using the
methods described in section 3.2, thus generat-
ing template sentence texts similar to the ones ob-
tained with the templatization of the text. These
obtained templates were finally lexicalized again
using similar rules used for the templatization
step. Using the original data, gaps were filled with
the appropriate information. If multiple options
were available to fill the gaps, a weighted random
choice was made based on the occurrences of the
possibilities in the training set (see figure 2). Thus,
after these steps full natural language sentences
were created based on a set of (templatized) data.3

5 Results automated evaluation

The quality of the generated sentences was as-
sessed using NLTK’s corpus bleu that calculates
BLEU scores based on 1-grams to 4-grams with
equal weights and accounts for a micro-average
precision score based on Papineni et al. (2002).
Automated metrics such as BLEU have been crit-
icized over the last few years (e.g. Reiter, 2018;
Novikova et al., 2017). Especially in the context
of NLG. However, Reiter (2018) also suggested
that the metric can be used — albeit with caution

3Code for, and examples of, these steps can be
found at https://github.com/TallChris91/
Automated-Template-Learning
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Retrieval SMT NMT
Corpus Templates Templates Direct Templates Templates Direct Templates Templates Direct

(unfilled) (filled) (unfilled) (filled) (unfilled) (filled)
Weather.gov 63.94 34.52 69.57 89.29 36.56 61.92 89.85 36.93 78.90
Prodigy-METEO 44.47 27.65 23.66 39.32 26.15 30.37 45.03 26.52 27.82
Robocup 31.39 30.73 22.38 40.77 38.18 39.04 38.98 36.62 37.50
Dutch Soccer 2.49 1.65 4.99 1.64 0.90 2.10 1.95 1.23 1.70

Table 8: BLEU scores obtained for the different corpora with the techniques used in this study.

— for translation tasks, which the current task is
in some way. Furthermore, correlations have been
found between automated metrics and human rat-
ings (e.g. Belz and Reiter, 2006). Therefore, the
BLEU scores were seen as a first step to investi-
gate differences between methods and corpora.

The BLEU scores show that the computer-
generated corpora yielded the best results, with
Weather.gov showing the best performance com-
pared to the other corpora with BLEU scores for
the lexicalized output varying from 34.52 (re-
trieval using the templatization method) to 78.90
(NMT using the direct method). This seems intu-
itively logical since the Weather.gov corpus is rel-
atively large, and the sentences are also the most
homogeneous out of the corpora, which makes
producing output similar to the training data a fea-
sible task. Results for the smaller Robocup soccer
corpus are decent, but not as good as Weather.gov
with BLEU scores for the lexicalized output rang-
ing from 22.38 (retrieval using the direct method)
to 39.04 (SMT using the direct method). While
Prodigy-METEO is human-written, its sentence
structure is still quite consistent, which might ex-
plain why its BLEU scores are not that far re-
moved from those for computer-generated cor-
pora with scores for the lexicalized output between
23.66 (retrieval using the direct method) and 30.37
(SMT using the direct method). Low BLEU scores
were obtained for sentences from the Dutch Soc-
cer corpus, with lexicalized output ranging from
0.90 (SMT using the templatization method) to
4.99 (Retrieval using the direct method). The low
BLEU scores might indicate two things. First, it is
possible that the systems struggle with the hetero-
geneous nature of the Dutch Soccer texts which re-
sults in low text quality output. However, the same
heterogeneous nature might also make it difficult
to use BLEU scores as an indication for text qual-
ity, since it is known to be difficult to find a good
gold standard for corpora with diverse language.

BLEU scores for techniques do not show large
differences: especially the sentences generated by

SMT and NMT obtained close BLEU scores. In-
terestingly, the sentences produced using cosine
similarity based retrieval seems to be consistently
outperformed by the translation methods, with the
exception of the Dutch Soccer corpus, which sug-
gests that text generation is preferred over sim-
ple retrieval. The templatized (filled) and direct
methods also scored roughly equal. The exception
involves the Weather.gov corpus, where the di-
rect method resulted in much higher BLEU scores
compared to its templatized counterpart. Although
the results are equal, the metrics show a large de-
crease in BLEU scores when lexicalizing the tem-
plates. This means that the templatization method
has the potential to significantly outperform the di-
rect method if the quality of the lexicalization step
is improved. See Table 8.

6 Results human evaluation

6.1 Method

Besides an automated metric, a human evalua-
tion was carried out to measure the perceived text
quality of sentences from the investigated cor-
pora, techniques and methods. A total of 24
people — all native Dutch students and (junior)
colleagues not involved in this research — par-
ticipated by filling out an online Qualtrics sur-
vey. Participants were asked to rate sentences
generated by the previously described techniques
and methods on the aforementioned corpora. For
this, a 4 (Corpus: DutchSoccer, Weather.gov,
Robocup, Prodigy-METEO) x 3 (Technique: Re-
trieval, SMT, NMT) x 2 (Method: Templatized,
Direct) within-subjects design was implemented.
The participants rated 4 sentences per condition —
each connected to different data — resulting in a
total of 96 sentences that were rated by humans
(Krippendorff’s α = 0.39; Weighted κ = 0.07).

The participants judged the quality of the sen-
tences on seven-point Likert-scales. These scales
measured fluency: how fluent and easy to read the
report is (‘This text is written in proper Dutch’,
‘This text is easily readable’), clarity: how clear
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Retrieval SMT NMT
Corpus Templates Direct Templates Direct Templates Direct

Fluency

Weather.gov 4.08 (1.04) 5.32 (0.88) 5.24 (0.95) 4.76 (0.79) 5.00 (0.97) 5.50 (1.02)
Prodigy-METEO 3.27 (1.13) 2.81 (1.14) 2.99 (1.16) 3.02 (1.13) 3.31 (1.47) 3.27 (1.43)
Robocup 5.21 (0.99) 5.46 (1.05) 5.70 (0.99) 4.82 (1.20) 5.59 (1.04) 5.67 (1.11)
Dutch Soccer 4.12 (0.99) 5.33 (0.91) 2.11 (0.97) 1.78 (0.85) 6.10 (0.84) 5.73 (0.84)

Clarity

Weather.gov 4.36 (1.14) 5.52 (0.99) 5.45 (1.02) 5.24 (1.02) 5.13 (1.26) 5.69 (1.04)
Prodigy-METEO 2.94 (1.24) 2.73 (1.26) 2.82 (1.27) 2.96 (1.16) 3.25 (1.57) 3.29 (1.47)
Robocup 5.59 (0.96) 5.73 (1.03) 5.96 (0.92) 5.11 (1.22) 5.84 (0.98) 5.78 (1.37)
Dutch Soccer 4.85 (1.16) 5.52 (0.90) 2.43 (0.99) 1.94 (0.90) 6.10 (0.92) 5.74 (0.83)

Correctness

Weather.gov 3.34 (0.91) 3.92 (0.90) 2.55 (0.90) 2.70 (1.04) 4.03 (1.04) 3.22 (1.26)
Prodigy-METEO 4.17 (1.22) 3.21 (0.97) 3.88 (1.23) 3.72 (1.20) 3.99 (1.18) 3.56 (0.88)
Robocup 5.06 (1.14) 3.83 (1.08) 5.78 (1.08) 5.23 (1.13) 5.70 (1.09) 5.68 (0.92)
Dutch Soccer 3.34 (0.91) 3.92 (0.90) 2.55 (0.90) 2.70 (1.04) 4.03 (1.04) 3.22 (1.26)

Table 9: Mean fluency, clarity, and correctness scores for the different corpora, techniques and methods. SD is represented
between brackets

and understandable the report is (‘While reading,
I immediately understood the text’), and correct-
ness: how well the information the report is based
on is represented in the report itself (‘This report
does not include extraneous or incorrect informa-
tion’, ‘This report does not omit important infor-
mation’). In order to give ratings on the latter cate-
gory, participants were provided with a table con-
taining the information used to generate the sen-
tences, followed by six sentences that were gen-
erated by the total of six different techniques and
methods used in this study. The results were then
analyzed using a repeated measures analysis of
variance to investigate the effects of the corpus,
techniques and methods on text perceptions of flu-
ency, clarity and correctness. Post hoc effects were
subsequently measured with a simple effects anal-
ysis using the Least Significant Difference test.4

6.2 Fluency

For fluency, a main effect was found for corpus
(F(1.89, 43.57) = 56.82, p < .001), as well as
technique (F(2, 46) = 107.13, p < .001), but not
for method (F(1, 23) = 2.22, p = .15). Sentences
based on Robocup data resulted in the highest flu-
ency scores (M = 5.41, SD = 0.90), followed by the
Weather.gov corpus (M = 4.98, SD = 0.75), Dutch
Soccer corpus (M = 4.20, SD = 0.50), and Prodigy-
METEO corpus (M = 3.11, SD = 1.12). Further-
more, sentences generated with NMT generation
returned the highest scores on fluency (M = 5.02,
SD = 0.76), followed by Retrieval (M = 4.45, SD

4 Mauchlys Test of Sphericity showed that the sphericity
assumption was violated for corpus, corpus x technique, and
corpus x technique x method in the case of fluency, as well
as clarity. Also for technique, corpus x technique, corpus x
method, and technique x method in the case of correctness.
Therefore, the Greenhouse-Geisser correction was used for
the analyses of these effects.

= 0.70), and SMT (M = 3.80, SD = 0.55) (see table
9).

A significant interaction was also found for cor-
pus x technique (F(3.07, 70.61) = 87.85, p <
.001). NMT resulted in the highest fluency scores
for most corpora, except for the Prodigy-METEO
corpus where all techniques performed similarly
on fluency. A significant interaction was also
found for corpus x method (F(3, 69) = 8.08, p <
.001), where the templatization method returned
higher fluency scores for the Dutch Soccer and the
direct method resulted in higher fluency scores for
the Weather.gov corpus. Furthermore, a signifi-
cant interaction was found for technique x method
(F(2, 46) = 29.76, p< .001): the fluency scores for
the retrieval method were higher when the direct
method was used, while the templatization method
resulted in higher scores for SMT. A further nu-
ance in this finding can be given with the signifi-
cant three-way interaction for corpus x technique
x method (F(2.83, 65.08) = 13.89, p < .001). The
templatization method combined with NMT re-
sulted in higher fluency scores for the soccer cor-
pus, but lower scores for the Weather.gov corpus.
The same method combined with SMT resulted
in higher scores compared to its direct counter-
part for all corpora except Prodigy-METEO. For
retrieval, the direct method gave higher fluency
scores for all corpora.

These scores show that, in general, NMT pro-
duces the most fluent sentences. Whether the tem-
platization method or direct method returns the
most fluent output depends on the corpus and tech-
nique used. For SMT, the templatization method
seems the clear winner, but for retrieval and NMT
effectiveness of the templatization method differs
per corpus. Interestingly, out of all the conditions,
the highest fluency scores were obtained for the
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Dutch Soccer corpus (NMT with the templatiza-
tion method), while the BLEU scores for this cat-
egory were fairly low.

6.3 Clarity

The overall scores for clarity look similar to those
of fluency. A main effect for corpus was found
(F(2.08, 47.72) = 69.90, p < .001), as well as
technique (F(2, 46) = 69.21, p < .001), but not
for method (F(1, 23) = 1.64, p = .21). Sentences
based on Robocup (M = 5.67, SD = 0.89) were
considered the clearest, followed by Weather.gov
(M = 5.23, SD = 0.89), Dutch Soccer (M = 4.43,
SD = 0.48), and Prodigy-METEO (M = 3.00, SD
= 1.23). For technique, the lowest clarity scores
were found for SMT generated sentences (M =
3.99, SD = 0.61), Retrieval-based sentences (M =
4.66, SD = 0.76) did slightly better, and sentences
generated by NMT received the highest clarity
scores (M = 5.10, SD = 0.83) (see table 9).4

All investigated interactions for clarity were
significant (Corpus x technique: F(3.26, 74.89) =
57.936, p < .001; Corpus x method: F(3, 69) =
11.18, p < .001; Technique x method: F(2, 46) =
23.01, p < .001; Corpus x technique x method:
F(3.81, 87.56) = 6.03, p < .001). The corpus
x technique analysis shows that NMT generated
sentences produce the most clear sentences for
the Dutch Soccer corpus and the Prodigy-METEO
corpus, and NMT and SMT had the shared highest
clarity scores for the Weather.gov corpus. No dif-
ferences in clarity were found for Robocup. Cor-
pus x method results showed no significant differ-
ence for the Dutch Soccer and Prodigy-METEO
corpus. The direct method resulted in signifi-
cantly higher scores for the Weather.gov corpus,
while sentences generated with the templatiza-
tion method resulted in higher clarity scores for
Robocup sentences. From the technique x method
interaction it was observed that Retrieval com-
bined with the direct method resulted in higher
clarity scores compared to its templatization coun-
terpart. The opposite is the case for SMT gen-
erated sentences, where templatization resulted in
higher clarity scores. The three-way interaction of
corpus x technique x method showed that NMT
produces more clear sentences using the templa-
tization method for the Dutch Soccer corpus and
less clear sentences with templatization for the
Weather.gov corpus compared to its direct coun-
terpart. Retrieval combined with the direct method

scored higher on these corpora with the direct
method (vs. templatized), and SMT obtains higher
clarity scores for the Dutch Soccer and Robosoc-
cer corpus if the templatization method is applied
(vs. templatized).

Overall, models trained on the computer-
generated corpora gave the clearest output and,
similar to fluency, sentences produced with NMT
resulted in the highest clarity scores. Templatiza-
tion was also overall more effective for SMT com-
pared to the direct method, while templatization
for NMT was mostly effective for the Dutch Soc-
cer corpus. The clarity scores for the NMT with
templatization method for the Dutch Soccer cor-
pus resulted in the overall highest clarity scores,
besides fluency scores as well.

6.4 Correctness

Significant main effects of correctness were found
for corpus (F(3, 69) = 32.86, p < .001), technique
(F(1.58, 36.37) = 9.25, p = .001), and method
(F(1, 23) = 9.77, p = .005). Sentences from the
Robocup corpus were deemed the most correct (M
= 5.21, SD = 0.92), followed by Weather.gov (M
= 4.04, SD = 0.84), with Prodigy-METEO (M =
3.76, SD = 0.88) and Dutch Soccer (M = 3.29, SD
= 0.76) in shared last place. For technique, NMT
generated sentences were perceived as the most
correct (M = 4.27, SD = 0.63). SMT (M = 4.01,
SD = 0.72) and Retrieval (M = 3.94, SD = 0.61)
did not score significantly different. The results
for method showed that templatization resulted in
higher correctness scores (M = 4.19, SD = 0.69)
than the direct method (M = 3.96, SD = 0.59) (see
table 9).

Significant interactions were found for corpus x
technique (F(3.64, 83.77) = 20.22, p < .001), cor-
pus x method (F(2.23, 51.29) = 9.24, p < .001),
and corpus x technique x method (F(6, 138) =
15.00, p < .001), but not for technique x method
(F(1.31, 30.12) = 0.18, p = .84). The corpus x
technique interaction shows that SMT generated
sentences were perceived as significantly less cor-
rect for the Dutch Soccer corpus (vs. Retrieval
and NMT), and Retrieval based sentences deemed
less correct for Robocup sentences (vs. SMT and
NMT). Corpus x method shows that the templa-
tization method resulted in higher perceived cor-
rectness for the Robocup and Prodigy-METEO
corpora compared to its direct counterpart. Fi-
nally, the three way corpus x technique x method
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interaction shows that templatization combined
with NMT resulted in higher correctness scores for
Dutch Soccer but lower for Prodigy-METEO (vs.
direct). Direct was superior for all corpora when
used with a retrieval technique, and the templati-
zation method combined with SMT gives higher
scores for the Robocup corpus (vs. direct).

In general, the models trained on the computer-
generated corpora produced the most correct sen-
tences. Furthermore, NMT and the templati-
zation method were found to be effective tech-
niques/methods to increase correctness. The fact
that templatization increases correctness makes
sense since the separate lexicalization step for
information ensures that correct information is
added to a sentence that is based on the data. This
is not necessarily the case with the direct method.

7 Discussion and conclusion

This paper investigated ways to reduce the reliance
on rule-based systems when converting data to
natural language text. The use of deep learning
methods in the form of NMT, and a method where
input and output forms were templatized before
converting the output template sentences to natu-
ral language text were explored. This (relatively)
novel NMT approach was compared to more es-
tablished approaches (i.e. Retrieval and SMT).
Furthermore, the templatization method was com-
pared to its direct counterpart that directly converts
a data input representation to a natural language
text. Sentences were generated for four corpora
(two human-written, two computer-generated; two
in the sports domain, two in the weather domain).
Results of these different forms of generation were
then compared using BLEU scores as well as hu-
man metrics.

Results of the BLEU scores suggested that
the different techniques and approaches ob-
tain the highest text quality when trained on
computer-generated corpora, with techniques and
approaches trained on the Dutch Soccer corpus
generating the lowest text quality output. Further-
more, the Retrieval approach seemed to perform
the best in general, and SMT and NMT obtained
similar scores to each other. Finally, based on the
BLEU scores, the templatization method did not
seem to improve output quality when compared
to its direct counterpart: similar or higher BLEU
scores were found for the direct method.

However, the BLEU results were not corrob-

orated by the results from human evaluation.
While the output quality differed per technique,
sentences for the Dutch Soccer corpus achieved
scores similar or higher than sentences based on
other corpora on both fluency, clarity and cor-
rectness. Furthermore, the performance of NMT
seemed to be good compared to SMT and Re-
trieval. NMT generated sentences obtained the
highest scores on both fluency, clarity and cor-
rectness. Also, the templatization method has
the potential to increase output quality. Both the
SMT and NMT method achieved higher fluency,
clarity and correctness scores on sevaral corpora
with the templatization method (vs. direct). This
method especially seemed to boost performance
on the Dutch Soccer corpus: this corpus is the
most noisy out of the corpora and contains the
most heterogeneous language. Therefore, the tem-
platization method seems to be a useful step for
human-written corpora.

The current paper should be seen as a first ex-
ploratory step in automating data-to-text systems:
the investigated methods could save time and re-
sources compared to a fully rule-based approach,
but the steps to templatize data and text for the cur-
rent article were still rule-based, which still takes
manual effort and turned out to decrease output
quality based on the BLEU scores. A system that
does these conversions automatically would be an
interesting avenue for further research. It would
also be interesting to extend the current approach
to (templated) sentence learning by comparing the
translation method to statistical generation tech-
niques such as HMM (e.g. Barzilay and Lee, 2004;
Liang et al., 2009) or LSTM (Wen et al., 2015).
Other steps in the data-to-text conversion process
would be worth investigating as well. For instance
automated alignment of data and text, or methods
that convert data into the optimal data input rep-
resentation format, or automated sentence aggre-
gation methods to produce full texts. Further re-
search can also focus on making the output more
diverse by adding strategies for lexical variation
(Guerini et al., 2011; Gatti et al., 2014). The cur-
rent results would suggest that combining these
steps with the described templatization method,
and with NMT, has the potential to further ap-
proach the text quality of rule-based systems, and
increase overall performance of trainable data-to-
text approaches. Especially with noisy human-
written corpora containing diverse language.
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Curry, and Verena Rieser. 2017. Why we need new
evaluation metrics for NLG. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2241–2252,
Copenhagen, Denmark.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
United States.
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Abstract

Learning to generate fluent natural lan-
guage from structured data with neural
networks has become an common ap-
proach for NLG. This problem can be
challenging when the form of the struc-
tured data varies between examples. This
paper presents a survey of several exten-
sions to sequence-to-sequence models to
account for the latent content selection
process, particularly variants of copy at-
tention and coverage decoding. We fur-
ther propose a training method based on
diverse ensembling to encourage models
to learn distinct sentence templates during
training. An empirical evaluation of these
techniques shows an increase in the qual-
ity of generated text across five automated
metrics, as well as human evaluation.

1 Introduction

Recent developments in end-to-end learning with
neural networks have enabled methods to gener-
ate textual output from complex structured inputs
such as images and tables. These methods may
also enable the creation of text-generation mod-
els that are conditioned on multiple key-value at-
tribute pairs. The conditional generation of flu-
ent text poses multiple challenges since a model
has to select content appropriate for an utter-
ance, develop a sentence layout that fits all se-
lected information, and finally generate fluent lan-
guage that incorporates the content. End-to-end
methods have already been applied to increas-
ingly complex data to simultaneously learn sen-
tence planning and surface realization but were of-
ten restricted by the limited data availability (Wen
et al., 2015; Mei et al., 2015; Dušek and Jurčı́ček,
2016; Lampouras and Vlachos, 2016). The re-

MR

name: The Golden Palace,
eatType: coffee shop,
food: Fast food,
priceRange: cheap,
customer rating: 5 out of 5,
area: riverside

Reference

A coffee shop located on the riverside
called The Golden Palace,
has a 5 out of 5 customer rating.
Its price range are fairly cheap
for its excellent Fast food.

Figure 1: An example of a meaning representa-
tion and utterance pair from the E2E NLG dataset.
Each example comprises a set of key-value pairs
and a natural language description.

cent creation of datasets such as the E2E NLG
dataset (Novikova et al., 2017) provides an oppor-
tunity to further advance methods for text gener-
ation. In this work, we focus on the generation
of language from meaning representations (MR),
as shown in Figure 1. This task requires learn-
ing a semantic alignment from MR to utterance,
wherein the MR can comprise a variable number
of attributes.

Recently, end-to-end generation has been han-
dled primarily by Sequence-to-sequence (S2S)
models (Sutskever et al., 2014; Bahdanau et al.,
2014) that encode some information and decode
it into a desired format. Extensions for summa-
rization and other tasks have developed a mecha-
nism to copy words from the input into a generated
text (Vinyals et al., 2015; See et al., 2017).

We begin with a strong S2S model with copy-
mechanism for the E2E NLG task and include
methods that can help to control the length of
a generated text and how many inputs a model
uses (Tu et al., 2016; Wu et al., 2016). Finally,
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we also present results of the Transformer archi-
tecture (Vaswani et al., 2017) as an alternative S2S
variant. We show that these extensions lead to im-
proved text generation and content selection.

We further propose a training approach based
on the diverse ensembling technique (Guzman-
Rivera et al., 2012). In this technique, multiple
models are trained to partition the training data
during the process of training the model itself,
thus leading to models that follow distinct sen-
tence templates. We show that this approach im-
proves the quality of generated text, but also the
robustness of the training process to outliers in the
training data.

Experiments are run on the E2E NLG chal-
lenge1. We show that the application of this tech-
nique increases the quality of generated text across
five different automated metrics (BLEU, NIST,
METEOR, ROUGE, and CIDEr) over the multiple
strong S2S baseline models (Dušek and Jurčı́ček,
2016; Vaswani et al., 2017; Su et al., 2018; Fre-
itag and Roy, 2018). Among 60 submissions to the
challenge, our approach ranked first in METEOR,
ROUGE, and CIDEr scores, third in BLEU, and
sixth in NIST.

2 Related Work

Traditional approaches to natural language gener-
ation separate the generation of a sentence plan
from the surface realization. First, an input is
mapped into a format that represents the lay-
out of the output sentence, for example, an ad-
equate pre-defined template. Then, the surface
realization transforms the intermediary structure
into text (Stent et al., 2004). These represen-
tations often model the hierarchical structure of
discourse relations (Walker et al., 2007). Early
data-driven approach used phrase-based language
models for generation (Oh and Rudnicky, 2000;
Mairesse and Young, 2014), or aimed to predict
the best fitting cluster of semantically similar tem-
plates (Kondadadi et al., 2013). More recent work
combines both steps by learning plan and realiza-
tion jointly using end-to-end trained models (e.g.
Wen et al., 2015). Several approaches have looked
at generation from abstract meaning representa-
tions (AMR), and Peng et al. (2017) apply S2S
models to the problem. However, Ferreira et al.
(2017) show that S2S models are outperformed by

1http://www.macs.hw.ac.uk/
InteractionLab/E2E/

phrase-based machine translation models in small
datasets. To address this issue, Konstas et al.
(2017) propose a semi-supervised training method
that can utilize English sentences outside of the
training set to train parts of the model. We ad-
dress the issue by using copy-attention to enable
the model to copy words from the source, which
helps to generate out of vocabulary and rare words.
We note that end-to-end trained models, includ-
ing our approach, often do not explicitly model
the sentence planning stage, and are thus not di-
rectly comparable to previous work on sentence
planning. This is especially limiting for genera-
tion of complex argument structures that rely on
hierarchical structure.

For the task of text generation from simple key-
value pairs, as in the E2E task, Juraska et al.
(2018) describe a heuristic based on word-overlap
that provides unsupervised slot alignment between
meaning representations and open slots in sen-
tence plans. This method allows a model to op-
erate with a smaller vocabulary and to be agnos-
tic to actual values in the meaning representations.
To account for syntactic structure in templates, Su
et al. (2018) describe a hierarchical decoding strat-
egy that generates different part of speech at differ-
ent steps, filling in slots between previously gen-
erated tokens. In contrast, our model uses copy-
attention to fill in latent slots inside of learned tem-
plates. Juraska et al. (2018) also describe a data
selection process in which they use heuristics to
filter a dataset to the most natural sounding exam-
ples according to a set of rules. Our work aims
at the unsupervised segmentation of data such that
one model learns the most natural sounding sen-
tence plans.

3 Background: Sequence-to-Sequence
Generation

We start by introducing the standard a text-to-
text problem and discuss how to map struc-
tured data into a sequential form. Let
(x(0), y(0)), . . . (x(N), y(N)) ∈ (X ,Y) be a set
of N aligned source and target sequence pairs,
with (x(i), y(i)) denoting the ith element in (X ,Y)
pairs. Further, let x = x1, . . . , xm be the sequence
of m tokens in the source, and y = y1, . . . , yn the
target sequence of length n. Let V be the vocabu-
lary of possible tokens, and [n] the list of integers
up to n, [1, . . . , n].

S2S aims to learn a distribution parametrized
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by θ to maximize the conditional probability of
pθ(y|x). We assume that the target is gener-
ated from left to right, such that pθ(y|x) =∏n
t=1 pθ(yt|y[t−1], x), and that pθ(yt|y[t−1], x)

takes the form of an encoder-decoder architecture
with attention. The training aims to maximize the
log-likelihood of the observed training data.

We evaluate the performance of both the
LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) architecture.
We additionally experiment with two attention for-
mulations. The first uses a dot-product between
the hidden states of the encoder and decoder (Lu-
ong et al., 2015). The second uses a multi-layer
perceptron with the hidden states as inputs (Bah-
danau et al., 2014). We refer to them as dot and
MLP respectively. Since dot attention does not re-
quire additional parameters, we hypothesize that it
performs well in a limited data environment.

In order to apply S2S models, a list of attributes
in an MR has to be linearized into a sequence
of tokens (Konstas et al., 2017; Ferreira et al.,
2017). Not all attributes have to appear for all
inputs, and each attribute might have multi-token
values, such as area: city centre. We use special
start and stop tokens for each possible attribute to
mark value boundaries; for example, an attribute
area: city centre becomes start area city cen-
tre end area . These fragments are concate-
nated into a single sequence to represent the origi-
nal MR as an input sequence to our models. In this
approach, no values are delexicalized, in contrast
to Juraska et al. (2018) and others who delexical-
ize a subset of attributes. An alternative approach
by Freitag and Roy (2018) treats the attribute type
as an additional feature and learn embeddings for
words and types separately.

4 Learning Content Selection

We extend the vanilla S2S system with methods
that address the related problem of text summa-
rization. In particular, we implement the pointer-
generator network similar to that introduced by
Nallapati et al. (2016) and See et al. (2017), which
can generate content by copying tokens from an
input during the generation process.

Copy Model The copy model introduces a bi-
nary variable zt for each decoding step t that acts
as a switch between copying from the source and
generating words. We model the joint probabil-
ity following the procedure described by Gulcehre

et al. (2016) as

p(yt, zt|y[t−1], x) =
∑

z∈{0,1}
p(yt, zt = z|y[t−1], x)

To calculate the switching probability
p(zt|y[t−1], x), let v ∈ Rdhid be a trainable
parameter. The hidden state of the decoder ht is
used to compute p(zt) = σ(hTt v) and decompose
the joint distribution into two parts:

p(yt|y[t−1], x) = p(zt = 1)× p(yt|zt = 1)

+ p(zt = 0)× p(yt|zt = 0),

where every term is conditioned on x and y[t−1].
p(yt|zt = 0) is the distribution generated by the
previously described S2S model, and p(yt|zt = 1)
is a distribution over x that is computed using
the same attention mechanism with separate
parameters.

In our problem, all values in the MR’s should
occur in the generated text and are typically words
that would not be generated by a language model.
This allows us to use an assumption by Gulcehre
et al. (2016) that every word that occurs in both
source and target was copied, which avoids having
to marginalize over z. Then, the log-likelihood
of yt and zt is maximized during training. This
approach has the further advantage that it can
handle previously unseen input by learning to
copy these words into the correct position.

Coverage and Length Penalty We observed
that generated text using vanilla S2S models with
and without copy mechanism commonly omits
some of the values in their inputs. To mitigate this
effect, we use two penalty terms during inference;
a length and a coverage penalty. We are using a
coverage penalty during inference only, opposed
to Tu et al. (2016) who introduced a coverage
penalty term into the attention of an S2S model for
neural machine translation and See et al. (2017)
who used the same idea for abstractive summariza-
tion. Instead, we use the penalty term cp defined
by Wu et al. (2016) as

cp(x, y) = β ·
|x|∑

i=1

log(min(

|y|∑

t=1

ati, 1.0)).

Here, β is a parameter to control the strength of
the penalty. This penalty term increases when too
many generated words attend to the same input.
We typically do not want to repeat the name of the
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Figure 2: The multiple-choice loss for a single
training example. Li has the smallest loss and re-
ceives parameter updates.

restaurant or the type of food it serves. Thus, we
only want to attend to the restaurant name once
when we actually generate it. We also use the
length penalty lp by Wu et al. (2016), defined as

lp(y) =
(5 + |y|)α
(5 + 1)α

,

where α is a tunable parameter that controls how
much the likelihoods of longer generated texts
are discounted. The penalties are used to re-rank
beams during the inference procedure such that the
full score function s becomes

s(x, y, z) =
log p(y, z|x)

lp(y)
+ cp(x, y).

A final inference time restriction of our model
is the blocking of repeat sentence beginnings. Au-
tomatic metrics do not punish a strong parallelism
between sentences, but repeat sentence beginnings
interrupt the flow of a text and make it look unnat-
ural. We found that since each model follows a
strict latent template during generation, the gener-
ated text would often begin every sentence with
the same words. Therefore, we encourage syn-
tactic variation by pruning beams during beam
search that start two sentences with the same bi-
gram. Paulus et al. (2017) use similar restrictions
for summarization by blocking repeated trigrams
across the entire generated text. Since automated
evaluation does not punish repeat sentences, we
only enable this restriction when generating text
for the human evaluation.

5 Learning Latent Sentence Templates

Each generated text follows a latent sentence tem-
plate to describe the attributes in its MR. The
model has to associate each attribute with its loca-
tion in a sentence template. However, S2S models
can learn wrong associations between inputs and

targets with limited data, which was also shown
by Ferreira et al. (2017). Additionally, consider
that we may see the generated texts for similar
inputs: There is an expensive British Restaurant
called the Eagle. and The Eagle is an expensive,
British Restaurant.. Both incorporate the same in-
formation but have a different structure. A model
that is trained on both styles simultaneously might
struggle to generate a single output sentence. To
address this issue and to learn a set of diverse gen-
eration styles, we train a mixture of models where
every sequence is still generated by a single model.
The method aims to force each model to learn a
distinct sentence template.

The mixture aims to split the training data be-
tween the models such that each model trains only
on a subset of a data, and can learn a different tem-
plate structure. Thus, one model does not have to
fit all the underlying template structures simulta-
neously. Moreover, it implicitly removes outlier
training examples from all but one part of the mix-
ture. Let f1, . . . , fK be the K models in the mix-
ture. These models can either be completely dis-
joint or share a subset of their parameters (e.g. the
word embeddings, the encoder, or both encoder
and decoder). Following Guzman-Rivera et al.
(2012), we introduce an unobserved random vari-
able w ∼ Cat(1/K) that assigns a weight to each
model for each input. Let pθ(y|x, w) denote the
probability of an output y for an input x with a
given segmentation w. The likelihood for each
point is defined as a mixture of the individual like-
lihoods,

log p(y|x) = log
∑

w

p(y, w|x)

= log
∑

w

p(w)× p(y|w, x).

By constraining w to assume either 0 or 1, the
optimization problem over the whole dataset be-
comes a joint optimization of assignments of mod-
els to data points and parameters to models.

To maximize the target, Guzman-Rivera et al.
(2012) propose a multiple-choice loss (MCL) to
segment training data similar to a hard EM al-
gorithm or k-Means clustering. With MCL, af-
ter each training epoch, each training point is as-
signed to the model that predicts it with the min-
imal loss. After this segmentation, each model is
trained for a further epoch using only its assigned
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start_name end_name end_areacentrecityEagle start_area ...

<s>       Near       the        city       centre ...

<s>      Eagle        is        near        the ...
...

Figure 3: An illustration of the diverse ensembling method with K = 2 and a shared encoder. The
encoder, shown on the left, reads the meaning representation and generates the contextual representations
of the input tokens. The context is then used in parallel by the two separate decoders. Here, ⊕ represents
the duplication of the input representation. The two decoders generate text independently from each
other. Finally, only the decoder with the better generated text receives a parameter update. The exclusive
choice is illustrated by the ⊗ operation.

data points. This process repeats until the point as-
signments converge. Related work by Kondadadi
et al. (2013) has shown that models compute clus-
ters of templates

Further work by Lee et al. (2016) reduce the
computational overhead by introducing a stochas-
tic MCL (sMCL) variant that does not require
retraining. They compute the posterior over
p(w|x, y) in the E-Step by choosing the best model
for an example k̂ = argmaxk∈[K]pθ(y|x, wk =
1, w¬k = 0). Setting wĥ to 1 and all other en-
tries in w to 0 achieves a hard segmentation for
this point. After this assignment, only the model
k̂ with the minimal negative log-likelihood is up-
dated in the M-Step. A potential downside of this
approach is the linear increase in complexity since
a forward pass has to be repeated for each model.

We illustrate the process of a single forward-
pass in Figure 2, in which a model fi has the
smallest loss L〉 and is thus updated. Figure 3
demonstrates an example with K = 2 in which
the two models generate text according to two dif-
ferent sentence layouts. We find that averaging
predictions of multiple models during inference,
a technique commonly used with traditional en-
sembling approaches, does not lead to increased
performance. We further confirm findings by Lee
et al. (2017) who state that these models overesti-
mate their confidence when generating text. Since
it is our goal to train a model that learns the best

Attribute Value

area city centre, riverside, . . .
customerRating 1 out of 5, average, . . .
eatType coffee shop, restaurant, . . .
familyFriendly yes / no
food Chinese, English, . . .
name Wildwood, The Wrestlers, . . .
near Café Sicilia, Clare Hall, . . .
priceRange less than £20, cheap, . . .

Table 1: A list of all possible attributes and some
example values for the E2E NLG dataset.

underlying template instead of generating diverse
predictions, we instead generate text using only
the model in the ensemble with the best perplexity
on the validation set.

6 Experiments

We apply our method to the crowd-sourced E2E
NLG dataset of Novikova et al. (2017) that com-
prises 50,000 examples of dialogue act-based MRs
and reference pairs in the restaurant domain. Each
input is a meaning representation of on average
5.43 attribute-value pairs, and the target a corre-
sponding natural language utterance. A list of pos-
sible attributes is shown in Table 1. The dataset
is split into 76% training, and 9% validation, and
15% test data. The validation and test data are
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# Setup BLEU NIST METEOR ROUGE CIDEr

TGEN (Dušek and Jurčı́ček, 2016) 69.3 8.47 47.0 72.6 2.39
Ensemble with Slot Filling (Juraska et al., 2018) 69.3 8.41 43.8 70.1 /
Hierarchical Decoding (Su et al., 2018) 44.1 / / 53.8 /
S2S with Slot Embeddings (Freitag and Roy, 2018) 72.7 8.3 / 75.1 /

(1) mlp 70.6 8.35 47.3 73.8 2.38
(2) dot 71.1 8.43 47.4 73.7 2.35
(3) mlp, copy 71.4 8.44 47.0 74.1 2.43
(4) dot, copy 69.8 8.20 47.8 74.3 2.51

(5) mlp, K = 2 72.6 8.70 48.5 74.8 2.52
(6) dot, K = 2 73.3 8.68 49.2 76.3 2.61
(7) mlp, copy, K = 2 73.6 8.74 48.5 75.5 2.62
(8) dot, copy, K = 2 74.3 8.76 48.1 75.3 2.55

(9) Transformer 69.0 8.22 47.8 74.9 2.45
(10) Transformer, K = 2 73.7 8.75 48.9 76.3 2.56

Table 2: Results of different S2S approaches and published baseline models on the E2E NLG validation
set. The second section shows models without diverse ensembling, the third section with it. The fourth
section shows results of the Transformer model. / indicates that numbers were not reported.

multi-reference; the validation set has on average
8.1 references for each MR. A separate test set
with previously unseen combinations of attributes
contains 630 MR’s and its references are unseen
and used for evaluation in the E2E NLG challenge.

For all LSTM-based S2S models, we use a two-
layer bidirectional LSTM encoder, and hidden and
embedding sizes of 750. During training, we ap-
ply dropout with probability 0.2 and train mod-
els with Adam (Kingma and Ba, 2014) and an
initial learning rate of 0.002. We evaluate both
mlp and dot attention types. The Transformer
model has 4 layers with hidden and embedding
sizes 512. We use the training rate schedule de-
scribed by Vaswani et al. (2017), using Adam and
a maximum learning rate of 0.1 after 2,000 warm-
up steps. The diverse ensembling technique is
applied to all approaches, pre-training all mod-
els for 4 epochs and then activating the sMCL
loss. All models are implemented in OpenNMT-
py (Klein et al., 2017)2. The parameters were
found by grid search starting from the param-
eters used in the TGEN model by Dušek and
Jurčı́ček (2016). Unless stated otherwise, mod-
els do not block repeat sentence beginnings, since
it results in worse performance in automated met-

2Code and documentation can be found at
https://github.com/sebastianGehrmann/
diverse_ensembling

rics. We show results on the multi-reference val-
idation and the blind test sets for the five metrics
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Denkowski and Lavie, 2014),
ROUGE (Lin, 2004), and CIDEr (Vedantam et al.,
2015).

7 Results

7.1 Results on the Validation Set

Table 2 shows the results of different models on
the validation set. During inference, we set the
length penalty parameter α to 0.4, the coverage
penalty parameter β to 0.1, and use beam search
with a beam size of 10. Our models outperform
all shown baselines, which represent all published
results on this dataset to date. Except for the copy-
only condition, the data-efficient dot outperforms
mlp. Both copy-attention and diverse ensem-
bling increase performance, and combining the
two methods yields the highest BLEU and NIST
scores across all conditions. The Transformer per-
forms similarly to the vanilla S2S models, with
a lower BLEU but higher ROUGE score. Di-
verse ensembling also increases the performance
with the Transformer model, leading to the high-
est ROUGE score across all model configurations.
Table 3 shows generated text from different mod-
els. We can observe that the model without copy
attention omits the rating, and without ensem-
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bling, the sentence structure repeats and thus looks
unnatural. With ensembling, both models produce
sensible output with different sentence layouts.
We note that often, only the better of the two mod-
els in the ensemble produces output better than the
baselines. We further analyze how many attributes
are omitted by the systems in Section 7.3.

To analyze the effect of length and coverage
penalties, we show the average relative change
across all metrics for model (8) while varying α
and β in Figure 4. Both penalties increase average
performance slightly, with an average increase of
the scores by up to 0.82%. We find that recall-
based metrics increase while the precision-based
metrics decrease when applying the penalty, which
can be explained by an increase in the average
length of the generated text by up to 2.4 words.
Results for ensembling variations of model (8) are
shown in Table 4. While increasing K can lead
to better template representations, every individ-
ual model will be trained on fewer data points.
This can result in an increased generalization er-
ror. Therefore, we evaluate updating the top 2
models during the M-step and setting K=3. While
increasing K from 2 to 3 does not show a major
increase in performance when updating only one
model, theK=3 approach slightly outperforms the
K=2 one with the top 2 updates.

Having the K models model completely dis-
joint data sets and use a disjoint set of parame-
ters could be too strong of a separation. There-
fore, we investigate the effect of sharing a subset
of the parameters between individual models. Our
results in rows (5)-(7) of Table 4 show only a mi-
nor improvement in recall-based approaches when
sharing the word embeddings between models but
at the cost of a much lower BLEU and NIST
score. Sharing more parameters further harms the
model’s performance.

7.2 Results on the Blind Test Set

We next report results of experiments on a held-
out test set, conducted by the E2E NLG chal-
lenge organizers (Dušek et al., 2018), shown in
Table 5. The results show the validity of the ap-
proach, as our systems outperform competing sys-
tems in these; ranking first in ROUGE and CIDEr
and sharing the first rank in METEOR. The first
row of the table shows the results with blocked re-
peat sentence beginnings. While this modification
leads to slightly reduced scores on the automated
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0.75 0.82 0.79 0.78

0.54 0.76 0.79 0.81

0 0.47 0.75 0.82
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0.2

0.4

0.6

0.8

1.0
MRs generated [in %]

Figure 4: Relative change of performance aver-
aged over all five metrics when varying inference
parameters for model (8). Length penalty parame-
ter α controls length, and coverage penalty param-
eter β penalizes source values with no attention.

MR name: Wildwood; eatType: coffee shop;
food: English; priceRange: moderate; cus-
tomerRating: 3 out of 5; near: Ranch

(1) Wildwood is a coffee shop providing English
food in the moderate price range. It is lo-
cated near Ranch.

(4) Wildwood is a coffee shop providing English
food in the moderate price range. It is near
Ranch. Its customer rating is 3 out of 5.

(8).1 Wildwood is a moderately priced English
coffee shop near Ranch. It has a customer
rating of 3 out of 5.

(8).2 Wildwood is an English coffee shop near
Ranch. It has a moderate price range and a
customer rating of 3 out of 5.

Table 3: Examples of generated text by different
systems for the same MR, shown in the first line.
Numbers correspond to model configurations in
Table 2.

metrics, it makes the text look more natural, and
we thus use this output in the human evaluation.

The human evaluation compared the output to
19 other systems. For a single meaning repre-
sentation, crowd workers were asked to rank out-
put from five systems at a time. Separate ranks
were collected for the quality and naturalness of
the generations. The ranks for quality aim to re-
flect the grammatical correctness, fluency, and ad-
equacy of the texts with respect to the structured
input. In order to gather ranks for the natural-
ness, generations were shown without the mean-
ing representation and rated based on how likely
an utterance could have been produced by a na-
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# Setup BLEU NIST METEOR ROUGE CIDEr

(1) K = 1 69.8 8.20 47.8 74.3 2.51
(2) K = 2 74.3 8.76 48.1 75.3 2.55
(3) K = 3 73.6 8.73 48.8 75.5 2.64
(4) K = 3, top 2 74.2 8.81 48.6 76.1 2.56

(5) K = 2, share embedding 73.1 8.61 48.6 75.4 2.58
(6) K = 2, share encoder 72.2 8.56 47.8 74.4 2.50
(7) K = 2, share encoder + decoder 72.4 8.43 47.3 74.6 2.50

Table 4: Variants of diverse ensembling. The top section shows results of varying the number of models
in a diverse ensemble on the validation set. The bottom section shows results with different numbers of
shared parameters between two models in a diverse ensemble. All results are generated with setup (8)
from Table 2.

Setup BLEU NIST METEOR ROUGE CIDEr

TGEN (Dušek and Jurčı́ček, 2016) 65.9 8.61 44.8 68.5 2.23
Slot Filling (Juraska et al., 2018) 66.2 8.31 44.5 67.7 2.26

dot, K = 3, top 2, block repeats 65.0 8.53 43.9 68.7 2.09
dot, K = 3, top 2 65.8 8.57 (8) 44.1 68.9 (9) 2.11
Transformer, K = 2 66.2 (8) 8.60 (7) 45.7 (1) 70.4 (3) 2.34 (1)
dot, copy, K = 2 67.4 (3) 8.61 (6) 45.2 (4) 70.8 (1) 2.31 (3)

Table 5: The results of our model on the blind E2E NLG test set. Notable rankings within the 60
submitted systems are shown in parentheses. Systems by Freitag and Roy (2018) and Su et al. (2018)
were not evaluated on this set.

tive speaker. The results were then analyzed us-
ing the TrueSkill algorithm by Sakaguchi et al.
(2014). The algorithm produced 5 clusters of sys-
tems for both quality and naturalness. Within clus-
ters, no statistically significant difference between
systems can be found. In both evaluations, our
main system was placed in the second best cluster.
One difference between our and the system ranked
first in quality by Juraska et al. (2018) is that our
model frequently fails to generate text about inputs
despite the coverage penalty.

7.3 Which Attributes do the Models
Generate?

Vanilla S2S models frequently miss to include at-
tributes of an MR, even though almost all the
training examples use all of them. While Juraska
et al. (2018) adds an explicit penalty for each at-
tribute that is not part of a generated text, we aim
to implicitly reduce this number with the cover-
age penalty. To investigate the effectiveness of
the model extensions, we apply a heuristic that
matches an input with exact word matches in the
generated text. This provides a lower bound to the

number of generated attributes since paraphrases
are not captured. We omit the familyFriendly cat-
egory from this figure since it does not work with
this heuristic.

In Figure 5 (a) we show the cumulative effect
of model extensions on generated attributes across
all categories. Copy attention and the coverage
penalty have a major effect on this number, while
the ensembling only slightly improves it. In Fig-
ure 5 (b), we show a breakdown of the generated
attributes per category. The base model struggles
with area, price range, and customer rating. Price
range and customer rating are frequently para-
phrased, for example by stating that a restaurant
with a 4 out of 5 rating has a good rating, while
the area cannot be rephrased. While customer rat-
ing is one of the most prevalent attributes in the
data set, the other two are more uncommon. The
full model improves across almost all of the cate-
gories but also has problems with the price range.
The only category in which it performs worse is
the name category, which could be a side effect
of the particular split of the data that the model
learned. Despite the decrease in mistakenly omit-
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(b)(a) (b)

Figure 5: (a): The figure shows a lower bound on the percentage of all attributes the model is generating
for each model type. The base model is missing almost 40% of all inputs. (b) The figure shows a
breakdown per attribute how many the model is generating compared to the reference.

ted attributes, the model still misses up to 20% of
attributes. We hope to address this issue in future
work by explicitly modeling the underlying slots
and penalizing models when they ignore them.

8 Conclusion

In this paper, we have shown three contributions
toward end-to-end models for data-to-text prob-
lems. We surveyed existing S2S modeling meth-
ods and extensions to improve content selection in
the NLG problem. We further showed that apply-
ing diverse ensembling to model different under-
lying generation styles in the data can lead to a
more robust learning process for noisy data. Fi-
nally, an empirical evaluation of the investigated
methods showed that they lead to improvements
across multiple automatic evaluation metrics. In
future work, we aim to extend the shown meth-
ods to address generation from more complex in-
puts, and for challenging domains such as data-to-
document generation.
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to-sequence generation for spoken dialogue via
deep syntax trees and strings. arXiv preprint
arXiv:1606.05491.
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Abstract

We introduce SimpleNLG-ZH, a realisa-
tion engine for Mandarin that follows the
software design paradigm of SimpleNLG
(Gatt and Reiter, 2009). We explain the
core grammar (morphology and syntax)
and the lexicon of SimpleNLG-ZH, which
is very different from English and other
languages for which SimpleNLG engines
have been built. The system was evaluated
by regenerating expressions from a body
of test sentences and a corpus of human-
authored expressions. Human evaluation
was conducted to estimate the quality of
regenerated sentences.

1 Introduction
A classic natural language generation (NLG) sys-
tem (Reiter and Dale, 2000) is a pipeline consist-
ing of document planning, sentence planning and
surface realisation (in that order). Surface reali-
sation maps information produced by earlier com-
ponents to well-formed output strings in the target
language. A (surface) realiser employs language-
specific morpho-syntactic constraints to achieve
proper word ordering, inflection, and selection of
function words. Different types of realisers ex-
ist (Gatt and Krahmer, 2018). Unlike approaches
that aim primarily for linguistic depth and cov-
erage (White et al., 2007), realisers in the Sim-
pleNLG tradition aim primarily for ease of use and
extendibility (Gatt and Reiter, 2009), and have be-
come the realisation method of choice in many
practical NLG applications, such as BabyTalk
(Portet et al., 2009) and Absum (Lapalme, 2013).

SimpleNLG, as a human-crafted grammar-
based realisation engine, performs linearisation

and morphological inflection. Another realisa-
tion strategy uses statistical methods for acquir-
ing probabilistic grammar from large corpora. For
example, OpenCCG (White et al., 2007) built a
grammar bank based on Combinatorial Catego-
rial Grammar, extracted from the Penn Treebank
(Marcus et al., 1993). When realising, OpenCCG
applies a chart-based algorithm to generate all pos-
sible surface forms, which are then re-ranked by
language models. Such an approach tends to have
broader coverage, but less controllability and ex-
tendibility, which may explain why SimpleNLG is
more popular in practical applications.

To date, the original English SimpleNLG
has been adapted to German (Bollmann, 2011),
French (Vaudry and Lapalme, 2013), Portuguese
(De Oliveira and Sripada, 2014), Italian (Mazzei
et al., 2016), Spanish (Soto et al., 2017), Fil-
ipino (Ong et al., 2011) and Telugu (Dokkara
et al., 2015). There is no such adaptation work
yet for Sino-Tibetan languages, whose morpho-
syntactic structure is very different from the above
languages. Mandarin, a Sino-Tibetan language
with nearly 1 billion first-language speakers, of-
fers huge opportunities for natural language gen-
eration, yet only a limited amount of work has fo-
cused on Mandarin realisation. KPML, a large-
scale multilingual generation and development,
supports limited sentence structures in Mandarin
(Yang and Bateman, 2009). He et al. (2009) in-
troduced a data-driven generator, with dependency
trees as input. They used divide-and-conquer to
break the dependency tree into sub-trees, realising
each sub-tree using a log-linear model recursively.
However, their system needs a large amount of
fully inflected dependency trees as training data.

This paper describes a realisation engine fol-
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lowing the design principles of SimpleNLG, i.e.,
keeping a clear separation between morpholog-
ical and syntactic operations (Gatt and Reiter,
2009). Although we took existing SimpleNLG
systems as a source of inspiration, the system is,
in many ways, a re-design1. For example, Man-
darin, as a highly analytical language, needs far
fewer morphological operations but many more
syntactic constraints than English (Huang et al.,
2009). SimpleNLG-ZH2 (“Zhongwen” is Man-
darin for “Chinese”) was firstly built as a realiser
for generating referring expressions in Mandarin
(van Deemter et al., 2017; Van Deemter, 2016)
which are mostly noun phrases together with sim-
ple verb phrases, and then extended to coverage
other constructions and phenomena in Mandarin.
It was developed as an adaptation from V4.4.8 of
the original SimpleNLG3 (SimpleNLG-EN). We
show that SimpleNLG-ZH has wide coverage on
test-sentences, and on the human authored corpus
MTuna (van Deemter et al., 2017) as well.

2 The idea of SimpleNLG
SimpleNLG is a realisation engine designed for
practical use. The input format of SimpleNLG
is similar to a simplified dependency tree where
the user should determine the specifiers, modi-
fiers and complements of each input phrase us-
ing a set of features. SimpleNLG encodes dif-
ferent constraints, regarding lexicon, morphology,
syntax and orthography, as a feature set (combin-
ing the features from the input) and passes the
resulting structure onto the next stage. Figure 1
shows examples of an input for SimpleNLG-EN
and SimpleNLG-ZH, respectively. To construct a
sentence using SimpleNLG, we need to establish a
verb phrase object and set its object(s) and subject.

SimpleNLG follows good software engineering
design principles, clearly separating the modules
for lexical and syntactic operations. The lexical
component provides interfaces that handle the lex-
ical features and apply morphological rules. Vital
features such as person, number and tense
are appended to target constituents or words for
further realisation processes. The syntactic com-
ponent takes over at the phrase and clause level,
and provides Java classes for each phrasal sub-

1The German, Portuguese, and Spanish SimpleNLG sys-
tems copied many features from the one for English (in the
case of German) or French (in the other two cases).

2The software is available at: https://github.
com/a-quei/simplenlg-zh.

3https://github.com/simplenlg/

type (PhraseSpecs), where SPhraseSpec
stands for the class that model clauses.

SimpleNLG-EN offers significant coverage of
English morphology and syntax, and provides
easy-to-use APIs with which the realisation pro-
cess is programmatically controllable. It pro-
vides a well established lexicon, the repository
of the relevant items and their properties. The
lexicon was constructed from the NIH special-
ist lexicon4, which contains more than 300,000
entries. Each lexical entry was tagged with de-
tailed lexical features as initial features of words.
Simple shallow semantic features, like COLOUR
and QUANTITATIVE, are appended for deciding
word order.

3 Morphology
Morphology in Mandarin is usually thought to be
extremely simple (Jensen, 1990). Packard (2000)
has challenged this view, arguing that more mor-
phological operations are involved in the construc-
tion of Chinese words than is usually thought.
However, key mechanisms such as subject-verb
agreement (which SimpleNLG-EN treated as part
of morphology operations) are absent from Man-
darin. We have therefore sided with mainstream
linguistic opinion and kept our morphology com-
ponent relatively simple. We use only two main
rules for morphology: mapping pronouns to their
surface forms and appending the collective marker
“们” (mén).

3.1 Pronoun

Realising the surface forms of pronouns in
SimpleNLG-ZH is similar to SimpleNLG-EN in
its use of the features gender (masculine, femi-
nine or neuter), number (singular or plural), and
person (first, second or third). However, written
Mandarin has different third person plural forms
for all three different genders, i.e., “他们” (mas-
culine), “她们” (feminine) and “它们” (neuter)
(all of them have the same pronunciation: tāmén)
rather than the one plural form they in English.

3.2 Collective Marker

In Mandarin, to say how many entities there are
in a set, classifiers must be used. This is typically
done in a number phrase of the form [number +
classifier + noun], for instance “一把椅子” (yı̀ bǎ

4https://github.com/simplenlg/
simplenlg/blob/master/src/main/java/
simplenlg/lexicon/default-lexicon.xml
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Phrase s1 = new SPhraseSpec(’leave’);
s1.setTense(PAST);
s1.setObject(new NPPhraseSpec(’the’, ’house’));
Phrase s2 = new StringPhraseSpec(’the boys’);
s1.setSubject(s2);

Phrase s1 = new SPhraseSpec(’离开’);
s1.setParticle(’了’);
s1.setObject(new NPPhraseSpec(’房子’));
Phrase s2 = new NPPhraseSpec(’男孩’);
s1.setSubject(s2);

Figure 1: Input code for generating the sentence “男孩离开了房子” (nánhái lı́kāile fángzi; The boys left
the house) using SimpleNLG-EN (left) and SimpleNLG-ZH (right).

yı̌zi; a chair), “两张桌子” (liǎng zhāng zhuōzi;
two tables). Since number phrases are typically
used referentially (not as quantifiers), they have
generally been regarded as indefinite expressions,
and these cannot be placed in subject or topic po-
sition in Mandarin (Huang et al., 2009).

Unlike English, Mandarin bare nouns and num-
ber phrases with numbers larger than 1 can express
plural meaning without the help of inflected plu-
ral markers. The morpheme “们” in plural nouns
serves as a “collective” marker rather than a tradi-
tionally plural marker (Li, 2006); here a “plural-
ity” is a number of individuals, whereas a “collec-
tive” is a group (of individuals) as a whole. Under
that definition, adding a morpheme “们” makes
a nominal phrase definite, which results the mor-
pheme “们” incompatible with a number phrases,
so “们” cannot co-occur with number phrases. For
example, the phrase “三个人们” (sān gè rénmén;
three people) is not acceptable in Mandarin. Note
that the rules discussed above do not apply to pro-
nouns which follow the rules defined in §3.1.

It is hard to determine automatically whether a
user wants to talk about a number of individuals
or about a group as a whole. Moreover, “们” is
always only optional. Therefore, in SimpleNLG-
ZH, “们” is only added if the feature MEN is set to
true. In addition, the system will refuse to add a
“们” to a number phrase. The way of constructing
number phrases is discussed in §4.

4 Syntax
The syntax module inherits the basic structure of
SimpleNLG-EN, dividing the syntactic operations
into processors that handle noun phrases, adjective
phrases, verb phrases, verb phrases, and clauses.
Each processor is enriched based on the grammar
of Mandarin.

4.1 Noun Phrase

The Noun Phrase (NP) module is the most com-
plex phrase module in SimpleNLG-ZH. Each
noun phrase in SimpleNLG-ZH contains multiple

specifiers, pre-modifiers, post-modifiers, comple-
ments, and a head noun.

4.1.1 Number Phrase

Each number phrase is constructed by a number, a
classifier and a head noun; both the numeral and
the classifier function as specifiers of the NP (for
more about specifiers, please see §4.1.2).

As Number Phrases are very common in Man-
darin, we designed a new constructor specifically
for them. For instance, the number phrase “一本
书” (yı̀ běn shū; a book) can be constructed using
this input:

NPPhraseSpec book = this.
phraseFactory.createNounPhrase
("一", "本", "书");

The choice of classifiers depends mainly on the
head noun. Additionally, for a given noun, the
choice of classifiers may depend on its mean-
ing. For example, the classifier of “房子” (fáng-
zi; house) can be “座”, “幢”, “间”, and many
other possible classifiers based on the size or the
shape of the house. The current SimpleNLG-ZH
requires classifiers to be specified “by hand”. By
introducing a language model in the future, this
process might be automated.

4.1.2 Specifier

SimpleNLG-ZH allows multiple specifiers (com-
pared to a single specifier in SimpleNLG-EN)
within one NP. For example, a number phrase
needs two specifiers: a numeral and a classifier.
All the following categories can be placed in spec-
ifier position: pronouns (with or without the col-
lective marker “men”), proper names, classifiers,
numerals and demonstratives. These specifiers ap-
pear in the following order (the A > B means
A should appear before B): proper name >
pronoun > demonstrative > numeral >
classifier. The decision of whether or not to
realize each of these specifiers is subject to a num-
ber of constraints (Huang et al., 2009).
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1. Suppose the input specification asks for a
pronoun in the specifier position. This pro-
noun must have a collective marker except in
a structure that includes [demonstrative/nu-
meral + classifier] For instance, “他们学生”
(tāmén xuéshēng; them students) contains the
collective marker, but “他一个学生” (tā yı́gè
xuéshēng; them students) does not;

2. Proper names in specifier position can only
be realised if the structure includes [pro-
noun + numeral + classifier], [demonstrative
+ classifier] or [demonstrative + numeral +
classifier]: “张三那个学生” (zhāngsān nàgè
xuéshēng; the student called Zhangsan);

3. A demonstrative or a numeral will only be re-
alised if there is a classifier in the same NP
and vise versa: “(那/一)个学生” (nà/yı́ gè
xuéshēng; that/a student).

As discussed in §3.2, number phrases are often
seen as indefinite phrase but not always. When
they are for quantification they can be placed in the
subject/topic position. Therefore, SimpleNLG-
ZH permits a number phrase in the subject/topic
position, e.g., the sentence “三个人吃两块蛋糕”
(sān gè rén chı̄ liǎng kuài dàngāo; three people eat
two cakes)

For nouns (including bare nouns, pronouns and
proper nouns), the feature possessive is also
realised in the specifier position: SimpleNLG-ZH
adds a particle “的” (de) as an associative marker
after the noun.

4.1.3 Localiser

Localisers (corresponding to English words such
as “on”, “above”, etc.) form a special syntac-
tic category. They are used in location phrases,
which is a particular type of preposition phrases.
The location information in a location phrase is ex-
pressed in the localiser rather than the head prepo-
sition, for example: [PP在 [NP桌子上]] (zài
zhuōzi shàng; on the table). The localiser “上”
(on) works as a supplement of the noun phrase in
the proposition phrase (i.e., location phrase).

In SimpleNLG-ZH, the localiser itself is de-
fined as a normal noun with a lexical feature
LOCATIVE in the lexicon. When constructing
a location phrase, if the localiser is a disyllabic
word, such as “上面” (shàngmiàn), then a par-
ticle “的” is inserted before the localiser to con-
struct the phrase: “在桌子的上面” (zài zhuō-
zi shàngmiàn; on the table). However, if such a
prepositional phrase works as a pre-modifier of an-

other noun, then that inserted particle will be dis-
regarded, for example: “在桌子上面的书” (zài
zhuōzi shàngmiàn de shū; the book on the table).

4.1.4 Pre-modifier

SimpleNLG-EN handles the orders of multiple
pre-modifiers based on their meanings, where
the meanings are acquired from a huge lexicon
that contains a series of tags (e.g., COLOUR,
QUANTITATIVE) indicating the meaning of
words. It adds pre-modifiers in the order of quanti-
tative adjectives, colour adjectives, classifying ad-
jectives and nouns. For SimpleNLG-ZH, more
categories of words can be placed in the pre-
modifier position, other than just adjectives and
nouns. It performs re-ordering based on pre-
modifiers’ part-of-speech and lexical features set
by the users.

Our system handles two different types of
adjectives, namely, normal adjectives and non-
predicate adjectives. For normal adjectives, the
system will automatically add a “的” (de) between
the adjectives and the head noun, such as “绿的椅
子” (lù̈u de yı̌zi; green chair). “的” can be omitted
by setting the feature NO DE to TRUE, which re-
sults in the phrase “绿椅子“ (green chair). Non-
predicate adjectives, in contrast to normal adjec-
tives, are a special type of adjectives that cannot
function as predicate on their own (e.g., “男” (ná;
male) and “女” (nǔ̈u; female)), in which the parti-
cle “的” (de) is always omitted. Thus, the particle
“的” will not be appended if the adjective is non-
predicate, such as “男人” (nánrén; man). The fea-
ture is set based on the information of the lexicon
loaded into SimpleNLG-ZH (details see §5).

Nouns and noun phrases, as pre-modifiers,
can play two different roles: they can be con-
catenated with the head noun to construct a
compound noun: for example, “大学教育”
(dàxuē jiàoyù; university education); or, they can
be connected by means of a particle “的”, which
works as an associative marker: for example,
“黑头发的人” (hēitóufà de rén; the man with
black hair). To construct the latter, the feature
ASSOCIATIVE should be set to TRUE. The
order of the pre-modifiers is localisers
> verbs/clauses > adjectives
with de > nouns with associative
marker > adjectives without de >
non-predicate adjectives > nouns.
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4.2 Adjective Phrase

Adjective phrases in Mandarin differ from those
in the languages for which previous SimpleNLG
engines were built. Most adjectives in Mandarin
can act as the predicate of a clause without the help
of a copula verb (see below). Such adjectives are
called predicate adjectives.

4.2.1 Predicate Adjective

Although adjectives can act as predicates, it is
necessary to distinguish them from verbs (Huang
et al., 2009). We implemented realisation of a
clause like “他很高” (tā hěngāo; he is very tall)
by specifying an empty copula. This is achieved
by creating a new constructor which accepts a sub-
ject noun and a predicate adjective.

Predicate adjectives in SimpleNLG-ZH also ac-
cept negative words and modal words. For exam-
ple, the sentence “他应该不高” (tā yı̄nggāi bùgāo;
he couldn’t be tall) has both a negative word “不”,
and a modal word “应该”.

4.2.2 Non-predicate Adjective

As discussed in §4.1.4, non-predicate adjectives
always omit the particle “的” between the adjec-
tive and the head noun. However, when a non-
predicate adjective functions as a predicate (with
the help of a copula), such as ”他是男的” (tā shı̀
nánde; he is a man), the copula “是” (shı̀) and the
particle “的” (de) are obligatory (Paul, 2010).

4.2.3 “比比比” construction

In English, degree adjectives have comparative
and superlative degrees, whose realisation is im-
plemented in the morphology processor. In Man-
darin, realisation is performed by modifying the
syntax. The superlative degree is realised by
adding an adverb pre-modifier “最” (zuı̀; most);
the comparative through the “比” construction.

SimpleNLG-ZH implements the “比” (bı̌) con-
struction as a prepositional phrase. For example,
for the sentence “他比小明高” (tā bı̌ xiǎomı́ng
gāo; he is taller than xiaoming), the word “比” (bı̌)
itself is seen as the head of a preposition phrase,
which is a pre-modifier of a adjective phrase. Such
a construction (i.e., as an adjective phrase), can act
as the pre-modifier of a noun phrase, for example,
“他们班没有比他更高的人” (tāmén bān méi-
yǒu bı̌ tā gènggāode rén; none of his classmates
is taller than he). Note that the head of this noun
phrase can be omitted, but the particle “的” (de)
should be maintained as a sentence-final marker,

i.e. “他们班没有比他更高的” (tāmén bān méi-
yǒu bı̌ tā gènggāode).

4.3 Verb Phrase

4.3.1 Pre-modifier and Post-modifier

Verb phrases can contain the associative markers
“得” and “地”. The latter is appended to the pre-
modifier if it is disyllabic, for example, “快速地
跑” (kuàisù de pǎo; fast run). If the pre-modifier
is monosyllabic, “快跑” (kuàipǎo) is constructed
instead, with the particle “地” (de) disregarded.
The particle “得” (de) connects head verbs with
their complements: “跑得快” (pǎodekuài; run-
ning fast).

4.3.2 Aspect

KPML (Yang and Bateman, 2009) used templates
with particles like “过”, “了” or “着” (zhe)to
model aspect. However, KPML’s coverage of lan-
guage variation is limited because it uses a limited
number of templates. Since aspect in Mandarin is
realised using post-verbal or post-clause particles,
we took a more flexible strategy that enables users
to add particles based on their need.

Particles can be in two positions: post-verbal
and post-clausal. In “他吃着饭” (tā chı̄zhe fàn;
he is eating), the particle “着” (zhe), which ex-
presses the present continuous tense, is appended
to a VPPhraseSpec object. Similarly, the class
SPhraseSpec, which represents a clause, has
the capability to append a particle to its end. For
example, in “他吃饭了” (tā chı̄ fànle; he has
eaten), the particle “了” is appended to the clause
“他吃饭” (tāchı̄fàn; he eats).

4.4 Clause

At the Clause level, apart from the issues related
to negative and interrogative sentences inherited
from SimpleNLG-EN, we considered ”把” (bǎ)
and ”被” (bèi) constructions which are two com-
mon constructions in Mandarin. We also dis-
cuss how topicalised sentences are realised using
SimpleNLG-ZH.

4.4.1 Negative Sentence

Negative sentences in SimpleNLG-ZH are realised
by inserting negative words before the predicate
verb (or the predicate) and after a modal word.
For example, the negation of “他应该去上学” (tā
yı̄nggāi qù shàngxué; he should go to school) is
the sentence with an inserted negative word “不”
(bù; not) before “去” (qù; go) and after the modal
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word “应该” (yı̄ngāi; should): “他应该不去上
学” (tā yı̄nggāi bū qù shàngxué; he should haven’t
gone to school). SimpleNLG-ZH can also realise
negative modal by viewing the negative modal as
a merged word, much like haven’t or shouldn’t in
English (Xu, 1997). For example,“他不应该去上
学” (tā bū yı̄nggāi qù shàngxué; he should not go
to school).

In addition, Mandarin has a number of different
negative words, selected based on the head verb.
For example, applied to the sentence “他有椅子”
(tā yǒu yı̌zi; he has chairs), instead of using “不”
(bù), the word “没” (méi) should be used: “他没
有椅子” (tā mēiyǒu yı̌zi; he doesn’t have a chair).
SimpleNLG-ZH allows users to specify by hand
what negation word should be chosen in a specific
case by using the feature negative word, thus
overruling the system’s default choice.

4.4.2 “把把把” Construction

The “把” construction is a common seen and use-
ful structure for focusing on the result or influ-
ence of an action, which is not exist in English.
For example, considering the sentence, “他把小
明重重地打” (tā bǎ xiǎomı́ng zhòngzhòng de
dǎ; he beat xiaoming heavily), with the “把” con-
struction, the influence of “打” (dǎ; beat) is high-
lighted. The natural phrase order of this example
is: “他重重地打小明” (tā zhòngzhòng de dǎ xiǎo-
mı́ng; he beat xiaoming heavily), which is the ba-
sic structure that SimpleNLG-ZH can handle. i.e.,
[subject + predicate verb + object].
In the “把” construction, however, the marker ad-
verb “把” is added after the subject, and the ob-
ject is moved to the position right before the pred-
icate verb phrase: [subject + “把” + object
+ predicate verb].

Note that the positions of modal words and neg-
ative words do not follow the movement of the
verb phrases (Liu et al., 2001). In other words, in
the resulting “把” construction, the modal words
and negative words are placed before the object in
their own order, as in “他应该没把小明重重地
打” (tā yı̄nggāi méi bǎ xiǎomı̄ng zhòngzhòng de
dǎ; he should haven’t beaten xiaoming heavily).
SimpleNLG-ZH realises a sentence with the “把”
construction if the user set the feature BA to TRUE.

4.4.3 “被被被” Construction

The “被” construction in Mandarin is one of the
ways to express the passive, using the basic syn-
tactic structure: [object + “被” + subject +

predicate verb]. Using the same example as
before in §4.4.2, the transformed sentence would
be “小明被他重重地打” (xiǎomı̄ng bèitā zhòng-
zhòng de dǎ; Xiaoming is beaten heavily by him).
SimpleNLG-ZH chooses between active and pas-
sive based on the value of the feature PASSIVE,
which is inherited from SimpleNLG-EN.

4.4.4 Interrogative

SimpleNLG-ZH inherits and adapts all its inter-
rogative patterns from SimpleNLG-EN, includ-
ing “有没有” (yǒuméiyǒu; Yes-or-no) and wh-
questions: “怎么” (zěnmè; How), “什么” (shén-
mè; What), “哪里” (nǎlı̌; Where), “谁” (shuı́;
Who)， “为什么” (wèishénmè; Why)， “多少”
(duōshǎo; How Many). SimpleNLG-ZH adds two
further types, namely “哪个” (nǎgè; Which) and
“什么时候” (shénmèshı́shòu; When). For Yes-or-
no sentences, SimpleNLG-ZH appends the inter-
rogative particle “吗” at the end of a sentence; for
instance, “你去上学吗？” (nı̌ qù shàngxué ma;
Will you go to school?).

In SimpleNLG-EN, for wh-questions, only
What and Who made a difference between whether
to place the interrogative marker in subject or ob-
ject position. In SimpleNLG-ZH, however, nearly
all wh-question markers can be placed in both po-
sitions. Here we use a “什么” (What) sentence as
an example: For “台风摧毁了他的房子” (táifēng
cuı̄huı̌ le fángzi; the typhoon destroyed his house),
if we set the feature INTERROGATIVE TYPE to
what object, then the sentence is changed to
“台风摧毁了什么？” (táifēng cuı̄huı̌ le shén-
me; what did the typhoon destroy?). Setting
the feature to what subject results in “什么
摧毁了他的房子？” (shénme cuı̄huı̌ le tāde-
fángzi; what destroyed his house?). In inter-
rogated “把” constructions and ‘被” construc-
tions, the wh-question markers are placed in situ,
i.e., replacing the phrases in the original sub-
ject or object position, according to the value of
INTERROGATIVE TYPE.

4.4.5 Topicalisation

Topic structures, especially gapped topic struc-
tures, are a very common syntactic structure in
Mandarin (Xu and Langendoen, 1985). For exam-
ple, “绿色的椅子，那把大号的” (lù̈usè de yı̌zi, nà
bǎ dàhào de; (As for) the green chair, it is the large
one) is a gapped topicalised sentence, in which the
constituent after the “的” in the phrase ”那把大号
的” (nàbǎ dàhào de; the large one) moved into the
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topic position and left a gap.
In the current version of SimpleNLG-ZH, we

realise a gapped topicalised sentence by viewing it
as two coordinated noun phrases, in which the sec-
ond noun phrase has an empty head noun. For the
sentence above, the two noun phrases are “绿色
的椅子” (lù̈usè de yı̌zi; the green chair) and ”那把
大号的” (nàbǎ dàhào de; the large one). In the
current version of our system, there is no guar-
antee that the empty head of the second clause
is bounded by the first clause. We also consider
orthography in topicalisation, i.e., a conjunction
words between two phrases should be changed to a
comma. In our system, the topicalised sentence, as
a CoordinatedPhraseElement object, calls
the topicalise() function to take care of the
punctuation.

5 Lexicon
Unlike SimpleNLG-EN, we did not have a ready-
to-use elaborate lexicon for SimpleNLG-ZH. In-
stead, we extracted a primary lexicon from the
Chinese as a Foreign Language (CFL) corpus5

(Lee et al., 2017), which is a sub-corpus of the
Universal Dependencies corpus. The CFL cor-
pus has 451 human tagged dependency trees and
7,256 tokens in total. Each word in CFL was pri-
marily mapped to one of the lexical categories in
SimpleNLG-ZH based on the relations in Table 1
as well as the following rules:

1. The tag <proper/> is appended for
PROPNs;

2. The tag <nonpredicate/> is appended
for non-predicate adjectives manually, which
is based on the non-predicate adjective list in
Liu et al. (2001);

3. The tag <locative/> is appended for lo-
calisers manually;

4. The words that serve as a dependent of a clf
(classifier) dependency relation are given the
category classifier.

The constructed lexicon has 1,639 lexical entries
at in total.

6 Evaluation
We decided to evaluate SimpleNLG-ZH in two
ways. Firstly, following Soto et al. (2017) and
Bollmann (2011), we applied a set of unit test to
each module of the system, using the test cases

5https://github.com/
UniversalDependencies/UD_Chinese-CFL/
tree/master

Lexical Category Universal POS Tag
adverb ADV, PART
noun NOUN, PROPN
preposition ADP
demonstrative DET
conjunction SCONJ, CCONJ
pronoun PRONOUN
adjective ADJ
modal AUX
verb VERB

Table 1: Relationship between Universal POS tags
and lexical categories in SimpleNLG-ZH.

from SimpleNLG-EN plus a set of newly con-
structed test cases that address some of the pecu-
liarities of Mandarin (e.g., the “把” construct).

Secondly, we evaluated the system using a set
of expressions from a corpus of actual language
use; this was reminiscent of Mazzei et al. (2016)
and Bollmann (2011), but using a larger set of ex-
pressions. In all cases, when faced with an input
expression (i.e., from a test set or corpus), we used
this expression to construct a formatted input that
was then passed to SimpleNLG-ZH to produce an
output expression which was then compared to the
input expression.
Evaluation with tests cases. The test cases
consist of 144 sentences manually translated
and adapted from SimpleNLG V4.4.8 JUnit
Tests and two reference grammar books (Huang
et al., 2009; Liu et al., 2001). The test cases cover
all the linguistic features discussed in previous
sections and all possible syntactic structures of re-
ferring expressions in Mandarin introduced in van
Deemter et al. (2017). All the tests were passed by
SimpleNLG-ZH, that is, the generated sentences
were all identical verbatim to the inputs.
Corpus-based evaluation. We picked 100 noun
phrases at random from the MTuna corpus (van
Deemter et al., 2017), which is the corpus that first
version of SimpleNLG-ZH focus on as stated in
§1. MTuna is a corpus that has totally 1,650 re-
ferring expressions. We then re-generated these
expressions using SimpleNLG-ZH. Not all re-
generated NPs were identical verbatim to the orig-
inal MTuna NPs. 35 noun phrases did not match
completely (i.e., verbatim) with the original noun
phrases. Table 2 lists some typical examples,
showing differences in word ordering, punctua-
tion, and so on. We ran a human evaluation to
find out whether the realised sentences were ac-
ceptable (i.e., are they fluent and do they have the
same meaning as their inputs). Two native speak-
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Type ID Noun Phrases from MTuna Realised Sentence Acceptable
1 1 黑头发，络腮胡，黑西服，浅色衬衣

hēitóufà, luòsāihú, hēixı̄fú, qiǎnsèchènyı̄
a man with black hair, whiskers, black suit
and light shirt

黑头发络腮胡黑西服浅色衬衣
hēitóufà luòsāihú hēixı̄fú qiǎnsèchènyı̄

Yes

2

2 一张大的红色的沙发
yı̀zhāng dà de hóngsè de shāfā
the large red sofa

一张红色的大的沙发
yı̀zhāng hóngsè de dà de shāfā

Yes

3 戴眼镜的两个人
dài yǎnjı̀ng de liǎng gè rēn
the people who wear glasses

两个戴眼镜的人
liǎng gè dài yǎnjı̀ng de rēn

Yes

4 红色正面朝向屏幕小椅子或者绿色背向
屏幕的大风扇
hóngsè zhèngmiàn cháoxiàng pı́ngmù xiǎo
yı̌zı̀ huòzhě lù̈usè bèixiàng pı́ngmù de dà
fēngshàn
the fronting small red chair and the backing
large green fan

正面朝向屏幕小红色椅子或者背向
屏幕的绿色大风扇
zhèngmiàn cháoxiàng pı́ngmù xiǎo hóng-
sè yı̌zı̀ huòzhě bèixiàng pı́ngmù de lù̈usè dà
fēngshàn

No

5 黑色头发戴眼镜的
hēsè tóufà dài yǎnjı̀ng de
the person with black hair and glasses

戴眼镜的黑色头发
dài yǎnjı̀ng de hēsè tóufà

No

3
6 红色椅子，椅子背朝向右边，可以看到

椅子背的正面
hóngsè yı̌zı̀, yı̌zı̀bèi cháo yòubiān, kěyı̌ kàn-
dào yı̌zı̀bèi de zhèngmiàn
It is a red chair whose back is facing right
and we could see the front of its back.

(failed) No

7 正朝向我们的小的椅子和正朝向我们的
大的风扇
zhèng cháoxiàng wǒmén de xiǎo de yı̌zı̀ hé
zhèng cháoxiàng wǒmén de dà de fēngshàn
the fronting small chair and the fronting
large fan

正 朝向 我 的 小 的 椅子 和 正 朝向 我
的大的风扇
zhèng cháoxiàng wǒ de xiǎo de yı̌zı̀ hé
zhèng cháoxiàng wǒ de dà de fēngshàn

No

Table 2: Example sentences (with their Pinyin and translations) that were not identical to the inputs from
MTuna (unmatched sentences). The last column says whether the output was judged to be acceptable by
our annotators.

ers annotated the outputs; they reached good inter-
annotator agreement (κ = 0.77) and were asked to
produce a consensus annotation, which was then
used for our evaluation. It turned out that 90 out of
100 sentences were judged to be acceptable, which
we consider a very encouraging result.

We classified the unmatched sentences into
three types. The first one is where punctuation was
different, as in Example 1 in Table 2. The reason
is that some sentences used commas to separate
modifiers but SimpleNLG-ZH does not. These
cases were generally judged to be acceptable.

The second type is where the word order of the
realised sentences was different from the input.
There are three sub-types: a) The order of adjec-
tive pre-modifiers was different, as in Examples 2
and 4. Most of these deviations were judged to be
acceptable, but sentence 4 shows an unacceptable
example, where the word “红色” (hóngsè; red)
before “小” (xiǎo; little) accidentally produced a
new word, “小红色” (light red), which has differ-

ent meaning; b) SimpleNLG-ZH enforces the pre-
modifiers to appear following the specifiers. How-
ever, in the MTuna corpus, there are expressions,
like Example 3, that switch the place of speci-
fiers and pre-modifiers. All such re-orderings were
judged to be acceptable; c) There is a special syn-
tactic pattern of noun phrases in Mandarin, where
a Noun is omitted that is recoverable from the con-
text. For example, in Example 5, the head is omit-
ted in the original sentence to construct a free rel-
ative (Teng, 1979) where the particle “的” works
as sentence-final marker. However, SimpleNLG-
ZH cannot recognise the functionality of the par-
ticle, thus it switches two pre-modifiers according
to the orders defined in §4.1.4, which results in a
noun phrase with different meaning. We found 6
unacceptable cases of the second type.

SimpleNLG-ZH failed to reproduce some types
of language use that are highly colloquial and not
strictly grammatical. We found 4 such cases, as in
Example 6 in Table 2, and in Example 7, where
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the pronoun “我们” (us) in the sentence actually
refers to the subject himself (but using the plural
form); SimpleNLG-ZH realises this as a singular
pronoun.

Comparing these results with earlier evalua-
tions of SimpleNLG-like systems, our results on
the tests sets were perfect (with system input
constructed by hand from the input expressions),
which was also the cases for most earlier studies
(Soto et al., 2017; Bollmann, 2011). Only three of
the previous evaluations involved a corpus. Boll-
mann (2011) and Dokkara et al. (2015) evaluated
their system on 152 sentences from five Wikipedia
articles and 738 sentences randomly picked from a
book, respectively. The linguistic variation of their
test set is greater than ours (which focussed on re-
ferring expressions), but the quality of their output
may have been lower: Dokkara et al. (2015) re-
ported 57% of exact matches, lower than our 65%.
Bollmann (2011) reported 76% of the sentences
“could be generated”, though what this meant is
not entirely clear. Mazzei et al. (2016) tested the
coverage and scalability of their system by auto-
matically mapping 20 dependency trees from the
Universal Dependency corpus. They reported only
10% exact matching sentences (2/20) and their
discussion suggests that their results for declar-
ative and interrogative sentences may have been
disappointing.

7 Conclusion and Future Work
We have introduced and evaluated a realisation en-
gine for Mandarin in the tradition of SimpleNLG.
We hope SimpleNLG-ZH can be a good starting
point for work on other Sino-Tibetan languages,
such as Tibetan and Cantonese.

Realisation has turned out to be non-trivial in all
the languages addressed in the SimpleNLG tradi-
tion so far, but where the most challenging prob-
lems are (i.e., in which components of the sys-
tem), and what the optimal balance between hand-
crafting and Machine learning should lie, is some-
thing that differs per language.

As for the former issue, we have seen that Man-
darin appears to require only a small set of mor-
phological operators, but a much enhanced set of
syntactic processing rules.

As for the latter issue, our study of errors in
SimpleNLG-ZH offers support for the idea that
some issues in realisation are best handled using
Machine Learning (Langkilde, 2000; White et al.,
2007). As it stands, SimpleNLG-ZH makes all its

decisions based on a combination of handcrafted
rules and explicit stipulation. It would be prefer-
able if the role of the developer in making these
decisions could be reduced. This is true for the
choice of classifiers (see §4.1.1), for the use of
particles (such as “的” and “了‘’), for the choice
between different negation words (“不‘’ or “没”),
and for ordering the modifiers and specifiers (as
mentioned in §6). In all these cases, SimpleNLG-
ZH assumes that the choice is made outside the
system (i.e., by a person or by another compo-
nent of the NLG system). It would be useful if
these choices were made by SimpleNLG-ZH it-
self, but it is difficult to see how a rule-based ap-
proach could accomplish this. We therefore aim to
experiment with statistical models (e.g., language
models) to make these decisions. The result would
be a hybrid realisation system that combines rules
and Machine Learning.
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Abstract

In this paper, we describe SimpleNLG-
GL, an adaptation of the linguistic real-
isation SimpleNLG library for the Gali-
cian language. This implementation is de-
rived from SimpleNLG-ES, the English-
Spanish version of this library. It has been
tested using a battery of examples which
covers the most common rules for Gali-
cian.

1 Introduction

Realisation is the final task in natural language
generation. Its goal is to ensure that well-formed
texts are generated according to the grammar rules
of the output language. Consequently, having
tools that facilitate this task is desirable for any de-
veloper of a NLG system. For instance, templates
are a widely-used realisation mechanism which is
appropriate for many application domains, where
generated texts are rather static.

Templates, however, are harder to maintain as
they grow, and ensuring consistency among the el-
ements of a realised template might become more
difficult as more dynamic components appear. To
address this kind of issues, other realisation tools
pack language rules and syntactic structures to
provide a framework for building well-formed
sentences. This is the case of SimpleNLG, a Java
realiser for English presented in (Gatt and Reiter,
2009) to facilitate realisation tasks. Some versions
of this library have been created to support dif-
ferent languages: English-French (Vaudry and La-
palme, 2013), Italian (Mazzei et al., 2016), Brazil-
ian Portuguese (de Oliveira and Sripada, 2014),
German (Bollmann, 2011) and English-Spanish
(Ramos-Soto et al., 2017). Other realisers de-
scribed in the literature are Alethgen (Coch, 1996),
FUF/SURGE (Elhadad and Robin, 1996), Real-

Pro (Lavoie and Rainbow, 1997), KPML (Bate-
man, 1997), YAG (McRoy et al., 2000), HALogen
(Langkilde-Geary, 2002) and OpenCCG (White,
2006).

This paper describes SimpleNLG-GL, a trilin-
gual realisation tool for English, Spanish and Gali-
cian, derived from SimpleNLG-ES (Ramos-Soto
et al., 2017). The Galician language is mainly
spoken by approximately a million people in Gali-
cia, NW of Spain. It is also closely related to the
Portuguese language, since until the Middle Ages
both were a single linguistic unit.

Given the closeness of Spanish and Galician, we
decided to base this adaptation of SimpleNLG on
the dual English-Spanish version. Nevertheless,
Galician has a rich variety of specific features that
clearly demanded a new adaptation of the library.
Thus, we will also show some examples of the
necessary steps to translate a phrase from Spanish
to Galician, in order to illustrate the higher com-
plexity that the Galician language has with respect
to Spanish, and how this influenced our implemen-
tation of SimpleNLG-GL.

2 Covered subset of Galician

The Galician grammar used as reference is
“Normas ortográficas e morfolóxicas do idioma
galego” (Galega, 2012), which was created by the
Real Academia Galega (Royal Galician Language
Academy, founded 1906), a scientific institution
whose objective is studying the Galician culture
and, in particular, its language. This grammar was
created to define the orthographic and morpholog-
ical rules of the Galician language.

2.1 Lexicon
To create the lexicon used to develop this ver-
sion of SimpleNLG, we chose the Galician dic-
tionary provided by the FreeLing Project (Padró
and Stanilovsky, 2012), an open source language
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analysis tool suite which provides some language
analysis capabilities for a wide range of languages.
This dictionary cannot be used directly by Sim-
pleNLG, so we produced a compatible XML dic-
tionary generated from the original file.

3 Features of the Galician language

In this section, we describe the most interesting
features of the Galician language covered by the li-
brary, including syntax, orthography and morphol-
ogy.

3.1 Syntax
3.1.1 Noun phrases
The structure of noun phrases is composed by a
determiner, zero or one possessive, a noun and op-
tionally one or more adjectives. When a phrase
contains a possessive, in most cases it also in-
cludes a determiner (before). For instance, “o
meu fogar” is translated as “my home” when “o”
means “the”, “meu” means “my” (masculine)
and “fogar” means “home”. Therefore, the lit-
eral translation is “the my home”. In a phrase
with adjectives, the meaning of the phrase can
slightly change depending on where the adjectives
are placed (before or after the noun). Adjectives
after the noun refer to features which were pre-
viously unknown by the speaker. However, if the
adjective goes before the noun, the referred feature
was already known. For instance, “o novo fogar”
or ”o fogar novo” mean “the new home”. To say
“his new home” we can express it as “o seu novo
fogar” or “o seu fogar novo”.

A specific feature when noun phrases are used
as indirect objects is that a preposition “a”, which
means “to”, is utilised before the phrase and a
contraction is generated formed by that preposi-
tion and the phrase’s determiner if applicable. For
instance, “Eu vin a Victoria” means “I saw Victo-
ria”. An example with contraction is “Eu vin ao
teu gato”, translated as “I saw your (male) cat”
when the preposition “a” and the masculine deter-
miner “o” are contracted forming “ao”. Other ex-
ample, with a feminine noun is Eu vin á túa gata”
which means “I saw your cat (female)”.

3.1.2 Verb phrases
A general structure of verb phrases is composed by
a subject, a verb and zero or more objects. How-
ever, in Galician there are sentences without a sub-
ject using the verb “haber” in its third person sin-
gular conjugation in the simple tense form “hai”,

Figure 1: Steps to translate from Spanish to Gali-
cian language.

which means “there is/are”. For instance “there
is a cat on the tree” would be expressed as “hai
un gato na árbore”. Similarly, passive sentences
are created adding the reflexive pronoun “se” con-
nected to the verb and after it. For instance “the
event was cancelled” can be expressed as “can-
celouse o evento” (Figure 1).

A feature of the Galician language is the pro-
noun placement in relation to the verb when it is
used as a direct or indirect object, either before
or after the verb, appearing both combined in the
latter case. This collocation depends on the sen-
tence type, e.g., the pronoun is generally placed
after the verb in affirmative sentences, whereas it
is placed before it in negative sentences. For in-
stance, “el deume un regalo” is translated as “he
gave me a present”. In this case the verb is “deu”
(“gave”) and the pronoun is “me”, which is com-
bined with the verb. In a negative sentence, “el
non me deu un regalo” translated as “he did not
give me a present”, an the pronoun appears sepa-
rately before the verb. To handle this feature, the
library has to perform the following three tasks:

• Analyse the phrase type. The general rule is
that pronouns are placed after the verb, how-
ever, we must analyse the phrase to deter-
mine its position. Some words change the
verb’s position as negation adverbs (“non o
vin” which means “I did not see it”), doubt
adverbs (“quizais ela te chame mañá” trans-
lated as “maybe she calls you tomorrow”),
interrogative pronouns (“que che pasou?”
which means “what happened to you?”).

• Split the verb into syllables. Adding the pro-
noun to the verb, its accentuation can change
and an accent mark has to be added or moved
if the verb has it. Therefore, we need to anal-
yse the verb to find out its category according
to where its strong syllable is. For instance,
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Figure 2: Steps to translate from Spanish to Gali-
cian language.

the form “entendo”, the first person singular
conjugation in the present simple tense form
of the verb “understand”, is split as “en-ten-
do”.

• Accentuation. Once we know the verb’s cat-
egory, the last step is to concatenate the pro-
noun to the verb and to check the new word’s
accentuation, adding, moving or removing an
accent mark. For instance, the first person
singular conjugation in the past simple tense
form “dixen” of the verb “dicir” (“say”)
has the stress on its first syllable. If we add
the pronoun “lle” expressed as “to him”,
“to her” or “to it”, the composed word is
‘dı́xenlle‘. If we add the contraction of pro-
nouns (Table 6) “llelo”, composed by the
pronoun “lles”, which means “to them”, and
the pronoun “o”, which means “it”, the com-
posed word is “dı́xenllelo” (Figure 2). The
stress of the new words in these examples is
also their first syllable. However, due to the
Galician orthography rules, an accent mark
(which is not present in the original word) has
to be put on these first syllables.

More details about pronoun concatenation are
given in Section 3.3.3.

3.1.3 Interrogative phrases
Interrogative phrases can be formed in many ways
by simply adding the punctuation mark at the end
of the sentence. For example, “tes frı́o” that
means “you are cold” can be transformed into a
question simply adding the punctuation mark “tes
frı́o?” that means “are you cold?”.

When the interrogative pronouns “what” and
“who” have the role of indirect objects, the prepo-

sition “a” is inserted in the beginning of the ques-
tion. For instance, “a quen chamaches?” can be
expressed as “who did you call?”.

3.2 Orthography

General Galician orthography rules (e.g. punctua-
tion, capital letters at the beginning of sentences...)
are like English and Spanish ones. This means that
SimpleNLG already has them implemented.

As we mentioned before, Galician has special
rules for word categorisation regarding their stress
syllables. Besides, some words have accent marks
on one vowel to stress the strong syllable. The en-
tries in the lexicon we use contain accents accord-
ing to the Galician orthography rules. However, it
does not contain generated words formed by con-
tractions, so we implemented the corresponding
accentuation rules to handle these cases.

3.3 Morphology

3.3.1 Gender and number

Determiners, nouns and adjectives have to be in-
flected in gender and number. Our lexicon pro-
vides the base form of a word but not its gender
and number variations so we had to implement
some rules to generate them when they are regular.

3.3.2 Verb tenses

Verbs can be regular or irregular. We implemented
some rules to generate regular forms, whereas the
irregular ones are provided by the lexicon.

3.3.3 Morphophonology

Galician is a very rich language in terms of its
morphophonology rules. SimpleNLG-GL imple-
ments the contractions that exist between prepo-
sitions and articles, and also between pronouns
when they function as direct and indirect objects.

Prepositions and articles: The prepositions
shown in Table 1 can contract with definite arti-
cles, “o”, “a”, “os”, “as” which mean “the”, for
instance “o gato” means “the cat”; and also in-
definite articles, “un”, “unha”, “uns”, “unhas”
which mean “a”, for instance, “un gato” means
“a cat”. These contractions have the following
meanings:

• “a + definite article” means “to the”
whereas “a + indefinite article” means “to
a”
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Galician English
a to
con with
de of
en in
por by
tras after

Table 1: Meaning of prepositions

Articles
o a os as

Pr
ep

os
iti

on
s a ao á aos ás

con co ca cos cas
de do da dos das
en no na nos nas
por polo pola polos polas
tras tralo trala tralos tralas

Table 2: Contractions between prepositions and
definite articles

• “con + definite article” means “with the”
whereas “con + indefinite article” means
“with a”

• “de + definite article” means “of the”
whereas “de + indefinite article” means “of
a”

• “en + definite article” means “in the”
whereas “en + indefinite article” means “in
a”

• “por + definite article” can mean “by the”
whereas “por + indefinite article” can mean
“by a”

• “tras + definite article” can mean “after the”
whereas “tras + indefinite article” can “after
a”

In Tables 2 and 3 the contractions are shown.
Pronouns: The atonic pronouns having the role

of indirect objects shown in Table 4 can also con-
tract with others which have the role of direct ob-
jects which are shown in Table 5. For instance, the
phrase “El deumo” (Figure 3) is expressed as “He
gave it to me”, where “deu” means “gave” and

Articles
un unha uns unhas

Pr
ep

os
iti

on
s con cun cunha cuns cunhas

de dun dunha duns dunhas
en nun nunha nuns nunhas

Table 3: Contractions between prepositions and
indefinite articles

Figure 3: Steps to translate from Spanish to Gali-
cian language.

Galician English
me to me
che to you (singular)
lle to him/her/it
nos to us
vos to you (plural)
lles to them

Table 4: Meaning of atonic pronouns with the role
of indirect objects

“mo” is the contraction of “me” (“to me”) and
“o” (“it”), respectively. In Table 6 all possible
combinations are shown.

4 Availability, test and documentation

SimpleNLG-GL is available and fully download-
able at (Cascallar-Fuentes et al., 2018)

The documentation from SimpleNLG-ES has
also been adapted to this version, and is also avail-
able at the library repository in the form of a wiki,
as usual in SimpleNLG, which contains a tutorial
with some examples.

SimpleNLG-GL has been tested using 180 unit
tests adapted from SimpleNLG-ES. New tests
have been generated to cover Galician language
features not present in the Spanish language. We

Galician English
o him/it
a her/it
os them (masculine)
as them (feminine)

Table 5: Meaning of atonic pronouns with the role
of direct objects
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o a os as
me mo ma mos mas
che cho cha chos chas
lle llo lla llos llas
nos nolo nola nolos nolas
vos volo vola volos volas
lles llelo llela llelos llelas

Table 6: Contractions between atonic pronouns

had to create new tests to cover the Galician lan-
guage features previously described. For instance,
we created 11 tests to cover contractions between
all prepositions and articles, 4 tests to cover atonic
pronouns collocation and 7 tests to cover contrac-
tions between atonic pronouns. Also, in some of
the adapted tests from the Spanish version these
features are present as well.

Besides, SimpleNLG-GL has been used in the
real data-to-text service GALiWeather (Ramos-
Soto et al., 2015), which generates daily weather
forecasts for the Galician municipalities in the
Website of the Galician Meteorological Agency
(Agency). This service combines a template-based
approach with the use of SimpleNLG-GL to gen-
erate correct sentences, in terms of the agreement
between the elements of the phrase (for example,
for choosing correct verb conjugations and ensur-
ing gender and number coherence, among others).

5 Conclusions

We have described SimpleNLG-GL, an adapta-
tion of the SimpleNLG Java realisation engine
for Galician language, that provides a sophisti-
cated covering of even the most complex rules
found in this language. This library has been
tested extensively using unit tests, 180 adapted
from SimpleNLG-ES testing, whilst other 22 were
newly developed for SimpleNLG-GL.
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Lluı́s Padró and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards wider multilinguality. In Proceed-
ings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istan-
bul, Turkey. European Language Resources Associ-
ation (ELRA).

A. Ramos-Soto, J. Janeiro-Gallardo, and Alberto
Bugarı́n. 2017. Adapting SimpleNLG to Spanish.
In 10th International Conference on Natural Lan-
guage Generation, pages 144–148. Association for
Computational Linguistics.

Alejandro Ramos-Soto, Alberto José Bugarı́n Diz,
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Abstract

This paper presents SimpleNLG-NL, an
adaptation of the SimpleNLG surface re-
alisation engine for the Dutch language. It
describes a novel method for determining
and testing the grammatical constructions
to be implemented, using target sentences
sampled from a treebank.

1 Introduction

SimpleNLG is a Java-based surface realisation li-
brary aimed at practical applications (Gatt and
Reiter, 2009). It is meant to be simple to use,
and in an architecture redesign in version 4 of
the software it was also made easy for devel-
opers to alter its code. Over the years, Sim-
pleNLG has been adapted for several languages
other than English, such as German (Bollmann,
2011), Brazilian-Portuguese (De Oliveira and Sri-
pada, 2014) and Italian (Mazzei et al., 2016).

In this paper we present a new version of
SimpleNLG for surface realisation in Dutch,
called SimpleNLG-NL. Like most adaptations for
other languages, it is based on SimpleNLG-EnFr
(Vaudry and Lapalme, 2013): a bilingual ver-
sion of SimpleNLG that supports both English and
French, based on SimpleNLG version 4.2. The ar-
chitecture of SimpleNLG-EnFr was split into lan-
guage independent and language dependent parts,
making it relatively easy to add new languages.

As Dutch is closely related to German, Simple-
NLG for German (Bollmann, 2011) might seem a
more obvious starting point for SimpleNLG-NL.
However, SimpleNLG for German is based on the
differently structured version 3 of SimpleNLG,
which made it unsuitable to build on.

This paper is structured as follows. In Sec-
tion 2 we describe the method we used for devel-
oping SimpleNLG-NL, followed in Section 3 by

an overview of the main characteristics of Dutch
and how we implemented them. In Section 4 we
present the current coverage of SimpleNLG-NL
over a set of test sentences. We end with conclu-
sions and directions for future work.

2 Method

Instead of following the structure of e.g., a gram-
mar reference book for adapting the rules of Sim-
pleNLG, we developed SimpleNLG-NL using tar-
get sentences sampled from a dependency tree-
bank for Dutch. In SimpleNLG-IT (Mazzei et al.,
2016) sentences from a dependency treebank were
used as well, but only for evaluation purposes.
For SimpleNLG-NL, we expanded their use to
the development phase, using them in an iterative
generate-evaluate-revise process.

For each sentence, the SimpleNLG input was
written manually and the resulting realisation was
compared with the target sentence. Differences
between the realisation and the target sentence
were analysed. Based on this, the relevant gram-
mar rules were adapted for Dutch and missing lex-
icon entries were added. This process was re-
peated for each sentence, increasing the size of the
covered grammar subset with each iteration.

The generate-evaluate-revise cycle was carried
out in four rounds.

First round: In the first round we tried to re-
produce 12 target sentences of increasingly higher
word count. We assumed that increasing the word
count would also increase the grammatical com-
plexity of the sentence.

Second round: In the second round we applied
unit tests to 37 short sentences that were man-
ually written to test one feature of SimpleNLG-
NL, or a combination of very few features. Fea-
tures that were tested included basic verb inflec-
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tion, both regular and irregular, as well as adjec-
tives and their inflection (10 sentences), morphol-
ogy of different verb groups in multiple tenses (12
sentences) and syntax of negated sentences (5 sen-
tences). Finally, 10 sentences were used to test in-
terrogative sentence types.

Third round: In the third round we included
two more sets of target sentences from the Dutch
treebank. The first set consisted of 11 medium-
length sentences (7-13 words). The second set
consisted of 10 long sentences (14-20 words).

Fourth round: In the final round, 16 more
unit tests were carried out. These were aimed at
testing combinations of tenses, voices and verb
form (perfect or simple). They were based on the
same input sentence, which contained a subject, a
verb and a direct object.

The test sentences for Rounds 1 and 3 were ran-
domly selected from the Dutch Wikipedia corpus
(100,000 sentences) available in Dact,1 a viewer
for Alpino corpora. Alpino is a dependency parser
for Dutch (Bouma et al., 2001).2 After a sentence
was randomly picked, based on the word count
needed for the current round, it was tested for
two requirements: the sentence had to be gram-
matically correct and it should not contain direct
speech. SimpleNLG does not support properly
embedding direct speech in a sentence and neither
would SimpleNLG-NL.

For each sentence that was selected, the input
code for generation had to be written. We did this
based on its dependency tree from the treebank,
as generated by the Alpino parser. As the input
for SimpleNLG is structured similar to a depen-
dency tree, the Alpino trees could fairly easily be
converted into input code. Similar to the conver-
sion rules used in the evaluation of SimpleNLG-
IT, when converting the dependency trees to Sim-
pleNLG we kept the input isomorphic to the tree in
terms of subject, object etc. We did not use canned
text in the input (except for names and fixed multi-
word expressions), and we did not provide infor-
mation about word order or punctuation.

We started the creation of SimpleNLG-NL by
cloning the French parts of SimpleNLG-EnFr.
French was chosen because its features seemed

1http://rug-compling.github.io/dact/
2http://www.let.rug.nl/˜vannoord/alp/

Alpino/

more related to Dutch than the English features, in
particular with respect to the more complex mor-
phology of French and Dutch compared to En-
glish. Therefore, the first realisation results used
French grammar rules. For the lexicon, we trans-
lated the closed classes from the French lexicon
(106 entries). The open part of the lexicon started
out empty; missing entries (for irregular word
forms) were added as we went along. A full lexi-
con was created later, as described in Section 3.5.

3 Adaptations for Dutch

The main changes we made to SimpleNLG for sur-
face realisation in Dutch are described in this sec-
tion. As our main references for Dutch grammar
and morphology we used the online linguistic re-
sources Taalportaal3 and e-ANS.4

3.1 Nouns
In Dutch, pluralisation of nouns almost always
consists of adding either -en or -s as a suffix to
the singular form. Which suffix to use is deter-
mined by the stress of the noun’s last syllable:
use -en when stressed; use -s when unstressed.
However, since we do not have information on
stress, and there are many exceptions to this rule,
SimpleNLG-NL instead uses a set of word end-
ings to determine when to use the -s suffix.5 Other
exceptions can be added to the lexicon. Dutch
also has compound nouns. Compounds are cur-
rently treated as regular nouns. Because of that,
pluralisation may result in an incorrect form if the
compound is not in the lexicon and does not have
one of the predetermined word endings described
earlier. When adding plural suffixes, other mor-
phological rules may apply to ensure the correct
spelling of the surface form. Specifically, some-
times vowels need to be removed or consonants
added to the noun stem.

3.2 Verbs
The following tenses have been implemented
in SimpleNLG-NL: present simple, past simple,
present perfect, past perfect, future and condi-
tional. When inflecting verbs, SimpleNLG-NL
first checks the lexicon for irregular verb forms. If
none are found, it uses the rules for regular verbs.
Inflections are based on the stem of the verb. For

3http://www.taalportaal.org/
4http://ans.ruhosting.nl/e-ans/
5http://ans.ruhosting.nl/e-ans/03/05/

03/body.html

74



example, past tense inflection involves adding the
suffix -te if the stem ends in an unvoiced conso-
nant; in all other cases -de is added. Similar to
nouns, in some cases the spelling of the verb stem
needs to be changed.

Auxiliary verbs have to be added in the fu-
ture tense (zullen ‘will’) and the conditional tense
(zouden ‘would’). They are placed before the verb.
The perfect form also requires one of two auxiliary
verbs (zijn ‘be’ or hebben ‘have’), which can be
specified in the lexicon. Lastly, passive sentences
require zijn ‘be’ to be added. When these features
are combined, such as in a passive conditional per-
fect sentence, in the current version of the system
this results in an incorrect order of auxiliary verbs.
In some cases, one or more auxiliary verbs have
to be placed after the main verb, but the system
currently does not do this.

Separable Complex Verbs. In Dutch, a special
group of verbs is that of the so-called Separable
Complex Verbs (SCVs). An SCV is a verb that
consists of a main verb and a prepended preverb
(Booij and Audring, 2018). This preverb can be
any word, but is often a preposition.

In the past and present simple tenses in main
clauses, SCVs are split into their preverb and main
verb, and their order is reversed. The main verb is
inflected as it would if it were on its own. For ex-
ample: toekennen in the third person present be-
comes hij kent toe (“he assigns”). The position
of the preverb in the main clause is flexible: di-
rect objects, indirect objects, prepositional phrases
and even entire subclauses can be placed between
the main verb and its preverb. In SimpleNLG-NL,
we decided to position the preverb at the end of
the sentence by default. In the perfect tenses and
in subordinate clauses, the preverb attaches to the
main verb. The main verb is inflected normally,
and the preverb is prefixed to it after inflection.
This results in, for example, hij heeft toegekend
(“he has assigned”) and dat hij toekent (“that he
assigns”).

The input for an SCV can be in either of
two forms: toe|kennen or toekennen. The first
input splits the verb kennen from the preverb
toe. SimpleNLG-NL will then look for ken-
nen in the lexicon and inflect it appropriately
(either from lexicon data or regular verb rules).
This is similar to how SimpleNLG for German
deals with such verbs (Bollmann, 2011). In the
second case, SimpleNLG-NL checks if the verb

is marked as an SCV in the lexicon using the
<preverb></preverb> field. If it is not,
SimpleNLG-NL tries to detect if the verb is an
SCV based on a list of common SCV prefixes:
bij, in, na, uit, op, af, mee, tegen, tussen, terug,
toe. However, not all SCVs can be caught this
way, as several verbs prefixed by a preposition are
not SVCs, but look exactly like them with the dif-
ference being the stress. For example, doorboren
(regular verb: ‘pierce’; SVC: ‘continue drilling’)
is only an SVC if the stress is on door.

3.3 Adjectives
Dutch adjectives can be used predicatively and at-
tributively, with only the latter being supported
by SimpleNLG and SimpleNLG-NL. Depending
on the number and gender properties of the noun
phrase, the adjective requires the suffix -e. Similar
to nouns and verbs, in some cases the spelling of
the stem needs to be changed.

Comparatives and superlatives are created with
a suffix (-er or -st). In some cases, the adverbs
meer (“more”) or meest (“most”) are used instead.
In all cases, the adjective can be appended with the
earlier mentioned -e. Comparative and superla-
tive forms can be overwritten in the lexicon using
the <comparative></comparative> and
<superlative></superlative> fields.

3.4 Word order
SimpleNLG-NL uses the subject-verb-object or-
der for main clauses and subject-object-verb for
relative clauses and interrogative sentences. Ex-
ceptions are made for SCVs, as described in Sec-
tion 3.2. The order of other constituents, specifi-
cally modifiers, can vary depending on many fac-
tors. Currently, SimpleNLG-NL allows for ma-
nipulating word order by specifying modifiers as
‘premodifiers’ or ‘postmodifiers’ in the input; oth-
erwise, a default (and not always correct) word or-
der is chosen.

3.5 Lexicon
A lexicon was created by parsing the Dutch pages
of Wiktionary6. The content is licensed under the
CC BY-SA 3.0 license7, which makes it suitable
for release with SimpleNLG-NL. This resulted in
a lexicon containing 79437 entries (nouns, verbs,
adverbs, adjectives and prepositions), including

6https://www.wiktionary.org/
7https://creativecommons.org/licenses/

by-sa/3.0/deed
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Sentence set Sentences Exact matches Accepted as correct
Round 1 12 8 66.7% 11 91.7%
Round 2 37 37 100.0% 37 100.0%
Round 3 (medium) 11 9 81.8% 9 81.8%
Round 3 (long) 10 5 50.0% 7 70.0%
Round 4 16 10 62.5% 10 62.5%
Total 86 69 80.2% 74 86.0%

Table 1: The final coverage of SimpleNLG-NL after development and testing. Generated sentences were
“accepted as correct” if they met the criteria described in Section 4.

the closed part described in Section 2 and the en-
tries added during the development rounds.

To accommodate making a choice in the trade-
off between larger lexicons that take longer exe-
cution time and smaller lexicons that may miss
required entries (cf. (De Oliveira and Sripada,
2014)), two smaller lexicons were generated based
on subsets of the larger lexicon. The subsets were
determined by matching the entries with word
forms from a word frequency list based on Open-
Subtitles.8 Words in the frequency list can have
multiple corresponding lexicon entries. The small-
est lexicon, based on the top 1000 most frequent
words, contains 3386 entries. The top 10,000
words result in 8600 entries. The full lexicon is
over 10 MB, while the medium one is just over
1MB and the smallest is half of that. The choice
of lexicon is based on scope and performance re-
quirements. By default, SimpleNLG-NL uses the
medium lexicon.

4 Evaluation

To determine the coverage of SimpleNLG-NL,
each sentence generated in one of the four rounds
described in Section 2 was judged on correctness.
Since the number of sentences to be evaluated was
small, using automated evaluation metrics such
as BLEU (Papineni et al., 2002) would not have
made much sense; moreover, these would not take
into account that word order in Dutch is relatively
free. Therefore we chose to manually evaluate the
sentences.

We considered a sentence generated by
SimpleNLG-NL to be generated “correctly” if the
output met at least one of the following criteria:

• The output matched the target sentence ex-
actly, including punctuation; or

8https://github.com/hermitdave/
FrequencyWords/

• The output only differed from the target in
terms of punctuation (commas and quotation
marks), with no change in meaning; or

• The output differed from the target in terms
of word order, but without making the sen-
tence unwellformed or causing a change in
meaning.

The criteria are ordered by inclusiveness, with
the first being the preferred outcome (“exact
match”). The final coverage by SimpleNLG-NL
of the test sentences according to these criteria, af-
ter all four rounds of generate-evaluate-revise, is
shown in Table 1.

Results round 1: Out of 12 sentences, 11 were
generated correctly (91.7%). The result counting
only exact matches is 8 out of 12 (66.7%). Of the
three accepted mismatches, one missed some non-
mandatory commas, and two had acceptable dif-
ferences in word order from their target sentences.
(One lacked topicalisation, which is currently un-
supported, and the other placed the past participle
at the end of the sentence, a merely stylistic dif-
ference.) SimpleNLG-NL could not reproduce the
longest sentence from Round 1 (26 words). This
was due to several problems. First, SimpleNLG
cannot handle clauses without verbs, in this case
an enumeration (“tasks such as X, Y and Z”). Sec-
ond, the sentence contained a verb cluster as well
as an attributively used infinitive, neither of which
SimpleNLG-NL could handle.

Results round 2: In Round 2, all 37 short
test sentences were generated correctly, as exact
matches (100%).

Results round 3: Of the 11 medium-length sen-
tences, 9 were generated as exact matches (81.8%)
and the same number were accepted as correct.
The two incorrectly generated sentences both had
problems with modifier ordering. Of the 10 long
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sentences, 7 were generated correctly (70.0%).
This includes two sentences that did not match ex-
actly. One accepted mismatch added an unneces-
sary (but acceptable) comma, the other positioned
the preverb of an SCV at the end of the sentence.
While that position is acceptable, it can be stylisti-
cally preferable to reduce the distance between the
main verb and the preverb. However, SimpleNLG-
NL does not yet support such a stylistic mech-
anism. The problems with the three incorrectly
generated sentences involved incorrect ordering of
modifiers and a verb cluster (te gaan wonen, lit.
“to go live”), and lack of support for main clauses
connected by a semi-colon.

Results round 4: Of the 16 varieties of the same
sentence, 10 were generated as exact matches.
There were no mismatches accepted as correct.
The incorrect sentences all had an incorrect word
order. Active sentences in the future perfect and
the conditional tenses incorrectly positioned the
auxiliary verb before the object. In passive sen-
tences in the perfect form, the order of the verb
and the two or three auxiliary verbs was incorrect
(e.g., zal zijn geweest gegooid should be zal ge-
gooid zijn geweest “will have been thrown”).

Overall results: In total, 74 out of 86 test sen-
tences (86.0%) were generated correctly. Of these,
69 (80.2%) are exact matches. If we only look
at the 33 treebank sentences from Rounds 1 and
3, then 28 (84.8%) were generated correctly, with
22 (66,7%) exact matches. The open part of the
lexicon gained 59 entries during the development
rounds. Combined with the closed part, the final
lexicon contained 165 entries. This lexicon was
later replaced by a more extensive one, containing
over 8000 entries (see Section 3.5).

5 Conclusions and Future Work

We have developed SimpleNLG-NL, a new ver-
sion of SimpleNLG that is fit for surface realisa-
tion in Dutch. During the development process,
the coverage of SimpleNLG-NL was gradually ex-
panded by iteratively generating and testing on
sentences from a Dutch treebank. Eventually, over
80% of the test sentences could be generated cor-
rectly, with a few acceptable differences in punc-
tuation and word order. The issues with word or-
der of auxiliary verbs will be addressed in future
work.

Currently, word order can be altered with the

use of premodifiers and postmodifiers. However,
a better approach may be the one used in Simple-
NLG for German, where Bollmann (2011) pro-
vided a feature to choose the desired word order.
This also allows for easier sentence manipulation.

As the target sentences used for development
and testing covered many different sentence struc-
tures, we believe the current grammatical cover-
age of SimpleNLG-NL is sufficient for simple sur-
face realisation in Dutch. SimpleNLG-NL will
be used in the POSTHCARD project9 to realise
(parts of) templates for dialogue generation, used
to simulate conversations with patients suffering
from Alzheimer’s disease. The simulation aims to
provide training for caregivers based on scenarios
with a virtual Alzheimer’s patient.

SimpleNLG is publicly available on Github.10

Like SimpleNLG, SimpleNLG-NL is released un-
der Mozilla Public License 1.1,11 allowing for
modification and commercial use. The Simple-
NLG-NL code includes comments and Javadoc
information that should make it easy to use and
adapt. In addition, the SimpleNLG wiki12 will be
adapted for SimpleNLG-NL.
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Abstract

This paper introduces the task of “flipping”
the bias of news articles: Given an article
with a political bias (left or right), generate
an article with the same topic but oppo-
site bias. To study this task, we create a
corpus with bias-labeled articles from all-
sides.com. As a first step, we analyze the
corpus and discuss intrinsic characteristics
of bias. They point to the main challenges
of bias flipping, which in turn lead to a spe-
cific setting in the generation process. The
paper in hand narrows down the general
bias flipping task to focus on bias flipping
for news article headlines. A manual anno-
tation of headlines from each side reveals
that they are self-informative in general and
often convey bias. We apply an autoen-
coder incorporating information from an ar-
ticle’s content to learn how to automatically
flip the bias. From 200 generated head-
lines, 73 are classified as understandable
by annotators, and 83 maintain the topic
while having opposite bias. Insights from
our analysis shed light on how to solve the
main challenges of bias flipping.

1 Introduction

News portals play a central role in our society in dif-
ferent ways: they keep people informed, bring es-
sential topics into public discussions, and they grad-
ually change the attitudes of communities. Note-
worthily in this regard, recent studies have exposed
various types of bias in the major media portals in
the US (Groseclose and Milyo, 2005). For exam-
ple, media is able to draw the attention to particular
entities or events while ignoring others. Also, the
selection of what to report about a specific entity
(e.g., positive or negative facts) undoubtedly pro-

duces bias. And not least, the way in which news
are phrased can emphasize a positive or a negative
impression on certain entities and events.

Among these examples, one can argue that bias
becomes more obvious when news articles discrim-
inate against entities — particularly in political
news. For illustration, consider the following two
headlines on Trump recognizing Jerusalem as the
capital of Israel, which have been taken from Fox
News and New York Times respectively:

Why Trump is right in recognizing Jerusalem as
Israel’s capital

Trump is making a huge mistake on Jerusalem

While the two headlines describe the same event,
they clearly convey a different stance on it. This
difference in stance matches the observation that
Fox News is considered to have a right-oriented
bias, whereas the New York Times is rather seen as
left in general.

To keep a news portal’s bias uniform, copy edi-
tors possibly rewrite articles after receiving them
from journalists or other sources (Einsohn, 2011).
As a support of this process, but also as an ele-
ment of the rhetorical machinery of forthcoming
argumentation engines, an automatic “bias flipper”
would be a very useful research tool. Moreover,
a bias flipper would be helpful in practical appli-
cation domains such as e-journalism, for instance,
to automatically rewrite an article from Fox News
and then report it on New York Times.

However, rewriting a text with an opposite bias
is a challenging task. It requires to identify and
to classify the bias (e.g., as left vs. right), which
is anything but trivial. Taking a closer look into
the example mentioned above, we also see that,
without understanding how the bias is manifested
in the texts and what the background of the event
is, an automatic bias classifier and flipper will not
achieve any reasonable performance.
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Figure 1: An overview of this paper. Left, we show the discriminativeness analysis of words in the biased
text. In the middle, the granularity analysis trains three bias classifiers on different text segments. Right,
we use biased articles to train a bias flipper based on autoencoder to flip the bias of headlines.

Accordingly, we approach the bias flipping task
with a data-driven approach, addressing the follow-
ing research questions: (1) How to acquire and sam-
ple a reasonable number of biased texts? (2) What
kind of bias exists, and how is it manifested in the
acquired texts? (3) Given biased texts and a mech-
anism to understand their bias, how far can we get
using the current state-of-art text generation model
in trying to flip the bias?

We tackle the first question by exploiting vari-
ous sources on the web. In particular, we utilize
the by-portal article-level bias labels found on all-
sides.com. This platform collects news articles that
report on the same event while conveying different
bias. Following the distant supervision paradigm,
we build a new corpus of 2196 pairs of news article
headlines, each of which addresses the same event
and opposite bias (i.e., one headline is left-oriented,
the other right-oriented).

Using the new corpus, we tackle the second ques-
tion by analyzing the bias in several experiments
(Section 4). Our analysis concentrates on the most
discriminative words for identifying the bias, and
on how bias is encoded along three granularities of
text segments, i.e., in a full article, in a paragraph,
and in a single sentence.

Our experiments yield insightful results: While
sentimental words play a major role in identifying
subjective texts, named entities are shown to be
superior for distinguishing left-oriented from right-
oriented texts. Moreover, bias often seems to be
encoded at article or paragraph level only. In other
words, it is hard to capture bias without reading at
least a couple of sentences.

Our findings form the ground for tackling the
third question, i.e., for developing the first “bias
flipper” (Section 5). Considering the difficulty of
the task, we focus on flipping news headlines, as
a first substantial step in the direction of flipping
complete articles. Accounting for recent advances
on text generation using deep learning, we study
the effectiveness of using autoencoders for flipping.
An encoder conditioned on the source bias is used
to encode the input text in the semantic representa-
tion, while a decoder conditioned on the target bias
then decodes the representation into a new text.

We evaluate bias flipping automatically using
the Rouge score and manually employing expert
annotators. The results of both demonstrate the
ability of our model to flip headlines successfully
while maintaining the headlines’ semantics.

An overview of all experiments carried out in
this paper is shown in Figure 1. Our contribution is
four-fold: We introduce a new natural language pro-
cessing task, bias flipping; we develop a corpus for
investigating this task; we analyze the bias in the
developed corpus; and we apply an advanced deep
learning model to flip the bias of news headlines.
We observe that bias flipping and bias classification
are still far from being solved. However, we believe
that our bias analysis along with insights from the
generation and evaluation experiments will shed
light on how to deal with newspaper bias and pos-
sibly how to flip the bias of complete articles.

2 Related Work

This section reports on related work regarding the
bias datasets, bias analysis, and bias flipping.

80



Bias Datasets To study the bias in the newspa-
per domain, several developed corpora include one
or more label types related to bias. For example,
the news quality corpus created by Arapakis et al.
(2016) comprises 561 articles, each of which being
labeled with 14 different quality aspects including
article’s subjectivity. Also, the MPQA corpus con-
tains a label for the subjectivity of its 692 news ar-
ticles (Wiebe et al., 2005). These two corpora were
carefully developed with both article and sentence-
level labels. However, they are not large enough to
reliably train a supervised learning model.

Recently, a large-scale dataset has been released
(Horne et al., 2018). The dataset allows for in-
vestigating the news based on various dimensions,
including bias (the so-called “political impartiality
prediction”). Although the dataset is pretty large,
it has a major drawback concerning the bias di-
mension: The articles are not paired according to
events, but such a pairing is essential for study-
ing how different news sources report on the same
event. To overcome this drawback, we develop a
new corpus that aggregates pairs of articles from
different news sources. The pairs report on the
same event while their sources are said to have an
opposite bias. We think that this event-controlled
corpus will play a significant role in tackling the
tasks of bias analysis and flipping.

Bias Analysis The analysis of media bias has
been a subject of investigation for decades (Grose-
close and Milyo, 2005; Fang et al., 2012; Arapakis
et al., 2016). Various aspects of bias have been
studied from different perspectives.

In particular, Groseclose and Milyo (2005) ex-
plored the bias on a sample of 20 news sources
in the US. The bias was quantified based on the
number of citations that were used by the think
tanks and policy groups. Their work is one of the
first that provided clear evidence of the presence
of bias in media. Furthermore, Lin et al. (2011)
proposed a scheme for bias categorization. The
scheme includes the political party, frequently men-
tioned legislators, region, ideology, and gender. In
a comparison study between the bias in news and
blogs, the authors found blogs to be more sensitive
to bursting events. In another related work, Yano
et al. (2010) focused on liberal and conservative
bias. Most notably, they conducted a manual anno-
tation of the bias at the sentence-level. Their study
showed that bias indicators usually include named
entities of opposing bias. As for our work, we deal

with right and left bias, e.g., the democrats’ and
republicans’ bias, or conservative and liberal bias.
Also, we conduct an analysis to find the terms that
frequently indicate left or right bias.

Bias Flipping Over the few last years, several
deep neural networks models have been proposed
for text generation. In these models, a variational
autoencoder (VAE) has often been used to impose
a prior distribution on the hidden vector (Kingma
and Welling, 2013; Rezende et al., 2014; Bowman
et al., 2016; Yang et al., 2017).

A related research line that addresses rewriting
texts is controlled generation (Guu et al., 2017;
Mueller et al., 2017; Zhou and Neubig, 2017). Con-
trolled generation studies how to rewrite a text with
a given attribute. Examples of controlled models
include the multi-space VAE of Zhou and Neubig
(2017), which modifies a word for a given tense
and a part-of-speech tag, and the model of Guu
et al. (2017), which generates a sentence given a
template vector and an edit vector. This model is
shown to be able to paraphrase a given template
instead of re-generating a sentence entirely.

Among the collection of VAE models, our work
is most closely related to text style transfer (Shen
et al., 2017; Hu et al., 2017; Li et al., 2018; Fu et al.,
2018); The VAE of Hu et al. (2017) generates sen-
tences with a given style aspect, such as a sentiment
or tense. Moreover, the model of Shen et al. (2017)
modifies the sentiment of restaurant reviews while
aiming to preserve their meaning. However, none
of these models has considered bias.

In contrast, this paper employs the cross-aligned
autoencoder from Shen et al. (2017). The choice
of this model was made based on the results we
obtained in our analysis experiments. In particular,
we “transfer” the bias of news article headlines
using the content of the articles, i.e., we rewrite
the headline while flipping the embedded bias from
left to right or the other way round.

3 A Corpus of Biased News Articles

This section introduces our new corpus
of news articles with different political
bias, based on existing bias labels from
a news aggregator. The corpus is freely
available at https://webis.de/data/
corpus-webis-bias-flipper-18.
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3.1 The News Aggregator allsides.com

The news aggregation platform allsides.com lists
news events as of June 1st, 2012; about two to
three events per day, focusing on American politics.
Each event comes with a title and a short summary,
providing information to readers that is said to be
free of bias. In addition, one selected news article
is given for each of three biases: left, center, right
(sometimes, only two articles are available).

The provided bias labels are not article-specific
but portal-specific.1 At the time we collected the
data, 247 news portals were assigned one out of six
labels each: left, lean left, center, lean right, right,
and mixed. We see both the left and the lean left
portals as left candidate news sources, and both
the right and lean right portals as right candidate
news sources. The center and mixed portals are
preserved for future applications.

Since the labels are portal-specific, news articles
with a particular bias are selected from all portals
that have the respective label. Conversely, no portal
contains articles with different biases.

3.2 Corpus Construction

We first collected all 2781 events available on the
aggregator on February 10th, 2018 (spanning a pe-
riod of about five and a half years).2 For each event,
the title, the summary, all news portals belonging to
the event, and the links to the news portals with re-
spective bias were recorded. After that, we crawled
the news portals with the given links to retrieve
their headlines and the content of all articles, be-
cause the content is not provided on allsides.com.
Metadata such as an article’s author and its publica-
tion time were also collected for future applications.
Since some news articles were not available any-
more, we retrieved 6447 news articles in the end.

3.3 Corpus

The distribution of news portals and articles in our
corpus is shown in Table 1. To validate the accu-
racy of the by-portal bias, we asked one editing
expert to label the bias of all headlines from ma-
jor left-oriented (New York Times and Huffington
Post) and right-oriented portals (Fox News and
Townhall). The expert is familiar with American
politics and he works as a news editor in the US.
His labels are based on the headline only, and the

1https://www.allsides.com/media-bias/
media-bias-ratings

2https://www.allsides.com/story-list

News Portals News Articles

Bias Most Common Total Most Common Total

Left Huffington Post 21 479 641
Lean left NY Times 18 688 1747
Center CNN (web) 24 776 1517
Lean right Fox News 6 1061 1616
Right Townhall 28 279 926

Table 1: News portals and articles in our corpus for
each bias in total and in the most common portal.

judgments follow the notion of political bias from
an American’s point of view.

The expert assigned left to the headlines of left-
oriented portals 3.4 times more than right, while the
headlines from right-oriented portals have 1.9 times
right more than left. Given that we only looked at
the headlines, we conclude that the by-portal labels
from the aggregator seem trustable.

The portal labels on allsides.com are created
based on different methods including blind surveys,
academic research, feedback from the community,
and in-depth editorial reviews from allsides.com ed-
itors3. The final portal labels consider the strength
and the consistency of the labels from the different
methods. The most common portal contributes at
least 30 percent of articles of each bias. The total
number of right-oriented news slightly exceeds the
number of left-oriented (2542 vs. 2388).

According to the community feedback on the
website, the provided labels are agreed by the web-
site’s users in general. Thus, we argue that the
labeling can be seen as being of high quality.

4 Bias Analysis

In this section, we describe experiments for analyz-
ing biased text, whose results will later be discussed
in Section 6. As in the example in Section 1, we
observe that bias can be found if we can identify
sentiment towards a given entity. Hence, it is worth
studying whether the application of sentiment anal-
ysis techniques helps on biased text. We seek to
identify words which discriminate either sentimen-
tal or biased text, and to classify the type of bias
using standard features from sentiment analysis.

4.1 Discriminativeness Analysis

We capture the fundamental difference between bi-
ased and sentimental text based on the words that

3https://www.allsides.com/media-bias/
media-bias-rating-methods
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Trump Launches “Real News” Show

New York Post (Right)

“I bet you haven't heard about all the accomplishments the 
president had this week because there's so much fake 
news out there,” she said at the beginning of the video.

But it was a tough week for the administration. Obamacare 
repeal failed, the new communications director went on a 
nasty tirade and was later dumped and Trump ousted his 
chief of staff [...]

Salon (Left)

The Hill (Neutral) 
She failed to mention other topics that dominated the news 
last week, including President Trump's announcement on 
Twitter that transgender people would not be allowed to 
service [...]

She failed to mention, of course, other topics that domina-
ted the news last week, including Trump's ban on 
transgender service members and the failure of Obamaca-
re repeal [...]

Figure 2: Three news articles on the event Trump
launches “real news” show. Some bias indicators
in the articles are highlighted. Representing three
different points of view, the articles provide com-
pletely different interpretations of the event.

discriminate the two respective types best. Specif-
ically, the discriminativeness of a word w can be
measured in terms of the discriminativeness ratio

occ(w,Dt)

occ(w,Dt̄)
, (1)

where occ(w,D) is the frequency of w in text D
and t and t̄ are the types of text. In biased text, t
and t̄ correspond to right and left. In sentimental
text, t and t̄ are positive and negative respectively.
We normalize the occurrence by the total numbers
of words of the respective type of texts.

The discriminativeness ratio will make function
words and type-unrelated words have values close
to one, because these words are expected to occur
similarly often in both types. On the other hand,
words that often appear in one type but rarely in
the other will have a high value (in case of type t)
or a low value (type t̄). To demonstrate the dif-
ferences in discriminativeness ratios, we analyze
biased texts from the corpus introduced in the previ-
ous section and compare them to sentimental texts
from the public yelp review corpus.4

4.2 Granularity Analysis
As in the example shown in Figure 2, we are also
aware that some biased text segments can be identi-
fied just by looking at its preceding and/or follow-
ing segments. In this figure, all three sources quote

4https://www.yelp.com/dataset

the same utterance, and later give three different
interpretations in order to comment on why the
woman referred to failed to mention some weak-
ness points of the president during the show. The
sentences by The Hill and by Salon are almost the
same, but the phrase of course in the Salon article
is an obvious clue of political bias in it. In contrast,
the New York Post gives a reason to explain why
the woman failed.

To account for such observations, we train bias
models for classifying left and right, based on dif-
ferent lengths of text segments. For each model,
we use a support vector machine with word tri-
gram features—a standard yet powerful baseline in
sentiment analysis (Liu and Zhang, 2012).

We use the left-right article pairs along with their
label from the aggregator as the gold standard. To
know whether bias is already recognizable in short
text segments, we train and test the model on the
article, the paragraph, and the sentence level (for
uniform handling, a paragraph is approximated as a
continuous sequence of 10 sentences). In case bias
is less clear in smaller text segments, we should see
a lower classification performance in the paragraph
and sentence level results.

We point out, though, that other factors besides
this cross-segment bias, can influence the perfor-
mance as well. For example, the different writing
style of portals may play an important role, because
our dataset is dominated by certain portals (see Ta-
ble 1). To account for this factor, we decided to
upsample our data to balance sources. Since some
portals appear only a few times in our dataset, we
upsampled only the top-10 most frequent sources
in both left and right text.

We expect the performance of classification after
the conducted upsampling to be lower than before.
However, we should be able to figure out that the
performance of smaller text is lower.

5 Bias Flipping

In this section, we introduce a model from related
work to generate right-biased headlines given left-
biased headlines and vice versa. However, we ob-
served that not all headlines in our corpus show
bias. To enrich bias information in the training
set, we added the content of each article, split into
sentences. We use these sentences as supplemental
information during learning. Since we do not have
a “flipped” version of each sentence in the content,
we do not use the content for the validation and test
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set, and we evaluate the results only based on the
headlines. Knowing that two sentences in a train-
ing pair may have different semantics, we need a
model that learns to flip bias, but at the same time
infers the semantics of a sentence.

Formally, given a source sentence so along with
its bias label bo and its content zo, during training,
our goal is to generate the target sentence st with
label bt and content zt, while zo and zt could be
different. We are interested in flipping the bias from
bo to bt and from bt to bo, so we train two encoders
E(sk, bk), k ∈ {o, t}, that learn to infer zk:

zk ∼ E(sk, bk) (2)

Analogously, we train two generators G to gen-
erate sk given bk and zk:

ŝk ∼ G(zk, bk) = p(sk|bk, zk) (3)

Given the parameters inE andG, θE and θG, the
two autoencoders (one flips from source to target,
the other from target to source) are then optimized
to minimize the reconstruction error from sk to ŝk:

Lrec(θE , θG)= Esk∼Sk
[− log p(sk|sk, E(sk̄, bk̄))],

where k̄ is o when k is s, and k̄ is s when k is o.
As in other generative approaches, we also learn

to maximize the loss of the adversarial discrimina-
tor as follows:

Ladv = − logDk(sk)]− E[log−Dk(ŝk̄))], (4)

where Dk is the discriminator used to distinguish
sk from the flipped version sk̄.

Finally, the loss function aims to minimize the
loss from reconstruction and the adversarial dis-
criminators from two directions:

Lreco→t+Lrect→o−(Ladvo→t+Ladvt→o),

where o→ t means flipping from source to tar-
get and t→ o from target to source. To train the
model, the architecture of Shen et al. (2017) fits our
needs (see Section 2). We thus replicate their cross-
alignment setting: During training, we choose the
same number of left and right sentences randomly
and then train the autoencoder from two directions
in one batch. Even though the pairing information
is saved by this architecture, the results are promis-
ing: Modifying the sentiment while maintaining
semantics worked correctly in 41.5% of all cases.

Same Event (Q3)

Same Changed Not Sure All

B
ia

s(
Q

4) Flipped 57 1 0 58
Same 28 1 0 29

Not Sure 10 1 2 13
All 95 3 2 100

Table 2: Counts of all possible combinations in
the manual evaluation of whether the ground-truth
headlines capture the same event with flipped bias.

Besides, generative models are known to often
produce UNK (the out-of-vocabulary word), which
is especially harmful in understanding the meaning
of short sentences, as given in our task. In order
to reduce the frequency of UNK in the generated
outputs, we set the size of beam search to 10, and
keep the candidates with the fewest UNK.

6 Results and Discussion

In this section, we try to answer our three research
questions from Section 1 by analyzing the results
of our experiments. Firstly, to study the appropri-
ateness of our corpus for the given task, we verify
that the corpus headlines are informative and have
the expected bias. Then, we discuss the result of
bias analysis. Later, we evaluate headlines gen-
erated by the approach against this ground-truth,
both automatically and manually. Finally, a general
discussion of the bias flipping task is given.

6.1 Ground-truth Headlines

From our corpus, we took all 2196 opposite head-
line pairs (left-oriented, right-oriented). Both head-
lines of a pair are about the same event. We ran-
domly selected 100 pairs as the validation set, an-
other 100 pairs as the test set, and the remaining
as the training set. To verify the test set, we hired
three experts in journalism editing to annotate all
100 test pairs. For each pair, the annotators had to
answer four questions:

Q1. Do you understand headline 1?
{yes | partially yes | no | not sure}

Q2. Do you understand headline 2?
{yes | partially yes | no | not sure}

Q3. Do both headlines report on the same event?
{same | mostly same | changed | not sure}

Q4. Do the headlines have opposite bias?
{flipped | partially flipped | same | not sure}
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Sentimental Text Biased Text

Word Ratio Word Ratio

excellent 220.22 Chad 9.52
gem 183.99 Maduro 5.56

wonderful 183.66 purportedly 7.81
delicious 156.72 Chechnya 6.80
fantastic 142.52 Bethlehem 6.04

. . . . . . . . . . . .
mushrooms 1.01 victorious 1.01
breadsticks 1.01 oppressive 1.01

dresser 0.99 tragedy 0.99
. . . . . . . . . . . .

unfortunately < 0.01 Shawn 0.04
terrible < 0.01 incarceration 0.04

rude < 0.01 album 0.03
horrible < 0.01 valuable 0.03

worst < 0.01 N.S.A 0.02

Table 3: The five words each with the highest and
lowest discriminativeness ratio, and words with a
ratio close to one, in sentimental and in biased text.

The resulting Fleiss’κ values were 0.97 (Q1),
0.97 (Q2), 0.62 (Q3), and 0.30 (Q4). All anno-
tators understood almost all headlines, except for
one with only two words: “Lerner speaks”. The
agreement for Q3 was substantial and fair for Q4.
Majority voting was used for the final decision.

Table 2 shows the annotations of Q3 and Q4,
combining same and mostly same for Q3, and
flipped and partially flipped for Q4. From the 100
pairs, 95 were labeled as being on the same event,
while only five pairs confused the annotators. For
the bias label, 58 headline pairs have opposite bias,
while the rest did not show any clear difference.

6.2 Bias Analysis

In Table 3, we list the words having the highest and
the lowest discriminativeness ratio in sentimental
and in biased text respectively. We see that, the
top-5 words in sentimental text are positive words
and the bottom-5 words are negative words. En-
tities such as mushrooms or dresser have values
close to one. The results fit the intuition that peo-
ple usually use positive words in a positive review,
such as “great breakfast place”, and negative words
in a negative review. While sometimes negative
expressions use positive words by negating (“my
experience here was not great at all”), the ratio of
words clearly shows this tendency.

In contrast, we observe that this is not the case
in biased text. There, both positive and negative
sentiment words have a frequency ratio close to
one. This is expected, because we observe that
both sides use positive (negative) words to support

Text segment Original Source-normalized

Article 0.94 0.89
Paragraph 0.82 0.73
Sentence 0.76 0.59

Table 4: Bias classification accuracies on different
size of text segments, once on the original data and
once for normalized (upsampled) sources.

Same Event (Q3)

Same Changed Not Sure All

B
ia

s(
Q

4) Flipped 83 17 4 104
Same 21 10 0 31

Not Sure 23 33 9 65
All 127 60 13 200

Table 5: Counts of all combinations in the manual
evaluation of the generated compared to the ground-
truth headlines in terms of event and bias.

(oppose) some entities. Moreover, many of the top-
5 and the bottom-5 words are named entities, such
as Maduro and N.S.A. This indicates that articles
with either bias tend to criticize or approve different
entities, but that they do not use different sentiment
words to do so. In line with this, a previous analysis
on bias language showed that many bias indicators
include named entities (Yano et al., 2010).

The results of bias classification is shown in Ta-
ble 4, and the distribution of bias is balanced. In
general, we observe that bias classification on the
article level appears not to be very difficult. Even
though we only employ rather simple models and
features, we achieve a very high accuracy of 0.94.
Also, the shorter the segments that we use for train-
ing and testing, the lower the classification perfor-
mance we get (although it always remains higher
than chance). As expected, when we upsample the
sources, performance is reduced. However, our
hypothesis is still supported: a part of bias is con-
veyed by longer text segments only.

6.3 Generated Headlines

Besides the model we propose in the paper, we also
experimented with other approaches that generate
a text given another text. Specifically, we tried
(1) training our model only with headline pairs,
(2) the pointer generator (See et al., 2017) trained
only with headline pairs, and (3) the sentiment and
style transfer from Li et al. (2018). The pointer
generator originally focuses on abstractive sum-
marization where it achieved high Rouge scores.
It learns to copy words from the source to han-
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Ground-truth headline pair Generated versions of the headlines Evaluation
Headline Bias Headline Bias Event Bias
John McCain urges republicans not to
filibuster gun control.

left John McCain has elected to avoid gun
control.

right same flipped

White House looks to salvage gun-control
legislation.

right White House got to get bipartisan change. neutral mostly
same

partially
flipped

Obama accepts nomination, says his plan
leads to a “better place”.

left Obama blasted re-election, saying it a
“very difficult” to go down.

right mostly
same

flipped

Lackluster Obama: change is hard, give
me more time.

right Real GOP: debate is right, and more
Trump.

left changed flipped

Table 6: Two left-right headline pairs, along with the rewritten versions generated by our approach. The
bias of the ground-truth headlines is given in our corpus. The bias of the generated headlines is from the
human annotators.

dle out-of-vocabulary issues. The sentiment and
style transfer focuses on detecting the attribute (the
sentiment words for instance), trying to alter it by
looking for the best candidates in a corpus.

However, even when fine-tuning their parame-
ters, neither of these approaches generated read-
able outputs. Mostly, they just repeated words or
phrases, such as in “the the the” or “trump he same
he for trump”. So, without sufficient content in the
training data, it seems hard to obtain a language
model that generates meaningful sentences.

In particular, the pointer generator requires
paired training samples, hence training with sen-
tences from the content is not possible. The sen-
timent and style transfer does not require paired
training samples, but its attribute detection mecha-
nism requires an unequal distribution of sentiment
words. From the experiment in bias analysis, we
know that this assumption does not hold in our cor-
pus. The model described in the approach section
is an end-to-end model without any strong assump-
tion. Although it has higher amount of parameters,
it can produce more readable sentences.

For automatic evaluation, we measured the simi-
larity between the generated and the ground-truth
headlines via Rouge-1, Rouge-2, and Rouge-L, re-
sulting in F-scores of 15, 3, and 12. In an additional
manual evaluation, another three editing experts an-
swered Q2 to Q4 by comparing the original and
generated headlines, with a Fleiss’ κ of 0.61 (Q2),
0.51 (Q3), and 0.29 (Q4). Out of 200 generated
headlines (100 left-to-right, 100 right-to-left), 73
were seen as understandable (Q2), which we see
as a good result for a generative model. For Q3
and Q4, Table 5 details the results. For those head-
lines, where the content was kept (127), the bias
was flipped in 83 cases (65%). Even for those with
changed meaning, 28% got the opposite bias.

6.4 Analysis
Table 6 shows selected pairs of ground-truth and
generated headline. They demonstrate that our
model keeps the event similar by using the same
words, and flips bias by replacing or adding bias
words. The generated headlines contain some gram-
mar errors, but we see these as tolerable in machine-
generated text on limited data.

In the first pair, the original headline states that
McCain was pro gun control, while the rewritten
one implies he was against — a successful flip. The
ground-truth bias-flipped headline in the second
row mostly uses other words while being pro gun
control. The generated headline also keeps most
words, but turns out rather neutral. In the second
pair, the original headline shows a positive opin-
ion on Obama, the generated headline a negative
opinion on him. When rewriting the ground-truth
bias-flipped headline (last row), the meaning is not
kept. However, it is visible that the generated head-
lines is pro Trump.

We point out that there is a difference between
bias flipping and fact changing. For example in
the first pair, without knowing what John McCain
stood for, we could neither guess his real opinion
on gun control nor could we conclude what he
supported or not. In fact, bias can be conveyed by
emphasizing facts supporting a claim, as well as
by hiding facts attacking a claim. In other words,
we might see different facts about the same event
with different types of bias. A news headline may
be a conclusion, while the news content shows the
facts supporting this conclusion. In such cases, no
computational model will be able to flip the content
only using the text itself, as it is hardly possible to
simply generate new facts. Including more articles
reporting on the same event will be useful to help
the model learn the unseen information. We see

86



this as future work on article-level bias flipping.
Finally, we found that an automatic evaluation of

bias flipping is limited. In the discussed examples,
we see that even for a successful flipping, the over-
lapping of generated and ground-truth headlines
are very low. In fact, the successful cases have a
mean Rouge-1 score of 17, unsuccessful ones of 15.
Furthermore, if we divide the test pairs into those
labeled as same event and flipped bias (57 pairs)
and the rest (43), we find that the former are more
often rewritten successfully (43% vs. 20%). This
suggests that filtering out noisy cases with the help
of experts will help improve the performance.

7 Conclusion

This paper has introduced the challenging task of
rewriting news articles with flipped political bias
as well as a bias-labeled corpus to study the task.
As a first step, we have tackled the analysis of bi-
ased text and compared biased with sentimental
text. We have found that (1) the types of discrim-
inative words for biased and sentimental text are
entirely different, and (2) some bias is visible on
paragraph level only or even article level only. We
have then applied a cross-aligned autoencoder to
rewrite article headlines with flipped bias, incor-
porating content information from the article. Our
experiments suggest that current state-of-the-art ap-
proaches struggle with this task. While our best
tested model performed considerably well, there is
still much room for improvement. Regarding the
evaluation of the model, the Rouge score turned
out insufficient to assess bias flipping quality.

In the future, we aim to employ the knowledge
from bias analysis in the generation process, to
rethink existing automatic evaluation metrics, and
to study how to flip the bias of complete articles.
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Abstract

Recent neural models for response genera-
tion show good results in terms of general
responses. In real conversations, however,
depending on the speaker/responder, sim-
ilar utterances should require different re-
sponses. In this study, we attempt to con-
sider individual user’s information in ad-
justing the notable sequence-to-sequence
(seq2seq) model for more diverse, user-
specific responses. We assume that we
need user-specific features to adjust the re-
sponse and we argue that some selected
representative words from the users are
suitable for this task. Furthermore, we
prove that even for unseen or unknown
users, our model can provide more diverse
and interesting responses, while main-
taining correlation with input utterances.
Experimental results with human evalu-
ation show that our model can generate
more interesting responses than the popu-
lar seq2seqmodel and achieve higher rele-
vance with input utterances than our base-
line.

1 Introduction

Human-computer conversation is a challenging
task in Natural Language Processing (NLP). The
aim of conversation models is to generate fluent
and relevant responses given an input in a free
format, i.e., not just in the form of a question.
A large amount of available data on the Inter-
net has sparked the shift in conversation models.
Starting with Ritter et al. (2011), completely data-
driven models are now commonly used to gen-
erate responses. Furthermore, the sequence-to-
sequence (seq2seq) model initiated by Sutskever
et al. (2014) has been adapted to many NLP tasks,

input how are you ?
user1 good morning how are you
user2 i’m doing ok
user3 i’m good ! ! !
user4 not really good

input i am excited !
user1 are you sure ? !
user2 come to the party ?
user3 yay ! ! !
user4 are you gonna do it ?

Table 1: Sample responses from our proposed
model involving four different users.

notably to machine translation (MT) and response
generation.

Actual conversations involving humans would
be more engaging and the responses are not always
general and monotonic. However, neural conver-
sation models tend to generate safe, general, and
uninteresting responses, e.g., I don’t know or I’m
OK (Sordoni et al., 2015; Vinyals and Le, 2015;
Li et al., 2016b). We argue that, aside from adding
or understanding the context of a conversation,
speaking style and response diversity also play
an important role in delivering a more interesting
conversation.

Recent studies addressed the response diversity
and engagement issues and have attempted to gen-
erate responses better than the common and gen-
eral ones. Some tackled this issue by defining
and emphasizing context; previous utterances are
commonly used as context in a conversation (Sor-
doni et al., 2015; Li et al., 2016a). Other stud-
ies have attempted to diversify or manipulate re-
sponses using specific attributes such as user iden-
tification (Li et al., 2016b), profile information sets
(Zhang et al., 2018; Wang et al., 2017; Herzig
et al., 2017), topics (Xing et al., 2017), and speci-
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fied mechanisms (Zhou et al., 2017).
In this study, we focus on the issue of “response

style.” We intend to let the model learn to gener-
ate responses that resemble those of a real person.
Given an input utterance and user-specific infor-
mation, the model will generate a response rele-
vant to the input utterance based on the given user-
specific information.

The existing methods that exhibit the use of
user-specific information (Li et al., 2016b; Zhang
et al., 2018), usually require that the users ap-
pear in the training data. Therefore, these existing
methods cannot handle the unseen users, i.e., users
that do not exist in the training data. This is a lim-
itation that we want to address in this study. As
we intend to make our model versatile, we want
to cover also the users that are not present in the
training data. Hence, in this study, we propose a
model that also works with unseen users.

Since we need identifiers of users, we rely on
Twitter as the source of datasets. The dataset used
in this work was constructed by collecting tweets
and replies, i.e., responses to other tweets. Aside
from the user identity, to construct user-specific in-
formation, we retrieved individual public tweets
from each account that are not replies to other
tweets. We assume that some selected representa-
tive words from the retrieved individual tweets are
suitable as the user’s information. Therefore, we
use two types of user-specific information: user
identities and collections of users’ representative
words.

Unlike other tasks that can assume a finite set
of expected outputs, e.g., machine translation, in
response generation, an input utterance can elicit
various responses. Thus, measuring the quality of
the output becomes a formidable issue. To mea-
sure the quality of generated responses, we rely
on human judgment. Three evaluation criteria are
provided to the judges: fluency, relevance, and
style. The results show that our model is signif-
icantly better than the baseline in relevance and
style. Some examples of generated responses from
our model are shown in Table 1.

2 Related Work

Attempts to develop neural response generation
models have been increasing rapidly, providing
several options to further improve neural conver-
sation models. Some notable studies in this field
(Vinyals and Le, 2015; Shang et al., 2015; Sordoni

et al., 2015) follow the encoder-decoder frame-
work of Sutskever et al. (2014). For response gen-
eration, the encoder-decoder models are usually
supplemented by the attention mechanism, follow-
ing the implementation of Bahdanau et al. (2015)
or Luong et al. (2015).

As for response diversity, earlier researches
have acknowledged that responses to one input
utterance could be varied (Shang et al., 2015;
Li et al., 2016a). To address this issue, several
approaches have been proposed; some of these
attempts incorporate style or a persona into the
model while others focus only on increasing the
variety.

Li et al. (2016b) proposed a persona-based
model that uses a feature called speaker embed-
dings that are based on an individual user’s iden-
tity. They have integrated these embeddings into
the decoding phase. Despite showing positive re-
sults, this approach works only for the persona or
user identity that appears in the training data. If a
persona is absent from the training data, it would
behave like the normal seq2seq model. Our work
is similar to them in that we use the speaker iden-
tity in the decoding phase, but our work can gener-
ate user-specific responses even for unseen or un-
known users.

Similar efforts have been made by Zhang et al.
(2018), who attempted to personalize the out-
put style using a set of introductory sentences as
the user’s profile. They combined the encoder-
decoder model with the memory network, aiming
to enhance the model’s ability to “memorize” the
profile. A study from Wang et al. (2017) has also
attempted to “steer” the output style using addi-
tional information called scenting datasets. These
scenting datasets consist of a corpus, or a col-
lection of particular sentences, with each dataset
being exclusive to one character. In their study,
Wang et al. (2017) only focused on one character
(scenting dataset) for each model. Hence, their
model can only generate responses of one partic-
ular style at a time. We also use an additional
dataset to control the style, but we differ from
them in that we can deal with multiple characters
in one model.

A model focusing on increasing diversity with-
out using specific characteristic was devised by
Zhou et al. (2017). They defined some mecha-
nisms and generated latent features to divert the
context of input utterances before feeding them
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to the decoder. They also presented some corre-
sponding words to each mechanism.

3 Sequence-to-Sequence Setup

Following the popular approach in neural response
generation, we base our encoder-decoder model
on the seq2seq model with attention mechanism.
Given the input sequence X = (x1, x2, ..., xnX ),
the model will attempt to produce the output se-
quence Y = (y1, y2, ..., ynY ) as a generated re-
sponse. For the encoder, we adopt the LSTM
(Hochreiter and Schmidhuber, 1997) unit to com-
pute the representation of the input sequence. We
keep all the hidden states produced by the encoder.
Here, we use the notation h̄s for each hidden state.
Then, we adopt an attention-based model (Luong
et al., 2015; Bahdanau et al., 2015) for the de-
coder. In general, the decoding process for each
time step can be interpreted through the following
equations:

p(yt|y<t, x) = softmax(Wsh̃t), (1)

h̃t = tanh(Wc[ct;ht]), (2)

ht = LSTM(yt−1, ht−1), (3)

ct =

S∑

s=1

at(s)h̄s, (4)

at(s) = softmax(h>t Wah̄s), (5)

=
exp(h>t Wah̄s)∑
s′ exp(h>t Wah̄s′)

.

The attention-based model used in this work is
based on Luong et al. (2015). The weights Ws

and Wc are the learned parameters of the decoder.
With at(s) as the vector containing the alignment
score for each hidden state h̄s of the encoder, ct is
the context for the current decoder at time step ht.
In addition to the attention-based model, we also
apply the input-feeding approach by Luong et al.
(2015) as an attempt to make the model capture
the previous alignment. Input-feeding is done by
concatenating the current attentional vector h̃t to
the input to the decoder at the next time step. For
both the encoder and the decoder, we employ two-
layer LSTM architectures.

4 Response Generation with Attention to
Speaker Information

As mentioned in Section 1, we argue for the im-
portance of diversity in response style in creating
a more compelling conversation. Our intention is

to capture the characteristics of the users, i.e., the
responders, and to take them into account in re-
sponse generation. Our work can be considered as
an attempt to improve the persona-based model by
Li et al. (2016b). Their model represents individ-
ual users, or in their term speakers, in the training
data as a vector or embedding of speaker-specific
information. Adapting their work, we pick user-
names as one of the user-specific attributes, and
then convert them to embeddings to allow the
model to distinguish between users’ characteris-
tics. However, this approach can only accommo-
date users present in the training data. To over-
come this issue, we suggest a small dataset for
each user to serve as another characteristic feature.

4.1 User-Specific Information

In this study, we define two kinds of user-specific
information: user embeddings and user-info em-
beddings. User embeddings are derived from user-
names in the training data, while user-info em-
beddings are derived from separate collections of
words used by the users. User embeddings are
only useful for users present in the training data,
while user-info embeddings are independent of the
training data. The details about how these data are
retrieved will be explained in Section 5.

Following the setup described in Section 3, let
Itrain denote the set of users (responders) in the
training data, Kword the dimension of word em-
beddings, and Kuser the dimension of user embed-
dings. We convert words in each input sequence X
to embeddings with size Kword. Then, we define
a user identity, embedding ui with size Kuser for
each user i ∈ Itrain. The user embedding ui is
shared to all conversations involving user i.

The second type of user information involves
a collection of users’ selected words. In order to
capture the characteristic, especially the speaking
style, of each user, we argue that we need to de-
fine a feature or a set of information that can let
the model learn about the characteristic. Thus, we
assume that a carefully selected set of words from
each user’s conversation history is suitable for this
task.

Let I denote the set of users. Note that Itrain
is a subset of I. For each user in I, several sen-
tences can be collected. From this collection of
sentences, we then extract N words to represent
the characteristics of the user. To select those N
words, we need a particular approach to score the
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Figure 1: Overview of our neural conversation model with attention to user-specific information. We
use two-layer LSTM for both the encoder and the decoder. The attention layer attends to source hidden
states h̄s′
and user-info embeddings Pi for user i. User embeddings ui are concatenated with the decoder input at
every step.

words.
We compared several scoring methods that are

simple enough to employ: word frequency, TF-
IDF (Sparck Jones, 1988), and Pointwise Mutual
Information (PMI). To compare them, we treated
all the words in the selected sentences as the in-
put for every method. Then we ranked the words
according to the scores by every method and took
N words with the highest ranks for each method.
Hence, we have three sets of selected N words,
and then deployed them in the training and evalu-
ated the results preliminarily.

Two fluent speakers of English were asked to
compare the quality of generated responses. We
provided the two evaluators with three sets of gen-
erated responses using three different sets of N
words, then asked them to evaluate the fluency and
relevance to the input message. Based on their
evaluation, we decided to choose TF-IDF as the
scoring method to extract N words as the user-info
dataset. Each of these words is further converted
to an embedding of dimension Kword.

4.2 Attentional Conversation Model
Our attentional LSTM model takes three features
as input: input word embeddings, user embed-
dings, and user-info embeddings. Both user em-
beddings and user-info embeddings are used in
the decoder of the encoder-decoder model. Since
our model also incorporates the input-feeding ap-
proach, the input for the decoding phase is the con-
catenation of the output of the previous time step

yt−1, user embedding ui, and input-feeding h̃t−1.
The user-info embeddings will be used later as the
input for additional attention mechanism. Hence,
the decoding process can be described as follows:

ht = LSTM([yt−1;ui; h̃t−1], ht−1). (6)

The user-info embeddings are constructed from
the collection of top N ranked words uttered by
intended users, where the users are not necessarily
present in the training data. Using the same em-
beddings as input word embeddings, we compose
Pi = {pi1 , ..., piN } (∀k, pik ∈ RKword) as user-
info embeddings for user i.

The model is trained to attend not only to the
input source, i.e., the hidden states of the encoder,
but also to the user-info embeddings. Therefore,
since this model uses two contexts, we need to ad-
just Equation (3) to

h̃t = tanh(Wc[c
(X)
t ; c

(P )
t ;ht]), (7)

where we define c
(X)
t as the context for input

source and c
(P )
t as the context for user-info em-

beddings. This proposed model is illustrated in
Figure 1.

5 Datasets

Since our target is to incorporate and emphasize
the response styles of actual human responders,
we need to include user identification attributes in
the datasets. Therefore, for datasets, we collected
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tweets from Twitter API. Then, we constructed
two types of datasets: conversation dataset and
user-info dataset.

5.1 Conversation Dataset
This dataset is designated to train the model to
generate a response to a given input utterance in
general. We extracted this dataset from Twitter,
and retrieved only those tweets that satisfy the fol-
lowing conditions. We set a filter to select only
reply tweets, i.e., responses to other tweets, from
users who had engaged in conversations with a
minimum of three turns. We paired each reply
with the tweet that it is a response of, as response
and input utterance, respectively. We then used
the responders’ usernames as the user identifica-
tion attribute, hence user embeddings. Note that
the user embeddings can only be obtained from
this conversation dataset.

To improve data quality, we further cleaned
up the retrieved tweets to remove some noises,
such as tweets with non-ASCII characters, du-
plications, and non-English tweets. We also
removed URLs, hashtags, and mentions from
tweets. The final conversation dataset consists of
around 230,000 pairs of input utterances and re-
sponses.

5.2 User-Info Dataset
This dataset is an effort to capture more charac-
teristic of the users and also to handle the unseen
users in the training dataset. User-info embed-
dings mentioned in Section 4.1 are derived from
this dataset. To construct user-info dataset, we
retrieved tweets from the accounts of every user-
name in the conversation dataset. To ensure that
this dataset is independent from the conversation
dataset, we retrieved only individual tweets, i.e.,
non-replies as opposed to the reply tweets for con-
versation dataset. We retrieved all public tweets,
via Twitter API, from each account and then ap-
plied TF-IDF to find the most important words for
each user. For an individual user, we treated one
tweet (sentence) as one document and hence com-
puted the TF-IDF score for each word across all
sentences. Then, we kept the top 50 words accord-
ing to the TF-IDF scores.

The usage of this dataset is independent of the
conversation dataset. We can pair the user infor-
mation in the user-info dataset with the one, the
same user, in the conversation dataset or we can
disregard the relationship.

6 Experiments

6.1 Implementation Details
Both our encoder and decoder employed two-layer
stacked LSTMs. Some hyper-parameter details
are as follows:

• Each LSTM layer contains 300 hidden units.

• Embedding size is set to 300.

• Network parameters are initialized with uni-
form distribution [−0.05, 0.05].

• Training batch size is set to 128.

• Learning rate for the encoder is set to 0.0001,
multiplied by 2.5 for the decoder.

• Dropout rate is set to 0.1.

• Vocabulary size is 35,000.

We trained the model by using the Adam opti-
mizer (Kingma and Ba, 2014) with different learn-
ing rates between the encoder and decoder. We
conducted several procedures to determine the
training stop condition. We observed the decrease
in loss Hy′(y) := −∑

i y
′
i log(yi). When the de-

crease was starting to converge, at around less than
7%, we asked two English fluent speakers to eval-
uate the generated responses. Finally, we stopped
the training at the 47th epoch. We also limited the
maximum length of an utterance to 15 words per
sentence. The training was run on a single Titan X
GPU for about three days.

The input utterance and user-info embeddings
were initialized with GloVe embeddings (Penning-
ton et al., 2014). We replaced the words not in the
vocabulary with UNK tokens. The same treatment
was applied to unseen users in user embeddings.
We set the UNK token embeddings to a vector of
all zeroes at the initial stage. To select the predic-
tion, we opted to use the greedy approach.

6.2 Baseline and Comparison Models
We adopted the speaker model of Li et al. (2016b)
to serve as the benchmark for our model. Their
work used persona (user-identification attribute) in
the decoding phase to let the model assimilate the
style of that user, or “nearby” users, into the re-
sponses.

In terms of using user embeddings in the decod-
ing phase, our model and theirs are similar. How-
ever, as mentioned in Section 5, user embeddings

93



cannot cover unseen users. Our model overcomes
that issue by using user-info embeddings. The de-
coder input of both the models can be represented
by Equation (6). Since the baseline model does
not have user-info embeddings, our model’s atten-
tional hidden h̃t is different from theirs. The at-
tentional hidden of the baseline model would be
the same as Equation (3), while our model’s h̃t is
represented by Equation (7).

We also prepare a variant of our proposed
model, using unseen (UNK) users for user em-
beddings. The rationale for this setting is to in-
vestigate whether our model could generate bet-
ter responses against our baseline’s handicap. The
last comparison model was a vanilla seq2seq
model (without user and user-info embeddings).
For simplicity, we labeled the four models as
User + Info for our main model with user em-
beddings and user-info embeddings, UserOnly
for baseline, UNK + Info for our variant model
with unseen users and user-info embeddings, and
seq2seq for vanilla seq2seq model.

Figure 2: Example of a user’s Twitter bio and sam-
ple tweets used in style evaluation. We censored
any mentions of other accounts.

6.3 Evaluation Setup

Many previous studies on dialogue or response
generation models (Li et al., 2016b,a; Sordoni
et al., 2015; Xing et al., 2017) relied on BLEU
(Papineni et al., 2002) as their automatic evalua-
tion metric. To compute the score, BLEU mea-
sures the overlapping words or n-grams between
the generated output (hypothesis) and the target
output (reference). BLEU was initially intended
for machine translation, which tends to have a fi-
nite target; therefore, it might not be suitable for
evaluating conversation models.

According to Liu et al. (2016), BLEU is lowly
correlated with human judgments of dialogue sys-
tems. Additionally, some other work on response
generation (Shang et al., 2015; Li et al., 2016c;
Wang et al., 2017; Zhou et al., 2017) did not use
BLEU for their evaluation method, relying on hu-
man judgment instead. Thus, we opted to use only
human evaluation in our work.

We hired judges from Amazon Mechanical
Turk (AMT) to evaluate the quality of our gen-
erated responses. The following three judgment
criteria were defined:

• fluency or naturalness: Whether the re-
sponse could be produced by (an English
speaking) human.

• relevance or adequacy: Whether the re-
sponse could be accepted as a suitable answer
or contained useful information regarding the
input utterance.

• style: Whether the response could be pro-
duced by the same person if some profile in-
formation was provided.

The rationale behind measuring these criteria is as
follows. Even though our goal is to integrate styles
to the generated responses, we also want to assure
that the generated responses are correct and useful
to the input. Since we supposed that style is signif-
icantly harder to evaluate, the evaluation task was
done in two stages: the first stage was for fluency
and relevance, and the second stage was for style.

We randomly picked 12 users from the conver-
sation dataset and retrieved tweets that they replied
to. For each user, 5–10 tweets were obtained to be
used as input utterances. In total, 100 tweets were
collected, and each pair of an input utterance and
its response was then evaluated by 10 judges.
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Models Fluency (%) Relevance (%)
bad enough good bad enough good

UserOnly (Baseline) 19.5 27.3 53.2 51.8 25.2 23.0
seq2seq 8.2 25.8 66.0 40.1 29.4 30.5
User + Info 17.5 26.4 56.1 44.9 28.2 26.9
UNK + Info (with unseen users) 9.0 23.7 67.3 37.4 31.2 31.4

Table 2: Human evaluation results for fluency and relevance, presented as raw score percentages. Our
UNK + Info model with unseen users gains 26.5% more for fluency and 36.5% more for relevance
compared to the baseline.

For the first stage, we provided the judges with
only input utterance-response pairs. There were
four models in total, so one utterance had four re-
sponse alternatives. We employed a three-point
Likert scale, labeled {bad, enough, good}, which
were later converted to {−1, 0,+1}, respectively,
and asked the judges to score every response alter-
native in terms of fluency and relevance.

In the second stage, the judges were provided
with Twitter user bio, i.e., a user’s short biogra-
phy or profile information that commonly contains
keywords, and some sample tweets from the re-
spective users. We asked the judges to evaluate
the response alternatives on the basis of the pro-
vided information and to score them in the range
from 1 to 5, where a smaller number is better.
Since this time the judges have provided informa-
tion to compare to, we assume that ranking is more
appropriate to measure the similarity between re-
sponse alternatives and provided samples. Ties
in the score were permitted. For style evaluation,
since we intended to investigate the influence of
user-specific information to the response, we ex-
cluded the vanilla seq2seq model. An example of
the provided information is shown in Figure 2.

7 Results and Analysis

7.1 Human Judgment

We first evaluated the fluency and relevance of the
responses. In this stage, one utterance received
four responses from all models. We let the judges
score using three choices: bad, enough, and good.

To decide which model is the better one, first,
we counted the number of each score label ev-
ery model received. We call it raw scores. The
summary of raw scores by the judges is shown in
Table 2. According to these results, for both cri-
teria, UNK + Info (with unseen users) received
the highest good score, followed by the seq2seq

model. The UNK + Info gains 26.5% more flu-
ency point compared to the baseline. To calculate
this gain, we simply compared the percentage ob-
tained by UNK + Info (67.3%) against UserOnly
(53.2%).

While it is obvious that high good score is de-
sirable, we also want to see if our model can gen-
erate more “good enough” response compared to
other models. Then, we combined enough and
good scores as acceptable. As shown in Table 4,
seq2seq seems to achieve the highest score in
terms of fluency, even though it only gains 0.87%
more point than UNK + Info model. Therefore,
we argue that our UNK + Info can be considered
as fluent enough.

For relevance, the bad scores of all models are
higher than the good scores. This implies that rel-
evance is harder to achieve than fluency. Yet our
variant model, UNK + Info, achieved the high-
est acceptable score in this criteria, gaining 36.5%
compared to the baseline.

We calculated the average of the scores by con-
verting them to {−1, 0,+1} for each model and
criteria, as seen in Table 5. In this table, our variant
model, UNK + Info, wins in both criteria. Never-
theless, our model can get higher scores in both
criteria than the baseline model, UserOnly. Us-
ing one-way ANOVA as significance test, we con-
firmed that our model is significantly better than
the baseline in the relevance criteria.

In the second stage, we measured the similar-
ity in style among generated responses and users’
sample tweets. As in the first stage, each of
the 100 input-response pairs was evaluated by 10
judges, resulting in 1,000 samples, from which
we removed some results that did not show con-
sistency, e.g., the results with identical responses
with a different score. As explained in Section 6.3,
we evaluated only three models. This was done to
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User Input Responses
User + Info UNK + Info

User1

i’m going to have a cardiac
episode and my wife is not here

i love you what if i do

hate to burst your bubble it snowed
last night & this morning

and now you get to the
game

ahh ! ! ! i was so excited
!

they cut so much out of the finale ! i was thinking it was it was a good season ! !

User2

if lebron loses this series does he
leave and where does he go ?

he scored the house and
got his back house

he was playing with his rb
/ 3

he was five for his last 50 you liter-
ally had to pound the middle of the
zone three times

are you saying that were
no reason ?

he has a good draft ?

hey guess what ? the bills will draft
a few football players this weekend

lol you got that man ! ! !
! ! !

you beat me ?

User3

this is such a mood and i can’t even
explain why

did you get braces or wal-
mart ?

hello ! ! !

you can skip iron man 3 do i get some rest ? yeah i am
heard he cheated on her don’t forget she was a lesbian

Table 3: Examples of responses from different users generated by our model, using known users and
their user-info respectively, and its variant model, using unseen users and the same user-infos.

investigate the influence of user-specific informa-
tion. Additionally, we intended to perform a com-
parison with a baseline with the same objective.
The results can be observed in Table 6.

Based on the style evaluation results in Table 6,
the average scores appear to be positioned in the
middle of the range, i.e., around rank three. It
suggests that, in general all models only generate
“good enough” responses in term of style. Nev-
ertheless, our variant model is significantly bet-
ter than the baseline, proved by the Friedman
Test. Sample responses generated by our model
are shown in Table 3.

Models Fluency (%) Relevance (%)
acceptable acceptable

UserOnly 80.5 48.2
seq2seq 91.8 59.9
User + Info 82.5 55.1
UNK + Info 91.0 62.6

Table 4: Acceptable or “Good enough” results
with good and enough scores combined. seq2seq
tops fluency, but our model with unseen users gets
the highest relevance score.

Models Fluency Relevance
UserOnly 0.337 ± 0.06 -0.28 ± 0.06
seq2seq 0.578 ± 0.05 -0.09 ± 0.06
User + Info 0.386 ± 0.06 -0.18 ± 0.06
UNK + Info 0.583 ± 0.05 -0.06 ± 0.06

Table 5: Average scores for fluency and relevance
criteria. For relevance, our model achieved sig-
nificantly better scores than the baseline (one-way
ANOVA, p < 0.05).

Models Style Rank
UserOnly 3.37 ± 0.09
User + Info 3.29 ± 0.09
UNK + Info 3.16 ± 0.09

Table 6: Results of style evaluation. Smaller val-
ues are better. Our variant model was significantly
better than the baseline (Friedman Test, p < 0.05).

7.2 Analysis: External Resources and
Response Style

Our main intention is to incorporate an individual
user’s characteristics to generated responses. We
specifically attempted to incorporate more infor-
mation to emphasize the response style of different
users. Therefore, we conducted an experiment to
incorporate additional information, and the evalu-
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ation we performed proved that the judges recog-
nized a better change in style.

Furthermore, one aspect that distinguishes our
model from others is the application of external
resources. Usually, if a model was trained to pick
up some specific traits or characteristics, such fea-
tures should be included in the training. Our work
also serves as an evidence of usability of external
resources for response generation models. With
simple mechanisms such as attention, our model
can adjust the responses to be better with a small
“plug and play” dataset.

An interesting finding is that the variant
UNK + Info model achieved better scores than
our User + Info model. Through manual obser-
vation, we conceived that a model with more in-
jected information can become too “stylized” and
lose some relevance to the input utterance. How-
ever, the baseline, with less information, still re-
ceived lower scores. This indicates the strength of
the attention mechanism.

In conclusion, a problem still persists in styling
generated responses. Regardless of the results be-
ing better than the baseline for the previous work,
generating fluent and relevant responses with an
expected style is still challenging. It might be the
common case that either the responses are good
but general and timid, or they are interesting but
lacking some relevance.

8 Conclusion and Future Work

In this study, we conducted experiments to ad-
dress the response diversity issue, particularly in
response style. We employed user-specific infor-
mation to drive the generated responses to resem-
ble real user’s utterances. We considered user-
names and the user-info dataset as user-specific in-
formation.

Evaluation through human judgment showed
that the outputs of our model are better than the
baseline overall, especially our variant model with
unseen users. Our model also showed the poten-
tial of using external resources in encoder-decoder
models. Although we cannot declare that our
model architecture is sophisticated, our experi-
ments can serve as the evidence that a simple
but appropriate architecture can improve response
quality.

The remaining challenge is how to properly em-
phasize the response style without damaging the
content (context) or its relevance. If we can make

a good compromise between response content and
style and can control the use of these two elements,
we argue that it would substantially increase the
quality of conversation models.
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Abstract

As unmanned vehicles become more au-
tonomous, it is important to maintain a
high level of transparency regarding their
behaviour and how they operate. This is
particularly important in remote locations
where they cannot be directly observed.
Here, we describe a method for generat-
ing explanations in natural language of au-
tonomous system behaviour and reason-
ing. Our method involves deriving an
interpretable model of autonomy through
having an expert ‘speak aloud’ and pro-
viding various levels of detail based on
this model. Through an online evaluation
study with operators, we show it is best to
generate explanations with multiple possi-
ble reasons but tersely worded. This work
has implications for designing interfaces
for autonomy as well as for explainable AI
and operator training.

1 Introduction

Robots and autonomous systems are increasingly
being operated remotely in hazardous environ-
ments such as in the nuclear or energy sector do-
mains (Hastie et al., 2018; Li et al., 2017; Kwon
and Yi, 2012; Nagatani et al., 2013; Shukla and
Karki, 2016; Wong et al., 2017). Typically, these
remote robots instil less trust than those co-located
(Bainbridge et al., 2008; Hastie et al., 2017b;
Li, 2015). Thus, the interface between the op-
erator and autonomous systems is key to main-
taining situation awareness and understanding be-
tween the system and the human operator (Robb
et al., 2018). It is this aspect of understanding
that we examine here with respect to aligning the
operator’s mental model (Johnson-Laird, 1980), in
terms of both what the system can do and why it
is doing certain behaviours. We propose that this

type of explainability will increase trust and there-
fore adoption of remote autonomous systems.

According to Kulesza et al. (2013), varying
the natural language generation of explanations in
terms of verbosity (i.e. how many reasons to give
or completeness) and the level of detail (sound-
ness) changes the effectiveness of the explanations
in terms of improving the user’s mental model.
It also affects whether the user thinks that it was
“worth it” to read the explanation. It is these as-
pects of explanation generation that we explore
here.

We focus on the natural language generation
of explanations as a part of an interactive multi-
modal system called MIRIAM for situation aware-
ness for autonomous underwater vehicles (AUVs).
This interface was developed in conjunction with
industry partner SeeByte Ltd (see Figure 1) and
runs alongside their commercial UI called See-
Track with a chat interface, which gives status and
mission updates. This multimodal interface has
been shown to increase situation awareness (Robb
et al., 2018; Hastie et al., 2017a) both by using
chat and graphical interface over just graphical in-
terface alone.

We describe a method of explanation generation
that is agnostic to the type of autonomy or vehi-
cle. Our contribution is through the ‘speak-aloud’
method for deriving a model of autonomy for ex-
planations and through the analysis of the forms
that these explanations would take to maximally
improve the user’s mental model. The findings re-
ported here can be used as heuristics for explain-
ing behaviour of remote autonomous systems but
also face-to-face robotics (Perera et al., 2016) and
other explainable AI tasks such as explaining rec-
ommendations (Kulesza et al., 2013). Finally, they
could be used to improve operator training.
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Figure 1: The multimodal interface with SeeTrack interface showing the predicted path of the vehicle on
the left and the chat interface on the right where explanations appear.

2 Background

Explainability is an important facet of a transpar-
ent system (Wortham et al., 2017) as it can pro-
vide the user with a high fidelity mental model,
along with increased confidence and performance
(Bras et al., 2018; Lim et al., 2009). Mental mod-
els, in cognitive theory, provide one view on how
humans reason either functionally (understanding
what the robot does) or structurally (understand-
ing how it works) (Johnson-Laird, 1980). Mental
models are important as they strongly impact how
and whether robots and systems are used. In pre-
vious work, explainability has been investigated
for a variety of systems and users including: 1)
explanation of deep learning models for develop-
ers, as in (Ribeiro et al., 2016) who showed that
such explanations can increase trust; 2) explana-
tions of planning systems (Tintarev and Kutlak,
2014; Chakraborti et al., 2017); and 3) verbalis-
ing robot (Rosenthal et al., 2016) or agent (Harri-
son et al., 2017) rationalisation. Here, we will be
looking at verbalising rationalisation of behaviour
of the autonomous system, in a similar way to 3).
However, these explanations will not be in terms
of a constant stream as in (Harrison et al., 2017),
rather as part of a mixed-initiative conversational
agent where explanations are available on request.

Gregor and Benbasat (1999) describe four types
of explanation including “Why” and “Why not”, to
explain the functionality and the structure of a sys-

tem, respectively and Justification which includes
general knowledge and Terminological. Lim et al.
(2009) went on to investigate the first two of these
and showed that explaining why a system behaved
a certain way increased both understanding and
trust, whilst “Why not” showed only an increase
in understanding. Here, we will also be investigat-
ing these two types of explanations.

We compare our work to that of (Kulesza et al.,
2013), who showed that high completeness and
high soundness maximised understanding. How-
ever, their domain was different to ours (song rec-
ommendations) and their users required no spe-
cific training or domain knowledge to perform
their task. In addition, given the cost of au-
tonomous systems and effort to run missions, the
stakes are considerably higher in our case. Adapt-
ing explanations to the various users and their ex-
isting mental models is touched upon here. Nat-
ural language generation has benefited from such
personalisation to the user and this applies to ex-
planation generation also. Previous studies in
NLG have included adapting to style (Dethlefs
et al., 2014), preferences (Walker et al., 2004),
knowledge (Janarthanam and Lemon, 2014) and
the context (Dethlefs, 2014) of the user. Whilst
there has been much work on personalisation of
explanations for recommender systems (Tintarev
and Masthoff, 2012), there has been little done
specifically for explainable AI/Autonomy.
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Figure 2: Part of the autonomy model, showing reasons for a vehicle spiralling up. Above/below the
dashed line shows what part of the model is used for low/high soundness.

Finally, Gregor and Benbasat (1999) show,
users will only take the time to process the expla-
nation if the benefits are perceived to be worth it
and do not adversely add to cognitive load (Mer-
cado et al., 2016). Indeed, there needs to be a
balance between the amount of information given
and the cognitive effort needed to process it. Our
evaluation investigates this aspect of explanation
generation for our users, who will likely be cogni-
tively loaded given the nature of the task.

3 MIRIAM: The Multimodal Interface

MIRIAM, (Multimodal Intelligent inteRactIon for
Autonomous systeMs), as seen in Figure 1, allows
for ‘on-demand’ queries for status and explana-
tions of behaviour. MIRIAM interfaces with the
Neptune autonomy software provided by SeeByte
Ltd and runs alongside their SeeTrack interface.

MIRIAM uses a rule-based NLP Engine that
contextualises and parses the user’s input for in-
tent, formalising it as a semantic representation.
It is able to process both static and dynamic data,
such as names and mission-specific words. For
example, it is able to reference dynamic objects
such as “auv1”, the particular name given to a ve-
hicle in the mission plan, without the requirement
to hard-code this name into the system. It can han-

dle anaphoric references over multiple utterances
e.g. “Where is Vehicle0?” ... “What is its esti-
mated time to completion?”. It also handles el-
lipsis e.g.“What is the battery level of vehicle0?”
...“What about vehicle1?”. In this paper, we fo-
cus on explanations of behaviours and describe a
method that is agnostic to the type of autonomy
method. Please refer to (Hastie et al., 2017a) for
further details of the MIRIAM system.

4 Method of Explanation Generation

As mentioned above, types of explanations inves-
tigated here include why (to provide a trace or rea-
soning) and why not (to elaborate on the system’s
control method or autonomy strategy), a subset of
those described in (Gregor and Benbasat, 1999).
Lim et al. (2009) show that both these explanations
increase understanding and, therefore, are impor-
tant with regards the user’s mental model. We
adopt here the ‘speak-aloud’ method whereby an
expert provides rationalisation of the autonomous
behaviours while watching videos of missions on
the SeeTrack software. This has the advantage
of being agnostic to the method of autonomy and
could be used to describe rule-based autonomous
behaviours but also complex deep learning mod-
els. Similar human-provided rationalisation has
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been used to generate explanations of deep neural
models for game play (Harrison et al., 2017).

The interpretable model of autonomy derived
from the expert is partially shown in Figure 2. If a
why request is made, the decision tree is checked
against the current mission status and history and
the possible reasons are determined, along with a
confidence value based on the information avail-
able at that point in the mission1.

Whilst our explanation generation decides the
content of the NLG output, the surface repre-
sentations of the explanations are generated us-
ing template-based Natural Language Generation
(NLG). Templates were picked over statistical sur-
face realisation techniques (e.g. Dethlefs et al.
(2014)) due to the fact that the end-user/customer
prefers to avoid the variability that comes with sta-
tistical methods- these end-users/customers being
e.g. the military and operators/technicians in the
energy sector. In these domains, vocabulary and
standard operating procedures lend themselves to
the types of formulaic utterances that template-
based systems afford.

The rationalisation of the autonomous be-
haviours into an intermediate interpretable model,
as shown in Figure 2, assists with the uncertainty
that remote autonomous systems entail. In our
case, communications in the underwater domain
are limited and often unreliable. The data re-
ceived from the vehicles is used to steadily build
a knowledge base and generate explanations on-
demand. Furthermore, this rationalisation dis-
tances the reasoning from the low-level design of
the autonomous vehicles to focus on what actually
happens during a mission and allows for explana-
tions in broader, high-level terms.

5 Soundness vs Completeness

As mentioned in the Introduction, Kulesza et al.
(2013) explore how the level of soundness and
completeness changes how explanations affect the
user’s mental model, as well as whether the user
thinks that it was “worth it” to read the explana-
tion. We adopt Kulesza’s terminology here and
similarly investigate this trade-off between sound-
ness and completeness. For our domain, an agent
that explains the autonomous system using a sim-
pler model reduces soundness (i.e. the top layer

1above 80% (high), 80% to 40% (medium) and below
40% (low) - levels were determined in consultation with the
expert

of the decision tree, above the line in Figure 2).
In this case, the agent provides more general ex-
planations with fewer details that may be easier to
digest but may be too broad (see top left of Figure
3).

Figure 3: The three types of explanations used in
the system, modified from Kulesza et al. (2013):
Low Soundness High Completeness (LSHC),
High Soundness High Completeness (HH) and
High Soundness Low Completeness (HSLC).

High soundness here means that the explanation
is taken from the the leaves of the decision tree,
thus producing a focused and detailed explanation
in Figure 2. An agent with high soundness that
gives only one reason, reducing completeness but
providing a more concise response, may be viewed
as too focused (see bottom right Figure 3)2. Com-
bining both high soundness and high completeness
may result in too complex an explanation (see top
right of Figure 3). We did not include a condi-
tion with low soundness and low completeness be-
cause it would omit too much data to be relevant
or useful in our domain. We investigate these three
combinations of varying soundness/completeness
and measure their effect on Trust, User Satisfac-
tion and a “worth it” score but primarily the evalu-
ation study focuses on the effect on the user’s men-
tal model.

6 Evaluation Method

The experiment was a between-subjects experi-
ment with three conditions, examples of which are
given in Table 1. Specifically:

1. C1(HiSoundHiComp): High Soundness,
High Completeness - multiple explanations,

2the one explanation that is presented is the one with the
highest confidence at that time -if tied, an ordering that was
recommended by the expert is applied
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each explaining all of the autonomy model in
detail;

2. C2(HiSoundLoComp): High Soundness,
Low Completeness - one detailed explanation
that explains all of the autonomy model;

3. C3(LoSoundHiComp): Low Soundness,
High Completeness - multiple explanations
each explaining just the top layer of the au-
tonomy model.

6.1 Experimental Set-up
The experiment consisted of an on-line ques-
tionnaire with a pre-questionnaire to gather de-
mographic data and two questions regarding the
subjects’ pre-existing mental model with regards
AUVs: “I have a good understanding of how
AUVs work” (Pre-MM-Q1) and “I have a good
understanding of what AUVs can do” (Pre-MM-
Q2). We were initially looking to investigate trust
and so the users were asked to fill out a propen-
sity to trust questionnaire (Rotter, 1967). After the
pre-questionnaire, the participants watched 3 sce-
nario videos. After each video, they answered 4
questions regarding the quality of the explanations
(US-Q1-4). These questions were modified from
the PARADISE-style questionnaire (Walker et al.,
1997) for interactive systems and summed to cre-
ate a User Satisfaction score. In addition, the par-
ticipants were asked one question on whether the
explanations were “worth it” and two questions on
their post-explanation mental model (MM-Q1/2).
All questions were on a Likert scale with 7 values:
from strongly disagree (1) to strongly agree (7).

1. US-Q1: The system chat responses were easy
to understand.

2. US-Q2: The system explanations were easy
to understand.

3. US-Q3: The system explanations were use-
ful.

4. US-Q4: The system explanations were as ex-
pected.

5. “Worth it” question: It would be worth read-
ing the explanations to understand how the
system is behaving.

6. MM-Q1: The system explanations in this
video help me to increase my understanding
of how AUVs work.

7. MM-Q2: The system explanations in this
video help me to increase my understanding
of what the AUVs were doing.

The mental model questions aim to capture
two different dimensions of the user’s mental
model (Johnson-Laird, 1980): structurally so how
AUVs work (MM-Q1) and functionally so what
the AUVs were doing (MM-Q2). We will also re-
fer to the mean of these two scores as the general
mental model score, MM-G. After watching the 3
scenarios, a final questionnaire was administrated,
which asked about trust and derived a general trust
score using the Schaefer scale (Schaefer, 2013).

6.2 The Scenarios
There were three conditions, as discussed above,
and for each condition the same three scenario
videos were watched by the participants in the
same order. Each video showed a mission as re-
flected in Figure 1 showing the same AUV mission
but the text chat running alongside the mission var-
ied depending on the condition. For example, the
operator is able to observe in the SeeTrack inter-
face that the vehicle has not done a GPS fix for
some time. The operator in the video asks why it
is not doing a GPS fix and the answer explains the
relevant constraints on the vehicle, as captured in
the interpretable autonomy model shown in Figure
2. The different scenarios and the questions are as
follows:

1. Scenario 1: a why question about an event
“Why is the vehicle spiralling down?”. The
system would answer with a few reasons
(or only one if completeness was low) with
medium confidence. The user would then re-
peat the question after some time and the sys-
tem would give a concrete answer with high
confidence. See Table 1 for the dialogue for
this scenario. Note that in this scenario, the
ranking of the most likely reasons does not
change during the mission.

2. Scenario 2: a why question about an event
“Why is the vehicle spiralling up?”. Simi-
lar to Scenario 1 but, in this case, the most
likely reason changes in the second answer.
This scenario explores how not having all
the information (low completeness) affects
the user’s mental model because the first sys-
tem’s response does not give all possible rea-
sons for the event.
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C1 (HiSoundHiComp) C2 (HiSoundLoComp) C3 (LoSoundHiComp)
User: Why is the vehicle spi-
ralling up?

User: Why is the vehicle spi-
ralling up?

User: Why is the vehicle spi-
ralling up?

System: This could be due to
the following reasons:
- The vehicle is doing a GPS
fix at the start of Survey0 to
improve the quality of the data
gathered (medium confidence)
- The vehicle is transiting to its
safe plane depth (5m) (medium
confidence)

System: The vehicle is doing
a GPS fix at the start of Sur-
vey0 to improve the quality of
the data gathered (medium con-
fidence)

System: This could be due to
the following reasons:
- The vehicle is doing a GPS fix
(medium confidence)
- The vehicle is transiting to its
safe plane depth (medium con-
fidence)

System: The vehicle has
reached Survey0

System: The vehicle has
reached Survey0

System: The vehicle has
reached Survey0

User: Can you confirm now
why the vehicle is spiralling up?

User: Can you confirm now
why the vehicle is spiralling up?

User: Can you confirm now
why the vehicle is spiralling up?

System: Yes, the vehicle is do-
ing a GPS fix at the start of Sur-
vey0 to improve the quality of
the data gathered (high confi-
dence)

System: Yes, the vehicle is do-
ing a GPS fix at the start of Sur-
vey0 to improve the quality of
the data gathered (high confi-
dence)

System: Yes, the vehicle is do-
ing a GPS fix (high confidence)

Table 1: Example dialogue from Scenario 1 showing varying levels of soundness and completeness for
a why question.

3. Scenario 3: a why not question “Why is
the vehicle not doing Target0?”. The sys-
tem would compute a reason explaining the
procedures of the vehicle in that situation.
This scenario investigates how simple expla-
nations (low soundness) about the vehicle’s
control strategies impact the user’s mental
model compared to more detailed explana-
tions.

6.3 Participant Group
There were 21 participants (18 male and 3 fe-
male3). The 21 participants were distributed
evenly across the conditions (7 in each). Partici-
pation was voluntary and remuneration was by a
chance to win one of three £20 Amazon vouchers.
The majority of participants were between 25-35
years old, educated to undergraduate, masters de-
gree or PhD level and all worked in the field of
software for AUVs, and include roles such as op-
erators and development and software engineers.

For this study, it was important to get users
of approximately the same prior mental model
of AUVs. Therefore, participants were recruited

3reflecting current gender proportions of employ-
ees in the engineering and technology sector, see
https://www.theiet.org [accessed May 2018]

from a pool of experts in AUVs from industry
and academia. This allowed us to design the
experiment at a certain level that did not require
pre-training of subjects to get to the same expert
level. Indeed, the pre-test scores reflect a high self-
perceived ability within the participant group with
regards their understanding of how AUVs work
(Pre-MM-Q1 with mean/mode/median/stdev:
6.2/7/6/1) and what AUVs can do (Pre-MM-Q2:
mean/mode/median/stdev 6.3/6/6/0.6). This ap-
proach, however, has the disadvantage of a small
pool of users and results in an uneven gender
balance. Note that expert levels were evenly
spread between conditions.

6.4 Results

Table 2 gives results from the evaluation and
shows that C3(LoSoundHiComp) results in higher
User Satisfaction scores, “worth it” question and
mental model scores. C1(HiSoundHiComp) has
the highest level of user trust using the question-
naire from (Schaefer, 2013) with C2 (HiSoundLo-
Comp) having the lowest level of trust, which we
discuss below. As indicated in the table, only the
mental model questions were found to be statisti-
cally significant.
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C1 C2 C3
(HiSoundHiComp) (HiSoundLoComp) (LoSoundHiComp)
Mean SD Mean SD Mean SD
Median Mode Median Mode Median Mode

Human-Robot Trust 76.73% 6.2% 68.37% 13.5% 72.04% 13.8%
79.29% N/A 74.29% N/A 70.00% N/A

User Satisfaction 5.56 0.695 5.51 0.615 6.06 0.693
6 6 6 6 6 7

“Worth It” score 5.76 0.937 5.62 0.911 6.24 0.81
6 6 6 6 6 6

MM-Q1 for how work? 5.05 1.02 4.81 1.44 5.57* 1.66
5 5 5 5 6 6

MM-Q2 for what doing? 5.57 1.03 5.19 1.33 6.14* 1.11
6 6 5 5 6 6

MM-G for general MM 5.31 0.96 5 1.28 5.86* 1.23
5.5 5 5 6 6 6

Table 2: Overall descriptive statistics reporting Mean, SD, Median, and Mode. As described in the text,
Human-Robot Trust is a score out of 100%. Scales were on a 7 point Likert Scale. User Satisfaction is a
scale derived from the average of 4 Likert items. “Worth It” score, MM-Q1 and MM-Q2 are from single
Likert scale items. MM-G for general MM is the average of the MM-Q1 and MM-Q2 per participant.
N/A for some modes indicates there were no repeated values in that section of the data. We show
modes mainly to help describe the sections of the data derived directly from Likert items, i.e. ordinal,
but included them across all the data for completeness. These descriptive statistics are for the data
aggregated across scenarios within each condition. The * symbols indicate the means of those conditions’
distributions which were statistically significantly higher than those of the other two conditions by post
hoc Mann-Whitney-U tests following Kruskal-Wallis tests for non-parametric data (p < .05) (see text).

Specifically, a Kruskal-Wallis test4 found a sta-
tistically significant effect for these 3 dependant
variables across conditions p < .05 with χ2 =
9.3051 for MM-Q1; χ2 = 9.6836 for MM-Q2, χ2

= 17.846 for MM-G rejecting the null hypothesis
“there is no difference in the participant’s men-
tal model scores between the conditions”. Post-
hoc Mann-Whitney-U one-tailed tests using Bon-
ferroni’s correction were able to show that C3
was significantly higher than the other two condi-
tions for all three mental models scores at the 95%
confidence level. C1 whilst higher than C2 was
not significantly so (although there was a trend
p = .02)5.

We have also investigated how mental model
scores vary across the scenarios during the ex-
periment. We can see from Figure 4 that al-
though C2(HiSoundLoComp) has significantly

4A Kruskal-Wallis test was used as MM-Q1/2 are non-
parametric and MM-G was shown to be non-normally dis-
tributed via a KS Test

5p < .0167 for significance taking into account Bonfer-
roni’s correction

lower scores than C3(LoSoundHiComp), the
user’s mental model of how the system works
(MM-Q1) builds over time, whereas in conditions
C1(HiSoundHiComp) and C3(LoSoundHiComp),
it remains steady for the first two scenarios
with C2(HiSoundLoComp) actually ending up the
highest score by the end of the experiment.

The graph on the bottom of Figure 4 reflects
the user’s mental model of what the vehicle is
doing, which varies from scenario to scenario
across conditions. As discussed in Section 6.1,
there is a change in confidence in the expla-
nation given in Scenario 2. The system pre-
dicts the AUV’s action as normal for the first
user query, yet in the second query, the sys-
tem has more data and recomputes the most
likely reason, which varies from the one origi-
nally presented. Perhaps unsurprisingly, this has
a bigger impact on C2(HiSoundLoComp) than on
C1(HiSoundHiComp) or C3(LoSoundHiComp)
because in those last two conditions, all possi-
ble reasons are given so there is less of a sur-
prise compared to the system seemingly ‘chang-

105



ing its mind’ completely. This may also account
for the lower general lack of trust for the vehicle
in C2(HiSoundLoComp), as indicated in Table 2.

Figure 4: Mean mental model scores across sce-
narios: C1(HH)–High Soundness High Complete-
ness, C2(HSLC)–High Soundness Low Complete-
ness and C3(LSHC)–Low Soundness High Com-
pleteness. S1 to 3: Scenarios 1 to 3.

7 Discussion and Future Work

Kulesza et al. (2013) found that high soundness,
high completeness (HiSoundHiComp) explana-
tions performed the best6. They found that com-
pleteness was linked to better understanding of
how the system worked and the highest average
mental model scores. They also found that expla-
nations with low completeness resulted in flawed
mental models. This is similar to our study where
the only condition with low completeness seemed

6although no statistical tests were performed due to the
low number of subjects

to result in confusion as reflected by significantly
lower mental model scores.

In our study, high completeness (i.e. giving all
the reasons) is the consistent factor that is im-
portant for understanding how a system works.
However, further investigation is needed to ex-
plore the effects of the mental model over longer
missions and across missions and to see how the
mental models build up in the various conditions,
as suggested from Figure 4 where low complete-
ness might be an appropriate presentation method
if there is less urgency.

For understanding specific behaviours, i.e. what
the system is doing, a high level of completeness
is important, however a high level of soundness
is not necessary (i.e. the reasons don’t have to
have a lot of detail). In fact, users have a clearer
mental model if broader explanations with less de-
tails are used with C3(LoSoundHiComp) being
statistically higher than the high soundness con-
dition C1(HiSoundHiComp). The difference be-
tween our study and that of Kulesza et al. (2013)
is that in our study the population have a high de-
gree of pre-existing knowledge and therefore the
high soundness may be redundant or even cause
frustration or extra cognitive load (Lopes et al.,
2018). In addition, according to (Gregor and Ben-
basat, 1999; Kulesza et al., 2013), “users will not
expend effort to find explanations unless the ex-
pected benefit outweighs the mental effort”. Thus,
the system explanations with high soundness, high
completeness (HiSoundHiComp) may be too con-
voluted or distracting in an already complex do-
main. Our results seem to reflect this trend as
well with the “worth it” score, which is highest for
C3(LoSoundHiComp). Investigating the cognitive
load of processing these various types of explana-
tions is part of future work.

In summary, we present here a method for mon-
itoring and explaining behaviours of remote au-
tonomous systems, which is agnostic to the au-
tonomy model. The positive results from this
study suggest that this method produces expla-
nations that build on pre-existing mental models
and improves users’ understanding of how the sys-
tems work and why they are doing certain be-
haviours. This method, along with recommenda-
tions for how explanations should be presented to
the user, informs design decisions for interfaces to
manage remote autonomous vehicles, as well as
explainable autonomy/AI in general.
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Abstract

The current most popular method for
automatic Natural Language Generation
(NLG) evaluation is comparing generated
text with human-written reference sen-
tences using a metrics system, which has
drawbacks around reliability and scalabil-
ity. We draw inspiration from second lan-
guage (L2) assessment and extract a set of
linguistic features to predict human judg-
ments of sentence naturalness. Our experi-
ment using a small dataset showed that the
feature-based approach yields promising
results, with the added potential of provid-
ing interpretability into the source of the
problems.

1 Introduction

More and more text is generated in Machine
Translation, Text Summarization, Image Caption-
ing, and Dialogue Systems. With this increased
usage of Natural Language Generation (NLG)
comes an increase in the importance of evaluat-
ing the language generated, and an increase in
the difficulty of doing so as the quantity and va-
riety of output increases. Automatic NLG evalu-
ation focuses on two areas: accuracy and fluency.
The former assesses how well the generated text
conveys the desired meaning, while the latter as-
sesses how well the language flows: the ‘linguistic
quality of the text’ (Gatt and Krahmer, 2018) and
whether it sounds like something a native speaker
of the language would naturally produce. This pa-
per focuses on the latter. We first review current
approaches in metrics-based evaluation, in refer-
enceless evaluation and in second language (L2)
language assessment; we then present our experi-
ment in section 3.

1.1 Metrics system using human reference
set - the lion’s share

NLG evaluation has traditionally relied on human
judgments (Mellish and Dale, 1998). Beyond that,
the predominant automated method is to compare
generated text with one or more human-created
reference texts using a metric-based system (Gatt
and Krahmer, 2018). The more similar the sys-
tem output is to the human authored text, the bet-
ter the system is judged to be. Popular metrics
include BLEU (Papineni et al., 2002), ROUGE
(Lin and Hovy, 2003), NIST (Doddington, 2002),
METEOR (Lavie and Agarwal, 2007) and CIDEr
(Vedantam et al., 2015), among others. Up to
60% of NLG research published between 2012
and 2015 relied on such metrics (Gkatzia and Ma-
hamood, 2015)

However, it has repeatedly been found that au-
tomated metrics do not correlate well with human
evaluations of generated text (Stent et al., 2005;
Belz and Reiter, 2006; Reiter and Belz, 2009)
and that the correlation is weaker at sentence-level
than when evaluating a system overall. (Novikova
et al., 2017a; Shimorina, 2018). Novikova et
al. (2017a) compared popular comparison met-
rics used to evaluate NLG systems, concluding
that the current state-of-the-art metrics are insuffi-
cient and cannot replace human judgments. They
demonstrated that all the aforementioned auto-
mated metrics based on word-overlap with refer-
ence texts were strongly correlated with each other
and only weakly correlated with human judgments
of naturalness and quality. Furthermore, the least
weak correlation found between any metric and
human naturalness judgments was on the least var-
ied dataset that only expressed a limited set of
attributes and had less lexical diversity as it was
only partially lexicalised (all proper names were
replaced by placeholder variables). Given that lex-
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icalisation is a source of ungrammaticality in NLG
(Sharma et al., 2016), this dataset therefore does
not fully represent the challenge of evaluating the
final output of an NLG system.

In addition to accuracy concerns, using a met-
rics system with a human reference set has sev-
eral practical limitations. Firstly, building refer-
ence sets tends to require experts (e.g. translators)
and is thus costly to create. Secondly, an output
that is different from a human-written reference is
not necessarily a bad sentence for the task: there
are often multiple valid ways to express a desired
meaning. The evaluation therefore requires multi-
ple reference sentences, which makes producing
a reference set even harder and generates com-
plexities in similarity calculation. Thirdly, creat-
ing a human gold standard is not suitable for fast
or large scale assessment. For NLG systems that
cover a large variety of topics, the quantity of ref-
erence sentences required can be prohibitive to us-
ing this approach during system development.

1.2 Moving away from human reference set

We should look beyond evaluation using human
references and learn from research outside our im-
mediate domain, since there has been more re-
search into automatic evaluation of text without
human references in tasks similar to NLG than
there has been for NLG itself.

One such domain is second language learner
(L2) language assessment. Here the target is not
machine-generated text but human-produced text.
Over the last decade, a large body of work has
identified linguistic features that indicate language
fluency and complexity (Hancke et al., 2012;
Feng, 2010; Chen and Zechner, 2011; Lu, 2010;
Vajjala and Meurers, 2012). The linguistic feature
based models in L2 assessment seem to correlate
more strongly with human judgments of natural-
ness than current NLG evaluation metrics (with
the caveat that these are different tasks). Many of
the features require syntactic and discourse pars-
ing, and they capture linguistic knowledge of what
makes sentences readable and natural, as reflected
in psycholinguistic studies on reading and parsing
effort. These features are often more interpretable
than purely statistical metrics, so potentially they
allow us to not only evaluate the naturalness of a
sentence or document, but also to identify why it
is good or bad.

Another relevant domain is automatic grammat-

icality judgment. Wagner et al. (2009) investi-
gated grammaticality classification using features
such as part-of-speech (POS) n-gram frequencies
and the output of probabilistic parsers trained on
corpora of grammatical and ungrammatical sen-
tences. They found that parse probability is re-
duced by spelling, agreement and verb form er-
rors. Heilman et al. (2014) also found linguis-
tic feature based models to be effective when us-
ing spelling, language model and grammar fea-
tures from different parsers. They found that n-
gram frequencies and the ability to be parsed were
the most influential features for indicating gram-
maticality. This feature-based method also proved
effective in grammaticality evaluation when ap-
plied to grammatical error correction applications
(Napoles et al., 2016).

In Machine Translation, quality estimation
without reference texts has been the subject of
multiple shared tasks (Bojar et al., 2017). The
QuEst 2015 sentence level model (Specia et al.,
2015)1 that provided the baseline for the latest
completed task uses features of the source and/or
target sentences including features from language
model scores, length, part-of-speech and depen-
dency parsing The leading system (Kim et al.,
2017) in the 2017 task used an end-to-end stacked
neural model consisting of a bilingual neural word
prediction model and neural quality estimator
model. The next best performing team’s submis-
sion (Martins et al., 2017) used a stacked combina-
tion of a linear feature-based model (with depen-
dency, POS and syntactic features) with a neural
network.

Within NLG evaluation, Novikova et al.
(2017a) examined the correlation between human
evaluations and grammar-based measures that in-
dicate readability and grammaticality. To mea-
sure grammaticality, they used the number of mis-
spellings and the Stanford parser parsing score.
Using the Flesch Reading Ease score (Flesch,
1979) and various other measures of complex-
ity such as character, word, syllable and sen-
tence counts, they found that, at a system level,
systems producing utterances of higher readabil-
ity and shorter word length received higher natu-
ralness and overall quality ratings from humans.
However, at sentence level there was no strong
correlation between such metrics and human rat-
ings that could reliably identify generated sen-

1http://www.quest.dcs.shef.ac.uk
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tences with low readability or low grammaticality.
This evidence that the linguistic features of texts
do correlate with human judgments in NLG but
that no single feature does so with a strong correla-
tion supports our proposal that combining multiple
grammatical features could automatically identify
the quality of generated sentences.

We apply the feature-based approach used else-
where by trying to identify whether machine-
generated sentences are fluent and natural, and
compare the predictions with human produced la-
bels. Unlike previous work on grammaticality pre-
diction we focus on the notion of “naturalness”
or “fluency” rather than just grammaticality. This
is because 1) psycholinguistic studies have shown
that human perception of grammaticality is gradi-
ent (Keller, 2001), and 2) for most systems involv-
ing NLG, it matters how easy it is for humans to
understand the sentences, not just whether the sen-
tences are grammatical. With this in mind, we use
features to capture the ease of parsing (influenced
by grammaticality and syntactic complexity) and
semantic soundness (influenced by word colloca-
tions and frequency). One recent investigation into
NLG evaluation without reference texts that we
are aware of used a recurrent neural network to
estimate quality using the meaning representation
input and output sentence to estimate the overall
quality (Dušek et al., 2017). Our work differs in
the use of linguistic features, which have proved
successful in other domains and offer the prospect
of interpretability, and we maintain the separation
between evaluating the adequacy of the semantic
content and evaluating the fluency of the text as
has been found to be advisable for NLG evalua-
tion (Stent et al., 2005).

2 Deriving the linguistic feature set

Expanding on the literature on L2 language as-
sessment, especially (Hancke et al., 2012), and on
grammaticality evaluation, we derived five groups
of features (see full list in Table 1).

2.1 Lexical features

Lexical features include counts and ratios of
words, lemmas and Part-of-Speech (POS) tokens.
Type-Token Ratio (TTR), the ratio of the number
of word types (in terms of lemmas) to total number
of word tokens in a text, and its variants are used
to measure lexical variation in language acquisi-
tion studies. We adopted the variations described

in (Vajjala and Meurers, 2012) and word counts by
POS categories, extracted using spaCy3.

2.2 Constituency parse features

We used the BLLIP reranking parser (Charniak
and Johnson, 2005), which includes a genera-
tive constituent parser and a discriminative max-
imum entropy reranker, and the WSJ-Gigaword-
v2 model which consists of the Wall Street Jour-
nal corpus from Penn Tree Bank and two mil-
lion sentences from Gigaword. From the parser
output we used as features the parser log prob-
ability and reranker log probability of the most
likely parse after reranking the 50-best parses. The
idea is that parse probability reflects parser confi-
dence and correlates with sentence quality (Mut-
ton et al., 2007). We also added features for kurto-
sis and skew of the log probabilities of the 50 most
likely parses, based on the idea that the distribu-
tion reflects sentence grammaticality and readabil-
ity (Wagner et al., 2006). Our intuition was that
a well-formed grammatical sentence would have
positive skew and high kurtosis dropping steeply
from the highly probable best parse to other much
less likely parses. Conversely, an ungrammatical
sentence would have a flatter kurtosis as none of
the parses are very probable. Other features in-
clude tree height (length of the longest path from
the root), number of subtrees, proportion of non-
terminal subtrees, the number and mean token
length of Noun Phrase (NP), Verb Phrase (VP) and
Adjective Phrase (AdjP) sub-trees.

2.3 Dependency parse features

Using the spaCy dependency parser, we extracted
the root word of the dependency tree and its part
of speech, the tree height and the subtree height to
either side of the root. The part of speech of the
root is an indicator of whether the sentence has a
main verb. The size of the tree on either side of the
root reflects whether a sentence is “top” or “tail”
heavy, or more balanced. This feature is based on
the principle that sentences are easier to process,
and thus are judged to be natural and well worded,
if the dependencies of the head are roughly evenly
distributed on either side (Temperley, 2008), and
that heavy noun phrases are hard to process at the
beginning of the sentence (Stallings et al., 1998).

3https://github.com/explosion/spaCy
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Lexical Features Constituency Parse Features
Type-Token Ratio(TTR) Num nouns Constituency Tree height Num NPs
Root TTR* Num verbs Parser probability* NP average length
Corrected TTR* Num possessives Reranker probability* Num VPs
Bilogarithmic TTR Num preposition 50-best reranker score kurtosis* VP average length*
Uber Index Num determiners 50-best reranker score skew* Num PPs
Lexical Density Num adjectives Num subtrees PP average length
Answer length Num relative pronouns Num non-terminal subtrees
Lexical repetition* Num digits % of non-terminal subtrees
Num tokens Num conjunctions
Dependency Parse Features Language Model Features
Dependency tree height Left subtree height POS LM - Unigram POS LM - Bigram*
Right subtree height Num words left of root POS LM - Trigram Words LM - Score*
Num words right of root Root POS Words LM - Perplexity*
Grammar Checker LanguageTool

Table 1: Feature list. Highest contribution features indicated by *

class “Not Perfect” class “Perfect” Weighted Overall
Model Precision Recall Precision Recall F1 Accuracy
Baselines
Baseline always predicting “Not Perfect” .84 1 0 0 .76 .84
Deep Learning Baseline .85 .97 .42 .12 .79 .83
Feature-based models
Random Forest .90 .97 .77 .45 .88 .89
Logistic Regression2 .91 .96 .70 .49 .87 .88
Feature ablation
LM perplexity only - KNeighbors .84 .1 .60 .02 .77 .84
Parser reranker probability only - KNeighbors .87 .97 .63 .27 .86 .83
Top 11 ranked features - Random Forest .90 .97 .75 .46 .88 .89

Table 2: Results of baselines, top two feature-based classifiers and models using subset of features.

2.4 Language Model based features

A Language Model (LM) represents the prob-
ability distribution of n-grams in a corpus and
can measure how “surprised” the model is to
see a sentence. We used both POS-based
LMs and word-based LMs. For POS-LMs, the
POS sequences of each sentence were evaluated
against unigram, bigram and trigram POS-based
LMs trained on the Wall Street Journal corpus
made available in CoNLL2000 (Tjong Kim Sang
and Buchholz, 2000). Word-based LMs were
trained using the KenLM package (Heafield et al.,
2013). We trained two models, one using an En-
glish news corpus (available at (Heafield et al.,
2013)), and the other using WikiText (Mer-
ity et al., 2016). The score was calculated as
log10 p(sentenceh/si|hsi) where hsi and h/si are
the symbols for beginning and end of sentence,
respectively. This reflects, after seeing a start-of-
sentence symbol, the probability of a sentence ap-
pearing and being followed by an end-of-sentence
token. Perplexity of a sentence was calculated

with 10.0
�score(sentence)
length(words)+1 .

2.5 Grammar checker

We used the open source rule-based grammar
checker LanguageTool4 (Naber, 2003) to output a
binary label of whether a sentence violates any of
the English grammatical rules encoded in this tool.

3 Experiment

3.1 Data description

We collected our ground-truth evaluations through
Amazon Mechanical Turk, asking participants
to read machine-generated sentences and judge
whether or not they are “perfectly good” English
sentences. We opted for a binary judgment task
rather than a graded one to make the judgment
task simple for participants. The sentences evalu-
ated were 4000 machine-generated sentences from
the data released in the 2007/2008 Workshops
on Statistical Machine Translation5. We did not
use the provided human evaluation results because
these were evaluations of adequacy, i.e. a mix-
ture of overall quality, content accuracy, and flu-
ency, and the labels were system rankings. We

4https://languagetool.org/, “Grammar” category only.
5http://www.statmt.org/wmt08/shared-evaluation-

task.html
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randomly allocated 4000 generated sentences into
40 lists. Each participant read 100 sentences and
judged whether each was a “perfectly good” sen-
tence that would sound grammatical and natural
to someone with a high proficiency in English.
Each sentence was judged by at least 5 partici-
pants. Overall, most sentences received the “Not
Perfect” rating (Figure 1). The Fleiss kappa on the
whole data set is 0.3. We then categorized sen-
tences into “Perfect” (more than 70% “Perfect”
judgments), “Not Perfect” (less than 30% “Per-
fect” judgments), and “Not Sure” (the remainder).
There were 603 “perfect” sentences and 2637 “Not
Perfect” ones, which were used for model training
and evaluation. The 929 “not sure” sentences were
excluded.

Figure 1: Percentage of “perfect” judgments per sentence

3.2 Training a classifier: Results

We trained “naturalness” classifiers in two ways:
using a deep learning model on sentences repre-
sented by FastText word embeddings (Bojanowski
et al., 2017), and using linguistic features. The
deep learning model uses a pooled bidirectional
Gated Recurrent Unit (GRU) architecture (Chung
et al., 2014). After excluding data with missing
feature values, there were 2934 observations for
the models, 512 of which were “perfect”. We split
the data into three sets of equal size, two for train-
ing and one for testing.

Given the small dataset, the deep learning
model serves as a baseline. It attained a
marginally better weighted F1 than an “assume-
all-not-perfect” baseline and a similar accuracy.

For the feature based models, we scaled numer-
ical features to be centered around 0 with a stan-
dard deviation of 1. Categorical features were en-
coded in an 1-hot fashion so each level becomes a
feature on its own. Using Scikit-learn (Pedregosa
et al., 2011), we trained the following classifiers:
Linear LVC with L1, L2 or combined penalty, Lo-
gistic Regression, KNeighbours Classifier, Ran-
domForest, Perceptron, SGDClassifier and XG-
boost (Chen and Guestrin, 2016). We used the op-
timal hyper-parameters for each classifier acquired
after running a 5-fold cross validation. We trained
all classifiers 10 times and calculated the mean
accuracy and F1 of the 10 sessions. The top six
classifiers had very similar performances (Logistic
Regression, LinearLVC with L1, L2 or combined
penalty, RandomForest, SGD classifier). We re-
port the mean results of the top two models in Ta-
ble 2.

3.3 Error Analysis
When predicting the naturalness of 969 sentences,
of which 158 were “ Perfect”, the top perform-
ing RandomForest model labeled 861 out of 969
(88.85%) correctly. It produced 87 incorrect “Not
Perfect” labels, and 21 incorrect “Perfect” labels.
The incorrect “Not Perfect” labels consisted of
three main categories: long sentences (especially
those with subordinate clauses), split sentences
with inserts (e.g. “I shall, of course, inform the
President of your comment.”) and non-sentential
segments that human judges deemed natural (e.g.
“The Value of European Values.”). Among the
incorrect “Perfect” labels, some were assigned to
sentences with isolated grammatical errors, such
as incorrect verb agreement (e.g. “The Nobel lau-
reate Gary Becker disagree with this view.”), in-
correct prepositions (e.g. “The journal Science on
the issue last autumn published several contribu-
tions.”, or word order errors (e.g. “What now we
can do?”). The overall impression is that the sen-
tences judged to be “Perfect” by the model are eas-
ier to read, and are less complex than ones judged
to be “Not Perfect”.

3.4 Feature Analysis
Different classifiers agreed on the top weighted
features, but gave different rankings to features
with lighter weight. The highest ranking feature
for the top six classifiers is the parser-reranker
probability, echoing previous findings that parse
probability can be used to evaluate grammaticality
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(Mutton et al., 2007). Other top features include
number of tokens, number of verbs, constituency
tree height and dependency tree height. The effec-
tiveness of Language Model Perplexity and Score
is sensitive to the corpora that the model is trained
on. In this experiment, LM features trained on
the Wikipedia data gave the whole model a .02%
boost in F1 compared to LM scores trained on
news corpora. We also tested a classifier that used
the language model perplexity as the only feature
in training and testing, and found this to be less
accurate. This indicates that although a language
model captures some notion of the likelihood of a
sentence, it does not fully encapsulate all that is
involved in making a sentence sound natural. Per-
haps surprisingly, LanguageTool contributed very
little. We realized that the rules it uses to detect
grammatical errors are mostly linear and struggle
with constituents involving longer dependencies.
For example, LanguageTool judged the sentence
“I represent a number of sugar beet growers and I
am therefore very concerned.” to violate the rule
“MANY NN U”, meaning that the quantifier “a
number of” is followed by the uncountable noun
“sugar”, while the actual head noun is “growers”.

For a feature ablation study, we used the Scikit-
learn implementation of Recursive Feature Elimi-
nation to identify which features contributed most
to the best performing model, the Random Forest
Model. Retraining and testing on subsets of fea-
tures found that using just the 11 best-performing
features achieves the same F1 and accuracy as the
model that used all the features. Adding additional
lower-ranked features beyond that brought no sig-
nificant additional benefit (Figure 2). These 11
features were: parser probability, reranker proba-
bility, reranker score kurtosis, reranker score skew,
average length of verb phrases, the POS language
model bigram score, root TTR, corrected TTR,
lexical repetition, language model score and lan-
guage model perplexity.

4 Model and Feature Set transferability

How well would our naturalness model trained on
a small dataset in one domain - MT generated sen-
tences about European politics - perform on an
entirely different domain? To test the transfer-
ability, we used data provided by Novikova et al.
(2017a)6 of sentences produced by NLG systems
participating in an end-to-end (E2E) NLG chal-

6https://github.com/jeknov/EMNLP 17 submission

Figure 2: Accuracy results of Random Forest models using a
subset of features, ranked by Recursive Feature Elimination

lenge7 (Novikova et al., 2017b). We used the data
from the lexicalised datasets SFRES and SFHOT
datasets and the system outputs from the LOLS
(Lampouras and Vlachos, 2016)8 and RNNLG
(Wen et al., 2015)9 NLG systems. These sentences
describe restaurant types, locations and categories
to convey information given in a slot+value mean-
ing representation. This provided 1954 unique
sentences. We used the annotations for naturalness
that human evaluators had provided on a 6-point
Likert scale in response to the question ‘Could
the utterance have been produced by a native
speaker?’. For each unique system-generated re-
sponse we took the mean naturalness score across
the different annotators. As our model was trained
for the task of identifying data as “perfect” versus
“imperfect”, we set a high threshold for natural-
ness: responses with a mean naturalness rating of
greater than or equal to 5 and no single naturalness
score below 5 were set with a ground-truth of per-
fect. This resulted in 426 “perfect” targets out of
1954 sentences. Using the model described above
to predict the naturalness of this dataset resulted in
an accuracy of .70 and a weighted F1 of .69. As a
baseline for this dataset, always predicting ‘imper-
fect’ would have an accuracy of .78 and a weighted
F1 of .68. Additionally, we used our classifier
training and testing pipeline on this dataset, train-
ing on two thirds of the data (1309 sentences) and
testing on the other third (645 sentences, of which
126 were ‘perfect’). This surpassed the baseline
for this dataset: across ten repetitions the mean
weighted F1 was .73 and accuracy was .83. Re-
peating the exercise with just the top 11 features
identified during the Feature Analysis above also

7http://www.macs.hw.ac.uk/InteractionLab/E2E/
8https://github.com/glampouras/JLOLS NLG
9https://github.com/shawnwun/RNNLG
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Metric Correlation with p value
mean naturalness

Our model 0.23 p < 0.001
METEOR 0.18 p <0.001
ROUGE L 0.17 p <0.001

Bleu 2 0.16 p <0.001
Bleu 1 0.15 p <0.001
CIDEr 0.15 p <0.001
Bleu 3 0.15 p <0.001
NIST 0.11 p <0.01
Bleu 4 0.11 p <0.01

Table 3: E2E NLG Challenge data: Spearman’s ⇢ for mean
fluency and grammaticality human judgments (model trained
on E2E task data).

surpassed the baseline though was lower than the
full feature set, resulting in a mean weighted F1
of .73 and an accuracy of .80. (always predicting
‘imperfect’ would achieve an F1 of .72 and accu-
racy of .80)

The model’s predictions for this test set corre-
lated weakly with the mean naturalness score with
a Spearman’s ⇢ of 0.23 (p < 0.001) (Table 3).
Though this correlation is not very strong, it is no-
table that it is stronger than the correlation with
all the other word-overlap metrics investigated by
(Novikova et al., 2017a) and does not require a ref-
erence text to achieve this.

We also tested transferabiltiy with data from the
WebNLG challenge10 (Gardent et al., 2017) in or-
der to test on more diverse content about differ-
ent topics. The WebNLG data consists of sets of
triples extracted from DBPedia across 15 different
categories carefully designed to be varied. Utter-
ances generated by WebNLG Challenge entrants
underwent human annotation by participants from
English-speaking countries. We used the annota-
tions for fluency and grammaticality11 which were
graded separately, each on a three-point Likert
scale. We set the ground truth of ‘perfect’ for those
sentences which had a mean fluency and grammat-
icality annotation greater than or equal 2.6 with
no single annotation lower than 2. This gave us
1959 unique sentences of which 624 were ‘per-
fect’. Our original model’s predictions resulted in
an accuracy of 0.68 and a weighted F1 of 0.61.
A baseline for this dataset that always predicted
‘imperfect’ would have an accuracy of 0.78 and
an F1 of 0.55. As with the E2E set, performance

10http://webnlg.loria.fr/pages/challenge.html
11https://gitlab.com/shimorina/webnlg-human-evaluation/

Correlation Correlation with
with fluency grammaticality

Our model 0.35 0.46
Bleu 0.33 0.28

Table 4: WebNLG Challenge data: Spearman’s ⇢ correla-
tion with mean fluency and grammaticality human judgments
(model trained on WebNLG task data). All p <0.001

improved when trained on data from this task. We
used our pipeline to train a model on this data, split
two thirds/one third between training and testing
giving a test set of 647 of which 433 were ‘per-
fect’. This resulted in an accuracy of 0.71 and a
weighted F1 of 0.69 (the mean over 10 iterations).
A baseline for this test set that always predicted
‘imperfect’ would have an accuracy of 0.44 and an
F1 of 0.55. This indicates that our feature set can
capture some characteristics of what constitutes a
well-worded response in these domains also.

We use the Bleu scores that had been calculated
using the dataset’s reference sentences to com-
pare Bleu’s correlation with fluency and gram-
maticality judgments and the correlation with our
model’s predictions. The original model corre-
lates very weakly with mean fluency score (Spear-
man’s ⇢ 0.08, p <0.001) and does not corre-
late significantly with mean grammaticality score
p >0.05). However, when trained on this task, the
model’s predictions were moderately and signifi-
cantly positively correlated with the mean fluency
and grammaticality ratings (Table 4). The corre-
lation with Bleu is weaker on this test set: trained
on data from this task, we achieve better correla-
tion with fluency and in particular grammaticality
judgments than Bleu.

This exercise shows that while our model may
have limited direct transferability when there are
significant differences between the type of sen-
tences seen in the training data domain versus the
test, our feature-based method and feature set are
more transferable than the model itself. When
trained on data for a different task, different fea-
tures from the set can contribute to identifying
what constitutes a high quality sentence in this
genre. This approach could be used to evaluate the
naturalness of generated text for a particular task
by using a small set of human-annotated data to
train a model that can cheaply and easily be used
over a larger quantity of data to given an indication
of the naturalness.
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5 Conclusions and Future Work

We presented a linguistic feature based approach
to automatic naturalness evaluation of machine
generated text, building on findings from L2 as-
sessment research. Our experiment using a small
dataset showed promising results suggesting that
this is a viable path towards scalable naturalness
evaluation of machine-generated text, with poten-
tial for interpretability which can help identify and
prioritize improvements to an NLG system dur-
ing development. In future work, we aim to ex-
tend this approach to outputs in multiple languages
and multiple domains to further assess the trans-
ferability of the approach and of specific mod-
els. We will go beyond a binary classification
of “perfect” versus “imperfect” to better account
for cases where there is inter-speaker variation in
naturalness judgments. We also plan to investi-
gate improving deep neural models by adopting
recent advancements in contextualized deep word
and sentence embeddings (Peters et al., 2018; Per-
one et al., 2018) and transfer learning in sentence
representation (Howard and Ruder, 2018; Radford
et al., 2018).
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Abstract

We propose to study the generation of de-
scriptions from source code changes by in-
tegrating the messages included on code
commits and the intra-code documentation
inside the source in the form of docstrings.
Our hypothesis is that although both types
of descriptions are not directly aligned in
semantic terms —one explaining a change
and the other the actual functionality of
the code being modified— there could be
certain common ground that is useful for
the generation. To this end, we propose
an architecture that uses the source code-
docstring relationship to guide the descrip-
tion generation. We discuss the results of
the approach comparing against a baseline
based on a sequence-to-sequence model,
using standard automatic natural language
generation metrics as well as with a human
study, thus offering a comprehensive view
of the feasibility of the approach.

1 Introduction

Transferring the semantics from source code to
natural language and vice-versa is at the core of
several machine learning endeavors, as it could
enable a direct communication between man and
machine, improving the level of interpretability
and comprehension between each other and eas-
ing their collaboration.

In that sense, source code can be conceived
as an actual medium of communication from two
perspectives, which have been explored separately
in both computational linguistics and software en-
gineering communities (Allamanis et al., 2017).

In the first place, from a developer-program per-
spective, source code encodes, in a set of human
readable instructions, the requirements a devel-

oper commands a program to satisfy. This view
has been operationalized as a machine transla-
tion problem, trying to learn efficient transitions
between the dependencies that words and source
code tokens exhibit. With this, recent approaches
have been able to summarize source code snippets
(Allamanis et al., 2016) or even synthesize natural
language instructions into actual commands (Oda
et al., 2015; Yin and Neubig, 2017).

In the second place, from a developer-developer
perspective, the collaborative nature of software
development has transformed source code into a
common ground for human interaction. In that
sense, every new code contribution takes into ac-
count the previous modifications, allowing devel-
opers to communicate indirectly. One of these
applications is the generation of descriptions for
source code changes (Loyola et al., 2017), which
uses the information contained in a code com-
mit – the diff representing the changed code and
the message the developer provides at submission
time – to train an encoder-decoder architecture.
This problem has the particularity of containing
certain elements of summarization, as most salient
characteristics of the code change need to be ex-
tracted, and translation, as it is required to gen-
erate a natural language description from a code
change.

In this work, we consider the generation of de-
scriptions for source changes as a testing task to
explore if the perspectives presented above can
be integrated into a single learning architecture.
That is, we want to learn to generate descrip-
tions from changes exploiting the information in
the source code commits, but incorporating the
program functionality expressed through the doc-
strings contained within the source code.

Our hypothesis is that, while both perspectives
point at different semantic directions, there should
be a certain degree of dependency, since in order
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to perform a change on the code the developer first
needs to understand its functionality. Moreover,
we consider that integrating these two perspectives
could contribute to alleviate the issues that cur-
rent approaches for generating descriptions from
source code change present, such as the halluci-
nation in the generation, where generated descrip-
tions are syntactically correct but that do not keep
any semantic relationship with the actual code
change, and also the inability of the model to pro-
duce descriptions with a relevant amount of detail.

We propose an approach that, given a code
change, compresses the information associated to
the docstrings within the file being modified and
uses it as an additional context when selecting the
next word from the output vocabulary. We also
reported an exploratory approach that generates a
mask to be used at decoding time that considers
the inter-perspective distances based on a bilingual
embedding.

In addition to integrating change descriptions
and source code documentation, we also explore
how to represent the code change itself. Previous
work on description generation has relied on the
output from the diff command, which provides a
distinction between the portions of the source code
that were added and removed. Such data source
has been treated just as a sequence of source code
tokens, such as in the case of Loyola et al. (2017).
In contrast, we explore an architectural variation
where we use two encoders to obtain a more ex-
pressive signal from the source code perspective,
which can lead to a better natural language gener-
ation.

We constructed a dataset by merging both
change history and docstring data from several
real world open source projects to evaluate our
approach. We reported the results on standard
translation-based metrics as well through a user
study using a crowd-sourcing, to get a more quali-
tative estimation of the performance of the model.

Our results show that, on average, incorporating
a signal from the content of the source code file
has a positive impact on the performance of the
model. We consider these results could open the
door to further research that considers the genera-
tion of descriptions from software artifacts from a
more systemic perspective. The source code and
data for this approach is available at: https:
//github.com/epochx/py-commitgen.

2 Related Work

The emergence of unifying paradigms that ex-
plicitly relate programming and natural languages
in distributional terms (Hindle et al., 2012) and
the availability of large corpus mainly from open
source software opened the door for the use of lan-
guage modeling for several tasks (Raychev et al.,
2015). Examples of this are approaches for learn-
ing program representations (Mou et al., 2016),
bug localization (Huo et al., 2016), API sugges-
tion (Gu et al., 2016) and code completion (Ray-
chev et al., 2014).

Source code summarization has received spe-
cial attention, ranging from the use of information
retrieval techniques to the addition of physiologi-
cal features such as eye tracking (Rodeghero et al.,
2014). In recent years several representation learn-
ing approaches have been proposed, such as (Al-
lamanis et al., 2016), where the authors employ a
convolutional architecture embedded inside an at-
tention mechanism to learn an efficient mapping
between source code tokens and natural language
keywords. More recently, Iyer et al. (2016) pro-
posed a encoder-decoder model that learns to sum-
marize from Stackoverflow data, which contains
snippets of code along with descriptions.

Both approaches share the use of attention
mechanisms (Bahdanau et al., 2014) to overcome
the natural disparity between the modalities when
finding relevant token alignments. Although we
also use an attention mechanism, we differ from
them in the sense we are targeting the changes in
the code rather than the description of a file.

In terms of specifically working on code change
summarization, Cortés-Coy et al. (2014); Linares-
Vásquez et al. (2015) propose a method based
on a set of rules that considers the type and im-
pact of the changes, and Buse and Weimer (2010)
combines summarization with symbolic execu-
tion. The use of representation learning based
models has been also explored recently, such as
the work of Loyola et al. (2017) and Jiang et al.
(2017). Both approaches make use of an encoder-
decoder architecture, which receives code change,
in the form of a diff output and the associated mes-
sage submitted by the contributor.

In terms of ad-hoc datasets, we can mention
Zhong et al. (2017) for questions, SQL queries,
Oda et al. (2015) for pseudo code in Python, and
more recently Barone and Sennrich (2017) for
code-docstrings from Python projects on GitHub.
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3 Proposed Approach

Our starting point is the code commit, understood
as a pair conformed by (i) the differences in the
source code obtained as the output of the diff 1

command and (ii) the associated message the com-
mitter provided to explain the action.

Therefore, for a given software project we can
formalize our available data as the set of its T
versions v1, . . . , vT . Commits are well-defined
for every pair of consecutive project versions
∆t

t−1(v) → Committ, so we end up with a to-
tal of T commits, each associated to a project ver-
sion. With this, we model each commit as a tuple
(Ct, Nt), where Ct is a representation of the code
changes associated to v in time t, and Nt is a rep-
resentation of its corresponding natural language
(NL) accompanying message. Concretely, Ct cor-
responds to the set of code tokens associated to
the commit that was applied to a certain file FCt ,
based on the atomicity assumption. In principle,
we do not assume this set of source code tokens is
ordered in a sequential fashion, allowing us to also
represent it as a bag of tokens.

Let C be the set of code changes and N be the
set of all descriptions in NL. We consider a train-
ing corpus with T code snippets and message pairs
(Ct, Nt), 1 ≤ t ≤ T , Ct ∈ C , Nt ∈ N . Then, for
a given code snippet Ck ∈ C, our goal is to train a
model to produce the most likely description N?.

Following Loyola et al. (2017), we start build-
ing our models upon a vanilla encoder-decoder
model that at training time receives (diff, message)
pairs. We use an attention-augmented architecture
(Luong et al., 2015) with a bi-directional LSTM
as encoder. Let Xt = x1, . . . xn be the embedded
input code sequence Ct = c1, . . . , cn as extracted
from the diff. After feeding these through our en-
coder, we have a set of vectors H = h1, . . . hn
that represent the input. This is later given to
the decoder, in our case also an LSTM, such that
the probability of a description is modeled as the
product of the conditional next-word probabilities,
p(ni|n1, . . . , ni−1) ∝ Wc[si; ai], where Nt =
n1, . . . , nm corresponds to the message tokens, ∝
denotes a softmax operation, si represents the de-
coder hidden state and ai is the contribution from
the attention model on the input. Wc is a train-
able combination matrix. The decoder repeats the
recurrence until a fixed number of words or the
special EOS token is generated.

1http://man7.org/linux/man-pages/man1/diff.1.html

The attention contribution ai is defined as ai =∑n
j=1 αi,j · hj , where hj is a hidden state associ-

ated to the input and αi,j is a score obtained using
the general attention scheme (Luong et al., 2015),
αi,j =

exp (h>i Wasi)∑n
j=1 exp (h>j Wasi)

, where Wa is a trainable

scoring matrix.
During training, the decoder iterates until the

end-of-sentence token is reached. For generation,
we approximate N? by performing a beam search
on the space of all possible summaries using the
model output, with a beam size of 10 and a maxi-
mum message length equal to the maximum length
of the inputs of the dataset.

This model considers a direct transition be-
tween diffs and messages extracted from source
code commits. However, programs usually pro-
vide an additional relationship between source
code and natural language, in the form of intra-
code documentation, commonly known as doc-
strings.

This documentation appears in multiple loca-
tions inside a source code file, usually aligned with
a specific line or block, explaining its functional-
ity. The information contained in a code, docstring
pair is intrinsically local, i.e. the docstring is used
as an additional source to support the understand-
ing of a portion of a program beyond the solely
internalization of the available source code. List-
ing 1 presents an example of a real docstring as-
sociated to a class from the Pytorch library2. In
this case we can see that the docstring provides an
overall description of the functionality of the class
and a summary of the required parameters.

1 c l a s s LambdaLR ( LRSchedu le r ) :
2 ””” S e t s t h e l e a r n i n g r a t e o f each p a r a m e t e r group t o t h e

i n i t i a l l r
3 t i m e s a g i v e n f u n c t i o n . When l a s t e p o c h =−1, s e t s i n i t i a l

l r a s l r .
4 Args :
5 o p t i m i z e r ( O p t i m i z e r ) : Wrapped o p t i m i z e r .
6 l r l a m b d a ( f u n c t i o n o r l i s t ) : A f u n c t i o n which

computes a m u l t i p l i c a t i v e
7 f a c t o r g i v e n an i n t e g e r p a r a m e t e r epoch , o r a

l i s t o f such
8 f u n c t i o n s , one f o r each group i n o p t i m i z e r .

pa r am groups .
9 l a s t e p o c h ( i n t ) : The i n d e x of l a s t epoch . D e f a u l t :

−1.
10 . . .
11 ”””
12 d e f i n i t ( s e l f , o p t i m i z e r , l r l a m b d a , l a s t e p o c h =−1) :
13 . . .

Listing 1: Example of a docstring from a Pytorch
module.

If we take a look at the changes committed to
this specific class, we can find that most of the

2https://github.com/pytorch/pytorch/
blob/master/torch/optim/lr_scheduler.py
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commit messages associated keep certain relation-
ship with the docstring. For example, a commit3

from August 8th, 2018 states:

Changed serialization
mechanism of LambdaLR
scheduler

Therefore, we are in the presence of two sets
of pairs that provide information about the charac-
teristics of a program from two different perspec-
tives. A (diff, message) pair set that allow us to un-
derstand why and how changes are conducted over
a given file, and a (code, docstring) that allow us
to understand what is the functionality of such file.

Our goal is then to integrate both sources, i.e., to
study how the local source code - natural language
feature representations learned from the (code,
docstring) pair can be used to support the gener-
ation of natural language descriptions from code
changes. Our hypothesis is that while the (diff,
message) and (code, docstring) pairs associated
to a file are not pointing at the same semantic di-
rection, they should share certain representational
components, as both are centered on the informa-
tion contained on the file: one trying to explain the
code itself (code, docstring) and the other trying to
explain changes on such code (diff, message).

3.1 Content-aware encoder

We noted that the comments contained within a
source file are related to the local functionality of
its adjacent source code lines or blocks. In con-
trast, the message associated to a commit is related
to the actual action carried out on the given file.
Such message, in theory, is indirectly associated
to the functionality of the code, i.e. the code was
modified in a given way because its previous func-
tional state led triggered in a developer the need to
change it.

Motivated by this idea, we propose an aug-
mented encoder that allows us to capture these
relations. Again, let H = h1, . . . hn be the re-
sult of embedding and processing the input con-
tent extracted from Ct. We extract the code and
associated docstring of the total r lines of file FCt .
With this, we model each code and docstring line
as a sequence of tokens Lc

k = xc1, . . . , x
c
p and

Ld
k = xd1, . . . , x

d
q , of length p and q respectively.

We use BiLSTMs to encode both sequences inde-

3https://bit.ly/2zx4041

pendently, as follows.

~hci =
−−−−→
LSTM(xci ,

~hci−1) (1)
~hci =
←−−−−
LSTM(xci ,

~hci+1) (2)
~hdi =

−−−−→
LSTM(xdi ,

~hdi+1) (3)
~hdi =
←−−−−
LSTM(xdi ,

~hdi+1) (4)

As Figure 1 shows, we concatenate the last hid-
den state corresponding to each code and doc-
string vector to obtain a representation for each
line hk = [~hcp;

~hcp;
~hdq ; ~hdq ], with k = 1, . . . , r.

Finally, we use a standard LSTM to model the
dependency across the r code/docstring line vec-
tors and take the last hidden state as a means of
aggregating and representing the content of both
the code and docstring in FCt . This summariz-
ing vector is concatenated to each hi coming from
the diff -level representation. The decoding phase
works in a way analogous to the vanilla encoder-
decoder model.

3.2 Content-aware decoder
During our feasibility study, we empirically ob-
served that there was a significant overlap between
the source code vocabularies coming from the diffs
and from the code extracted from the files, which
in some cases reaches up to 90%.

Our intuition based on such observation is that
we can consider both source code vocabularies
as a single vocabulary, which is used in two dif-
ferent contexts. In other words, a defined set of
source code tokens is conforming a bridge be-
tween the messages from the code changes and the
docstrings.

To exploit such bridge we explored incorporat-
ing the information contained in the (code, doc-

Figure 1: Diagram of our proposed content-aware
encoder. It can be seen how the regular encoder
hidden states h1, . . . , hn (in green) are augmented
using the representation extracted from the content
and docstring in FCt (in blue).
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string) pairs into the code change description gen-
eration by building a mask to guide the decoder.
This mask is built upon co-occurrence patterns be-
tween message and docstring words, which are
used to re-weight the scores the decoder is gener-
ating on the output vocabulary. Concretely, during
inference our goal was to re-weight the probabili-
ties that are passed to the beam search module.

As stated before, for each project, we have a set
of code changes represented as pairs (Ct, Nt), for
Ct ∈ C the set of diff outputs, Nt ∈ N the set of
messages submitted at commit time. On the other
hand, for each commit-derived modified file asso-
ciated to FCt t = 1, . . . , T we have a set of pairs
(code, docstring). We train bilingual word embed-
dings between the set of source code content and
their associated docstring lines. The intuition be-
hind this is that the docstring basically explains —
or translates to natural language— the functional-
ity of a source code block. While this intuition is
arguably not entirely true from a machine trans-
lation perspective, at least it allows us to obtain a
shared feature space between code and docstring
tokens. We adapted the approach by Artetxe et al.
(2017), calling the output embedding C-DC.

In the second place, we construct another em-
bedding space to combine the set of messages
from the commits, and the docstrings, such that
this embedding only contains natural language to-
kens. In this case we do not expect a high overlap
between the vocabularies of each set, as they are
pointing at different semantic directions —their
intent is different. To build this embedding space,
we use a standard word2vec (Mikolov et al., 2013)
implementation, and call the resulting embedding
M-DC.

Using the above embedding spaces as map-
pings, the approach works as follows. Given an
input sequence Ct = c1, . . . , cn from a diff, each
of its tokens ci used to query the C-DC embedding
to obtain a set of k neighboring NL tokensKt. For
each NL token in Kt, we obtain its vector repre-
sentation in M-DC and identify a medoid, medKt .
We consider this medoid not only as the represen-
tative of Kt, but also indirectly of the associated
source code token ci. We then use this medoid
vector and compute its distance to all the elements
in the output message vocabulary OV present in
M-DC, dt,i = dist(medKt , i) for i ∈ OV . We
repeat this process for all the source code tokens
from the input diff sequence obtaining a distance

matrix of n× |OV |.
Finally, we compute the column-wise average

distance, obtaining a vector ds of size 1 × |OV |,
which represents a compressed association be-
tween the input source code sequence Ct and the
output vocabulary. This resulting vector is used
during inference via a convex combination with
the softmax vector ldec output by the decoder
ldec = α ∗ ldec + (1−α) ∗ dCt . The modified vec-
tor is passed to the beam search, which selects the
next tokens in a regular fashion. It should be noted
that as the embedding training operations can be
performed off-line, the inference overhead added
by our mask is negligible, so there is almost no
impact in terms of inference time.

3.3 Structure-aware encoder
Finally, we also explore a different take on the en-
coding phase. We note that the diff associated to
a change has an inherent structure that allows us
to distinguish the lines that were added and/or re-
moved. In Loyola et al. (2017), the authors ignored
such distinction and simply generated a single se-
quence by concatenating both added and removed
parts. While this approach appears as a simple so-
lution, we consider it limits the expressiveness of
this input and introduce issues related to i) loss of
the alignment between added and removed code
within the source code file, and ii) source code to-
ken redundancy.

In order to overcome such issues, we propose to
consider the diff explicitly as two inputs, one for
the added tokens, and one for the removed tokens.
We hypothesize that the quality and richness of
the encoded input could be improved by compar-
ing these two inputs in order to identify elements
that may play a key semantic role in understanding
the diff, both in terms of added or removed code
chunks.

Concretely, let X+
t = x+1 , . . . , x

+
n and X−t =

x−1 , . . . , x
−
m be the embedded sequences of the

concatenated added and removed code lines, as
extracted from the diff associated to example Ct.
We use a single embedding matrixE and the same
bidirectional LSTM to encode both sequences.

~h+i =
−−−−→
LSTM(x+i ,

~h+i−1) (5)

~h+i =
←−−−−
LSTM(x+i ,

~h+i+1) (6)

~h−i =
−−−−→
LSTM(x−i ,~h

−
i−1) (7)

~h−i =
←−−−−
LSTM(x−i , ~h−i+1) (8)
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We later apply two matching strategies over the
resulting vector sequences, which are based on
the multi-perspective matching operation by Wang
et al. (2017). The operation is built upon a cosine
matching function fm, which is used to compare
two vectors, as follows.

m = fm(v1, v2;W ) (9)

where v1 and v2 are two d-dimensional vec-
tors, W ∈ <l×d is a trainable parameter with
the shape l × d, l is the number of perspectives,
and the returned value m is a l-dimensional vector
m = [m1, ...,mk, ...,ml]. Each element mk ∈ m
is a matching value from the k-th perspective, and
it is calculated by the cosine similarity between
two weighted vectors

mk = cosine(Wk ◦ v1,Wk ◦ v2) (10)

where ◦ is the element-wise multiplication, and
Wk is the k-th row of W , which controls the k-th
perspective and assigns different weights to differ-
ent dimensions of the d-dimensional space.

Full-Matching: In this strategy, each forward
(or backward) vector ~h+i (or ~h+i ) is compared with
the last time step of the forward (or backward) rep-
resentation of the other sequence ~h−m (or ~h−m).

~mfull
i = fm(~h+i ,

~h−m;W 1)

~mfull
i = fm( ~h+i ,

~h−m;W 2) (11)

Maxpooling-Matching: In this strategy, each
forward (or backward) vector ~h+i (or ~h+i ) is com-
pared with every forward (or backward) vector of
the other sequence ~h−j (or ~h−j ) for j ∈ 1 . . .m,
and only the maximum value of each dimension is
retained.

~mmax
i = max

j∈(1...m)
fm(~h+i ,

~h−j ;W 3)

~mmax
i = max

j∈(1...m)
fm( ~h+i ,

~h−j ;W 4)

where max
j∈(1...m)

is element-wise maximum.

(12)

These matching strategies are applied for both
added and removed sequences. After, we concate-
nate each of the sequences of matching vectors and
utilize another BiLSTM model to obtain a context-
aware version each sequence. These two vector
sequences are concatenated in the time dimension
and provided to the decoder as context for the at-
tention layer. Finally, to initialize the decoder, we

concatenate the vectors from the last time-step of
the BiLSTM models and aggregate them using an
affine transformation. The decoder works analo-
gously to the vanilla encoder-decoder case.

4 Empirical Study

Data: We consider real world open source Python
projects. For our experiments using the content-
augmented encoder, we resorted to the code-
docstring-corpus (Barone and Sennrich, 2017).
This dataset is a diverse parallel corpus of a hun-
dred thousand Python functions with their doc-
strings, generated by scraping open source repos-
itories on GitHub. In order to make our ex-
periments comparable across settings, we only
worked with projects that were also present in
this dataset. We sorted the projects in the code-
docstring-corpus according to their total number
of commits in GitHub and chose the ones that con-
tained at least 10,000 commits aiming at diver-
sity in terms of topics. Specifically, in this paper
we work with Theano, astropy, nova, scikit-learn,
mne-python, flocker and matplotlib.

Following Loyola et al. (2017), we obtained all
the diff files and the metadata associated to each
commit, for a given project using the GitHub API.
We also recovered information such as the author
and message of each commit. The commit mes-
sages were processed using a modified version of
the Penn Treebank tokenizer (Marcus et al., 1993).
Besides using the rules defined by the original
script, we replaced commit SHAs, commit author
names and file names with generic tokens. In order
to do so, we first collect the set of commit SHAs,
committer names and project file names using the
downloaded metadata for each commit. Each one
of these lists is then matched against the words in
the text to produce the output. Finally, we also
removed certain repetitive patterns from the mes-
sages, such as the phrase merge pull request, keep-
ing the rest of the content of each sequence, if any.
Messages that solely contained these sequences
were discarded as they provide no useful semantic
information about the nature of the content of the
commit. On the other hand, to obtain a represen-
tation of the source code content of each commit,
we parsed the diff files and used a lexer (Brandl,
2016) to tokenize their contents in a per-line fash-
ion. We ignored docstrings and code comment to-
kens, as well as tokens contained in literal strings.
For our structure-aware encoder, when parsing the
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diff file we separately extract the added and re-
moved lines, while the rest of the pre-processing
remains the same.

We discarded commits that modify more than
a single file, thus we consider only atomic com-
mits. To combine the commit data with the code-
docstring-corpus, we found the set of files modi-
fied by the commits and discarded all the ones that
modify a file not present in the examples from the
code-docstring-dataset. With this list, we extract
all the source code and docstring lines from the
corpus in a per-line fashion. In this manner, we
create a mapping that allows us to recover, for each
commit in our examples, the content and docstring
lines of the file that commit modifies. Table 1
summarizes the size of our raw and pre-processed
datasets.

Project Total Atomic Content Structure
Theano 22,995 15,814 7,708 15,210
astropy 19,599 12,195 4,708 11,896

nova 13,400 18,110 4,617 17,412
scikit-learn 15,575 12,885 3,965 12,482
mne-python 12,761 6,762 4,083 6,531

flocker 16,027 11,702 4,707 10,821
matplotlib 20,001 14,284 5,840 13,836

Table 1: Number of commits available on each
dataset subset. Both the Content and Structure
subsets are obtained using the Atomic subset.

Evaluation: As stated in the previous sec-
tion, the problem of generating descriptions from
source code changes does not yet have a formal
way of evaluation. As the problem has certain el-
ements from both translation and summarization,
in principle metrics such as BLEU (Papineni et al.,
2002) seem to appear as feasible alternatives for
evaluation in our case. BLEU is based on n-gram
overlap between the gold standard and the gener-
ated sequences. Smoothing techniques are also ap-
plied to deal with cases in which certain generated
n-grams are not found on the gold standard. In
particular, for this work we use BLEU-4 and for
smoothing we simply add ε = 0.01 to 0 counts.

On the other hand, we find METEOR (Lavie
and Agarwal, 2007), a metric based on the align-
ment between hypothesis-reference pairs, which
in turn is based on n-gram matching. Specifically,
METEOR computes the alignment by comparing
exact token matches, stemmed tokens and para-
phrase matches. In addition to that, it also finds se-
mantically similar tokens between hypotheses and
references by using Word-Net synonyms. To ob-
tain the final alignment, different overlap counts

are combined using several free parameters that
are tuned to emulate various human judgment
tasks. Although this gives METEOR some extra
flexibility, it makes it context dependent, specifi-
cally in terms of language. In our case, we work
with the latest version available (1.5) with the
model pre-trained for English, using the included
scripts to tokenize and normalize punctuation.

Finally, we also considered MEANT (Lo and
Wu, 2011). Our interest in this metric derives from
the fact that it considers the verb as a key element
when evaluating. More specifically, MEANT is
based on semantic role labels and uses the Kuhn-
Munkres algorithm to find matches in a bipartite
graph built upon semantic frames. Thus, this met-
ric aims at aligning the generated and gold stan-
dard sequences by finding semantically equivalent
passages focusing on the main action in each pas-
sage. Compared to other metrics, the main draw-
back of standard MEANT is that it requires the
inputs to have been annotated with their corre-
sponding semantic role labels, while also requir-
ing a notion of semantic distance to use for match-
ing frames. To this end, we work with MEANT
2.0 (Lo, 2017), which is based on automatic SRL
and word-embedding-based similarity for match-
ing. For both requirements, we rely on SENNA
(Collobert et al., 2011).

We trained our models using Adam (Kingma
and Ba, 2014) with a learning rate of 0.001 with
decay of 0.8 when there was no improvement in
the validation loss. We used early stopping when
the learning rate dropped below 10−4. For evalu-
ation on the test set, we used the three automatic
metrics introduced before.

In addition, we conducted a crowd-sourced hu-
man evaluation. Concretely, we selected the best
validation models on each case and relied on Ama-
zon Mechanical Turk to evaluate the results on
50 randomly-chosen examples from the test sets.
Each turker was presented with the gold stan-
dard and the generated message, and was asked to
rate the level of correlation between them, from 1
(min) to 5 (max). We randomly swapped the order
in which the messages appear, to avoid the turk-
ers from easily locating each message. To ensure
the quality of the evaluation, we filtered turkers us-
ing a quiz-based qualification in which users had
to prove they had basic knowledge of Python and
GitHub. In addition, each example was shown to
3 different turkers.
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5 Results and Discussion

Table 2 summarizes our results in terms of all the
evaluation metrics for both experiments, namely,
i) the use of a content-aware encoder and ii) the
use of the structure-aware encoder. In terms of
notation, Len means the maximum length of the
input sequence, Use refers to if content-aware and
structure-aware was used (No means the standard
baseline from Loyola et al. (2017)) . We see
that in general, the usage of a context-aware en-
coder tends to increase performance, as the mod-
els with content perform better in 4 or 5 out of
our 7 datasets, for each of the automatic evalua-
tion metrics. These gains are also reflected in the
average correlation scores from our human eval-
uation, where we can see that the content-aware
models outperform the baseline in 4 datasets. In
terms of sequence length, we observe that some
content-aware models are able to outperform the
baseline using shorter input-output pairs.

Regarding the usage of two linearized inputs,
we see that the tendency is for the performance
to decrease. This is evidenced in both automatic
and human-based evaluation, where the majority
of the structure-aware models perform worse than
our baseline. We think this reinforces the urge for
moving into a more ad-hoc representation in terms
of structure, in which the code lines of the in-
put diff are exploited thoroughly. Despite the fact
that our current proposal goes in that direction, be-
ing designed to compare two sequential inputs, if
these two inputs lack expressive power, still there
is little the model can learn.

Comparing across models for a given automatic
evaluation metric, we see a big difference in terms
of their absolute values. In this sense, we note
that MEANT offers scores that are arguably more
lenient compared to BLEU and METEOR. We
think the fact that these last two metrics are heav-
ily based on n-gram overlap hinders their value.
As MEANT essentially performs an action-based
alignment between hypotheses and references, our
intuition is that this could be a good direction in
terms of evaluation, as the phenomenon to model
is basically an action performed on a document,
which is naturally articulated with a verb when
summarizing the action performed (e.g. Fix a
bug). Some empirical evidence about this was
given by Jiang et al. (2017), who found that out of
a sample of 1.6 M commit messages, roughly 47%
of them begin with a verb and its direct object.

Regarding the mask-based approach, Table
3 presents some results associated to a initial
exploratory study considering a subset of the
projects. In this case, we can see that while the
results are in the order of magnitude of the best re-
sults associated to the previous approach for con-
tent integration, there is still no clear pattern in
terms of which metrics is more reliable as indi-
cator of generative performance. In that sense, we
consider it is critical to work towards obtaining an
ad-hoc metric that is better aligned with the actual
performance of the generation.

One known limitation of the current approach
is that while the the data coming from the code
changes in intrinsically time dependent, for the
case of the code-docstring source, we are just us-
ing a static version, therefore we are not con-
sidering how docstring documentation could also
change over time. While we were aware that such
decision has direct implication on the vocabulary
matching, it was a necessary simplification given
the available dataset.

Additionally, given that the results associated to
the use of two encoders did not produce a relevant
improvement , we believe that even a two-encoder
configuration does not produce a sufficiently ex-
pressive signal to be used by the decoder. That
makes us conclude that treating a code change just
a set of token sequences is not enough to obtain
considerable increments and that it is necessary to
obtain such input from a more flexible perspec-
tive, for example, by using an explicit dependency
graph between changes, or even more complex
constructs such as differences of execution traces
or abstract syntax trees.

6 Conclusion and Future Work

We studied how to model the generation of de-
scription from source code changes by integrating
the intra-code documentation as a guiding element
to improve the quality of the descriptions. While
the results from the empirical study are not com-
pletely conclusive, we consider that adding this
extra information on average contribute positively,
measured in terms of standard NLP metrics as well
as through a human study. For future work, we
consider necessary to focus on the expressiveness
of the feature representations learned from the en-
coder. In that sense, we will explore other ways
to treat the source code change, such as exploiting
their abstract syntax tree representation.
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Dataset Content-aware encoder Structure-aware encoder
Len. Use MEANT METEOR BLEU Human Len. Use MEANT METEOR BLEU Human

Theano 200 No 0.1683 0.0505 0.0081 2.2533 100 No 0.1450 0.0310 0.0077 2.1667
300 Yes 0.1600 0.0360 0.0080 2.0667 300 Yes 0.0080 0.0061 0.0053 1.4533

astropy 200 No 0.1942 0.1074 0.0292 2.5067 200 No 0.2586 0.0738 0.0220 2.8400
300 Yes 0.2170 0.1100 0.0300 2.4867 200 Yes 0.2697 0.0555 0.0167 2.7133

flocker 300 No 0.0320 0.0405 0.0131 1.9133 300 No 0.1608 0.0668 0.0143 2.2267
100 Yes 0.1100 0.0540 0.0110 2.0467 100 Yes 0.1186 0.0375 0.0054 2.1267

matplotlib 300 No 0.1944 0.0523 0.0126 2.3267 100 No 0.1687 0.0559 0.0139 2.3867
100 Yes 0.1240 0.0830 0.0220 2.4067 300 Yes 0.1357 0.0542 0.0174 2.0000

mne-python 200 No 0.0147 0.0099 0.0052 2.2733 200 No 0.0568 0.0265 0.0171 2.4200
200 Yes 0.0200 0.0250 0.0170 1.7667 300 Yes 0.0587 0.0250 0.0230 2.3933

nova 300 No 0.2798 0.0259 0.0275 2.4900 200 No 0.3151 0.0372 0.0187 2.4467
100 Yes 0.3350 0.0410 0.0240 2.8066 300 Yes 0.2976 0.0477 0.0236 2.7000

scikit-learn 200 No 0.0669 0.1327 0.0276 2.0600 300 No 0.0547 0.0577 0.0170 2.0300
100 Yes 0.0590 0.1010 0.0220 2.2200 300 Yes 0.0586 0.0341 0.0113 2.1267

Table 2: Best results using our context and structure aware architectures.

Dataset Best Value
METEOR MEANT BLEU

Theano 0.1953 0.2103 0.0112
astropy 0.1077 0.2308 0.0302

matplotlib 0.0950 0.2397 0.0289

Table 3: Results of our content-based masking
technique.
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Abstract

In this work, we investigate the task of tex-
tual response generation in a multimodal
task-oriented dialogue system. Our work
is based on the recently released Mul-
timodal Dialogue (MMD) dataset (Saha
et al., 2017) in the fashion domain. We
introduce a multimodal extension to the
Hierarchical Recurrent Encoder-Decoder
(HRED) model and show that this exten-
sion outperforms strong baselines in terms
of text-based similarity metrics. We also
showcase the shortcomings of current vi-
sion and language models by performing
an error analysis on our system’s output.

1 Introduction

This work aims to learn strategies for textual re-
sponse generation in a multimodal conversation
directly from data. Conversational AI has great
potential for online retail: It greatly enhances user
experience and in turn directly affects user reten-
tion (Chai et al., 2000), especially if the interaction
is multi-modal in nature. So far, most conversa-
tional agents are uni-modal – ranging from open-
domain conversation (Ram et al., 2018; Papaioan-
nou et al., 2017; Fang et al., 2017) to task ori-
ented dialogue systems (Rieser and Lemon, 2010,
2011; Young et al., 2013; Singh et al., 2000; Wen
et al., 2016). While recent progress in deep learn-
ing has unified research at the intersection of vi-
sion and language, the availability of open-source
multimodal dialogue datasets still remains a bot-
tleneck.

This research makes use of a recently released
Multimodal Dialogue (MMD) dataset (Saha et al.,
2017), which contains multiple dialogue sessions
in the fashion domain. The MMD dataset provides
an interesting new challenge, combining recent ef-

forts on task-oriented dialogue systems, as well as
visually grounded dialogue. In contrast to sim-
ple QA tasks in visually grounded dialogue, e.g.
(Antol et al., 2015), it contains conversations with
a clear end-goal. However, in contrast to previ-
ous slot-filling dialogue systems, e.g. (Rieser and
Lemon, 2011; Young et al., 2013), it heavily relies
on the extra visual modality to drive the conversa-
tion forward (see Figure 1).

In the following, we propose a fully data-driven
response generation model for this task. Our work
is able to ground the system’s textual response
with language and images by learning the seman-
tic correspondence between them while modelling
long-term dialogue context.

Figure 1: Example of a user-agent interaction in
the fashion domain. In this work, we are inter-
ested in the textual response generation for a user
query. Both user query and agent response can be
multimodal in nature.

2 Model: Multimodal HRED over
multiple images

Our model is an extension of the recently intro-
duced Hierarchical Recurrent Encoder Decoder
(HRED) architecture (Serban et al., 2016, 2017;
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Lu et al., 2016). In contrast to standard sequence-
to-sequence models (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015), HREDs model
the dialogue context by introducing a context Re-
current Neural Network (RNN) over the encoder
RNN, thus forming a hierarchical encoder.

We build on top of the HRED architecture to
include multimodality over multiple images. A
simple HRED consists of three RNN modules: en-
coder, context and decoder. In multimodal HRED,
we combine the output representations from the
utterance encoder with concatenated multiple im-
age representations and pass them as input to the
context encoder (see Figure 2). A dialogue is mod-
elled as a sequence of utterances (turns), which in
turn are modelled as sequences of words and im-
ages. Formally, a dialogue is generated according
to the following:

Pθ(t1, . . . tN ) =

N∏

n=1

Pθ(tn|t<n) (1)

where tn is the n-th utterance in a dialogue. For
each m = 1, . . . ,Mn, we have hidden states of
each module defined as:

htextn,m = f textθ (htextn,m−1, wm,n) (2)

himgn = limg([gencθ (img1), . . . g
enc
θ (imgk)]) (3)

hcxtn = f cxtθ (hcxtn−1, [h
text
n,Mn

, himgn ]) (4)

hdecn,m = fdecθ (hdecn,m−1, wn,m, h
cxt
n−1) (5)

htextn,0 = 0; hcxt0 = 0; hdecn,0 = hcxtN (6)

where f textθ ,f cxtθ and fdecθ are GRU cells (Cho
et al., 2014). θ represent model parameters, wn,m
is the m-th word in the n-th utterance and gencθ

is a Convolutional Neural Network (CNN); here
we use VGGnet (Simonyan and Zisserman, 2014).
We pass multiple images in a context through the
CNN in order to get encoded image representa-
tions gencθ (imgk). Then these are combined to-
gether and passed through a linear layer limg to get
the aggregated image representation for one turn
of context, denoted by himgn above. The textual
representation htextn,Mn

is given by the encoder RNN
f textθ . Both htextn,Mn

and himgn are subsequently
concatenated and passed as input to the context
RNN. hcxtN , the final hidden state of the context
RNN, acts as the initial hidden state of the decoder
RNN. Finally, output is generated by passing hdecn,m
through an affine transformation followed by a
softmax activation. The model is trained using

cross entropy on next-word prediction. During
generation, the decoder conditions on the previous
output token.

Saha et al. (2017) propose a similar baseline
model for the MMD dataset, extending HREDs to
include the visual modality. However, for simplic-
ity’s sake, they ‘unroll’ multiple images in a sin-
gle utterance to include only one image per utter-
ance. While computationally leaner, this approach
ultimately loses the objective of capturing multi-
modality over the context of multiple images and
text. In contrast, we combine all the image rep-
resentations in the utterance using a linear layer.
We argue that modelling all images is necessary to
answer questions that address previous agent re-
sponses. For example in Figure 3, when the user
asks “what about the 4th image?”, it is impossi-
ble to give a correct response without reasoning
over all images in the previous response. In the
following, we empirically show that our extension
leads to better results in terms of text-based sim-
ilarity measures, as well as quality of generated
dialogues.

Our version of the dataset
Text Context: Sorry i don’t think i have any 100 % acrylic but i can show
you in knit | Show me something similar to the 4th image but with the
material different
Image Context: [Img 1, Img 2, Img 3, Img 4, Img 5] | [0, 0, 0, 0, 0]
Target Response: The similar looking ones are
Saha et al. (Saha et al., 2017)
Text Context: |
Image Context: Img 4 | Img 5
Target Response: The similar looking ones are

Figure 3: Example contexts for a given system ut-
terance; note the difference in our approach from
Saha et al. (2017) when extracting the training data
from the original chat logs. For simplicity, in this
illustration we consider a context size of 2 previ-
ous utterances. ‘|’ differentiates turns for a given
context. We concatenate the representation vec-
tor of all images in one turn of a dialogue to form
the image context. If there is no image in the utter-
ance, we consider a 04096 vector to form the image
context. In this work, we focus only on the textual
response of the agent.
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Figure 2: The Multimodal HRED architecture consists of four modules: utterance encoder, image en-
coder, context encoder and decoder. While Saha et al. (2017) ‘rollout’ images to encode only one image
per context, we concatenate all the ‘local’ representations to form a ‘global’ image representation per
turn. Next, we concatenate the encoded text representation and finally everything gets fed to the context
encoder.

3 Experiments and Results

3.1 Dataset

The MMD dataset (Saha et al., 2017) consists
of 100/11/11k train/validation/test chat sessions
comprising 3.5M context-response pairs for the
model. Each session contains an average of 40
dialogue turns (average of 8 words per textual re-
sponse, 4 images per image response). The data
contains complex user queries, which pose new
challenges for multimodal, task-based dialogue,
such as quantitative inference (sorting, counting
and filtering): “Show me more images of the 3rd
product in some different directions”, inference
using domain knowledge and long term context:
“Will the 5th result go well with a large sized mes-
senger bag?”, inference over aggregate of images:
“List more in the upper material of the 5th image
and style as the 3rd and the 5th”, co-reference res-
olution. Note that we started with the raw tran-
scripts of dialogue sessions to create our own ver-
sion of the dataset for the model. This is done
since the authors originally consider each image as
a different context, while we consider all the im-
ages in a single turn as one concatenated context
(cf. Figure 3).

3.2 Implementation
We use the PyTorch1 framework (Paszke et al.,
2017) for our implementation.2 We used 512
as the word embedding size as well as hidden
dimension for all the RNNs using GRUs (Cho
et al., 2014) with tied embeddings for the (bi-
directional) encoder and decoder. The decoder
uses Luong-style attention mechanism (Luong
et al., 2015) with input feeding. We trained our
model with the Adam optimizer (Kingma and Ba,
2015), with a learning rate of 0.0004 and clipping
gradient norm over 5. We perform early stopping
by monitoring validation loss. For image repre-
sentations, we use the FC6 layer representations
of the VGG-19 (Simonyan and Zisserman, 2014),
pre-trained on ImageNet.3

3.3 Analysis and Results
We report sentence-level BLEU-4 (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007) and
ROUGE-L (Lin and Och, 2004) using the evalu-
ation scripts provided by (Sharma et al., 2017).

1https://pytorch.org/
2Our code is freely available at:

https://github.com/shubhamagarwal92/mmd
3In future, we plan to exploit state-of-the-art frameworks

such as ResNet or DenseNet and fine tune the image encoder
jointly, during the training of the model.
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Figure 4: Examples of predictions using M-HRED–attn (5). Recall, we are focusing on generating
textual responses. Our model predictions are shown in blue while the true gold target in red. We are
showing only the previous user utterance for brevity’s sake.

We compare our results against Saha et al. (2017)
by using their code and data-generation scripts.4

Note that the results reported in their paper are on
a different version of the corpus, hence not directly
comparable.

Model Cxt BLEU-4 METEOR ROUGE-L
Saha et al. M-HRED* 2 0.3767 0.2847 0.6235
T-HRED 2 0.4292 0.3269 0.6692
M-HRED 2 0.4308 0.3288 0.6700
T-HRED–attn 2 0.4331 0.3298 0.6710
M-HRED–attn 2 0.4345 0.3315 0.6712
T-HRED–attn 5 0.4442 0.3374 0.6797
M-HRED–attn 5 0.4451 0.3371 0.6799

Table 1: Sentence-level BLEU-4, METEOR and
ROUGE-L results for the response generation
task on the MMD corpus. “Cxt” represents con-
text size considered by the model. Our best per-
forming model is M-HRED–attn over a context of
5 turns. *Saha et al. has been trained on a different
version of the dataset.

Table 1 provides results for different configura-
tions of our model (“T” stands for text-only in the
encoder, “M” for multimodal, and “attn” for using
attention in the decoder). We experimented with
different context sizes and found that output qual-
ity improved with increased context size (mod-
els with 5-turn context perform better than those
with a 2-turn context), confirming the observation
by Serban et al. (2016, 2017).5 Using attention
clearly helps: even T-HRED–attn outperforms M-
HRED (without attention) for the same context
size. We also tested whether multimodal input
has an impact on the generated outputs. However,
there was only a slight increase in BLEU score
(M-HRED–attn vs T-HRED–attn).

4https://github.com/amritasaha1812/
MMD_Code

5Using pairwise bootstrap resampling test (Koehn, 2004),
we confirmed that the difference of M-HRED-attn (5) vs. M-
HRED-attn (2) is statistically significant at 95% confidence
level.

To summarize, our best performing model (M-
HRED–attn) outperforms the model of Saha et al.
by 7 BLEU points.6 This can be primarily at-
tributed to the way we created the input for our
model from raw chat logs, as well as incorporat-
ing more information during decoding via atten-
tion. Figure 4 provides example output utterances
using M-HRED–attn with a context size of 5. Our
model is able to accurately map the response to
previous textual context turns as shown in (a) and
(c). In (c), it is able to capture that the user is ask-
ing about the style in the 1st and 2nd image. (d)
shows an example where our model is able to re-
late that the corresponding product is ‘jeans’ from
visual features, while it is not able to model fine-
grained details like in (b) that the style is ‘casual
fit’ but resorts to ‘woven’.

4 Conclusion and Future Work

In this research, we address the novel task of
response generation in search-based multimodal
dialogue by learning from the recently released
Multimodal Dialogue (MMD) dataset (Saha et al.,
2017). We introduce a novel extension to the
Hierarchical Recurrent Encoder-Decoder (HRED)
model (Serban et al., 2016) and show that our im-
plementation significantly outperforms the model
of Saha et al. (2017) by modelling the full multi-
modal context. Contrary to their results, our gen-
eration outputs improved by adding attention and
increasing context size. However, we also show
that multimodal HRED does not improve signif-
icantly over text-only HRED, similar to observa-
tions by Agrawal et al. (2016) and Qian et al.
(2018). Our model learns to handle textual cor-
respondence between the questions and answers,
while mostly ignoring the visual context. This in-
dicates that we need better visual models to en-

6The difference is statistically significant at 95% confi-
dence level according to the pairwise bootstrap resampling
test (Koehn, 2004).
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code the image representations when he have mul-
tiple similar-looking images, e.g., black hats in
Figure 3. We believe that the results should im-
prove with a jointly trained or fine-tuned CNN for
generating the image representations, which we
plan to implement in future work.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
EMNLP.

Hao Fang, Hao Cheng, Elizabeth Clark, Ariel Holtz-
man, Maarten Sap, Mari Ostendorf, Yejin Choi, and
Noah A Smith. 2017. Sounding board–university of
washington’s alexa prize submission. Alexa Prize
Proceedings.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for MT evaluation with high levels
of correlation with human judgments. In Proceed-
ings of 2nd Workshop on Statistical Machine Trans-
lation, pages 228–231.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of ACL, pages 605–612.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi
Parikh. 2016. Hierarchical question-image co-
attention for visual question answering. In Proceed-
ings of NIPS, pages 289–297.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. Proceedings of
EMNLP.

Ioannis Papaioannou, Amanda Cercas Curry, Jose L
Part, Igor Shalyminov, Xinnuo Xu, Yanchao Yu, On-
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Abstract

Comments on a stock market often include
the reason or cause of changes in stock
prices, such as “Nikkei turns lower as yen’s
rise hits exporters.” Generating such infor-
mative sentences requires capturing the re-
lationship between different resources, in-
cluding a target stock price. In this paper,
we propose a model for automatically gen-
erating such informative market comments
that refer to external resources. We evalu-
ated our model through an automatic met-
ric in terms of BLEU and human evalua-
tion done by an expert in finance. The re-
sults show that our model outperforms the
existing model both in BLEU scores and
human judgment.

1 Introduction

Nikkei Stock Average opens at a high
price after Dow Jones Industrial Aver-
age closes at a high price.

This is an example of a comment onmarkets that
describes the stock prices shown in Figure 1. The
closing price of the Dow Jones Industrial Average
at 5 am JST is represented as the right-most point
in the figure on the top, while the opening price of
the Nikkei StockAverage is represented as the left-
most point in the figure at the bottom. While the
comment describes the behavior of Nikkei Stock
Average (henceforth, Nikkei 225), the main indi-
cator of the Japanese stock market, it also refers to
an external indicator, the Dow Jones IndustrialAv-
erage, which represents the US stock market. Such

*Views expressed in this paper are those of the authors
and do not necessarily reflect the official views of the Bank of
Japan.
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Figure 1: Relationship between Dow Jones Indus-
trial Average and Nikkei 225 (Nikkei Stock Aver-
age).

mentions of external resources as a cause of the be-
havior of a target index are very common in market
comments. Comments on the Japanese stock mar-
ket can also refer to, for example, other stock mar-
ket indices, foreign exchange rates, and oil prices,
and comments that also describe causes will facil-
itate readers in understanding financial situations.

In this paper, we address the task of generat-
ing market comments that refer to external re-
sources. Specifically, we extend the encoder in the
encoder-decoder model proposed by Murakami
et al. (2017) so that the model can take into ac-
count external resources related to the financial do-
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main. We encode each of the external resources in
addition to the target index, i.e., Nikkei 225, and
feed them to the decoder. The experimental results
show that our proposed model outperforms the ex-
isting single-source model in terms of the fluency
and informativeness of human evaluation, in addi-
tion to the BLEU score.

2 RelatedWork

There has been a lot of work on generating text
from numerical time series or structured data in-
cluding weather data (Belz, 2008), healthcare data
(Portet et al., 2009), sports data (Liang et al., 2009),
and market data (Kukich, 1983). Approaches to
such tasks are traditionally dependent on hand-
crafted rules (Goldberg et al., 1994; Dale et al.,
2003) or are template-based.

Neural encoder-decoders (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015)
have also been successfully applied to various
data-to-text generation tasks. While many gener-
ate text from table data, such as reviews from prod-
uct attributes (Dong et al., 2017) and biographies
from the infoboxes of Wikipedia (Lebret et al.,
2016), there is an attempt to generate text from
numerical data (Murakami et al., 2017), in which
market comments are generated from a time-series
of stock prices. However, the model of Mu-
rakami et al. (2017), which is based on an encoder-
decoder, takes only a target time series and ignores
the fact that there are many mentions of external
resources.

3 Generating Market Comments

We describe our model for generating comments.
We extend the encoder part of the model proposed
by Murakami et al. (2017), which had a limitation
in generating informative market comments due to
the lack of a capability to consider multiple data
sources as input. We first explain the encoder used
in the existingmodel and then show howwe extend
it.

3.1 Base Model (base)

The existing model by Murakami et al. (2017)
takes only a single source of data, a sequence of
prices of Nikkei 225, as input. Specifically, the
prices are recorded every five minutes in the data.
The model first converts the input data into two
vectors: a short-term vector xshort and a long-term
vector xlong. The vector xshort is N -dimensional
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Figure 2: Neural-network architecture of our
model. The symbol T denotes embedding of pub-
lishing time (see Murakami et al. (2017) for de-
tails).

and consists of the N previous stock prices, while
xlong is M -dimensional and consists of the clos-
ing prices of the M preceding trading days. Thus,
xshort contains short-term changes in the stock
price, while xlong contains long-term changes.

In the encoding step, the vectors are passed to
multilayer perceptrons (MLPs) with three layers
and concatenated as

vsingle D
�
MLPshort .xshort/ ; MLPlong

�
xlong

� �
;

(1)

where the semicolon represents the concatenation.
The vector vsingle is then transformed to a vector s0

by an affine transformation s0 D Wsvsingle C bs ,
where Ws is a weight matrix and bs is a bias term.

In the decoding step, the hidden state of the de-
coder is initialized by s0, and LSTMcells (Hochre-
iter and Schmidhuber, 1997) are used following the
model by Murakami et al. (2017). Please refer to
the original paper for more details on the decoder.

They also replaced numerical values in the train-
ing data with placeholders representing arithmetic
operations, e.g., rounding down the difference be-
tween the latest price and the closing price of the
previous day.

3.2 Multiple Source-Aware Model (multi)

The architecture of our model is shown in Figure 2.
We extend the encoder part of the base model so
that themodel can takeL different sources as input,
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including the Dow Jones Industrial Average, and
US dollar/Japanese yen exchange rates in addition
to Nikkei 225. We convert each input source to a
continuous representation vi .1 � i � L/ as

vi
D

h
MLP i

short

�
xi
short

�
; MLP i

long

�
xi
long

� i
:

(2)

Note that the model has 2L MLPs; L MLPs are
for short-term data and the others are for long-term
data. Each xi

short is an N -dimensional short-term
vector for the i -th data source generated with the
same approach as Murakami et al. (2017). Each
xi
long is anM -dimensional long-term vector for the

i -th data source.
The representations v1; � � � ; vL are then con-

catenated to a representation vmulti as:

vmulti D
�
v1 ; � � � ; vL�

: (3)

It is then passed to an affine transform function as
is done in the base model s0 D Wmvmulti C bm,
and s0 is used for the initial state of the decoder.

Our model is clearly a straight extension of the
model by Murakami et al. (2017). All the multiple
input resources are treated equally with this archi-
tecture. The target resource to be described will
be determined by the training data. For example,
if the comments in the training data describe the
behavior of Nikkei 225, the other resources are re-
garded as causes influencing Nikkei 225.

4 Experiments

4.1 Data

Training the model requires pairs consisting of a
time series and a market comment aligned with
it. As market comments, we used 20,093 head-
lines of Nikkei Quick News (NQN) that describe
the behavior of Nikkei 225. They are provided by
Nikkei, Inc. and written in Japanese. We divided
them into three parts on the basis of the period of
publication: 16,276 for training (Dec. 2010–Oct.
2015), 1,866 for validation (Oct. 2015–April 2016)
and 1,951 for testing (April 2016–Oct. 2016). In
addition, we retrieved the five-minute charts of 10
indices fromThomson Reuters DataScope Select1.
They consist of seven stock market indices (Nikkei
225, TOPIX Price Index, S&P 500 Index, FTSE
100 Index, Hang Seng Index, Shanghai SE Com-
posite Index, and Dow Jones Industrial Index),

1https://hosted.datascope.reuters.com/
DataScope/

a forward transaction index (Nikkei 225 Future),
and two currency exchange rates, USD/JPY and
EUR/JPY.

4.2 Preprocessing and Parameters

As a preprocessing procedure, we created short-
and long-term sequences of each index from the
five-minute charts in the same way as Murakami
et al. (2017). The sizeN of a short-term vector was
set to 62, and the size M of a long-term one was
set to 7. We used Adam (Kingma and Ba, 2015)
for optimization with a learning rate of 0.0001 and
a mini-batch size of 100. The dimensions of the
three hidden layers in MLPs were all set to 32.

4.3 Evaluation Settings

We compared our model with the model by Mu-
rakami et al. (2017). The latter was not provided
with external resources as input, but could still re-
fer to them groundlessly simply because mentions
of external resources are found in the training data.

We conducted both an automatic evaluation in
terms of BLEU scores and a manual evaluation
done by a financial expert. The outputs from the
proposed model were compared with reference
market comments extracted from NQN and com-
ments generated by the base model. In the au-
tomatic evaluation by BLEU score, we used the
market comments collected from NQN as refer-
ences. We calculated the BLEU scores for both
the base model and our model. In the human eval-
uation, a human judge (an expert in finance) man-
ually judged the outputs in terms of two criteria:
fluency and informativeness. Specifically, we pre-
sented three market comments generated by a hu-
man (human), the base model (base), and our
model (multi). For fluency, the human judgeman-
ually selected a label from two labels (fluent
and not_fluent) for each comment. For in-
formativeness, the judge was asked to evaluate
whether a comment included a correct mention of
an external resource. The human judge was asked
to select one out of four labels: no, correct,
wrong, and subtle. The label no means that
a comment did not contain a mention of an exter-
nal resource. The label correct means that the
comment contained correct mentions of external
resources, whereas the labelwrongmeans that the
comment contained a wrong mention of external
resources. The label subtle corresponded to the
other cases. For example, when a comment con-
tained a mention of an external resource that was
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Method BLEU (%)

base 21.88 ˙ 0.31
multi 23.66 ˙ 0.35

Table 1: Result of evaluation in terms of BLEU.
Scores were macro-averaged over 5 runs. Each
value after ˙ is standard deviation.

fluent not_fluent

human 98 2
base 95 5
multi 96 4

(a) Fluency.

Mentions of Ext. Resources
no yes (cr / wr / sb )

human 54 46 ( 5 / 0 / 41 )
base 51 49 ( 13 / 9 / 27 )
multi 46 54 ( 11 / 2 / 41 )

(b) Informativeness.

Table 2: Result of human evaluation. In (a), values
are number of times that comments were judged
fluent or not_fluent. In (b), no indicates
number of comments that do not contain any men-
tion of external resources. yes indicates num-
ber of comments that contain mention of external
resources. yes is divided into correct (cr),
wrong (wr), and subtle (sb), which respec-
tively mean numbers of comments with correct,
wrong, and subtle mentions.

not any of the L inputs, subtle was assigned.
When evaluating the informativeness, the human
judge does not simply measure the similarity be-
tween the generated comments and the reference
comments; he referred to the input data to check
the correctness of the generated comments.

5 Results

Table 1 shows the BLEU scores for each model.
The scores were calculated by averaging the scores
of five trials. By incorporating multiple resources
as input, our model outperformed the base model
with an improvement of 1.78 points in BLEU. This
suggests that integrating multiple resources into
the encoder helps to improve the ability to generate
comments similar to human generated ones.

Table 2 shows the results of the human evalu-
ation for each model. In terms of fluency, most
of the comments generated by all of the meth-
ods were judged fluent. base and multi were
slightly worse than human in fluency because they
failed to output the correct placeholders represent-
ing arithmetic operations.

In terms of informativeness, our model referred
to external resourcesmore often than base. Specif-
ically, our model outputs 54 comments with men-
tions of external resources, while 46 were with-
out the mentions. The method base outputs only
49 comments with such a mention. In addition,
the proportion of wrong was notably reduced by
our model. The results suggest that our proposed
model improved the ability to generate more in-
formative sentences including correct mentions of
external resources.

We show examples of the generated comments
in Table 3. The method base erroneously men-
tioned external information, “US stock rise,” due to
the lack of input information. Our method, multi,
tended to avoid generating clearly erroneous men-
tions such as “US stock rise.” We also found that
human often referred to important events as in the
output example “easing Brexit concerns.” Gener-
ating such comments requires yet other external re-
sources such as news streams, which we leave for
future work.

6 Conclusion

We proposed an encoder-decoder model for gen-
erating market comments that refer to external re-
sources. Our automatic and manual evaluation
showed that integrating multiple resources into the
encoder improves the ability to include such infor-
mation in the outputs and to generate more infor-
mative comments.

Our code is available at https://github.
com/aistairc/market-reporter.

Acknowledgements

This paper is based on results obtained from a
project commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO). This work is partially supported by JST
PRESTO (Grant Number JPMJPR1655).

138



Method Output

human
Toushou yoritsuki zokushin, agehaba 300 en koeru, ei EU ridatsu kenen-ga koutai
TSE opening continual_rise, gain 300 yen jump_over, UK EU leaving concern-nom retreat
“Tokyo stocks open 300 yen higher with a continual rise, due to easing Brexit concerns.”

base
Toushou yoritsuki zokushin, agehaba 300 en chou, bei-kabu-daka ya en-yasu-o koukan
TSE opening continual_rise, gain 300 yen over US-stock-high and yen-cheap-acc good_feeling
“Tokyo stocks open 300 yen higher with a continual rise, helped by a cheaper yen and US stocks rise.”

multi
Toushou yoritsuki zokushin, agehaba 300 en chou, en-yasu-de yushutsu-kabu-ni kai
TSE opening continual_rise, gain 300 yen over yen-cheap-ins exporting-stock-dat purchase
“Tokyo stocks open … a continual rise, thanks to demand for export-related shares boosted by a cheaper yen.”

Table 3: Examples of generated comments. Each example is accompanied by original Japanese com-
ment transliterated into English alphabet, its word-for-word translation, and the corresponding English
sentence. TSE stands for Tokyo Stock Exchange. Abbreviations used in word-for-word translation are as
follows. nom: nominative, acc: accusative, ins: instrumental, and dat: dative.
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Abstract

We present SpatialVOC2K, the first multi-
lingual image dataset with spatial relation
annotations and object features for image-
to-text generation, built using 2,026 im-
ages from the PASCAL VOC2008 dataset.
The dataset incorporates (i) the labelled
object bounding boxes from VOC2008,
(ii) geometrical, language and depth fea-
tures for each object, and (iii) for each pair
of objects in both orders, (a) the single
best preposition and (b) the set of possible
prepositions in the given language that de-
scribe the spatial relationship between the
two objects. Compared to previous ver-
sions of the dataset, we have roughly dou-
bled the size for French, and completely
reannotated as well as increased the size
of the English portion, providing single
best prepositions for English for the first
time. Furthermore, we have added explicit
3D depth features for objects. We are re-
leasing our dataset for free reuse, along
with evaluation tools to enable compara-
tive evaluation.

1 Introduction

Research in image labelling, description and un-
derstanding has a long tradition, but has recently
seen explosive growth. Work in this area is most
commonly motivated in terms of accessibility and
data management, and has a range of different spe-
cific application tasks. One current research fo-

cus is detection of relations between objects, in
particular for image description generation, and
the research presented here contributes to this
line of work with a new dataset, SpatialVOC2K,1

in which object pairs in images have been an-
notated with spatial relations encoded as sets of
prepositions, specifically for image-to-text gener-
ation. We start below with the source datasets
from which we obtained the images, bounding
boxes, and candidate prepositions (Section 2), fol-
lowed by an overview of directory structure and
file schemas (Section 3), and a summary of the an-
notation process (Section 4) and spatially relevant
features (Section 5). We describe the two evalu-
ation tools supplied with the dataset (Section 6),
and finish with a survey of other datasets with ob-
ject relation annotations (Section 7).

2 Source Data

Our main data source for SpatialVOC2K was the
PASCAL VOC2008 image dataset (Everingham
et al., 2010) in which every object belonging to
one of 20 object classes is annotated with class la-
bel, bounding box (BB), viewpoint, truncation, oc-
clusion, and identification difficulty (Everingham
et al., 2010). Of these annotations we retain just
the BB geometries and the class labels (aeroplane,
bird, bicycle, boat, bottle, bus, car, cat, chair, cow,
dining table, dog, horse, motorbike, person, potted
plant, sheep, sofa, train, tv/monitor).

We also used Rashtchian et al.’s VOC’08 1K
corpus (2010), which has 5 descriptions per im-

1https://github.com/muskata/SpatialVOC2K
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age obtained via Mechanical Turk for 50 images
from each VOC2008 class, in order to determine
an initial set of candidate prepositions for our an-
notations (for details see Section 4). Due to quality
control measures, the VOC’08 1K descriptions are
of relatively high quality with few errors.

For SpatialVOC2K, we selected all images from
the VOC2008 data that had two or three object
bounding boxes (BBs), meaning that images con-
tained exactly two and three objects from the
VOC2008 object classes, respectively. We also
selected all images with four and five BBs where
three were of normal size and the remainder very
small (bearing the VOC2008 label ‘difficult’).
This selection process resulted in a set of 2,026
images with 9,804 unique object pairs. Numbers
of BBs in images were distributed as follows:

Number of BBs 2 3 3+1 3+2
Number of images 1,020 534 357 141

For each image, we then (i) collected additional
annotations (Section 4) which list, for each or-
dered object pair, (a) the single best, and (b) all
possible prepositions that correctly describe the
spatial relationship between the objects; and (ii)
computed a range of spatially relevant features
from the image and BB geometries, BB labels, and
image depth maps (Section 1). All annotations and
features are included in this dataset release.

3 SpatialVOC2K Structure and Schemas

The overall structure and file conventions of
the SpatialVOC2K dataset mirror those of the
VOC2008 dataset where possible:

SpatialVOC2K

Annotations
Best

2008 000002.xml

2008 000003.xml
...

All
2008 000002.xml

2008 000003.xml
...

Evaluation Tools
systemAccuracy.py

relationPrecision.py

Spatial Features

2008 000002.xml

2008 000003.xml
...

All files in the Annotations directory start with a

line that is simply the original annotations from
VOC2008. In the Best subdirectory, the remain-
ing lines have the pattern Object1 Object2
Preposition, where Object1 and Object2
are the exact word strings, including any sub-
scripts, of the object labels in the first line in the
file, and Preposition is the single best prepo-
sition chosen by annotators for the two given ob-
jects presented in the given order (more about
object order in Section 4 below). Each pair of
annotated objects is thus associated with exactly
two prepositions in the Best files, the best human-
selected preposition for each order. The following
is a simple example of a Best file:
1 VOC2012 2008 000008.jpg The VOC2008

Database PASCAL VOC2008 flickr 500
442 3 0 horse Left 0 1 53 87 471 420
0 person Unspecified 1 0 158 44 289
167 0

2 horse person under
3 person horse on

In the All directory, files have the same structure
except that in the preposition lines, instead of a
single preposition, there are as many prepositions
as were selected by the human annotators as pos-
sible for a given ordered object pair.

The Spatial Features files also have the same
basic structure, except that instead of prepositions,
there are 19 feature-value pairs (explained in Sec-
tion 5) for each ordered object pair (some feature
values differ depending on object order), e.g.:
1 VOC2012 2008 000008.jpg The VOC2008

Database PASCAL VOC2008 flickr 500
442 3 0 horse Left 0 1 53 87 471 420
0 person Unspecified 1 0 158 44 289
167 0

2 horse person F0 12 F1 14 F2 0.65 F3
0.42 F4 1.54 ...

3 person horse F0 14 F1 12 F2 0.42 F3
0.65 F4 0.65 ...

In the following three sections, we explain how
we obtained the preposition annotations and spa-
tial features, and how the metrics encoded by the
evaluation tools are defined.

4 Preposition Annotations

We derived a set of candidate prepositions from
the VOC2008 1K dataset (Section 2) by pars-
ing the 5,000 descriptions in it with the Stanford
Parser version 3.5.22 with the PCFG model, ex-
tracting the nmod:prep prepositional modifier re-
lations, and manually removing the non-spatial

2http://nlp.stanford.edu/software/lex-
parser.shtml#Download
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ones. This gave us 38 English prepositions:
V0

E = { about, above, across, against, along,
alongside, around, at, atop, behind, below, be-
neath, beside, beyond, by, close to, far from, in,
in front of, inside, inside of, near, next to, on,
on top of, opposite, outside, outside of, over,
past, through, toward, towards, under, under-
neath, up, upon, within }

To obtain prepositions for French, we first asked
two French native speakers to compile a list of
possible translations of the English prepositions,
and to check these against 200 sample images ran-
domly selected from the complete set to be an-
notated. This produced 21 prepositions which
were reduced to 19, based on evidence from pre-
vious work (Muscat and Belz, 2015), by eliminat-
ing prepositions that were used fewer than three
times by annotators (en haut de, parmi). After
the first batch of 1,020 images had been anno-
tated, we furthermore merged prepositions which
co-occur with another preposition more than 60%3

of the times they occur in total (á l’interieur de, en
dessous de), in accordance with the general sense
of synonymity defined in previous work (Mus-
cat and Belz, 2017). We found this kind of co-
occurrence to be highly imbalanced, e.g. the like-
lihood of seeing á l’interieur de given dans is
0.43, whereas the likelihood of seeing dans given
á l’interieur de is 0.91. We take this as justifica-
tion for merging á l’interieur de into dans, rather
than the other way around, and proceed in this way
for all prepositions. The process leaves a final set
of 17 French prepositions:
VF = {à côté de, á l’éxterieur de, au dessus de,
au niveau de, autour de, contre, dans, derrière,
devant, en face de, en travers de, le long de, loin
de, par delà, près de, sous, sur}

We also reduced the set of 38 English prepositions,
using the same elimination process, starting with
prepositions that occurred fewer than three times
(toward, towards, about, across, along, outside,
outside of, through, up). A further 12 prepositions
were merged into others (within, inside, inside of,
beside, alongside, by, against, upon, atop, on top
of, beneath, under), yielding a final set of 17 En-
glish prepositions:
VE = { above, around, at, behind, below, be-
yond, close to, far from, in, in front of, near, next
to, on, opposite, over, past, underneath }

3This is a very high threshold and far above co-occurrence
percentages for any other preposition pairs.

As discussed in more detail in previous work
(Muscat and Belz, 2017), we make the domain-
specific assumption that there is a one-to-one map-
ping from each preposition to the SR it denotes
(whereas an SR can map to multiple prepositions).
While our machine learning task is SR detec-
tion, we ask annotators to annotate our data with
the corresponding prepositions (a more human-
friendly task).

We used the above preposition sets in collecting
annotations as follows. For each object pair Oi

and Oj in each image, and for both orderings of
the object labels, Li, Lj and Lj , Li, the task for an-
notators was to select (i) the single best preposition
for the given pair (free text entry), and (ii) the pos-
sible prepositions for the given pair (selected from
a given list) that accurately described the relation-
ship between the two objects in the pair, given the
template L1 is L2 (is becomes et for French).

Even though in annotation task 1, annotators
were not limited in their choice of preposition,
they did not use any that were not in the list of
prepositions offered in annotation task 2 (a few
typos we corrected manually). As it would have
been virtually impossible to remember the exact
list of prepositions and only use those, we inter-
pret this as meaning that annotators did not feel
other prepositions were needed.

We used average pairwise kappa to assess inter-
annotator and intra-annotator agreement as de-
scribed in previous work (Muscat and Belz, 2017).
First, figures for the first batch of French annota-
tions (1,020 images with 2 or 3 objects in BBs4).
For single best prepositions (annotation task 1),
average inter-annotator agreement was 0.67, and
average intra-annotator agreement was 0.81. For
all possible prepositions (annotation task 2), aver-
age inter-annotator agreement was 0.63, and aver-
age intra-annotator agreement was 0.77.

For the second batch of French annotations
(1,006 images with 3, 4 or 5 BBs), average inter-
annotator agreement for single best prepositions
(annotation task 1) was 0.33, and average intra-
annotator agreement was 0.66. For all possible
prepositions (annotation task 2), average inter-
annotator agreement was 0.3, and average intra-
annotator agreement was 0.62. A possible reason
for the lower annotator agreement on batch 2 is
that as the number of dominant objects in an im-

4Annotators were only ever shown images with 2 BBs in
them.
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F0: Object label Ls — definition depends on learning method NB, DT, RF: {0, 1, ..., 19}; oth-
ers: 1-hot encoding (20 bits)

F1: Object label Lo — definition depends on learning method
F2: Area of bounding box of Objs normalized by image size. [0, 1]
F3: Area of bounding box of Objo normalized by image size. [0, 1]
F4: Ratio of Objs bounding box area to that of Objo. [0, size of Objs]
F5: Distance between bounding box centroids, normalized by image diagonal. [0, 1]
F6: Area of overlap of bounding boxes normalized by the area of the smaller bound-

ing box.
[0, 1]

F7: Distance between centroids divided by sum of square root of areas/2 (approxi-
mated average width of bounding boxes).

[0, ∼20]

F8: Position of Objs relative to Objo expressed as one of 4 categories, depending
on the angle with the vertical axis.

NB, DT, RF: {0, 1, 2, 3}; oth-
ers: 1-hot encoding (4 bits)

F9–
F12:

Let distance from image edge of left and right edges be a1, b1 for first box and
a2, b2 for second box: F9 = (a2−a1)/(b1−a1), F10 = (b2−a1)/(b1−a1).
Similarly for the top and bottom edges, giving F11 and F12.

[∼-40, ∼+40]

F13: Aspect ratio of box of Objs. [0, ∼10]
F14: Aspect ratio of box of Objo.
F15: GloVe word vector for Ls. here: ∼ [−2,+3]
F16: GloVe word vector for Lo.
F17: Average depth in BB of Objs.
F18: Average depth in BB of Objo.

Table 1: Spatially relevant features as included in SpatialVOC2K. Note that the 19 numbered features
above correspond to feature vectors of length between 116 and 140, depending on conversion method
for ML inputs.

age increases, the annotation task becomes more
difficult; we also used different annotators for the
second batch which may be a contributing factor.5

5 Spatially Relevant Features

Table 1 provides an overview of the 19 features in-
cluded in SpatialVOC2K: F0, F1, F15 and F16 are
language features. F0 is the class label of the first
object, F1 of the second (e.g. person). F15 and
F16 are GloVe word vectors of length 50 (Pen-
nington et al., 2014) for the object labels.6 F2–
F14 are visual features measuring various aspects
of the geometries of the image and two bounding
boxes (BBs). Most features express a property of
just one of the objects, but F4–F9 express a prop-
erty of both objects jointly, e.g. F6 is the normal-
ized BB overlap.

F17 and F18 are the average pixel-level depth
value within the BB of Objs and Objo, respec-
tively. Pixel-level depth values were computed
via the method described in (Birmingham et al.,
2018), which uses depth maps computed with
monoDepth7 (Godard et al., 2017) .

5Inter-AA/intra-AA for English and additional dataset
statistics will be added to the project home on Github.

6GloVe is a count-based method for creating distributed
word representations.

7https://github.com/mrharicot/monodepth

6 Evaluation Tools

SpatialVOC2K includes two evaluation tools
which we have used in all previous work involving
similar data. The two tools, systemAccuracy
and relationPrecision implement the fol-
lowing two methods, respectively.

System-level Accuracy: There are four dif-
ferent variants of system-level Accuracy, denoted
Acc(n), n ∈ {1, 2, 3, 4}. Each variant returns Ac-
curacy rates for the top n outputs returned by sys-
tems, in the sense that a system output is consid-
ered correct if at least one of the reference prepo-
sitions (the human-selected prepositions from the
dataset annotations) can be found in the top n
prepositions returned by the system (for n = 1
this yields standard Accuracy).

Weighted Average Per-preposition Precision:
This measure, denoted AccP , computes the
weighted mean of individual per-preposition pre-
cision scores. The individual per-preposition pre-
cision for a given system and a given preposition
p is the proportion of times that p is among the
corresponding human-selected prepositions out of
all the times that p is returned as the top-ranked
preposition by the system.

7 Related Datasets

A number of datasets are available that incorporate
annotations representing relations between objects
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Name Authors Task Categories of relations Annotated
relations

Images

Visual Phrases Sadeghi et al.
2011

Phrase Classifica-
tion

action, verbal, spatial 1,796 2,769

Visual and Linguistic
Treebank

Elliott and
Keller, 2013

Image Description action, verbal, spatial 5748 341 / 2424

Scene Graphs Johnson et al.
2015

Image Retrieval action, verbal, spatial,
preposition

112,707 5K

ViSen Ramisa et al.
2015

Preposition Predic-
tion

spatial, preposition 78,317 33,262

VRD Lu et al.
2016

Relation, Phrase
Prediction

action, verbal, spatial,
preposition, comparative

37,993 5K

Visual Genome Krishna et al.
2016

Image Understand-
ing

action, verbal, spatial,
preposition, comparative

1.5M 108K

Table 2: Overview of related datasets. For explanation of relation categories see in text.

in images. Types of relationships that have been
annotated include actions (e.g. person kicks ball),
other verbal relations (person wears shirt), spa-
tial relations (person on horse), and comparative
relations (one car bigger than another). In this
section, we provide a brief overview of available
datasets with relation annotations, in terms of their
stated purpose (application task), the types of re-
lations included, the range of spatial prepositions
included, as well as size and other properties of the
dataset. Table 2 has a summary of the datasets.

Visual Phrases (Sadeghi and Farhadi, 2011)
was the first image dataset with object relation an-
notations, and used the concept of a visual phrase
(VP) which is defined as a bounding box that sur-
rounds two objects in an image. Out of 17 differ-
ent types of VPs annotated in the data set, 13 com-
prise 2 objects, and 4 comprise one object. How-
ever, there are 120 predicates per object category.

Visual and Linguistic Treebank (Elliott and
Keller, 2013) contains 341 images that are anno-
tated with regions (362 in total) and visual depen-
dency representations, which unfold to a total of
5,748 spatial relations (from a set of 8) and are
aligned to the dependency parse of the image de-
scription. This setup allows for the prediction of
actions as well as spatial relations (using a set of 8
manual created rules).

Scene Graphs (Johnson et al., 2015) is a dataset
of 5,000 human-generated scene graphs grounded
to images; scene graphs describe objects and their
relationships.

ViSen (Ramisa et al., 2015) associates sets of
(object 1, preposition, object 2) triples with im-
ages, where the triples have been extracted from
parses of the image descriptions in MSCOCO (Lin

et al., 2014) and Flickr30k (Young et al., 2014).
Prepositions covered include all those extracted
from the image descriptions including non-spatial
ones. By far not all descriptions contain preposi-
tions so not all images have spatial relation annota-
tions; the task addressed is preposition prediction,
not spatial relation prediction.

Visual Relationships Dataset (VRD) (Lu et al.,
2016) contains 5,000 images, 100 object cate-
gories, 6,672 unique relationships, and 24.25 re-
lations per object category. Scant information is
available about how the dataset was created other
than that relations broadly fit into the categories
action, verbal, spatial, preposition and compara-
tive.

Visual Genome (Krishna et al., 2017) contains
108K images, split into 4M regions, correspond-
ing to 108K scene graphs and about 4K region
graphs, 1.5M object-object relations, 40K unique
relations, and an average of 17 relations per image
and 0.63 relations per region.

8 Future Work

We plan to expand the SpatialVOC2K dataset to
other languages, and to more object pairs per lan-
guage, in the future. Given the ever growing need
for image description and labelling, and in combi-
nation with the image segmentation and descrip-
tion annotations that exist for the same VOC im-
ages, SpatialVOC2K can potentially be used in a
range of different application tasks, including but
not limited to image description generation.
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Abstract

Detection of spatial relations between ob-
jects in images is currently a popular sub-
ject in image description research. A range
of different language and geometric ob-
ject features have been used in this con-
text, but methods have not so far used ex-
plicit information about the third dimen-
sion (depth), except when manually added
to annotations. The lack of such informa-
tion hampers detection of spatial relations
that are inherently 3D. In this paper, we
use a fully automatic method for creating a
depth map of an image and derive several
different object-level depth features from
it which we add to an existing feature set
to test the effect on spatial relation detec-
tion. We show that performance increases
are obtained from adding depth features in
all scenarios tested.

1 Introduction

Image description aims to produce a summarising
description, in structured natural language, of an
image (region), typically involving the prioritisa-
tion of more important elements and relationships
between elements. Work in this area is most com-
monly motivated in terms of accessibility and data
management, and has a range of distinct appli-
cation tasks. Research in image description and
understanding is booming, with relation detection
currently a particular focus. The input to spatial
relation detection is usually a set of secondary, ab-
stract features derived from region boundaries and
labels. A range of different language and geomet-
ric features have been used in existing work, but
none that explicitly encode information about the
third dimension (depth), except via manual anno-
tations (Elliott, 2014). This is an issue for spatial
relation detection, because many spatial relations

involve three dimensions, some obviously so (e.g.
in front of, behind), some less so (beyond, out-
side, across, etc.). Existing methods in effect try
to guess 3D relations from 2D information.

In the experiments in this paper, we use a fully
automatic method to generate a depth map from an
image, derive different object-level abstract fea-
tures from the depth values associated with pix-
els within object bounding boxes, and test the ef-
fect of adding such features on the performance
of spatial relation detection methods. Below, we
start by reviewing related research (Section 2) and
describing the existing dataset and associated fea-
tures we use in our experiments (Section 3). We
next describe the depth map generation method we
used, and the features we derive from depth maps
(Section 4). We then describe the classifier meth-
ods we use in experiments (Section 5), and report
results from experiments involving different clas-
sifier methods and combinations of depth features
(Section 6). We conclude with some discussion
and a look to the future (Section 7).

2 Related Research

Research on associating text with images goes
back at least to the 1960s with early work focusing
on object/region labelling (Rosenfeld, 1978). Im-
age description proper starts where a summarising
description of the whole image is aimed for. Some
approaches measure the similarity of a new im-
age with other images for which descriptions ex-
ist, and then use one or more of those descriptions
to create a description for the new image (Socher
et al., 2014; Karpathy and Fei-Fei, 2015; Ordonez
et al., 2011). Our focus here is on methods that
create a new description for a given image from
scratch. Such methods can be said to involve three
main steps: (1) identification of type and, option-
ally, location of objects and background/scene; (2)
detection of attributes, relations and activities in-
volving objects from Step 1; and (3) generation of
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a word string from the outputs from Steps 1 and
2. In Step 2, the focus of this paper, systems deter-
mine object attributes (Yatskar et al., 2014; Kulka-
rni et al., 2011), spatial relationships (Yang et al.,
2011; Elliott and Keller, 2013), activities (Yatskar
et al., 2014; Elliott and Keller, 2013), etc.

Identifying the spatial relationships between
pairs of objects in images is an important part of
Step 2, but overlaps into Step 3 if prepositions
are selected directly. Methods that produce spatial
prepositions sometimes do so as a side-effect of
the overall method (Mitchell et al., 2012; Kulka-
rni et al., 2013); examples of preposition selec-
tion as a separate subtask include Elliott and Keller
(2013) who base the mapping from features to
spatial relations on manually composed rules, and
Ramisa et al. (2015) and our own previous work
(Muscat and Belz, 2017) where the mapping is
learnt automatically. Elliott (2014) manually adds
3rd dimension annotations to images (e.g. whether
objects are behind other objects).

There is a sizable literature on spatial rela-
tions and spatial language from cognitive and psy-
cholinguistic perspectives, and the remainder of
this section briefly surveys a selection of relevant
results. Indications are that whether speakers use
spatial relations in scene descriptions and referring
expressions depends at least in part on individual
preference and the context. E.g. when generat-
ing referring expressions, some people prefer not
to use spatial relations at all (Viethen and Dale,
2008). Furthermore, speakers tend to make more
use of spatial relations in domains unknown to
them, whereas they use them comparatively less
when the domain is known (Viethen and Dale,
2008). Kelleher and Kruiff (2005) categorise spa-
tial relations as combinations of topological vs.
projective, and contrastive vs. relative, the latter
being dependent on context. Both studies (Viethen
and Dale, 2008; Kelleher and Kruijff, 2005) agree
that people are generally less likely to use projec-
tive spatial relations like in front of than topolog-
ical relations like on top of. The former depend
on a landmark whereas the latter depend on inter-
section, overlap and contiguity, which require less
cognitive effort to process. For similar reasons,
contrastive relations are used more than relative
relations (Kelleher and Kruijff, 2005).

The comprehension and choice of spatial prepo-
sitions depend on function as well as context
(Coventry et al., 2005), e.g. the choice of preposi-

tion in person at a table, depends on the functional
relationship between the trajector object, person,
and the landmark object, table. Dobnik and Kelle-
her (2014) derive functional semantic knowledge
from corpora and use it to explore the dependency
of spatial prepositions on functional knowledge.

Regier and Carlson (2001) show that projective
spatial terms such as above are grounded in at-
tention processes and vector-sum coding of over-
all direction, formalising these notions in their at-
tentional vector-sum (AVS) model. The model
is shown to predict linguistic acceptability judg-
ments for spatial terms, for a variety of spatial
configurations. Results indicate that spatial prepo-
sitions require more attention on the image com-
pared to detecting an object, and geometric fea-
tures based on the net vector sum over an area
rather than the centre of mass are better predictors.

Kelleher et al. (2011) show that object occlu-
sion degrades the performance of models that are
based solely on geometric and functional fea-
tures e.g. in the case of in front of, a projective
preposition. Kelleher et al.’s occlusion-enabled
regression-based model is shown to outperform
Regier and Carlson’s AVS model.

3 Data and Features

In the research reported here, we use a subset of
the French part of the SpatialVOC2K dataset (Belz
et al., 2018), referred to as ‘DS-F-Best’ below, for
consistency with previous publications. Objects
in this dataset are annotated with bounding boxes,
object labels and spatial relations encoded as sets
of prepositions. To create the spatial relation an-
notations, annotators were asked to (a) choose the
single best preposition (free text entry), as well as
(b) select all possible prepositions from a list of
candidate spatial prepositions, such that the prepo-
sition(s) accurately describe(s) the spatial relation-
ship between the given pair of objects.

In the experiments below, we are interested in
studying the effect depth features have on recalling
individual prepositions (especially the ones that
have previously proven difficult to predict) in ad-
dition to the overall system-level recall. We there-
fore use the single best preposition for each object
pair only, when training the single label classifiers.

In research involving this and similar datasets,
sets of language and geometric features are nor-
mally computed from bounding boxes and object
labels. Typical language features are label en-
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coders (one hot vectors) and word2vec (Mikolov
et al., 2013) vectors. Examples of geometric fea-
tures are area of object bounding box normalised
by combined area size for both objects, area of
overlap between the two bounding boxes nor-
malised by combined area, and Euclidean distance
between two bounding boxes. Some of the fea-
ture functions are unary and others are binary.
For the initial feature set in this paper, we used
the union of geometric features from two previous
lines of work, our own (Muscat and Belz, 2017)
and Ramisa et al. (2015). This yielded a set of
18 geometric features, and although some of these
are correlated, we left it to the classifier models to
discriminate among the more useful ones. There
are no 3D features in this initial set of features,
although some features are intended as proxy fea-
tures for depth, e.g. bounding box overlap.

4 Computing Depth Features

4.1 MonoDepth Features

We use monoDepth1 (Godard et al., 2017), a
convolutional neural network method trained on
stereo image pairs which maps single images to
depth maps where each pixel has a value as-
signed to it that represents the estimated dis-
tance from the viewer. More specifically we used
the monodepth-cityscapes model, trained on the
Cityscapes dataset (Cordts et al., 2016). Figure 1
shows an image from our dataset alongside the
depth map generated for it by the monodepth-
cityscapes model. The more towards the dark blue
end of the colour spectrum an area is, the further
away it is from the viewer, and the more towards
the bright yellow end, the nearer. The model pro-
duces an impressively accurate rendering of the
depths of the two trees, car, person, and road (not
all depth maps are as good).

Once we have the depth map for a given image,
we obtain depth values for the pixel grids inside
the bounding boxes (BBs) of the pair of objects
under consideration. We then compute the follow-
ing object-level features for each BB:

• Average depth (AVG): simply the average
depth value within each object BB.

• Radially weighted average (RWA) depth:
starting from the central pixel(s), assign a
weight to each pixel that is in inverse pro-

1https://github.com/mrharicot/monodepth

portion to its distance from the centre, then
compute the weighted average.

Looking at the example in Figure 1, AVG is much
lower in the red person BB than in the blue car BB,
making ‘person in front of car’ a possibility. RWA
is also less for the person BB, but the difference is
less pronounced than would be the case if all of the
car was further way than the person, thus making
‘person next to car’ an alternative possibility.

4.2 Human-estimated Depth Feature
We obtained human estimates of BB-level depth
for 1,554 images and 3,642 objects as follows.
Participants were shown an image with objects
surrounded by BBs. Their task was to assign a
number out of 100 to each bounding box, indicat-
ing the average depth of (just) the object inside the
BB, where 100 is the maximum distance. The an-
notators were trained and mentored for some time
before starting annotations proper. Three partici-
pants in total contributed to the annotations. Depth
values were then normalised to range from 0 to 1
for each image.

We computed Pearson’s correlation coefficients
between the human estimated object depths and
the corresponding AVG and RWA figures. Pear-
son’s r between human and AVG depth values
was 0.535 (p < 0.0001), and between human
and RWA it was 0.523 (p < 0.0001). The cor-
relation between AVG and RWA was 0.995(p <
0.0001). We also converted the three sets of depth
estimates to categorical values (foreground, back-
ground, neutral) and computed percentage agree-
ment with human-estimated depth on these, which
was 60.8% for AVG and 60.3% for RWA.

5 Methods

Using combinations of features from Section 3
and 4, we separately trained models of the six
types below.2 Where relevant, hyperparameters
for the models were obtained by splitting the de-
velopment data into separate training and valida-
tion sets, which were then recombined for training
the final models and testing on a held-out test set.
All models output the probability vector for the
prepositions, from which results are calculated.

Naive Bayes (NB) models assume that each
feature is conditionally independent of every other
feature given the output class (preposition in our
case). We use a prior computed from the output

2Using scikit-learn: http://scikit-learn.org
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Figure 1: Example SpatialVOC2K image and depth map generated by monoDepth.

labels, and base the likelihood on the geometric
features.

Decision Tree (DT): Decisions are based on
conjunctions of features. Values for the maxi-
mum tree depth [2, 20] are determined by hyper-
parameter optimisation (HPO).

Logistic Regression (LR): A linear classifier
which models the SR probabilities with a logistic
function. The value for the inverse of regularisa-
tion constant [0.1, 100.0] is determined by HPO.
The regularisation is L1-norm, tolerance is 0.001
and one-versus-rest multi-class classification.

Support Vector Machine (SVM): A binary
classifier solving the multiclass case via (here)
one-versus-one classification. The RBF kernel pa-
rameters, C [0.1, 100.0] and gamma [0.001, 1.0]
are determined by HPO.

Random Forests (RF): A meta-estimator com-
prising multiple decision-tree classifiers fitted to
sub-samples of the data, using averaging to im-
prove predictive accuracy and to control overfit-
ting. The number of estimators [10, 150], max-
imum features [1, 156], maximum tree depth [2,
20], are determined by HPO.

6 Experiments and Results

We carried out experiments for all ML methods
above, and for the following feature combinations:
(i) the 18 geometrical features (‘G’ in results ta-
bles) from Section 3, (ii) the language features de-
rived from the object labels (‘L’ in the tables), (iii)
average depth (‘avg’ in tables), (iv) RWA (‘rwa’ in
tables) and (V) human-estimated depth (‘man’ in
tables). For each of (iii), (iv) and (v) we consid-
ered depth of object 1 (‘d1’ in tables), depth of ob-
ject 2 (‘d2’ in tables), and the difference between
the latter two depths (‘dd’ in tables).

Table 1 shows system-level weighted aver-

Features RF DT LR SVM NB
G 0.45 0.36 0.4 0.38 0.24
+avg:d1,d2 0.45 0.36 0.4 0.39 0.25
+avg:dd 0.45 0.36 0.4 0.37 0.27
+avg:d1,d2,dd 0.46 0.36 0.39 0.37 0.27
+rwa:d1,d2 0.45 0.36 0.4 0.37 0.24
+rwa:dd 0.45 0.35 0.4 0.38 0.27
+rwa:d1,d2,dd 0.46 0.35 0.4 0.37 0.26
+man:d1,d2 0.47 0.36 0.4 0.4 0.24
+man:dd 0.47 0.39 0.41 0.4 0.27
+man:d1,d2,dd 0.49 0.39 0.4 0.4 0.27

L,G 0.48 0.4 0.46 0.43 0.26
+avg:d1,d2 0.5 0.4 0.46 0.46 0.27
+avg:dd 0.49 0.4 0.46 0.46 0.26
+avg:d1,d2,dd 0.5 0.4 0.46 0.45 0.27
+rwa:d1,d2 0.48 0.4 0.46 0.44 0.27
+rwa:dd 0.48 0.4 0.47 0.44 0.26
+rwa:d1,d2,dd 0.47 0.4 0.46 0.45 0.27
+man:d1,d2 0.49 0.4 0.48 0.46 0.27
+man:dd 0.52 0.42 0.47 0.44 0.26
+man:d1,d2,dd 0.51 0.42 0.48 0.44 0.27

Table 1: SpatialVOC2K: Weighted Average Re-
call for all feature combinations (for explanation
of abbreviations, see in text).

age recall results. Depth features improved the
weighted average recall results across the board.
The highest increase is 8.9% when added to geo-
metric features, and 8.3% when added to both lan-
guage and geometric features. AVG and RWA fea-
tures perform equally well, and less well than the
human-estimated depths. Out of the three depth
features, the difference in depth (dd = d1 − d2)
has the most pronounced positive effect on scores
individually; however, the overall highest scores
are obtained when all three (d1, d2 and dd). Out
of the different classifier modesl, the RF model re-
sulted in the highest scores followed by LR, SVM,
DT and NB. However, the NB model registered
the highest increase in scores resulting from depth
features: 12.5% when added to geometric features.
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G, avg:d1,d2 -4 - -20 +8 0 -27 0 +10 +8 0 0 -24 -8 +5 0 -2
G, avg:dd -4 - -20 0 0 -27 0 +24 -5 0 +4 -24 -5 0 0 -2
G, avg:d1,d2,dd -4 - 0 +8 0 0 0 +19 0 0 -6 0 -5 +5 +2 0
G, rwa:d1,d2 -4 - -20 +8 0 0 0 +19 0 -16 -6 -36 -5 +8 0 -2
G, rwa:dd 0 - +20 +8 0 +27 0 -5 -5 0 +4 -16 -8 +2 0 0
G, rwa:d1,d2,dd 0 - -20 -8 0 +27 -25 +24 -5 0 -9 +20 -2 +5 +2 -2
G, man:d1,d2 -4 - 0 0 0 +27 0 +33 0 0 0 0 -2 -2 +4 +7
G, man:dd 0 - 0 +8 0 0 -25 +10 +32 -20 0 +28 0 +2 +4 0
G, man:d1,d2,dd -4 - 0 +15 0 -27 0 +24 +12 0 +4 +4 +2 +8 +9 +9
G, L +4 - 0 -15 +33 +73 +24 +5 +18 +20 -9 0 0 +11 +7 +7

G,L,avg:d1,d2 0 - -20 +18 -25 0 0 +5 0 +7 +10 +20 -2 0 +4 +7
G,L,avg:dd -4 - -20 +18 -25 +15 0 +23 -15 0 0 0 0 0 +2 0
G,L,avg:d1,d2,dd -4 - -20 +27 -25 -27 0 +18 -9 0 +10 +12 0 +4 +4 +2
G,L,rwa:d1,d2 0 - -20 +9 -25 +15 0 +5 +4 +7 +4 -16 -2 -2 0 0
G,L,rwa:dd -4 - -20 +27 -25 -15 0 +14 -4 -10 +10 -16 0 0 0 0
G,L,rwa:d1,d2,dd 0 - -20 0 -25 -15 0 +9 -15 -17 +4 -8 0 -2 -2 0
G,L,man:d1,d2 0 - -20 +18 -25 -15 0 +14 -9 +20 +14 -8 -2 0 +2 +2
G,L,man:dd +4 - -20 +55 0 0 0 +14 +9 0 +14 +12 0 0 +8 +7
G,L,man:d1,d2,dd -4 - -20 +36 0 -27 0 +23 +4 0 +27 0 +2 +2 +6 +9

Table 2: SpatialVOC2K: Percentage increase in recall per preposition for the RF model. Figures in top
half relative to geometric features; lower half relative to both geometric and language features.

This could indicate that the other models are learn-
ing more about depth from the other features.

Table 2 shows per-preposition weighted aver-
age recall results. In this set of results we ex-
amine the effect of adding depth information on
individual prepositions, looking at which combi-
nations of features increase or decrease the re-
call per preposition. The table is split into two
halves. The top half shows changes from adding
depth features to (just) the geometric features (G),
while the bottom half shows changes from adding
depth features to the union of geometric and lan-
guage features (G,L). Some prepositions fare bet-
ter with depth information: au niveau de (“at the
level of”), derriere (“behind”), devant (“in front
of”), sur (“on”). Results for others worsen: à côté
de (“next to”), en face de (“facing”), sous (“un-
der”). For some, the results are inconclusive (con-
tre (“against”), dans (“in”), loin de (“far from”),
près de (“near”)), while others are not affected (au
dessus de (“above”), autour de (“around”)).

The row labelled ‘G,L’ shows the effect of just
adding language features to the geometric set.
Some prepositions (most notably autour de, con-
tre and dans) benefit substantially from language
features while others benefit more from depth fea-
tures. Some (au niveau de, oin de) fare worse

when language features are added. The biggest
improvement when depth information is added to
geometric features is 33% for derriere (“behind”);
the highest when depth is added to both geometri-
cal and language is 55%, for au niveau de (“at the
level of, at equal distance from the viewer”).

Getting improvements for clearly 3D preposi-
tions such as derriere, devant and au niveau de is
as expected, but there are clear improvements for
other prepositions too.

7 Conclusion

We have reported the first results for using object-
level depth features computed from depth maps
automatically generated for a given image with
monoDepth as additional features in spatial rela-
tion prediction. We have shown that performance
increases when depth features are added in all sce-
narios tested. However, automatically computed
depth is still some way off manual toplines which
resulted in bigger improvements.
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Abstract

We study the problem of opinion question
generation from sentences with the help
of community-based question answering
systems. For this purpose, we use a se-
quence to sequence attentional model, and
we adopt coverage mechanism to prevent
sentences from repeating themselves. Ex-
perimental results on the Amazon ques-
tion/answer dataset show an improvement
in automatic evaluation metrics as well as
human evaluations from the state-of-the-
art question generation systems.

1 Introduction

Question generation (QG) can be considered as a
task which affects many aspects of people’s lives.
One of the main significance of the question gen-
eration is its capability to improve one’s learning
ability. Studies have shown that asking questions
can help students realize their knowledge deficits
and encourages them to look for information to
compensate for those deficits (Graesser and Per-
son, 1994). Additionally, QG can be used as an aid
to search engines by providing suggestions regard-
ing the users’ queries (Chali and Hasan, 2015).
This way, the users can either choose one of those
suggestions or obtain a better idea on how to mod-
ify their query to get better results. Moreover, QG
can assist the reading comprehension task and the
question answering community by providing a ro-
bust input for their systems (Serban et al., 2016;
Rajpurkar et al., 2016; Yang et al., 2017).

In this work, we propose a sequence to sequence
model that uses attention and coverage mecha-
nisms for addressing the question generation prob-
lem at the sentence level. The attention and cover-
age mechanisms prevent language generation sys-
tems from generating the same word over and over

again, and have been shown to improve a system’s
output (See et al., 2017).

We benefit from the community-based question
answering systems. Specifically, we use the Ama-
zon question/answer dataset (McAuley and Yang,
2016). The sentences are mostly informal and
sometimes do not follow the correct grammatical
structure. We utilize the answers that people post
on the community question answering system as
inputs to our model; hence, proposing an opinion
question generation system which could be used
as an interface to online forums helping users in
browsing and querying them by making questions
as suggestions.

In the subsequent section, we describe the re-
lated works to QG. The next section is on the task
definition, followed by the demonstration of the
model structure. After that, we discuss the exper-
imental settings and at the end provide a thorough
discussion of our results.

2 Related Work

After the first question generation shared task eval-
uation challenge (Rus et al., 2010), the ques-
tion generation task has received a huge atten-
tion from the natural language generation commu-
nity. Many of the traditional approaches involve
human resources to create robust templates and
then employing them to generate questions. For
instance, Heilman and Smith (2010) approach is
to overgenerate questions by some hand-written
rules and then rank them using a logistic regres-
sion model. Labutov et al. (2015) benefit from
a low-dimensional ontology for document seg-
ments. They crowdsource a set of promising ques-
tion templates that are matched with that repre-
sentation and rank the results based on their rel-
evance to the source. Lindberg et al. (2013) em-
ployed a template-based approach while taking
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advantage of semantic information to generate nat-
ural language questions for on-line learning sup-
port. Chali and Hasan (2015) consider the auto-
matic generation of all possible questions from a
topic of interest by exploiting the named entity in-
formation and the predicate argument structures of
the sentences.

Lately, more approaches have been presented
that utilize the neural encoder-decoder architec-
ture. Serban et al. (2016) address the problem by
transducing knowledge graph facts into questions.
They created a factoid question and answer corpus
by using the Recurrent Neural Network architec-
ture.

QG can also be combined with its complemen-
tary task, Question Answering (QA) for further
improvement. Tang et al. (2017) consider QG and
QA as dual tasks and train their relative models
simultaneously. Their training framework takes
advantage of the probabilistic correlation between
the two tasks. QG has also entered other com-
munities such as computer vision. Mostafazadeh
et al. (2016) introduced the visual question gener-
ation task where the goal of the system is to create
a question given an image.

One of the latest studies on the QG task has been
conducted by Du et al. (2017). Their task is a QG
on both sentences and paragraphs for the reading
comprehension task, and they adopt an attention-
based sequence learning model. Another recent
work is by Yuan et al. (2017), they generate ques-
tions from documents using supervised and rein-
forcement learning.

In our work, we generate questions using com-
munity questions and answers and apply the
encoder-decoder structure. To boost the perfor-
mance of our system, we use attention and cover-
age mechanisms as suggested in See et al. (2017).

3 Task Formulation

Given an answer A = (a1, a2, ..., aN ), we are go-
ing to generate a natural language question Q =
(q1, q2, ..., qM ), where its answer is embedded
in A. Our goal is to find Q such that the con-
ditional probability p(Q|A) is maximized. We
model p(Q|A) as a product of word predictions:

p(Q|A) =
M∏

1

p(qt|q1:t−1, A)

This indicates that the probability of each qt re-
lies on the previously generated words and the in-

put sentence A.

4 Model Structure

For modeling p(Q|A), we use the simple RNN
encoder-decoder architecture (Cho et al., 2014)
with the global attentional model (Luong et al.,
2015), which lets the decoder learn to focus on
a particular range of the input sequence during
the generation task. To improve upon this model,
we apply coverage mechanism (See et al., 2017),
which prevents the word repetition problem.

4.1 Encoder
An encoder network maps an input sequence into
word vectors and then converts them into hidden
states b1, ..., bN . In our case, the encoder is a two
layer bidirectional LSTM network (Hochreiter and
Schmidhuber, 1997). We concatenate the output
of the forward hidden states

−→
bj and the backward

hidden states
←−
bj , namely, bj = [

−→
bj ;
←−
bj ] for input

token j. This bj is used later by the decoder to
calculate the context vector ct, which stores the
relevant source-side information and simplifies the
prediction of the next target word. ct is computed
as a weighted sum of bi:

ct =
N∑

i=1

at(i)bi (1)

where at is an alignment vector and is calculated
according to the general attention model:

at(i) =
exp(hTt Wabi)∑
j exp(h

T
t Wabj))

(2)

To initialize the decoder’s hidden state, we con-
catenate the hidden states of the forward and the
backward pass of the encoder.

4.2 Decoder
The decoder is a two layer unidirectional LSTM.
It keeps a coverage vector s, which is the sum of
the previous alignment vectors:

st =
t−1∑

t′=0

at′

It shows how much coverage each input word
has received from the attention mechanism so far
and it helps the mechanism to avoid attending to
the same words again once they have been at-
tended to initially (See et al., 2017). It should be
mentioned that s0 is a zero vector since nothing
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has been covered on the first time step. This cov-
erage vector will be added to the source hidden
states bi:

bi = tanh(bi + wsst(i))

This bi will be substituted in equations (1) and
(2) where ws is a parameter to be learned. This
way, with the help of st, the attention mechanism
always has a memory of its past decisions.

The decoder predicts the next word qt given the
context vector ct and all the previously predicted
words {q1, ..., qt−1}. We use a softmax layer to
produce the predictive distribution:

p(qt|q1:t−1, A) = softmax(Wsh̃t)

h̃t is the attentional hidden state which is cal-
culated given the target hidden state ht and the
source context vector ct:

h̃t = tanh(Wc[ct;ht])

where Ws and Wc are learnable parameters.
The hidden state at time step t of the decoder is
generated by:

ht = LSTM(qt−1, ht−1)

where qt−1 is the previously generated word and
ht−1 is the former hidden state.

Moreover, we use the input feeding approach
(Luong et al., 2015), which informs the decoder
which words were considered for the past align-
ments. We do this by concatenating the attentional
hidden state h̃t with the inputs at the next time
steps.

4.3 Training and Generation

The training objective is to minimize the negative
log-likelihood of the training corpus. Considering
S = {(ai, qi)}|S|1 as our whole training data, we
define the objective as:

Jt =

|S|∑

i=1

− log p(qi|ai) (3)

In addition to this primary loss function, it is re-
quired to introduce a coverage loss to penalize an
overlap between the coverage vector and the at-
tention distribution, which means attending to the
same location multiple times.

covlosst =
∑

i

min(at(i), st(i))

After being reweigted by some hyperparame-
ter λ, this amount is added to equation (3):

Jt =

|S|∑

i=1

− log p(qi|ai) + λcovlosst

In the generation step, we utilize the beam
search for the inference to maximize the condi-
tional probability.

Since the size of our vocabulary is limited to a
small number, many unknown words (UNK) will
be generated during the inference. We substitute
the (UNK) tokens with the words with the highest
attention weight from the source sentence.

5 Experiments

5.1 Dataset

We use the Amazon question/answer dataset
(McAuley and Yang, 2016). We set the minimum
length of the questions to 4 tokens, including the
question mark to filter out poorly structured sen-
tences. The answers must be at least 10 tokens
long. Moreover, we set the maximum length of
the questions and the answers to 20 and 35 to-
kens, respectively. As there are many URLs in the
dataset, we replace them with a URL token to re-
duce the vocabulary size. We lower-case the entire
dataset and use the NLTK toolkit 1 for sentence
tokenization. There can be many examples where
the questions are not grammatically correct. Peo-
ple may just ask: “Waterproof ?”. The same prob-
lem occurs with the answers: the answer might be
a single “Yes”. We use 80% of the dataset as the
training set, and the rest is divided between the
validation set and the test set. Table 1 shows the
total number of examples in each dataset after re-
moving very long or very short sentences from the
training and the validation datasets.

Train Validation Test
# pairs 233729 28969 70648

Table 1: Statistics of the dataset

1http://www.nltk.org
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5.2 Experimental Setting

Our base model is from OpenNMT system (Klein
et al., 2017), and we use the PyTorch 2 library, a
deep learning framework that provides maximum
flexibility and speed. It accelerates the computa-
tion on both CPU and GPU by a great amount,
and the memory usage is extremely efficient in
PyTorch compared to other options. We fix the
size of the answer and the question vocabularies to
50k. Only the most frequent words are kept, and
the rest are replaced with the UNK token. We set
the word embedding dimension to 300 and we use
glove.840B.300d (Pennington et al., 2014) as the
pre-trained word embedding on both the encoder
and the decoder sides. These embeddings are up-
dated during training. The LSTM hidden unit size
is set to 600 and we set the number of layers to 2.
We employ the stochastic gradient descent (SGD)
as the optimization method with an initial learn-
ing rate of 1.0 and halve the learning rate after 10
epochs. The training continues for 20 epochs with
the batch size of 64 and dropout probability of 0.3.
The hyperparameter λ that is used for weighting
the coverage loss is set to 13. The decoding is done
using the beam search with the beam size of 5, and
the generation is stopped when we reach the EOS
token. In the end, we choose the model with the
lowest perplexity on the validation set.

5.3 Baseline

We compare our model4 to that of Du et al.
(2017). We only experiment with their sentence-
level model and run the same Amazon question
and answer dataset on the system provided by the
first author. We keep the source and target vocab-
ulary size the same as ours, (i.e., 50k) and set the
maximum and the minimum length of the ques-
tions and answers the same as our model. Every-
thing else is left to the default values.

5.4 Automatic Evaluation Metrics

For evaluating our system automatically, we use
three different evaluation metrics. The first one
is BLEU (Papineni et al., 2002) that uses the n-
gram similarity between a prediction and a set
of references. We calculate BLEU score for un-
igrams and bigrams. The next one is METEOR

2http://pytorch.org
3We also experimented with λ = 2 but did not find it to

be helpful.
4https://github.com/Tina-19/Question-Generation

(Denkowski and Lavie, 2014), which scores pre-
dictions by aligning them to ground truth sen-
tences with the help of stemming, synonyms and
paraphrases. The last evaluation metric is Rouge
(Lin, 2004). It compares the generated sentences
with the references based on n-gram. For this task,
we use ROUGEL, which reports the results based
on the longest common subsequence. We use the
evaluation package by Chen et al. (2015).

6 Results and Discussion

Table 2 shows the results of our system and the
baseline. Our model improves the BLEU 1 score
by at least 1.5 points. It also achieves a bet-
ter result regarding the BLEU 2 and the ME-
TEOR whereas the ROUGE is lower than the base-
line. If we consider the results reported in Du
et al. (2017), we notice that the BLEU scores
are much higher compared to our work. The
reason is that they use the SQuAD dataset (Ra-
jpurkar et al., 2016), which is a human-generated
corpus. The sentences are well-structured, gram-
matically correct with fewer unnecessary punctu-
ation and colloquialism. However, when work-
ing with the community-based question answer-
ing systems, the structure of sentences do not al-
ways follow the correct path. These sentences of-
ten contain useless information and symbols.

Baseline Our Model
BLEU 1 12.89 14.67
BLEU 2 6.95 7.74
METEOR 8.76 9.43
ROUGEL 25.91 25.21

Table 2: BLEU 1-2, METEOR and ROUGEL
scores on the test set. Bold numbers demonstrate
the best performing system for each evaluation
metric.

Another problem is that multiple questions can
be generated from a single sentence. The system
may generate a question which is correct both se-
mantically and grammatically and also asks about
accurate information in the sentence. However, if
it is not the same as the ground-truth, the results
will be affected.

Figure 1 shows some examples generated by
our system and Du et al. (2017), where the cov-
erage mechanism becomes useful and prevents the
model from generating the same word ’material’
twice.

155



Answer 1: I really don’t know, I did full size
cupcakes, mini ones it would hold a ton!
GT Question: How many mini-cupcakes will
this hold?
DSC: what size is it?
Ours: how many cupcakes will it hold?
Answer 2: Nothing out of the ordinary. just a
simple screw driver. if I recall correctly, I think it
may have came with the tools needed to assem-
ble. good luck and congratulations
GT Question: What tools are required to assem-
ble unit?
DSC: What is the assembly required?
Ours: what tools do I need to assemble this?
Answer 3: You can definitely still do pushups
with the wraps on. The wraps just give extra sup-
port, they really don’t impact your range of mo-
tion at all.
GT Question: Can I do pushups while wearing
these wraps, or is the material too stiff?
DSC: Can you still use the material while wear-
ing the material?
Ours: Can I do pushups while wearing these
wraps?
Answer 4: I would go with a medium it fits well
and when you adjust it with the helmet it’s tight
to the chin.
GT Question: What size to buy for 14 yr old
125lb and 5’5?
DSC: I’m a woman with a small head, what size
should I get?
Ours: What size should I get for a child who is
5’6”?
Answer 5: There’s the ability to forward the
bp measurement information via email to friends,
family and doctors so I assume that once it’s been
sent an email you can print - it however I haven’t
tested this functionality yet. At the very least
when you bring up the bp readings on your screen
you can do a screen capture and then print that
screen capture.
GT Question: Is it possible to print the BP read-
ings?
DSC: What is the difference between the BP and
the BP?
Ours: How do you print from the BP?

Figure 1: Examples of generated questions:
ground truth (GT), Du et al. (2017) (DSC) and our
model, with their answers.

7 Human Evaluations

To further assess the performance of our system,
we performed human evaluations on the results.
Three English-speaker students were asked to give
a score from 1 (very poor) to 5 (very good) to the
questions generated from both systems according
to two criteria: syntactic correctness and rele-
vance. Syntactic correctness indicates the gram-
maticality and the fluency and relevance demon-
strates whether the question is meaningful and re-
lated to the sentence it is generated from. The
three assessors performed the evaluations on 100
randomly selected question and answer pairs from
the results. The comparison of human evaluations
between our system and the Du et al. (2017) model
is shown in Table 3. Bold numbers demonstrate
the best performing system for each evaluation cri-
teria, and we see that our system outperforms the
Du et al. (2017) model on both criteria.

Baseline Our Model
Syntactic correctness 4.4 4.52
Relevance 2.93 3.37

Table 3: Human evaluation results for the syntac-
tic correctness and relevance between our model
and Du et al. (2017).

8 Conclusion

In this work, we presented a sequence to sequence
learning model to address the opinion question
generation task. We showed the training process
using the global attention and applied the cover-
age mechanism to improve the model. We took
advantage of community-based question answer-
ing systems which contain informal speech and its
sentences do not always follow grammatical rules.
Experimental results show an improvement in the
automatic evaluation metrics as well as the human
evaluations compared to the baseline system.
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Abstract

We extend the classic Referring Expres-
sions Generation task by considering zero
pronouns in “pro-drop” languages such as
Chinese, modelling their use by means of
the Bayesian Rational Speech Acts model
(Frank and Goodman, 2012). By assuming
that highly salient referents are most likely
to be referred to by zero pronouns (i.e.,
pro-drop is more likely for salient refer-
ents than the less salient ones), the model
offers an attractive explanation of a phe-
nomenon not previously addressed proba-
bilistically.

1 Introduction

Languages such as Chinese and Japanese make
liberal use of zero pronouns (ZP) (Huang, 1984).
The analysis of Wang et al. (2018) on a large
Chinese-English parallel dialogue corpus shows
that 26% of the English pronouns are dropped in
Chinese. Such an abundant use of zero pronouns
has been a key factor in linguist’s idea (Huang,
1984, 1989) that Chinese is a “cool” language or a
discourse-oriented language (Cao, 1979), i.e., one
that relies heavily on context.

To exemplify zero pronouns in Chinese, con-
sider the question “你今天看见比尔了吗?” (Did
you see Bill today?). A Chinese speaker can re-
spond in a variety of shorter expressions which are
equivalent to “我看见他了” (Yes, I saw him), for
example, “∅看见他了” (Yes, ∅ saw him), “我看
见∅了” (Yes, I saw ∅), or even “∅看见∅了” (Yes, ∅
saw ∅). Here the ∅ symbol indicates the place from
where a pronoun appears to have been “dropped”
from a full sentence.

Generating zero pronouns (only) where they
are appropriate is a difficult challenge for Refer-
ring Expression Generation (REG) (Van Deemter,

2016), and more specifically for the task of choos-
ing referential form, a key step in the classic Natu-
ral Language Generation (NLG) architecture (Re-
iter and Dale, 2000). Traditionally, choosing ref-
erential form is framed as modelling speakers’ be-
haviour of deciding whether entities are referred to
using a pronoun, a proper name, or a description.
However, for “cool” languages, an extra option,
namely of choosing a zero pronoun, needs to be
added (Yeh and Mellish, 1997) for fully simulat-
ing speakers’ behaviour.

In this paper, we model the use of zero pro-
nouns in Chinese with the Rational Speech Acts
(RSA) model (Frank and Goodman, 2012) by as-
suming that speakers tend to choose a ZP if it is
salient enough for successful communication (see
§2). For computing discourse salience, we focus
on ZPs that are recoverable, meaning that they ei-
ther refer anaphorically to an entity mentioned ear-
lier in the text (i.e., anaphoric ZPs, or AZPs for
short), or to the speaker or hearer (i.e., deictic non-
anaphoric ZPs or DNZPs for short) (Zhao and Ng,
2007); a ZP is unrecoverable if it cannot be linked
to any referent, for example:

(1) ∅
∅
有
has
二十三

23
项

CLASSFIER
高新技术
high-tech

项目
projects

进区
in.the.zone

开发
under.development

‘there are 23 high-tech projects under de-
velopment in the zone’

in which the ∅ cannot be recovered.

2 Related Work

Pro-drop raises challenges for a number of NLP
tasks including, machine translation (MT), co-
reference resolution, and REG. When translating
from a pro-drop language, recovering the dropped
pronouns of the source language can improve the
overall performance of MT (Wang et al., 2016,
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2018). Co-reference resolution of ZPs has been
widely explored with a variety of techniques in-
cluding the centring theory (Rao et al., 2015),
statistical machine learning (Zhao and Ng, 2007;
Chen and Ng, 2014, 2015), deep learning (Chen
and Ng, 2016; Yin et al., 2016, 2017) and re-
inforcement learning (Yin et al., 2018). REG
of ZPs for “cool” languages has been addressed
through rule-based methods (Yeh and Mellish,
1997) including centring theory (Yamura-Takei
et al., 2001) (for Japanese), but we are not aware
of any testable computational account.1 We offer
such an account, along probabilistic lines.

Some discourse theories suggest that speakers
choose referring expressions (REs) by consider-
ing discourse salience (Givón, 1983), i.e., speakers
tend to choose pronouns if they believe the refer-
ent is highly salient. The intuition behind is that
a highly salient referent tends to be highly promi-
nent in the mind of the speaker and/or hearer. Orita
et al. (2015) shared a similar view and argued
that highly salient REs are highly predictable, so
they are referred with pronouns (as opposed to full
NPs) more often than the less salient ones.

A theory that is sometimes used for explaining
the relation between discourse salience and hu-
man choice of referential forms is Uniform Infor-
mation Density (UID) (Jaeger and Levy, 2007).
UID asserts that speaker tends to optimise infor-
mation density (quantity of information) of the ut-
terances to achieve optimal communication. In
other words, speakers tend to drop a RE when the
referent of the RE is predictable (or recoverable),
and vise versa.

Apart from salience, production cost (Rohde
et al., 2012) and the listener models (Bard et al.,
2004), meaning the models that how speakers
model listeners’ interpretation of the utterance,
also have impact on language production. It sug-
gests to us that the salience of the referent may not
be enough for modelling speakers’ choice. The
RSA model (see §3) used in this paper is possible
to take all these factors into consideration.

3 Methodology

3.1 The Rational Speech Acts Model

The Rational Speech Acts (RSA) model (Frank
and Goodman, 2012) has been used for a variety

1E.g., Yeh and Mellish (1997) did not offer a precise def-
inition of some of the syntactic constraints and the notion of
salience that they were using.

of tasks including modelling speakers’ referential
choice between pronouns and proper names (Orita
et al., 2015), the selection of attributes for refer-
ring expressions (Monroe and Potts, 2015), and
the generation of colour references (Monroe et al.,
2017, 2018). The key idea of RSA is to model
human communication by assuming that a ratio-
nal listener PL uses Bayesian inference to recover
a speaker’s intended referent rs for word w under
context C. In this way, RSA claims to offer not
only accurate models, but highly explanatory ones
as well. Formally, PL is defined as

PL(rs|w,C) =
PS(w|rs, C)P (rs)∑
r′∈C PS(w|r′, C)P (r′)

, (1)

where r′ denotes a referent in context C, P (rs)
represents the discourse salience of rs, PS is the
speaker model defined by an exponential utility
function:

PS(w|rs, C) = eα(I(w;rs,C)−C(w)). (2)

Here I(w; rs, C) is the informativeness of wordw,
C(w) represents the speech cost.

Orita et al. (2015) extended the RSA by assum-
ing that speakers estimate listener’s interpretation
of the (form of) RE w based on discourse informa-
tion. The speaker chooses w by maximising the
listener’s belief in the speaker’s intended referent
rs in relation to the speaker’s speech cost C(w),
where the cost is estimated according to the com-
plexity of the utterance, such as the length of w:

PS(w|rs) ∝ PL(rs|w) ·
1

C(w)

=
P (w|rs, C)P (rs)∑
r′ P (w|r′, C)P (r′)

· 1

C(w)
(3)

Here PL(rs|w) estimates the informativeness of
w, and P (w|rs, C) estimates the likelihood (ac-
cording to the speaker) that the listener guesses
that the speaker used w to refer to rs.

3.2 Modelling Pro-drop with the RSA Model
We model the decision of whether to use a ZP-
based on the formulation expressed in Eq. 3. The
speaker model is PS(z|rs), which is the probabil-
ity that the speaker uses ZP (i.e., drops the RE).
We assume that the speaker makes a binary choice
(i.e., z = {1, 0}), with z = 1 indicating a ZP and
z = 0 indicating a non-zero form of RE (NZRE).
Note that whether the speaker uses a pronoun or
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a proper name is not in the scope of this model.
To simulate the speaker’s choice, we need to es-
timate the dropping probability P (z|rs), the dis-
course salience of the referent P (rs), and the cost
C(z).

According to the UID theory (see §2), if a RE is
recoverable, then the speaker prefers a ZP over a
NZRE to maximise the information density since
a ZP is shorter than any other referential form. In
that sense, we follow Orita et al. (2015) to esti-
mate the cost function C(z) based on the length
of the RE, i.e., the total number of words the RE
contains. However, the length of the NZRE is not
known in advance, thus we use the average length
of a set of REs W instead:

C(z = 0) = average length(W ) + 1 (4)

We experimented with two ways of calculating the
average length: (i) global average length, mean-
ing that W is the set of all referring expressions
in the corpus, and (ii) local average length, in
which W is the set of expressions that can re-
fer to referent rs. For instance, if rs is “Barack
Obama”, then given a corpus for computing lo-
cal average length in which he is referred to, W
might be the set {Barack Obama, Obama, he, for-
mer president}. The cost of a zero pronoun is al-
ways C(z = 1) = 1, which means no discount
on P (z = 1|w) and the plus 1 in Eq. 4 is to make
the cost of choosing NZRE different from choos-
ing ZP if W only contains pronouns (i.e., if length
equals to 1).

We assume that the dropping probability
P (z|rs) is dependent on whether the referent rs
is one of the participants in the dialogue (i.e.,
speaker or listener). For example, in the OntoNote
5.0 corpus, 30% of maximally salient entities are
dropped, which is much higher than the 10% drop-
ping rate of non-maximally salient entities. If rs is
one of the participants, we call it maximally salient
entity (denoted as s). Otherwise, rs is called non-
maximally salient entity (denoted as ns). This as-
sumption causes AZP and DNZP to have differ-
ent proportions in the predicted results. Suppose
P (z = 1|rs = ns) = a and P (z = 1|rs = s) = b,
then we have a < b, which implies that the speaker
thinks the listener expects a maximally salient en-
tity (i.e., speaker or listener).

Let α = a
b be the dropping ratio, then the prob-

ability of dropping a noun phrase that refers to the

speaker is:

PS(ZP|Speaker) ∝ PL(Speaker|ZP) · 1

C(z = 1)

=
P (ZP|Speaker)P (Speaker)∑

r′ P (ZP|r′)P (r′) · 1

C(z = 1)

=
NSpeaker

α ·NNS +NS

· 1

C(z = 1)
(5)

P (Speaker) is the salience of the speaker.2 In gen-
eral, we take the salience of a referent x to be in
proportion to Nx, which is the number of times
that x has been referred to in the preceding dis-
course, hence the use of NSpeaker, NS, and NNS in
the equation. Note that NS +NNS is the total num-
ber of REs in the preceding discourse.

Equation 5 shows that modelling the dropping
probability for maximally salient entities and non-
maximally salient entities differently acts as a dis-
count for the number of referents that the ZP can
refer to when predicting DNZP. Similarly, using
the dropping ratio α, the dropping probability for
AZPs is estimated as:

PS(AZP|Speaker) =
NAZP

NNS +
1
αNS

(6)

which can be seen as adding a penalty.
The frequencies counted above are all based

on the whole preceding discourse of a referent,
which might not be reasonable for predicting ZPs.
We hypothesise that the informativeness of a ZP
depends on only a part of the preceding con-
text. We tested two possible set-ups. One is
setting a discourse window to limit the number
of sentences that the simulator can look back to.
The other uses recency (Chafe, 1994). Following
Orita et al. (2015), we replace each count with:
Count(ri, rj) = e−d(ri,rj)/a, where rj is the same
referent as the ri that has previously been referred
to and d is the number of sentences between two
REs. Instead of taking the direct raw count 1,
Count(ri, rj) decays exponentially with respect
to how far it is from the predicting RE. The RE
that has larger distance contributes less to the over-
all count of that referent.

For NZREs (z = 0), we assume that the num-
ber of times that the referent has been referred to
is equal to the total number of referents referred to
by that NZRE. Thus, the speaker believes that the
listener can always resolve the reference by giving

2Our use of the term salience is similar to Hovy et al.
(2006)’s use of “recoverability”.
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them a NZRE. In other words, their informative-
ness equals 1.

4 Experiments

4.1 The Dataset

We tested our model on the Chinese portion of
OntoNotes Release 5.0 data3 (Hovy et al., 2006),
which has been widely used in (ZP) co-reference
resolution tasks. The corpus contains 1,729 docu-
ments, including 143620 referring expressions. In
Table 1, there is the basic statistics about the re-
coverable zero pronouns in OntoNotes corpus.

# of Recoverable Zero Pronouns 17,129
# of Anaphoric ZPs 14,675

# of Deictic Non-anaphoric ZPs 2,454

Table 1: Basic statistics of different types of re-
coverable ZPs in OntoNotes

Baseline. In this work, we used the modified rule
1 in Yeh and Mellish (1997), i.e., the RE in the
subject position will be a ZP if it was referred to in
the immediately preceding sentence, as the base-
line. The modification is inspired by the fact that
99.2% ZPs in OntoNotes corpus are in the subject
position.

4.2 Experiment Results

Table 2 shows the results (reported in accuracy)
of various models on the OntoNote dataset. The
dropping ratio α was empirically set to 0.1 and the
decay parameter a of recency was set to 0.8. The
window size was 1, so the simulator only looks at
the current sentence and preceding sentence.

As expected, the models that look back to the
whole preceding discourse perform badly on pre-
dicting ZPs (i.e., 8.35% of accuracy), especially
DNZPs. They tend to predict all REs as NZREs,
which even performs worse than the model using
simple rule (i.e., the baseline). In contrast, lim-
iting the discourse history by applying discourse
windows or replacing frequency with recency have
a negative impact on predicting NZREs, more
specifically pronouns. Such an impact is caused
by the idea that every NZRE can always be re-
solved by the listener, which is not correct for pro-
nouns. However, so far, we cannot calculate the
informativeness of pronouns properly since we do

3https://catalog.ldc.upenn.edu/
ldc2013t19

not know which referent (speaker or listener) a de-
ictic pronoun in the corpus refers to. For example,
in the corpus, both the speaker and listener will
use “I” to refer to themselves, so we don’t know
whether “I” refers to the speaker or the listener.
This setting will lead to over-estimation of the in-
formativeness of pronouns. On the other hand,
computing cost by average length (as we do) over-
estimates the costs of pronouns, whose lengths are
generally shorter than proper names.

The baseline model’s performance is not bad,
especially for predicting AZPs. This is partly be-
cause the rule predicts that all REs in object po-
sition are NZREs and this is nearly always cor-
rect. (Recall that 99.84% REs in object position
are NZREs). At the same time, if the referent
was referred to in the immediately preceding sen-
tence (as the baseline model requires), then it is
clearly more salient than if it wasn’t. The base-
line model is therefore quite similar to the model
with discourse window, but its decisions are made
in a simpler way (i.e., based on a simple ”if-then”
rule).

With respect to overall accuracy for predict-
ing ZPs and NZREs, models with recency per-
form similarly to those that use a discourse win-
dow. However, recency offers better prediction on
AZPs. Adding a dropping ratio could significantly
improve the performance on predicting DNZPs
without decreasing the accuracies of AZPs and
NZREs very much (i.e., accuracy increase from
62.02% to 95.35%). For the choice of cost func-
tion, we found that using global average length is
the best.

5 Conclusion and Future Work

This paper has explored the possibilities of us-
ing the RSA model for probabilistic simulation of
speakers’ use of ZPs (i.e., pro-drop), and investi-
gated factors that influence speakers’ choice.

Our model performs respectably yet, as men-
tioned in Section 4, it under-estimates the proba-
bility of choosing a pronoun. Solving this problem
will require a more fine-grained annotation of the
corpus, indicating which person each occurrence
of the deictic pronouns ”I” and ”you” refers to.
Once this has been done, we also hope to let the
generator distinguish between ZP, pronoun, proper
name, and full noun phrase.

When speakers are choosing between pronouns
and full NPs, sentence position is known to be rel-
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Discourse Model Cost Total Acc. ZP Acc. AZP Acc. DNZP Acc. NZRE Acc.
- baseline - 78.57 40.88 42.90 28.81 83.67

Discourse Window
full global 77.10 46.16 38.34 92.95 81.29

local 81.79 22.53 25.50 4.81 89.81

-dropping ratio global 77.05 43.77 41.88 55.09 81.56
local 81.44 23.67 27.09 3.19 89.26

Recency
full global 75.64 50.56 43.08 95.35 79.03

local 80.08 25.36 28.81 4.77 87.49

-dropping ratio global 74.04 50.26 48.29 62.02 78.04
local 79.26 27.47 31.63 2.6 86.28

Whole
full global 86.24 8.35 5.18 27.30 96.79

local 86.67 3.67 4.27 0.08 97.91

-dropping ratio global 86.13 6.23 6.38 5.33 96.95
local 86.61 3.84 4.47 0.04 97.81

Table 2: Accuracies of each model, recall that AZP and DNZP are two sub-categories of ZP.

evant. For example, pronouns are less common
in object than in subject position Brennan (1995),
which somehow dues to the fact that REs in sub-
ject position are more salient than in object po-
sition. In the OntoNotes corpus, 99.2% of ZPs
appear in subject position; in Chinese, empty cat-
egories are acceptable in both subject and object
(including the topic position (Huang, 1984)), but
even there they are most frequent in subject posi-
tion. The baseline model introduced in this paper
has somehow proved that considering positions
works in modelling pro-drop. In future we shall
explore the way of combining that factor with the
RSA for pro-drop model introduced in this paper.

In future, we will investigate alternative ways to
estimate informativeness and costs. For example,
it would be natural to use a co-reference resolver
for calculating informativeness. Furthermore, one
could follow on from (Yamura-Takei et al., 2001;
Roh and Lee, 2003) by using elements of centring
theory (Grosz et al., 1995) in the definition of cost
(e.g., giving Rough Shifts a high cost). Alterna-
tively, one could improve the model by adopting a
trainable function for estimating both informative-
ness and costs.
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Abstract

In this paper, we propose a self-learning
architecture for generating natural lan-
guage templates for conversational assis-
tants. Generating templates to cover all the
combinations of slots in an intent is time
consuming and labor-intensive. We ex-
amine three different models based on our
proposed architecture - Rule-based model,
Sequence-to-Sequence (Seq2Seq) model
and Semantically Conditioned LSTM
(SC-LSTM) model for the IoT domain - to
reduce the human labor required for tem-
plate generation. We demonstrate the fea-
sibility of template generation for the IoT
domain using our self-learning architec-
ture. In both automatic and human evalua-
tion, the self-learning architecture outper-
forms previous works trained with a fully
human-labeled dataset. This is promis-
ing for commercial conversational assis-
tant solutions.

1 Introduction

Intelligent Conversational Assistants are prevalent
now. They have been integrated into a wide range
of IoT devices. Various recent studies on stochas-
tic language generation have been conducted in
NLG. Although these stochastic approaches out-
perform traditional LSTM language models, they
have drawbacks including the requirement of large
training datasets, low accuracy of trained mod-
els and lack of naturalness of generated sen-
tences. Therefore, Most of commercial conversa-
tional assistant services adopt template-based ap-
proach (Cheyer and Guzzoni, 2014; Mirkovic and
Cavedon, 2011) to implement natural language
generation. This approach is robust and feasi-
ble for commercialization, but requires creating a

large number of templates. In this approach, one
needs to manually generate NLG templates that
cover all the possible combinations of intents and
slots.1 There are statistical approaches for gen-
erating templates with 2, 3 and 4 slots (Narayan
et al., 2011), but they suffer from exponential com-
plexity as the number of slots increases. In addi-
tion, substitution-based implementation with Sim-
pleNLG (Gatt and Reiter, 2009) can handle some
of the cases, but this is not versatile enough. The
number of templates required to cover all possible
combinations of slots is:

No. Templatesn = 2n − 1 (1)

where n is the total number of possible slots. The
value is exponential as shown in equation 1. Man-
ually generating an exponential number of tem-
plates is undesirable, especially when the intents
get more complex.

We propose a self-learning architecture for
NLG which solves the problem of generating an
exponential number of templates. In order to gen-
erate informative and natural sentences, arguably,
it is more important to generate consistent sys-
tem responses with limited syntactic information
than to generate error prone system responses with
more variation in their grammatical form. In our
proposed solution, we start with an initial training
set containing less than or equal to 2 slots per in-
tent, and iteratively build our model to increase its
ability to cover more complex inputs. Thus, the re-

1Throughout this paper, intent denotes the intention of
user utterance and slot denotes the variable part (slot value)
and its name if any (slot name). Slot can be replaced by an-
other phrase in user utterances or responses. NLG will be
generated from dialog act and it will be written as Intent(
SlotName1 = SlotV alue1;SlotName2 = SlotV alue2
; · · ·). For example, from dialog act up(functionname=tem
perature;devicename=‘airconditioner’;location=‘bedroom’),
response “I turned up the temperature of the airconditioner in
the bedroom” is generated.
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Figure 1: Proposed Self-Learning Architecture for NLG.

quired number of human generated templates de-
creases from 2n − 1 to

(
n
1

)
+
(
n
2

)
= O(n2).

2 Related Work

Several approaches have been studied for NLG
systems. The template-based approach (McRoy
et al., 2003; Channarukul et al., 2002) is most
commonly used, because it guarantees the advan-
tage of completely controlling the output quality.
However, that approach has two main disadvan-
tages. First, it is labor-intensive to generate and
maintain templates (Galley et al., 2001). Second,
it does not scale well when domains are changed
or expanded (Channarukul et al., 2002; Reiter,
1996). Recently, various stochastic NLG meth-
ods such as Sequence to Sequence generation with
attention (Seq2Seq w/ attn) (Dušek and Jurčı́ček,
2016) and Semantically Conditioned LSTM (SC-
LSTM) (Wen et al., 2015) have been studied to
overcome the disadvantages of template-based ap-
proaches. They also aim to remove the need for
manual alignment of training dataset. They are
directly trained on a data corpus and reduce the
human effort required for producing templates.
Other End-to-End deep learning approaches have
been studied (Gehrmann et al., 2018), along with
domain adaptation (Dethlefs, 2017), to solve the
problem of domain specificity. Though they pro-
duce state-of-the-art results among stochastic ap-
proaches, the generated sentences are not natural
enough for real-world conversational assistant ser-
vices, where even the slightest mistakes can be
detrimental. Another hurdle while training these
models is the issue of finding the right dataset

for training (Gatt and Krahmer, 2018). We show
that our proposed self-learning architecture can
outperform existing neural models and greatly re-
duce human effort compared to template-based ap-
proaches without compromising much on output
quality.

3 Self-Learning Architecture for NLG

In this section, we explain the proposed architec-
ture to resolve the problem discussed above. We
also briefly explain the models that we use for re-
sponse generation, namely, Rule-based, Seq2Seq
and SC-LSTM. Initially, all dialog acts in the
training dataset contain all the combinations of
slots with less than k2 slots per training instance.

As a preparation step, we manually generate the
initial training dataset as 〈DialogAct,Response〉
pairs for all the combinations of slots with up to
two slots per instance. With the initial value of k
as 2, see Algorithm 1.

Thus, we have successfully increased the size
of our training dataset. Sample data for succes-
sive training steps is shown in Table 1. We exper-
imented with three different models for response
generation task using Dialog Acts: Rule-based
model, Seq2Seq model and SC-LSTM model.

Figure 1 depicts the flow for the self-learning
architecture.

3.1 Rule-Based Approach
This method was inspired by (Filippova, 2010),
where shortest path finding algorithms are used

2All references to k in this paper denote the number of
slots present in a training instance
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Algorithm 1 Self Learning Architecture

1: while k < max slots do
2: Train a new language generation model

that generates responses from dialog acts con-
taining up to k slots

3: Generate responses containing k + 1 slots
using Dialog Acts containing k + 1 slots and
the model trained above

4: Augment the training dataset with the in-
ferred sentences containing k + 1 slots from
the previous step

5: k = k + 1
6: end while

to summarize multiple sentences. Although
it is straightforward to understand and gives
good scores on metrics such as longest common
subsequence (LCS) metric used by (Zhao et al.,
2002), the approach is different from our objec-
tive. We need to conserve all information from
the source sentence. Consequently, we use the
shortest common supersequence (SCS) for our
task. Finding SCS of more than two sentences is
an NP-complete problem (Räihä and Ukkonen,
1981), therefore we simplify it by considering
SCS of two sentences.

Assumption 1: If sentence X is a good
response for slot combination A and sentence Y
is one for combination B, then their SCS Z will
be a good response for slot combination A ∪B.
An example of A,B,X and Y is
A : up(functionname=temperature;devicename=’
airconditioner’),
B : up(functionname=temperature;location=’bedr
oom’),
X : I will turn up the temperature for the aircon-
ditioner,
Y : I will turn up the temperature in the bedroom.
The SCS of X and Y is “I will turn up the tem-
perature for the airconditioner in the bedroom”,
which is plausible response sentence for A ∪B.

Assumption 2: SCS Z will be an even better
response if |A \B| and |B \A| are small.
Based on Assumptions 1 and 2 above, it is natural
to think of a simple algorithm (see Algorithm 2)
which generates natural response given slot com-
bination A. There can be numerous candidates, so
we opt for the shortest one.

Algorithm 2 Rule-Based Generation
1: procedure PROTO RULE BASED(A, i, j)
2: A1 = GET UTTERANCE(A \A[i])
3: A2 = GET UTTERANCE(A \A[j])
4: return SCS(A1, A2)
5: end procedure
6: procedure RULE BASED(A)
7: for (0 ≤ i < j < |A|) do
8: Yi,j = PROTO RULE BASED(A, i, j)
9: end for

10: Ŷ = argminYi,j{NUM WORDS(Yi,j)}
11: return Ŷ
12: end procedure

3.2 Sequence to Sequence with Attention
Seq2Seq model (Sutskever et al., 2014) has been
widely used in many machine learning tasks. For
our task, we use an LSTM-based encoder and de-
coder model with Attention mechanism (Dušek
and Jurčı́ček, 2016). The LSTM encoder takes
a sequence of Dialog Acts as input, where each
slot is a symbol in the vocabulary. While decod-
ing, they use an LSTM-based re-ranker at the end
to calculate slot errors and penalize responses that
have wrong slots as compared to the input Dialog
Act.

3.3 Semantically Conditioned LSTM
The SC-LSTM Model (Wen et al., 2015) deals
with the issue of repetitive word generation in
LSTM-based NLG. It receives the Dialog Act in
the form of a bit vector, where each bit in the vec-
tor denotes whether a particular slot-value pair ex-
ists in the Dialog Act. This model tries to mitigate
the issue by using additional control cell along
with the standard LSTM cell. The control cell pro-
duces a surface realization which accurately en-
codes the input information and helps in cutting
off repetitive words.

4 Experiments and Results

4.1 Dataset for Initial Training
We use a small domain-specific dataset for our
experiment. Our dataset is derived from the
one used by (Georgila et al., 2018), focused on
the domain of IoT Home Appliances. We ex-
tract a subset of the system responses, and ex-
tend them for increased coverage, and generate
〈DialogAct,Response〉 pairs. The generated
〈DialogAct,Response〉 pairs are given to our
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Phase Data # of slots Sample training dataset

Phase 1
Training

data
1

Dialog Act: up(functionname=temperature;devicename=‘airconditioner’)
Response: I turned up the temperature of the airconditioner

2
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’;location=‘bedroom’)
Response: I turned up the temperature of the airconditioner in the bedroom

Test data 3
Dialog Act: up(functionname=temperature;location=‘bedroom’;date=‘saturday’;time=‘7 am’)
Response: I will turn up the temperature in the bedroom on Saturday at 7 am

Phase 2

1
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’)
Response: I turned up the temperature for the airconditioner

Training
data

2
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’;location=‘bedroom’)
Response: I turned up the temperature for the airconditioner in the bedroom

3
Dialog Act: up(functionname=temperature;location=‘bedroom’;date=‘saturday’;time=‘7 am’)
Response: I will turn up the temperature in the bedroom on Saturday at 7 am

Test data 4
Dialog Act: up(functionname=temperature;devicename=‘airconditioner’;time=‘4 pm’;date=‘saturday’;location=‘living room’)
Response: I will turn up the temperature of the airconditioner in the living room on Saturday at 4 pm

Table 1: Sample data from IoT dataset. The first line of each example is Dialog Act and the next line is the corresponding
response. For test data, the second line is inferred response. Notice that the inferred response is being reused in Phase 2.

Category Model
BLEU Score (Slot count)

1∼2 slots trainset
/ 3 slots testset

1∼3 slots trainset
/ 4 slots testset

1∼4 slots trainset
/ 5 slots testset

1∼5 slots trainset
/ 6 slots testset

Fully Seq2Seq w/ attn 70.3 72.3 77.2 82.9

Human Labeled SC-LSTM 86.6 85.3 80.9 87.4

Self-Learning
Rule-Based 74.2 71.9 72.8 72.9

Seq2Seq w/ attn 65.3 54.4 45.9 42.9

SC-LSTM 86.6 85.8 84.0 94.9

Table 2: BLEU score Results. Test results for k = 2 to k = 5

Category Model
Mean Human

Ranking

Fully Seq2Seq w/ attn 3.16

Human Labeled SC-LSTM 2.02

Self-Learning
Rule-Based 2.39

Seq2Seq w/ attn 3.6

SC-LSTM 1.55

Table 3: Human Evaluation Results. For the
human ranking, 1 is highest ranked and 5 is

lowest ranked.

model as the training set. In the first training it-
eration, each 〈DialogAct,Response〉 pair in the
dataset consists of a maximum of two slots. For
each training iteration, we split the available train-
ing dataset into 4 : 1 partitions for training and
validation respectively. For testing, we use human
generated 〈DialogAct,Response〉 pairs which
contain one more slot compared to the dataset
used in the training step. For comparison, we also
trained our neural models using human generated
test pairs with less than k slots combined with
original train dataset. They are also evaluated us-
ing the test dataset which contains k + 1 slots per
pair.

4.2 Evaluation Metrics

To evaluate our models, we measure BLEU scores
and use a human evaluation. The BLEU score
is the n-gram similarity between the reference re-
sponse and the generated response. Higher BLEU
scores indicate a better model. The whole test set
was used to measure BLEU scores. For human rat-
ing, we asked 21 human evaluators to rank the out-
puts of all five models, considering the grammat-
ical correctness and informativeness of the gen-
erated responses. Then we calculated the Mean
Rank for each model. Lower Mean Rank indicates
a better model. Randomly chosen 10 responses
with 3 to 5 slots were used for human rating.

4.3 Results

The results can be found in Table 2 and Table 3.
We were able to train both deep learning mod-
els using our self-learning architecture success-
fully, which can be trained from small amounts
of data. The human labeled SC-LSTM model
has better scores than the corresponding Seq2Seq
model. When self-learning architecture is used,
SC-LSTM outperforms all the other models. We
think SC-LSTM model is more suitable for learn-
ing from structured data than the other models are.
This is because SC-LSTM model uses an addi-
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tional gated cell which plays the role of sentence
planning to produce a surface realization which
accurately encodes the input information. When
the model encounters a Dialog Act with more slot-
value pairs than those in the training dataset, it rec-
ognizes the extra slot and generates the response.
The Seq2Seq model captures the same relation
above using attention. However Seq2Seq-model
could not outperform the SC-LSTM model, when
it encounters a Dialog Act with more slots than
the model was originally trained on. Therefore
it fails on our self-learning task. The Rule-based
model produces reasonable outputs, but its output
heavily depends on the nature of input data and
requires human effort. One interesting observa-
tion is that the BELU score was the highest when
the maximum number of slots was used. We think
the BLEU score can increase when the number
of target slots rises above a certain level, because
the dataset with more slots has more training re-
sponses and has responses about more complex
combinations of slots.

5 Conclusion

This paper presents a self-learning architecture for
NLG. We experimented with three different mod-
els: Rule-based, Seq2Seq and SC-LSTM models
in the IoT domain. Our data-efficient architecture
not only reduces human effort, but also outper-
forms models trained on the fully human labeled
dataset. We think the proposed method can reduce
the effort of building large-scale NLG systems for
commercial conversational assistant solutions. In
future work, we plan to apply other neural models
to our architecture, and extend that architecture to
cover multi-domain generation tasks.
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Abstract

This paper describes the enrichment of
WebNLG corpus (Gardent et al., 2017a,b),
with the aim to further extend its useful-
ness as a resource for evaluating common
NLG tasks, including Discourse Ordering,
Lexicalization and Referring Expression
Generation. We also produce a silver-
standard German translation of the cor-
pus to enable the exploitation of NLG ap-
proaches to other languages than English.
The enriched corpus is publicly available1.

1 Introduction

Natural Language Generation (NLG) is the pro-
cess of automatically converting non-linguistic
data into a linguistic output format (Reiter and
Dale, 2000; Gatt and Krahmer, 2018). Re-
cently, the field has seen an increase in the
number of available focused data resources as
E2E (Novikova et al., 2017), ROTOWIRE (Wise-
man et al., 2017) and WebNLG (Gardent et al.,
2017a,b) corpora.

Although theses recent releases are highly valu-
able resources for the NLG community in general,
all of them were designed to work with end-to-
end NLG models. Hence, they consist of a col-
lection of parallel raw representations and their
corresponding textual realizations. No interme-
diate representations are available so researchers
can straight-forwardly use them to develop or eval-
uate popular tasks in NLG pipelines (Reiter and
Dale, 2000), such as Discourse Ordering, Lexical-
ization, Aggregation, Referring Expression Gen-
eration, among others. Moreover, these new cor-
pora, like many other resources in Computational
Linguistics more in general, are only available

1https://github.com/ThiagoCF05/webnlg

in English, limiting the development of NLG-
applications to other languages, which is cur-
rently an emerging theme in NLG research com-
munity – see, for instance, the increased availabil-
ity of SimpleNLG tools to languages other than
English (Mazzei et al., 2016; Bollmann, 2011;
Vaudry and Lapalme, 2013; Ramos-Soto et al.,
2017) and the recent Multilingual Surface Real-
ization task (Mille et al., 2018).

This paper describes how we addressed the
aforementioned issues by enriching the WebNLG
corpus with intermediate representations and ex-
ploiting the possibilities of automatically translat-
ing the corpus to a second language (German).
To this end, we first manually replaced all refer-
ring expressions in the WebNLG texts with gen-
eral tags in a process called Delexicalization. The
original texts and the delexicalized templates were
then translated to the German language using an
existing state-of-art English-German Neural Ma-
chine Translation (NMT) system (Sennrich et al.,
2017), providing a silver-standard version of the
corpus in another language. Finally, by automati-
cally processing the original texts and the delexi-
calized templates for both English and (translated)
German versions of the corpus, we obtained a col-
lection of gold-standard referring expressions and
discourse orderings. In sum, the main contribu-
tions of this study (all publicly available) are:

• A silver-standard version of the WebNLG
corpus in German.

• A collection of 16,661 delexicalized tem-
plates in English and 16,292 in (silver-
standard) German.

• A collection of 86,345 referring expressions
to 1,771 Wikipedia entities and constants in
English and (silver-standard) German.
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• Discourse ordering information of 20,370 in-
stances of the WebNLG corpus.

The paper is organized as follows: Section 2
briefly describes the WebNLG corpus, Section
3 depicts our delexicalization procedure in de-
tail (briefly introduced in Castro Ferreira et al.
2018), Section 4 explains the process of translat-
ing the corpus texts to German, Section 5 intro-
duces the intermediate representations automati-
cally extracted from the corpus in its original and
delexicalized forms, and, finally, Section 6 dis-
cusses the contributions and prospects of future
work.

2 WebNLG corpus

The WebNLG corpus (Gardent et al., 2017a) is
a parallel dataset initially released for the epony-
mous NLG challenge, where participants had to
automatically convert non-linguistic data from the
Semantic Web into a textual format (Gardent et al.,
2017b). The source side of the corpus are sets of
Resource Description Framework (RDF) triples,
in which, each one of them is formed by a Sub-
ject, Predicate and Object. The Subject and Object
are constants or Wikipedia entities, whereas predi-
cates represent a binary relation between these two
elements in the triple. The target side contains En-
glish texts, obtained by crowdsourcing, which de-
scribe the source triples.

The corpus consists of 25,298 texts describing
9,674 sets of up to 7 RDF triples (an average of
2.62 texts per set) in 15 domains: Astronaut, Uni-
versity, Monument, Building, Comics Character,
Food, Airport, Sports Team, Written Work, City,
Athlete, Artist, Means of Transportation, Celestial
Body and Politician (last 5 were available only in
the test set). Figure 1 shows an example of a set of
5 RDF triples and its corresponding English text.

3 Delexicalization

To account for data sparsity and unseen entities,
many “end-to-end” NLG models work by first
generating a delexicalized template, where refer-
ences are represented by general tags (Konstas
et al., 2017; Castro Ferreira et al., 2017). The re-
ferring expressions are only surface realized once
the template is generated. Motivated by these
studies, we manually delexicalized the training
and development parts of the WebNLG corpus,
generating gold-standard templates. The test part

of the corpus was not included in this study, since
only its source RDF triples were publicly available
at the time of writing.

We started the delexicalization process by auto-
matically mapping each entity in the source rep-
resentation to a general tag. All entities that ap-
pear on the left and right side of the triples were
mapped to AGENTs and PATIENTs, respectively.
Entities which appear on both sides in the re-
lations of a set were represented as BRIDGEs.
To distinguish different AGENTs, PATIENTs and
BRIDGEs in a set, an ID was assigned to each en-
tity of each kind (PATIENT-1, PATIENT-2, etc.).

Once all entities were mapped to different gen-
eral tags in the text, the first two authors of this
study manually replaced the referring expressions
in the original target texts by their respective tags.
Each annotator delexicalized half of the texts, and
the few difficult cases were resolved in discussions
with the co-authors. Figure 2 shows the entity
mapping and the delexicalized template for the ex-
ample in Figure 1.

In total, we delexicalized 20,370 different texts
which describe 7,812 distinct sets of RDF triples,
resulting in 16,661 distinct templates in English.
Together with the original texts, we translated the
delexicalized templates to German, and extracted
a collection of referring expressions and discourse
ordering information of the corpus as explained in
the following sections.

4 Translation

We translated the original texts and the delexical-
ized templates by relying on the University of Ed-
inburgh’s Neural MT System for WMT17 (Sen-
nrich et al., 2017; Bojar et al., 2017a). Not only
are the training models publicly available2, but this
system is state-of-the-art in translating English-
to-German at the time of writing3, which guaran-
tees we obtain arguably the best silver-standard re-
source currently feasible.

The University of Edinburgh system was mod-
eled in a deep encoder attention-decoder archi-
tecture. Its translation model was trained on
back-translated monolingual data (Sennrich et al.,
2016a) in order to augment the training data. To
have an open vocabulary, the rare words, which
pose a well-known problem in NMT systems,

2http://data.statmt.org/wmt17_systems
3http://matrix.statmt.org/matrix/

systems_list/1869
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Subject Predicate Object
Appleton International Airport location Greenville, Wisconsin
Greenville, Wisconsin isPartOf Ellington, Wisconsin
Greenville, Wisconsin isPartOf Menasha (town), Wisconsin
Greenville, Wisconsin country United States
Appleton International Airport cityServed Appleton, Wisconsin

↓
The Appleton International Airport is located in Greenville, Wisconsin, United States and serves the city of Appleton,

Wisconsin. Greenville is part of the town of Menasha and Ellington, Wisconsin.

Figure 1: Example of a set of triples (top) and corresponding text (bottom).

Tag Entity
AGENT-1 Appleton International Airport
BRIDGE-1 Greenville, Wisconsin
PATIENT-1 United States
PATIENT-2 Appleton, Wisconsin
PATIENT-3 Menasha (town), Wisconsin
PATIENT-4 Ellington, Wisconsin

↓
AGENT-1 is located in BRIDGE-1 , PATIENT-1 and serves the city of PATIENT-2 . BRIDGE-1 is part of PATIENT-3 and

PATIENT-4 .

Figure 2: Mapping between tags and entities for the related delexicalized/wikified templates.

were segmented into sub-word units using Byte
Pair Encoding (BPE) (Sennrich et al., 2016b).

To translate a sentence, the University of Ed-
inburgh submission trained 4 left-to-right and 4
right-to-left models. The left-to-right models were
ensembled to produce the 50 most likely trans-
lation hypotheses while the right-to-left models
were then used to re-rank the outcomes from the
left models. The process resulted in 20,370 texts
and 16,292 delexicalized templates in German.

5 Automatic extraction process

In both English and (translated) German versions
of the corpus, we used the original texts and the
delexicalized templates to automatically extract a
collection of referring expressions and discourse
ordering information.

5.1 Referring expression collection

For both English and (translated) German ver-
sions, we automatically extracted a collection
of referring expressions by tokenizing the orig-
inal texts and delexicalized templates, and then
finding the non-overlapping items. For in-
stance, by processing the text in Figure 1 and
its delexicalized template in Figure 2, we ex-
tracted referring expressions, for instance, “The
Appleton International Airport” to 〈 AGENT-

1, Appleton International Airport 〉, “Greenville,
Wisconsin” and “Greenville” to 〈 BRIDGE-1,
Greenville, Wisconsin 〉, “the town of Menasha”
to 〈 PATIENT-3, Menasha (town), Wisconsin 〉. In
total, we obtained 86,345 referring expressions to
1,771 Wikipedia entities and constants, in which
72.6% (62,689) are proper names, 4.9% (4,230)
pronouns, 22.13% (19,108) descriptions and 0.4%
(318) demonstrative referring expressions.

5.2 Discourse Ordering

As depicted in Figure 1, each instance of the orig-
inal WebNLG corpus consists of a set of triples
and its respective text. However, in many cases,
the order in which the triples are introduced in the
set is not the same in which they are realized in
the text. For instance, in Figure 1, the triple 〈 Ap-
pleton International Airport, cityServed, Apple-
ton, Wisconsin 〉 is the third argument expressed
on the text, while it is represented as the 5th (last)
one in the input set of triples. This is just a singular
example of others that even exist in this instance.
In order to solve the problem, we noticed that we
could extract the order of the arguments in the text
by looking into the order of the general tags in the
delexicalized template, as Algorithm 1 shows.

The algorithm iterates over the words in a tem-
plate (lines 4-16). If a word is a general tag (line
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Algorithm 1 Discourse ordering pseudo-code
1: function ORDER(tripleset, template)
2: orderedset← ∅
3: prevTags← ∅
4: for all word ∈ template do
5: if ISTAG(word) then
6: for all prevTag ∈ prevTags do
7: triples← tripleset[prevTag, word]
8: if |triples| > 0 then
9: triple← triples[0]

10: orderedset← orderedset ∪ triple
11: tripleset← tripleset \ orderedset
12: end if
13: end for
14: prevTags← prevTags ∪ word
15: end if
16: end for
17: return orderedset
18: end function

5), the algorithm looks for a remaining instance
on the triple set which relates the visited tag with
a previous visited one (line 7). If a triple is found
(line 8), this one is added on the ordering list (line
10) and removed from the input set (line 11).

6 Discussion

This study introduced an enriched version of the
WebNLG corpus, easily usable on the evaluation
of popular tasks of pipeline NLG models as Dis-
course Ordering, Lexicalization, Aggregation and
Referring Expression Generation. Moreover, a
silver-standard version of the corpus in German is
provided, hopefully making it more useful for the
exploration of NLG in other languages or for the
study of Multilingual Surface Realization (Mille
et al., 2018). We discuss below the main aspects
of our results.

Delexicalization This process was applied to
obtain 16,661 English templates and, after the
translation process, 16,292 German templates.
These representations can be used in the develop-
ment of template-based NLG systems or Lexical-
ization models.

Automatic extraction process Using original
texts and templates, we extracted important inter-
mediate resources from the corpus, as a collection
of referring expressions and discourse ordering in-
formation for English and (silver-standard) Ger-
man. The former resource can be used to eval-
uate referring expression or wikification models,
whereas the second may be a good resource for
discourse ordering, content planning, and also for
the aggregation task when combined with sentence

tokenization information.

Translation While analyzing the translations
from English to German, we could perceive that
the NMT system did not face any big problem
for translating the delexicalized templates. The
main challenge was faced with transliterations and
coreferences in the texts. The genitive case is
an example, as in “Elliot See ’s Besatzung war
ein Testpilot.”, where the apostrophe (’s) is placed
wrongly. The same happens to the sentence “Bill
Oddie Tochter ist Kate Hardie”, where the name
“Oddie” should have had the “s” in the end of this
German sentence. In terms of transliterations, the
preposition “von” played a key role in the chal-
lenge, as in the case of the reference “University
of Texas”, wrongly transliterated to “Universität
von Texas” instead of the correct form “Univer-
sität Texas”. These problems are well-known in
WMT English-German tasks and still take a place
even using the best NMT model (Koehn, 2009;
Bojar et al., 2017b).

Conclusion This study aimed to enrich the
WebNLG corpus, facilitating its use in popu-
lar tasks of pipeline NLG models as well as in
other languages than English. In future work,
we envision translating the corpus for other mor-
phologically rich languages, as Brazilian Por-
tuguese (Moussallem et al., 2018). Furthermore,
we intend to experiment and come up with good
automatic methods to improve the aforementioned
challenges and generate useful silver-standard re-
sources for NLG.
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Abstract

This paper presents a study to understand
the issues related to using NLG to hu-
manise explanations from a popular in-
terpretable machine learning framework
called LIME. Our study shows that self-
reported rating of NLG explanation was
higher than that for a non-NLG expla-
nation. However, when tested for com-
prehension, the results were not as clear-
cut showing the need for performing more
studies to uncover the factors responsible
for high-quality NLG explanations.

1 Introduction

Machine Learning (ML) models are making ever
greater numbers of decisions that affect user’s
lives. Many of these models are not interpretable
and cannot be readily understood by the average
person. This non-interpretability reduces user’s
acceptance of the models and their ability to make
informed decisions, such as challenging an incor-
rect decision. Recently interpretable ML has been
becoming an increasingly important field in ML
(Chakraborty et al., 2017).

In this paper, we describe a small explanation
system, where a Deep Neural Network is used
to make a decision in the area of credit. Then
an explanation of this decision is generated us-
ing the popular ML explanation framework LIME
(Ribeiro et al., 2016). The explanation generated
by LIME is only a list of features and their impor-
tance to the decision. The experiment in this pa-
per compares people’s understanding of this LIME
explanation against an NLG interpretation of the
same data, to test if NLG generates more inter-
pretable explanations of ML decisions than unin-
terpreted output.

2 Related work - models & explanations

The number of decisions made by Machine Learn-
ing (ML) is increasing rapidly, due to the improve-
ment in techniques, an increase in available data
and the use of the Internet. Many of these ML de-
cision models are black boxes (BB) whose work-
ings cannot be easily understood. It has become
essential that these ML decision models become
interpretable for both deployers of BB models to
be certain that they are working correctly and for
consumers to trust that the BB are making correct
decisions about them, and are doing so in a fair and
accountable way. Recent changes in Data Protec-
tion laws, such as the E.U.’s GDPR have increased
discussion about the ‘right to explanation’ about
ML decisions. Because of these factors, the field
of Interpretable ML has become increasingly im-
portant.

With the rapid growth of Interpretable ML
a number of surveys of the field have been
published recently. Biran and Cotton (2017)
briefly survey the whole field of interpretable ML,
whereas Chakraborty et al. (2017) take a narrower
view only describing interpretable deep learning.
Guidotti et al. (2018b) have a wide-ranging sur-
vey of the field of interpretable ML, while Ab-
dul et al. (2018) survey the field of explanation
through time, and how the field has evolved.

Interpretable Ml requires a solid, agreed defini-
tion of what ‘Interpretability’ is.‘Interpretability’
according to Lipton (2016) is important but has no
agreed definition concerning machine learning, in
this paper we use the definition of interpretabil-
ity from Guidotti et al. (2018b) that interpretabil-
ity is the extent to which a person can understand
a model and its predictions. Lipton states that an
interpretable model is necessary when the output
of the system (typically predictive performance) is
mismatched with what is wanted in the real world
outside of the model, e.g. fairness or accountabil-
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ity.

It has been noted in some surveys that cognitive
science is under represented in explaining ML, a
good understanding of how people interact with
and understand ML is essential in making ML in-
terpretable. Both people and machines understand
the world by using models.

People use mental models to understand the
world, these are conceptual in nature and are a
simplify the part of the world being modelled
to form the most parsimonious representation of
the world possible (Johnson-Laird, 2010). Men-
tal models struggle to represent modern ML de-
cision models well because these decision models
are mathematical (rather than conceptual) in na-
ture and the decision models are too large for the
mental model to contain all of the details of the
decision model simultaneously.

The lack of understanding of the ML decision
model by the users mental model is represented by
a gap between the models in (Martens and Provost,
2014) . The more significant the difference be-
tween the two models, the lower the understand-
ing of the mental model is and the larger gap be-
tween the models is. Martens and Provost (2014)
propose that the mental models understanding of
the decision model can be increased by providing
explanations of the decision model, these expla-
nations cause change in the mental model mak-
ing it more similar to the decision model, increas-
ing understanding and reducing the gap between
them. Keil (2006) states explanations while ca-
pable of causing change in models are not mod-
els themselves but are shallower containing less
information. Moreover, that a successful expla-
nation that increases the recipients understand-
ing.Hoffman and Klein (2017) state that a success-
ful explanation can be used by people to perform
causal reasoning, this enables them to understand
current and past events, and predict future events,
often using minimal amounts of information.

Many new tools for explaining ML decision
models are becoming available these are of two
types. The first are Decompositions that decom-
pose the BB model into its constituent parts and
generate an explanation from them, an example of
this technique is the Layer-wise Relevance Prop-
agation described in (Montavon et al., 2017) ,
these explanation techniques have the advantages
of the explanation being generated directly from
the decision model, but are not transferable from

one decision model type to another. The second
Model-agnostic or Pedagogic techniques use the
BB model as an oracle to train a new interpretable
model which have the advantage of being able
to be used on any type BB model but have the
disadvantage on explaining a proxy for the deci-
sion model rather than the decision model itself.
Examples of these model-agnostic techniques are
LIME (Ribeiro et al., 2016) and LORE (Guidotti
et al., 2018a). The outputs of these techniques are
claimed to be interpretable, but the interpretability
of these techniques are not evaluated.

It is necessary to have to evaluate the effective-
ness of explanations for users, to see which ex-
planations are best. Lipton (2016) states that a
claim of post-hoc interpretability should be clearly
stated and provide evidence that the interpretabil-
ity achieves it. Doshi-Velez and Kim (2017) pro-
vide guidelines for evaluating interpretability, and
how to report findings of interpretability.

3 Explanation System

The system to create explanations for an ML deci-
sion, was a pipeline, starting with the data which
was preprocessed and used to train the decision
model. Then LIME was used to create a non-NLG
explanation. Finally, the LIME output was used to
create the NLG explanation, using a standard NLG
pipeline as described by Reiter and Dale (1997).

3.1 Data

Because people are familiar with, and accepting
of, credit applications being made by machines,
the credit domain was chosen for creating expla-
nations. The experiment used the German credit
dataset; a publicly available (in the UCI data
repository) anonymised dataset commonly used
for creating machine learning models (Dheeru and
Karra Taniskidou, 2017).

Because the dataset in over 20 years old, some
attributes were removed for being irrelevant, due
to their age. Some attributes were removed for be-
ing personal information. Because this dataset was
also used with non-Deep Learning decision mod-
els attributes that did not correlate strongly with
the output class or that were dependent on or cor-
related with each other attributes were removed.
Despite this not being essential for Deep Learning
models.
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Figure 1: Non-NLG explanation

An automated explanation tool has been used to create the explanation below. It shows the influence
each variable’s value had on the algorithm. Positive numbers show the variable’s value influenced
the algorithm to give credit, negative numbers to refuse credit.

Input variable Value Influence on the decision
current account in debit -0.4091315961509456
assets none known -0.16429229114114663
savings account less than 100 -0.1519065430658803
housing free 0.08866542959656763
duration 24 -0.07703124519323554
credit history delayed payments 0.06072233355420254
other credit none 0.039698419547181805
credit value 4870 -0.03375140928142564
purpose car(new) 0.0075587254522344096

3.2 Decision Model
A Deep Learning Neural Net was used as the
classifier, because this type of model net is com-
monly used in credit decisions, and is a black
box that is not interpretable without the use of
an explanation tool. The model was imple-
mented using the python scikit library, using the
sklearn.neural network.MLPClassifier using three
hidden layers (Pedregosa et al., 2011). Before
training the model, the first fifty instances were re-
moved from the dataset to create a set of instances
to be explained later, that the classifier had never
seen. The remaining instances were used to train
the classifier, by use of cross fold validation.

The classifier had an accuracy of 0.737, a preci-
sion of 0.781, a recall of 0.887 and an f-measure
of 0.887.

3.3 LIME
LIME is a model-agnostic (or pedagogic) expla-
nation module created by Ribeiro et al. (2016)
that can give an explanation of the decisions of
any black box classifier. The key intuition behind
LIME is that a complex global decision boundary
can be approximated to a linear model locally to
the instance being explained.

LIME takes the instance to be explained, sam-
ples and weights instances close to it. Then uses
the black box classifier as an oracle to relabel these
local instances and generate a local linear model
from them. The output of LIME is a list of tuples
of attributes of the instance with a numeric im-
portance value. The non-NLG explanation is the

LIME output converted from an array of tuples to
a table (Ribeiro et al., 2016). The non-NLG expla-
nation is shown in figure 1 .

3.4 NLG
The NLG explanation is a textual interpretation
generated using the values from the LIME expla-
nation, using the NLG pipeline (Reiter and Dale,
1997). A template approach was used for the doc-
ument planning and microplanning, this produced
an ordered set of sentences. The ordering of the
sentences was decided by describing the attributes
from the most influential to the least, according to
the ranking from LIME explainer.

In order to make the differences in understand-
ing between the non-NLG and NLG explanations,
only due to the presentation of the explanation,
both the non-NLG and NLG explanations used all
the attributes.

The sentences are realised and then formed into
paragraphs by using SimpleNLG (Gatt and Reiter,
2009). The NLG explanation is shown in Figure 2
.

4 Experiment

An experiment was conducted to test if NLG
or non-NLG explanations of algorithmic decision
making are better at improving the understanding
of their recipients. Participants were shown either
NLG or non-NLG explanations, and then asked
how well they understood the decision, while also
asking questions that test specific parts of their un-
derstanding of the decision.
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Figure 2: NLG explanation
An automated explanation tool has been used to
create the explanation below. It shows the influ-
ence each variable had on the decision to give or
refuse credit.
The decision reached by the algorithm is to refuse
credit. The explanation tool has examined the
values of the input variables. Their total influ-
ence on the algorithm was 81.0% to refuse credit,
versus 19.0% to give credit.
The single greatest contribution to the deci-
sion is from the variable ‘current account’ with
the value of ‘in debit’ this produced 40% of
the whole decision, influencing the algorithm to
refuse credit. Other important variables were
‘assets’ with the value ‘none’ and ‘savings ac-
count’ with the value ‘less than 100’, these influ-
enced a decision to refuse credit.
Minor influences on the algorithm to refuse credit
were ‘duration’ with the value ‘24’ and ‘credit
value’ with the value ‘4870’. Minor influences on
the algorithm to give credit were ‘housing’ with
the value ‘free’, ‘credit history’ with the value
‘delayed payment’, ‘other credit’ with the value
‘none’ and ‘purpose’ with the value ‘car (new)’.

The experiment was conducted as an unsuper-
vised web survey. 39 participants were recruited
via social media and were split into two groups
for a between groups study.

One group saw the non-NLG explanation (Ta-
bles 1), and the other saw the NLG interpretation
(Table 2). There were 16 participants in the non-
NLG group, and 23 participants in the NLG group.
The reason for the imbalance in the groups was an
error in the software used to run the experiment,
that distributed the groups unevenly. Both groups
were then asked the same questions.

The null hypothesis for this experiment is that
‘There is no difference between the groups receiv-
ing the NLG and non-NLG explanations’.

Ethical approval for the experiment was granted
by the University of Aberdeen Physical Sciences
and Engineering Ethics Board.

4.1 The Data Instance Explained

The type of decision that people will most want
likely to want an explanation of, is a negative de-
cision against the person, where they feel that their
data merits a positive decision. To simulate this an

instance was selected from the explanation set that
was classified by the decision model as negative,
but where in the decision set it was positive.

To keep the experiment time for the participants
to around 10 minutes, the participants were tested
on only one example.

4.2 Questions

The questions asked of the participants were of
two types: Questions where the participants self-
reported: the ease of reading (Q1), if they under-
stood the decision (Q6) and if they would trust a
decision with this explanation (Q7). Also, ques-
tions that tested the participants understanding of
the explanation, by asking them which variable
was the most important (Q2), which variables had
a positive influence (Q3) or a negative influence
(Q4) on the decision, or if the decision was close
(Q5). The number of questions that test under-
standing was few, because of an aim to have the
participants finish the experiment in around ten
minutes. Both groups saw the same questions.

4.3 Demographic Information

The gender profile of the experiment skewed heav-
ily towards males with of the 31 of the 39 partic-
ipants, reporting as ‘male’. The education profile
of the experiment skewed towards the highly ed-
ucated with only 4 participants not reporting as
having at least a Bachelor’s degree and 19 of 39
participants having at least a Master’s degree.

5 Results

The results are shown in Table 1.
The participants self-reported understanding

was significantly higher for the NLG group than
for the non-NLG group. For the questions that
tested the comprehension of the decision: For
Q2‘Most influential variable’ there is no signifi-
cant difference between the groups. For Q3 & Q4
‘Positive and negative variables’, the non-NLG ex-
planation group performed best, but only signifi-
cantly better for Q3. A learning effect between Q3
and Q4 cannot be ruled out. For Q5 ‘Decision is
close’ the NLG explanation group performed sig-
nificantly better.

Both groups of participants reported that they
would trust a decision reached by the algorithm
more if it came with the explanation provided(Q7).
There was no significant difference between the
groups. There was no significant difference be-
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Table 1: Table of Questions & Results

Q# Question Answer Type Test non-NLG NLG p
1 Ease of reading 5 point Likert Mann 3.13 (1.586) 3.96 (1.186) 0.399

Whitney
2 Most influential select one χ2 0.81 (0.403) 0.91 (0.288) 0.622

variable
3 Positive variables select all χ2 0.90 (0.303) 0.64 (0.482) p<0.0001

that apply
4 Negative Variables select all χ2 0.93 (0.262) 0.83 (0.374) 0.113

that apply
5 Decision is close 5 point Likert* Mann 2.00 (0.765) 1.30 (1.033) 0.037

Whitney
6 Understanding 5 point Likert Mann 3.63(1.204) 4.35 (0.885) 0.043

Whitney
7 Trust 5 point Likert Mann 4.06(1.181) 4.35 (0.935) 0.471

Whitney

* For this question the correct answer is 1 (Disagree Strongly). This means that unlike for other questions
where high mean values are good, low mean values are good.

tween the groups for the ease of reading of the ex-
planation and interpretation (Q1).

6 Discussion & further work

The group receiving the NLG explanation had a
significantly greater self-reported understanding
of the decision, compared to the non-NLG group.
However, this was not clearly shown by the an-
swers to the comprehension questions, with the
explanations performing better for different ques-
tions.

The questions need to be improved, to be more
precise and independent of each other. A good
explanation would allow the participant to reason
about the causes of the decision. However, the
current questions do not test if the participants
can use causal reasoning on the explanation well
enough. Because Q2, Q3 and Q4 ask the partic-
ipants to identify causes but not to reason about
them. While Q5 does ask the participants to use
causal reasoning more, a better example of a ques-
tion to ask is ‘should this decision be challenged
?’, answering this would demonstrate if the ex-
planation of the decision has given the participant
enough understanding to reason about the deci-
sion.

The NLG treatment of the explanation needs
improvement, the current text to be as similar to
the non-NLG explanation as possible, mentions
every variable. This overloads the participant

with too much information. The NLG should be
changed to only mention those variables that are
important causes of the decision.

Because there is only one decision explained in
this experiment there is a risk that the results of
this experiment will not generalise to other deci-
sions, further work should include more than one
decision. The experiment should include other
types of decision models such as Decision Trees.
Also, the experiment should be extended to other
types of explanations such as case-based or coun-
terfactual explanations.

7 Conclusions

This paper is a scoping study into a method for
evaluating explanations.

The NLG explanation produced a higher self-
reported understanding than non-NLG explana-
tion. However, this was not supported by testing
the comprehension of participants understanding.
Further work is required to produce questions that
give a better test of the participants understanding
and that make the participants use causal reason-
ing.
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Abstract

This paper presents a new version of a
football reports generation system called
PASS. The original version generated
Dutch text and relied on a limited hand-
crafted knowledge base. We describe how,
in a short amount of time, we extended
PASS to produce English texts, exploit-
ing machine translation and Wikidata as a
large-scale source of multilingual knowl-
edge.

1 Introduction

One of the advantages of natural language gener-
ation is the possibility of producing multilingual
texts, e.g. for describing the same data in mul-
tiple languages that are familiar to different user
groups. Within the extensive literature on NLG,
however, relatively few systems have dealt with
the problem of multilingual generation, despite the
fact that NLG systems for many languages have
been developed. It is telling that even the recent
NLG survey by Gatt and Krahmer (2018) does not
mention it directly.

One of the problems that hinder multilingual
NLG research is the additional work required for
generating text in different languages. In complex,
grammar-based surface realizers such as KPML
(Bateman, 1997) and FUF/SURGE (Elhadad and
Robin, 1996), adding a new language requires de-
veloping a new grammar, a difficult and time-
consuming step. Even statistical approaches to
NLG, such as those used by OpenCCG (White and
Rajkumar, 2009) or recent multilingual systems
(Dušek and Jurčı́ček, 2013; Mille et al., 2016), re-
quire some kind of multilingual knowledge base,

or at least a large multilingual lexicon. For Sim-
pleNLG, the simplest surface realisation system
currently available, it took five months to create a
bilingual English-French version (Vaudry and La-
palme, 2013).

Multilingual template-based systems often do
not suffer from this problem. The domain is
usually limited, such as in the case of reports
on weather (Chevreau et al., 1999) or air qual-
ity (Busemann and Horacek, 1997), hence a small
lexicon is sufficient; in many cases, even the
knowledge base is unlikely to periodically need
major revisions. The latter is not the case for
sports report generation, however: in football, the
composition of each team can vary from season to
season, a new team can get promoted into a league
from a lower one, or a new player might have a
nickname in a language that is not used in another
language (e.g. Gabriel Batistuta was known in
Italy as “Batigol” or “Re Leone”, while Spanish
speakers nicknamed him “El Ángel Gabriel”).

In this paper we present our efforts in dealing
with these issues, that we have faced while adding
a new language to PASS (van der Lee et al., 2017),
a template-based generation system that produces
football match reports in Dutch.

Our contribution is twofold. First, we added the
possibility to generate English reports, while lim-
iting the changes to the current architecture and
without losing support for Dutch. Second, instead
of using a hand-crafted local knowledge base, we
have integrated the system with the knowledge
present in Wikidata. Since the website where
PASS collects game statistics reports data about
most national leagues, this extension makes it pos-
sible to exploit the full potential of the system.
That is, generating reports of consistent quality for
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<xml>
<MatchData>
<Highlights>
<League>Eerste Divisie</League>
<StartDate>October 30, 2015</StartDate>
<StartTime>19:00</StartTime>
<Stadium>Mitsubishi Forklift-Stadion</Stadium>
<City>Almere</City>
<Attendees>906</Attendees>
<Home>
<Team>Almere City</Team>
<GoalScorersList>
<Goal GoalId="1" Minute="45" OwnGoal="n">

K.Tadmine</Goal>
<Goal GoalId="2" Minute="85" OwnGoal="n">

R.Kip</Goal>
</GoalScorersList>
<FinalGoals>2</FinalGoals>

</Home>
<Away>
<Team>Achilles ’29</Team>
<GoalScorersList>
<Goal GoalId="1" Minute="19" OwnGoal="n">

B.vandeBeek</Goal>
</GoalScorersList>
<FinalGoals>1</FinalGoals>

</Away>
</Highlights>
<Events>
<YellowCardList>
<YellowCard YellowCardId="1" Minute="36">
N. Mamedov</YellowCard>

</YellowCardList>
<YellowRedList/>
<OwnGoalList/>

Figure 1: An excerpt from the XML files gener-
ated by scraping Goal.com.

potentially every match; with the original version,
the system could not do that, as the information
about teams was contained in a limited knowledge
base created by the authors of PASS.

The paper is structured as follows. Section 2
gives an overview of the original PASS system
and the reports it can generate. Sections 3 and 4
describe how the templates were translated, and
other issues that needed to be addressed when ex-
panding the system to generate a new language. In
Section 5 we describe how Wikidata can be a use-
ful resource for template-based NLG systems, and
how we integrated it in our version of PASS. Fi-
nally, in Section 6 we present our conclusions and
possible improvements for the system.

2 The PASS NLG system

The starting point for this work was PASS (van der
Lee et al., 2017), a modular, open-source and
publicly-available1 natural language generation
tool. PASS is based on templates, and gener-
ates football reports in Dutch, starting from match
statistics. For each match, two reports are pro-
duced, one for the supporters of each club that

1https://github.com/TallChris91/PASS

played the match; the aim is generating a report
that uses tailored emotional language, e.g. ex-
pressing disappointment for the loss or excitement
for the victory. The templates were manually cre-
ated, starting from an “affective soccer corpus”
(Braun et al., 2016), i.e. summaries of the matches
as published by the opposing teams, in which the
emotional investment is clear.

PASS reports are composed of a title, summa-
rizing the final result, a general introduction that
gives information about the opponents or the team
expectations, a summary of the game course and
its events, and a final debriefing with the outcome
for the team.

A brief overview of the general architecture of
PASS follows.
Starting data. First, the game statistics are
scraped from Goal.com. Data about the match (fi-
nal result and statistics for each team, who scored
and when, who was given a card by the referee),
the two teams, their players, the referee and the
venue (such as location, name of stadium and
number of attendees) is converted to XML (Fig-
ure 1).2

Governing module. It controls the overall pro-
cess, and shuffles data across the different mod-
ules, that are run in succession.
Lookup module. It deals with the template
database, providing to the following modules the
templates that match the result of each team (i.e.
templates for win, loss or tie).
Ruleset module. It considers the game statistics,
and depending on the results decides what tem-
plates are actually usable, for example discarding
those mentioning an “equalizer goal” if the score
was never even during the match.
Template selection module. It selects the tem-
plates to be used among the possible templates,
privileging those that are more descriptive of the
match events.
Template filler module. It replaces placehold-
ers in templates (e.g. <stadium>) with the corre-
sponding piece of information in the match data.
Topic collection module. It decides what topics
need to be reported for each team, and orders them
chronologically according to the match data, thus
ensuring that the second goal is not reported be-

2For an exhaustive list of what is actually scraped and
stored by the system, see (van der Lee et al., 2017, §3.1).
The XML file of Figure 1 can be found at https:
//github.com/TallChris91/PASS/blob/
master/InfoXMLs/AC_ACH_30102015_goal.xml
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fore the first goal, for example.
Text collection module. It structures the text in
the order previously mentioned, i.e. title, intro-
duction, summary and debriefing.
Information variety module. It replaces tem-
plates that express the same information multiple
times in the same report.
Reference variety module. It generates different
referring expressions when repetitions are present,
e.g. changing “Ajax” into “the club of manager
Peter Bosz” if “Ajax” is mentioned in two subse-
quent sentences.
Between-text variety module. It keeps track of
how the previous reports were generated, mini-
mizing the repetition of templates across different
reports.

3 Translating the templates

As mentioned in section 1, the version of PASS
released by van der Lee et al. (2017) generates re-
ports in Dutch only. To create the English version
of PASS, we used Google Translate to translate the
content of Dutch templates to English. After the
automatic translation, each template was manually
corrected, restoring garbled placeholders and fix-
ing the mistakes that are inevitably introduced by
the translation system. This allows even a person
with limited knowledge of Dutch to translate the
text of the templates, without requiring the inter-
vention of a professional translator or of a bilin-
gual person.

PASS templates consist of a string of text with
one or more placeholders enclosed in angular
brackets, such as “<focus team> verliest <in
eigen huis; home|op bezoek; away;; homeaway>
van <final remaining players other team> tal
<other team>.” Placeholders can be either “sim-
ple”, such as <focus team>, where the template
filler will simply insert a proper name or number,
or they can contain a conditional statement (akin
to a switch-case construct), such as in <in eigen
huis; home|op bezoek; away;; homeaway>. In
this case, the homeaway variable can contain ei-
ther “home” or “away”; in the former case, this is
replaced with “in eigen huis”, while in the latter
the text becomes “op bezoek”. Some Dutch tem-
plates, their automatic translations and the revised
versions are shown in Table 1. A sample report in
English is shown in Figure 2.

Depending on the placeholder type and on the
sentence, two problems can arise in translation:

In Amsterdam, PSV took three points thanks to goals
from Gastón Pereiro. An eager Philips Sport Verenig-
ing won Sunday with 1-2 against Ajax.
After 7 minutes the result was already written, thanks
to Gastón Pereiro. After 10 minutes the equalizer from
Amin Younes hit the net: 1-1. In the 79th minute, mid-
fielder Gastón Pereiro decided the game by hitting the
1-2 with the help of midfielder Jorrit Hendrix.
Referee Nijhuis was forced to give 7 yellow cards to
Jeffrey Bruma, Andrés Guardado, Kenny Tete, Jürgen
Locadia, Joël Veltman, Mitchell Dijks and Gastón
Pereiro.

Figure 2: A sample report targeted to PSV sup-
porters .

either the brackets are incorrectly put in the trans-
lated sentence (e.g. one of the angular brackets
is missing, or spaces are introduced between the
placeholder text and the brackets, confusing the
template-filler module), or they are unnecessary
(as in the second example of Table 1). In both
cases, the correction is trivial.

Often, however, the translation has to be re-
worked in a more substantial way. Examples
of common errors are, for example, the order
of adverbs or phrases (Table 1, third example),
some gender-specific pronouns, or idiomatic ex-
pressions typical of football reporting (last ex-
ample in Table 1). Mistakes are inevitable with
current automatic translation systems (Hofstadter,
2018), and the presence of placeholders is likely to
decrease the output quality of the machine transla-
tion software, hence the relatively poor quality of
the translated output. Still, manually correcting an
automatic translation is more time-efficient than
producing a firsthand translation (Federico et al.,
2012; Green et al., 2013), and it allowed a non-
native speaker of Dutch to translate the templates.

4 Language-specific code

In addition to translating the templates from Dutch
to English, the generation code also needed some
changes.

A new placeholder had to be introduced in
the templates, to solve the problem of ordi-
nal numbers: in Dutch, ordinals are indicated
with an “e” following the number (e.g. “na
de <minute>e minuut”, meaning “after the
<minute>th minute”). In English templates,
<th> was introduced, and the code was extended
to replace this placeholder with “st”, “nd”, “rd” or
“th”, depending on the preceding number.

Still in the template filler, Dutch conjunctions,
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Dutch template <focus team> verslaat <other team>: <final home goals>-<final away goals>

Translation <focus team> beats <other team>: <final home goals>-<final away goals>

Dutch template <focus team> leed afgelopen <day><ochtend; morning|middag; afternoon|avond; evening;;
daytime> een <thuis; home|uit; away;; homeaway> nederlaag tegen <other team>.

Translation <focus team> suffered last <day> <morning; morning | afternoon; afternoon | evening;
evening ;; daytime> a <home; home | out; away ;; homeaway> defeat against <other team>.

English template <focus team> suffered last <day><daytime><a home; home|an away; away;; homeaway>
defeat against <other team>.

Dutch template <red player> zou na <minute> minuten met een rode kaart het veld moeten verlaten.

Translation <red player> should leave the field after <minute> minutes with a red card.

English template <red player> had to leave the field with a red card after <minute> minutes.

Dutch template <goal scorer> ontvangt de bal van <assist giver> en jaagt het leer de winkelhaak in: <home
goals>-<away goals>.

Translation <goal scorer> receives the ball from <assist giver> and chases the leather into the square:
<home goals> - <away goals>.

English template <goal scorer> receives the ball from <assist giver> and gets the ball in the back of the net:
<home goals>-<away goals>

Table 1: Samples of Dutch templates, their automatic translations and the corrected English templates.

weekdays and phrases such as “geen spelers” (“no
players”) were translated to English. Similarly, in
the reference variety module, we had to translate
multiple strings in the code that deals with refer-
ring expression generation.

These language-specific code changes are fairly
limited due to the similarity between the Dutch
and English grammar. The whole process of port-
ing PASS to English took about a month and a half,
with most of the time spent translating the tem-
plates. Languages with a richer morphology, or a
complex grammatical case system, might instead
require the insertion of grammatical information
in the templates, an extensive lexicon, and the de-
velopment of more extensive code for sentence re-
alization.

5 Multilingual knowledge

Since the original version of PASS was generating
reports in Dutch, its focus was on the Dutch first
and second leagues. Given the limited number of
teams that take part in these leagues, the system
relied on a small local knowledge base, manually
constructed by the authors, consisting of just 37
entries. For each team it contained name, league,
city of provenance, and a list of nicknames.

This solution, however, seemed inadequate for
a multilingual system. Toponyms are sometimes
translated (e.g. The Hague is called “Den Haag” in
Dutch, while “Londen” is the Dutch name of Lon-
don), and nicknames are not necessarily shared

in different languages (e.g. the case of Batis-
tuta mentioned in the Introduction). Furthermore,
Goal.com is a comprehensive website, containing
game results for most national leagues, so a lim-
ited hand-crafted knowledge base would cripple
the potential of the system. To produce accurate
reports, such a knowledge base would also need to
be updated whenever a change in the leagues oc-
curs, e.g. a team being promoted or demoted to a
different league. To sidestep these issues, we de-
cided to exploit Wikidata instead.

Wikidata3 is a a free collaborative, multilin-
gual database of structured data (in contrast to
Wikipedia, which contains data in unstructured
form). Wikidata is akin to DBpedia and similar
projects. Wikidata can be seen as a collection of
items (e.g. item Q20110, representing the Italian
football player Francesco Totti), each consisting
of a label, a description and a number of possible
aliases. Each of these can have different language
localizations; hence, while the label “Francesco
Totti” will be the same for all languages,4 the
description will vary (“Italian footballer” for En-
glish, “Italiaanse voetballer” for Dutch), and so
will the list of aliases (since in the Italian league
nicknames are common, the list of aliases for Ital-
ian includes “il Capitano”, “il Gladiatore”, “er
Pupone” and so on). Each item is also associ-

3https://www.wikidata.org
4That is, ignoring the transliterations for Arabic, Chinese

and other alphabets and writing systems, which can also be
present in Wikidata.
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ated with a list of statements, i.e. properties and
values that describe known facts about the item.
Item Q20110 (Totti) has property P413 (“posi-
tion played on team/speciality”), whose value is
Q193592, i.e. the item “midfielder” (or “mid-
denvelder”, according to the Dutch label of entity
Q193592).

The advantages of using Wikidata in a template-
based system like PASS are many. It is mul-
tilingual, hence allowing the production of re-
ferring expressions such as “the club from The
Hague” and “de club uit Den Haag”, where ev-
ery element including the city name is translated.
It is a large-scale resource, containing structured
knowledge that spans from major clubs, such as
Ajax (Q81888), down to Cambridge United F.C.
(Q18509) or NK Vinogradar (Q1348301), two
teams playing in the third leagues of England and
Croatia respectively. It is arguably more reli-
able and up-to-date than similar alternatives such
as DBpedia, where content is automatically de-
rived from Wikipedia instead of manually cu-
rated.5 Last but not least, it seems that the foot-
ball domain is among those with the most cover-
age (Fossati et al., 2017).

The integration of PASS and Wikidata is done
in the Template Filler module; there, the Media-
Wiki API6 is used to look for a string literal (e.g.
“VVV”). This results in a list of items, such as
Q25505492 (a student loan system), Q631778
(a magazine), Q1866807 (a women’s football
club from Venlo) and finally Q24689, the actual
football club from the Dutch city of Venlo. To
disambiguate between these entities, the algorithm
looks for the first one whose property “instance
of” (P31) has value “association football club”
(Q476028). Once we have obtained an entity
from Wikidata, information about that entity can
be found in the system by looking at the relevant
properties, and their label in the appropriate lan-
guage -either Dutch or English- can be used to fill
the template in.

For football clubs, the city of provenance, the
name of the trainer and club nicknames can be
found. For players, the nicknames and roles can
be extracted. More information is available, and
could potentially be used in future versions of the
system, if the template placeholders or the refer-
ring expression generation module are extended.

5For an an extensive comparison between Wikidata and
similar resources, see (Färber et al., 2016).

6WbSearchEntities and WbGetEntities in particular.

6 Conclusions and future work

The version of PASS presented in this paper is able
to generate reports both in Dutch and English, and
will soon be available online.

However, as described in Section 3, the current
templates consist of a translation of the original
Dutch templates, and hence may sometimes con-
tain direct translations of idiomatic expressions
that are not necessarily typical of English sports
reporting.

In this perspective, better templates could be
produced by repeating the same methodology used
for creating the original PASS templates, i.e. start-
ing from a corpus of English reports and manually
annotating some sentences, replacing the entities
therein contained with placeholders. The original
corpus of PASS contains reports in Dutch, English
and German (Braun et al., 2016), hence it would
be appropriate for this task.

Moreover, as suggested by van der Lee et al.
(2017), an automatic method of generating tem-
plates could be used to increase the number of
templates, or to quickly introduce a new language.

Similarly, a more varied output could be ob-
tained by adding strategies for lexical variations
(Gatti et al., 2014): after generating the sentence
from a template, the text is parsed and words are
inserted, replaced or removed according to a lan-
guage model. Hence, a template mentioning an
“amazing goal” could result in a sentence describ-
ing a “great goal”, or a “beautiful goal”, without
the need to add grammatical and semantic mark-
ers inside the templates.

In any case, an evaluation of the English gen-
erated texts should be performed, and the re-
sults compared with those of the Dutch version of
PASS. As reported by van der Lee et al. (2017,
2018), readers were clearly able to distinguish the
team for which a report was tailored, and found
acceptable levels of clarity and fluency for the
reports, while the correctness of the information
given is even higher than in human-written reports.
We expect the English version of PASS to obtain
similar positive results.

We believe that the work here presented shows
how Wikidata can be an useful resource, thanks to
its extensive coverage - both in terms of knowl-
edge and languages present - and its dynamic na-
ture, and that it should be considered when devel-
oping multilingual NLG systems.
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and Margarita Alonso. 1999. Generación multil-
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Abstract

Stylistic variation is critical to render
the utterances generated by conversational
agents natural and engaging. In this paper,
we focus on sequence-to-sequence models
for open-domain dialogue response gener-
ation and propose a new method to eval-
uate the extent to which such models are
able to generate responses that reflect dif-
ferent personality traits.

1 Introduction

The advent of deep learning methods has led
to the development of data-driven conversational
agents for informal open-domain dialogue (see
Serban et al., 2016a, for a review). These chat-
bot systems model conversation as a sequence-to-
sequence (SEQ2SEQ) problem (Sutskever et al.,
2014) and rely on large amounts of unannotated
dialogue data for training. We investigate whether
such models are able to generate responses that re-
flect different personality traits. We test two kinds
of models: The speaker-based model by Li et al.
(2016b), where response generation is conditioned
on the individual speaker, and a personality-based
model similar to Herzig et al. (2017), where gen-
eration is conditioned on a personality type.

Evaluating the output of chatbot systems is re-
markably difficult (Liu et al., 2016). To make
progress in this direction with regards to person-
ality aspects, we propose a new statistical evalu-
ation method that leverages an existing personal-
ity recogniser (Mairesse et al., 2007), thus avoid-
ing the need for specialised corpora or manual
annotations. We adopt the Big Five psycholog-
ical model of personality (Norman, 1963), also
called OCEAN for the initials of the five person-
ality traits considered: Openness, Conscientious-
ness, Extraversion, Agreeableness, and Neuroti-

cism. Each of the traits is represented by a scalar
value on a scale from 1 to 7.

In the remainder of the paper, we introduce the
models we examine and describe our new evalua-
tion method. Our results show that the models are
able to generate output that reflects distinct per-
sonalities, over a baseline encoding chance per-
sonality variation. We conclude with a brief dis-
cussion on related work.

2 Dialogue Generation Models

The generation models we make use of are stan-
dard SEQ2SEQ models consisting of an encoder
LSTM, an attention mechanism, and a decoder
LSTM (Sutskever et al., 2014; Bahdanau et al.,
2015). The model processes context-response
pairs, where the context X = x1, x2, . . . , xm cor-
responds to the latest utterance(s) in the dialogue
and the response Y = y1, y2, . . . , yn is the utter-
ance to be generated next. The probability of the
response Y given the context X is predicted as:

p(Y |X) =
∏n

t=1 p(yt|y1, . . . , yt−1, X) (1)

The attention mechanism by Yao et al. (2015) is
used over the hidden states of the encoder LSTM
to generate a context vector ct that determines the
relative importance of the words in the context ut-
terance at each decoding step t. Then the proba-
bility of each word wk (k ∈ |V |, where V is the
vocabulary) to be the next word at step t is pre-
dicted with a softmax function:

Pt(wk) =
exp((W )k·f(ct,ht))∑|V |

k=1 exp((W )k·f(ct,ht))
(2)

where ht is the hidden state of the decoder LSTM
and f is an activation function. The weights of
matrix W ∈ R|V |×d are learned during training,
with d being the number of hidden cells.

Both the Speaker Model and the Personality
Model we describe below include 4-layer LSTMs
with 1024 hidden cells per layer.
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2.1 Speaker Model

Our starting point is the persona-based model by
Li et al. (2016b).1 In this model, each speaker is
associated with an embedding vvvs learned during
training. Whenever a response by speaker s is en-
countered during training, the corresponding em-
bedding vvvs is inserted into the first hidden layer of
the decoder LSTM at each time step (i.e., condi-
tioning each word in the utterance). The hidden
states ht of the decoder LSTM is thus calculated
as follows (where y∗t is the embedding of the re-
sponse word at time t, and g stands for the LSTM
cell operations):

ht = g(ht−1, y∗t , ct−1, vvvs) (3)

Li et al. (2016b) evaluated their model regarding
individual content (factual) consistency. Our goal
is to evaluate whether the model preserves individ-
ual stylistic aspects related to personality traits.

2.2 Personality Model

We modify the Speaker Model to allow for the
generation of responses reflecting different per-
sonality types. To this end, instead of leverag-
ing speaker embeddings, we estimate the OCEAN
scores for each speaker and insert a personality
embedding vvvo into the first layer of the LSTM de-
coder.2

OCEAN scores are 5-dimensional vectors o,
where each dimension ranges from 1 to 7. We nor-
malise them to the range [−1, 1] and then embed
them with a linear layer: vvvo = Wo · o−43 , where
Wo ∈ R5×d is learned during training, thus learn-
ing relationships between OCEAN trait values and
properties of the utterances. Whenever a response
with personality traits o is encountered, we insert
vvvo into the first hidden layer of the decoder LSTM.
Thus, the hidden states ht are now calculated as:

ht = g(ht−1, y∗t , ct−1, vvvo) (4)

This version of the model is similar to Herzig et al.
(2017).3 The authors focus on the customer ser-
vice domain and evaluate the model output’s style

1See http://github.com/jiweil/Neural-
Dialogue-Generation. We reimplemented the model
in PyTorch.

2The procedure for assigning OCEAN scores to a given
speaker is explained in the next section.

3Our personality model is a modified version of our reim-
plementation of the code by Li et al. (2016b) (see footnote 1).
The code by Herzig et al. (2017) is not readily available.

for only two personality traits with human evalu-
ation. In contrast, we deal with open-domain chat
and assess all OCEAN traits globally, using the
automatic method we describe Section 4.

3 Experimental Setup

3.1 Dataset

We use transcripts from two American situation
comedy television series: Friends4 and The Big
Bang Theory.5 We consider only those charac-
ters who contribute a minimum of 2000 turns,
which results in 13 characters (6 from Friends
and 7 from The Big Bang Theory). We assign
a unique speaker id to each character. In addi-
tion, we estimate the personality of each charac-
ter as follows: for each character, we randomly
select 50 samples of 500 utterances each, and es-
timate the OCEAN scores for each sample us-
ing the personality recogniser by Mairesse et al.
(2007), which exploits linguistic features from
‘Linguistic Inquiry and Word Count’ (Pennebaker
and King, 1999) and the MRC Psycholinguistic
database (Coltheart, 1981).6 We assign to each
character the OCEAN score resulting from taking
the arithmetic mean of the estimated scores for the
corresponding 50 samples.

We consider every two consecutive turns in a
scene to be a context-response pair and annotate
each response with either the speaker id or the
speaker’s OCEAN scores. The resulting dataset
contains ∼86k context-response pairs, of which
around 2000 pairs were randomly selected and re-
served for validation.

3.2 Training

Given the relatively small size of the TV-series
dataset, following Li et al. (2016b) we use the
OpenSubtitles dataset (Tiedemann, 2009) to pre-
train the model. OpenSubtitles is a large open-
domain repository containing over 50M lines from
movie subtitles. Since this data does not include
information on which character is the speaker of
each line, we simply take each two consecutive
lines to be a context-response pair. Due to limi-
tations regarding computational power, we lever-

4https://sites.google.com/site/
friendstvcorpus/

5https://bigbangtrans.wordpress.com/
6We choose this recogniser because it can estimate nu-

merical scores for each OCEAN trait, instead of binary clas-
sifications, and it’s open source. For more details, we refer
the reader to Mairesse et al. (2007).
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age only a subset of the dataset: ∼1.8M pairs for
training and ∼75k pairs for validation.

We train a standard SEQ2SEQ model for 15 iter-
ations on the OpenSubtitles training set, until per-
plexity becomes stable in the validation set. We
then initialise the Speaker and Personality models
using the parameters learned with OpenSubtitles
and train them on the TV-series training set for 30
more iterations, until the perplexity in the corre-
sponding validation set stabilises.

We use the same settings as Li et al. (2016b)
for training: We set the batch size to 128, the
learning rate to 1.0 (halved after the 6th iteration),
the threshold for clipping gradients to 5, and the
dropout rate to 0.2. Vocabulary size is 25, 000
and the maximum length of an input sentence is
50. All parameters (including the speaker embed-
dings in the Speaker Model) are initialised sam-
pling from the uniform distribution on [−0.1, 0.1].

3.3 Testing

For testing, we again leverage OpenSubtitles to
extract a large subset of ∼2.5M utterances not
present in the training or validation sets. Using
each of the utterances in this set as context, we let
the trained Speaker and Personality models gener-
ate responses for each of the 13 characters, em-
ploying Stochastic Greedy Sampling (Li et al.,
2017). Since general responses are a known prob-
lem in neural response generation chatbots (Sor-
doni et al., 2015; Serban et al., 2016b; Li et al.,
2016a; Zhang et al., 2018) and our goal is to fo-
cus on personality-related stylistic differences, we
remove the most frequent 100 responses common
to all characters/personalities. After this cleaning
step, we end up with ∼700k responses per charac-
ter/personality. We refer to the clean set of gener-
ated responses as the evaluation set.

4 Evaluation Method

We propose a new evaluation method to measure
whether persona-based neural dialogue generation
models are able to produce responses with distin-
guishable personality traits for different characters
and different personality types.

Using the evaluation set, for each character we
randomly select 250 samples of 500 responses
and calculate the OCEAN scores for each sam-
ple. Recall that the OCEAN scores correspond
to 5-dimensional vectors. We label each of these
250 vectors with the corresponding character. This

gives us 13 gold classes—one for each character—
with 250 datapoints each. We then use a support
vector machine classifier7 to test to what extent
the OCEAN scores estimated from the generated
responses allow us to recover the gold character
classes. We compute results using 5-fold cross-
validation (training on 80% of the set and testing
on the remaining 20% once for each fold). We re-
port average scores over ten iterations of this pro-
cedure (i.e., 5× 10).

We consider a baseline obtained by randomis-
ing the gold character label in the set of gener-
ated responses, which indicates the level of per-
formance we may expect by chance. In addition,
we use the procedure described above to discrimi-
nate between characters using their original (gold)
utterances from the transcripts, rather than model-
generated responses. This serves as a sanity check
for the personality recogniser used to estimate the
OCEAN scores—if the recogniser cannot detect
personality differences among the characters in the
original transcripts, it is not reasonable to expect
that the models will be able to generate responses
with different personality styles—and provides an
upper bound for the performance we can expect to
achieve when evaluating generated responses.

Given that the particular personality recogniser
we use (Mairesse et al., 2007) was not optimised
for dialogues from TV-series transcripts, as an ad-
ditional sanity check we compare its performance
on the original (gold) utterances with a bag-of-
words (BoW) approach. This allows us to test
whether the recogniser may only be detecting triv-
ial patterns of word usage.8 We select the top 200
most frequent words over the original utterances
as features, without removing words typically con-
sidered stop words such as pronouns or discourse
markers, since they may be personality indicators.
Then we run the same classification procedure us-
ing these BoW representations.

5 Results

In Table 1, we report average F1 score per charac-
ter (including precision and recall) for the Speaker

7We use the SVM implementation in Python’s
scikit-learn library with radial basis function ker-
nel. We tune the regularisation parameter C and use default
settings for all other parameters. We tried a range of different
algorithms, including k-means and agglomerative cluster-
ing as well as a multi-layer perceptron classifier, always
obtaining the same trends in the results.

8We thank one of the anonymous reviewers for suggesting
this additional test.
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Friends Precision Recall F1

Baseline 0.16 (σ=.01) 0.16 (σ=.01) 0.16
Gold 0.61 (σ=.12) 0.61 (σ=.16) 0.61
Speaker 0.32 (σ=.02) 0.32 (σ=.05) 0.32
Personality 0.22 (σ=.04) 0.23 (σ=.09) 0.23

Big Bang Theory Precision Recall F1

Baseline 0.15 (σ=.01) 0.15 (σ=.02) 0.15
Gold 0.69 (σ=.11) 0.69 (σ=.16) 0.69
Speaker 0.46 (σ=.20) 0.47 (σ=.23) 0.47
Personality 0.29 (σ=.19) 0.31 (σ=.24) 0.30

Table 1: Average scores for 6 characters in Friends (left) and 7 characters in The Big Bang Theory (right)

and the Personality models, as well as the base-
line and gold data. The results for these four con-
ditions are all statistically significantly different
from each other.9

5.1 Lower and Upper Bounds

The first thing to note is that the results on the gold
transcripts are higher than the baseline, reaching
61% F1 score on Friends and 69% on The Big
Bang Theory. This indicates that the evaluation
method is able to distinguish between the differ-
ent personalities in the data reasonably well. Ap-
parently, The Big Bang Theory characters are more
distinct from each other than those in Friends.

When we use the BoW approach on the gold
transcripts instead of the representations by the
personality recogniser, we obtain significantly
lower results: 23% F1 score on Friends and 19%
on The Big Bang Theory.10 The personality recog-
niser thus detects patterns that go beyond what can
be captured with BoW representations.

5.2 Speaker and Personality Models

We find that the responses generated by the
Speaker model display consistent personality vari-
ation above baseline, although a significant level
of the personality markers found in the original
data seems to be lost (32% vs. 61% and 47%
vs. 69%). The results obtained for the Personal-
ity model are significantly above baseline as well
(23% vs. 16% and 30% vs. 15%). We also see that
the personality traits found in the responses gen-
erated by the Personality model yield lower dis-
tinguishability than those by the Speaker model.
This is to be expected, since the Personality model
generates responses for a personality type, which

9Significance is tested with a two-independent-sample t-
test on the results of 10 iterations, first using Levene’s test to
assess the equality of variances and then applying Welch’s or
Student’s t-test accordingly.

10We also run this experiment removing stop words (using
the list of English stop words from scikit-learn), ob-
taining almost identical results: 22% F1 score on Friends and
18% on The Big Bang Theory.

should be more varied (and hence less distinguish-
able) than those by an individual speaker.

An advantage of the Personality model, how-
ever, is that in principle it allows us to generate
responses for novel, predefined personalities that
have not been seen during training. To test this
potential, we create five extreme personality types
by setting up the score of one of the OCEAN traits
to a high value (6.5) and all remaining four traits
to an average value (3.5). We then let the model
generate responses to all the utterances in the eval-
uation set for each of these extreme personalities
and evaluate the extent to which the responses dif-
fer in style following the same procedure as in the
previous experiment. Table 2 shows the results.

Precision Recall F1

Baseline 0.19 0.19 0.19
Average 0.53 (σ=.07) 0.53 (σ=.09) 0.53
Open 0.46 0.46 0.46
Conscientious 0.59 0.62 0.61
Extravert 0.63 0.65 0.64
Agreeable 0.53 0.50 0.51
Neurotic 0.44 0.42 0.43

Table 2: Average scores for personality types with
high value for different OCEAN personality traits

We find that the generated responses are distin-
guishable with 53% average F1 score. This indi-
cates that the model has learned to generalise be-
yond the training data. Table 3 shows some exam-
ples of generated responses.

Joey (Friends): Oh, of course I love you, baby.
Raj (Big Bang): I don’t love you.

Open: You are beautiful!
Agreeable: Oh I, I love you too.

Table 3: Responses to Do you love me? by the Per-
sonality model for personality types of given char-
acters and extreme types not seen during training
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6 Related Work and Conclusion

In recent years, there has been a surge of work on
modelling different stylistic aspects, such as po-
liteness and formality, in Natural Language Gen-
eration with deep learning methods (among oth-
ers, Sennrich et al., 2016; Hu et al., 2017; Fi-
cler and Goldberg, 2017; Niu and Bansal, 2018).
Regarding generation in dialogue systems, be-
sides the two response generation models we have
tested, other recent approaches to open-domain
dialogue have considered stylistic aspects. For
example, Yang et al. (2017) leverage metadata
about speakers’ personal information, such as age
and gender, to condition generation using domain
adaptation methods; while Luan et al. (2017) use
multi-task learning to incorporate an autoencoder
that learns the speaker’s language style from non-
conversational data such as blog posts. The output
of these models could also be assessed for person-
ality differences using our method.

More recently, Oraby et al. (2018) have used
the statistical rule-based generator PERSONAGE

(Mairesse and Walker, 2010) to create a syn-
thetic corpus with personality variation within the
restaurant domain. They use the data to train and
evaluate neural generation models that produce
linguistic output given a dialogue act and a set of
semantic slots, plus different degrees of personal-
ity information, and show that the generated out-
put correlates reasonably well with the synthetic
data generated by PERSONAGE. Our work differs
from Oraby et al. (2018) in several respects: We
focus on open-domain chit-chat dialogue, where
the input to the model is surface text (rather than
semantic representations such as dialogue acts)
from naturally occurring dialogue data. Rather
than relying on parallel data with systematic per-
sonality variation, we exploit a personality recog-
niser. In this respect, our approach has some sim-
ilarities to Niu and Bansal (2018), who use a po-
liteness classifier for stylistic dialogue generation.
Here we have used the personality recogniser by
Mairesse et al. (2007), which may not be ideal as it
was originally trained on snippets of conversations
combined with stream of consciousness essays.
Our method, however, is not tied to this particular
recogniser—any other personality recogniser that
produces numerical scores may be used instead.

We think that the automatic evaluation method
we have proposed can be a useful complement to
qualitative human evaluation of chatbot models.

Our study shows that the models under investiga-
tion produce output that retains some stylistic fea-
tures related to personality, and can learn surface
patterns that generalise beyond the training data.
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Abstract

We present Poem Machine, an interactive
online tool for co-authoring Finnish po-
etry with a computationally creative agent.
Poem Machine can produce poetry of its
own and assist the user in authoring po-
ems. The main target group for the system
is primary school children, and its use as a
part of teaching is currently under study.

1 Introduction

Automatic poem generation has received a fair
share of attention in the recent years (Gervás,
2001; Colton et al., 2012; Bay et al., 2017). How-
ever, these generators can only seldom be inter-
acted with by a user. Our system, Poem Machine1,
makes poem generation an interactive NLG task
with full engagement from the user part.

In the field of computational creativity, the dis-
course has moved lately more and more towards
human-computer co-creativity. The interest does
not lie anymore on how a computer can generate
creative artifacts on its own, but rather how such
systems can be used together with human creativ-
ity to assist a person in a creative task.

Figure 1: Poem Machine poem editor.

Poem Machine works by creating a poem based
on the user defined theme or a user provided URL.

1http://runokone.cs.helsinki.fi/

This poem is presented to the user in a user in-
terface that is tailored towards co-creativity (see
Figure 1). The user can edit the poem freely by
natural gestures such as drag and drop. Further-
more, the user can consult Poem Machine’s as-
sisting functionalities to achieve his goals such as
finding rhymes or following meter.

The primary user group of interest are primary
school children, and it has been successfully used
in schools to teach children about poetry (Kantos-
alo et al., 2015). The fact that the system can cre-
ate a poem as a starting point removes the problem
of not coming up with where to start when writing.

2 Poem Generator

The single most difficult NLG task the system has
to tackle is the generation of the initial poem the
user will then start to modify. The complex mor-
phosyntax of Finnish does not make this task any
less difficult.

For morphology, we use Omorfi (Pirinen et al.,
2017), which is an FST based transducer to pro-
duce morphological forms. This tool is used
by Syntax Maker (Hämäläinen and Rueter, 2018)
which is a surface generation tool for Finnish.
It resolves morphosyntax (agreement and gov-
ernment) based on an abstract syntactic structure
filled with lemmas.

The poem generator in place is based on the one
presented in (Hämäläinen, 2018). It uses SemFi
(Hämäläinen, 2017) which is a semantic data set of
relations of Finnish words based on their syntactic
dependencies to produce poetry.

In order to initiate the poem generation, the user
is provided with a list of themes such as family or
nature. Each theme contains a list of seed nouns
that are passed on to the poem generator for pro-
ducing a novel poem. If the user provides a URL,
the contents of the link are analyzed with TreeTag-
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ger (Schmid, Helmut, 1995) after removing boil-
erplate and the poem is generated by using those
words instead of the ones originating from SemFi.

3 User Assisting Functionality

In addition to just a one way NLG interaction in
producing the initial poem, Poem Machine sports
a multitude of user assisting functionalities.

Poem Machine can suggest phonetically simi-
lar words for words the user drags into the rhymer
tool. This tool will look up the Poem Machine
database for rhyming or alliterating words, or
words with assonance or consonance rhyme type.
Additionally, Poem Machine can asses the meter
of the poem the user is authoring. Selectable me-
ters are haiku, tanka, kalevala and so on. Poem
Machine uses Voikko 2 to divide verses into sylla-
bles to asses how well they follow the meter. For
more complex meters such as the kalevala meter,
Poem Machine provides additional stylistic feed-
back apart from syllabic count, such as the exis-
tence of alliterations and that longer words should
be placed at the end of a verse.

The user can also reconsult the poem generator
described earlier. This will generate a new verse at
the end of the poem by following the same param-
eters that were set upon the creation of the poem.

Words can also be substituted by new ones by
using the magic wand tool. Using the tool an-
alyzes the verse syntactically and looks up for a
suitable replacement for the word the wand was
dragged on from SemFi. For easier replacement,
Poem Machine will also inflect the word to match
the original morphology with Omorfi.

4 Conclusions

Poem Machine is a complex computationally cre-
ative tool for helping people create poems of their
own. The meter tool also helps people learn more
about the poetic meter. Initial observations sug-
gest that Poem Machine is successful in eliciting
motivation and provoking more interest towards
poetry in school kids.

It has been made publicly available for every-
one to use it as an online service. Thus making it
possible for the system to have more impact out-
side of the academia. Furthermore this has made
it possible for technology enthusiastic teachers to
use it as a part of their teaching without the need

2https://voikko.puimula.org/

to participate in the scientific study on its use in
classrooms.
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Abstract 

There has been many works published for 

automatic sentence generation of a variety 

of domains. However, there would be still 

no single method available at present that 

can generate sentences for all of domains. 

Each domain will require a suitable gener-

ation method. We focus on automatic gen-

eration of Japanese advertisement slogans 

in this paper. We use our advertisement slo-

gan database, case frame information, and 

word vector information. We employed our 

system to apply for a copy competition for 

human copywriters, where our advertise-

ment slogan was left as a finalist. Our sys-

tem could be regarded as the world first sys-

tem that generates slogans in a practical 

level, as an advertising agency already em-

ploys our system in their business. 

1 Introduction 

There has been many works published on Japanese 

automatic sentence generation for a variety of do-

mains. In literary works, generation of a short-

short (short story) (Matsubara et al., 2013) (Sato et 

al., 2015), has become a hot topic. A wide variety 

of works have been published including business 

documents such as newspaper articles and finan-

cial summary1, sports bulletins such as baseball in-

ning breaking (Tagawa and Shimada, 2017), over-

view text of the weather forecast (Murakami et al., 

2017), haiku (Wu et al., 2017), chat dialogue such 

as "high school girl AI RINNA." (Wu et al., 2016). 

However, these generation methods tend to be dif-

ferent for each case. For example, the short-short 

generation was performed with templates written 

manually; the inning bulletins generation was rule-

based; the chat dialogue of the "high school girl AI 

RINNA" used RNN-GRU; the generation system 

                                                      
1 http://pr.nikkei.com/qreports-ai/ 

of overview text of weather forecast incorporates 

neural networks, such as an encoder-decoder 

model. These variety of methods mean that there 

are still no single method available at present that 

is effective and unified for all of domains.  

2 Advertisement Slogan Generator   

Advertisement (ad) slogan itself is not a strict con-

cept. There are many kinds of related types of 

phrases: copies of the ads, book titles and bands, 

headings of table of contents, headlines of newspa-

pers and magazines, copies of the movie, titles of 

sales letters and blogs, e-mail magazines, the say-

ing known in the world, impressive phrases that 

have heard or seen in the city (Kawakami 2016). 

Our target is automatic generation of practical ad 

slogans where professional copywriters would 

work for, rather than automatic creation support for 

amateur individuals. However, our system could be 

used e.g. for web ads in future to provide slogans 

in lower costs.  

There are a couple of previous works as follows. 

Yamane and Hagiwara proposed a method for au-

tomatic generation of Japanese ad slogans with re-

placement of nouns (Yamane and Hagiwara, 2015). 

They used n-gram and search result information 

from the web. Baba et al. used Word2Vec to extend 

the number of candidates which are automatically 

generated from ad texts (Baba et al., 2015). How-

ever, no work reported in practical business level 

works yet. 

Our automatic ad slogan generator uses case 

frames and word vectors, with ad slogans written 

by professional copy writers. Our system targets on 

Japanese language, but we will show input and out-

put in English using a machine translation in our 

demonstration.  
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We applied our system to the 8th Shizuoka Copy 

Award2, which is a competition of ad slogans for 

human copywriters. We submitted our generated 

slogans as humans, so the reviews did not know our 

slogans are by machine. Our submissions were 

manually selected from generated samples around 

ten times larger. Table 1 shows statistics of submis-

sions and selections. Examples of generated slo-

gans with selection results are shown in Table 2, 

also show slogans written by humans, a grand prize 

one and a part of finalists. 

                                                      
2 http://shizuokacc.com/award/ 

This system has already been used as a base of 

the AICO (AI COpywriter) system in Dentsu Inc., 

one of the five world largest advertising agency 

groups. Together with the competition results, our 

system could be regarded as the world first system 

that can generate ad slogans in the practical level.  
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 Human System 

# of submissions 4060 228 

Passed 1st review 584 (14.3%) 16 (7.0%) 

Finalist 59 (1.4%) 1 (0.4%) 

Table 1: Submission and selection statistics in 

the 8th Shizuoka Copy Award. 

 

 

Finalist 

written 

by our 

system 

親の意見と寄付は後で効く。 

(Parents' opinions and donation will work 

later.) 

Passed 

1st re-

view by 

our sys-

tem 

その朝、いちばんご機嫌なのは経済

でした。 

(This morning, it was the economy that 

seemed the best mood.) 

仲良しがはみ出てる。(The chum is 

protruding.) 

可愛い子には U ターンをさせよ (Let 

your cute child to U-turn.) 

Failed 

by our 

system 

ふるさとを走ろう。(Let’s run in your 

hometown.) 

広告が、世界をつなぐ。(The adver-

tisement connects the world.) 

まだ見ぬお家に会いに行こう。 

(Let’s see a house you don’t know.) 

Grand 

Prize 

by hu-

man 

変わらない味は、忘れない言葉で守

られている。(The unchanged taste is 

protected by unforgettable words.). 

Finalist 

written 

by hu-

mans  

好きな人にキスを。好きな街にキフ

を。(Kiss the person you like, donate to 

the city you like.) 

「今」は、過去のだれかのやさしさ

でできている。(“Now” is made of 

someone’s kindness in the past.)  

分ければ分けるほど増えるもの。そ

れは、幸せ。(The more you divide, the 

more it increases. It is happiness.) 

Table 2:  Examples of ad slogans with selection 

results, by our system and human writers. 
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Abstract

In this paper, we present the datasets
used in the Shallow and Deep Tracks of
the First Multilingual Surface Realisation
Shared Task (SR’18). For the Shallow
Track, data in ten languages has been re-
leased: Arabic, Czech, Dutch, English,
Finnish, French, Italian, Portuguese, Rus-
sian and Spanish. For the Deep Track, data
in three languages is made available: En-
glish, French and Spanish. We describe in
detail how the datasets were derived from
the Universal Dependencies V2.0, and re-
port on an evaluation of the Deep Track
input quality. In addition, we examine the
motivation for, and likely usefulness of,
deriving NLG inputs from annotations in
resources originally developed for Natu-
ral Language Understanding (NLU), and
assess whether the resulting inputs supply
enough information of the right kind for
the final stage in the NLG process.

1 Introduction

There has long been an assumption in Natural
Language Generation (NLG) that surface realisa-
tion can be treated as an independent subtask for
which stand-alone, plug-and-play tools can, and
should, be created. Early surface realisers such
as KPML (Bateman, 1997) and FUF/Surge (El-
hadad and Robin, 1996) were ambitious, indepen-
dent surface realisation tools for English with wide
grammatical coverage. However, the question of
how the NLG components addressing the stage be-
fore surface realisation were supposed to put to-
gether inputs of the level of grammatical sophis-
tication required by such tools was never quite

resolved. The success of SimpleNLG (Gatt and
Reiter, 2009) which had much reduced grammati-
cal coverage, but accepted radically simpler inputs
demonstrated the importance of this issue.

The recently completed first Multilingual Sur-
face Realisation Task (SR’18) (Mille et al., 2018)
used for the first time inputs derived from the Uni-
versal Dependencies (UDs) (de Marneffe et al.,
2014), a framework which was devised with the
aim of facilitating cross-linguistically consistent
grammatical annotation, and which has grown into
a large-scale community effort involving more
than 200 contributors, who have created over 100
treebanks in over 70 languages between them.1

UDs provide a more general and potentially flex-
ible input representation for surface realisation
(SR). However, their use for NLG has not so far
been demonstrated.

In this paper, we present the UD datasets used
in the Shallow and Deep Tracks in SR’18, describe
the precise conversion processes that were applied
to them, and provide an assessment of their qual-
ity. Furthermore, we examine (a) the SR task in
general, (b) the motivation for, and likely useful-
ness of, the derivation of NLG inputs from annota-
tions in resources developed for Natural Language
Understanding (NLU), (c) whether the resulting
inputs supply enough information of the right kind
for the final stage in the NLG process, and more
tentatively, (d) what role SR is likely to play in the
future in the NLG context.

Section 2 presents related work; Section 3 de-
scribes the datasets used in the two SR’18 tracks,
and Section 4 provides a more procedural account
of how the datasets were generated. Section 5 as-
sesses the quality of the obtained representations,

1http://universaldependencies.org/
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while Section 6 discusses their suitability for SR
and NLG more generally. Some conclusions are
presented in Section 7.

2 Background

With the advent of large-scale treebanks and sta-
tistical NLG, surface realisation research turned to
the use of treebank annotations, processed in var-
ious ways, as inputs to surface realisation. Anno-
tation/sentence pairs constitute the training data,
and similarity to the original sentences in the tree-
bank is the main measure of success. A lot of
this work used inputs derived from the Wall Street
Journal corpus with varying amounts of infor-
mation removed from the parse-tree annotations
(Langkilde-Geary, 2002; Nakanishi et al., 2005;
Zhong and Stent, 2005; Cahill and van Genabith,
2006; White and Rajkumar, 2009). Because of
the variation among inputs, results were not en-
tirely comparable. The first Surface Realisation
Shared Task (SR’11) (Belz et al., 2011) was thus
conceived with the aim of developing a common-
ground input representation that would make dif-
ferent systems, for the first time, directly com-
parable. SR’11 used shallow and deep inputs
for its two respective tracks, both derived from
CoNLL’08 shared task data, which was in turn de-
rived from the WSJ Corpus by automatically con-
verting the corresponding Penn TreeBank parse
trees to dependency structures (Surdeanu et al.,
2008). While dependency structures offer a more
flexible input structure and statistical systems, in
principle, offer more robustness, the uptake of
such systems as components in embedding NLG
systems has been very limited.

Meanwhile, many of the more applied strands
of NLG research have tended to bypass an ex-
plicit interface to surface realisation, instead map-
ping directly from more abstract representations
of meaning to surface text. Recently, mostly un-
der the aegis of the Generation Challenges series
of shared tasks, several large-scale datasets have
been made available that pair surface text with
more abstract structured inputs, including:

• Weather forecast generation (Weather)
dataset (Liang et al., 2009): time series from
weather-related measurements;

• Abstract Meaning Representation (AMR)
dataset (May and Priyadarshi, 2017): abstract
predicate-argument graphs that cover several
genres;

• WebNLG dataset (Gardent et al., 2017): DB-
pedia triples covering properties of 15 DBpe-
dia categories;

• E2E dataset (Novikova et al., 2017):
attribute-value pairs covering 8 properties
related to the restaurant domain.

In all these datasets, the input structures are
aligned with English sentences that match their
contents. In the case of inputs coming from struc-
tured data (e.g. WebNLG, E2E, Weather, above),
multiple sentences are generally paired with each
input, whereas for the inputs coming from data
initially annotated for Natural Language Under-
standing tasks (SR’11, AMR), only one reference
per input is available. Both types of shared tasks
(reusable surface realisation vs. task-specific gen-
eration) have been successful in terms of participa-
tion levels, and both have sizeable research com-
munities behind them, but trainable surface reali-
sation as a stand-alone subtask still has a way to
go in terms of demonstrating its practical applica-
bility.

3 The SR’18 Data

The First Multilingual Surface Realisation Shared
Task (SR’18) ran from December 2017 to July
2018. As in SR’11, the shared task comprised two
tracks with different levels of difficulty: a Shallow
Track, starting from syntactic structures in which
word order information has been removed and to-
kens have been lemmatised, and a Deep Track,
which starts from more abstract structures from
which, additionally, functional words (in partic-
ular, auxiliaries, functional prepositions and con-
junctions) and surface-oriented morphological in-
formation have been removed.

Taking advantage of the growing availability
of multilingual treebanks annotated with Univer-
sal Dependencies, the UD V2.0 treebank, as re-
leased in the context of the CoNLL 2017 shared
task on multilingual dependency parsing (Zeman
et al., 2017), was used. A subset of ten languages
was selected that contains the necessary part-of-
speech and morphological tags for the Shallow
Track: Arabic, Czech, Dutch, English, Finnish,
French, Italian, Portuguese, Russian and Span-
ish. Three of these languages, namely English,
French and Spanish were used also for the Deep
Track. Starting from UD structures as they ap-
pear in the treebanks, Shallow and Deep inputs
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1 The the DET DT Definite=Def|PronType=Art 2 det
2 third third ADJ JJ Degree=Pos|NumType=Ord 5 nsubj pass
3 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 5 aux
4 being be AUX VBG VerbForm=Ger 5 aux pass
5 run run VERB VBN Tense=Past|VerbForm=Part|Voice=Pass 0 root
6 by by ADP IN 8 case
7 the the DET DT Definite=Def|PronType=Art 8 det
8 head head NOUN NN Number=Sing 5 obl
9 of of ADP IN 12 case
10 an a DET DT Definite=Ind|PronType=Art 12 det
11 investment investment NOUN NN Number=Sing 12 compound
12 firm firm NOUN NN Number=Sing 8 nmod
13 . . PUNCT . 5 punct

Figure 1: A sample UD structure in English (top: CoNLL-U, bottom: graphical)

1 the DET DT Definite=Def|PronType=Art 2 det
2 third ADJ JJ Degree=Pos|NumType=Ord 3 nsubj pass
3 run VERB VBN Tense=Past|VerbForm=Part|Voice=Pass 0 root
4 be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 3 aux
5 be AUX VBG VerbForm=Ger 3 aux pass
6 head NOUN NN Number=Sing 3 obl
7 . PUNCT . 3 punct
8 by ADP IN 6 case
9 the DET DT Definite=Def|PronType=Art 6 det
10 firm NOUN NN Number=Sing 6 nmod
11 an DET DT Definite=Ind|PronType=Art 10 det
12 investment NOUN NN Number=Sing 10 compound
13 of ADP IN 10 case

Figure 2: Shallow input (Track 1) derived from UD structure in Figure 1. (top: CoNLL-U, bottom:
graphical)

were created automatically for the two tracks. The
inputs for each language and track were released
in the CoNLL-U format2, together with parallel
files that contain a reference sentence for each
input. Figures 1, 2 and 3 show a sample orig-
inal UD annotation for English, and the corre-
sponding inputs for the Shallow and Deep Tracks,
respectively, in the 10-column CoNLL-U format
(the last two columns generally do not contain
information and are thus omitted) and in graph-
ical format. The training, development and test
data are available at http://taln.upf.edu/
pages/msr2018-ws/SRST.html#data.

2http://universaldependencies.org/
format.html

3.1 Shallow inputs

The Shallow Track input structures are unordered
syntactic trees with all the words of the sentence
replaced with their lemmas, and labelled with their
part-of-speech tags and the morphological infor-
mation associated with each node. These struc-
tures are thus genuine UD structures, with only
two differences: first, in the original CoNLL-U
format, consecutive lines contain words that are
also consecutive in the sentence, whereas in the
SR’18 Shallow structures, no order information is
available; second, original UD structures contain
both lemmas and inflected forms, while only the
former are available in the SR’18 structures. Fig-
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1 third ADJ Degree=Pos 2 A2
2 run VERB Tense=Past|Aspect=Progr 0 ROOT
3 head NOUN Number=Sing|Definiteness=Def 2 A1
4 firm NOUN Number=Sing|Definiteness=Indef 3 A2
5 investment NOUN Number=Sing 4 AM

Figure 3: Deep input (Track 2) derived from UD structure in Figure 1. (left: CoNLL-U, righ: graphical)

ures 1 and 2 show an original UD structure and a
SR’18 Shallow input, respectively.

3.2 Deep inputs

The Deep Track input structures are trees that
contain only content words linked by predicate-
argument edges, in the PropBank/NomBank
(Palmer et al., 2005; Meyers et al., 2004) fashion.

The Deep inputs can be seen as closer to a re-
alistic application context for NLG systems, in
which the component that generates the inputs pre-
sumably would not have access to syntactic or
language-specific information. At the same time,
we used only information found in the UD struc-
tures to create the Deep inputs, and tried to keep
their structure simple. In Deep inputs, words
are not disambiguated, full (semantically loaded)
prepositions may be missing, and some argument
relations may be underspecified or missing. The
next two subsections provide more details about
the Deep nodes and edge labels.

3.2.1 Deep nodes
In contrast to the Shallow structures, which con-
tain all the (lemmatised) words of the original sen-
tence, the Deep structures do not contain func-
tional words that can be inferred from another lex-
ical unit or from the syntactic structure (such as
bound prepositions and conjunctions), or can be
represented as a feature on another node (such as
auxiliaries, modals, or determiners). For instance
(see also Figure 1 for the first four examples):

• the preposition by in the sentence The third
was being run by the head of an investment
firm is bound to the English agentive depen-
dency in a passive construction;

• the preposition of in the head of an investment
firm is bound to the noun head, and indicates
the presence of its second argument;

• being in was being run is a passive voice
marker, while was is part of the marker for
the progressive aspect, associated with the
verb run;

• the in the head can be seen as a marker for
nominal definiteness;

• the conjunction (complementiser) that in,
e.g., I demand that you apologise, appears be-
cause it connects a finite verb apologise as an
argument of another verb demand.

Meaningful functional words such as auxiliaries
and determiners are represented as attribute/value
pairs associated with the relevant nodes, as, e.g.,
the Aspect feature on run in Figure 3.3 Features
are also used to encode information such as ver-
bal tense or nominal number, which are needed
for realisation. On the other hand, implicit nodes
that have a role in the sentence are explicit in the
Deep input: for instance, dummy pronoun nodes
for the subject if an originally finite verb has no
first argument and no available argument to build
a passive or, for a pro-drop language such as Span-
ish, dummy pronouns when the first argument of a
verb is missing.

3.2.2 Deep edge labels

In Deep inputs, content words are linked
by predicate-argument labels in the Prop-
Bank/NomBank (Palmer et al., 2005; Meyers
et al., 2004) fashion, that is, there are core (A1,
A2, etc.) and non-core (AM) labels. Additional
labels such as LIST or NAME have been added in
order to connect all the elements within each sen-
tence; see Table 1 for the inventory of relations.
This subsection details the main features of the
dependencies at this level.

First of all, the first argument is always labeled
as A1, that is, there is no external argument A0,
as can be found in PropBank and NomBank. For
instance, both the verbs fall and fancy have a rela-
tion A1 with their first argument (the ballA1 falls,
MartinA1 fancies Chloe), even though according
to PropBank, the latter has an external argument
(MartinA0 fancies Chloe).

3For the available universal features set, see
http://universaldependencies.org/u/feat/
index.html.

202



Deep label Description Example
A1, A2, ..., A6 nth argument of a predicate fall→ the ball

A1INV, ..., A6INV nth inverted argument of a predicate the ball→ fall

AM/AMINV (i) none of governor or dependent are argument of the other fall→ last night(ii) unknown argument slot
LIST List of elements fall→ [and] bounce

NAME Part of a name Tower→ Eiffel
DEP Undefined dependent N/A

Table 1: Deep labels

Second, in order to maintain the tree struc-
ture and account for some cases of shared argu-
ments, there can be inverted argument relations.
Consider, for instance, the difference between the
ballA1 falls, in which ball is the first argument of
fall, and the fallingA1INV ball, in which fall has
the ‘inverted first argument’ label, which means
that ball is actually the first argument of fall. In-
verted relations are used also in relative clauses, as
e.g., in the ball that fallsA1INV ; in such a case, the
subject (or object) relative pronoun does not ap-
pear in the structure, and the antecedent can thus
be shared by two predicates, as An and AnINV.

Third, all modifier edges are assigned the same
generic label AM. When an edge is underspeci-
fied, that is, when there is no predicate-argument
relation between two connected nodes, or when
there is a predicate-argument relation between two
nodes, but it is not known which one specifically,
the AM or AMINV label is used. For instance, in
the case of nominal adverbials such as last night,
the relation between the governing predicate and
night is set as an AM. One of the most productive
uses of the AM label is for prepositional groups
or subordinate clauses, in which UD establishes a
direct dependency between the content words that
actually does not exist: he will leaveGov after he
finishesDep his work. In this case, finish is estab-
lished as an AM of leave; note that this does not
prevent the actual argumental structure from being
recovered. Indeed, an edge AM that links a Gover-
nor with a Dependent and its A2INV preposition:

Gov Dep Prep

AM A2INV

is equivalent to the preposition being a predicate
and the Governor and Dependent being its first and
second argument respectively:

Gov Prep Dep

A1 A2

Fourth, there are some edge labels that are not

related to predicate-argument relations: coordi-
nated elements are linked by a dedicated edge
LIST, compound named entities are linked by the
edge NAME, and the edge label DEP is used in
case of an unknown relation between two ele-
ments. Finally, each argument relation is unique
for each predicate: if a predicate has an A2 depen-
dent, it cannot have another A2 dependent, and it
cannot be the A2INV dependent of another predi-
cate.

In Section 4.2 below, we describe how the map-
ping between surface dependencies and predicate-
argument labels was performed.

4 Generating the datasets

Following on from the more declarative descrip-
tion of Shallow and Deep inputs in the previous
section, this section describes how those input
were automatically created from the CoNLL’17
data.

4.1 Adaptation of the original UD structures
For the input to the Shallow Track, the UD struc-
tures were processed as follows:

1. the information on word order was removed
by randomised scrambling;

2. the words were replaced by their lemmas.

For the Deep Track, additionally:

3. Functional prepositions and conjunctions in
argument position, i.e. prepositions and con-
junctions that can be inferred from other lex-
ical units or from the syntactic structure,
were removed; prepositions and conjunctions
retained in the Deep representation can be
found under an A2INV dependency;

4. Definite and indefinite determiners, auxil-
iaries and modals were converted into at-
tribute/value pairs, as are definiteness fea-
tures, and the universal aspect and mood fea-
tures;
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ar cs en es fi fr it nl pt ru
train 6,016 66,485 12,375 14,289 12,030 14,529 12,796 12,318 8,325 48,119
dev 897 9,016 1,978 1,651 1,336 1,473 562 720 559 6,441
test 676 9,876 2,061 1,719 1,525 416 480 685 476 6,366

Table 2: SR’18 dataset sizes for training, development and test sets.

5. copulas were removed and their two argu-
ments connected with each other;

6. Subject and object relative pronouns directly
linked to the main relative verb were removed
(and instead, the verb is linked to the an-
tecedent of the pronoun), and dummy pro-
nouns were added.

7. Edge labels were generalised using the labels
presented in Section 3.2.2;

8. Surface-level morphologically relevant infor-
mation as prescribed by syntactic structure or
agreement (such as verbal finiteness or ver-
bal number) was removed, whereas semantic-
level information such as nominal number
and verbal tense was retained;

9. Fine-grained POS labels found in some tree-
banks (see e.g. column 5 in Figure 2) were
removed, and only coarse-grained ones were
retained (column 4 in Figures 2 and 3).

4.2 Generation of the inputs

Shallow Track inputs were generated with a
Python script from the original UD structures,
which were simply scrambled and their words re-
placed with lemmas. During the conversion, sen-
tences that contained dependencies that only make
sense in an analysis context were filtered out (e.g.
reparandum, or orphan); this amounted to around
1.5% of sentences for all languages on average.
Table 2 summarises the final size of the datasets.

Deep Track inputs were then generated by au-
tomatically processing the Shallow Track struc-
tures using a series of graph-transduction gram-
mars (Bohnet and Wanner, 2010) that cover steps
3–9 above (in a similar fashion to Mille et al.
(2017)), while ensuring a node-to-node correspon-
dence between the Deep and Shallow structures.

The graph-transduction grammars are rules that
apply to a subgraph of the input structure and pro-
duce a part of the output structure. During the ap-
plication of the rules, both the input structure (cov-
ered by the left-hand side of the rule) and the cur-
rent state of the output structure at the moment of
application of a rule (i.e., the right-hand side of the

rule) are available as context. Figure 4 shows the
rule that assigns deep dependency labels as found
in the UD lexicon dictionary; relative clause edges
and adjectival modifiers are handled by different
rules. The output structure in one transduction is
built incrementally: the rules are all evaluated, the
ones that have no right-hand side context and that
match a part of the input graph are applied, and
a first piece of the output graph is built; then the
rules are evaluated again, this time with the right-
hand side context as well, and another part of the
output graph is built; and so on. The transduc-
tion is complete when no rule is left that matches
the combination of the left-hand side and the right-
hand side. At each iteration, the rules are first se-
lected and then applied as a cluster, that is, the or-
der in which they apply is not important. The only
way to force a rule R2 to be applied after a rule R1
(for instance, for building edges after building the
nodes) is to establish as R2’s right-side condition
elements built by R1: for instance, the rule shown
in Figure 4 will apply only after the rules that build
the nodes have applied, since the ?Xr and ?Yr are
marked as right-side context (rc:). This allows the
rules to be more generic and to combine with one
another in an efficient way.

Figure 4: Sample graph transduction rule

Table 3 provides a summary of the graph-
transduction grammars and rules for the map-
ping between surface-syntactic structures and UD-
based semantic structures. The mapping is com-
posed of three submodules. The pre-processing
grammars are used to identify all nodes to be
removed: it is easier and safer in the graph-
transduction grammars to mark the nodes to be re-
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Grammars # rules Description

Pre-processing 76 Identify nodes to be removed
Identify verbal finiteness and tense

SSynt-Sem 120

Remove idiosyncratic nodes
Establish correspondences with surface nodes
Map UD labels to predicate-argument dependency labels (when possible)
Predict predicate-argument dependency labels (when no direct mapping is available)
Replace determiners, modality and aspect markers by attribute-value feature structures

Post-processing 60 Replace duplicated argument relations by best educated guess
Identify remaining duplicated core dependency labels (for posterior debugging)

Table 3: Graph-transduction rules for producing the Deep inputs (counts include rules that simply copy
node features, constituting about 40 per grammar).

moved (using solely positive conditions) and then
to not generate them in the next step, than using
rules that generate in one shot only the desired
nodes, which would imply complex negative con-
ditions. After this pre-processing, with the nodes
that are to be removed marked, the core grammar
(SSynt-Sem) takes care of establishing edge labels
between the remaining nodes and associating the
latter with attribute/value pairs. Most UD labels
are mapped one-to-one to predicate-argument la-
bels. In some cases only, the rules check the syn-
tactic context of an edge in order to get a more
precise label (e.g., a relative clause in which ac-
cording to the structure and the UD label, we know
that an argumental relation is holding: if the gov-
ernor already has a first and a third arguments,
the argumental relation is likely to be an A2). A
post-processing grammar takes educated guesses
in order to correct obvious labeling errors such
as the duplication of an argument for a predicate.
The unified cross-language annotation scheme of
UD allows the large majority of the rules to be
language-independent. Even though the annota-
tions are not always consistent, adapting the gram-
mars to a new language is relatively easy: most of
the language-specific rules concern the processing
of auxiliaries and modals, which have to be identi-
fied and mapped to the Aspect and Mood features.

5 Evaluation of the generated datasets

Since the processing applied to the Shallow in-
puts consists only in removing information and is
very straightforward. It does not call for an eval-
uation. For the Deep Track, however, the changes
are much more complex and the quality of the con-
version needs to be assessed.

We evaluated the quality of the Deep inputs
as follows. One of the authors manually anno-
tated about 900 deep tokens (≈75 sentences) in
each language (English, French and Spanish), by

post-editing the automatically converted structures
correcting any mistakes. Since the same person
post-edited all three datasets, the resulting gold-
standard is consistent across the languages, even
though it does not allow for calculating inter-
annotator agreement. Note that the annotation re-
mains quite open with respect to some phenom-
ena, for which several annotations are considered
correct. For instance, AM relations are left under-
specified when it is not clear what argument slot is
concerned (e.g., appositions, parentheticals, ver-
bal/nominal adverbials, etc.); some argumental re-
lations are ambiguous and left as such: N→ ADJ
is sometimes A1INV, and the adjective is some-
times an argument of the noun; numbers (e.g., ten
thousand people) and hours are left as they are in
the original annotations.

Once post-edited, the reference structures are
compared to the ones produced by the automatic
mapping from UD structures, using the LAS eval-
uation method of Ballesteros et al. (2015), specif-
ically designed to handle the comparison between
non-isomorphic trees. Since part of the map-
ping consists of adding and/or removing nodes,
it often happens that the gold-standard and pre-
dicted structures end up with a different number of
nodes, which makes evaluation scripts based on a
strict node-to-node comparison unusable. Table 4
shows the results of the evaluation. Quality is not
the same across languages: while English struc-
tures obtain an LAS of 79.83, French is more than
6 points lower, and Spanish more than 12. Since,
as mentioned in the previous subsection, the map-
ping grammars are largely language-independent,
and since roughly the same efforts have been ded-
icated to each language, it is likely that the LAS
numbers reflect the quality of the original UD an-
notation.

Note that during the evaluation, POS and lemma-
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LAS
English 79.83
French 73.43
Spanish 67.28

Table 4: Evaluation of the quality of the output
structures (Labeled Attachment Scores - LAS).

tisation4 errors are not corrected, but structural
errors due to original tagging/lemmatising errors
are counted. In other words, what is being evalu-
ated is how correct the outputs are in terms of de-
pendencies and labeling, rather than how well the
transduction grammars perform. An error analysis
showed that most dependency errors come from
the AM relation, which is usually A1, A2, A1INV
or A2INV in the reference structures. The system-
atic replacement of AM by one of these four labels
always results in a drop of the LAS score. That
is, in order to improve the quality of the struc-
tures, an improvement of the UD structures or a
more fine-grained processing (which would imply
a large number of rules and the use of detailed lex-
icons) would be needed.

The mapping grammars were released together
with the SR’18 datasets;5 they can process about
39 sentences per second on an average laptop. The
resulting mapping tool allows for automatically
annotating large amounts of data. The tool has
recently been used to convert about 600,000 En-
glish sentences that had been automatically parsed
with an off-the-shelf UD parser. This tool is also
currently being tested as part of conceptual rela-
tion extraction pipelines in the framework of sev-
eral EU projects (see Acknowledgements).

6 Discussion

The UD-derived input structures described in this
paper were successfully used in the SR’18 Shared
Task, which attracted the participation of eight
teams. In the Deep Track, an attempt was made to
remove from inputs, as far as possible, the kind of
information that cannot come from a deeper level
of abstraction, such as, e.g., an ontological rep-
resentation. For instance, where it was not pos-
sible, or too risky, to predict an argument slot, it
was left undefined (AM label). If, because the
annotation did not allow for the distinction be-

4As in lexical reflexive verbs in French and Spanish; e.g.
aburrirse ’to be bored’ in Spanish, can end up with the lemma
aburrir, that is, without the reflexive marker.

5http://taln.upf.edu/pages/msr2018-ws/
SRST.html#data

tween the two, there was a choice between leaving
too many syntactic elements or removing mean-
ingful words, the latter option was chosen. In
this way, the Deep representations are much closer
to the kind that might be used in a generation
pipeline that starts from structured data,6 and the
tools trained on the present data can potentially be
used in an applied NLG pipeline. On the other
hand, the inputs can be considered less informa-
tive than those used in SR’11, in which only that-
complementisers and to-infinitives were removed,
and predicate-argument labels for nouns and verbs
were fully specified (since they came from the
NomBank and PropBank manually validated an-
notations). However, as is the case with the tec-
togrammatical layer of the Prague Dependency
Treebank (Böhmová et al., 2005), in PropBank
and NomBank no distinction is made between full
and functional (‘semantic’) prepositions.7 In con-
trast to AMRs, the Deep inputs do contain tense,
number and definiteness information, but links to
named entity databases or OntoNotes labels are
not provided; in other words, the nodes are not
disambiguated. The other difference to AMRs in
terms of specificity is that the annotation of shared
arguments is incomplete in SR’18 (an argument
can only be shared by two predicates in SR’18
Deep inputs), and that the non-core relations are
not typed. In terms of abstraction level, AMRs
abstract the labels of nominal vs. verbal events,
which is not done in the SR’18 dataset. In the
SR’18 Shallow inputs, the removal of word order
information is problematic for named entities, n-
ary coordinations and punctuations, because it is
not always possible to reconstruct the word order
based on the dependencies. In order to cope with
this, in SR’11, the components of named entities
were numbered according to their original order,
specific features encoded the bracketing informa-
tion for punctuation signs, and coordinations were
hierarchical, with each conjunct being a dependent
of the previous conjunct.

As a result, the Deep input representation is a
compromise between correctness and adequacy in
a generation setup. Indeed, the conversion of the

6Note, however, that creating the Deep input structures
from structured data would be far from trivial, since it would
imply mapping given properties onto words as used in the UD
datasets.

7This subcategorisation information can be partially de-
rived from PropBank and NomBank, as done for the Deep
Syntactic structures of Meaning-Text Theory (Ballesteros
et al., 2015; Mille and Wanner, 2015).
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UD structures into predicate-argument structures
depends not only on the mapping process, but also
on the availability of the information in the origi-
nal annotation, even though it falls short in some
cases: UD structures were not conceived for NLG
applications, which is why using them in an NLG
context presents considerable challenges. The un-
derspecified UD structures created for the SR’18
Shared Task are perhaps as close as we can get to
NLG-like meaning representations if all we have
to construct inputs are parsing annotations from
treebanks. To get even closer, the inputs would
have to be enriched from additional sources of in-
formation, such as subcategorisation information,
as found in PropBank or Ontonotes.

We may even be moving away from a situa-
tion where we have to rely on treebanks to obtain
NLG inputs at reasonable cost, as the success of
using fully automatically parsed data mentioned
above shows. It is conceivable that a future shared
task in NLG will involve paired (structured) data
and text, plus an automatically created intermedi-
ate level of representation comprising underspec-
ified UD (UUD) structures enriched with addi-
tional information obtained from the structured
data level. This would correspond to three linked
tracks (data-to-text, data-to-UUD, and UUD-to-
text) where one track is the end-to-end task, and
the other two tracks are subtasks that can be com-
bined to solve the end-to-end task, similar to the
GREC’10 shared task competition (Belz and Kow,
2010).

Or it could be argued, perhaps controversially
still, that the days of structured linguistic represen-
tations in NLG are numbered anyway. The rapid
development and spread of highly successful neu-
ral approaches to diverse NLG tasks, and the lim-
ited success so far of attempts to inject linguistic
knowledge directly into neural networks, certainly
lends some strength to this point of view. In the
meantime, the above tripartite shared-task struc-
ture has the potential to accommodate both sys-
tems that map directly from data to text without
structured representations, and two-component
systems with a surface realiser as the second com-
ponent.

7 Conclusion

In this paper, we have provided a detailed de-
scription of how the inputs to the Shallow and
Deep Tracks at the First Multilingual Surface Re-

alisation Task were created by automatically con-
verting annotated sentences from Universal De-
pendency treebanks V2.0 into Shallow and Deep
Track inputs. The important contribution here is
the process for creating Deep inputs, where we
approximate the kind of abstract meaning repre-
sentations used in native NLG tasks. This is not a
simple matter of applying a few replacement rules
(as it is for the Shallow inputs) with predictably
correct results. To assess the quality of the Deep
inputs, we conducted an evaluation that showed a
labelled agreement score (LAS) of about 80 with
human-corrected equivalents for English, display-
ing a high level of quality. However, future work
will need to look at how to improve this quality
further, especially for other languages, as well as
to confirm what exactly the right extent of under-
specification is for Deep inputs for surface realisa-
tion.

A separate question the field needs to address is
to what extent Shallow underspecified UD inputs
are suitable for surface realisation. More specif-
ically, whether it is reasonable to expect other,
content-determining, modules in an NLG system
to generate such inputs. Finally, an overlapping
question is whether inputs of either the Shallow
or Deep type provide information that is sufficient
for generating fully realised sentences, and if not,
how such inputs can be enriched to provide it.
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Abstract

Hypertagging, or supertagging for surface
realization, is the process of assigning lex-
ical categories to nodes in an input seman-
tic graph. Previous work has shown that
hypertagging significantly increases real-
ization speed and quality by reducing the
search space of the realizer. Building on
recent work using LSTMs to improve ac-
curacy on supertagging for parsing, we de-
velop an LSTM hypertagging method for
OpenCCG, an open source NLP toolkit
for CCG. Our results show significant im-
provements in both hypertagging accuracy
and downstream realization performance.

1 Introduction

Hypertagging, or supertagging for surface real-
ization, is the process of assigning lexical cate-
gories to nodes in a semantic graph as a step in
grammar-based surface realization. It significantly
increases realization speed and quality by reduc-
ing the search space of the realizer. Espinosa
et al. (2008) built the original single-stage maxi-
mum entropy hypertagger for CCG in OpenCCG,1

which obtained a single-best hypertagging accu-
racy of 93.6%. This hypertagger was later ex-
panded into a two-stage model, which obtained a
hypertagging accuracy of 95.1%.

Recent work has used neural networks to
make significant improvements in supertagging
for parsing (i.e., predicting lexical categories for
a sequence of words), improving upon earlier
work with maximum entropy supertagging (Cur-
ran et al., 2006). Lewis and Steedman (2014) used
a feedforward neural network to obtain 91.3% cat-
egory accuracy in the CCGBank (Hockenmaier

1http://openccg.sf.net

and Steedman, 2007) development section (Sec-
tion 00). Lewis et al. (2016) improved on this re-
sult using an LSTM, obtaining 94.9% category ac-
curacy on the development section and 94.7% on
the test section (Section 23) of the CCGBank.

Our work uses techniques from Lewis et al.
(2016) to implement an improved hypertagger. To
do so, we first linearize the input graph using
a method adapted from Konstas et al.’s (2017)
approach to generating from Abstract Mean-
ing Representations (AMRs).2 Unlike in their
work though, we found that the input ordering
method substantially impacted hypertagging accu-
racy, with an English-like ordering yielding sub-
stantial improvements over random ordering while
substantially trailing oracle ordering.

We evaluated the LSTM hypertagger on both
tagging accuracy and its downstream effect on re-
alization performance. Our results show signif-
icant improvement over the original hypertagger
on both. We obtained 96.47% on tagging accu-
racy (up from 95.1%) and an increase in realiza-
tion BLEU scores from 0.8429 with the original
hypertagger to 0.8683 with the neural hypertag-
ger. As expected, the LSTM hypertagger yielded
large gains in accuracy on the difficult cases of un-
seen predicates and predicates not seen with the
gold tag in training, helping to achieve a 7.8% in-
crease in sentences with grammatically complete
derivations. A human evaluation confirmed that
using the LSTM hypertagger yielded significant
improvements in adequacy and fluency, especially
in cases where the LSTM hypertagger was essen-
tial for obtaining a complete derivation.

This paper is structured as follows. Sec-
tion 2 provides background on surface realization
with CCG, the maximum entropy hypertagger and
LSTM supertagging. Section 3 describes our fea-

2https://amr.isi.edu/
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tures and model along with our approach to input
linearization. The results and analysis appear in
Section 4. Related work is discussed in Section 5,
including where grammar-based realization stands
in the current research landscape. Section 6 con-
cludes.

2 Background

2.1 Surface Realization with OpenCCG

The OpenCCG realizer generates surface strings
for input semantic dependency graphs (or logi-
cal forms) using a chart-based algorithm (White,
2006) for Combinatory Categorial Grammar
(Steedman, 2000) together with a hypertagger for
probabilistically assigning lexical categories to
lexical predicates in the input, as noted above.
An example input appears in Figure 1. In the
figure, nodes correspond to discourse referents
labeled with lexical predicates, and dependency
relations between nodes encode argument struc-
ture; gold standard CCG lexical categories (i.e,
what the hypertagger learns to predict) are also
shown. Note that semantically empty function
words such as infinitival-to are missing. Gener-
ally speaking, the semantic dependency graphs are
more abstract than unordered dependency trees,
but more detailed than AMRs. The grammar is
extracted from a version of the CCGbank (Hock-
enmaier and Steedman, 2007) enhanced for re-
alization, where the enhancements include: bet-
ter analyses of punctuation (White and Rajkumar,
2008); less error prone handling of named entities
(Rajkumar et al., 2009); re-inserting quotes into
the CCGbank; and assignment of consistent se-
mantic roles across diathesis alternations (Boxwell
and White, 2008), using PropBank (Palmer et al.,
2005).

As in other work with OpenCCG (e.g., Duan
and White, 2014), we use OpenCCG’s realization
ranking model off the shelf in order to select pre-
ferred outputs from the chart; in particular, we use
White & Rajkumar’s (2009; 2012) averaged per-
ceptron realization ranking model augmented with
a large-scale 5-gram model based on the Giga-
word corpus. The ranking model makes choices
addressing all three interrelated sub-tasks tradi-
tionally considered part of the surface realization
task in natural language generation research (Re-
iter and Dale, 2000): inflecting lemmas with gram-
matical word forms, inserting function words and
linearizing the words in a grammatical and natural

aa1

he
h3

he
h2

<Det>

<Arg0>
<Arg1>

<TENSE>pres

<NUM>sg

<Arg0>

w1
want.01

m1

<Arg1>

<GenRel>

<Arg1>

<TENSE>pres

p1point

h1
have.03

make.03

<Arg0>

s[b]\np/np

np/n

np

n

s[dcl]\np/np

s[dcl]\np/(s[to]\np)

np

Figure 1: Example OpenCCG semantic depen-
dency input for he has a point he wants to make,
with gold standard lexical categories for each node

order.
Notably, to improve word ordering decisions,

White & Rajkumar (2012) demonstrated that in-
corporating a feature into the ranker inspired by
Gibson’s (2000) dependency locality theory can
deliver statistically significant improvements in
automatic evaluation scores, better match the dis-
tributional characteristics of sentence orderings,
and significantly reduce the number of serious or-
dering errors. With function words, Rajkumar
and White (2011) showed that they could improve
upon the earlier model’s predictions for when to
employ that-complementizers using features in-
spired by Jaeger’s (2010) work on using the princi-
ple of uniform information density, which holds
that human language use tends to keep informa-
tion density relatively constant in order to opti-
mize communicative efficiency.

Finally, to reduce the number of subject-verb
agreement errors, Rajkumar and White (2010) ex-
tended the earlier model with features enabling it
to make correct verb form choices in sentences
involving complex coordinate constructions and
with expressions such as a lot of where the correct
choice is not determined solely by the head noun.
They also improved animacy agreement with rela-
tivizers, reducing the number of errors where that
or which was chosen to modify an animate noun
rather than who or whom (and vice-versa), while
also allowing both choices where corpus evidence
was mixed.
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2.2 Original Hypertagger

The original MaxEnt hypertagger uses three gen-
eral types of features from logical forms: lexical
features, graph structural features, and node at-
tribute features. Lexical features are the words as-
sociated with the logical form nodes. Graph struc-
tural features are those pertaining to word depen-
dency relations, and include the number of chil-
dren (and argument children) of each node as well
as the names of dependency relations. Node at-
tribute features are those pertaining to semantic or
syntactic features of words, and include tense and
number.

The published single-stage MaxEnt hypertagger
has an intermediate stage in which it predicts POS
tags. These POS tags are then included in the fea-
ture set used to predict supertags. The two-stage
hypertagger stacks on an additional stage in which
predicted supertags in the local graph context are
used as features for making final predictions.

The realizer uses the hypertagger in an iterative
β-best algorithm in which the realizer repeatedly
queries the hypertagger for β-best tags. The hy-
pertagger has a list of β-values sorted from most
restrictive to least. It first returns a β-best list of
supertags for the most restrictive beta. If the re-
alizer fails to find a complete realization with the
returned supertags, it asks for the supertags associ-
ated with the next most restrictive beta, and so on
until either a complete realization is found, time
runs out, or there are no more betas in the list.

2.3 LSTM Supertagger

The model from Lewis et al. (2016) is summarized
in Figure 2. Start and end tokens are added to
each sentence. Each word in each sentence (in-
cluding each start and end token) is mapped to a
50-element word embedding. Word embeddings
are initialized using pre-trained word embeddings
from Turian et al. (2010). Embeddings for fea-
tures of the word are concatenated to the word’s
50-element embedding. The concatenated embed-
dings are used as input to a stacked, bi-directional
LSTM with depth 2. Lewis et al. used 1-4 charac-
ter prefixes and suffixes as their features.

The LSTM cell used is a variant that has cou-
pled input and forget gates. If a cell is at position
t, we refer to the cell at t-1 as the previous cell and
the cell at t+1 as the next cell. Each cell takes cell
state ct−1 and hidden state ht−1 from the previ-
ous cell, and xt from the previous layer, passing ct

Figure 2: LSTM model used in Lewis et al.
(2016) and our hypertagger (image from Lewis
et al.). Concatenated embedding representations
of each word are passed to stacked, bi-directional
LSTM that reads sentence in both directions. Out-
puts of the directional LSTM’s are combined. Ap-
plying a softmax over the combined outputs yields
the probability distributions over supertags.

and ht to the next cell, and ht to the next layer. ct
and ht are calculated as follows, with * indicating
component-wise product:

it = σ(Wi[ct−1, ht−1, xt] + bi) (1)

c̃t = tanh(Wc[ht−1, xt] + bc̃) (2)

ot = σ(Wo[c̃t, ht−1, xt] + bo) (3)

ct = it ∗ c̃t + (1− it)ct−1 (4)

ht = ot ∗ tanh(ct) (5)

The model is trained using stochastic gradient
descent with minibatch size of 1, learning rate of
0.01, and momentum of 0.7. The input layer has
a dropout probability of 0.5. Order of sentences
is shuffled after every epoch. We retained these
settings for our hypertagger experiments.3

The outputs of the LSTM are passed to another
hidden layer, a bias is added, and a rectified lin-
ear function is applied. The result is a set of log-
its that give the probability distributions over su-
pertags for each word when passed to a softmax.

3 Approach

3.1 Features

We use a subset of the features from the original
MaxEnt hypertagger (shown below). If a node has
fewer than five parent or child relations, the val-

3As an anonymous reviewer points out, the training would
be faster with a larger minibatch size, and inference would
be faster using highly optimized implementations of standard
LSTM cells.
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ues of the missing relations were set to the empty
string. This kept the size of the input constant.

• Lexical Features: Lemmatized words asso-
ciated with elementary predication nodes

• Node Attribute Features: Named entity cat-
egory, determiner, mood, number, particle,
tense

• Graph Structural Features: Number of
children, number of argument children,
names of 5 parent relations, names of 5 child
relations

Our hypertagger does not include a stage for
predicting POS tags or for using the predicted su-
pertags as features in a stacked model. The re-
current nature of the bi-LSTMs means that the
node-level representations informing supertag pre-
diction can be propagated to nearby nodes in the
model.

Features were extracted from logical forms cor-
responding to Section 00 and Sections 02 to 21.
Section 00 was used as the development set, and
has 1883 sentences and 36,247 nodes. Sections 02
to 21 were used as the training set, and have a total
of 35,765 sentences and 680,705 nodes.

3.2 Input Linearization
Each logical form was converted to a sequence of
nodes, with each node containing all features dis-
cussed in the last sub-section. We refer to this con-
version process as input linearization. Early ex-
periments showed that the order of nodes in the
linearized sequence made a significant difference
in accuracy. Oracle linearization, in which nodes
are ordered according to the order of words in the
original sentence, outperformed random lineariza-
tion by about 5%. Depth-first search lineariza-
tion, in which the parent node came before all
the child nodes and the child nodes were in ran-
dom order relative to each other, improved over
random linearization by about 2%. These exper-
iments showed that more English-like input lin-
earizations led to higher performance.

To approximate English ordering, we developed
a heuristic of how nodes and their children should
be ordered. The heuristic was applied recursively
from the root node(s) of the logical form down to
the leaves. The child ordering is shown below.
The heuristic performed around 3% higher than
random linearization, and around 2% lower than
oracle linearization.

1. Determiner (Det) child

2. Possessor (GenOwn) child

3. First argument (Arg0)

4. One or two word modifiers

5. Parent node

6. Remaining arguments in order of argument
number (Arg1, ..., Arg5)

7. Remaining children sorted ascending by sub-
tree size. If two child subtrees have the same
size, the one with a lesser sum of predicate
name lengths comes before the other.

Konstas et al. (2017) were able to improve their
model by adding parentheses and relation names
into their AMR linearization sequence. We ex-
perimented with both. Adding parentheses around
subsequences corresponding to subtrees of size
five or more consistently resulted in an improve-
ment of 0.2%. Adding relation names to the lin-
earization sequence resulted in either no improve-
ment or a slight decrease in accuracy.

3.3 Model

We adapted the bi-LSTM model from Lewis et al.
(2016) to use our features and list of possible su-
pertags. Each feature value was mapped to a fea-
ture embedding. Embeddings for lexical features
were initialized using pre-trained word embed-
dings. Embeddings for other features were ran-
domly initialized 8-element vectors. The embed-
dings for other features were concatenated onto
the embeddings for lexical features, and the con-
catenated embeddings were used as input to the
bi-LSTM.

We experimented with two sets of pre-trained
word embeddings: those that were used in Lewis
et al., which were of size 50, and a custom
set, which were of size 100. Early experiments
showed that performance was similar for both sets.
Later experiments exclusively used the set used in
Lewis et al.

Sentences with linearized sequences longer than
180 tokens (nodes and parentheses) were filtered
out of the training and development sets. This fil-
ter removed one sentence from the development
set, leaving it with 1882 sentences and 36,103
nodes.
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Our list of possible supertags was originally of
size 1210. We experimented with filtering the
tags: tags that occurred fewer than 5 times in the
training set were not listed as possible supertags.
Instead, when a rare tag is encountered, it was re-
placed with the unknown tag and the associated
word was counted as wrong in the accuracy. We
found that filtering tags boosted performance. Our
filtered list of possible supertags is of size 528.
There were 1543 words in the training set and 88
words in the development set with gold tags fil-
tered out.

The model was trained on the training set, and
evaluated on the development set every 2 minutes
during training. Training was run until either 7
hours had elapsed, or accuracy had not improved
for 30 evaluations. Typically, training ran between
30 and 36 epochs.

3.4 Realization

The realizer is implemented in Java, while the
LSTM model is implemented in Python. To es-
tablish communication between the realizer and
the hypertagger, we used a server thread to run
the LSTM model. The realizer got supertags from
the hypertagger by running a client thread, then
parsing the results returned by it. The LSTM hy-
pertagger was otherwise used in the same way as
the original MaxEnt hypertagger, with the realizer
calling the hypertagger in an iterative β-best algo-
rithm.

4 Results and Discussion

The LSTM hypertagger was tested against the
original, baseline hypertagger on both tagging ac-
curacy and downstream effect on realizer perfor-
mance. Tagging accuracy was evaluated on Sec-
tion 00, and realizer performance was evaluated on
Sections 00 and 23. The lists of β-values for the
LSTM hypertagger and baseline two-stage Max-
Ent hypertagger were adjusted so that both would
on average return about the same number of tags
per word as the published single-stage MaxEnt hy-
pertagger at each corresponding β-level. Section
00 was used to tune the list of β-values for the
LSTM hypertagger.

4.1 Hypertagging Accuracy

The comparison in hypertagging accuracy is sum-
marized in Table 1. In comparison to previously
published results, the LSTM hypertagger achieves

a nearly 3% absolute increase in single-best tag-
ging accuracy, and achieves 99% accuracy at a
multitagging level of only 1.2 tags per predicate,
in comparison to 3.2 tags per predicate previously.
Single-best tagging accuracy for the LSTM hyper-
tagger had a mean of 96.384% and a variance of
0.031% (statistics taken over the six most recent
runs). Figures in Table 1 are for one of the higher-
performing runs.

We were interested in how the hypertaggers
would perform on hard cases such as predicates
that appeared in the development set but not in
training, as well as predicates that appeared in
training, but not with the correct tag in the de-
velopment set. On these hard cases, our model
obtained accuracies of 98.69% and 80.13%, re-
spectively, while the two-stage MaxEnt hypertag-
ger obtained accuracies of 94.58% and 69.96%,
respectively. These improvements represent very
large respective reductions in error of 76% and
34%. These results are summarized in Table 2.

The difference in accuracy between the LSTM
hypertagger with English-like input linearization
and the LSTM hypertagger with oracle input lin-
earization is largely attributed to imperfections in
the English-like linearization. There were many
cases in which the English-like input lineariza-
tion reversed the order between two phrases (e.g.
take these events place ago years, you but have
to recognize) or between two words in a phrase
(e.g. three times than more, among of us those).
In many of these cases, the hypertagger still pre-
dicted the correct tags despite the word order
switches. For the words that the hypertagger did
not tag correctly, when the word order switch was
still grammatical, the assigned supertag was often
similar enough to the gold tag to not significantly
impact realization. By contrast, when the word
order switch was ungrammatical, the assigned su-
pertag was sometimes very different from the gold
tag, which impacted realization negatively.

4.2 Realization Performance

The comparison in realization performance is
summarized in Table 3. Using the LSTM hyper-
tagger, the realizer obtained complete derivations
for more than 6% more realizations (more than
100 more logical forms) in both the development
and test sections. The increase in the number of
complete derivations helped achieve a more than
2.5% absolute increase in BLEU scores for both
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Tags
Pred

LSTM MaxEnt1
β Accuracy β Accuracy

1 1.0 96.5 1.0 93.6
1.1 0.13 98.5 0.16 95.8
1.2 0.04 99.0 0.05 96.6
1.5 7e-3 99.4 5.8e-3 97.9
1.8 2.8e-3 99.5 1.75e-3 98.4
2.2 1.27e-3 99.6 6.25e-4 98.7
3.2 3.65e-4 99.7 1.25e-4 99.0
3.9 2e-4 99.7 5.8e-5 99.1

Table 1: Comparison of tagging accuracies between LSTM hypertagger and published single-stage
MaxEnt hypertagger on the development section (Section 00) of CCGBank. Results (in percentages) are
for per-predicate tagging accuracies.

LSTM MaxEnt2
Unseen Predicates 98.69 94.58

Unseen Predicate-Tag Pairs 80.13 69.96

Table 2: Comparison of tagging accuracies between LSTM hypertagger and unpublished two-stage
MaxEnt hypertagger on hard cases in the development set, namely predicates that are not seen in training
and predicates that are seen in training but not with correct supertag.

sections.

Most of the incomplete or suboptimal realiza-
tions made with the LSTM hypertagger occurred
due to one or more of the following reasons. Some
sentences had several words in which the correct
tag was in the list of β-best tags for the least re-
strictive beta, but had a low probability. This
caused the realizer to time out due to the large
size of the search space. Others had a single
word in which the correct tag was not in the β-
best tag list for the least restrictive beta. Instead
there were many tags in the list that were simi-
lar to the gold tag, but that did not allow a com-
plete realization. For example, the word recog-
nize in the sentence but you have to recognize that
these events took place 35 years ago had a gold
tag of s[b]\np/s[em] (a bare verb subcategorizing
for an embedded clause), but had a single-best as-
signed tag of s[b]\np (a bare intransitive verb),
making it impossible to derive a constituent con-
taining the embedded clause. These errors were
likely caused by imperfections in the English-like
input linearization. For the example above, the in-
put linearization placed recognize at the end of the
sequence, with no subsequent predicates to help
predict the gold tag. Another reason for incom-
plete or suboptimal realizations is that the hyper-

tagger can’t predict certain low-frequency tags, so
some words will not have the correct tag in their
β-best tag list regardless of the β value.

4.3 Human Evaluation

We also did a targeted human evaluation to de-
termine whether the improvements in hypertag-
ging accuracy generally led to noticeable improve-
ments in realization quality, especially where it en-
abled a complete realization to be found.4 Our
procedure was as follows. We randomly chose
100 sentences from the devset where the realiza-
tions differed between using the LSTM hypertag-
ger and the baseline two-stage MaxEnt hypertag-
ger. 50 of the sentences were ones for which
one system got a complete realization but the
other did not—where we expected to find sub-
stantial differences—while the other 50 were ones
for which either both systems got a complete re-
alization or both did not get a complete realiza-
tion. We generated a spreadsheet with the fol-
lowing columns: Reference sentence, Realization
A, Realization B, Adequacy, and Fluency. Which
system was A for each sentence was randomized,

4The complete set of examples and the evalua-
tion script are available in the following supplement to
the paper: https://osf.io/a4czs/?view_only=
b7a0a49046a0408bb844ff7ea63c4e08
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Section
LSTM MaxEnt2

BLEU Complete Exact BLEU Complete Exact
00 0.8783 90.38 49.36 0.8458 83.86 45.62
23 0.8683 87.75 48.35 0.8429 81.69 44.16

Table 3: Comparison in realization performance between systems using the LSTM and two-stage Max-
Ent hypertaggers. The ‘Complete’ column indicates the percentage of logical forms realized with a com-
plete (non-fragmentary) derivation, while the ‘Exact’ column indicates the percentage of realizations that
exactly matched the reference sentence.

as was the order of sentences. A separate key
file kept track of which system was A for each
sentence, and which sentence belonged to which
of the above sets of 50. Two linguists who had
no familiarity with the research evaluated the re-
alizations, marking in the Adequacy and Fluency
columns whether they believed A or B was better
in adequacy and fluency, respectively, or whether
they were equally good for one or both measures.
Raw agreement was relatively high, with the two
judges agreeing on adequacy 70% of the time and
fluency 73% of the time. However, nearly all
the disagreements involved cases where only one
judge found the pair of realizations to be the same
on adequacy or fluency; on the subset of items
where neither judge found the pair to be equal,
agreement was 96% for adequacy and 95% for flu-
ency.

The results of the human evaluations are sum-
marized in Table 4. For the sentences where only
one system produced a complete realization (Set
1), the LSTM hypertagger system outperformed
the baseline one most of the time on both ade-
quacy and fluency. For the other sentences (Set
2), the two systems were mostly tied on adequacy
and fluency, but when the realizations were of dis-
tinct quality, the LSTM hypertagger system usu-
ally outperformed the original one. All differ-
ences in the counts of Better/Worse judgments
were highly significant (p < 0.001, sign test).

Examples of the changes yielded by the LSTM
hypertagger appear in Table 5, where the first two
examples improve both adequacy and fluency, the
next example makes adequacy and fluency worse,
and the final one leaves adequacy and fluency the
same. With wsj 0080.21, it seems that the two-
stage MaxEnt system failed to match the subject
with the verb, yielding a realization where respond
doesn’t have a subject and them is not clearly
linked with its antecedent. With wsj 0004.8, the
LSTM system switched yields and nevertheless,

making a realization that’s different from the orig-
inal sentence, but still grammatical. The two-stage
MaxEnt system seemed to have trouble combining
the words yields, nevertheless, and may, making a
realization that gives an awkward order for these
words and splits the sentence with the phrase said
Brenda Malizia Negus at an awkward place; more-
over, with may appearing initially, the sentence
can be read as a wish rather than a declarative
statement. With wsj 0097.19, the LSTM system
incorrectly inverts the main subject and verb, and
makes several other word order mistakes. Finally,
wsj 0037.9 is an example where leaving out the
complementizer that or the contraction does not
substantially affect adequacy or fluency (though
the reference sentence arguably makes the best
choices here). More generally, while the choice
whether to include a that-complementizer occa-
sionally made a crucial difference, they were a
frequent source of insubstantial differences, along
with contractions and adverbial placement. There
were also cases where both realizations made dis-
tinct but important mistakes that yielded equally
bad realizations.

5 Related Work

Hypertagging can potentially benefit other
grammar-based methods using lexicalized gram-
mars, e.g. using HPSG (Velldal and Oepen, 2005;
Carroll and Oepen, 2005; Nakanishi et al., 2005)
or TAG (Gardent and Perez-Beltrachini, 2017).
Much recent work in NLG (Wen et al., 2015;
Dušek and Jurcicek, 2016; Mei et al., 2016; Kid-
don et al., 2016; Konstas et al., 2017; Wiseman
et al., 2017) has made use of neural sequence-
to-sequence methods for generation rather than
grammar-based methods. The learning flexibility
of neural methods make it possible to develop
very knowledge lean systems, but they continue
to suffer from a tendency to hallucinate content
and have not been used with texts exhibiting
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Set
Adequacy Fluency

Better Same Worse Better Same Worse
1 (±complete) 84 12 4 88 7 5
2 (=complete) 31 62 7 37 52 11

Table 4: Results (counts of judgments) of human evaluations of realizations, which indicate how often
the new system produced better, same, and worse realizations for the given aspect. Set 1 is the set of
sentences in which one system had a complete realization while the other did not. Set 2 is the set of
sentences in which either both systems had complete realizations or both did not.

wsj 0080.21 it was n’t clear how NL and Mr. Simmons would respond if Georgia Gulf spurns them again .
LSTM [same]
MAXENT2 it was n’t clear how to would respond if Georgia Gulf spurns them again NL and Mr. Simmons .

wsj 0004.8 nevertheless , said Brenda Malizia Negus , editor of Money Fund Report , yields may blip up again before
they blip down because of recent rises in short-term interest rates .

LSTM yields nevertheless may blip up again before they blip down because of recent rises in short-term interest
rates , said Brenda Malizia Negus , editor of Money Fund Report .

MAXENT2 may nevertheless yields , said Brenda Malizia Negus , editor of Money Fund Report , again blip up
before they blip down because of recent rises in short-term interest rates .

wsj 0097.19 -lrb- Morgan Stanley last week joined a growing list of U.S. securities firms that have stopped doing index
arbitrage for their own accounts . -rrb-

LSTM last week joined Morgan Stanley . U.S. securities firms that growing a list of has stopped doing index
arbitrage for their own accounts

MAXENT2 -lrb- Morgan Stanley last week joined a growing list of U.S. securities firms that have stopped doing
index arbitrage for their own accounts .

wsj 0037.9 if “ a Wild Sheep Chase ” carries an implicit message for international relations , it ’s that the Japanese
are more like us than most of us think .

LSTM if “ a Wild Sheep Chase ” carries an implicit message for international relations , it ’s the Japanese are
more like us than most of us think .

MAXENT2 if “ a Wild Sheep Chase ” carries an implicit message for international relations , it is that the Japanese
are more like us than most of us think .

Table 5: Examples of devset sentences where the LSTM hypertagger improved adequacy/fluency (top),
made it worse (middle) or left it the same (bottom).

the full complexity of genres such as news text.
Approaches based on dependency grammar (Guo
et al., 2008; Bohnet et al., 2010, 2011; Zhang
and Clark, 2015; Liu et al., 2015; Puduppully
et al., 2016, 2017; King and White, 2018) are
also simpler than constraint-based grammar ap-
proaches, making them more robust to unexpected
inputs and easier to deploy across languages, but
it is difficult to determine whether they can fully
substitute for precise grammars because these
approaches have not used compatible inputs.

Although approaches using constraint-based
grammars are clearly more difficult to imple-
ment and deploy, there is some evidence that they
are beneficial for parsing, while for realization
the question remains largely open. For parsing,
Buys and Blunsom (2017) have recently shown
that even though their incremental neural seman-
tic graph parser substantially outperforms standard

attentional sequence-to-sequence models, it still
lags 4-6% behind an HPSG parser using a sim-
ple log-linear model (Toutanova et al., 2005) on
a variety of parsing accuracy measures on Deep-
Bank (Flickinger et al., 2012), a conversion of the
Penn Treebank to Minimal Recursion Semantics
(Copestake et al., 2005, MRS). The MRS repre-
sentations in DeepBank are qualitatively similar to
the OpenCCG semantic graphs used in this work,
which are again qualitatively similar to the deep
representations used in the First Surface Realiza-
tion Shared Task (Belz et al., 2010, 2011). On
the deep shared task representations, Bohnet et al.
(2011) achieved a BLEU score of 0.7943, which
Puduppully et al. (2017) later improved upon with
a score of 0.8077. These scores are substantially
lower than our BLEU score of 0.8683 reported
here, though since the inputs are not exactly the
same, the BLEU scores are of course not directly

217



comparable.
Given the flexibility of neural methods, it would

be interesting in future work to examine how well
neural sequence-to-sequence generation methods
would fare in a direct, head-to-head comparison
using the kinds of detailed, deep inputs used with
HPSG and CCG. To the extent that neural ap-
proaches continue to hallucinate content and fail to
observe constraints and preferences implemented
by grammar-based approaches in such a compari-
son, it would also be worthwhile to investigate ad-
ditional ways of combining neural and grammar-
based methods.

6 Conclusion

We have implemented a new LSTM hypertag-
ger that significantly outperforms the existing
OpenCCG hypertagger on both tagging accuracy
and its downstream effect on realization perfor-
mance. Since we have observed that the order in
which input nodes are linearized substantially af-
fects tagging accuracy, in future work we would
like to explore whether graph-based neural tagging
methods could yield further improvements in per-
formance. Another direction of interest is explor-
ing ways of incorporating hypertagging into ar-
chitectures that synergistically combine grammar-
based and neural generation methods.
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Abstract

We present a comparison of word-based
and character-based sequence-to-sequence
models for data-to-text natural language
generation, which generate natural lan-
guage descriptions for structured inputs.
On the datasets of two recent generation
challenges, our models achieve compa-
rable or better automatic evaluation re-
sults than the best challenge submissions.
Subsequent detailed statistical and human
analyses shed light on the differences be-
tween the two input representations and
the diversity of the generated texts. In a
controlled experiment with synthetic train-
ing data generated from templates, we
demonstrate the ability of neural models to
learn novel combinations of the templates
and thereby generalize beyond the linguis-
tic structures they were trained on.

1 Introduction

Natural language generation (NLG) is an actively
researched task, which according to Gatt and
Krahmer (2018) can be divided into text-to-text
generation, such as machine translation (Koehn,
2017), text summarization (See et al., 2017),
or open-domain conversation response genera-
tion (Vinyals and Le, 2015) on the one hand, and
data-to-text generation on the other hand. Here,
we focus on the latter, the task of generating tex-
tual descriptions for structured data. Data-to-text
generation comprises the generation of system re-
sponses based on dialog acts in task-oriented dia-
log systems (Wen et al., 2015b), sport games re-
ports and weather forecasts (Angeli et al., 2010),
and database entry descriptions (Gardent et al.,
2017a). In this paper, we focus on sentence plan-
ning and surface realization. We build on data-to-

text datasets of two recent shared tasks for end-to-
end NLG, namely the E2E challenge (Novikova
et al., 2017b) and WebNLG challenge (Gardent
et al., 2017b). Example input-text pairs for both
datasets are shown in Figure 1.

Neural sequence to sequence (Seq2Seq) mod-
els (Graves, 2013; Sutskever et al., 2014) have
shown promising results for this task, especially
in combination with an attention mechanism (Bah-
danau et al., 2014; Luong et al., 2015). Several re-
cent NLG approaches (Dušek and Jurcı́cek, 2016;
Mei et al., 2016; Kiddon et al., 2016; Agarwal and
Dymetman, 2017), as well as most systems in the
E2E and WebNLG challenge are based on this ar-
chitecture. While most NLG models generate text
word by word, promising results were also ob-
tained by encoding the input and generating the
output text character-by-character (Lipton et al.,
2015; Goyal et al., 2016; Agarwal and Dymetman,
2017). Five out of 62 E2E challenge submissions
operate on the character-level. However, it is diffi-
cult to draw conclusions from the challenge results
with respect to this difference, since the submitted
systems also differ in other aspects and were eval-
uated on a single dataset only.

Besides adequacy and fluency, variation is an
important aspect in NLG (Stent et al., 2005). In
addition to comparing the linguistic and content-
wise correctness of word- and character-based
Seq2Seq models through automatic and human
evaluation, we investigate the variety of their out-
puts. While template-based systems can assure
perfect content and linguistic quality, they of-
ten suffer from low diversity. Conversely, neural
models might generalize beyond a limited amount
of training texts or templates, thereby producing
more diverse outputs. To test this hypothesis, we
train Seq2Seq models on template-generated texts
with a controlled amount of variation and show
that they not only reproduce the templates, but also
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E2E input: name[Midsummer House], customer rating [average], near [The Bakers]
reference 1: Customers gave Midsummer House, near The Bakers, a 3 out of 5 rating.
reference 2: Midsummer house has an average customer rating and is near The Bakers.
delexicalized input: name[NAME], customer rating [average], near [NEAR]
delexicalized reference 1: Customers gave NAME, near NEAR, a 3 out of 5 rating.

WebNLG input: cityServed(Abilene Regional Airport[Abilene]), isPartOf(Abilene[Texas])
reference 1: Abilene is in Texas and is served by the Abilene regional airport.
reference 2: Abilene, part of Texas, is served by the Abilene regional airport.
delexicalized input: city served(AGENT-1[BRIDGE-1]), is part of(BRIDGE-1[PATIENT-1])
delexicalized reference 1: BRIDGE-1 is in PATIENT-1 and is served by the AGENT-1.

Figure 1: Example input-reference pairs from the E2E and WebNLG development set.

generate novel structures resulting from template
combinations.

In sum, we make the following contribution:

• We compare word- and character-based
Seq2Seq models for NLG on two datasets.

• We conduct an extensive automatic and man-
ual analysis of the generated texts and com-
pare them to human performance.

• In an experiment with synthetic training data
generated from templates, we demonstrate
the ability of neural NLG models to learn
template combinations and thereby general-
ize beyond the linguistic structures they were
trained on.

2 Related Work

This section reviews relevant related work accord-
ing to the two main aspects of this paper: differ-
ent input and output representations for data-to-
text NLG as well as measuring and controlling the
variation in the generated outputs.

2.1 Input and Output Representations

While the first NLG systems relied on hand-
written rules or templates that were filled with
the input information (Cheyer and Guzzoni, 2006;
Mirkovic et al., 2006), the availability of larger
datasets has accelerated the progress in statistical
methods to train NLG systems from data-text pairs
in the last twenty years (Oh and Rudnicky, 2000;
Mairesse and Young, 2014). Generating output
via language models based on recurrent neural net-
works (RNNs) conditioned on the input (Sutskever
et al., 2011) proved to be an effective method for
end-to-end NLG (Wen et al., 2015a,b, 2016).

The input can be represented in several ways:
(1) In a discrete vector space via one-hot-
vectors (Wen et al., 2015a,b), or in a continuous
space either (2) by encoding fixed-size input in-
formation in a feed-forward neural network (Zhou
et al., 2017; Wiseman et al., 2017) or (3) by
the means of an encoder RNN, which processes
variable-sized inputs sequentially, giving rise to
the Seq2Seq architecture.

Character-based Seq2Seq models were first pro-
posed for neural machine translation (Ling et al.,
2015; Chung et al., 2016; Lee et al., 2017). Their
main advantage over word-based models is that
they can represent an unlimited word inventory
with a small vocabulary. They can learn to copy
any string from the input to the output, which is
especially useful for data-to-text NLG, as informa-
tion from the input such as the name of a restau-
rant or a database entity is often expected to ap-
pear verbatim in the generated text. Word-based
models, in contrast, have to make use of delexical-
ization during pre- and postprocessing (Wen et al.,
2015b; Dušek and Jurcı́cek, 2016) or have to apply
dedicated copy mechanisms (Gu et al., 2016; See
et al., 2017; Wiseman et al., 2017) to handle open
vocabularies. The other side of the coin is that se-
quences are much longer in character-based pro-
cessing, implying longer dependencies and more
computation steps for encoding and decoding.

Subword-based representations (Sennrich et al.,
2016; Wu et al., 2016) can offer a trade-off be-
tween word- and character-based processing and
are a popular choice in NMT and summariza-
tion (See et al., 2017). Here, the vocabulary con-
sists of subword units of different lengths, which
are assigned by minimizing the entropy on the
training set. We also experimented with such
representations in preliminary experiments, but
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found them to perform much worse than word-
or character-based representations. Our impres-
sion is that recurring entity names in the training
data coming from multiple reference texts for the
same input lead to overfitting on the training vo-
cabulary and to poor generalization to novel in-
puts. This is also reflected by the rather unsatisfy-
ing performance of subword-based approaches in
the E2E1 and WebNLG challenge (ADAPT sys-
tem (Gardent et al., 2017b)).

2.2 Output Diversity

Evaluation of data-to-text NLG has traditionally
centered around semantic fidelity, grammaticality,
and naturalness (Gatt and Krahmer, 2018; Oraby
et al., 2018b). More recently, the controllability
of the style of the outputs and their variation has
moved into focus as well (Ficler and Goldberg,
2017; Herzig et al., 2017; Oraby et al., 2018b,a).

Oraby et al. (2018b) showed that the n-gram en-
tropy of the outputs of a neural NLG system is sig-
nificantly lower compared to its training data. This
can be seen as evidence that the NLG system ex-
tracts only a few dominant patterns from the train-
ing data that it will generate over and over. With-
out explicit supervision signals, neural NLG mod-
els cannot distinguish linguistic or stylistic vari-
ation from noise. In the context of image cap-
tion generation Devlin et al. (2015) found Seq2Seq
models to exactly reproduce sentences from their
training data for 60% of the test instances.

Several approaches have been proposed to con-
trol NLG outputs with respect to certain stylistic
aspects, e.g., mimicking a specific persona or char-
acter (Lin and Walker, 2011; Walker et al., 2011;
Li et al., 2016), personality traits (Mairesse and
Walker, 2008; Herzig et al., 2017; Oraby et al.,
2018b,a), or various linguistic aspects such as for-
mality, voice, descriptiveness (Ficler and Gold-
berg, 2017; Bawden, 2017; Niu et al., 2017). All
share the feature that the NLG model is condi-
tioned on a representation of the desired aspect
in addition to the usual semantic input representa-
tion. While this approach makes it possible to suc-
cessfully control particular, clearly defined aspects
of the generated texts, further research is needed to
grant more flexible and comprehensive NLG out-
put control.

1The subword-based bzhang submit system has the sec-
ond best ROUGE-L score, but ranks poorly in terms of BLEU
and quality in the human evaluation, see http://www.macs.
hw.ac.uk/InteractionLab/E2E/#results.

3 Models

To encode variable-length inputs and generate
variable-length texts, we implement a standard
Seq2Seq model (Cho et al., 2014) with Long
Short-Term Memory (LSTM) cells (Hochreiter
and Schmidhuber, 1997) and attention. Given
a training dataset of input-text pairs D =
{(x1, ȳ1), (x2, ȳ2) . . . }, the model encodes an in-
put sequence x = {x1 . . . xn} of symbols xi into
a sequence of hidden states {h1 . . . hn} by apply-
ing a recurrent neural network (RNN) with LSTM
cells that can store and forget sequence informa-
tion:

ht = LSTM(X inxt, ht−1) (1)

The decoder generates the output se-
quence y1 . . . ym one symbol yt at a time by com-
puting p(yt|y1 . . . yt−1, x) = softmax(W out(ct)).

The decoder output ct, also referred to as con-
text vector, summarizes the input information in
each decoding step as weighted sum of the en-
coder hidden states: ct =

∑n
i=1 αtihi. The atten-

tion weights αti are computed with the general at-
tention mechanism αti = softmax(stW

ahi) (Lu-
ong et al., 2015). The decoder hidden states st are
computed recursively based on the previous output
token and decoder output:

st = LSTM((Xout(yt−1) ◦ ct−1), st−1) (2)

s0 is initialized to the final encoder hidden state
hn, h0, c−1 are initialized to 0; ◦ denotes concate-
nation. The parameters of the models are the input
and output embedding matrices X in, Xout, the en-
coder and decoder LSTM parameters, the attention
matrix W a and the output matrix W out. They are
optimized by minimizing the cross entropy of the
generated texts yj with the given references ȳj for
each example in the training set.

Instead of forcing the decoder to decide on a
single output symbol in each decoding step, we
apply beam search (Cho et al., 2014; Bahdanau
et al., 2014) to explore n-best partial hypotheses
in parallel.

In the word-based model, each input symbol xt
and output symbol yt denotes a token. In contrast,
in the character-based model, each input and out-
put symbol denotes a single character. Our mod-
els learn separate encoder and decoder embedding
matrices.
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4 Data

We use two recently collected crowd-sourced
data-to-text datasets since they are larger and offer
more linguistic variety than previously available
datasets (Novikova et al., 2017b; Gardent et al.,
2017a). The E2E dataset (Novikova et al., 2017b)
consists of 47K restaurant descriptions based on
5.7K distinct inputs of 3-8 attributes (name, area,
near, eat type, food, price range, family friendly,
rating), split into 4862 inputs for training, 547 for
development and 630 for testing. The WebNLG
dataset (Gardent et al., 2017a) contains 25K ver-
balizations of 9.6K inputs composed of 1-7 DB-
pedia triples from 15 categories such as athletes,
comic characters, food, sport teams. It is divided
into 6893 inputs for training, 872 for development
and 1862 for testing. Both datasets have multiple
verbalizations for each input. On average there are
8.3 (min. 1, max. 46) verbalizations per input in
the E2E dataset and 2.63 (min. 1, max. 12) in the
WebNLG dataset, respectively.

To preprocess both datasets, we lowercase all
inputs and references and represent the inputs in
the bracketed format as shown in Figure 1. For the
word-based processing we additionally tokenize
the texts with the nltk-tokenizer (Bird et al., 2009)
and apply delexicalization, as also illustrated in
Figure 1. For the E2E dataset we adopt the chal-
lenge’s baseline delexicalization strategy (Dušek
and Jurcı́cek, 2016), which replaces the values of
the two open-class attributes name and near in
the input and references by placeholders. For the
WebNLG dataset, we adopt the delexicalization
strategy of the TILBURG submissions to the chal-
lenge, since it performed well and does not require
external information. They replaced the subject
and object entities of the DBpedia triples in the
input and text by numbered placeholders AGENT-
N, PATIENT-N, BRIDGE-N, depending on whether
they only appear as subject, object or in both roles
in the input of an instance. Additionally, we split
properties at the camel case in this dataset for both
the word- and character-based models as proposed
by the ADAPT and MELBOURNE submissions. Ta-
ble 1 displays statistics for both datasets and pro-
cessing types.

5 Experiments

We conduct our experiments with the OpenNMT
toolkit (Klein et al., 2017), which we extend
to also perform character-based processing. We

E2E WebNLG
word char. word char.

avg. input length 28.5 106.0 24.8 139.8
avg. text length 20.0 109.3 18.8 117.1
input vocabulary 48 39 312 78
output vocabulary 2,721 53 4,264 83

Table 1: E2E and WebNLG training split statis-
tics for word-based processing after delexicaliza-
tion and character-based processing.

tuned the hyperparameters for each dataset and
processing method to optimize the BLEU score on
the development sets. The word-based model for
the E2E dataset is trained by stochastic gradient
descent (SGD) (Robbins and Monro, 1951) and an
initial learning rate of 1.0. For all other models,
we achieved better performance with the Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.001. If there is no improvement
in the development perplexity, or in any case after
the eighth epoch, we halve the learning rate. Also,
we clip all gradients to a maximum of five. We
use a batch size of 64. To prevent overfitting, we
drop out units in the context vectors with a prob-
ability of 0.3. We keep the model with the lowest
development perplexity in 13 training epochs.

The word-based E2E model has 64-dimensional
word embeddings and a single encoder and de-
coder layer with 64 units each. All other models
use 500-dimensional word- or character embed-
dings and two layers in the encoder and decoder
with 500 dimensions each. While a unidirectional
encoder was sufficient for the word-based mod-
els, bidirectional encoders were beneficial for the
character-based models on both datasets.

We use a beam size of 15 for decoding with the
word-based models, and found a smaller beam of
five to yield better results for the character-based
models. This is probably due to the much smaller
vocabulary size of the character-based models.

For automatic evaluation, we report BLEU (Pa-
pineni et al., 2002), which measures the precision
of the generated n-grams compared to the refer-
ences, and recall-oriented ROUGE-L (Lin, 2004),
which measures the longest common subsequence
between the generated texts and the references.
We compute these scores with the E2E challenge
evaluation script2.

2https://github.com/tuetschek/e2e-metrics
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6 Results and Analysis

Table 2 and 3 display the results on the E2E and
WebNLG test sets for models of the respective
challenges and our own models3. Since the perfor-
mance of neural models can vary considerably due
to random parameter initialization and random-
ized training procedures (Reimers and Gurevych,
2017), we train ten models with different random
seeds for each setting and report the average (avg)
and standard deviation (SD).

On the E2E test set, our single best word- and
character-based models reach comparable results
to the best challenge submissions. The word-
based models achieve significantly higher BLEU
and ROUGE-L scores than the character-based
models4. On the WebNLG test set, the BLEU
score of our best word-based model outperforms
the best challenge submission by a small mar-
gin. The character-based model achieves a sig-
nificantly higher ROUGE-L score than the word-
based model, whereas the BLEU score difference
is not significant. In the following, we analyze our
models in more detail.

6.1 Analysis of Within-Model Performance
Differences

The large performance span of the character-based
models on the E2E dataset is due to a single outlier
model; the second worst model scores 64.5 BLEU
points. The worst-scoring model had a lower ac-
curacy of 91.8% on the development set, whereas
all other models scored above 92.2%. To gain
more insight on what might constitute the large
performance difference, we manually compared
the generated texts for ten randomly selected in-
puts for each number of attributes (60 inputs in to-
tal) of the character-based model with the best and
worst BLEU score. We found that the worst model
makes many mistakes on inputs with three to five
attributes, often adding, modifying or removing
information, whereas the outputs are mostly cor-
rect for inputs with six attributes or more. For
these, the outputs of the model with the low-
est BLEU score are occasionally even better than
those of the best model, which often omits in-

3For an exact comparison, we recomputed the
WebNLG challenge results with the E2E evaluation
script. They are usually 1-2 points below the scores reported
by Gardent et al. (2017b).

4All tests for significance in this paper are conducted with
Wilcoxon rank sum tests with Bonferroni correction at a p-
level of 0.05.

formation (mainly concerning the attribute family
friendly). We conclude that the large performance
difference might be caused by automatic evalua-
tion measures punishing additions more severely
than omissions.

We also observe a large performance span for
the WebNLG word-based models. Here, we have
two models that score exceptionally well with
57.4/58.4 BLEU points, whereas the remaining
eight models only obtain BLEU scores in a range
of 43.8-48.1. Again, we observe that better models
in terms of BLEU score obtain higher accuracies
on the development set. We manually compared
the outputs of ten randomly chosen inputs for each
number of input triples (75 inputs in total) for the
model with the highest and lowest BLEU score.
In this case, we found that the large difference
in the automatic evaluation measures seems jus-
tified: The low-scoring model often hallucinates
information not present in the input and generally
produces many ungrammatical texts, which is not
the case for the best model.

system BLEU ROUGE-L

challenge

baseline 65.9 68.5
Thomson Reuters (np 3) 68.1 69.3
Thomson Reuters (np 4) 67.4 69.8
HarvardNLP & H. Elder 67.4 70.8

own

word 67.8±0.8 70.4±0.6
character 64.6±6.0 67.9±4.7
word (best on dev.) 67.8 70.2
char. (best on dev.) 67.6 70.4

Table 2: E2E test set results. Own results corre-
spond to avg±SD of ten runs and single result of
best models on the development set.

6.2 Automatic Evaluation of Human Texts

To gain an impression of the expressiveness of the
automatic evaluation scores for NLG, we com-
puted the average scores that the human refer-
ences would obtain. Table 4 shows the BLEU
and ROUGE-L development set scores when treat-
ing each human reference as prediction once and
evaluating it against the remaining references,
compared to the scores of the word-based and
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system BLEU ROUGE-L

challenge

baseline 32.1 43.3
MELBOURNE 43.4 61.0
TILBURG-SMT 43.1 58.0
UPF-FORGE 37.5 58.8

own

word (best on dev.) 44.2 60.9
char. (best on dev.) 41.3 58.4
word 37.0±3.8 56.3±2.6
character 39.7±1.7 58.4±0.7

Table 3: WebNLG test set results. Own results
correspond to single best model on development
set and avg±SD of ten runs.

character-based models5. Strikingly, on the E2E
development set, both model variants significantly
outperform human texts by far with respect to
both automatic evaluation measures. While the
human BLEU score is significantly higher than
those of both systems on the WebNLG devel-
opment set, there is no statistical difference be-
tween human and system ROUGE-L scores. This
further demonstrates the limited utility of BLEU
and ROUGLE-L scores to evaluate NLG out-
puts, which was previously suggested by weak
correlations of such scores with human judg-
ments (Scott and Moore, 2006; Reiter and Belz,
2009; Novikova et al., 2017a). Furthermore, the
high scores on the E2E dataset imply that the mod-
els succeed in picking up patterns from the train-
ing data that transfer well to the similar develop-
ment set, whereas human variation and creativity
are punished by lexical overlap-based automatic
evaluation scores.

6.3 Manual Error Analysis
Since the expressiveness of automatic evaluation
measures for NLG is limited, as shown in the pre-
vious subsection, we performed a manual error
analysis on inputs of each length. We define the
input length as the number of input attributes for
the E2E dataset, ranging from three to eight, and
number of input triples for the WebNLG dataset,
ranging from one to seven. We randomly selected

5For a fair comparison between human and model perfor-
mance, we randomly removed one reference for each instance
in the models’ evaluation to ensure the same average number
of references. We excluded 55 WebNLG instances that had
only one reference.

metric human word char.

E2E

BLEU 55.5±0.7 68.2±1.4 65.8±2.6
ROUGE-L 62.0±0.4 72.1±0.7 69.8±2.6

WebNLG

BLEU 48.3±0.7 40.6±4.2 43.7±2.4
ROUGE-L 62.4±0.3 58.5±3.0 63.1±0.8

Table 4: E2E and WebNLG development set re-
sults in the format avg±SD. Human results are av-
eraged over using each human reference as predic-
tion once.

E2E WebNLG
word char. word char.

content errors

info. dropped 40.0 30.0 42.9 66.7
info. added 0.0 0.0 6.7 1.9
info. modified 4.4 0.0 19.0 1.9
info. repeated 0.0 0.0 15.2 28.6

linguistic errors

punctuation errors 5.6 5.6 8.6 3.8
grammatical errors 13.3 14.4 15.2 12.4
spelling mistakes 0.0 0.0 9.5 5.7

overall correctness

content correct 55.6 70.0 46.7 31.4
language correct 83.3 81.1 69.5 79.0
all correct 48.9 61.1 33.3 26.7

Table 5: Percentage of affected instances in man-
ual error analysis of 15 randomly selected devel-
opment set instances for each input length.

15 development instances for each input length,
resulting in a total of 90 annotated E2E instances
and 105 WebNLG instances.

One annotator (one of the authors of this paper)
manually assessed the outputs of the models that
obtained the best development set BLEU score as
summarized in Table 56. As we can see from the
bottom part of the table, all models struggle more
with getting the content right than with produc-
ing linguistically correct texts; 70-80% of the texts
generated by all models are completely correct lin-
guistically.

6Although multiple annotators could increase the reliabil-
ity of these results, the annotator reported that the task was
very straightforward. We do not expect marking content and
linguistic errors to lead to annotator disagreements, with the
exception of accidentally missed errors.
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E2E WebNLG

human word character human word character

unique sents. 866.3±16.5 203.5±30.6 366.8±60.0 1,185.0±12.6 603.7±144.3 875.4±30.2
unique words 419.7±16.7 64.4±2.3 73.1±7.2 1447.3±7.4 620.3±35.5 881.5±26.0
word E 6.5±0.0 5.1±0.0 5.5±0.0 7.1±0.0 6.3±0.0 6.6±0.0
1-3-grams E 10.4±0.0 7.7±0.1 8.2±0.1 11.6±0.0 10.1±0.1 10.5±0.1
% new texts 99.7±0.2 98.2±0.3 98.8±0.2 91.1±0.3 69.8±4.8 87.5±0.6
% new sents. 85.1±1.1 61.8±6.4 71.4±4.7 87.4±0.4 57.2±5.8 82.1±1.2

Table 6: Linguistic diversity of development set references and generated texts as avg±SD. ‘% new’ de-
notes the share of generated texts or sentences that do not appear in training references. Higher indicates
more diversity for all measures.

Comparing the two datasets, we again observe
that the WebNLG dataset is much more challeng-
ing than the E2E dataset, especially with respect to
correctly verbalizing the content. This can be at-
tributed to the increased diversity of the inputs and
texts and to the limited availability of training data
for this dataset (cf. Table 1). Moreover, spelling
mistakes only appeared in WebNLG texts, mainly
concerning omissions of accents or umlauts. This
also indicates that there is too few and noisy data
for the models to learn the correct spelling of all
words. Notably, we did not observe any non-
words generated by the character-based models.

The most frequent content error in both datasets
concerns omission of information. For the E2E
dataset, the family friendly attribute is most fre-
quently dropped by both model types, indicating
that the verbalization of this boolean attribute is
more difficult to learn than other attributes, whose
values mostly appear verbatim in the text. Infor-
mation modification of the word-based model is
mainly due to confusing English with Italian food.
Information addition and repetition only occur in
the WebNLG dataset. The latter is an especially
frequent problem of the character-based model, af-
fecting more than a quarter of all texts.

In comparison, character-based models repro-
duce the content more faithfully on the E2E
dataset while offering the same level of linguis-
tic quality as word-based models, leading to more
correct outputs overall. On the WebNLG dataset,
the word-based model is more faithful to the in-
puts, probably because of the effective delexi-
calization strategy, whereas the character-based
model errs less on the linguistic side. Overall,
the word-based model yields more correct texts,
stressing the importance of delexicalization and
data normalization in low resource settings.

6.4 Automatic Evaluation of Output
Diversity

While correctness is a necessity in NLG, in many
settings it is not sufficient. Often, variation of the
generated texts is crucial to avoid repetitive and
unnatural outputs. Table 6 shows automatically
computed statistics on the diversity of the gener-
ated texts of both models and human texts and
on the overlap of the (generated) texts with the
training set. We measure diversity by the num-
ber of unique sentences and words in all develop-
ment set references and generated texts, as done
e.g. by Devlin et al. (2015). Additionally, we re-
port the Shannon text entropy as measure of the
amount of variation in the texts following (Oraby
et al., 2018b). We compute the text entropy E for
words (unigrams) and uni-, bi-, and trigrams as
follows:

E = −
∑

w∈V

f(w)

total
∗ log2

f(w)

total
(3)

where V is the set of all word types or uni-, bi-
and trigrams, f denotes frequency and total is the
token count or total number of uni-, bi- and tri-
grams in the texts, respectively.

To measure the extent by which the models gen-
eralize beyond plugging in restaurant or other en-
tity names into templates extracted from the train-
ing data, we compute the results on the delexical-
ized outputs of the word-based models and delex-
icalize the character-based models’ outputs. For
the human scores, we generate n artificial predic-
tion files, treating each n-th reference (42 for E2E,
8 for WebNLG) as reference, apply delexicaliza-
tion, and average the scores for the n files.

On both datasets, our systems produce signif-
icantly less varied outputs and reproduce more
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Template 1:
:::::
NAME

::
is

::
a

:::::::::::::::::::
[FAMILY-FRIENDLY]

::::::::
EATTYPE which serves [FOOD] food [in the PRICE RANGE

price range].
::
[It

:::
has

::
a

:::::::
RATING

:::::::
rating]

::::
[and

::
is

:::::::
located

::
in

:::
the

::::::
AREA

::::::
area[,

::::
near

::::::::
NEAR]]. [It is not FAMILY-

FRIENDLY.]
Example: NAME is a family-friendly coffee shop which serves Chinese food in the low price range. It
has a high customer rating and is located in the city centre area, near NEAR.

Template 2: The [FAMILY-FRIENDLY] EATTYPE NAME serves [FOOD] food [in the PRICE RANGE

price range]. [It is located in the AREA area[, near NEAR].] [It has a RATING rating.] [It is not FAMILY-
FRIENDLY.]
Example: The family-friendly coffee shop NAME serves Chinese food in the low price range. It is
located in the city centre area, near NEAR. It has a high customer rating.

Learned combinations of Template 1 and 2:
•

:::::
NAME

::
is
::

a
:::::::::
restaurant which serves English food in the moderate price range. It is located in the city

centre area, near NEAR. It has a customer rating of 1 out of 5. It is not family friendly.
• The family-friendly pub NAME serves Indian food in the low price range.

::
It

:::
has

::
a
::::::::
customer

::::::
rating

::
of

::
5

:::
out

::
of

::
5

::::
and

::
is

::::::
located

:::
in

:::
the

::::::::
riverside

:::::
area,

::::
near

::::::
NEAR.

Figure 2: Templates used for synthetic training data generation, parts in brackets are realized only if
the input contains the corresponding attribute. Learned combinations are two template combinations
produced by a model trained on data generated from both templates.

texts and sentences from the training data than the
human texts. Interestingly, however, the character-
based models generate significantly more unique
sentences and copy significantly less from the
training data than the word-based models, which
copy about 40% of their generated sentences from
the training data.

7 Generalizing from Templates

In search for empirical evidence that neural mod-
els are able to surpass the structures they were
trained on, we train Seq2Seq models with syn-
thetic training data created by templates. This
enables us to control the variation in the training
data and identify novel generations of the model
(if any). We investigate two questions: (1) Do
the neural NLG models indeed accurately learn the
templates from the training data? (2) Do they learn
to combine the training templates to produce more
varied outputs than seen during training?

We generate synthetic training data based on
two templates. Template 1 corresponds to UKP-
TUDA’s submission to the E2E challenge7, where
the order of describing the input information is
fixed. Specifically, the restaurant’s customer rat-
ing is always mentioned before its location. For
Template 2, we change the the beginning of the
template and switch the order of mentioning the

7https://github.com/UKPLab/e2e-nlg-challenge-2017/
blob/master/components/template-baseline.py

rating and location of the restaurant as shown
in Figure 2. Potential combinations of the two
templates are to combine the beginning of Tem-
plate 1 with the ordering of rating and area of
Template 2 or vice versa. We generate a single
reference text for all 2261 training inputs of the
E2E dataset where the NAME and EATTYPE at-
tribute are present as these are the two obliga-
tory attributes for the templates. We train word-
based models on training data generated with
Template 1, Template 2 and the concatenation of
the training data from Template 1 and 2. To keep
the amount of training data equal in all experi-
ments, we once repeat the training corpus gener-
ated only with Template 1 or Template 2. The hy-
perparameters for the three models can be found
in the appendix.

c@1 c@2 c@5 c@30

template 1 0.8 0.8 0.9 1.7
template 2 1.0 1.2 1.3 1.9
template 1+2 0.9 1.6 2.2 3.3
+ reranker 0.9 1.9 2.7 3.3

Table 7: Manual evaluation of generated texts for
10 random test instances of a word-based model
trained with synthetic training data from two tem-
plates. c@n: avg. number of correct texts (with
respect to content and language) among the top n
hypotheses.
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Table 7 shows our manual evaluation of the top
30 hypotheses for 10 random E2E test inputs gen-
erated by models trained with data synthesized
from the two templates. As is evident from the first
two rows, all models learned to generalize from
the training data to produce correct texts for novel
inputs consisting of unseen combinations of input
attributes. It was verified in the manual evaluation
that 100% of the texts generated by models trained
on a single template adhered to this template. Yet,
the picture is a bit different for the model trained
on data generated by both templates. While the top
two hypotheses are equally distributed between
adhering to Template 1 and Template 2, more than
5% among the lower-ranked hypotheses consti-
tute a template combination such as the example
shown in the bottom part of Figure 2. For 60% of
the examined inputs, there was at least one such
hypothesis resulting from template combination,
of which two thirds were actually correct verbal-
izations of the input.

Since we found that the models frequently
ranked correct hypotheses below hypotheses with
content errors, we implemented a simple rule-
based reranker based on verbatim matches of at-
tribute values. The reranker assigns an error point
to each omission and addition of an attribute value.
As can be seen in the final row of Table 7, this sim-
ple reranker successfully places correct hypothe-
ses higher up in the ranking, improving the prac-
tical usability of the generation model by now of-
fering almost three correct variants for each input
among the top five hypotheses on average.

8 Conclusion

We compared word-based and character-based
Seq2Seq models for data-to-text NLG on two
datasets and analyzed their output diversity. Our
main findings are as follows: Overall, Seq2Seq
models can learn to verbalize structured inputs in
a decent way; their success depends on the extent
of the domain and available (clean) training data.

Second, in a comparison with texts produced by
humans, we saw that neural NLG models can even
surpass human performance in terms of automatic
evaluation measures. On the one hand, this un-
veils the ability of the models to extract general
patterns from the training data that approximate
many reference texts, but on the other hand also
once more stresses the limited utility of such mea-
sures to evaluate NLG systems.

Third, in light of the multi-faceted analysis we
performed, it is difficult to draw a general con-
clusion on whether word- or character-based pro-
cessing is more useful for data-to-text generation.
Both models yielded comparable results with re-
spect to automatic evaluation measures. In the
manual error analysis, the character-based model
performed better on the E2E dataset, whereas the
word-based model generated more correct outputs
on the WebNLG dataset. Character-based models
were found to have a significantly higher output
diversity.

Finally, in a controlled experiment with word-
based Seq2Seq models trained on data synthesized
from templates, we showed the capability of such
models to perfectly reproduce the templates they
were trained on. More importantly, models trained
on two templates could generalize beyond their
training data and come up with novel texts. In fu-
ture work, we would like to extend this line of re-
search and train more model variants on a higher
number of templates.
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Curry, and Verena Rieser. 2017a. Why we need new
evaluation metrics for NLG. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, pages 2231–
2242, Copenhagen, Denmark.
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A Hyperparameters for Models Trained
on Synthetic Training Data

For the model trained on template-generated data,
we tune the hyperparameters to achieve 100% ac-
curacy for their best hypotheses on template-
generated references on the development set. All
models have a single-layer LSTM with 64 hid-
den units in the encoder and decoder. We half
the learning rate starting from the eighth train-
ing epoch or if the perplexity of the validation set
does not improve. The gradient norm is capped at
two. The decoder uses the general attention mech-
anism. For decoding, we set the beam size to 30.
Table 8 shows hyperparameters which differ for
the models.

hyperparameter T 1 T 2 T 1+2

encoder unidirectional bidir.
embedding size 28 28 30
optimizer Adam SGD SGD
init. learning rate 0.001 1.0 1.0
batch size 4 4 16
dropout 0.4 0.5 0.3
epochs 25 13 15

Table 8: Hyperparameters for the models trained
on synthetic training data generated from Tem-
plate 1 (T 1), Template 2 (T 2) and both (T 1+2).
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Abstract

E-commerce platforms present products
using titles that summarize product infor-
mation. These titles cannot be created by
hand, therefore an algorithmic solution is
required. The task of automatically gen-
erating these titles given noisy user pro-
vided titles is one way to achieve the goal.
The setting requires the generation pro-
cess to be fast and the generated title to
be both human-readable and concise. Fur-
thermore, we need to understand if such
generated titles are usable. As such, we
propose approaches that (i) automatically
generate product titles, (ii) predict their
quality. Our approach scales to millions
of products and both automatic and human
evaluations performed on real-world data
indicate our approaches are effective and
applicable to existing e-commerce scenar-
ios.

1 Introduction

E-Commerce websites are now an established way
to buy and sell products using online platforms
that have a vast and diverse catalog of products.
A catalog is composed of a series of products that
are unique and can broadly be identified by their
brand, model and main features that vary accord-
ing to the type of product (clothes, electronics,
books). A product title is the realization of this in-
formation in a human-readable way so that users
can understand the main features of the product.

Online platforms expose the products via prod-
uct pages that condense the information for a prod-
uct and can use the title as the product’s main sum-
mary. A product page for “ACME Model Smart-

∗Now at AWS Inc.
†Now at Apptek Inc.

phone 64GB Black Unlocked” is shown in Figure
1. The product page also aggregates all the listings
of the product being sold (bottom of the figure). A
listing (or item) is an instance of a product sold
in the platform by a seller. Its title might contain
information such as condition of the item (used,
new, among others), price, shipping and quantity
tags, and other information specific to a particu-
lar item. Product titles cannot contain such infor-
mation because they describe the product and not
item-specific details like its price.

Figure 1: Example of product page.

Large e-commerce platforms have millions of
products and manually creating titles for such
products is not feasible. In order to scale the pro-
cess of creating product titles, such platforms need
to employ algorithms that automatically generate
titles and are fast enough to scale. One possible
way to generate text is to build a rule-based system
that uses slot-value pairs to generate text, selecting
the most important pairs in the output (Dale et al.,
1998). Another possible way, that we propose in
this study, is to leverage large amounts of seller-
provided listing titles and recombine their n-grams
to form hypotheses of product titles.

Observing the listing titles created by sellers, it
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is noticeable that many of them contain a mix of
irrelevant information (shipping, condition, price,
information, among others) and relevant informa-
tion (brand, model and features). The occurrence
of ready-to-use product titles among listing titles is
possible but not guaranteed. Based on this obser-
vation, one hypothesis that emerges is that a good
product title could be formed by tokens that oc-
cur most frequently across listings aggregated for
the product, and that combining these frequent ex-
pressions could yield a good product title.

The title generation approach presented here
builds on top of this hypothesis. It is based on a
statistical approach that first counts n-grams oc-
curring in the titles aggregated into a product and
then recombines them to form product title hy-
potheses. Furthermore, the available slot-value
pairs can be used to enforce tokens that are impor-
tant, ensuring that relevant product information is
present in the generated output.

Though algorithms can scale the title generation
process, often the quality of the output generated
is not good, and some titles might not be adequate.
This can happen due to several reasons, ranging
from noisy input data (e.g. noisy aggregation of
titles into a product) or bad hypothesis generation.
Therefore, in addition to automatically generating
titles, there should be a way to assess whether the
generated titles are good enough for publishing, in
order to avoid bad user experience. For example,
in Figure 1, if a generated title has a brand other
than “ACME”, it would not be an appropriate title
for that specific product.

In this paper we present approaches to both
problems: (i) generating e-commerce product ti-
tles and (ii) predicting their quality. Our main con-
tributions are:

• An approach that generates product titles tak-
ing seller-provided listing titles as input and
that scales to millions of products. The
method is based on a stack decoder search
algorithm that recombines frequent n-grams
observed in the listing titles to form a prod-
uct title hypothesis.

• An approach to estimating the quality of titles
based on supervised machine learning meth-
ods, in particular neural networks trained on
human-annotated data.

• A thorough evaluation of the approaches on
in-house data and a qualitative analysis of the
system’s outputs using human evaluation.

The remainder of the paper is organized as fol-
lows: Section 2 describes work in text generation
related to the approaches described here; Section
3 describe the title generation approach; Section 4
presents the title quality prediction approach; Sec-
tion 5 lays out the experimental settings used for
evaluating the approaches described in the paper;
Section 6 presents and discusses the results ob-
tained and Section 7 summarizes the conclusions
and lays out future work directions.

2 Related Work

Prior work on title generation for e-commerce fo-
cused on browse pages and has only explored a
hybrid approach combining rule-based and statis-
tical machine translation models (Mathur et al.,
2017). The input to this approach consists of
structured information about products in terms of
slot/value pairs (e.g. Watch Type: wrist
watch). Although the task is similar to ours,
hand-crafting and encoding product-specific rules
is a time-consuming endeavour which does not
scale to the hundreds of slot-value pairs and mil-
lions of products in the catalog. Below, we discuss
three approaches that can either be directly applied
or adapted to product title generation. The first ap-
proach is selection-based, while the last two are
generation-based.

Hypothesis Selection. The most intuitive ap-
proach is to select, among the listing titles, the
one that most “appropriately” describes the prod-
uct. This can be achieved by applying diversity-
based ranking techniques used in extractive sum-
marization, such as Maximal Marginal Relevance
(MMR), to prune and select from the set of titles
(Carbonell and Goldstein, 1998; Gillick, 2011).
Alternatively, systems can also learn how to pick
the candidate title that is closest to the reference
title. This approach can rely on ranking scores
produced by models trained on listing titles and
the corresponding human-curated reference prod-
uct titles, with automatic metrics such as BLEU
(Papineni et al., 2002) or TER (Snover et al., 2006)
as labels. Some of these techniques are employed
in system combination (Rosti et al., 2007; Bar-
rault, 2010; Devlin and Matsoukas, 2012; Suzuki,
2011). However, this approach limits the number
of possible generated titles and can potentially in-
troduce seller-biases when a single seller’s title is
selected as the product title.

Re-decoding Approaches. Re-decoding is a
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generative process that learns to predict the pos-
terior probability p(y|x) (in our case, the poste-
rior probability of a generated title y given the ini-
tial list of user-created titles x), which can also be
viewed as a sequence quality score. Since quality
scores are used to rank the partial sequences, an
accurate scoring function would yield the highest
quality outputs. Decoding can be seen in Mini-
mum Bayes’ Risk Combination (González-Rubio
et al., 2011; González-Rubio and Casacuberta,
2013), abstractive summarization (Rush et al.,
2015; Chopra et al., 2016), and Neural Machine
Translation (NMT) models (Bahdanau et al., 2014;
Chen et al., 2016; Vaswani et al., 2017). State-of-
the-art approaches utilize encoder-decoder models
that extract a feature representation of a variable-
length input sentence before generating an output.
However, the bottleneck of this approach is its de-
pendence on the size of quality data; it often per-
forms poorly when annotated data is noisy and/or
insufficient (Koehn, 2017).

Hypothesis Fusion. An alternative approach is
neither to select nor to generate, but to ‘fuse’ al-
ready generated hypotheses. This, for instance,
can be done using Confusion Network (CN) de-
coding (Ma, 2014). In this approach, a confusion
network is generated by first selecting a listing ti-
tle as backbone, and then by aligning it to all the
other listings. The network is then traversed to
obtain the product title with the highest consen-
sus among the input hypotheses. This title can
be decoded with decoding units that include either
phrase-level (Feng et al., 2009; Du and Way, 2010)
or word-level (Barrault, 2010; Rosti et al., 2007;
Fiscus, 1997). Systems can choose between 1-
to-1 mappings (Barrault, 2010; Rosti et al., 2007;
Du and Way, 2010) or many-to-many mappings
(lattice) (Feng et al., 2009; Ma and McKeown,
2015; Matusov et al., 2006) in hypothesis align-
ment. The main drawbacks of these solutions
are: (1) final output quality is highly dependent
on the quality of the selected backbone (aligning
hypotheses to a poor-quality listing can result in
outputs that are far from being usable in real in-
dustrial settings), and (2) lattice creation becomes
computationally expensive as the number of initial
hypotheses grows, potentially O(n2). This makes
approaches based on CN unsuitable for our work-
ing scenario where there is the need of generating
titles for millions of products where each product
consists of a potentially large number of listing ti-

tles. Our approach must generate product titles in
linear time and must be robust to noises present in
seller-created titles.

3 Title Generation

This system’s purpose is to provide hypotheses of
product titles. It receives as input a list of item
titles for listings previously aggregated into one
product (like the titles at the bottom of Figure 1)
and product-related data in the form of slot-value
pairs (as the name-value pairs shown under “Prod-
uct Details” in Figure 1). In addition to these, a
human-curated reference product title is required
during training time.

The process of generating titles can be roughly
summarized into two steps. The first is comput-
ing different statistics about the item titles: n-gram
counts (in this implementation fixed to bi-grams),
inverse document frequency (IDF) of each uni-
gram, listing titles length, counts of tokens given
the position of each unigram in the listings, and fil-
tering of slot-value pairs. The slot-value pairs are
defined a priori and they are based on the aggre-
gation of titles into products, which means some
of the pairs can present noise. In order to filter
out noisy slot-value pairs and to understand which
pairs are important, we derive an importance score
for each pair. This score is computed by dividing
the number of times a value appears at least once
in the listing titles by the number of listing titles
aggregated to the product. The top-k pairs accord-
ing to this score are kept. The second step consists
of performing the recombination of n-grams found
in the titles using an heuristic stack-based search
algorithm, also known as stack decoding (Wang
and Waibel, 1997) using all the information com-
puted in the first step.

3.1 Stack Decoding for Title Generation

The idea of stack decoding is to keep a list of mul-
tiple stacks, in which each stack represents a posi-
tion of the title being generated. The search al-
gorithm initiates with a start symbol (<s>) and
expands the title hypotheses position-by-position
(given the pre-computed bi-gram counts). The
process is summarized in Algorithm 1.

The hypotheses are expanded by the
get transitions function. It consists of
retrieving all the possible transitions from the
current token (the last token of the hypothesis
in hyp, that is the hypothesis being generated).
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Algorithm 1: Stack decoder for title genera-
tion
Data: titles and SV pairs preprocessed and

tokenized
Result: product titles sorted by score
Initialize stacks with first stack with single

hypothesis <s> and max stack number- 1
empty stacks;

for current stack in stacks do
while previous stack in stacks is not

empty do
Get the top hypothesis hyp in the
previous stack;

candidates← get transitions
(hyp, titles, SV pairs);

for each candidate in candidates do
if candidate token is not EOS
symbol then

create new hyp out of
candidate;

adds new hyp to current stack
in stacks;

end
end
compute scores (candidates);
order candidates by score;
add prune (candidates) to current

stack in stacks;
end

end

This is performed by looking up the most likely
words to follow the current word as given by the
bi-gram and token position counts (transformed
into probabilities and represented by titles in
Algorithm 1). For each hypothesis candidate
token a new hypothesis is created and placed
in the current position stack in stacks. If the
candidate token of the new hypothesis is the
end-of-sentence (EOS – </s>) symbol, the new
hypothesis is not created. This whole process is
repeated until the current stack is not empty, i.e.,
there are no hypotheses to expand.

The next step is to score all the hypotheses in
candidates. Here, the approach taken is to build a
regressor that predicts a score used to rank the hy-
potheses. This is implemented using an algorithm
that induces a model that predicts BLEU scores
(Papineni et al., 2002). The approach is simple: at
training time, the scores are derived by computing

the sentence-level BLEU score between each title
hypothesis in candidates and the human-curated
reference provided. At inference time, the score is
the one predicted by the regressor.

For training the regressor we explore informa-
tion computed during the search process. For each
hypothesis (which can be a partial, not complete
title), 13 features are extracted. The feature set
contain features that are global and applied to ev-
ery title under a product, such as: the number of
listing titles of the product and average title length
of the listings of the product. The other features
are local to the hypotheses, such as: 1) the cumu-
lative bi-gram probability of the hypothesis; 2) the
cumulative position probability over all tokens in
the hypothesis; 3) the IDF score of the last token
of the hypothesis; 4) a ratio between the last token
position and the average title length among all list-
ings of the product; 5) the hypothesis length; 6) the
number of irrelevant information matches in the
hypothesis (computed based on lists of irrelevant
condition-, shipping- or quantity-related tokens);
7) coverage penalty: a slot-value pair coverage
penalty that given the list of important slot-value
pairs, computes a score that is a ratio of the im-
portance score and the number of uncovered slots;
8) language model (LM) score for the whole hy-
pothesis string (4-gram LM trained with Kneser-
Ney smoothing (Kneser and Ney, 1995) on a set of
human-curated titles); 9) number of values of slot-
value pairs present in the hypothesis; 10) length
penalty: the absolute difference between the aver-
age title length and the current position of the can-
didate token divided by the average title length and
11) gain function score: a log-linear combination
of 1, 2, 6, 8 and 10. These features are descriptors
that try to capture content and structure of the ti-
tles using information about what is important in
a product title and what is not. They are language
agnostic and can be applied to any language.

For training the regressor we use a least squares
linear regression algorithm which is fast both dur-
ing training and inference time. Before training,
the feature matrix columns are normalized by re-
moving the mean and scaling to unit variance.

After obtaining a score for each candidate in the
current stack, the candidates are sorted in descend-
ing order and a pruning strategy is used to filter
the hypothesis. The pruning approach that yielded
best results during development was keeping the
top-k candidates of the ordered list. This prun-
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ing is implemented in the prune function. After
this step, the current stack is updated with the kept
candidates and the process moves to the stack rep-
resenting the next position in the generated title.

In the next section, we describe an approach
that performs title quality prediction, similar to
what the regressor used for ranking the hypothe-
ses does. The main difference is that the quality
prediction model is trained on tagged data with
quality-oriented tags instead of BLEU scores. The
quality tags are based on a pre-defined set of qual-
ity requirements which are a better proxy of qual-
ity than edit-distance referece-based metrics such
as BLEU. Furthermore, the system can use a set
of more diverse global information to incorporate
during modeling as well as more complex learning
algorithms, as there are no speed performance lim-
iting issues. The regression model used in search,
instead, needs to be fast enough to produce predic-
tions at inference time during search without mak-
ing the process slow.

4 Title Quality Prediction

The purpose of a title quality prediction system is
to assess at real-time whether a title can be used
or not, without relying on humans to perform the
decision and independently of the system used to
provide the title. Therefore, the system must be
system/source-agnostic and work in an absolute
notion of quality.

An important step of building a system that pre-
dicts the quality of automatically-generated output
is the definition of quality itself. Here, we define
what is a good product title and what are the main
dimensions of this definition. Overall, a product
title should provide a concise but accurate descrip-
tion of what the product is about. What is impor-
tant to be in the title depends on different types of
products (or categories). Cell phones for example
require the brand, model, color and carrier, but not
a shoe size.

The main dimensions used to determine
whether a title is good or not are: absence of both
important information issues and irrelevant infor-
mation issues. The former refers to relevant in-
formation that is missing or incorrect in a title;
for instance, the brand, model, and product type
specification (what is the product) should be ap-
propriate. The latter refers to information that is
not required and should be omitted such as condi-
tion (e.g. “new”, “used”, “in a box”, etc), shipping

(e.g. “free shipping”, “U.S shipping”), marketing
(e.g. “amazing”, “best offer”), quantity, and price
expressions or any other kind of expressions that
are not related to the product itself but to the list-
ing. Furthermore, the latter also includes any kind
of repetition (same surface word or related words).
Next, we describe the approach to modeling title
quality prediction using classification algorithms.

4.1 Learning Algorithms
We cast the title quality prediction problem as a
classification problem in which the labels indi-
cate whether the product title is good for usage.
More details about the data used to train the clas-
sifier are given in Section 5.1. We have explored
two different learning algorithms to induce classi-
fiers for this task: random forests (Breiman, 2001)
and Bidirectional Long Short-Term Memory mod-
els (LSTMs, Hochreiter and Schmidhuber (1997);
Schuster and Paliwal (1997)). Random forests
(RF) are ensemble classifiers that induce several
decision trees using some source of randomness to
form a diverse set of estimators (Breiman, 2001).

Recurrent neural networks (RNNs) are mod-
els well-suited to deal with variable-length input
like natural language sentences. Though RNNs
can cope with variable-length sequences, the op-
timization of the weight matrices in RNNs is hard:
when the gradients are back-propagated, they de-
crease to the point of becoming so small that the
weights cannot be updated, specially over long
input sequences. Hochreiter and Schmidhuber
(1997) proposed LSTMs, which are able to over-
come the vanishing gradients problem by captur-
ing long-range dependencies through the use of
gated memory cell units that can sustain informa-
tion across long input sequences. In this work,
we use bidirectional LSTMs, which have an addi-
tional layer that receives the reversed sequence as
input, thus keeping track of past and future states.
For more details on RNNs, LSTMs and their bidi-
rectional counterparts (biRNN and biLSTM) we
refer the interested reader to Goldberg (2016).

4.2 Features and Architecture
For modelling the problem using the learning al-
gorithms described in Section 4.1, we resort to
several kinds of information. The RF models use
as a basis a bag-of-words (BoW) representation of
the titles whereas the biLSTM-based models use
the embedded representation of the words. In ad-
dition to these, several features are extracted (total
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of 80 features) and they can be roughly grouped
into: length features (e.g. length of the titles in
tokens and chars, ratios of the title length and the
aggregated average, max or min title length under
a product), counts of repeated tokens (excluding
punctuation and numbers), counts of encoding er-
rors, and slot-value pairs coverage (counts and ra-
tios of values matching the tokens of the title). All
of these features are independent from the genera-
tion process and were designed to be agnostic with
respect to the way the title has been obtained.

Figure 2: BiLSTM architecture with features con-
catenated in the hidden layer.

The feature extraction step for the RF models
includes concatenating the BoW representation to
the features extracted. The biLSTM-based models
can also be used with features and the architecture
is represented in Figure 4.2. The network has two
inputs: the embedded representation of the words
in the title and the features computed for the ti-
tle. The word embeddings are used as input for
the biLSTM network and the features are concate-
nated to the output representation of the biLSTM
in a hidden layer. The output layer predicts the
class using a sigmoid activation. When the fea-
tures are not used, the only difference in Figure
4.2 is the concatenation of features.

5 Experimental Settings

In this section we describe relevant settings used
in our experiments with the title generation and
quality prediction systems.

5.1 Data
The input data for the systems consists of a se-
ries of listing titles aggregated into a product. In
addition, we have access to slot-value pairs at
the product-level. All the data used in our ex-
periments is proprietary user-generated data con-
taining different kinds of peculiarities and noise,
such as spelling errors, emoticons and punctuation
marks. In addition, the aggregation of the listing

titles into a specific product is not perfect, featur-
ing noise due to the presence of items of other
products. As an example, in Figure 1, one of the
listing titles lists a smartphone with 32GB mem-
ory capacity while the product is of 64GB. There-
fore, the challenges presented by the data are the
same challenges posed by real-world contexts, in
which noise is a constant. In order to alleviate
some of these problems, we preprocess the data
using an in-house modified version of the Stan-
ford tokenizer that does not break certain tokens
(e.g. model identifiers – “DM-234/5”).

Generation Data. For training the generation
model, we used about 1.4 million listing titles
which are part of 16,733 products. The number of
listings per product ranges from 1 to 500 with an
average of 87.6 and a median of 6. About 62%
of the products have 10 or less listings. There
are about 1200 popular products which have 500
listings. In Addition we have on average 31.3
slot-values per product (median 27). The average
length of a tile is 64.4 characters or 10.4 tokens.
For each product we have one human-curated title
as reference. As development data we use a set of
749 products with 51,441 listing titles which are
sampled out of the same distribution of the train-
ing data. An important detail about the data splits
is that they are performed at the product-level, i.e.,
listing titles of a product do not appear both in
training and test splits. This is true for all the splits
described in this section.

Quality Prediction Data. For the scoring model,
a sub-sample of the generation data had each list-
ing title annotated by humans, checking for qual-
ity problems related to irrelevant information or
important missing information in the titles. The
problems are organized in a hierarchy in which
the main groups are: copyright issues (e.g. brand,
model spelling problems); encoding issues; offen-
sive wording issues; required data not present in
the title (e.g. brand, or important features for some
products such as color, capacity, among others);
irrelevant data present in the title (e.g. condition,
shipping, or marketing information, price tags, du-
plicated words and synonyms, among others); syn-
tax/grammar problems (e.g. title not comprehen-
sible because of word ordering or lack of words).
This hierarchy has a total of 22 issues. By the end
of this process we have a set of products with all
the titles aggregated into it annotated with issues
(there can be more than one issue per title or none
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if they are good titles).
The same annotation process and guidelines are

used for evaluation. Since annotating each ti-
tle requires effort, we used only 9,823 products
with 52,050 titles, which are completely anno-
tated. This sub-sample was created with a limited
amount of listings per product to ensure a higher
diversity in the data set. The evaluation process
is carried out by several annotators (with no title
overlap) and the quality of a sub-sample of their
annotation has been assessed by a separate group
of annotators.

We have on average 5.3 (median 5) titles and
37.2 (median 34) slot-values per product. The av-
erage title length is 63.7 characters and 10.6 to-
kens. The balance of positive and negative labels
is 42.9/57.1. The development data consists of
1,000 products with 5,174 listing titles, which are
sampled out of the same distribution of the scorer
training data. The balance of positive and negative
labels is 44.3/55.7.
Evaluation Data. In order to evaluate the gener-
ated output, human evaluation on an additional set
of 2,000 products has been carried out. The evalu-
ation is performed by analyzing the output of each
system. The analysis process follows the same
guidelines applied for annotating the title quality
predictor training data described above, analyzing
the different dimensions of a title that can lead to
poor product titles (laid out in Section 4 and fine-
grained in the quality prediction data description,
above).

5.2 Baselines

For the generation task, a reasonable baseline is
to have a rule-based system that combines the slot-
value pairs while performing some content selec-
tion similar to the rule-based approach proposed
by Mathur et al. (2017). For that, we built a sim-
ple system that concatenates the most important
values of the product’s slot-value pairs to form the
product title. We derive the importance of a slot-
value pair in the same way we obtain the score de-
rived for filtering them, which is described in Sec-
tion 3. After deriving the score, we order pairs by
this value and select the top-10 to form a title. An-
other baseline is the selection of the most frequent
listing title under a product. The fact that different
sellers independently used it can in fact indicate
that it represents a good title hypothesis.

For the quality prediction task the baseline is

the majority class of the training set.

5.3 Parameter Settings

The most important parameter of the title gener-
ation system is the beam size, which was set to
3 (the one giving the best performance in terms
of BLEU score during the development of the
model). We used sentence-level BLEU to com-
pute the labels for training the regression model,
set to 4-grams over cased titles and the smoothing
mechanism described in (Chen and Cherry, 2014).

The hyper-parameters of the LSTM-based and
RF-based title quality prediction models were
respectively optimized with 300 and 600 itera-
tions of random search with an inner 3-fold cross-
validation over the training data. With RFs, we
were able to explore the hyper-parameter search
space more than with the neural-network-based
models due to its faster training time.

6 Results and Discussion

In this Section, we report and discuss the results
obtained for each task. We start with the qual-
ity prediction problem. It can work as a method
for selecting good candidate product titles that
complements the generation approach described in
Section 3, working as a re-scorer. Next, we discuss
the results of the generation task, from a quantita-
tive and qualitative point of view.

6.1 Title Quality Prediction

The intrinsic evaluation of the quality prediction
models is carried out on the development set de-
scribed in Section 5.1. We use classification eval-
uation metrics to assess the performance of the
models. One important remark about this task is
that the most important class to predict correctly
is the good class. In this problem, it is a bigger is-
sue to have a false positive than a false negative.
The metrics we use are the F1-score (harmonic
mean of precision and recall for each class aver-
aged), the F1-score for the positive (good) class
and the Matthew’s correlation coefficient (MCC).
The latter is the main metric used in this evalua-
tion because it takes into consideration the class
imbalance of the data set.

The results of the experiments are summarized
in Table 1. The simplest models trained were RF
BoW and biLSTM which are both showing big
improvements over the simple Majority baseline
when looking at F1 only. When no features are in-
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volved, the best choice is to use biLSTM, which
reaches a MCC of 34.6. An important trend ob-
served in the results is the strength of the features
developed for this problem. The RF trained with
the features alone reaches the same performance
of the biLSTM. Furthermore, both RF BoW and
biLSTM models show large improvements when
using the features (around 8 and 10 MCC abso-
lute points, respectively). The best performance
is achieved when concatenating the features to the
biLSTM representation of the titles, yielding the
best results in all metrics (in bold in Table 1). The
quality prediction score could be used as a system
that selects the best title out of the original listing
titles or as a re-scorer mechanism for the stack de-
coder. We evaluate these in the next section.

6.2 Title Generation
In this section we report results of the title gener-
ation task and the human evaluation results. The
numbers reported here and in Table 2 are sentence-
level BLEU (sBLEU) scores on the development
set (described in Section 5.1). The best perfor-
mance of the generation approach was obtained
with beam size 3 (60.1) after trying different val-
ues (a beam size of 5 yields 58.5 and performance
is not improved with larger values). This is a large
improvement over the slot-value pair concatena-
tion baseline, which achieves only 17.1 sBLEU.
The assumption that seller-provided titles could
provide good hypothesis of titles is supported by
the high sBLEU score achieved by the most fre-
quent title baseline (58.8, 1.3 absolute points be-
low generation). Leveraging the quality prediction
to select the best title among the seller-provided
titles also proves a very strong approach achiev-
ing the highest score (68.9). Using the qual-
ity prediction system as a re-scorer of the seller-
provided and generated titles improves the gener-
ation approach by 6.3 absolute points but it does

System / Metric MCC F1 F1 good

Majority 0.0 35.8 0.0
RF BoW 31.5 61.1 66.8
RF feats 34.6 67 65.5
RF BoW + feats 40.8 69.9 69
biLSTM 34.6 64.1 67.8
biLSTM + feats 44.7 71.7 71.2

Table 1: Results for the title quality prediction
models. MCC is Matthews correlation coefficient.

not match the performance of performing selec-
tion over seller titles only.

System sBLEU

Slot-value pairs baseline 17.1
Most frequent title 58.8
(1) SD, beam = 3 60.1
(2) biLSTM + features 68.9
(1) + (2) 66.4

Table 2: Intrinsic evaluation of outputs of differ-
ent approaches on development sent. Scores are
sentence-level BLEU (sBLEU).

In addition, we performed a qualitative evalua-
tion involving humans that inspected the outputs
of the systems. The evaluation was performed to
identify problems in the outputs that render them
not useful, the same way the data for the quality
prediction task is obtained (Section 5.1). We sum-
marize the evaluation by reporting the number of
outputs with no issues, represented by the number
of good titles provided by each approach. The re-
sults of the human evaluation are summarized in
Table 3, which shows that the approach with the
highest number and proportion of produced out-
puts is the generation one (SD, beam = 3). It is fol-
lowed by the combination of generation and qual-
ity prediction as re-scorer and last the quality pre-
diction system over seller-provided titles only.

System # good % good

(1) SD, beam = 3 754 37.7
(2) biLSTM + feats 660 33
(1) + (2) 700 35

Table 3: Human evaluation results.

The human evaluation results contrasts with
those obtained in the intrinsic evaluation using the
BLEU metric over references. The main reason
for this contrast is due to the fact that metrics based
on string distances between outputs and references
penalize very lightly crucial tokens that might ren-
der the output useless. For example, in our case,
having an expression like “new in a box” makes
the title not a good product title candidate any-
more. Likewise, having a wrong brand or model,
renders the title useless.

A few examples can be seen in Table 4, in which
the third column lists issues found by the annota-
tors during the qualitative evaluation of the sys-
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System Output Comments
(1) Edifier Studio R1280T 2.0 Channel Speaker No issues
(2) Edifier R1280T Wired Active Missing product type
(1) + (2) Edifier R1280T Wired Active Missing product type
(1) PLAYSTATION4 Bundle Sony Console-Uncharted 4 Slim 500GB Casing of model, order of tokens
(2) PLAYSTATION4 Slim 500GB Console-Uncharted 4 Bundle Sony Casing of model, order of tokens
(1) + (2) PLAYSTATION4 Slim 500GB Console-Uncharted 4 Bundle Sony Casing of model, order of tokens
(1) Quell Carbon Monoxide Detector Digital Display Alarm (No Wiring (Model PD04) Operated 130415 Unnecessary tokens and segmentation
(2) Quell Carbon Monoxide Detector & Alarm No issues
(1) + (2) Quell Carbon Monoxide Detector & Alarm No issues
(1) Pioneer N-P01-K Compact Network Audio Player-Black but 2 Lines on Display Unwanted tokens (but 2 Lines on Display)
(2) Pioneer N-P01-K Network Audio Player-Black No issues
(1) + (2) Pioneer N-P01-K Compact Network Audio Player-Black Bluetooth Lines on Display Unwanted tokens (Bluetooth Lines on Display)

Table 4: Output examples generated by the systems evaluated in the human evaluation. Third column
lists the issues in each output.

tems outputs. In the first block of outputs, for ex-
ample, some titles do not present the specification
of the type of the product (what is the product).
The observation that BLEU alone is not appropri-
ate for evaluating natural language generation sys-
tems is not new and corroborates previous work
on the field, most notably the recent work by Re-
iter (2018).

Another important trend observed in Table 3 is
that using the quality prediction system as a re-
scorer of the generated and seller titles does not
improve over generation alone. We hypothesize
this is due to the fact that both systems are trained
separately and therefore do not leverage from the
signals and features both systems explore. As fu-
ture work we would like to experiment with joint
training of the generation and quality prediction
systems, in order to cope with this gap.

7 Conclusion

We present an approach that automatically gen-
erates e-commerce product titles out of seller-
provided titles aggregated into a product. Fur-
thermore, we devise an approach that automati-
cally assesses the quality of a candidate product
title without resorting to human references. We
evaluate both approaches on a challenging real-
world setting and perform quantitative and quali-
tative evaluation of the systems. Results show that
the best generation approach is based on the stack
decoder search algorithm followed by the combi-
nation of the search with the quality predictor as a
re-scorer. Furthermore, both approaches presented
in this work are robust enough to deal with real
world user-generated data, i.e. they can produce
good quality outputs even when the input data is
noisy. Finally, this work sets a few interesting di-
rections such as exploring ways of jointly train-
ing both the generation and quality prediction ap-

proach in order to improve the overall generation
and quality prediction accuracy.
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Abstract

This paper presents a project about the au-
tomatic generation of persuasive messages
in the context of the diet management. In
the first part of the paper we introduce the
basic mechanisms related to data interpre-
tation and content selection for a numeri-
cal data-to-text generation architecture. In
the second part of the paper we discuss a
number of factors influencing the design
of the messages. In particular, we con-
sider the design of the aggregation pro-
cedure. Finally, we present the results of
a human-based evaluation concerning this
design factor.

1 Introduction

The ubiquity of modern technologies allows com-
puters to communicate anytime anywhere with hu-
mans. As a consequence, virtual assistant can give
positive stimuli when it is really necessary, kairos
in the Fogg’s terminology (Fogg, 2002). In the
context of the diet domain, the crucial moment
is when people come into a restaurant and decide
which dish or menu to order. Often people do not
have a healthy diet since they do not know that a
specific dish is in contrast to their diet. So, they do
not have the correct information, that is the stim-
ulus, at the right time. As a consequence, a vir-
tual dietitian, that is a virtual assistant in the diet
domain, needs to provide three specific facilities.
First, the assistant needs to reason in order to en-
hance the users’ computational abilities to recog-
nize healthy dishes. Second, it needs to generate
a persuasive stimulus when it is really necessary,
i.e., when users have to decide what to eat. Third,
the assistant has to support the user in devising the
consequences of a diet transgression.

In this paper we consider the generation of per-
suasive natural language messages in the diet do-
main. We describe the actual implementation of
the natural language generation (NLG) module
of the diet management system called MADiMan
(Multimedia Application for Diet Management)
(Anselma and Mazzei, 2015). One of the main
goals of this project is to investigate on the possi-
bility to apply persuasive NLG for helping people
to have a virtuous behavior (Reiter et al., 2003;
Kaptein et al., 2012; Braun et al., 2015, 2018;
Conde-Clemente et al., 2018). MADiMan per-
forms numerical computation combining food en-
ergetic values with diet requirements and reports
the result of the computation by using natural lan-
guage. A crucial point in this process is the com-
bination of information concerning the different
macronutrients in the dish, that are carbohydrates,
lipids and proteins.

The specific research questions which we want
to investigate on in this paper concern the linguis-
tic shape of the messages produced by MADiMan.
As a first step towards the building of a complete
persuasive system, we evaluate the appealing of
the messages by varying two specific linguistic
features, that are the aggregation strategy and the
lexical choice procedure. We show the first results
of a human-based experimentation, that is seman-
tic aggregation increases the engaging of the mes-
sages. Moreover, we report some results on the
desirability of lexical variability in the messages.

The paper is organized as follows. In Section 2
we give a brief introduction to MADiMan project.
In Section 3, we describe the data interpretation
and content selection process for converting the
numerical output of the numeric reasoner into a
symbolic form. In Section 4, we describe the de-
sign of the messages that are produced with a real-
ization engine. In particular, in Section 4.1 we dis-
cuss two specific algorithms used to aggregate the
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Figure 1: A schema of the MADiMan architecture.

messages. In Section 5, we discuss the experimen-
tal setting that we use to give a first human-based
evaluation of the message generator. Finally, Sec-
tion 6 closes the paper with some discussions and
pointing on future work.

2 The MADiMan Architecture

The MADiMan system is a virtual dietitian de-
signed: (1) to recover the nutritional information
directly from a specific recipe, (2) to reason over
recipes and diets by allowing some forms of diet
disobedience, and (3) to persuade the user to mini-
mize these acts of disobedience. MADiMan offers
facilities to check the compatibility and to foresee
the impact that a specific meal has with a specific
diet.

In Figure 1 we depict the architecture of the
system implementing the MADiMan virtual dieti-
tian. The information flow is: (1) A user, by us-
ing an app, recovers the specific recipe of a dish
which she wants to eat. (2) The app, communi-
cating with the DietManager service, retrieves the
user diet together with the list of the food that the
user has eaten in the last days. (3) The NLU/IE
module computes the salient nutrition information
about the specific course. (4) The Reasoner, us-
ing the user diet and the list of the food that has
been eaten in the last days, produces the final rec-
ommendation about the dish for the user. (5) The
NLGenerator uses the recommendation given by
the Reasoner, produces an explanation for the user
in simple natural language. (6) The DietManager
sends the result produced by the NLGenerator to
the app: the user will see this final result on her
smartphone. If the user decides to eat the dish, the
app will send this information to the DietManager
that will update the list of food eaten.

The reasoning module is a numeric reasoner
based on Simple Temporal Problems (STPs)
(Dechter et al., 1991). In a diet it is necessary
to consider parameters such as energy require-

ments and amount of macronutrients. The med-
ical literature (e.g., (LARN, 2014)) provides Di-
etary Reference Values (DRVs) that can be com-
puted from user information such as weight, gen-
der, age, lifestyle. For example, let us consider
a 40-year-old male who is 1.80 m tall, weighs
71.3 kg and has a sedentary lifestyle; such a per-
son has an energy requirement of 2450 kcal/day.
Moreover, he is recommended to assume (LARN,
2014), e.g., 260 kcal/day of proteins, 735 kcal/day
of lipids and 1455 kcal/day of carbohydrates. In
MADiMan we represent the DRVs as STP con-
straints (Anselma et al., 2017). STP models a set
of constraints as a conjunction of bounds on dif-
ferences. c ≤ x − y ≤ d, i.e., the distance be-
tween the time points x and y is within c and d. In
our setting, by substituting the temporal distance
between temporal points of STP with the DRVs
and the caloric values of a dish distributed on the
three macronutrients. Thus, e.g., a constraint 500
kcal ≤ lunchE − lunchS ≤ 600 kcal imposes
that the distance between the start and the end of
lunch is between 500 and 600 kcal, i.e., that lunch
provides 500-600 kcal. Thus, By using the ideal
value for calories (see Fig. 2), MADiMan eval-
uates the compatibility of the specific dish with
the actual status the diet. Moreover, in order to
provide a user-friendly information not limited to
“consistent/inconsistent” answer and to make it
also useful for the sake of user persuasion, MADi-
Man converts the numeric reasoning into a sym-
bolic form that is suitable for the generation of NL
messages (Reiter, 2007).

In the next sections, we describe the detail of the
algorithm designed to convert the numerical com-
putation in symbols and to elaborate these symbols
in order to produce messages.

3 Data interpretation: converting
numbers into categories

In order to show to the user a meaningful feed-
back, it is necessary to interpret the data resulting
from the STP. We consider the case where the user
proposes to the system a dish, the system obtains
its caloric value, translates it along with the user’s
diet and past meals into an STP and, by propagat-
ing the constraints, obtains the minimal network.
For sake of clarity, we present the content selec-
tion algorithm by considering one single generic
macronutrient, but the real suitability of a dish de-
pends on the results of the three macronutrients
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(see Section 4).

Using the resulting STP it is possible to clas-
sify the proposed dish in one of the following five
cases: permanently inconsistent (I1), occasion-
ally inconsistent (I2), consistent and not balanced
(C1), consistent and well-balanced (C2) and con-
sistent and perfectly balanced (C3). In the cases
I1 and I2 the energy supply of the dish is incon-
sistent. In case I1 the energy supply is inconsis-
tent with regard to the user’s diet as represented
in the STP considering the tolerance values. The
dish cannot be accepted even independently of the
other food the user may possibly eat. This case
is detected by considering whether the nutritional
value of the dish violates a constraint in the STP.
In case I2 the dish per se does not violate the
diet constraints, but – considering the past meals
the user has eaten – it would preclude him to be
consistent with the diet. Thus, it is inconsistent
now, but in the future, e.g., next week, it could be-
come possible to choose it. This case is detected
by determining whether the energy supply, despite
it satisfies the constraints in the initial STP, is in-
consistent with the STP that contains also the con-
straints related to the food that the user has actu-
ally eaten so far.

In the cases C1, C2 and C3 the value of the en-
ergy supply is consistent with the diet, also taking
into account the other meals that the user has al-
ready eaten. It is possible to detect that a meal is
consistent by exploiting the minimal network of
the STP: if the value of the energy supply is in-
cluded between the lower and upper bounds of the
relative STP constraint, then the STP is certainly
consistent and the meal is consistent with the diet.
A consistent but not balanced choice of a meal will
have consequences on the rest of the user’s diet be-
cause the user will have to “compensate” it. Thus,
we distinguish three cases depending on the level
of the adequacy to the diet of the meal’s energy
supply. In order to discriminate between the cases
C1, C2 and C3, we consider how the value of the
energy supply stacks upon the allowed range rep-
resented in the related STP constraint. We assume
that the mean value is the “ideal” value according
to the diet’s goals and we consider two parametric
user-adjustable thresholds relative to the mean: we
classify the meal according to the distance from
the ideal value as not balanced (C1), well balanced
(C2) or perfectly balanced (C3) (see Fig. 2). In
particular, we distinguish between excess or lack
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C 2
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Figure 2: Classification of an inconsis-
tent/consistent value of a meal’s energy supply
given the minimum and maximum value of an
STP constraint.

of energy supply for a meal. If a meal is in excess
with regard to the ideal value, we add a + symbol
to the category (e.g. C+

2 ) to denote the deviation.
In contrast, if a meal is lacking, we add a − sym-
bol to the category (e.g. C−

1 ). This information is
exploited in the generation of the messages.

4 Document/Sentence planning and
realization

As a working hypothesis, in this stage of the
project, MADiMan produces messages following
a fixed rhetorical structure and the document plan
follows a very simple fixed schema. The final mes-
sage will be composed by two parts: an overall
evaluation of the dish and three evaluations for
the macronutrients (i.e., carbohydrates, lipids, pro-
teins)1. For the sake of clarity, we now describe
the message by assuming one single macronutri-
ent and in Section 4.1 we discuss how to aggregate
the three messages generated for the three differ-
ent macronutrients.

The sentence generated for expressing the over-
all evaluation is a single declarative sentence. In
order to give a little bit of variation flavor in the
syntactic shapes of the messages, we decided to

1We plan to add a suggestion on the future dishes to eat to
the final message in next work.
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use a negative copula for I1, a declarative for I2,
and a positive copula for C1 or C2 and C3. In
particular, the overall evaluation is non buono (not
good) or non va bene (not OK) when there is at
least one macronutrient classified as I1 or I2, re-
spectively. In alternative, the global evaluation is
buono (good) or molto buono (very good) when
there is at least one macronutrient classified as C1

or C2 respectively. Finally, the global evaluation
is a ottima scelta (great choice) (see Table 1).

The sentence generated for expressing the ap-
propriateness of the specific macronutrient follows
a fixed schema too. It is a positive copula sen-
tence with a predicate expressing the deviation
ricco/povero/perfetto (rich/poor/perfect), and a PP
modifier specifying the macronutrient, e.g. in li-
pidi (in lipids). Moreover, an adverb, e.g. legger-
mente (lightly) distinguishes C2 and C2 cases (see
Table 1).

Note that both the overall and the specific
macronutrient messages do not use referring ex-
pressions. Indeed, at this stage of the project we
did not yet account for this specific feature.

Given the persuasive intent of the system, a
crucial point concerns the persuasiveness of the
messages by considering psychological theories.
Many works in literature considered the applica-
tion of NLG for presenting the results of auto-
mated reasoning to the user, e.g., (Weiner, 1980;
Barzilay et al., 1998; Lacave and Diez, 2004).
Moreover, many theories on the design of persua-
sive textual (and multimedia) messages have been
proposed in the last years. We can split these stud-
ies in two narrow categories. The first category
includes the theories approaching the persuasion
from an empirical point of view, by using strate-
gies and methods typical of the psychology and of
the interaction design (Fogg, 2002; Reiter et al.,
2003; Cialdini, 2009; Kaptein et al., 2012). The
second category includes the theories approaching
the persuasion from a theoretical point of view,
by using strategies and methods typical of cog-
nitive science (Hovy, 1988; de Rosis and Grasso,
2000; Guerini et al., 2007). Similar to (Kaptein
et al., 2012), the Cialdini’s general theory of per-
suasion has inspired our design of the messages
(Cialdini, 2009). Cialdini states that there are six
patterns which are characteristic of human nature:
(1) Reciprocity: people feel obligated to return a
favor, (2) Scarcity: people will value scarce prod-
ucts, (3) Authority: people value the opinion of ex-

perts, (4) Consistency: people do as they said they
would, (5) Consensus: people do as other people
do, (6) Liking: we say yes to people we like. Note
that compared to the six Cialdini’s persuasion pat-
terns, all the messages in Table 1 belong to the
patterns of authority and consistency. With respect
to the low-level linguistic strategies, by following
(de Rosis and Grasso, 2000), we used a number
of adverbs, e.g. davvero, molto, leggermente (re-
ally, very, lightly) in order to enhance or mitigate
a message. Furthermore, compared to Guerini et
al. persuasive strategies taxonomy (Guerini et al.,
2007), we can see that all the messages belong to
one single category, called action-inducement &
goal-balance & positive-consequence. This strat-
egy induces an action (i.e. to choose a dish), by
using the user’s goal (i.e. a healthy diet) and by
using the benefits deriving from this goal.

The sentences have been eventually realized by
using the SimpleNLG-IT engine realizer, a porting
of SimpleNLG for Italian language (Gatt and Re-
iter, 2009; Mazzei et al., 2016). So, the messages
previously described have been primary encoded
in the form of quasi-trees and secondary, after
aggregation (Section 4.1) and word-lexicalization
(Section 4.2), realized by using SimpleNLG-IT.
There are several advantages to use SimpleNLG
with respect to string templates in this specific
project. The three majors advantages are: (i) we
have a multilingual Italian/English version of the
realiser, that allows to change language by sim-
ply switching from Italian to English lexicons,
(ii) the design and implementation of the aggre-
gation strategies are simpler, (iii) the diffusion of
the Java language allows to integrate the generator
into larger Java-based software platform.

In the next sections we describe the procedures
of aggregation and lexicalization implemented by
using the facilities exposed by SimpleNLG.

4.1 Aggregation strategies

The aggregation plays an important role to gen-
erate fluent and efficient texts (Reiter and Dale,
2000; Gatt and Krahmer, 2018). Moreover, in sev-
eral domains, as healthcare or education, it has
been proven that aggregation of the sentences im-
proves the efficacy of the messages (McKeown
et al., 1997; DiEugenio et al., 2005).

In the specific case of the MADiMan messages,
aggregation can be performed in many ways since
the messages concerning overall evaluation and

247



Category Prototypical Message English translation

I+1 /I−1
Questo menù non è buono. Il menù è
troppo ricco/povero in proteine.

This menu is not good. The menu is
really rich/poor in proteins.

I+2 /I−2
Questo menù non va bene. Il menù è
ricco/povero in proteine.

This menu is not OK. The menu is
rich/poor in proteins.

C+
1 /C−

1

Questo menù è buono. Il menù è
ricco/povero in proteine.

This menu is good. The menu is
rich/poor in proteins.

C+
2 /C−

2

Questo menù è molto buono. Il menù è
leggermente ricco/povero in proteine.

This menu is very good. The menu is
lightly rich/poor in proteins.

C3
Questo menù è un’ottima scelta. Il menù è
perfetto in proteine.

This menu is a great choice. The menu is
perfect in proteins.

Table 1: The prototypical messages describing the STP reasoner classification for the caloric value for
the proteins. The italicized text vary among +/− deviation. The underlined text varies among the three
macronutrients.

macronutrients often have very similar quasi-trees.
We write (OC , OL, OP ) to indicate

the symbolic output for carbohydrates,
lipids and proteins respectively, where
OX ∈ {I−1 , I+1 , I−2 , I+2 , C−

1 , C+
1 , C−

2 , C+
2 , C3}.

Indeed, a trivial aggregation strategy based on
aggregation at the sentence level could merge
only messages that belong to the same category,
i.e. Ox=Oy: this trivial strategy corresponds to
the syntactic aggregation in the classification of
(Reape and Mellish, 1998). However, we design
an aggregation strategy that accounts for a more
sophisticated form of conceptual aggregation.
The aggregation algorithm can be split in two
parts, a selection and a merging.

Selection
In order to concentrate the focus on the most im-
portant information for the diet, the general idea
of the selection is to give emphasis on the mes-
sages concerning incompatibility. So, during the
selection step, if there are messages describing the
incompatible value of a macronutrient, all the mes-
sages describing the compatible values will be re-
moved. So, in the selection step there are three
alternative cases:

A. There is a case of permanent inconsistence
on one or more macronutrient: ∃X ∈
{C,L, P} : OX=I1

B. There is a case of occasional inconsistence
on one or more macronutrient: ∀X ∈
{C,L, P} : OX 6= I1 ∧ ∃Y ∈ {C,L, P} :
OY=I2

C. All the three categories of macronutrients are
consistent: ∀X ∈ {C,L, P} ∃i ∈ {1, 2, 3} :
OX=Ci

In the cases A. and B., we aggregate the messages
by exploiting the information about incompatibil-
ity, that is by removing the messages concern-
ing the compatible macronutrients and by merg-
ing the messages about incompatible macronutri-
ents. So, the final document will have one single
overall sentence describing the inconsistence, and
one merged message concerning the values of the
inconsistent macronutrients. In the case C., the
final document will have one single overall sen-
tence describing the minimal consistent value, and
one merged message concerning the values of all
the three macronutrients.

Merging
By taking into account the persuasive goals of the
system, we decided to implement and test two dif-
ferent strategies to merge the specific messages
concerning the macronutrients. In general there
are many possible mechanisms to merge two sen-
tences, i.e., simple conjunction, conjunction via
shared participants, conjunction via shared struc-
ture, and syntactic embedding (Reiter and Dale,
2000). At this stage of the project, the system
allows to use all these mechanisms but syntactic
embedding. In particular, we decided to experi-
mentally compare (see Section 5) the conjunction
via shared structure on the VP constituent (VP-
aggregation) and on the NP contained into prepo-
sitional phrase (set-aggregation). In other words,
by considering the sentences (i) The menu is per-
fect in proteins and (ii) The menu is perfect in
lipids, the VP-aggregation produces the sentence
The menu is perfect in proteins and is perfect
in lipids while the set-aggregation produces The
menu is perfect in proteins and lipids.

We decided to use VP-aggregation and set-
aggregation mechanisms since they have two spe-
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cific features that could influence the persuasive-
ness of the final message. The VP-aggregation, by
repeating the semantic predicate contained in the
copula construction, could communicate in a more
efficient way the (in)compatibility of a specific
macronutrient. In contrast, the set-aggregation
produces shorter messages that could be perceived
as more natural and so more trustable. Note that
VP-aggregation can be always applied indepen-
dently by the compatibility values and the devia-
tions expressed by the specific macronutrient mes-
sages. In contrast, we can apply set-aggregation
only when the sentences have exactly the same
syntactic shape, which corresponds to having the
same value in compatibility and in deviation.

In Section 5 we will evaluate the appealing
of messages built with two different aggregation
strategies where the first (all-VP henceforth) al-
ways uses VP-aggregation and the second (set+VP
henceforth) maximally uses set-aggregation in
combination, in same cases, with VP-aggregation.
In particular, in order to manage all the possible
combinations of compatibility and deviations, for
the set+VP strategy we follow this simple two-
step algorithm:

1. Set-aggregate all the shape-equivalent sen-
tences

2. VP-aggregate the sentence resulting from the
first step (if any) with the remaining sen-
tences.

For instance, the sentences The menu is lightly rich
in carbohydrates, The menu is rich in lipids, The
menu is lightly rich in proteins, will be aggregated
in the all-VP strategy as The menu is lightly rich in
carbohydrates, is rich in lipids and is lightly rich
in proteins. In contrast, the same sentences will be
aggregated in the set+VP strategy as The menu is
lightly rich in carbohydrates and proteins and is
rich in lipids.

Finally, note that in some cases we have a
certain degree of freedom in the ordering of the
aggregated sentences. We followed the idea to
start with the most positive feedback, as suggested
by some theories of persuasion (Steelman and
Rutkowski, 2004; Dohrenwend, 2002). So, we de-
cided to order the aggregated messages by consid-
ering their compatibility value. For instance, the
sentences The menu is poor in carbohydrates, The
menu is lightly rich in lipids, The menu is lightly
rich in proteins, will be aggregated as The menu

is lightly rich in lipids and proteins and is poor in
carbohydrates.

4.2 Choosing words

Another feature that we implemented in realiza-
tion is a trivial treatment of lexical variations. In-
deed, many studies showed the importance and the
complexity of the lexicalization task, e.g. (Stede,
1994; Reiter et al., 2005). In particular, an accept-
able lexicalization procedure should take into ac-
count the contextual and stylistic constraints aris-
ing from all the possible words combinations (Gatt
and Krahmer, 2018).

We think that variability could play an impor-
tant role in the persuasive goal of the system.
Since a constant lexical choice could be perceived
as boring or artificial, for open-class categories
(that are nouns, verbs, adjectives and adverbs) we
decided to implement two different versions of the
lexicalization procedure. The first lexicalization
procedure that always associated one single word
for each concept, and an alternative second lexi-
calization procedure that randomly associated one
word choosing from a set of three possible words.
In particular, for the Italian version of the realizer,
the synonymous set has been decided by searching
in the default Italian lexicon, that is a simple lex-
icon, i.e., a lexicon studied to be perfectly under-
stood by most Italian people (Mazzei, 2016). We
are aware that this trivial lexicalization procedure
could give a sort of cognitive dissonance in some
cases, but we believe that it could also improve the
trustability of the system.

Also if the main focus of the experimental part
of the paper concerns the experimental evaluation
of the aggregation strategies, in Section 5 we pro-
vide also some user feedback about lexicon vari-
ability.

5 Experimental setting: the
CheckYourMeal! app

We describe a first human-based experimentation
produced with a small group of 20 users. The main
goal of this experimentation was to give a real-
istic feedback about the appealing and, in some
form, the persuasion strength of the message ag-
gregation strategies. So, we designed a game of
diet simulation (see below). We are aware that a
scientific evaluation about the real efficacy of the
persuasion power of the NLG should follow the
scientific standards of the medical research field
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(cf. (Reiter et al., 2003)). However, as pointed
out by some research in the human computer in-
teraction field, also pilot studies can give impor-
tant feedbacks “especially when in the early stages
of design or when evaluating novel technologies”
(Klasnja et al., 2011; Hekler et al., 2013).

In order to create a realistic experimentation we
designed and realized an app for mobile called
CheckYourMeal! (Figure 3). In the current stage,
CheckYourMeal! is still under development and it
is used only for research purposes. So, it is not yet
available as a commercial app.

CheckYourMeal! provides many standard func-
tionalities of the quantified self domain app, as
registration of username/password, log-in, inser-
tion of personal and anthropometric data (e.g.,
age, weight, physical activity, etc.). The princi-
pal goal of the application is to help users in the
management of their diets. The diet is consid-
ered as a number of constraints over the week (cf.
Section 3). The week is scheduled as 21 slots
to fill, i.e., breakfast, lunch and supper for each
day from Monday to Sunday. For each slot of
the week, a number of possible menus are pre-
sented to the user, and she can decide to eat one
of them. The feedback about the compatibility of
a specific menu is provided both in graphical and
textual forms. The graphical feedbacks are (i) a
cake-shaped diagram showing the caloric contents
in carbohydrates, lipids and proteins, and (ii) three
histograms showing their ideal values for that spe-
cific slot of the week. The textual feedbacks are
two sentences automatically generated containing
the overall evaluation and macronutrients evalua-
tion respectively. In Figure 3 we report a screen-
shot of the app with the graphical (lower side) and
textual (upper side) feedbacks. The experimenta-
tion was performed only in Italian.

We asked the users to interact with CheckY-
ourMeal! by considering a simulation context.
A user should imagine to eat for a period into
a restaurant: for each slot of the week she has
to choose only among the menus proposed in
the app. In the simulation, the menus were ran-
domly generated by considering the recipes of
the Gedeone database, that is a collection of 500
Mediterranean recipes annotated with their caloric
contents (Anselma et al., 2018).

Figure 3: A screenshot of the a message showed
by CheckYourMeal! app.

Experimental protocol

We prepared an instruction sheet describing the
game and the main goals of the experimentation.
In particular, we explicitly informed the users that
we wanted to compare two different versions of
the NL message generator, the blue version and
the violet version, but without any other informa-
tion about the specific qualities that we wanted to
test. The blue version corresponds to the all-VP
aggregation strategy while the violet version cor-
responds to the set+VP aggregation strategy. We
believe that with this briefing the testers could give
more attention on the linguistic details of the tex-
tual feedback. Apart from the blue/violet version
tests, we asked the testers to try also a feature
called variable lexicon (see Section 4.2). We ex-
plicitly informed the testers that this feature was
not our main experimental goal.

We asked the testers to play the diet game for a
simulated period of two weeks, spending at least
15 minutes of their time. Moreover, we asked
testers to play one week with the blue version and
one week with the violet version. At the end of the
experimentation, we asked the testers to compile a
feedback form. The form was composed by 24
questions: 8 were multiple choices questions con-
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cerning personal data; 4 were Likert-scale ques-
tions concerning the app and the lexicon; 9 were
Likert-scale questions concerning the blue and vi-
olet versions of the generator; finally, 3 were open
general questions concerning suggestions for pos-
sible improvements of the app, the feeling per-
ceived and the lexicon.

The main hypothesis that we tested was about
the appealing of the violet version with respect
to the blue version. In particular in the form
we wanted to compare four specific properties of
the messages, that are Usefulness, Persuasiveness
Boringness, Easiness. These specific four ques-
tions are2:

QU: Usefulness perceived: The text messages in
the blue version are more useful than the text
messages in the violet version in order to
make the best choice.

QP: Persuasiveness perceived: The text messages
in the blue version are more persuasive than
the text messages in the violet version.

QB: Boringness perceived: The text messages in
the blue version are more boring than the text
messages in the violet version.

QE: Easiness perceived: The text messages in the
blue version are easier to understand than the
text messages in the violet version.

We used a Likert scale from 1 to 5 where 1=I to-
tally disagree and 5=I totally agree.

In order to evaluate the feasibility of the ex-
perimental setting, we first tried the game with a
preliminary group of three people: this pre-test
suggested us to prepare a more detailed instruc-
tion sheet. Successively, we conducted the main
study with a group of 20 people. All of them were
Italian mother tongue, have provided their real an-
thropometric data, and have completed the test in a
silent ambient after reading the instructions. Most
of them were students or faculties in computer sci-
ence and used a smartphone provided by us. We
are aware that the small size and the homogene-
ity of the test group in this study does not allow to
discover possible correlations between subgroup
features (e.g. demographics) and final results.

2Translated form the original Italian questions.
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Figure 4: A plot showing the distribution of the
answers to the questions QB, QE, QP, QU.

Results

In Figure 4 we report the distribution of the an-
swers to the four questions which are the main
goal of our experimentation3.

The picture shows a quite clear preference for
the violet version, which applies the set+VP ag-
gregation strategy, with respect to the blue ver-
sion, which applies the all+VP aggregation strat-
egy. In other words, for all four properties,
that are boringness (mean=3.60, s.d.=1.10), use-
fulness (mean=2.55, s.d.=1.00), persuasiveness
(mean=2.50, s.d.=0.89), easiness (mean=2.55,
s.d.=1.00), the shorter messages produced with the
set+VP aggregation strategy are preferred with re-
spect to the longer messages produced with the
all-VP aggregation strategy. Indeed, we tested the
statistical significance of the preference for the vi-
olet version with respect to the blue one (i.e., the
answer has a numeric value < 3 for questions QE,
QU, QP and > 3 for question QB). We obtained
the (two-tailed) p-values 0.03, 0.03, 0.01, 0.01 for
QE, QU, QP, QB respectively.

As post-hoc hypothesis we decided to analyze
the result of the Likert-scale question concerning
lexicon variability that is: The “variable lexicon”
option makes the use of the app more enjoyable.
(QV, 1=I totally disagree and 5=I totally agree.).
In Figure 5 we report the distribution of the an-
swers for QV (mean=3.40, s.d.=1.0). Also, if the
distribution of the answers seems to show a prefer-
ence for random lexical variations (the p-value for
> 3 is 0.04), a specific experimentation is neces-
sary to confirm this result.

An exploratory analysis of the responses given
by the users gives us a feedback on the appealing
of the app as a whole. In particular, we can infer

3The statistical analysis was performed by using the Lik-
ert package of R. We considered the points in the Likert scale
as equidistant.
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Figure 5: A plot showing the distribution of the
answers for the questions QV.

from the distribution of the answers that (1) the
user interface of the app is clear, (2) both graphics
and text messages are perceived as useful to per-
form the best choice.

Finally, by reading the free comments section
of the forms, an interesting speculation is that the
two aggregation strategies have an appeal depend-
ing on the polarity of the messages. Indeed, some
comments pointed out that the repetition of the
predicate (all-VP strategy) gives a judgmental or
blaming attitude to the virtual dietitian.

6 Conclusions and future work

In this paper we have presented a first human-
based evaluation of a NL generator of persuasive
messages in the diet management context. We
have briefly described the main components of the
MADiMan system and we have detailed the de-
sign and implementation system of the NLG mod-
ule. Finally, we have described the details of a
game-based simulation of the system by using the
CheckYourMeal! app. By considering a number
of perceived properties, the experimental results
show preferences towards short messages obtained
with a complex aggregation strategy.

In future work, we intend to perform the experi-
mentation on a greater number of testers. In partic-
ular, in order to have more qualified feedback, we
intend to evaluate the system with a group of un-
dergraduate students in dietetics. Moreover, with
more users we will be able to test several versions
of the message generators, considering the vari-
ability of the lexicon too.

Another research question that we intend to fol-
low regards the explainability of the answer. For
tackling such issue, we intend to exploit the infor-
mation regarding the past meals that the user has
eaten during the week.
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Abstract

In this paper we study the performance
of several state-of-the-art sequence-to-
sequence models applied to generation of
short company descriptions. The mod-
els are evaluated on a newly created and
publicly available company dataset that
has been collected from Wikipedia. The
dataset consists of around 51K company
descriptions that can be used for both
concept-to-text and text-to-text generation
tasks. Automatic metrics and human eval-
uation scores computed on the generated
company descriptions show promising re-
sults despite the difficulty of the task as the
dataset (like most available datasets) has
not been originally designed for machine
learning. In addition, we perform corre-
lation analysis between automatic metrics
and human evaluations and show that cer-
tain automatic metrics are more correlated
to human judgments.

1 Introduction

Traditional approaches of Natural Language Gen-
eration (NLG) consist in creating specific algo-
rithms in the consensual NLG pipeline (Reiter
and Dale, 2000; Gatt and Krahmer, 2018). How-
ever, recently there has been a very quick and
strong interest in End-to-End (E2E) NLG systems
in particular in the Dialogue community (Mairesse
and Young, 2014; Wen et al., 2015; Dusek and
Jurcı́cek, 2016) which are data-driven NLG meth-
ods jointly learning sentence planning and surface
realization. Probably the most well known cur-
rent effort is the E2E NLG Challenge (Novikova
et al., 2017) which has generated a high number of
submissions and whose task was to perform sen-
tence planing and realization from dialogue act-

based Meaning Representation (MR) on unaligned
data. This challenge was a great success as it
gathered the community around this problem of
data-driven NLG models and showed the diver-
sity of techniques that has been proposed to deal
with the proposed task. The challenge also re-
vealed that sequence-to-sequence (seq2seq) atten-
tion models such as TGEN(Dusek and Jurcı́cek,
2016) are competitive, yet, other simpler template-
based approaches can still be effective (Puzikov
and Gurevych, 2018). It also showed that although
automatic metrics are useful for learning, they
cannot be blindly used to predict human perfor-
mances in NLG (Reiter and Belz, 2009; Puzikov
and Gurevych, 2018). Furthermore, the E2E data
contained a lot of redundancy of structure and a
limited amount of concepts plus a least 5 refer-
ences for the same MR input. This is an ideal case
for machine learning but is it the one that is en-
countered in all E2E NLG applications?

In this work, we are interested in applying E2E
models in a real world application in which there is
a low amount of resources and whose output qual-
ity must be at human-level. The task is to produce
a short description of a company given either a
semi-structured set of slots (MR) or a textual doc-
ument. This work is performed in the context of a
research project with the Skopai company whose
aim is to use AI technique to support startup de-
scription for attracting investors. More precisely,
the task will be to generate an abstract for the
article that contains the main factual information
about a company.

In this research, we focus on seq2seq mod-
els in order to generate a summary for an ar-
ticle for two approaches: concept-to-text and
text-to-text. As emphasized by (Gatt and Krah-
mer, 2018), there seem to be a convergence of
NLG and summarization techniques, that is why
for both approaches were recently applied in the
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text-to-text domain. Furthermore, text-to-text ap-
proaches have to explicitly deal with content se-
lection and document planning, tasks that were
not the focus of the E2E challenge. In the lit-
erature, there has been few work related to our
objective. For instance, in (Lebret et al., 2016),
authors used a neural model to generate short bi-
ographical summaries from structured data (con-
cepts) using a dataset collected from Wikipedia.
Similarly, in (Chisholm et al., 2017) a sequence-
to-sequence autoencoder with attention was used
to generate biographies from Wikipedia. How-
ever, both of these work concentrate on generat-
ing mainly one sentence summaries, while our aim
is to be able to generate longer summaries. In
addition, since their generated summaries are ex-
tremely short, the information in the summaries
is almost always is guaranteed to be present in
the concepts, while in our dataset this is not the
case. Finally, most Wikipedia biographies have
very similar and repetitive writing styles which
makes it easier for models to learn them, but in
the case of company descriptions, the task is more
challenging since most summaries are written in a
different style.

The contribution of the paper can be summa-
rized as follow:

• a collection of a realistic dataset for concept-
to-text and text-to-text task that is made avail-
able to the community;

• the implementation and evaluation of several
E2E models for the two tasks;

• an evaluation by naive human subjects and a
comparison with the automatic metrics.

The paper starts by describing the dataset col-
lection in Section 2 and then the seq2seq methods
in Section 3. Corpus-based experiments and hu-
man evaluation are described in Section 4 and 5 re-
spectively. The paper ends with a short discussion
of the findings and an outlook for further work.

2 Dataset collection and Analysis

The task under study is to investigate the power of
deep models on a specific task: the generation of
company summaries. However, no large dataset
corresponding to this task was available when the
research started. Thus, a dataset about company
descriptions has been collected, cleaned up, and
organized for the task.

Figure 1: A Wikipedia page of a company. Ab-
stract can be generated from the infobox (concept-
to-text) or from the body text (text-to-txt).

2.1 Data source

Information about companies are typically be
found in national company registers. However,
they are not always accessible and are difficult to
crawl. dbpedia.org also contains a seman-
tically rich set of information about companies.
However, the amount of companies is too small for
a machine learning approach. A place were a large
number of company descriptions can be found is
Wikipedia. Wikipedia is a rich source of different
types of data tackling a variety of topics, and the
way articles are written in this source can be used
for the task we address in this paper. As shown
in Figure 1, an article contains an abstract fol-
lowed by a table of content and then a body text.
The abstract is a brief summary of the entire arti-
cle containing the important ideas in the body text.
Moreover, the top right side is the infobox (to be
taken as MR), a panel containing semi-structured
data about the company described in the article.
As a result, English Wikipedia has been consid-
ered as a source for the dataset, and only articles
about companies were collected.

2.2 Data collection method

The method to collect data was first to build a
list of company name/id. This was performed
from a dump of English Wikipedia (enwiki-
20170820-pages-articles.xml.bz2) from which ar-
ticles containing the terms “company” or “com-
panies” in the “Category” section were re-
tained. However a large number of arti-
cles were actually not company descriptions.
Hence, we made use of the infobox attributes
such as Founded, Founder, Products,

255



Industry, Headquarters, etc. which, in
accordance to Wikipedia guidelines, should be
found in company descriptions in Wikipedia.
Then, articles which did not contain at least two
company attributes in the infobox were dismissed
from the list. At the end, we ended up with 64553
company links. The articles were then retrieved
using the Wikipedia API. The abstract was di-
rectly extracted from the xml article as well as
the infobox all stored into a json file as set of at-
tribute value pairs. Articles that contained both
an empty body and abstract were removed. Also
those containing a too small amount of informa-
tion were discarded leading to 51596 usable com-
panies. Since the aim of the body text was to sup-
port single document summarization, information
under the sections: References, See also,
etc. were not needed. Thus the problem became
to find out which section in each article indicates
the end of the useful information. To do so, an
analysis of the most frequent ending sections was
performed. As a result, we end up with a list of
84 end headers (reference, references,
noteandreference, etc.) chosen as a final
maker of the body text. At the end of the process,
51k company were retrieved (excluded the empty
articles).

For the infobox part, each attribute–value
pair was represented as a sequence of string
attribute [value]. Each attribute
value which could contain a list was divided
into at most 5 attributes (e.g., attribute1
[value1] , attribute2 [value2]
... attribute5 [value5]) using
simple regex expression. Hence a string like
“Founder=[David Hyams and Lloyd Spencer]”
was converted into “founder1[David Hyams],
founder2[Lloyd Spencer]”. At the end, the
infobox is composed of 41 attributes with 4.5
attributes per article in average. The abstracts
of the final dataset of 51k companies presents a
vocabulary of size 158464 words.

2.3 Dataset characteristics

At the end of the process, although the dataset
is faithful to the information found in Wikipedia,
the dataset is not ideal for machine learning since
the abstract, the body and the infobox are only
loosely correlated. For instance, Figure 2 shows
an abstract which is not based on information pro-
vided in the body text. Moreover, Figure 3 shows

Figure 2: Body text information is not correlated
with the summary

that most of the abstract length is between 1 to 5
sentences while the body text size is much more
spread with a peak at 1 sentence. The Pearson’s
correlation between abstract and body length (sen-
tences) is very low r = 0.275 even when the body
data of size 1 is removed (r = 0.327).

Figure 3: Distribution of abstract and body in
terms of number of sentences.

In short, the problem found in the dataset can
be summarized as follow. Given a article a =<
s, b, i > where s is the abstract b the body text,
and i the infobox, the following problems exist:

• s is not guaranteed to be built from b.

• s and i does not always contains the same in-
formation.

• s, i and b vary greatly in terms of size and
none of the size is correlated. Often, one or
two of the sections are empty.
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• there is only one version of s.

• there is no information about what was the
objective of the writer(s) when producing s.

However, despites these problems, we believe
this dataset represents a valuable resource since
it represents the kind of data that can be found
in real situations and that End2End systems must
deal with in order to make a significant impact in
society. The dataset is available for download1.

3 E2E methods

3.1 Models
The basic model used for generating company de-
scription is based on the RNN seq2seq model ar-
chitecture (Sutskever et al., 2014) which is divided
into two main blocks: encoder which encodes the
input sentence into fixed-length vector, and the
decoder that decodes the vector into sequence of
words. This model is able to treat sequence of
words of variable size and has become the stan-
dard approach for many Natural Language Pro-
cessing tasks. Briefly, a recurrent unit, at each step
t takes an input xt and a previous hidden state ht−1

and compute its hidden state and the output using:

ht = σh(Whxt + Uhht1 + bh),

yt = σy(Wyht + by),

where yt is the output vector at each step; W,U, b
are the parameters of the neural layer and σh and
σy the activation functions of the neural layers.
Once the encoder has read the entire input se-
quence of words (i.e., it read the special token
< EOS >), the last hidden state ht is passed to
the decoder which begins to output a sequence of
words using the previous hidden state and the pre-
vious predicted vector as input (using the special
< SOS > token as trigger) until it generates the
end of a sequence (i.e., < EOS >). Numerous
improvements have been made to this architecture
such as using mono or multi layer of Long Short-
Term Memory (LSTM) or Gated recurrent units
(GRUs) to prevent the exploding/vanishing gradi-
ent problem and to model long dependencies in the
sequence.

Another improvement is the attention mecha-
nism introduced by (Bahdanau et al., 2014) which

1https://gricad-gitlab.
univ-grenoble-alpes.fr/getalp/
wikipediacompanycorpus

enables the decoder to attend on specific informa-
tion in the input (encoder) to predict the next out-
put. In that case, the decoder uses another infor-
mation during the decoding which is the context
vector c. At each step i and based on the sequence
length Tx:

ci =
Tx∑

j=1

αij hj .

The weight αij is computed as follows:

αij =
exp(eij)∑Tx

k=1 exp(eik)
,

where eij is computed as follows:

eij = a(si−1, hj).

eij represents an alignment or attention model that
tells the decoder at step i which part of hidden
state of the input sequence to attend. The align-
ment model a can be a simple feed-forward neural
network jointly trained with the rest of the archi-
tecture. The probability αij , reflects the impor-
tance of hj with respect to the previous hidden
state i−1 of the decoder in deciding the next state
i and generating the output. Hence the decoder de-
cides parts of the source sentence to pay attention
to. This is particularly useful when the next word
to output depends on an input word far apart in
the input sequence. Note that this model, encoder-
decoder with attention, is considered as a baseline
model in almost all neural models in neural ma-
chine translation, text summarization, etc.

However, as pointed out by (See et al., 2017)
the classical seq2seq models suffer from two
commonly known problems: repetition of sub-
sequences and wording off-topic (referred to as
hallucination in the following).

Repetition is caused at the decoding stage, when
the decoder relies too much on the previous out-
put leading to infinite cycle. For instance if the
decoder output ‘to’ then ‘go’ then ‘to’, it might
happen that the next most probable word would be
‘go’ leading to an infinite ‘to go to go to go to go
to go to go...’. One way to deal with this problem
is to use a coverage mechanism (Tu et al., 2016).
This mechanism, used in machine translation, uses
the attention weights to penalize the decoder for
attending to input that has already been attended
to previously. To do so, at each step t, the cover-
age vector covt =

∑i=t−1
i=0 αi is computed, which

is the sum of all the attention distributions until
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t− 1. Which means that each source word cover-
age is the sum of the attentions it has received so
far. Then, the coverage vector is added to the at-
tention mechanism to have information of past at-
tentions and then avoiding repetition. At the end, a
new loss with a factor λ, specific to the coverage,
can be computed and combined with the global
loss

covloss = λ
∑

j

min(αij , covi,j).

Hallucination appears when some words are
generated while there is no information related to
these generated words in the input sequence. This
can appear when the word to predict is infrequent
in the training set and therefore has a poor word
embedding making it close to a lot of other words.
One way to deal with this problem would be to in-
crease the training dataset but this is not always
possible. Furthermore, any of such kind of sys-
tems will be likely to meet new unseen words such
as company name and founder. Hence, a method
to copy and past input word to the output has been
developed in the translation domain and applied
in the summarization community. The approach
we have adopted is based on the Pointer-Generator
Network (See et al., 2017) which computes a gen-
eration probability pgen ∈ [0, 1]. This value evalu-
ates the probability of ‘generating’ a word based
on the vocabulary known by the model, versus
copying a word from the source. The authors have
implemented this pointing mechanism as:

Pfinal(w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ai,

where Pfinal(w) is the final probability of the
word w, Pvocab(w) is the probability of w as es-
timated by the model and

∑
i:wi=w ai is the prob-

ability of w given the current attention it receives.
In case w is the unknown word, then if the atten-
tion is high and pgen sufficiently low then the input
word will be used as output. It is important to note
that in (See et al., 2017) pgen is learned at the same
time as the network.

3.2 concept-to-text approaches

The task of generating company description from
a set of attribute–value pairs can be exemplified
as going from the sequence
name [Bodyarmor SuperDrink], founded

[2011] , founder1 [Lance Collins] ,

founder2 [Mike Repole], headquarters

[Queens, New York, United States],

industry [Beverage manufacturing]

to the sequence
Bodyarmor SuperDrink is an independently
owned drink manufacturing company based in
Queens, New York. It was founded in 2011 by
Lance Collins and Mike Repole.

However, the Wikipedia company dataset that
was collected contains a rather low rate of
attribute–value pairs per article. Indeed, as men-
tioned in section 2.3 the target descriptions were
often written using pieces of information that were
not present in the infobox section. For this rea-
son, an attribute–value augmentation step was
considered using Natural Language Understand-
ing (NLU) technique. Thus, the concept-to-text
was done in two processing steps:

NLU : extraction of attribute–value pair from tex-
tual company descriptions

NLG : generation of company descriptions from a
set of attribute–value pairs

The strategy employed to deal with the NLU
part was to first create a reversed dataset where the
company abstract is considered as the source se-
quence and the infobox attribute–value pairs as the
target sequence, using a 5-fold cross-validation.
More specifically, at each of the 5 turns, a 4/5
of the data was used to train a seq2seq charac-
ter NLU model to infer the missing attributes in
the unseen 1/5 of the data. During training, since
ground truth was only partially available, inferred
attribute–value pair was classified correct if:

• it corresponds to an attribute–value pair in the
infobox ;

• it corresponds to an attribute–value pair
whose similarity in the input text is high.

The similarity was computed using “difflib” li-
brary2 of Python, which is an extension of the Rat-
cliff and Obershelp algorithm (Ratcliff and Met-
zener, 1988).

Using this method the dataset went from
304475 total attributes to 328682 in the augmented
dataset. This is this augmented dataset that was
used in all the experiments.

2https://docs.python.org/2/library/
difflib.html#difflib.SequenceMatcher
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For the NLG method, a basic seq2seq model
with attention was used without any preprocess-
ing. It is named C2T (Concept-to-Text). Also, a
char to char model was used since it has been re-
ported to be an effective model for the E2E chal-
lenge (Agarwal and Dymetman, 2017) despite a
tendency to omit information or to repeat it on the
E2E challenge data. The char to char model is an
interesting way to deal with the rare word problem
since the character vocabulary is very small and
the network can learn to recompose unseen words.
It is named C2T char in the rest of the paper.

Another way to deal with rare word is to em-
ploy a pointing mechanism that is able to permit
direct or indirect copy of input token in the output.
Hence, the word seq2seq attention model was used
with a pointer generator is called C2T+pg. Fi-
nally, to deal with repetitions, the coverage mech-
anism was added to the previous model to form the
C2T+pg+cv system.

The recap of the systems under study:

1. C2T : the concept-to-text system word based
seq2seq with attention model;

2. C2T char : the concept-to-text system char-
acter based seq2seq with attention model;

3. C2T+pg : the concept-to-text system word
based seq2seq with attention model with
pointer generator;

4. C2T+pg+cv : same as above + coverage.

3.3 text-to-text approaches
Most text-to-text approaches require the ability to
copy words or even sentences directly from the in-
put to the output. Among the different models that
we reviewed in Section 3, the Pointer-Generator
Network has this capability, thus it was the only
model used in the text-to-text experiments. The
summary of the systems built to generate company
description (abstract) from a source text (body
text) are as the following :

5. Pointer-Generator Network (T2T+pg): deals
with hallucination problem by having the
ability to copy rare or unseen words during
training while having the ability to generate
words at the same time.

6. Coverage Model (T2T+pg+cv): deals with
repetition problem by informing the decoder
not to attend to input positions that have been

repeatedly attended to. Note that this model
is built on top of the Pointer-Generator Net-
work.

4 Corpus based Experiment

4.1 Dataset formating

The original dataset has been through a limited
amount of preprocessing for machine learning.
For the C2T approaches, the dataset presented
in Section 2 is filtered to contain only compa-
nies having abstracts of at least 7 words and at
most 105 words. As a result of this process,
43681 companies are retained. Finally the dataset
is partitioned to learning (35384), dev(3929) and
test(4368) sets.

For the T2T approaches, the dataset is filtered at
first to keep only the companies having abstracts
with less than 105 tokens and bodies greater than
100 tokens while having the size of the abstract
smaller than the size of the body text. As a result,
28034 are kept. The dataset is then splitted into
three sets: training (21309), dev (2357) and test
(4368).

In all the experiment the test set of 4368 com-
panies is the same.

4.2 Corpus based evaluation

For the C2T and C2T char experiments, we used
the seq2seq model by Google3, while for the
C2T+pg, C2T+pg+cv, T2T+pg and T2T+pg+cv
experiments, the Pointer-Generator Network im-
plementation of (See et al., 2017)4 was used. In
addition, a baseline model called lead4 was also
implemented. This baseline generates summaries
by extracting the first 4 sentences from the article’s
body text.

The seq2seq model architecture has 2 layers
of bidirectional LSTM trained using Adam opti-
mization with learning rate of 0.001. As for the
Pointer-Generator Network, it uses a single layer
of bidirectional LSTM trained with AdaGrad and
learning rate of 0.15. Both models have 256 hid-
den units for the encoder, decoders and embedding
layers and a vocabulary size 50K (only for word
models). The choice of hyper-parameters were de-
termined by tunning the models on the dev set.
Seq2seq models were trained until the loss on the
dev set stops decreasing for several consecutive it-
erations. As for the Pointer-Generator Network

3https://github.com/google/seq2seq/
4https://github.com/abisee/pointer-generator
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Table 1: Systems results on dev and test set using the E2E challenge metrics scripts provided with the
baseline

dev set test set
BLEU NIST METEOR ROUGE L CIDEr BLEU NIST METEOR ROUGE L CIDEr

lead4 0.0361 1.9599 0.1282 0.1645 0.0841 0.0364 2.0056 0.1282 0.1640 0.0908
C2T 0.0513 1.5784 0.0860 0.2032 0.1254 0.0608 1.9322 0.0906 0.2092 0.1872
C2T char 0.0648 0.6390 0.1120 0.2619 0.2351 0.0750 1.0975 0.1159 0.2665 0.2731
C2T+pg 0.0327 0.0407 0.1014 0.2533 0.2198 0.0413 0.0893 0.1076 0.2668 0.2836
C2T+pg+cv 0.0400 0.2002 0.0975 0.2367 0.1888 0.0490 0.2349 0.1045 0.2589 0.2734
T2T+pg 0.0573 2.0101 0.1013 0.2232 0.2065 0.0567 1.9690 0.1002 0.2212 0.1992
T2T+pg+cv 0.0547 2.1362 0.1026 0.2214 0.1950 0.0558 2.1188 0.1024 0.2216 0.1974

and coverage models, we followed the strategy
suggest in (See et al., 2017), i.e., to train the mod-
els with highly-truncated sequences then increase
them during the training process until the maxi-
mum length is reached. Then the coverage mecha-
nism is added and training is continued from the
last training point of the Pointer-Generator Net-
work.

Standard automatic measures BLEU (Papineni
et al., 2002), ROUGE-L (Lin and Hovy, 2003),
Meteor (Denkowski and Lavie, 2014) and CIDEr
(Vedantam et al., 2015) were computed using the
E2E challenge script. Table 1 shows evaluation
results on both the dev and test sets for the lead4
(baseline), C2T and T2T tasks. The best system is
difficult to extract from these results since there
are close. However, C2T char exhibits the best
results for BLEU, ROUGE-L and CIDEr on the
dev set while C2T+pg exhibits the best results for
ROUGE-L and CIDEr on the test set. T2T+pg+cv
shows the best NIST on both sets while lead4 is
unbeatable from the METEOR perspective.

With respect to the results reported in
the literature, such as the ones of the E2E
challenge (for which the baseline system
reaches: BLEU=0.6593; NIST=8.6094;
METEOR=0.4483, ROUGE-L=0.6850,
CIDEr=2.2338) these results are very low
except for ROUGE-L. However, the main reason
for such a large difference is that in the E2E
challenge there are several references for each
instance of the data. This leads to a higher ratio
of match between the generated sentence words
and the references ones, and thus, higher scores.
In order to verify this, we conducted few tests
using our C2T char model on the E2E challenge
data without any parameter tunning. The results
showed that when only a single reference is
counted, our model was able to achieve a score of
0.29 and 0.47 for BLEU and ROUGE-L respec-
tively. However, when multiple references were

included, the scores increased to 0.51 and 0.61
for BLEU and ROUGE-L. This clearly shows that
the E2E challenge dataset is closer to the ideal
case for machine learning than our case. Thus our
results should not be directly compared with the
E2E challenge.

However, we also computed the F1 of ROUGE
1, 2 and L score using the pyrouge package5

and compared to recent summarization meth-
ods6. In that case C2T+pg exhibits the best re-
sults for ROUGE-1 (.3346) ROUGE-2 (.1701) and
ROUGE-L (.3132) on the test set. These results
are comparable to the abstractive method of (Nal-
lapati et al., 2016) (ROUGE-1=.3546, ROUGE-
2=.1330, ROUGE-L=.3265) and the pointer gen-
eration approach of (See et al., 2017) (ROUGE-
1=.3644, ROUGE-2=.1728, ROUGE-L=.3342).
However, they were both tested on the CNN/Daily
Mail test set, for which no problem of content mis-
match between documents and summaries were
reported while it is a difficulty of our dataset. Fur-
thermore, the difference with the E2E challenge is
important since our dataset contains a large vocab-
ulary, a large number of named entities and only
one –not always reliable– reference summary. The
few number of reference summaries give fewer
opportunity for the models output to match n-
grams in the references than when multiple refer-
ences are available.

Although such metrics suggest our models are
far from achieving satisfying results, they give in
fact little insight about the actual weakness of the
models. Moreover correlation between automatic
and human-based metrics in NLG is still debat-
able (Gatt and Krahmer, 2018). That is why we
conducted a human evaluation as well.

5https://pypi.python.org/pypi/pyrouge/
0.1.0

6Also the ROUGE-L value given by the two scripts were
not the same due to different parameters, we checked a very
high (>.96) and significant Spearman correlation between all
ROUGE value.

260



5 Human Evaluation

In order to gain more insight about the genera-
tion properties of each model a human evaluation
with 19 human subjects was performed. We set up
a web-based experiment which was circulated in-
side the lab but to people who were not involved
in this project. The 4 questions below were asked
on a 5-point Lickert scale:

Q1 How do you judge the Information Coverage
of the company summary : 1 no information,
5 contains everything

Q2 How do you judge the Non-Redundancy of
Information in the company summary. 1:
means lots of repeated information, 5: no
repetition.

Q3 How do you judge the Semantic Adequacy of
the company summary? 1: lots of semantical
mistakes, 5: semantically very correct.

Q4 How do you judge the Grammatical Correct-
ness of the company summary? 1: very in-
correct, 5: very good

We did not include fluency in the question since
it is often correlated with grammar and because
participants have difficulty to judge this property.
Q1 to 4 were specifically designed to measure the
recurrent weakness of seq2seq models: content se-
lection, repetition, hallucination and bad segment
connection.

Participants were exposed to a screen where
a background (extract of the original Wikipedia
body text, cut to 400 max), an infobox and a sum-
mary were visible all together in the screen. After
reading the background, the infobox and the sum-
mary, the participant could answer the question by
scrolling down. Not limit of time was imposed.
A first example was given for training, then each
participant had to treat 10 summaries. The partic-
ipant could not go to the next step without explic-
itly answering all questions. In average one ses-
sion last 15 minutes. At no time participants have
been aware that one of the summary was human
generated (i.e., the Wikipedia abstract).

30 companies were selected from the 4368 com-
panies of the test set. They were selected based on
the number of views during the month preceding
the experiment. The less viewed one were retained
to avoid participants judging well known compa-
nies.

Results of the human experiment are reported
in Table 2. The first line report the result of the
reference (i.e., the Wikipedia abstract) for compar-
ison. It is clear from the coverage metric that no
system nor the reference was seen as doing a good
job at conveying the information. It is a known
problem of the Wikipedia dataset and the systems
were not able to do better than the reference. Non-
redundancy metric gives a more contrasted view
of the systems. C2T+pg was judged to be the least
repetitive after the reference, while C2T char to
be the most repetitive. Regarding semantic cor-
rectness, C2T+pg is clearly above the others again
including the reference. Same observation can be
made for grammatical correctness.

Table 2: Results of the human evaluation per sys-
tem.

cover. non-redun. semant. gramm.
reference 3.1 4.6 3.9 4.2
C2T 2.9 2.9 3.3 3.6
C2T char 2.3 3.9 2.8 3.0
C2T+pg 2.3 4.5 4.0 4.3
C2T+pg+cv 2.7 3.9 3.6 4.2
T2T+pg 1.8 3.3 2.9 3.7
T2T+pg+cv 2.3 3.8 2.4 3.5

These results of human evaluation were com-
pared to those of the automatic metrics (exclud-
ing the reference one). The correlation matrix is
given in Figure 4. It can be seen that among auto-
matic metrics, METEOR, ROUGE-L and CIDEr
are highly correlated. When it comes to human
vs automatic metrics, it is obvious that CIDEr has
a highest correlation with semantic and grammar.
It is worth noting that ROUGE-L is is also highly
correlated to semantic and grammar.

Figure 4: Correlation values based on Spearman’s
ρ. Human vs automatic metric correlations are in
the black square. Crossed area are not significant
correlation (p>.05).
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Table 3: Sample of generated summaries from the
test set using our systems along with the reference
infobox, abstract and body text. Green color indi-
cates repeated information and red color indicates
factual errors.

Infobox: name1[ rgb entertainment ], head-
quarters1[ argentina ], founded1[ 2000 ], indus-
try1[ television production ], type1[ production
company ], owner1[ gustavo yankelevich y vic-
tor gonzalez ]
Body text (truncated): it was created in 2000
by gustavo yankelevich, former telefe direc-
tor, and victor gonzalez, with headquarters in
buenos aires, argentina and sao paulo, brazil.
it include creation and production of television
shows, films, cds, live events and multitudi-
nous events. the company co-produces all cris
morena productions...
Reference abstract: rgb entertainment is a pro-
duction company from argentina. it was estab-
lished in the year 2000.
C2T char: rgb entertainment is an argentine
television production company based in ar-
gentina. the company was founded in 2000 by
gustavo yankelevich yankelevich yankelevich
y victor gonzalez in 2000.
C2T+pg: rgb entertainment is a television pro-
duction company in argentina .
T2T+pg: the argentine channel productions is
an american film production and distribution
company . the company was founded in 2000
by gustavo yankelevich and victor gonzalez in
buenos , argentina . it is owned by ideas
group.

6 Discussion and further work

Participants did not always understand the first
question. They use English daily as working lan-
guage but they were not native English speakers,
that might have had an influence on the grammat-
ical evaluation. However, English Wikipedia con-
tent is not always written by English natives and
the level of English employed in the summary was
quite standard.

C2T+pg capability is more emphasized by hu-
man evaluation than automatic metrics. Once
again it shows that not all the automatic met-
rics are correlated with the human evaluation and
that both evaluations are necessary to understand
strengths and weaknesses of models. Despite this,

some surprising correlation between semantics,
grammar, CIDEr and ROUGE-L can be observed.
However this findings are not in line with what
was observed in (Shimorina, 2018), as they report
only one significant correlation which is between
semantics and METEOR. However, CIDEr and
ROUGE-L are themselves highly correlated with
METEOR. Nevertheless, this difference might be
from the fact that our human evaluation questions
are not exactly the same, thus, the answer of the
subjects for certain questions might have been in-
fluenced by the other questions.

In order to better analyze the results, in Table 3
we show samples of generated summaries by some
of our systems. The first remark that can be no-
ticed is that the reference abstract does not contain
some of the information given in the infobox, e.g.,
owners. This mismatch between the reference ab-
stract and the infobox can be observed throughout
all the corpus. This obviously poses a limitation
on the models to learn to generate all the informa-
tion given in the infobox. Then when it comes to
our models, it can be seen that the C2T char man-
ages to generate all the infobox information but it
has repetition problem. The T2T+pg, on the other
hand, is not so behind when it comes to informa-
tion coverage, however this models suffers from
the problem of hallucination as it can be seen in
its last sentence. Finally the C2T+pg manages to
generate a correct but too short sentence which is
lacking some information of the infobox.

Some weakness of the current C2T approaches
may be due to the NLU model. A possible fu-
ture work might be to deal with the weakness of
the database and to perform more joined learning
of NLU/NLG and to evaluate models on the real
company database provided by the company that
we are working with on a research project. In ad-
dition, we could also force the models to gener-
ate more guided summaries by taking both the in-
fobox and the body text as input. In this way, the
model can learn to do text-to-text and concept-to-
text at the same time by giving more priority to
sentences of the body text containing infobox val-
ues.
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Abstract

The automatic generation of stimulating
questions is crucial to the development
of intelligent cognitive exercise applica-
tions. We developed an approach that
generates appropriate Questioning the Au-
thor queries based on novel metaphors
in diverse syntactic relations in litera-
ture. We show that the generated ques-
tions are comparable to human-generated
questions in terms of naturalness, sensibil-
ity, and depth, and score slightly higher
than human-generated questions in terms
of clarity. We also show that ques-
tions generated about novel metaphors are
rated as cognitively deeper than ques-
tions generated about non- or conven-
tional metaphors, providing evidence that
metaphor novelty can be leveraged to pro-
mote cognitive exercise.

1 Introduction

Automatic question generation is useful for a wide
range of applications, including those providing
educational and cognitive exercise support. Most
question generation work to date has focused on
generating factoid questions—that is, questions
regarding factual content that is readily available
in the source text. Factoid questions are well-
suited to some contexts, such as quizzing for sim-
ple comprehension. However, answering them
typically requires only shallow reasoning skills,
rendering them unsuitable for situations in which
deeper cognitive engagement is desired.

Less work has been conducted with the goal
of generating deeper questions. We work to-
ward filling that void by presenting an approach
for automatically generating questions about novel
metaphors from popular classic fiction using the

Questioning the Author strategy. Metaphor nov-
elty is defined here as the degree of likelihood
with which one can expect to encounter a given
metaphor on a regular basis. Consider the sen-
tence:

I spent an hour on my homework.

The word pair, {spent, hour}, is a highly con-
ventional metaphor—although one cannot literally
spend time, phrases such as this are highly com-
mon in the English language. Alternately, con-
sider:

The Queen was frowning like a thunder-
storm.

The word pair, {frowning, thunderstorm}, is a
highly novel metaphor. Novel metaphors reside
at the opposite end of the continuum from conven-
tional metaphors, and should strike one as being
particularly interesting or creative. These are the
metaphors of particular interest to us in this work.

The targeted focus on novel metaphors stems
from prior work showing that novel metaphors are
more difficult to process, both in young adults
(Lai et al., 2009) and in older adults with and
without dementia (Amanzio et al., 2008; Mashal
et al., 2011). The latter are a key demographic
for our use case, an elder-focused human-robot
book discussion system (Parde, 2018). Here, we
(1) introduce a method for generating deep ques-
tions about diverse novel metaphors following the
Questioning the Author strategy. We (2) show that
the resulting questions are comparable to or score
slightly higher than questions generated by every-
day users about the same topics in terms of natu-
ralness, clarity, sensibility, and depth. Moreover,
we (3) provide empirical evidence that questions
automatically generated about novel metaphors
are rated as having greater depth than questions
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automatically generated about non- or conven-
tional metaphors. Finally, we (4) publicly release
our source code and a corpus of question ratings
and responses for both human- and automatically-
generated questions to the research community to
foster additional work in this area.

2 Related Work

Automatic question generation and its potential
to facilitate learning has been of interest to re-
searchers since at least the 1970s, when John
Wolfe introduced the pattern-matching AUTO-
QUEST question generation algorithm (Wolfe,
1977). Today, many question generation systems
exist for educational applications, with most gen-
erating factoid questions about content found in
expository text (Araki et al., 2016; Du et al., 2017;
Gates, 2008; Heilman and Smith, 2010; Mazidi
and Nielsen, 2014, 2015; Rus et al., 2007; Serban
et al., 2016; Wyse and Piwek, 2009).

These systems achieve their goals in a number
of ways, including templates (Araki et al., 2016;
Mazidi and Nielsen, 2014, 2015; Rus et al., 2007;
Wyse and Piwek, 2009), sentence transformations
(Gates, 2008; Heilman and Smith, 2010), and re-
cently, neural networks (Du et al., 2017; Serban
et al., 2016). Template-based systems select tem-
plates based on syntactic structure, semantic role
labels, dependency parses, and/or discourse cues
to produce generally shallower questions (e.g.,
“Inflation is defined as an increase in the price
level.”→ “How is inflation defined?” (Mazidi and
Nielsen, 2015)). The template-based system de-
veloped by Araki et al. (2016) generated questions
over multiple sentences to produce questions that
required more inference steps than those generated
from a single sentence, using event coreference,
entity coreference, and paraphrases. However, the
answers to these questions were still readily avail-
able in the original text passage (in fact, ensur-
ing that this was the case was a goal of the sys-
tem). Although shallower questions are suitable
for quizzing comprehension of expository text (the
most common scenario to which they are applied),
they are inadequate for more involved discussions,
such as those analyzing fiction narrative.

Deeper questions (or more aptly, writing
prompts) were generated by Liu et al.’s (2012) sys-
tem, designed to help students write better litera-
ture reviews. Sentences containing citations were
classified as describing opinions, methods, results,

or one of several other categories, and templates
were selected based on those classifications to
construct questions using content from the origi-
nal sentence (e.g., “Cannon (1927) challenged this
view mentioning that physiological changes were
not sufficient to discriminate emotions.” → “Why
did Cannon challenge this view mentioning that
physiological changes were not sufficient to dis-
criminate emotions? (What evidence is provided
by Cannon to prove the opinion?) Does any other
scholar agree or disagree with Cannon?”). Lind-
berg et al.’s (2013) system prompted students for
summaries, causal effects, and descriptions not ex-
pected to be answerable from the immediate sen-
tence from which they were generated, using ques-
tion templates selected based on semantic role pat-
terns. The questions were then classified as hav-
ing/not having learning value, allowing the sys-
tem to automatically discard poor-quality ques-
tions. The learning value classifier was trained us-
ing length, language model, semantic role label,
named entity, glossary, and syntax features.

The system developed by Becker et al. (2012)
automatically identified question topics (i.e., the
part of a sentence about which a question should
be asked), and accordingly generated cloze (fill-
in-the-blank) questions. However, cloze ques-
tions are shallow and have limited potential to
stimulate deep reasoning. Olney et al. (2012)
developed a system that automatically extracted
concept maps from expository text, and gener-
ated questions based on those concept maps us-
ing templates associated with different types of
start nodes, end nodes, and edge relations from the
maps. Finally, Mostow and Chen (2009) devel-
oped a method for automatically generating self-
questioning instruction for students reading chil-
dren’s stories. Although some stages of this in-
struction were scripted, others involved automat-
ically generating example questions for students.
The template-based generation approach resulted
in “why” questions about mental states expressed
in the stories (e.g., “And when the country mouse
saw the cheese, cake, honey, jam and other good-
ies at the house, he was pleasantly surprised.” →
“Why was the country mouse surprised?”). Al-
though these approaches for generating deeper
questions are promising, none have specifically
sought to implement the Questioning the Author
paradigm, which revolves around building mean-
ing from text rather than quizzing a reader’s com-
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prehension. Moreover, none focus on generat-
ing questions based on identified occurrences of
highly novel metaphor in the source text.

2.1 Questioning the Author

The questions generated for the work described
herein employ a questioning strategy commonly
used in K-12 education known as Questioning
the Author (QtA). QtA seeks to encourage read-
ers to consider the author’s underlying intentions
when crafting literary prose (Beck and McKeown,
2006). The strategy can be implemented with ei-
ther expository text or fiction narrative. One of
the key goals of QtA is to coax readers toward
building meaning from and understanding the re-
lationships between different elements or events
present in the text, as opposed to focusing on iso-
lated components as factoid questions are likely to
do. Example QtA queries (Beck and McKeown,
2006) may include prompts such as:

• What is the author trying to say here?

• What do you think the author wants us to
know?

• What is the author talking about?

• So what does the author mean right here?

• That’s what the author said, but what did the
author mean?

Such questions are open-ended, and typically
elicit more detailed, free-form responses than fac-
toid questions. They also typically encourage
deeper analysis of the source text.

3 Template Development and Selection

We built templates based on sample questions
from the book on QtA (Beck and McKeown,
2006), with slots to be filled using predicted novel
metaphors that were automatically identified in lit-
erature. We describe the metaphor novelty scor-
ing methodology in greater detail in Section 4.1.
The identified metaphors were all syntactically-
related pairs of words; we constructed different
sets of templates for different syntactic relation
types. The syntactic relation types for which ques-
tions could be generated included the universal de-
pendency relations (McDonald et al., 2013) in Ta-
ble 1. Some of the resulting templates are shown

Relation
Type Description Example

nsubj Nominal subject. The apple is red.

nsubjpass Nominal subject
of a passive verb.

Newton was hit by
an apple.

dobj Direct object. I gave him an apple.
iobj Indirect object. I gave him an apple.

csubj Clausal subject. What he wanted
was an apple.

csubjpass Clausal subject
of a passive verb.

What he wanted as
taken to be an apple.

xcomp Open clausal
component.

He asked to eat an
apple.

nmod Nominal
modifier.

The stem of the
apple.

acl Clause that
modifies a noun.

I need a way to get
an apple.

appos Appositional
modifier.

The fruit, an apple,
was red.

amod Adjectival
modifier. It was a red apple.

advcl Adverbial clause
modifier.

He got is idea as the
apple was falling.

dep

Dependency for
which the parser
cannot determine
a finer-grained
relation.

N/A

advmod Adverbial
modifier.

He ate the apple
quickly.

compound Multiword
expression.

The apple had polka
dots.

Table 1: Dependency relation types for which
questions were generated.

in Table 2; the full list of 130+ templates can be
found online.1

Templates were chosen randomly from among
the pool of all relevant templates for a given de-
pendency type. For example, if a question was
to be generated about a metaphor formed by two
words syntactically related to one another using
an nsubj dependency, a random selection from all
possible templates corresponding to the nsubj type
would be made. Surface realizations were then
constructed by fitting predicted novel metaphors
into the selected templates. That process is de-
scribed in the following section.

4 Surface Realization

Realization was performed based on the linguis-
tic characteristics and syntactic parse details cor-
responding to the novel metaphors about which
questions were generated. Our procedure for iden-

1http://natalieparde.com/papers/inlg_
question_templates.pdf
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Dependency Template

nsubj
What is the author trying to say
with the expression ‘<DEP
(N/J/P)> <GOV (V)>’?

nsubjpass

What do you think the author
wants us to know by figuratively
saying ‘<DEP (N/J/P)>’
<WAS/WERE> ‘<GOV (V)>’?

dobj/iobj

What is the author talking about
when <HE/SHE> writes ‘<GOV
(V)>’ <? THE> ‘<DEP
(N/J/P)>’?

csubj What’s the important message in
the expression ‘<CLAUSE>’?

csubjpass
So what does the author mean
when <HE/SHE> writes
‘<CLAUSE PASS>’?

xcomp/nmod/acl The author said ‘<STRING>,’ but
what did <HE/SHE> mean?

appos Does the expression ‘<DEP>’
with ‘<GOV>’ make sense?

amod
How does the expression ‘<DEP>
<GOV>’ fit in with what the
author told us?

advcl/dep
Does the author tell us why
<HE/SHE> wrote
‘<PHRASE>’?

advmod
Why do you think the author tells
us ‘<DEP (V/J/R)> <GOV
(V/J/R)>’?

compound What is the author telling us with
the expression ‘<W1> <W2>’?

Table 2: Example question templates.

tifying particularly novel metaphors (Parde and
Nielsen, 2018b) and our methods for incorporating
the approach in this work are described in Subsec-
tion 4.1. Subsection 4.2 describes how template
slots were subsequently filled using the identified
novel metaphors.

4.1 Metaphor Novelty Scoring

Our metaphor novelty scoring approach predicts
continuous scores for syntactically-related pairs of
content words (nouns, verbs, adjectives, and ad-
verbs), with higher scores reflecting greater nov-
elty than lower scores (Parde and Nielsen, 2018b).
It consists of a four-layer feedforward neural net-
work trained using features based on psycholin-
guistic characteristics (concreteness, imageability,
sentiment, and ambiguity), word co-occurrence,
syntactic structure, semantic characteristics, and
information from WordNet (Miller, 1995) regard-
ing the words in the pair. For the work here,
we trained our neural network model on a cor-
pus of word pairs originally extracted from the VU
Amsterdam Metaphor Corpus (Steen et al., 2010)

and labeled along a continuous scale for metaphor
novelty (Parde and Nielsen, 2018a); the VU Am-
seterdam Metaphor Corpus is comprised of fiction,
news articles, academic articles, and transcribed
conversations. We then applied the learned model
to all word pairs (52,279 total) extracted from a
subset of sentences from 58 books that are pub-
licly available on Project Gutenberg.2 Finally, we
randomly selected a small subset (457) of the word
pairs having predicted scores greater than 1.03 as
the identified novel metaphors about which to gen-
erate questions.

4.2 Slot Filling

As shown in Table 2, each template con-
tains one or more slots: <GOV>, <DEP>,
<WAS/WERE>, <HE/SHE>, <? THE>,
<CLAUSE>, <CLAUSE PASS>, <STRING>,
<W1>, and <W2>. Filling the <GOV> and
<DEP> slots is straightforward; the governor and
modifier of the syntactic relation forming the pre-
dicted metaphor are merely substituted into the
appropriate slots in the question template. The
<HE/SHE> slot is the only slot requiring meta-
data about the source text being discussed (a gen-
der was manually assigned to each book).

The token “was” or “were” is selected to fill the
<WAS/WERE> slot based on the part-of-speech
tags associated with the two words forming the
predicted metaphor. Metaphors including plural
nouns are given the verb “were,” and all other
metaphors are given the verb “was.” The word
“the” is optionally included in realizations of tem-
plates including the <? THE> slot based on the
distance between the two words forming the pre-
dicted metaphor; if they are immediately next to
one another, it is omitted, and otherwise it is in-
cluded.

Filling the <CLAUSE> slot is more com-
plex. A full dependency parse of the predicted
metaphor’s source sentence is first acquired us-
ing Stanford CoreNLP (Manning et al., 2014).
A clause is then constructed using only tokens
that are syntactically related to words forming the
metaphor, in the order in which they occur in the
source sentence. Consider the example sentence:

2https://www.gutenberg.org; the books se-
lected included all books written in or translated to English
and classified as fiction in the “Top 100 Books Over The Last
30 Days” list as of May 18, 2017.

3Across all word pairs, novelty predictions ranged from
0.24-1.41.
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What he tasted on this dark and stormy
night was a dream.

To fit {tasted, dream} into the template,
“What’s the important message in the expression
‘<CLAUSE>’?”, the following words would be
identified as syntactically related to tasted and
dream: {What, he, tasted, was, a, dream}. The
realized question, retaining the words in their orig-
inal order, would thus be: “What’s the important
message in the expression ‘What he tasted was a
dream’?” <CLAUSE PASS> is constructed sim-
ilarly, but requires only words syntactically related
to the modifier.

The <STRING> slot was filled by tokenizing
the source sentence, and extracting the full span of
text from one of the words in the metaphor up to
and including the other. Consider the sentence:

She smelled a melody of appetizers and
knew she had reached the networking
event.

The word pair {melody, appetizers} would
fit into the nmod template “The author said
‘<STRING>,’ but what did <HE/SHE> mean?”
as “The author said ‘melody of appetizers,’ but
what did she mean?” The <PHRASE> slot was
filled using a slightly broader window of text: the
span reaching from the first word syntactically
related to either of the words in the metaphor,
to the last word syntactically related to either
of those words, inclusive of the words forming
the metaphor. Finally, <W1> and <W2> were
filled simply by substituting the word from the
metaphor that occurred first in the source sentence
for <W1>, and the word that occurred second in
the source sentence for <W2>.

5 Evaluation

The quality of the automatically-generated ques-
tions was evaluated relative to that of questions
written by humans. The human-generated ques-
tions were comprised of two subsets: (1) those
generated based on sentences containing predicted
novel metaphors, and (2) those generated based on
pairs of words predicted to be novel metaphors.

5.1 Data Collection

We crowdsourced human-generated questions
based on a randomly-selected subset of the same

Source Sentence Question Received
An icy horror of loneliness
seized him; he saw himself
standing apart and watching all
the world fade away from him –
a world of shadows, of fickle
dreams.

What did he feel as
he stood alone?

Perhaps, from the casement,
standing hand-in-hand, they
were watching the calm
moonlight on the river, while
from the distant halls the
boisterous revelry floated in
broken bursts of faint-heard din
and tumult.

Do you think the
people holding
hands are supposed
to be happy or sad?

I had crossed a marshy tract full
of willows, bulrushes, and odd,
outlandish, swampy trees; and I
had now come out upon the
skirts of an open piece of
undulating, sandy country, about
a mile long, dotted with a few
pines and a great number of
contorted trees, not unlike the
oak in growth, but pale in the
foliage, like willows.

Do you think the
landscape reflects
his inner feelings?

I quickly destroyed part of my
sledge to construct oars, and by
these means was enabled, with
infinite fatigue, to move my ice
raft in the direction of your ship.

If you were to make
oars that way, how
long do you think it
would take?

Table 3: Sample questions generated by humans
based on sentences.

457 predicted novel metaphors about which ques-
tions were automatically generated, using Ama-
zon Mechanical Turk (AMT).4 Workers were sim-
ply instructed to create “good” questions, such as
what they might ask in a book discussion group
if they came across the sentence (or the bolded
word pair within that sentence) when reading.
These instructions were purposely open-ended to
foster diversity in the collected data. To that
end, we also continued to collect questions until
the human-generated question dataset included 35
unique question authors (180 questions; 90 of each
type). Sample questions collected based on sen-
tences and word pairs are shown in Tables 3 and
4.

The 180 human-generated and 457
automatically-generated questions were in-
termixed, and responses to the questions and
ratings for four criteria for each question were
also solicited using a separate pool of workers

4https://www.mturk.com; we crowdsourced ques-
tions from everyday users to facilitate comparison with the
most likely alternative to a human-robot book discussion—a
typical human book club.
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Source Sentence Question Received
Wavewhite wedded words
shimmering on the dim tide.

what does dim tide
mean?

All about me gathered the
invisible terrors of the Martians;
that pitiless sword of heat
seemed whirling to and fro,
flourishing overhead before it
descended and smote me out of
life.

Why would the
martians kill him?

My father saw this change with
pleasure, and he turned his
thoughts towards the best
method of eradicating the
remains of my melancholy,
which every now and then would
return by fits, and with a
devouring blackness overcast
the approaching sunshine.

How is the image of
mortality described
with the weather?

But the overflowing misery I
now felt, and the excess of
agitation that I endured rendered
me incapable of any exertion.

How did things get
so bad that they
essentially felt
overflowing misery?

Table 4: Sample questions generated generated by
humans based on word pairs.

from AMT. The criteria considered were as
follows:

• Naturalness: The degree to which the ques-
tion seems natural, or sounds “normal” to the
reader.

• Clarity: The degree to which it is clear to the
reader how he or she is supposed to respond
to the question, regardless of whether he or
she is sure of the answer.

• Sensibility: The degree to which the reader
feels it makes sense to ask the question, given
the source sentence upon which it is based.

• Depth: The degree to which the reader feels
challenged in coming up with an answer to
the question.

Two workers rated each criterion using a five-
point scale. Small disagreements were adjudicated
by averaging, and disagreements greater than a
difference of 2.0 (e.g., a 1 and a 4) were for-
warded to a third-party, native English speaking
adjudicator (211 questions required adjudication
for at least one of the four criteria). Overall, the
crowd workers exhibited moderate agreement with
one another, with Krippendorff’s α=0.50, α=0.52,
α=0.51, and α=0.52 for ratings of naturalness,
clarity, sensibility, and depth, respectively. The
collected question answers are not used in this

work, but they serve the plural purpose of making
the dataset more broadly useful, lending insight re-
garding the types of answers expected to inform
future work on question generation and response
scaffolding, and providing a coarse-grained quan-
titative (time-based) measure of question depth.

5.2 Average Question Ratings

Average ratings for the question criteria, both
overall and when only considering questions for
a given criterion that had received above-midpoint
(> 3.0) ratings for the previous criteria, are pre-
sented in Tables 5 and 6. The latter scenario was
included to reduce the potential for confusion in
interpreting the results (for instance, unclear ques-
tions that were also unnatural may have only been
rated as such because they were unnatural; these
questions are included in the average score re-
ported in Table 5 but not in the average score re-
ported in Table 6). To elaborate further, the con-
straints considered in the latter scenario (as well as
for the results reported in Tables 7 and 8) were:

• Naturalness: All ratings were considered.

• Clarity: Only questions having a Naturalness
score > 3.0 were considered.

• Sensibility: Only questions having Natural-
ness and Clarity scores > 3.0 were consid-
ered.

• Depth: Only questions having Naturalness,
Clarity, and Sensibility scores > 3.0 were
considered.

Significance values for both scenarios were de-
termined via one-way ANOVA between the two
groups. Not surprisingly, given the instructions to
ask good questions, automatically-generated ques-
tions did not quite match the high bar set for
depth by humans’ questions, but this difference
was not statistically significant. The only signif-
icant (p < 0.05) difference reported between the
two groups in Table 6 was for ratings of Clarity
(automatically-generated questions scored slightly
higher). This finding was echoed when consider-
ing the overall averages (Table 5); again, the only
statistically significant difference between groups
was that ratings of Clarity were slightly higher
for the automatically-generated questions than the
human-generated questions.
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Human-
Generated

Automatically-
Generated p

Naturalness 3.89 4.02 0.13
Clarity 3.78 4.04 0.00
Sensibility 3.83 4.00 0.06
Depth 3.78 3.67 0.24

Table 5: Average ratings across all question crite-
ria, with significance values.

Human-
Generated

Automatically-
Generated p

Naturalness 3.89 4.02 0.13
Clarity 4.18 4.34 0.03
Sensibility 4.45 4.48 0.61
Depth 3.92 3.76 0.17

Table 6: Average ratings, considering only ques-
tions with above-average ratings for the preceding
criteria.

5.3 Average Ratings for Question Subgroups

In addition to these broad comparisons of human-
and automatically-generated questions, we ex-
amined the differences between different sub-
groups. Table 7 presents the average ratings for (1)
human-generated questions based on sentences,
(2) human-generated questions based on specified
word pairs, and (3) automatically-generated ques-
tions. Statistical significance was computed using
one-way ANOVAs beween each pair of groups:
human-generated (sentence) and human-generated
(word pair); human-generated (sentence) and
automatically-generated; and human-generated
(word pair) and automatically-generated. Only
two statistically significant differences existed be-
tween the subgroups: the average ratings for Clar-
ity and Sensibility were higher for automatically-
generated questions than for human-generated
questions based on sentences. These differences
were not statistically significant when comparing
human-generated questions based on word pairs
and automatically-generated questions.

Table 8 presents average ratings for two subsets
of automatically-generated questions: true posi-
tives (TP) for which the word pair about which
the question was generated was both predicted
to be a novel metaphor and actually was a novel
metaphor, and false positives (FP) for which the
word pair about which the question was gener-
ated was predicted to be a novel metaphor but
was not actually a novel metaphor. We collected
gold standard metaphor novelty scores for these

Human-
Generated
(Sentence)

Human-
Generated
(Word Pair)

Auto.-
Generated

Nat. 3.92 3.85 4.02
Clar. 4.08 4.29 4.34
Sens. 4.30 4.42 4.48
Depth 3.91 4.03 3.76

Table 7: Average ratings for human-generated
question subgroups and automatically-generated
questions.

TP FP p
Naturalness 3.99 4.06 0.42
Clarity 4.23 4.46 0.00
Sensibility 4.31 4.44 0.09
Depth 3.92 3.64 0.02

Table 8: Average ratings for true and false posi-
tives among automatically-generated questions.

word pairs in the same manner by which we
built our previous VUAMC-based metaphor nov-
elty dataset (Parde and Nielsen, 2018a), used to
train the metaphor novelty prediction model in this
work. Specifically, we crowdsourced five anno-
tations for each word pair, and automatically ag-
gregated them to continuous scores using a la-
bel aggregation model learned from features based
on annotation distribution and presumed worker
trustworthiness (Parde and Nielsen, 2017).

There were two statistically significant differ-
ences between the two groups: questions about
false positives were rated as clearer than ques-
tions about true positives, and questions about
true positives were rated as having more depth
than questions about false positives. One hy-
pothesis regarding the former finding is simply
that non-metaphoric language is more clearly in-
terpretable than metaphoric language. The find-
ing that question depth is higher for questions
about true positives (novel metaphors) than ques-
tions about other instances provides empirical
support for the underlying motivations guiding
this work—namely, that questions regarding novel
metaphors are more cognitively challenging than
similar questions about non-metaphors or conven-
tional metaphors.

5.4 Correlations between Question Criteria

In addition to evaluating question quality on the
basis of average ratings for each question crite-
rion, we computed Pearson’s correlation scores
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Nat. Clar. Sens. Depth Compl.
Time

Nat. - 0.55 0.48 0.03 -0.04
Clar. - 0.65 0.05 -0.01
Sens. - 0.05 -0.04
Depth - 0.07
Compl.
Time -

Table 9: Correlations between categories of rat-
ings for both automatically- and human-generated
questions.

between the four criteria, as well as between those
criteria and completion time (the amount of time
workers took to complete each HIT, including rat-
ing the four criteria and writing a response to the
question, on AMT) to examine which of these fac-
tors were correlated with one another. Questions
rated as being natural, clear, and sensible (scores
> 3.0) were included in this evaluation. Since
a small number of HITs had outlier completion
times far exceeding the average (indicating that
the rater most likely left their browser open while
taking a break, rather than actually spending that
much time completing the HIT itself), we removed
HITs with completion times +/- two standard de-
viations from the mean completion time from con-
sideration.

Table 9 presents a matrix of overall correla-
tion scores when considering ratings for both
automatically-generated and human-generated
questions. Overall, moderately strong positive
correlations were found between naturalness
and clarity (r=0.55), naturalness and sensibility
(r=0.48), and clarity and sensibility (r=0.65).
No strong correlations were found between these
criteria and depth or completion time. When
computing correlations only between ratings col-
lected for human-generated questions or for only
automatically-generated questions, these trends
persisted. In addition to the correlations reported
in Table 9, we computed the correlation between
completion time and metaphor novelty for each
set, finding correlations of r=0.09 across all
questions, r=0.19 for human-generated questions,
and r=0.03 for automatically-generated questions.

5.5 Discussion and Future Recommendations
The findings regarding the average ratings overall
and for different subgroups, as well as regarding
the correlations between types of ratings, provide
interesting and in a few cases (such as the higher

average Clarity score for automatically-generated
questions rather than human-generated questions)
slightly surprising observations. It is clear that the
automatically-generated questions are very com-
parable with human-generated questions in terms
of all criteria considered. Across all compar-
isons, there were no cases in which an average
rating associated with human-generated ques-
tions or a subset thereof statistically signifi-
cantly outperformed an average rating for the
same criterion with automatically-generated
questions. As such, it is reasonable to assume that
the approach is capable of generating sufficiently
natural, clear, sensible, and challenging questions
relative to what the average person might generate.

That said, there are still some areas that could be
improved upon. For example, the average depth
rating for automatically-generated questions that
were also rated as natural, clear, and sensible (as
measured by having ratings greater than 3.0) was
3.76. Although this is above mid-range, it could
certainly be higher (the maximum score allowed
was a 5.0). Thus, additional work could be done to
improve upon question depth in future work. This
could perhaps be accomplished by introducing
complementary strategies to QtA. Considerations
could also be taken to identify optimal questioning
sequences—that is, algorithmically deciding upon
groups of questions most likely to challenge read-
ers when asked in sequence, as opposed to simply
selecting questions at the individual level.

Future work toward improved metaphor nov-
elty scoring algorithms will result in a higher
likelihood that the subjects of the automatically-
generated questions are indeed novel metaphors.
The evaluation indicates that improved identifica-
tion of novel metaphors should lead to higher av-
erage ratings of question depth. Specifically, Ta-
ble 8 shows that in a comparison of automatically-
generated questions for true positives (instances
predicted to be novel metaphors that were actually
novel metaphors) versus false positives (instances
predicted to be novel metaphors that were actually
not), questions generated for novel metaphors
were rated as having more depth than similar
questions generated for conventional or non-
metaphors, and this difference was found to be
statistically significant.

Finally, many of the correlation scores observed
between rating criteria were expected (it is difficult
to think of questions that are, for instance, highly
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natural-sounding while also unclear). We had an-
ticipated a slightly higher positive correlation than
was observed between question depth and com-
pletion time, as a natural assumption is that if a
question makes a reader think quite a bit before
answering it, it will take longer to formulate an
answer than if the question doesn’t make a reader
think at all. However, the measurement of com-
pletion time was coarse-grained; it only consid-
ered the overall amount of time that it took the
worker to complete the full HIT including read-
ing the instructions and a source sentence, rating
four criteria, and finally constructing a written re-
sponse to the question. Many variables outside of
the question depth itself could therefore impact the
overall completion time. In the future, work can
be conducted to examine the correlation between
completion time and question depth in a more con-
trolled environment.

6 Conclusion

In this work, we introduced and evaluated a
question generation approach to automatically
construct QtA queries about predicted novel
metaphors. We designed and validated question
templates based on sample questions drawn di-
rectly from the book on QtA (Beck and McK-
eown, 2006), and demonstrated methods capa-
ble of producing high-quality question realiza-
tions. We evaluated the automatically-generated
questions relative to human-generated questions
based on the same source material, and discovered
that the only statistically significant difference be-
tween the two groups with respect to four distinct
criteria (naturalness, clarity, sensibility, and depth)
was that the automatically-generated questions re-
ceived slightly higher clarity scores. We analyzed
the correlations among the four question criteria as
well as between the question criteria and comple-
tion time, and found strong positive correlations
between naturalness, clarity, and sensibility, but
only weak correlations between each of those cri-
teria and question depth.

All data and source code are publicly available.
Ultimately, our evaluation proved that questions
about novel metaphors in literature can be auto-
matically generated at a quality level comparable
to what the average human might generate. It also
provided empirical support for an underlying mo-
tivation guiding this work: that questions about
novel metaphors can be leveraged as a means for

motivating cognitive exercise.
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Täckström, et al. 2013. Universal dependency an-
notation for multilingual parsing. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, volume 2, pages 92–97.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Jack Mostow and Wei Chen. 2009. Generating instruc-
tion automatically for the reading strategy of self-
questioning. In Proceedings of the 2009 Conference
on Artificial Intelligence in Education: Building
Learning Systems That Care: From Knowledge Rep-
resentation to Affective Modelling, pages 465–472,
Amsterdam, The Netherlands, The Netherlands. IOS
Press.

Andrew M. Olney, Arthur C. Graesser, and Natalie K.
Person. 2012. Question generation from concept
maps. Dialogue & Discourse, 3(2):75–99.

Natalie Parde. 2018. Reading with robots: To-
wards a human-robot book discussion system for el-
derly adults. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-
18) Doctoral Consortium, New Orleans, Louisiana.

Association for the Advancement of Artificial Intel-
ligence.

Natalie Parde and Rodney D. Nielsen. 2017. Finding
patterns in noisy crowds: Regression-based annota-
tion aggregation for crowdsourced data. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1908–1913,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Natalie Parde and Rodney D. Nielsen. 2018a. A corpus
of metaphor novelty scores for syntactically-related
word pairs. In Proceedings of the 11th Interna-
tional Conference on Language Resources and Eval-
uation, Miyazaki, Japan. European Language Re-
sources Association.

Natalie Parde and Rodney D. Nielsen. 2018b. Ex-
ploring the terrain of metaphor novelty: A
regression-based approach for automatically scor-
ing metaphors. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-
18), New Orleans, Louisiana. Association for the
Advancement of Artificial Intelligence.

Vasile Rus, Zhiqiang Cai, and Arthur C. Graesser.
2007. Experiments on generating questions about
facts. In Proceedings of the 8th International Con-
ference on Computational Linguistics and Intelli-
gent Text Processing, CICLing ’07, pages 444–455,
Berlin, Heidelberg. Springer-Verlag.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
factoid questions with recurrent neural networks:
The 30m factoid question-answer corpus. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 588–598, Berlin, Germany. Associa-
tion for Computational Linguistics.

Gerard J. Steen, Aletta G. Dorst, J. Berenike Herrmann,
Anna Kaal, Tina Krennmayr, and Trijntje Pasma.
2010. A method for linguistic metaphor identifica-
tion: From MIP to MIPVU, volume 14. John Ben-
jamins Publishing.

John H. Wolfe. 1977. Reading retention as a func-
tion of method for generating interspersed questions.
Technical report, San Diego: Navy Personnel Re-
search and Development Center.

Brendan Wyse and Paul Piwek. 2009. Generating
questions from openlearn study units. In Proceed-
ings of the AIED 2nd Workshop on Question Gener-
ation, pages 66–73.

273



Proceedings of The 11th International Natural Language Generation Conference, pages 274–283,
Tilburg, The Netherlands, November 5-8, 2018. c©2018 Association for Computational Linguistics

A Master-Apprentice Approach to Automatic Creation of Culturally
Satirical Movie Titles

Khalid Alnajjar
Department of Computer Science

and Helsinki Institute for IT
Faculty of Science

University of Helsinki, Finland
alnajjar@cs.helsinki.fi

Mika Hämäläinen
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Abstract

Satire has played a role in indirectly ex-
pressing critique towards an authority or
a person from time immemorial. We
present an autonomously creative master-
apprentice approach consisting of a ge-
netic algorithm and an NMT model to pro-
duce humorous and culturally apt satire
out of movie titles automatically. Further-
more, we evaluate the approach in terms of
its creativity and its output. We provide a
solid definition for creativity to maximize
the objectiveness of the evaluation.

1 Introduction

Movie theaters used to be prohibited in Saudi Ara-
bia by law, however in mid-December 2017, Saudi
Arabia officially declared they would abolish the
law by 20181. This gave birth to a movement on
Twitter by the hashtag #SaudiMovieTitles where
people would post alternative movie titles meant
to be satirical towards the Saudi Arabian legisla-
tive system. An example of such a title is I Know
What You Ate Last Ramadan for I Know What You
Did Last Summer.

In this paper, we present a novel master-
apprentice approach to computational creativity
for the generation of such humoristic movie titles
automatically. Our system consists of two creative
agents: a computationally creative master that is
implemented with a genetic algorithm approach
and a neural network based apprentice that will
learn from the master along with its peers, namely
real people writing satirical movie titles on Twit-
ter. We are introducing the apprentice to achieve

1The press release of The Saudi Ministry of Culture
and Information (MOCI) https://www.media.gov.
sa/news/1101

creative autonomy, because of its nature of adjust-
ing its standards by learning, a capability which is
absent in the master.

Furthermore, we base our approach in terms of
the design of its implementation and its evalua-
tion on a solid definition of creativity that we build
based on literature. This will make a reasoned
evaluation of our system possible and set standards
for future research in this topic.

For the purposes of our research, we understand
cultural satire as a way of presenting critique to-
wards a society in a humoristic fashion. The hu-
moristic expression has to relate to Saudi Arabia in
its expression - mostly by lexical choice. The re-
latedness has to be apparent when presented with
the hashtag #SaudiMovieTitles.

Computational linguistic creativity of this na-
ture poses a number of challenges, not only be-
cause it is a difficult NLG problem, but also be-
cause the generated output has to be humorous.
Thus the goal of the system is very different from
a more traditional NLG task where the system is to
convey factual information such as timetables of a
train or the current weather conditions in the form
of natural language.

The message our system is to produce serves
rather to convey emotion and provoke joy in the
reader. Furthermore, the humor is to be deliv-
ered in a culture-specific way which combines cul-
tural artifacts of the Western World, the Holly-
wood movie titles, with a Saudi Arabian cultural
twist. The system will derive its satire from this
juxtaposition of the two cultures following utterly
conflicting norms.

2 Related Work

Automatic creation of humor has received some
attention in the past. Valitutti et al. (2009) present
a tool for interactive creation of puns. The sys-
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tem suggests funny replacement words for familiar
expressions such as proverbs. The replacements
are found by applying a phonetic similarity met-
ric together with a Latent semantic analysis (LSA)
based semantic similarity metric, which not only
gives semantically related words but also semanti-
cally opposed ones.

A fully automated pun generator, presented in
Valitutti et al. (2013), takes an English sentence as
its input and changes one word in it based on three
criteria: sound or spelling similarity, the replace-
ment word has to be a taboo and that the word has
to go well together with its immediate predecessor
in the sentence. The system operates with a prede-
fined set of taboo words and an n-gram model to
assess how well the new words fit in the sentence.

A more recent take on the pun generation is that
of Shah et al. (2016), which presents a template
based approach on humor generation. The tem-
plates are filled by using WordNet relations for the
input compound word. The system looks up a list
of related words for the two words of the com-
pound and forms a pun out of them.

Research has also been conducted in the vein
of humoristic sarcasm generation, which is then
served to the user as satire (Veale, 2018). The
system generates sarcastic tweets that satirize a
person with a knowledge-based approach and re-
generative approach which regenerates sarcastic
tweets giving the sarcasm a new contextual mean-
ing. The system is online on Twitter and it ac-
tively engages into replying Tweets it has been
mentioned in.

The related work, not unlike a great many pub-
lications in the field of computational creativity,
overlooks an important aspect, which is a clear and
motivated definition for creativity. This issue has
been brought up in the past research as well (Jor-
danous, 2012), but yet a great many publications
devote little to no comment on what creativity, the
very thing that is computationally modeled, really
means in the context of a creative system. This
makes comparison to and building from previous
research a difficult task. To provide an alleviation
to this problem, we will provide a definition for
creativity based on existing literature that we will
follow in this paper.

3 Definition of Creativity

In order to say anything about the creativity of
a computational system, it is important to define

what creativity means in the context of the sys-
tem. We do this by following the SPECS (Stan-
dardized Procedure for Evaluating Creative Sys-
tems) approach (Jordanous, 2012). In short, the
approach requires us first to define what is needed
for creativity in general and then what is needed
for creativity in our case of producing cultural hu-
morous movie titles in particular.

For the general definition, instead of under-
taking defining something as abstract as creativ-
ity by ourselves, we opt for a well established
definition in the field, namely the creative tripod
(Colton, 2008). According to that definition, there
are three indispensable components to creativity:
skill, imagination and appreciation. All of them
can come from the three different parties of the
creative experience, the system, the programmer
or the perceiver of the creative artifact. However,
the system has to be perceived to exhibit all of
them on its own to be considered creative.

To put the creative tripod in the context of our
highly narrowed down task, we start by defining
skill as an ability to produce a new title out of an
existing one. To master this skill it is imperative
that the original movie title still remain recogniz-
able and that the new title deliver a humoristic joke
that satirizes Saudi Arabia.

Imaginativeness requires that our system should
at least achieve P-creativity. That is, according to
Boden (2004), coming up with a surprising and
valuable idea that is novel to the one who came up
with it, as opposed to H-creativity which is novel
in a more global context, i.e. no one else had
thought of it before. What this means is that our
system should come up with similar humorous ti-
tles as real people have in our dataset to achieve P-
creativity, and preferably come up with humoristic
titles nobody has ever tweeted about before to be
H-creative.

Lastly, we define appreciation in this context
as a computational capability of assessing various
factors that affect on the quality of the created title.
One of them is the ability of identifying puns by
recognizing sound similarities on a phonetic level
such as in Sheikhs and the City for Sex and the
City. But a far more important requirement for ap-
preciation is an automated assessment of the hu-
morousness of the output. Two key components
have been identified for humorousness in jokes:
surprise and coherence (Brownell et al., 1983).

When the brain makes sense of the stimuli it
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receives, it relies on prior experiences to predict
what it is perceiving. When these predictions turn
out to be wrong, surprise arises. This is even
more clearly crystallized in the case of movie ti-
tles. When a title everyone has heard a plethora of
times gets changed, it clearly breaks learned ex-
pectations of the brain of how the title should be,
as it is the case for example with How to Train
Your Imam from How to Train Your Dragon.

In the previous example, surprise arises from
the fact that the brain was expecting to hear
dragon, but got a wildly different word imam. This
surprise, however, does not yet lead to humor if
the surprising word is not interpreted in its con-
text. This requires coherence; the word has to
make sense in the context of the sentence, and also
in the wider context of the movie the original title
refers to. Part of the humoristic value comes from
the thought of young Hiccup undertaking an ad-
venturous task on training his imam, as he did in
the original movie to train his dragon.

In addition to the requirements identified with
the creative tripod framework, we also introduce
the requirement of creative autonomy for our sys-
tem. Creative autonomy (Jennings, 2010) requires
autonomous evaluation, autonomous change and
non-randomness. In other words, the system
should be able to evaluate its output independently
(this relates to the appreciation defined earlier)
and change its standards on its own without in-
structions on how to do so. Neither of these two
requirements can be based solely on a random
choice.

We have defined the core requirements for our
system to be considered to exhibit creative behav-
ior. These requirements will be revisited in the
Evaluation section of this paper to assess the ex-
tent to which they are met by the implementation.
This is also required by the SPECS approach we
have decided to follow in this paper.

4 Datasets

This section is devoted to the description of the
datasets we have in use for the implementation of
the system.

4.1 Movie Data

For our case, we are only interested in the popular
movies people might have heard of, as one of our
requirements is the original title to be recognizable
after it has been turned into a humoristic form. No

matter how good the satire, the joke will not land,
if the audience is unfamiliar with the original title.

To get indispensable information of the movies,
we used the data dumps provided by the IMDB2

to extract movie titles and their metadata. As the
IMDB is a bit too extensive, sporting over a 5
million movies and TV shows in its database, we
had to narrow it down to those that had got more
than 100,000 votes from the IMDB. The number
of votes does not tell anything about how well the
movie was received by the audience, but it gives
us a clue on its popularity. The more popular the
movie, the more votes it will get. In total, we had
a total of 1,661 movies.

As movies can be referred to without their
episode name, we expand the list of movies by
considering their titles without episode or sequel
name. This is performed by stripping out words
after the first dash or colon. For instance, the
movie title The Lord of the Rings: The Fellowship
of the Ring is converted into The Lord of the Rings.

4.2 Tweets

Another peculiar source of information are the
tweets with the the hashtag #SaudiMovieTitles.
We retrieved them by using the Twitter API, which
resulted in a list of 2,445 tweets. However, the
tweets are noisy because, more often than not,
they contain other unrelated content (e.g. URLs,
mentions and so on) in addition to the humoris-
tic movie title. Moreover, the titles in the tweets
might not be in the same format as the original
movie title.

In order to serve us any use, the tweets needed
to be processed so that what was left was just the
humoristic title. This is done by converting the
tweets into lowercase. Thereafter, the tokeniza-
tion is applied, and any word starting with # or
is filtered out to clean any hashtags and mentions,
respectively. Any special characters and URLs are
also deleted from the string. Finally, we remove
all instances of the token “rt” from the string as it
indicates a re-tweet.

Furthermore, we map the processed tweets to
their original movie titles. The mapping phase
is employed to backtrack any modifications per-
formed on the original title for a humoristic effect.
We achieve this by iterating over all tweets and
calculating the edit distance on character and word
level against all movie titles in the dataset. Movie

2https://datasets.imdbws.com/
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titles with the least word edit distance, followed
by character edit distance, are considered as the
original title to tweets.

To reduce noise in the data (e.g. tweeted titles
where all words have been changed), we keep the
humoristic titles with at most 3 changed words,
making still sure that not all the words have been
changed in the tweeted title. Examples of mapped
titles are The Lord of the Thowbs to The Lord of
the Rings and Gulf Fiction to Pulp Fiction.

4.3 Saudi Arabia Related Vocabulary
We extract words, along with their part-of-speech
tags that are related to Saudi Arabia from the
tweets dataset. This is accomplished by pars-
ing the tweeted titles and their mapped original
counterparts with Spacy (Honnibal and Montani,
2017), followed by an analysis of their differences.
We build the vocabulary by adding words that ex-
ist exclusively in the tweeted titles and not in the
original ones. We also save the part-of-speech tags
of the words.

Analyzing the vocabulary, it appears that all the
added words, 1053 in total, are either nouns or ad-
jectives. Examples of nouns are thawab, imam and
stone, and adjectives are saudi, shaytan and sunni.

4.4 English Vocabulary of Arabic Origin
In order to produce titles relevant to the Saudi Ara-
bian context, the system needs to have a list of En-
glish words related to the Arabian culture. The pri-
mary source of such words are the ones registered
in the Oxford English Dictionary (OED, n.d.) as
having Arabic as one of the languages in their ety-
mology (514 in words in total). We have an access
to the JSON files3 of the OED, which made this
task easier. The vocabulary also included the lexi-
cal categories of words.

5 Creating Movie Titles

In this section, we explain the method for creating
movie titles. The method is divided into two sub-
methods, (1) the master, which generates movie
titles using genetic algorithms, and (2) the appren-
tice, which learns from the master and develops its
own appreciation for generating movie titles.

5.1 The Master
The implementation of the master follows the one
presented by Alnajjar et al. (2018) for slogan gen-

3We used the JSON files updated on the 14 of February in
2018

eration. The generator is a genetic algorithm that
accepts an original movie title as an input and pro-
duces an entire population of satire movie titles
based on the input.

The master operates on a semantic space of
words related to Saudi Arabia to make the substi-
tution of content words in the input with cultural
words about Saudi Arabia possible. The seman-
tic space is a combination of the vocabularies de-
scribed in Section 4.3 and 4.4.

5.1.1 Evolutionary algorithm
Our algorithm starts by producing an initial pop-
ulation which undergoes an evolutionary process
throughout a certain number of generations. The
evolutionary algorithm in place is a standard (µ +
λ)4 which applies mutation and crossover on the
current population to generate λ number of off-
spring. Subsequently, the algorithm evaluates the
fitness of the individuals in the current population
and their offspring, and selects µ number of the
fittest individuals to survive to the next genera-
tion. Once the specified number of generations is
reached, the evolutionary process terminates and
returns the final population.

5.1.2 Initial Population
The method produces µ copies of the input movie
title. For each copy, the method substitutes a ran-
domly selected content word, i.e. not a stop word,
with a random word from the semantic space. The
substitution is done in such a fashion that the parts-
of-speech of the original word and its substitute
have to match. Furthermore, the word is inflected
if necessary. The resulting titles form the initial
population.

5.1.3 Mutation and Crossover
We define one type of mutation and crossover. The
mutation procedure follows the same substitution
approach performed during the construction of the
initial population. The crossover employed in our
function is a single-point crossover where words
before and after a randomly selected point in two
individuals are swapped.

5.1.4 Evaluation as Appreciation
The appreciation is implemented in the master
by four internal evaluation dimensions, which are
(1) prosody, (2) semantic relatedness to Saudi Ara-
bia, (3) semantic similarity, and (4) number of al-

4We use the value 100 for both µ and λ
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tered words. The first two dimensions are maxi-
mized, whereas the last two are minimized. Ad-
ditionally, a dimension can be represented by the
weighted sum of multiple sub-functions.

The prosody dimension assesses the sound sim-
ilarity of the original word and its replacement.
The dimension is composed of four prosody fea-
tures, namely consonance, assonance, rhyme and
alliteration. We utilize espeak-ng tool5 to produce
IPA transcriptions for words to better evaluate how
they sound when pronounced. The tool is capa-
ble of producing IPA even for non-English words,
such as jahannam.

To measure the semantic relatedness of words
to Saudi Arabia, we build a semantic relatedness
model following the model described in Xiao et al.
(2016). Using the model, we measure the dimen-
sion as the maximum semantic relatedness of any
content words in the generated title to the words
“Saudi” and “saudi”.

We employ a word2vec model trained on News
dataset by Google (Mikolov et al., 2013) to mea-
sure the semantic similarity between two words.
The dimension is represented as the mean of the
semantic similarity of each introduced word to its
original word. This dimension is minimized to in-
crease surprise, with the idea that a lower semantic
relatedness between the original word and its sub-
stitute would result in a bigger surprise.

The last dimension monitors the number of
words altered in the input title. Minimizing this di-
mension motivates that less substitutions are made
to the title, which makes it more recognizable.

These are the criteria based on which the fitness
of individuals is evaluated at the end of each gen-
eration to let only the best ones survive to the next
generation. Also, the master uses this exact same
functionality when it is to show appreciation to ti-
tles outside of its own creations such as those cre-
ated by the apprentice.

5.1.5 Selection and Filtering
To reduce having a dominating dimension and
motivate generating titles with diverse and bal-
anced scores on all four dimensions, we opt for a
non-dominant sorting algorithm –NSGA-II– (Deb
et al., 2002) as the selection algorithm.

During each iteration of the evolution, the cur-
rent population and its offspring go through a fil-
tering phase which filters out any duplicate titles.

5https://github.com/espeak-ng/
espeak-ng

5.2 The Apprentice

The apprentice is a sequence-to-sequence neural
network model, which will be trained by the par-
allel data of the original titles and their humoris-
tic counter-parts produced by the master. Fur-
thermore, the apprentice is trained with the par-
allel titles extracted from the tweets. We use a
general purpose NMT library called OpenNMT
(Klein et al., 2017) for this task.

Similar sequence-to-sequence based ap-
proaches have been used in the past for text
paraphrasing task (Brad and Rebedea, 2017;
Sleimi and Gardent, 2016), which shares its simi-
larities with the task we are set to solve. This gives
us a reason to believe that sequence-to-sequence
approach is a viable way of implementing the
apprentice.

The apprentice was trained for 50 epochs with
the titles the master had produced for a random set
of the most popular IMDB movie titles. This set
consisted of 6568 humoristic titles. After this, the
model was trained for 50 additional epochs with
the data from the 1,483 tweeted titles. This made
it possible for the apprentice to learn to a set of
standards for humoristic titles from its master and
adjust those standards with the peer data. In both
cases, we use a 25% of the data in validation. The
high number of epochs together with a larger vali-
dation set seemed6 to make the model learn more
given the limitation imposed by the scarce training
data.

5.3 The Symbiotic Nature

Currently, we cannot argument for the apprentice
developing appreciation that matches the require-
ments we have set for it in the definition of creativ-
ity, albeit it will learn some kind of an appreciation
because it is capable of giving a confidence score
to its creations. However, as the nature of such
appreciation is not assessed in this paper, we opt
for a symbiotic approach in the appreciation of the
full system.

The apprentice will only be allowed to learn
from its peers if the master shows high enough ap-
preciation towards the creations of its peers. Fur-
thermore, when producing its creative output, the
apprentice consults the master for its opinion on
which output should be picked and presented to

6We tried training with fewer epochs and fewer titles in
the validation, but the model failed to learn anything mean-
ingful.
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the audience.
The apprentice might be dependent on the mas-

ter in terms of appreciation, but just as much the
master is dependent on its apprentice. The master
possesses no capability of adjusting its standards,
because it exhibits no learning from others. This
is where the apprentice can learn its own standards
from its peers, and is thus the only one responsible
of the creative autonomy of the entire system.

6 Evaluation

In this part, we are presenting an evaluation of
the system from two points of view. Firstly, we
will assess critically how the definition of creativ-
ity with its requirements is met in the implementa-
tion of the system. Secondly, we validate this as-
sessment by having ordinary people evaluate the
output of the system by answering to questions on
a 5-point Likert scale. These questions are derived
from the definition of creativity in our context by
following the SPECS approach.

6.1 Evaluation of the Creative Process

The skill of converting a movie title into a humor-
ous one can be shown on the implementation level
of the master. It takes an existing title, uses it as
a skeleton and outputs a new title. The apprentice
model also clearly demonstrates this lowest level
requirement for skill. By nature, the NMT model
produces an output based on its input. However,
we can say little about the fulfillment of the fur-
ther criteria for skill just by looking at the creative
process. Recognizability of the original title, hu-
morousness and satire towards Saudi Arabia are
highly subjective notions and thus they will be as-
sessed by evaluators in the next section.

The system can be shown to achieve P-
creativity with a rather easy test by looking at the
output in relation to the data the systems were
given initially. For example the master produced
a title The Hobbit: An Unexpected Desert from
The Hobbit: An Unexpected Journey even though
the master was not given knowledge of such a
possibility for a humoristic title. The apprentice
was able to produce the title The Amazing Spider
Mosque for The Amazing Spiderman even thought
its training data did not provide it with this map-
ping.

In order to analyze the imagination any further,
we have to assess also the H-creativity of the pro-
duced titles. We could perform a Google search

with some of the generated titles and claim H-
creativity if it did not return any hits. However,
we feel that this is not quite enough as the same
kind of a joke might have come up elsewhere with
a slightly different context. This is the reason why
we have to verify the H-creativity with evaluators.

Appreciation can be more easily assessed from
the point of view of the master. The master
has been programmed to look at sound similarity
which covers the optional requirement for a pun.
Surprise is modeled in the master by it minimiz-
ing the semantic similarity of the original word
and the new replacement. If we define surprise as
a failed prediction done by the brain, we can back
the master’s way of producing it in neuroscience.
Research (Lau et al., 2008) has shown that words
the brain expects to hear in a sentence cause a
lower N400 response than unexpected words. This
is because when the brain fails at its expectations,
it has to activate the new surprising concepts to-
gether with those close to it semantically. This
might not, however, be the only explanation for
surprise nor a sufficient one. Therefore, the re-
quirement for surprise, though met, has room for
improvement.

The last requirement for appreciation was co-
herence. This has been implemented on the level
of semantic coherence to Saudi Arabia. However,
as some of the titles written by people, such as
Sheikhs and the City, show, the contextual coher-
ence is next to impossible to assess without the
wider context of the movie itself. We feel that this
kind of pragmatic coherence is such a wide task
to tackle that it is deserving of a dedicated paper
on its own right and thus is beyond the scope of
this research. However, it is an important ques-
tion for the future as it has been shown that humor
of the kind we are focusing on in this paper de-
rives its meaning greatly from its pragmatic con-
text (Hämäläinen, 2016).

The appreciation will only be discussed here
from the point of view of the master, as the de-
sign choice of the system was to give the master
the responsibility of appreciation. However, an in-
teresting question for the future is the appreciation
learned by the apprentice. Since an NMT model
can score its predictions, it has to have learned a
kind of an appreciation, but the nature of it is not
discussed here. Although this gives an interesting
direction for the future research on the topic.

We can demonstrate that the system is capable
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of achieving creative autonomy because it can ap-
preciate autonomously its own creations and those
of its peers. Furthermore, the changes it makes to
its standards are guided by observations made on
the artifacts of its peers that have received enough
appreciation from the master. Even though the
master will follow a limited way of generating hu-
morous titles, its apprentice is liberated from such
limits thanks to its neural network architecture.

6.2 Evaluation of the Output

The creative tripod, through which we have de-
fined creativity, requires there to be perceivably
skill, appreciation and imagination in the system.
The existence of these in the output of the mas-
ter and the apprentice is evaluated by formulating
questions based on the requirements we set for this
particular creative task.

6.2.1 Skill
Skill is probably the leg of the tripod that most
vocally calls for evaluation from people. In the
previous evaluation section, we could only clearly
demonstrate that the system fills the most basic re-
quirement, that is to produce a new title out of the
existing one.

The further requirements, recognizability of the
original title, whether the new title is humoristic
and whether it satirizes Saudi Arabia, are beyond
any justified assessment without resorting to peo-
ple’s opinion. Thus we need to asses them with
the following questions.

1. The title is humorous

2. The original title is recognizable

3. The humor in the title relates to Saudi Arabia

4. The title is critical towards Saudi Arabia

The first question can be asked directly, there
is no need to find a better way to ask whether the
original title is still recognizable or not. It is im-
portant to note that when we are evaluating the
skill, we only want to know whether the skill of
producing humor exists. The quality of the humor
is left for the evaluation of the appreciation.

As for the other questions we want to know
whether humor is perceived and whether a relation
to Saudi Arabia is perceived. Furthermore, we are
curious to see whether criticism is perceived. We
will not ask directly whether the title is satirical

for two reasons, firstly in order to understand any-
thing as satire, further context is needed and sec-
ondly terms such as satire, sarcasm and irony are
difficult for an ordinary person to grasp and get of-
ten mixed up with one another in people’s minds.

6.2.2 Imagination
We took Boden’s P- and H-creativity as the basis
of the imagination quality of the system. We de-
fined the system to be imaginative enough if it can
come up with something new to itself and to ex-
ceed the expectations of its imagination if it can
come up with something novel in a greater con-
text.

The previous evaluation of the creativity in the
system, we have showed that the system is capable
of P-creativity and we have shown examples of its
H-creativity. While P-creativity, as it is limited to
the system itself, has been inarguably proven, the
H-creativity calls for further validation. Therefore,
we formulate the following evaluation questions to
assess the imaginativeness of the system.

5. The joke in the title sounds familiar

6. The joke in the title is obvious

These questions get to the core of what is re-
quired from H-creativity, it has to be novel in a
global context, i.e. it cannot sound familiar to an-
other slightly different joke the evaluator might
have heard before. Also, the joke cannot be too
obvious, because if its perceived as an obvious
one, people would likely come up with it easily
and thus it can hardly be seen H-creative.

6.2.3 Appreciation
Appreciation is something we have discussed to
a great extent in the previous evaluation section.
As for appreciation, we are not interested to see
whether the system gets a high grade from the peo-
ple for each evaluation question. Instead, we are
more interested in seeing the extent to which they
are in line. Does the appreciation of the system
predict human appreciation in the same variables?

The constituents of the appreciation we identi-
fied earlier were pun detection, and humorousness.
The latter was then further divided into two appre-
ciable features: surprise and coherence. To put
these into the form of evaluation questions, we re-
sulted in the following ones.

7. The title delivers a pun
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8. The joke in the title is surprising

9. The joke of the title makes sense in the con-
text of the original movie

The three evaluation questions are meant to
evaluate the three requirements respectively. For
coherence, we are interested in how coherent the
humor is in the context of the movie. A title might
be perfectly humoristic if it was in the context of
one movie, where as it might make little to no
sense in the case of another movie.

6.2.4 Results
The master was made to produce populations7 for
the most popular movie titles. Out of these, we
picked at random 50 titles that exhibited apprecia-
tion based on the master’s own standards. Further-
more, we picked another 50 titles at random that
were produced by the apprentice and appreciated
by the master.

The questions defined earlier were presented
for each title produced by the master and the ap-
prentice to evaluators on a platform called Figure-
Eight. Due to the way the platform operates, ev-
ery title was not presented to every evaluator, but
they appeared at random in such a way that each
individual title was evaluated by 20 different eval-
uators. All in all 48 evaluators participated. As
knowledge of English is entailed by the system,
we defined a further requirement for the evalua-
tors’ language to be Arabic. This way they should
be familiar with the specialized cultural vocabu-
lary exhibited by the humoristic titles and know
enough English to understand the title.

Figure 1: Results of the evaluation for the ques-
tions for both the master and the apprentice

For each evaluated title, we calculated the av-
erage of the judgments received on each question.
Furthermore, judgments are considered agreeing if
their average evaluation score is greater than 3, i.e.

7The evaluated titles are the ones the apprentice was
trained with. See Section 5.2

above neutral. Figure 1 shows the percentage of
agreements to neutral or disagreement judgments.
Examples of the generated titles can be seen in Ta-
ble 1,

From the results, it is evident that both methods,
the master and the apprentice, were capable of pro-
ducing humorous titles. Furthermore, it appears
that the original movie titles were usually recog-
nized, with 76%, form generated titles. Neverthe-
less, a low percentage,≤ 45%, of the generated ti-
tles were perceived as related to or critical towards
Saudi Arabia. In terms of the imagination ques-
tions, Q5 and Q6, statistics illustrate that the meth-
ods generated familiar and obvious jokes, most of
the time; which suggests low H-creativity. Despite
that, the methods have received high agreement on
the appreciation questions. These results demon-
strate that both methods have produced creative al-
ternatives of original movies; however, further de-
velopment and evaluation is needed to explore the
methods and enhance their current state of creativ-
ity.

Comparing the results of the master and the ap-
prentice, we notice that generated titles by the ap-
prentice have received different judgments than
the master, on most of the questions. Such dis-
tinction shows that the apprentice has developed
its own internal appreciation. As a result, the ap-
prentice exhibits characteristics of creative auton-
omy, and, with continuous data from the master
and peers, the apprentice will adaptively adjust its
appreciation.

7 Conclusions and Final Remarks

We have presented a novel approach for generat-
ing satirical humor. Evaluating it critically against
the definition of the creativity we established, we
identified two clear shortcomings of the approach:
firstly a better definition for surprise is needed to
better model it in the future, and secondly coher-
ence calls for a better contextual model relating
the coherence in the context of the original movie
where the title has occurred. Both of these short-
comings require additional research and are wor-
thy of own publications dedicated to the topics.

Our definition of creativity that has been built
on top of existing theories gives us a good start-
ing point to conduct any future research on the
topic. Also the evaluation questions deriving from
the definition provides us with a way of comparing
the results of any future improvements to the ones
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Question High Scoring Ones Low Scoring Ones

Q1
The Lord of the Lambs: The Return of
the King
My Big Saudi Wedding

Iraqi of Arabia
Empire of the State

Q2 Muslim League
Captain Tanker

The Sunni: Part III
Iraqi-man: Houthi

Q3 My Big Saudi Wedding
The Good the Haram and the Saudi

Iraqi Buyers Club
The Wedding Attack

Q4 Serabs of Saudi York
Transformers Saudi of Extinction

La La Kill
The Wedding Attack

Q5 Night at The Arabian
My Big Saudi Wedding

La La Invasion
Attack Powers: The Oil
dependence Who Shagged Me

Q6 Night at the Arabian
The Saudi Runner

The Sunni Life of Izars
La La Invasion

Q7 Sunnah Squad
The Twilight Bomb Eclipse

Muslim Story 3
Harry Potter and
the Revenge’s Sulham

Q8 The Twilight Bomb Eclipse
The Saudi Runner

The Imam Ultimatum
Muslim Fu Panda

Q9 The Amazing Surah-man
The Sound of Jihad

The Amazing Spider Mosque
Harry Potter and
the Revenge’s Sulham

Table 1: Examples of high and low scoring titles based on the evaluators’ judgment

presented in this paper.
The master-apprentice approach makes it pos-

sible for us to study the creativity and its devel-
opment in the apprentice from a multi-agent per-
spective. This evokes interesting questions such
as: What if there were multiple master-apprentice
pairs and they would function as each other’s
peers? What if an apprentice took classes of mul-
tiple masters simultaneously? What if the masters
were experts on different fields such as humor and
poetry? Would the apprentice then learn to gener-
ate based on both fields? We are also interested in
diving into the black box of the NMT architecture
of the apprentice to see what kind of an apprecia-
tion it can develop.
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Mika Hämäläinen. 2016. Reconocimiento au-
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Abstract

Responses in task-oriented dialogue sys-
tems often realize multiple propositions
whose ultimate form depends on the use
of sentence planning and discourse struc-
turing operations. For example a rec-
ommendation may consist of an explic-
itly evaluative utterance e.g. Chanpen
Thai is the best option, along with con-
tent related by the justification discourse
relation, e.g. It has great food and ser-
vice, that combines multiple propositions
into a single phrase. While neural gen-
eration methods integrate sentence plan-
ning and surface realization in one end-
to-end learning framework, previous work
has not shown that neural generators can:
(1) perform common sentence planning
and discourse structuring operations; (2)
make decisions as to whether to realize
content in a single sentence or over mul-
tiple sentences; (3) generalize sentence
planning and discourse relation operations
beyond what was seen in training. We
systematically create large training cor-
pora that exhibit particular sentence plan-
ning operations and then test neural mod-
els to see what they learn. We compare
models without explicit latent variables for
sentence planning with ones that provide
explicit supervision during training. We
show that only the models with additional
supervision can reproduce sentence plan-
ning and discourse operations and gener-
alize to situations unseen in training.

1 Introduction

Neural natural language generation (NNLG)
promises to simplify the process of producing high

quality responses for conversational agents by re-
lying on the neural architecture to automatically
learn how to map an input meaning representation
(MR) from the dialogue manager to an output ut-
terance (Gašić et al., 2017; Sutskever et al., 2014).
For example, Table 1 shows sample training data
for an NNLG with a MR for a restaurant named
ZIZZI, along with three reference realizations, that
should allow the NNLG to learn to realize the MR
as either 1, 3, or 5 sentences.

# Type Example
PRICERANGE[MODERATE], AREA[RIVERSIDE],
NAME[ZIZZI], FOOD[ENGLISH], EATTYPE[PUB]
NEAR[AVALON], FAMILYFRIENDLY[NO]

1 1 Sent Zizzi is moderately priced in riverside, also it
isn’t family friendly, also it’s a pub, and it is
an English place near Avalon.

2 3 Sents Moderately priced Zizzi isn’t kid friendly, it’s
in riverside and it is near Avalon. It is a pub.
It is an English place.

3 5 Sents Zizzi is moderately priced near Avalon. It is a
pub. It’s in riverside. It isn’t family friendly.
It is an English place.

Table 1: Sentence Scoping: a sentence planning
operation that decides what content to place in
each sentence of an utterance.

In contrast, earlier models of statistical natu-
ral language generation (SNLG) for dialogue were
based around the NLG architecture in Figure 1
(Rambow et al., 2001; Stent, 2002; Stent and
Molina, 2009).

Figure 1: Statistical NLG Dialogue Architecture

Here the dialogue manager sends one or more
dialogue acts and their arguments to the NLG en-
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gine, which then makes decisions how to render
the utterance using separate modules for content
planning and structuring, sentence planning and
surface realization (Reiter and Dale, 2000). The
sentence planner’s job includes:

• Sentence Scoping: deciding how to allocate
the content to be expressed across different
sentences;
• Aggregation: implementing strategies for re-

moving redundancy and constructing com-
pact sentences;
• Discourse Structuring: deciding how to ex-

press discourse relations that hold between
content items, such as causality, contrast, or
justification.

Sentence scoping (Table 1) affects the complex-
ity of the sentences that compose an utterance,
allowing the NLG to produce simpler sentences
when desired that might be easier for particular
users to understand. Aggregation reduces redun-
dancy, composing multiple content items into sin-
gle sentences. Table 2 shows common aggrega-
tion operations (Cahill et al., 2001; Shaw, 1998).
Discourse structuring is often critical in persua-
sive settings (Scott and de Souza, 1990; Moore
and Paris, 1993), in order to express discourse re-
lations that hold between content items. Table 3
shows how RECOMMEND dialogue acts can be in-
cluded in the MR, and how content can be related
with JUSTIFY and CONTRAST discourse relations
(Stent et al., 2002).

Recent work in NNLG explicitly claims that
training models end-to-end allows them to do both
sentence planning and surface realization without
the need for intermediate representations (Dusek
and Jurcı́cek, 2016b; Lampouras and Vlachos,
2016; Mei et al., 2016; Wen et al., 2015; Nayak
et al., 2017). To date, however, no-one has actu-
ally shown that an NNLG can faithfully produce
outputs that exhibit the sentence planning and dis-
course operations in Tables 1, 2 and 3. Instead,
NNLG evaluations focus on measuring the seman-
tic correctness of the outputs and their fluency
(Novikova et al., 2017; Nayak et al., 2017).

Here, we systematically perform a set of con-
trolled experiments to test whether an NNLG can
learn to do sentence planning operations. Sec-
tion 2 describes our experimental setup and the
NNLG architecture that allows us, during training,
to vary the amount of supervision provided as to

# Type Example
NAME[THE MILL], EATTYPE[COFFEE SHOP],
FOOD[ITALIAN], PRICERANGE[LOW],
CUSTOMERRATING[HIGH], NEAR[THE SORRENTO]

4 With, Also The Mill is a coffee shop with a high rating
with a low cost, also The Mill is an Italian
place near The Sorrento.

5 With, And The Mill is a coffee shop with a high rating
with a high cost and it is an Italian restau-
rant near The Sorrento.

6 Distributive The Mill is a coffee shop with a high rat-
ing and cost, also it is an Italian restaurant
near The Sorrento.

Table 2: Aggregation Operation Examples

# Discourse
Rel’n

Example

NAME[BABBO], RECOMMEND[YES],
FOOD[ITALIAN], PRICE[CHEAP],
QUAL[EXCELLENT], NEAR[THE SORRENTO],
LOCATION[WEST VILLAGE], SERVICE[POOR]

7 JUSTIFY ([REC-
OMMEND]
[FOOD, PRICE,
QUAL])

I would suggest Babbo because it
serves Italian food with excellent
quality and it is inexpensive. The
service is poor and it is near the Sor-
rento in the West Village.

8 CONTRAST
[PRICE, SER-
VICE]

I would suggest Babbo because it
serves Italian food with excellent
quality and it is inexpensive. How-
ever the service is poor. It is near
the Sorrento in the West Village.

Table 3: Justify & Contrast Discourse Relations

which sentence planning operations appear in the
outputs. To ensure that the training data contains
enough examples of particular phenomena, we ex-
periment with supplementing crowdsourced data
with automatically generated stylistically-varied
data from PERSONAGE (Mairesse and Walker,
2011). To achieve sufficient control for some ex-
periments, we exclusively use Personage training
data where we can specify exactly which sentence
planning operations will be used and in what fre-
quency. It is not possible to do this with crowd-
sourced data. While our expectation was that an
NNLG can reproduce any sentence planning opera-
tion that appears frequently enough in the training
data, the results in Sections 3, 4 and 5 show that
explicit supervision improves the semantic accu-
racy of the NNLG, provides the capability to con-
trol variation in the output, and enables general-
izing to unseen value combinations.

2 Model Architecture and Experimental
Overview

Our experiments focus on sentence planning op-
erations for: (1) sentence scoping, as in Table 1,
where we experiment with controlling the number
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of sentences in the generated output; (2) distribu-
tive aggregation, as in Example 6 in Table 2, an
aggregation operation that can compactly express
a description when two attributes share the same
value; and (3) discourse contrast, as in Example 8
in Table 3.

Distributive aggregation requires learning a
proxy for the semantic property of equality along
with the standard mathematical distributive op-
eration, while discourse contrast requires learning
a proxy for semantic comparison, i.e. that some
attribute values are evaluated as positive (inexpen-
sive) while others are evaluated negatively (poor
service), and that a successful contrast can only
be produced when two attributes are on opposite
poles (in either order), as defined in Figure 2.1

DISTRIBUTIVE AGGREGATION
if ATTR1 := ADJi

and ATTR2 := ADJj

and ADJi = ADJj

then DISTRIB(ATTR1, ATTR2)

DISCOURSE CONTRAST
if EVAL(ADJi(ATTR1)) = POS

and EVAL(ADJj(ATTR2)) = NEG
then CONTRAST(ATTR1, ATTR2)

Figure 2: Semantic operations underlying dis-
tributive aggregation and contrast

Our goal is to test how well NNLG models
can produce realizations of these sentence plan-
ning operations with varying levels of supervi-
sion, while simultaneously achieving high seman-
tic fidelity. Figure 3 shows the general architec-
ture, implemented in Tensorflow, based on TGen,
an open-source sequence-to-sequence (seq2seq)
neural generation framework (Abadi and others.,
2015; Dusek and Jurcı́cek, 2016a).2 The model
uses seq2seq generation with attention (Bahdanau
et al., 2014; Sutskever et al., 2014) with a sequence
of LSTMs (Hochreiter and Schmidhuber, 1997)
for encoding and decoding, along with beam-
search and an n-best reranker.

The input to the sequence to sequence model
is a sequence of tokens xt, t ∈ {0, . . . , n} that
represent the dialogue act and associated argu-
ments. Each xi is associated with an embedding
vector wi of some fixed length. Thus for each MR,
TGen takes as input the dialogue acts represent-

1We also note that the evaluation of an attribute may come
from the attribute itself, e.g. “kid friendly”, or from its adjec-
tive, e.g. “excellent service”.

2https://github.com/UFAL-DSG/tgen

Figure 3: Neural Network Model Architecture, il-
lustrating both the NO SUPERVISION baseline and
models that add the TOKEN supervision

ing system actions (recommend and inform acts)
and the attributes and their values (for example,
an attribute might be price range, and its value
might be moderate), as shown in Table 1. The
MRs (and resultant embeddings) are sorted inter-
nally by dialogue act tag and attribute name. For
every MR in training, we have a matching refer-
ence text, which we delexicalize in pre-processing,
then re-lexicalize in the generated outputs. The en-
coder reads all the input vectors and encodes the
sequence into a vector hn. At each time step t,
it computes the hidden layer ht from the input wt

and hidden vector at the previous time step ht−1,
following:

ht = (W1.xt +W2.ht−1) + b

All experiments use a standard LSTM decoder.
We test three different dialogue act and input

vector representations, based on the level of su-
pervision, as shown by the two input vectors in
Figure 3: (1) models with no supervision, where
the input vector simply consists of a set of inform
or recommend tokens each specifying an attribute
and value pair, and (2) models with a supervision
token, where the input vector is supplemented
with a new token (either period or distribute or
contrast), to represent a latent variable to guide
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the NNLG to produce the correct type of sentence
planning operation; (3) models with semantic su-
pervision, tested only on distributive aggregation,
where the input vector is supplemented with spe-
cific instructions of which attribute value to dis-
tribute over, e.g. low, average or high, in the DIS-
TRIBUTE token. We describe the specific model
variations for each experiment below.
Data Sets. One challenge is that NNLG mod-
els are highly sensitive to the distribution of phe-
nomena in training data, and our previous work
has shown that the outputs of NNLG models ex-
hibit less stylistic variation than their training data
(Oraby et al., 2018b). Moreover, even large cor-
pora, such as the 50K E2E Generation Challenge
corpus, may not contain particular stylistic vari-
ations. For example, out of 50K crowdsourced
examples in the E2E corpus, there are 1,956 ex-
amples of contrast with the operator “but”. There
is only 1 instance of distributive aggregation be-
cause attribute values are rarely lexicalized identi-
cally in E2E. To ensure that the training data con-
tains enough examples of particular phenomena,
our experiments combine crowdsourced E2E data3

with automatically generated data from PERSON-
AGE (Mairesse and Walker, 2011).4 This allows
us to systematically create training data that ex-
hibits particular sentence planning operations, or
combinations of them. The E2E dataset consists
of pairs of reference utterances and their mean-
ing representations (MRs), where each utterance
contains up to 8 unique attributes, and each MR
has multiple references. We populate PERSONAGE

with the syntax/meaning mappings that it needs to
produce output for the E2E meaning representa-
tions, and then automatically produce a very large
(204,955 utterance/MR pairs) systematically var-
ied sentence planning corpus.5

Evaluation metrics. It is well known that eval-
uation metrics used for translation such as BLEU
are not well suited to evaluating generation out-
puts (Belz and Reiter, 2006; Liu et al., 2016;
Novikova et al., 2017): they penalize stylistic vari-
ation, and don’t account for the fact that differ-
ent dialogue responses can be equally good, and
can vary due to contextual factors (Jordan, 2000;

3http://www.macs.hw.ac.uk/
InteractionLab/E2E/

4Source code for PERSONAGE was provided by François
Mairesse.

5We make available the sentence planning for NLG cor-
pus at: nlds.soe.ucsc.edu/sentence-planning-NLG.

Krahmer et al., 2002). We also note that pre-
vious work on sentence planning has always as-
sumed that sentence planning operations improve
the quality of the output (Barzilay and Lapata,
2006; Shaw, 1998), while our primary focus here
is to determine whether an NNLG can be trained
to perform such operations while maintaining se-
mantic fidelity. Moreover, due to the large size of
our controlled training sets, we observe few prob-
lems with output quality and fluency.

Thus we leave an evaluation of fluency and nat-
uralness to future work, and focus here on evaluat-
ing the multiple targets of semantic accuracy and
sentence planning accuracy. Because the MR is
clearly defined, we define scripts (information ex-
traction patterns) to measure the occurrence of the
MR attributes and their values in the outputs. We
then compute Slot Error Rate (SER) using a vari-
ant of word error rate:

SER =
S +D + I +H

N
where S is the number of substitutions, D is the
number of deletions, I is the number of insertions,
H is the number of hallucinations and N is the
number of slots in the input MR.

We also define scripts for evaluating the ac-
curacy of the sentence planner’s operations. We
check whether: (1) the output has the right num-
ber of sentences; (2) attributes with equal values
are realized using distributive aggregation, and (3)
discourse contrast is used when semantically ap-
propriate. Descriptions of each experiment and the
results are in Section 3, Section 4, and Section 5.

3 Sentence Scoping Experiment

To test whether it is possible to control basic sen-
tence scoping with an NNLG, we experiment first
with controlling the number of sentences in the
generated output, as measured using the period op-
erator. See Table 1. We experiment with two dif-
ferent models:

• No Supervision: no additional information
in the MR (only attributes and their values)
• Period Count Supervision: has an addi-

tional supervision token, PERIOD, specifying
the number of periods (i.e. the number of sen-
tences) to be used in the output realization.

For sentence scoping, we construct a training
set of 64,442 output/MR pairs and a test set of 398
output/MR pairs where the reference utterances
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for the outputs are generated from PERSONAGE.
Table 4 shows the number of training instances for
each MR size for each period count. The right
frontier of the table shows that there are low fre-
quencies of training instances where each propo-
sition in the MR is realized in its own sentence
(Period = Number of MR attrs -1). The lower left
hand side of the table shows that as the MRs get
longer, there are lower frequencies of utterances
with Period=1.

Number of Periods
1 2 3 4 5 6 7

A
tt

ri
bu

te
s

3 3745 167 0 0 0 0 0
4 5231 8355 333 0 0 0 0
5 2948 9510 7367 225 0 0 0
6 821 5002 7591 3448 102 0 0
7 150 1207 2983 2764 910 15 0
8 11 115 396 575 388 82 1

Table 4: Distribution of Training Data

We start with the default TGen parameters and
monitor the losses on Tensorboard on a subset of
3,000 validation instances from the 64,000 train-
ing set. The best settings use a batch size of 20,
with a minimum of 5 epochs and a maximum of
20 (with early-stopping based on validation loss).
We generate outputs on the test set of 398 MRs.
Sentence Scoping Results. Table 5 shows the ac-
curacy of both models in terms of the counts of the
output utterances that realize the MR attributes in
the specified number of sentences. In the case of
NOSUP, we compare the number of sentences in
the generated output to those in the corresponding
test reference, and for PERIODCOUNT, we com-
pare the number of sentences in the generated out-
put to the number of sentences we explicitly en-
code in the MR. The table shows that the NO-
SUP setting fails to output the correct number of
sentences in most cases (only a 22% accuracy),
but the PERIODCOUNT setting makes only 2 mis-
takes (almost perfect accuracy), demonstrating al-
most perfect control of the number of output sen-
tences with the single-token supervision. We also
show correlation levels with the gold-standard ref-
erences (all correlations significant at p ≤ 0.01).

Model Slot Period Period
Error Accuracy Correlation

NOSUP .06 0.216 0.455
PERIOD COUNT .03 0.995 0.998

Table 5: Sentence Scoping Results

Generalization Test. We carry out an additional
experiment to test generalization of the PERIOD-
COUNT model, where we randomly select a set
of 31 MRs from the test set, then create a set in-
stance for each possible PERIOD count value, from
1 to the N-1, where N is the number of attributes
in that MR (i.e. PERIOD=1 means all attributes
are realized in the same sentence, and PERIOD=N-
1 means that each attribute is realized in its own
sentence, except for the restaurant name which is
never realized in its own sentence). This yields
196 MR and reference pairs.

This experiment results in an 84% accuracy
(with correlation of 0.802 with the test refs, p ≤
0.01). When analyzing the mistakes, we observe
that all of the scoping mistakes the model makes
(31 in total) are the case of PERIOD=N-1. These
cases correspond to the right frontier of Table 4
where there were fewer training instances. Thus
while the period supervision improves the model,
it still fails on cases where there were few in-
stances in training.
Complexity Experiment. We performed an ad-
ditional sentence scoping experiment where we
specified a target sentence complexity instead of
a target number of sentences, since this may more
intuitively correspond to a notion of reading level
or sentence complexity, where the assumption is
that longer sentences are more complex (Howcroft
et al., 2017; Siddharthan et al., 2004). We used
the same training and test data, but labeled each
reference as either high, medium or low complex-
ity. The number of attributes in the MR does
not include the name attribute, since that is the
subject of the review. A reference was labeled
high when there are > 2 attributes per sentence,
medium when the number of attributes per sen-
tence is > 1.5 and ≤ 2 and low when there are
≤ 1.5 attributes per sentence.

This experiment results in 89% accuracy. Most
of the errors occur when the labeled complexity
was medium. This is most likely because there
is often only one sentence difference between the
two complexity labels. This indicates that sen-
tence scoping can be used to create references with
either exactly the number of sentences requested
or categories of sentence complexity.

4 Distributive Aggregation Experiment

Aggregation describes a set of sentence planning
operations that combine multiple attributes into
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Operation Example
PERIOD X serves Y. It is in Z.
“WITH” CUE X is in Y, with Z.
CONJUNCTION X is Y and it is Z. & X is Y, it is Z.
ALL MERGE X is Y, W and Z & X is Y in Z
“ALSO” CUE X has Y, also it has Z.
DISTRIB X has Y and Z.

Table 6: Scoping and Aggregation Operations in
PERSONAGE

single sentences or phrases. We focus here on dis-
tributive aggregation as defined in Figure 2 and il-
lustrated in Row 6 of Table 2. In an SNLG setting,
the generator achieves this type of aggregation by
operating on syntactic trees (Shaw, 1998; Scott
and de Souza, 1990; Stent et al., 2004; Walker
et al., 2002b). In an NNLG setting, we hope the
model will induce the syntactic structure and the
mathematical operation underlying it, automati-
cally, without explicit training supervision.

To prepare the training data, we limit the val-
ues for PRICE and RATING attributes to LOW,
AVERAGE, and HIGH. We reserve the combina-
tion {PRICE=HIGH, RATING=HIGH} for test, leav-
ing two combinations of values where distribution
is possible ({PRICE=LOW, RATING=LOW} and
{PRICE=AVERAGE, RATING=AVERAGE}). We
then use all three values in MRs where the price
and rating are not the same {PRICE=LOW, RAT-
ING=HIGH}. This ensures that the model does
see the value HIGH in training, but never in a set-
ting where distribution is possible. We always dis-
tribute when possible, so every MR where the val-
ues are the same uses distribution. All other oppor-
tunities for aggregation, in the same sentence or in
other training sentences, use the other aggregation
operations defined in PERSONAGE as specified in
Table 6, with equal probability.

Model Slot
Error

Distrib
Accu-
racy

Distrib
Accuracy
(on HIGH)

NOSUP .12 0.29 0.00
BINARY .07 0.99 0.98
SEMANTIC .25 0.36 0.09

Table 7: Distributive Aggregation Results

The aggregation training set contains 63,690 to-
tal instances, with 19,107 instances for each of the
two combinations that can distribute, and 4,246 in-
stances for each of the six combinations that can’t
distribute. The test set contains 408 MRs, 288
specify distribution over HIGH (which we note is
not a setting seen in train, and explicitly tests the

models’ ability to generalize), 30 specify distri-
bution over AVERAGE, 30 over LOW, and 60 are
examples that do not require distribution (NONE).
We test whether the model will learn the equal-
ity relation independent of the value (HIGH vs.
LOW), and thus realize the aggregation with HIGH.
The distributive aggregation experiment is based
on three different models:

• No Supervision: no additional information
in the MR (only attributes and their values)
• Binary Supervision: we add a supervision

token, DISTRIBUTE, containing a binary 0 or
1 indicating whether or not the corresponding
reference text contains an aggregation opera-
tion over attributes price range and rating.
• Semantic Supervision: we add a supervi-

sion token, DISTRIBUTE, containing a string
that is either none if there is no aggrega-
tion over price range and rating in the cor-
responding reference text, or a value of LOW,
AVERAGE, or HIGH for aggregation.

As above, we start with the default TGen pa-
rameters and monitor the losses on Tensorboard
on subset of 3,000 validation instances from the
63,000 training set. The best settings use a batch
size of 20, with a minimum of 5 epochs and a max-
imum of 20 epochs with early-stopping.
Distributive Aggregation Results. Table 7 shows
the accuracy of each model overall on all 4 values,
as well as the accuracy specifically on HIGH, the
only distribution value unseen in train. Model NO-
SUP has a low overall accuracy, and is completely
unable to generalize to HIGH, which is unseen in
training. It is frequently able to use the HIGH

value, but is not able to distribute (generating out-
put like high cost and cost). Model BINARY is
by far the best performing model, with an almost
perfect accuracy (it is able to distribute over LOW

and AVERAGE perfectly), but makes some mis-
takes when trying to distribute over HIGH; specif-
ically, while it is always able to distribute, it may
use an incorrect value (LOW or AVERAGE). When-
ever BINARY correctly distributes over HIGH, it
interestingly always selects attribute RATING be-
fore COST, realizing the output as high rating and
price. Also, BINARY is consistent even when it
incorrectly uses the value LOW instead of HIGH:
it always selects the attribute price before rating.
To our surprise, Model SEMANTIC does poorly,
with 36% overall accuracy, and only 9% accuracy
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Source MR Realization

NYC name[xname], recommend[no], cuisine[xcuisine],
decor[bad], qual[acceptable], location[xlocation],
price[affordable], service[bad]

I imagine xname isn’t great because xname is affordable,
but it provides bad ambiance and rude service. It is in xlo-
cation. It’s a xcuisine restaurant with acceptable food.

E2E name[xname], cuisine[xcuisine], loca-
tion[xlocation], familyFriendly[no]

It might be okay for lunch, but it’s not a place for a family
outing.

E2E name[xname], eatType[coffee shop], cui-
sine[xcuisine], price[more than $30], customerRat-
ing[low], location[xlocation], familyFriendly[yes]

Xname is a low customer rated coffee shop offering xcui-
sine food in the xlocation. Yes, it is child friendly, but the
price range is more than $30.

Table 8: Training examples of E2E and NYC Contrast sentences

Training Sets NYC #N E2E #N

3K N/A 3,540 contrast
7K 3,500 contrast 3,540 contrast
11K 3,500 contrast 3,540 contrast + 4K random
21K 3,500 contrast 3,540 contrast + 14K random
21K CONTRAST 3,500 contrast 3,540 contrast + 14K random

Table 9: Overview of the training sets for contrast
experiments

on HIGH, where most of the mistakes on HIGH in-
clude repeating the attribute high rating and rat-
ing, including examples where it does not dis-
tribute at all, e.g. high rating and high rating. We
plan to explore alternative semantic encodings in
future work.

5 Discourse Contrast Experiment

Persuasive settings such as recommending restau-
rants, hotels or travel options often have a criti-
cal discourse structure (Scott and de Souza, 1990;
Moore and Paris, 1993; Nakatsu, 2008). For ex-
ample a recommendation may consist of an explic-
itly evaluative utterance e.g. Chanpen Thai is the
best option, along with content related by the jus-
tify discourse relation, e.g. It has great food and
service, as in Table 3.

Our experiments focus on DISCOURSE-
CONTRAST. We developed a script to find
contrastive sentences in the 40K E2E training
set by searching for any instance of a contrast
cue word, such as but, although, and even if.
This identified 3,540 instances. While this data
size is comparable to the 3-4K instances used
in prior work (Wen et al., 2015; Nayak et al.,
2017), we anticipated that it might not be enough
data to properly test whether an NNLG can learn
to produce discourse contrast. We were also
interested in testing whether synthetic data would
improve the ability of the NNLG to produce
contrastive utterances while maintaining semantic
fidelity. Thus we used PERSONAGE with its native
database of New York City restaurants (NYC) to
generate an additional 3,500 examples of one form

of contrast using only the discourse marker but,
which are most similar to the examples in the E2E
data. Table 8 illustrates both PERSONAGE and
E2E contrast examples. While PERSONAGE also
contains JUSTIFICATIONS, which could possibly
confuse the NNLG, it offers many more attributes
that can be contrasted and thus more unique
instances of contrast. We create 4 training datasets
with contrast data in order to systematically test
the effect of the combined training set. Table 9
provides an overview of the training sets, with
their rationales below.
3K Training Set. This dataset consists of all in-
stances of contrast in the E2E training data, i.e.
3,540 E2E references.
7K Training Set. We created a training set of 7k
references by supplementing the E2E contrastive
references with an equal number of PERSONAGE

references.
11K Training Set. Since 7K is smaller than de-
sirable for training an NNLG, we created several
additional training sets with the aim of helping the
model learn to correctly realize domain semantics
while still being able to produce contrastive utter-
ances. We thus added an additional 4K crowd-
sourced E2E data that was not contrastive to our
training data, for a total of 11,065. See Table 9.
21K Training Set. We created an additional larger
training set by adding more E2E data, again to
test the effect of increasing the size of the training
set on realization of domain semantics, without a
significant decrease in our ability to produce con-
trastive utterances. We added an additional 14K
E2E references, for a total of 21,065. See Table 9.

We perform two experiments with the 21K
training set. First we trained on the MR and refer-
ence exactly as we had done for the 7K and 11K
training sets. The second experiment added a con-
trast token during training time with values of ei-
ther 1 (contrast) or 0 (no contrast) to test if that
would achieve better control of contrast.
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Contrast Test Sets. To have a potential for con-
trast there must be an attribute with a positive
value and another attribute with a negative value
in the same MR. We constructed 3 different test
sets, two for E2E and one for NYC. We created
a delexicalized version of the test set used in the
E2E generation challenge. This resulted in a test
of 82 MRs of which only 25 could support con-
trast (E2E TEST). In order to allow for a better
test of contrast, we constructed an additional test
set of 500 E2E MRs all of which could support
contrast (E2E CONTRAST TEST). For the NYC
test, which provides many opportunities for con-
trast, we created a dataset of 785 MRs that were
different than those seen in training (NYC TEST).
At test time, in the 21K contrast token experiment,
we utilize the contrast token as we did in training.

Train E2E Test (N = 82)
SLOT
ERRORS

CONTRAST
ATTEMPTS

CONTRAST
CORRECT

3K .38 13 .15
7K .56 61 .41
11K .31 24 .33
21K .28 2 .50
21K
CONTRAST .24 25 .84

Table 10: Slot Error Rates and Contrast for E2E

Train E2E Contrast Test (N=500)
SLOT
ERRORS

CONTRAST
ATTEMPTS

CONTRAST
CORRECT

3K .70 213 .19
7K .45 325 .22
11K .23 227 .70
21K .17 13 .62
21K
CONTRAST .16 422 .75

Table 11: Slot Error Rates and Contrast for E2E,
Contrast Only

Train NYC Test (N = 785)
SLOT
ERRORS

CONTRAST
ATTEMPTS

CONTRAST
CORRECT

3K N/A N/A N/A
7K .29 784 .65
11K .26 696 .71
21K .25 659 .82
21K
CONTRAST .24 566 .85

Table 12: Slot Error Rates and Contrast for NYC

Contrast Results. We present the results for both
slot error rates and contrast for the E2E test set in
Table 10, E2E Contrast in Table 11, and NYC test
set in Table 12.

Table 10 shows the results for testing on the
original E2E test set, where we only have 25 in-
stances with the possibility for contrast. Overall,
the table shows large performance improvements
with the CONTRAST token supervision for 21K for
both slot errors and correct contrast. On the E2E
test set, the the 3K E2E training set gives a slot er-
ror rate of .38 and only 15% correct contrast. The
7K training set, supplemented with additional gen-
erated contrast examples gets a correct contrast of
.41 but a much higher slot error rate. Interesting-
lyx, the 11K dataset is much better than the 3K
for contrast correct, suggesting a positive effect
for the automatically generated contrast examples
along with more E2E training data. The 21K set
without the contrast token does not attempt con-
trast since the frequency of contrast data is low,
but with the CONTRAST token, it attempts contrast
every time it is possible (25/25 instances).

In Table 11 with only contrast data, we see sim-
ilar trends, with the lowest slot error rate (.16)
and highest correct contrast (.75) ratios for the ex-
periment with token supervision on 21K. Again,
we see much better performance from the 11K
set than the 3K and 7K in terms of slot error and
correct contrast, indicating that more training data
(even if that data does not contain contrast) helps
the model. As before, we see very low contrast at-
tempts with 21K without supervision, with a huge
increase in the number of contrast attempts when
using token supervision (422/500).

Table 12 also shows large performance im-
provements from the use of the CONTRAST token
supervision for the NYC test set, again with im-
provements for the 21K CONTRAST in both slot
error rate and in correct contrast. Interestingly,
while we get the highest correct contrast ratio of
.85 with 21K CONTRAST, we actually see fewer
contrast attempts, showing that the most explic-
itly supervised model is becoming more selective
when deciding when to do contrast. When training
on the 7K dataset, the neural model always pro-
duces a contrastive utterance for the NYC MRs
(all the NYC data is contrastive). Although it
never sees any NYC non-contrastive MRs, the ad-
ditional E2E training data allows it to improve its
ability to decide when to contrast (Row 21K CON-
TRAST) as well as improving the slot error rate in
the final experiment.
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6 Related Work

Much of the previous work focused on sentence
planning was done in the framework of statistical
NLG, where each module was assumed to require
training data that matched its representational re-
quirements. Methods focused on training individ-
ual modules for content selection and linearization
(Marcu, 1997; Lapata, 2003; Barzilay and Lap-
ata, 2005), and trainable sentence planning for dis-
course structure and aggregation operations (Stent
and Molina, 2009; Walker et al., 2007; Paiva and
Evans, 2004; Sauper and Barzilay, 2009; H. Cheng
and Mellish, 2001). Previous work also explored
statistical and hybrid methods for surface realiza-
tion (Langkilde and Knight, 1998; Bangalore and
Rambow, 2000; Oh and Rudnicky, 2002). and
text-to-speech realizations (Hitzeman et al., 1998;
Bulyko and Ostendorf, 2001; Hirschberg, 1993).

Other work on NNLG also uses token supervi-
sion and modifications of the architecture in or-
der to control stylistic aspects of the output in
the context of text-to-text or paraphrase genera-
tion. Some types of stylistic variation correspond
to sentence planning operations, e.g. to express
a particular personality type (Oraby et al., 2018b;
Mairesse and Walker, 2011; Oraby et al., 2018a),
or to control sentiment and sentence theme (Ficler
and Goldberg, 2017). Herzig et al. (2017) auto-
matically label the personality of customer care
agents and then control the personality during gen-
eration. Rao and Tetreault (2018) train a model to
paraphrase from formal to informal style and Niu
and Bansal (2018) use a high precision classifier
and a blended language model to control utterance
politness.

Previous work on contrast has explored how
the user model determines which values should be
contrasted, since people may have differing opin-
ions about whether an attribute value is positive
or negative (e.g. family friendly) (Carenini and
Moore, 1993; Walker et al., 2002a; White et al.,
2010). To our knowledge, no-one has yet trained
an NNLG to use a model of user preferences for
content selection. Here, values are treated as in-
herently good or bad, e.g. service is ranked from
great to terrible.

7 Discussion and Conclusion

This paper presents detailed, systematic experi-
ments to test the ability of NNLG models to pro-
duce complex sentence planning operations for re-

sponse generation. We create new training and
test sets designed specifically for testing sentence
planning operations for sentence scoping, aggre-
gation and discourse contrast, and train novel
models with increasing levels of supervision to ex-
amine how much information is required to con-
trol neural sentence planning. The results show
that the models benefit from extra latent variable
supervision, which improves the semantic accu-
racy of the NNLG, provides the capability to con-
trol variation in the output, and enables general-
izing to unseen value combinations.

In future work we plan to test these methods
in different domains, e.g. the WebNLG challenge
or WikiBio dataset (Wiseman et al., 2018; Colin
et al., 2016). We also plan to experiment with
more complex sentence planning operations and
test whether an NNLG system can be endowed with
fine-tuned control, e.g. controlling multiple ag-
gregation operations. Another possibility is that
hierarchical input representations representing the
sentence plan might improve performance or al-
low finer-grained control (Moore et al., 2004; Su
and Chen, 2018; Bangalore and Rambow, 2000).
It may be desirable to control which attributes are
aggregated together, distributed or contrasted, and
to allow more than two values to be contrasted.

Here, our main goal was to test the ability of dif-
ferent neural architectures to learn particular sen-
tence planning operations that have been used in
previous work in SNLG. Because we don’t make
claims about fluency or naturalness, we did not
evaluate these with human judgements. Instead,
we focused our evaluation on automatic assess-
ment of semantic fidelity, and the extent to which
the neural architecture could reproduce the desired
sentence planning operations. In future work, we
hope to quantify the extent to which human sub-
jects prefer the outputs where the sentence plan-
ning operations have been applied.
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Abstract

Question Generation is the task of au-
tomatically creating questions from tex-
tual input. In this work we present a
new Attentional Encoder–Decoder Recur-
rent Neural Network model for automatic
question generation. Our model incorpo-
rates linguistic features and an additional
sentence embedding to capture meaning at
both sentence and word levels. The lin-
guistic features are designed to capture in-
formation related to named entity recog-
nition, word case, and entity coreference
resolution. In addition our model uses a
copying mechanism and a special answer
signal that enables generation of numer-
ous diverse questions on a given sentence.
Our model achieves state of the art results
of 19.98 Bleu 4 on a benchmark Question
Generation dataset, outperforming all pre-
viously published results by a significant
margin. A human evaluation also shows
that the added features improve the qual-
ity of the generated questions.

1 Introduction

Question Generation (QG) is the task of automati-
cally generating questions from textual input (Rus
et al., 2010). There are a wide variety of question
types and forms, e.g., short answer, open ended,
multiple choice, and gap questions, each require a
different approach to generate. One distinguishing
aspect of a QG system is the type of questions that
it produces. This paper focuses on the generation
of factoid short answer questions, i.e., questions
that can be answered by a single short phrase, usu-
ally appearing directly in the input text.

The work of a QG system typically consists of
three conceptual subtasks: Target Selection, Ques-

tion Representation Construction, and Question
Realization. In Target Selection, important sen-
tences and words within those sentences are iden-
tified. During Question Representation Construc-
tion, suitable question–type and syntactic form are
determined based on the characteristics of the sen-
tence at hand and the words it contains. An exam-
ple of this can be seen in Agarwal et al. (2011) who
define rules based on the discourse connectives in
a sentence to decide which question–type is most
appropriate. In the Question Realization step, the
final surface form of the question is created.

It is common for QG systems to use a combina-
tion of semantic pattern matching, syntactic fea-
tures, and template methods to create questions.
Typically these systems look for patterns of syn-
tax, keywords, or semantic roles that appear in
the input sentence. Then they use these patterns
to choose an appropriate question template, or use
syntactic features to perform manipulations on the
sentence to produce a question.

These rule-based systems have some strengths
over Neural Network models: they are easier to
interpret and allow developers greater control over
model behavior. Furthermore, they typically re-
quire less data to develop than a complex Neural
Network might need to achieve a similar level of
performance. However, rule-based systems have
some weaknesses as well. They tend to be labo-
rious to develop, or domain specific. For exam-
ple the system developed by Mostow and Chen
(2009) relies on the presence of one of a set of
239 modal verbs in a sentence, and Olney et al.
(2012) use 3000 keywords provided by the glos-
sary of a Biology text book and a test-prep study
guide. The system described in Chali and Hasan
(2015) uses roughly 350 hand-crafted rules. Fur-
thermore, these systems rely heavily on syntactic
parsers, and may struggle to recover from parser
inaccuracies.
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# Sentence
S1 The character of midna has the most voice acting – her

on-screen dialog is often accompanied by a babble of
pseudo-speech , which was produced by scrambling the
phonemes of english phrases [ better source needed ]
sampled by japanese voice actress akiko komoto.

Gold Standard
Q1 which person has the most spoken dialogue in the game?
Q2 who provided the basis for midna’s voice?
Q3 what country does akiko komoto come from?

Baseline
Q4 what is her ?

Our Model: FocusCR
Q5 what character has the most voice acting in english?
Q6 what is the name of the japanese voice actress?
Q7 what is the nationality of akiko komoto?

Table 1: Sentence and associated questions gener-
ated from the baseline and our best model.

Among many different approaches to question
generation, our work is most similar to recent
work applying neural network models to the task
of generating short answer factoid questions for
SQUAD (Du et al., 2017; Yuan et al., 2017;
Sachan and Xing, 2018). However these previ-
ous models have several limitations. As illustrated
in Table 1, the SQUAD corpus (Rajpurkar et al.,
2016) provides multiple gold standard references
for each sentence (Q1, Q2, and Q3), but previ-
ous work to date can only generate one question
for each sentence as represented by the baseline
model (Q4), whereas our model can generate mul-
tiple questions as shown in Table 1.

In Section 2, we present our novel model that
introduces additional token supervision represent-
ing features of the text as well as an additional
lower dimensional word embedding. The features
include a Named Entity Recognition (NER) fea-
ture, a word case feature, and a special answer
signaling feature. The answer signaling feature
allows our model to generate multiple questions
for each sentence, illustrated with Q5, Q6 and Q7
in Table 1. We also introduce a coreference res-
olution model and supplement the sentence input
representation with resolved coreferences, as well
as a copying mechanism. Section 3 presents an
evaluation of the final model on the benchmark
SQuAD testset using automatic evaluation met-
rics and shows that it achieves state of the art
results of 19.98 BLEU 4, 22.26 METEOR, and
48.23 ROUGE (Papineni et al., 2002; Banerjee
and Lavie, 2005; Lin, 2004). To our knowledge
this model outperforms all previously published
results by a significant margin. A human evalu-

ation also shows that the introduced features and
answer-specific sentence embedding improve the
quality of the generated questions. We delay a
more detailed review of previous work to Section 4
and conclude in Section 5.

2 Model

Our QG model follows a standard RNN Encoder–
Decoder model (Sutskever et al., 2014) that maps
a source sequence (declarative sentence) to a tar-
get sequence (question). The architecture of the
baseline model is as follows: the encoder is a
multi-layer bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) and the decoder is a uni-
directional LSTM that uses global attention with
input-feeding (Luong et al., 2015). This baseline
model yields one question per sentence (Q4 in Ta-
ble 1).

Figure 1: Diagram of our answer focus model.

We create our model by enhancing the baseline
model in the following three ways:

• We add 4 different token level supervision
features to the input. See Section 2.1.

• We add a sentence encoder that creates a
question specific sentence embedding.

• We use a copy mechanism (See et al., 2017)
to copy words from the sentence directly into
the question.

2.1 Feature Supervision
A feature-rich encoding is constructed by concate-
nating several token level features onto the token’s
word-based embedding using a method similar to
that described by Nallapati et al. (2016) for ab-
stractive text summarization.
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# Sentence w/ Feature Additions
S1 the character of midnaa1(NE = LOCATION) has the

most voice acting – her (COREF = THE CHARACTER
OF MIDNA(NE = LOCATION)) on-screen dialog is often
accompanied by a babble of pseudo-speech, which was
produced by scrambling the phonemes of english(NE =
NATIONALITY) phrases [better source needed] sampled
by japanesea3(NE = NATIONALITY) voice actressa2(NE
=TITLE) akikoa2(NE = PERSON) komotoa2(NE = PER-
SON) .

Table 2: Feature Markup on S1

Answer Signal Feature. It is usually the case that
multiple questions can be asked about information
contained within a single sentence. Therefore, a
model that is capable of generating multiple ques-
tions for a single sentence has greater utility than
a model such as the one described by Du et al.
(2017) which is capable of generating only a sin-
gle question per unique input sentence. This need
to generate multiple questions for a sentence mo-
tivates our use of an answer signal. The model de-
scribed by Yuan et al. (2017) also uses an answer
signal feature. However, by combining it with ad-
ditional features and the question specific sentence
encoder our model achieves better results, as we
show in Section 3.

The answer signal is equivalent to the output
of the target selection module in a standard QG
pipeline; this is provided as part of the SQUAD
corpus, but is straightforward to calculate auto-
matically.

The Answer Signal feature guides the model
in deciding which information to focus on when
reading the sentence. The signal being active in
some location of the sentence indicates the answer
to the question being generated. Then, modify-
ing the location of the answer signal and keeping
the rest of the sentence fixed enables the model to
generate multiple answer specific questions per a
given sentence.

The Answer Signal feature is implemented as
a binary feature indicating whether or not a given
token is part of the answer span. Table 2 illus-
trates the results of the answer signal feature on
S1 from Table 1. The answer signals are shown
in bold and annotated with an index. The indices
a1, a2 and a3 correspond to Q5, Q6 and Q7, re-
spectfully, from Table 1 (as generated by our best
model). For the sake of brevity we have simulta-
neously accentuated three separate answer signals
in Table 2. In actuality, the model sees only one
answer signal series per sentence input. To gener-

ate questions Q5, Q6, and Q7 the model was fed
the same sentence three separate times, each time
with only one of a1, a2 or a3 activated.
Case Feature. The case feature is a simple binary
feature that represents whether or not the input to-
ken contains an upper case letter.
NER Feature. We use an NER feature that is
designed in the same fashion as Nallapati et al.
(2016), who have previously used an NER based
feature embedding to improve performance of
their sequence-to-sequence model used for Ab-
stractive Text Summarization. Just as in Abstrac-
tive Text Summarization, identifying important
entities that are central to the meaning of a sen-
tence is an imperative component of the QG task.

The NER labels are computed in a pre-
processing step. The result of NER labeling per-
formed on a sentence is shown in Table 2. Similar
to traditional word embeddings, we build a look-
up based embedding for each NER label. During
execution, the embedding associated with each to-
ken’s NER label is retrieved using a table look-up
and then concatenated onto the word embedding.
The NER embeddings are a trainable parameter
which get updated during the model’s training pro-
cess. Figure 1 shows a diagram depicting how the
NER feature is incorporated into each token’s fea-
ture rich encoding via concatenation.
Coreference Feature. Coreference labels are
computed automatically in a pre-processing step.
The coreference labels are calculated using all of
the prior context for the input sentence text, but the
input to the model is just the sentence augmented
with the additional feature input. Table 2 shows
how the NER and coreference features are expect-
edly noisy. Nevertheless, they improve the model
as we show below.

Table 3 provides a detailed example for corefer-
ence showing context and the input sentence rep-
resentation with and without the coreference fea-
ture, as well as the effect on the questions gener-
ated by the model. It is easy to see the benefits of
the coreference representation qualititively on in-
dividual examples. For example, without corefer-
ence the model finds an entity elizabeth who is as-
sociated with net worth in the language model and
uses that entity to generate the question rather than
using beyoncé, the entity in context. In Section 3
we show that this qualitative difference affects the
quantitative performance measures.

Coreference information is incorporated into
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# Partial Context
C1-33 In June 2014, Beyoncé ranked at #1 on the

Forbes Celebrity 100 list, earning an esti-
mated $115 million throughout June 2013
June 2014. This in turn was the first time
she had topped the Celebrity 100 list as well
as being her highest yearly earnings to date.

Sentence
S2 As of May 2015, her net worth is estimated

to be $250 million.
Model Input with Coreference

S2 w/ coref As of may(NE = DATE) 2015(NE = DATE),
her (COREF = BEYONCÉ (NE = PERSON)’S)
net worth is estimated to be $(NE = MONEY)
250(NE = MONEY) million(NE = MONEY).

Q8 what is beyoncé’s net worth in 2015?
Model Input w/out Coreference

S2 no coref As of may(NE = DATE) 2015(NE = DATE),
her net worth is estimated to be $(NE =
MONEY) 250(NE = MONEY) million(NE =
MONEY).

Q9 what is elizabeth’s net worth in may 2015 ?

Table 3: Context, Sentence and Questions gener-
ated with and without coreference.

the model by augmenting the input text as shown
in Table 3. The representative mention of each
entity gets inserted into the sentence following its
coreferent. This results in two phrases referencing
the same entity appearing in the text one imme-
diately following the other, the first being the one
that appeared in the original text and the second
being the entity’s representative mention. Each to-
ken is assigned a binary feature indicating whether
the token was in the original text or if it has been
thus inserted. This way the model can learn to in-
clude or ignore the augmenting text as it deems
necessary.

2.2 Answer Focused Sentence Embedding

The input sentence is encoded using a multi-layer
bidirectional LSTM distinct from the token level
encoder as illustrated in Figure 1. After complet-
ing the calculations of the last time step, the fi-
nal state of the LSTM is taken as a sentence em-
bedding. Then, this sentence embedding is con-
catenated on to the token level encoding for each
time step. This allows the answer-specific sen-
tence embedding to influence decoding decisions
during each time step of the decoding process.

We experiment with pre-training the sentence
encoder. The pre-training process is carried out
in two steps. First, to facilitate training of the
sentence encoder by itself, we need some ground
truth sentence representation from which to mea-
sure similarity. Since this sentence encoder is used

in question generation, it would be helpful to en-
code the sentence in such a way as to maximize
its benefit to the QG model. With this as motiva-
tion, we train an instance of the full QG encoder–
decoder model with the sentence encoder, but the
sentence encoder is given the target question as in-
put instead of the sentence. As expected, in this
setting the model learns to generate questions very
well because it ”cheats” by taking the target as in-
put. Next, the trained sentence encoder — that
was trained by encoding the target questions — is
decoupled from the full model for use in the fol-
lowing step.

In the second step, the question embeddings
produced by the earlier trained encoder are used as
ground truth representations from which to max-
imize similarity. Now, a new sentence encoder
is trained that takes as input a declarative sen-
tence. The new sentence encoder is trained to
maximize the similarity between the input sen-
tence’s embedding and the question embedding —
produced by the earlier trained encoder — belong-
ing to a specific question associated with the sen-
tence. Specifically, loss is calculated between a
sentence embedding s and a ground truth repre-
sentation q using a Cosine Embedding Loss de-
fined by:

loss(s, q) = 1− cos(s, q) (1)

where cos(s, q) is traditional cosine distance.
The pre-trained sentence encoder is then used

to initialize the sentence encoder used in training
a new instance of the full QG model.
3 Experimental Setup and Results

We conduct experiments exploring the effects of
each of our model enhancements and train and
evaluate all the models using the SQuAD dataset
(Rajpurkar et al., 2016). We evaluate the models
using both automatic evaluation metrics and a hu-
man evaluation using crowd sourced workers. In
addition, we perform ablation tests to experiment
with different feature settings. We name our two
best models Focus and FocusCR, where FocusCR
uses the coreference feature, and Focus does not.
Dataset. SQuAD is a dataset of over one hun-
dred thousand (document, question, answer) tu-
ples. The documents are Wikipedia articles and
the questions are created by crowd workers. An-
swers to the questions are subsequently created
by a separate group of crowd workers who se-
lect as the question’s answer a span of text from
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# Model Sentences and Examples
S3 West got his big break in the year 2000,

when he began to produce for artists on
Roc-A-Fella Records.

Q10 Copy when did west got his big break?
Q11 No Copy in what year did “ big break ” begin?
S4 A high-definition remaster of the game,

The Legend of Zelda: Twilight Princess
HD, is being developed by Tantalus Me-
dia for the Wii U.

Q12 Copy who developed the legend of zelda?
Q13 No Copy who is the creator of the soundtrack of

mortal kombat?
S5 Both six- and seven-track versions of

the game’s soundtrack were released on
November 19, 2006, as part of a Nintendo
Power promotion and bundled with repli-
cas of the Master Sword and the Hylian
Shield.

Q14 Copy What was released on november 19, 2006?
Q15 No Copy What was released on september 17,

2006?
S6 At the age of 10, West moved with his

mother to Nanjing, China, where she was
teaching at Nanjing University as part of
an exchange program.

Q16 Copy at what age did west move with his mother
to nanjing?

Q17 No Copy at what age did von neumann teach at nan-
jing university?

Table 4: Question Generation with and without the
Copy mechanism.

within the article. The creators of SQuAD keep
part of the dataset private to be used as a hid-
den evaluation set in Question Answering tasks.
For this work we use the roughly 92,000 examples
that are publicly available. The 92,000 examples
are partitioned into training (roughly 70k exam-
ples), development (roughly 10k examples), and
test (roughly 11k examples) subsets. For the sake
of comparison, we have used the same partition-
ing as Du et al. (2017) who have kindly made their
data setting available on-line.

Using Stanford CoreNLP (Finkel et al., 2005;
Manning et al., 2014) the data is tokenized, and
NER and Coreference Resolution are performed.
All the feature used by our model are calculated
at this stage. Finally, the text is lowercased. We
calculate separate source and target vocabularies
of size 45,000 and 28,000, respectfully. Tokens
that fall out of vocabulary (OOV) are represented
with a special UNK token. In retrospect, separate
vocabularies are not necessary for this task. We
remove examples that have sentences or questions
over 100 and 50 words long, respectfully.

Model Implementation. Our model is imple-

mented using PyTorch1 and OpenNMT-py2 which
is a PyTorch port of OpenNMT(Klein et al., 2017).
The encoder, decoder, and sentence encoder are
multi-layer RNNs, each with two layers. We use
bi-directional LSTM cells with 640 units. The
model is trained using Dropout (Srivastava et al.,
2014) of 0.3 between RNN layers. Word embed-
dings are initialized using Glove 300 dimensional
word vectors (Pennington et al., 2014) that are not
updated during training. The sentence encoder is
initialized using the pre-training process described
in Section 2.2. All other model parameters are
initialized using Glorot initialization (Glorot and
Bengio, 2010).

The model parameters are optimized using
Stochastic Gradient Descent with mini-batches of
size 64. Beam search with five beams is used dur-
ing inference and OOV words are replaced using
the token of highest attention weight in the source
sentence. We tune our model with the develop-
ment dataset and select the model of lowest Per-
plexity to evaluate on the test dataset.

3.1 Automatic Evaluation

We compare our system’s results to that of several
other QG systems. The rows of Table 5 with labels
H&S, Yuan, Du, and S&X refer to the models pre-
sented in Heilman and Smith (2010a); Yuan et al.
(2017); Du et al. (2017), and Sachan and Xing
(2018), respectfully. Please refer to Section 4 Re-
lated Work for further details on each of these sys-
tems. The results of the H&S system are reported
in this work for the sake of comparison. The actual
experiments were performed by Du et al. (2017)
who describe the specific configuration of H&S in
greater detail.
Results. We use BLEU score (Papineni et al.,
2002) as an automatic evaluation metric and com-
pare directly to other work. BLEU measures the
similarity between a generated text called a candi-
date and a set of human written texts called a ref-
erence set. The score is calculated by comparing
the n-grams of the candidate with the n-grams of
the reference texts and then counting the number
of matches.

Unfortunately there are inconsistencies in the
method by which previous works have used BLEU
to evaluate QG models. Therefore, to accurately
compare BLEU scores, we evaluate our model us-

1pytorch.org
2github.com/OpenNMT/OpenNMT-py
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Model BLEU 4 METEOR ROUGE
baseline 11.53 15.93 39.57
H&S* 11.18 15.95 30.98
Du 12.28 16.62 39.75
S&X 14.37 18.57 42.73
FocusCR 19.86 21.96 48.35
Focus 19.98 22.26 48.23

Table 5: System performance in automatic evalu-
ation.

ing two different setups. First, when calculating
BLEU for a given hypothesis question, some pub-
lications have used a reference set containing all
the ground-truth questions corresponding to the
sentence from which the hypothesis was gener-
ated. Table 5 shows our model’s results compared
to previous work using this setup of BLEU and the
same partitioning of the SQuAD dataset.

Each of our models outperform previously pub-
lished results in each of the BLEU, METEOR,
and ROUGE categories by a significant margin.
FocusCR is the second highest performing sys-
tem and achieves an impressive BLEU 4 score of
19.86, which greatly improves on the third highest
BLEU 4 score of 14.37 belonging to S&X. Focus
gets a BLEU 4 score of 19.98 and is the best per-
forming system overall.

In the second setup, for a given hypothesis ques-
tion, Yuan et al. (2017) used a reference set con-
taining only a single ground-truth question that
corresponds to the same sentence and answer span
from which the hypothesis was generated. We
use this setup to evaluate our Focus and FocusCR
models. The results are shown in Table 6. Here,
Focus and FocusCR are the same models as shown
in Table 5, with the only difference being the set-
ting under which they are evaluated. Again, Fo-
cusCR achieves the second highest score and Fo-
cus gets the highest BLEU 4 score at 14.39. While
the datasets in aggregate are the same, our parti-
tioning of training, development, and test datasets
is different from that of Yuan et al. (2017).

We perform ablation experiments to study the
effects of each feature incorporated into the model.
The results of these experiments can be seen in
Table 8. With the exception of the CoRef fea-
ture, each feature added produces an improvement
in BLEU, with the answer feature producing the
greatest improvement. The copy-mechanism and
sentence embedding, which is called Focus in the

Model BLEU 4
baseline 8.45
Yuan 10.5
FocusCR 14.16
Focus 14.39

Table 6: BLEU-4 scores when using answer-
specific ground-truth questions as reference texts.

table, each increase performance further.
We also examine the effect of pre-training the

sentence encoder as described in Section 2.2. In
Table 8, the Focus and FocusCR models use a
pre-trained sentence encoder. The sentence en-
coder used by FocusCR-npt is not pre-trained. We
find that the pre-training has a positive effect on
BLEU scores with FocusCR-npt getting BLEU
13.99, compared to the FocusCR getting BLEU
14.16.

Table 8 suggests that the coreference mecha-
nism actually hurts performance as measured by
BLEU but the example shown in Table 3 and the
additional examples shown in Table 10 suggest
that it is very effective.

Table 4 provides examples of the effect of the
copy mechanism. Again, as with coreference, it
is easy to see the benefits of the copying mecha-
nism qualititively. For example, in Q14 and Q15
the model can effectively copy the right date into
the question. In Q17, without copying, the model
finds an entity von neumann who is associated
with teaching and university in the model and uses
that entity to generate the question rather than west
the entity in context.
Question Diversity. We are interested in how
the new features effect the quantity of unique
questions produced by our model. Therefore, we
counted the number of unique questions output by
the model when considering the entire testing set
as inputs. Here, we measure similarity using a
strict character match comparison. Table 7 shows
the results. We can see that the FocusCR model
produces 10,194 unique questions, which is a 55%

Model Unique Q’s
Baseline 6,595
FocusCR 10,194
Human 11,801

Table 7: Amount of unique questions generated.
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Model BLEU 4 METEOR ROUGE
baseline 7.62 13.41 34.19
+ Answer 11.15 16.64 40.39
+ NER 11.54 16.94 40.93
+ Case 11.56 16.98 40.96
+ CoRef 10.28 16.14 39.22
+ Copy 13.00 18.43 42.78
FocusCR-npt 13.99 - -
FocusCR 14.16 19.24 43.07
Focus 14.39 19.54 43.00

Table 8: Results of ablation test.

increase over the 6,595 unique questions produced
by the Baseline model. Although strict character
matching is a crude method of measuring question
similarity, we conclude that the features incorpo-
rated into the FocusCR model have a positive ef-
fect on the diversity of generated questions.
3.2 Human Evaluation

We perform human evaluation using crowd work-
ers on Amazon Mechanical Turk3. The Turkers
rate a pool of questions constructed by randomly
selecting questions and their associated text pas-
sages from the test set. We select 114 questions
each from the test dataset, the questions generated
by the baseline model, and the questions generated
by our FocusCR model. The questions are selected
such that they all correspond to the same declara-
tive sentence. In other words, we construct a set
of 114 tuples where each tuple consists of one text
passage, two model generated questions, and one
human authored question.

We use a qualification criteria to restrict the par-
ticipation of Turkers in our evaluation study. The
Turkers must have above 95% HIT approval rate
with at least 500 HITs previously approved. Fur-
thermore, Turkers are required to be located in En-
glish speaking countries. Turkers recieved $0.1 for
completing each HIT.

We closely follow the experiment design de-
scribed by Heilman and Smith (2010b), who in-
struct Turkers to produce a single five-point qual-
ity rating per question. They provide Turkers with
the following four reasons to downgrade a ques-
tion: (Un)grammaticality, Incorrect Information,
Vagueness, and Awkwardness. In our evaluation
study, we use four categories of evaluation that re-
semble these criteria.

Turkers are asked to rate each question across

3www.mturk.com

four categories: Grammaticality, Correct Informa-
tion, Answerability, and Naturalness. Grammati-
cality encompasses things like adherence to rules
of syntax, use of the wrong wh-word, verb tense
consistency, and overall legitimacy as an English
sentence. The Correct Information category con-
siders whether or not the question is related to the
text passage (e.g., asking about Madonna when
the passage is about Beyonce), implies something
that is obviously incorrect, or contradicts informa-
tion given in the text passage. The Answerabil-
ity category reflects how much of the information
required to correctly answer the question is con-
tained within the text passage. Also, it considers
whether or not the question has a clear answer, or
is too vague (e.g., ”What is it?”). The Naturalness
category reflects how natural the question reads
and considers whether or not it has some awkward
phrasing. The Naturalness category also encom-
passes any other problems in the question that do
not fall in the previous categories.

During evaluation, the Turker is presented with
the text passage and its three corresponding ques-
tions in scrambled order. They are asked to give
a rating from worst (1) to best (5) in each cate-
gory for each question. Each HIT contains three
text passages and a total of nine questions. Each
HIT is assigned to three Turkers resulting in three
ratings per question.

Results. Table 9 shows an average of the rat-
ings assigned by the Turkers in each category.
Answerability is the category in which the Fo-
cusCR model has the greatest improvement over
the Baseline. In this category, FocusCR receives
an average rating of 4.13, compared to the base-
line’s average rating of 3.73. FocusCR also out-
performs the Baseline model in the Correct In-
formation category with average ratings 4.13 and
3.78, respectfully. In the Grammaticality and Nat-
uralness categories the Baseline model has aver-
age ratings of 4.23 and 4.10, respectfully. The
FocusCR model has average ratings of 4.20 and
4.09 in the Grammaticality and Naturalness cate-
gories. The human authored questions outperform
both models by a significant margin in all cate-
gories.

We note that there is only a slight difference be-
tween ratings achieved by the Baseline and Fo-
cusCR models in the Grammaticality and Natu-
ralness categories. Yet, in both these categories
the Baseline model slightly outperforms FocusCR.

302



We suspect this is due to the brevity and generality
of questions produced by the Baseline model. In
contrast, FocusCR produces longer sentences with
more information content and, at times, increas-
ingly complex sentence structure.

Next, we observe that the average rating of
the human-authored questions are surprisingly low
across all categories, but particularly in Natural-
ness with a rating of 4.36. We attribute this to
the crowd-sourcing methodology used to create
the original SQuAD dataset. Nevertheless, we hy-
pothesize that the average ratings of the gold ques-
tions will increase with larger sample sizes in sub-
sequent human evaluation studies.

Inter-rater agreement was measured by compar-
ing the Turkers’ ratings to those of an expert an-
notator who is a native English speaking gradu-
ate student in Computational Linguistics. The ex-
pert annotator rated a random sample of 60 ques-
tions using a private version of the HIT created
on Mechanical Turk. Then, the arithmetic mean
of the three Turker ratings was calculated for each
question and category of evaluation. The Pearson
correlation coefficient between the expert annota-
tor’s rating and the means of the Turker ratings
was r = 0.47 for the Correct Information cate-
gory, r = 0.38 for the Answerability category,
r = 0.20 for Grammaticality, and r = 0.32 for
Naturalness. The significance of each correlation
was calculated using a two-tailed test that resulted
in p < 0.01 for each category. We observe a
positive correlation between the expert annotator
and the Turker ratings in each category, although
some of the the correlation strengths are less than
ideal, particularly in the Grammaticality category.
The consistent positive correlation across each cat-
egory and their statistical significance provide ev-
idence that the rating scheme is well defined, and
that the Turkers are able to judge the quality of
questions with relative reliability.

Model Grammar Info. Answer. Natural
Baseline 4.23 3.78 3.73 4.10
FocusCR 4.20 4.13 4.13 4.09
Human 4.40 4.40 4.47 4.36

Table 9: Human Evaluation Results

4 Related Work

Much of the work on automatic question gener-
ation has been motivated by helping teachers in
test creation (Mitkov and Ha, 2003; Heilman and
Smith, 2010a; Labutov et al., 2015; Araki et al.,

# Model Sentences and Examples
S7 she publicly endorsed same sex marriage

on march 26, 2013, after the supreme court
debate on california ’s proposition 8.

Q18 FocusCR what did beyonce publicly support?
Q19 Focus what did madonna publicly endorsed on

march 26, 2013?
S8 west is one of the best-selling artists of all

time, having sold more than 32 million al-
bums and 100 million digital downloads
worldwide

Q20 FocusCR how many grammy awards did he win?
Q21 Focus how many grammy awards has madonna

won?

Table 10: Additional Coreference Examples

2016; Chinkina and Meurers, 2017). Questions
play an essential role in knowledge acquisition and
assessment. It is standard practice for teachers to
assess students’ reading comprehension through
question answering. Automatic question genera-
tion has the potential to assist teachers in the test
creation process, thereby freeing teachers to spend
more time on other aspects of the education pro-
cess, and reducing the cost of receiving an educa-
tion.

Automatic question generation has the poten-
tial to be useful in the areas of automatic Question
Answering (QA) and Machine Comprehension of
text. Recently, large datasets such as SQuAD (Ra-
jpurkar et al., 2016), and MS MARCO (Nguyen
et al., 2016) have facilitated advances in both ar-
eas. These datasets are expensive to create and
consist of human authored (document, question,
answer) triples with questions and answers either
being collected from the web or created by crowd
workers. Automatic Question Generation methods
can be used to cheaply supplement resources avail-
able to QA models, further assisting in advancing
QA capabilities. Indeed, Sachan and Xing (2018)
have recently shown that a joint QA-QG model is
able to achieve state-of-the art results on a variety
of different QA related tasks.

Sequence-to-sequence Neural Network models
have been shown to be effective at a variety of
other NLP problems (Bahdanau et al., 2014; Rush
et al., 2015; Juraska et al., 2018), and recent work
has also applied them to QG (Du et al., 2017; Zhou
et al., 2017; Yuan et al., 2017). As in other recent
work on QG, we use an attentional Recurrent Neu-
ral Network encoder–decoder model that is simi-
lar to the model of Bahdanau et al. (2014). In this
approach, the QG task is cast as a sequence-to-
sequence language modeling task. The input sen-
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tence, represented as a series of words, is mapped
to an output series of words representing a ques-
tion. Sequence-to-sequence models have several
advantages over previous rule-based approaches to
QG. First, they eliminate the need for large hand-
crafted rule sets – the model automatically learns
how to perform the subtasks of Question Repre-
sentation Construction and Question Realization.
Another advantage is that the model does not rely
on domain-specific keywords. In fact, in this ap-
proach the model is trained on examples from a
variety of topics and then evaluated on examples
from previously unseen topic domains.

Among the numerous approaches to question
generation, our work is most similar to recent
work applying neural network models to the task
of generating short answer factoid questions.

Yuan et al. (2017) developed a Recurrent Neural
Network (RNN) sequence-to-sequence model that
generates questions from an input sentence. Their
model is trained using supervised learning com-
bined with reinforcement learning to maximize
several auxiliary goals, including performance of
a QA model on generated questions.

Du et al. (2017) present an attentional sequence-
to-sequence model for question generation. Their
model is similar to our baseline model but with
one key difference: their model uses paragraph-
level information in addition to sentence-level in-
formation. They use an RNN encoder to em-
bed the paragraph surrounding the sentence that
contains the answer. Then the decoder’s hidden
state is initialized with the concatenation of the en-
coder’s outputs and the paragraph embedding.

Sachan and Xing (2018) present an ensemble
model that jointly learns both QA and QG tasks.
The QG model is an RNN sequence-to-sequence
model similar to that proposed by Du et al. (2017).
First the QA and QG models are trained indepen-
dent of each other on the labeled corpus. Then
the QG model is used to create more questions
from unlabeled data that are then answered by
the QA model. A question selection oracle se-
lects — based on several heuristics — a subsample
of questions upon which to stochastically update
each model. This process is repeated until both
models cease to show improvement.

Heilman and Smith (2010a) present a system
that generates fact-based questions similar to those
in SQuAD using an ”overgenerate-and-rank” strat-
egy. Their system generates questions through use

of hand crafted rules that operate on declarative
sentences, transforming them into questions. In
order to control quality, the output questions are
filtered through a logistic regression model that
ranks the questions on acceptability.

5 Conclusion and Future Work

We propose an encoder–decoder model for auto-
matic generation of factual questions. We create
a novel Neural Network architecture that uses two
source sequence encoders; the first encoder being
at the token level, and the second being at the sen-
tence level. This enables the decoder to take into
account word meaning and sentence meaning in-
formation while making decoding decisions. Also,
the encoders are able to produce diverse encodings
based on an answer focus feature. We demonstrate
that this new model greatly improves on the state
of the art in Question Generation when evaluated
using automatic methods. We show that incorpo-
rating linguistic features into our model improves
question generation performance as well. Lastly,
a human evaluation confirms the improvement in
quality of generated questions.

Currently, our system generates only factual
questions for expository text. In future work we
plan to explore question generation on other cat-
egories of text such as narrative discourse. One
limitation of our system is that it relies on the
existence of previously created answer phrases.
Therefore, we would like to investigate methods of
automatically extracting answer candidates from
text, thus facilitating QG experiments on other cat-
egories of text that do not currently have large
question-answer datasets.

6 Acknowledgements

This work was supported by NSF Cyberlearning
EAGER grant IIS-1748056, NSF Robust Intel-
ligence grant IIS-1302668-002, and an Amazon
Alexa Prize 2017 Gift and 2018 Grant awarded to
the Natural Language and Dialogue Systems Lab
at UC Santa Cruz.

References
Manish Agarwal, Rakshit Shah, and Prashanth Man-

nem. 2011. Automatic question generation using
discourse cues. In Proceedings of the 6th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, page 19. Association for Com-
putational Linguistics.

304



Jun Araki, Dheeraj Rajagopal, Sreecharan Sankara-
narayanan, Susan Holm, Yukari Yamakawa, and
Teruko Mitamura. 2016. Generating questions and
multiple-choice answers using semantic analysis of
texts. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, page 11251136.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473 [cs,
stat]. ArXiv: 1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Yllias Chali and Sadid A. Hasan. 2015. Towards topic-
to-question generation. Computational Linguistics,
41(1):120.

Maria Chinkina and Detmar Meurers. 2017. Ques-
tion generation for language learning: From ensur-
ing texts are read to supporting learning. In Pro-
ceedings of the 12th Workshop on Innovative Use
of NLP for Building Educational Applications, page
334344.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. arXiv:1705.00106 [cs]. ArXiv:
1705.00106.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
gibbs sampling. In Proc. of the 43nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2005), pages 363–370.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and
statistics, page 249256.

Michael Heilman and Noah A. Smith. 2010a. Good
question! statistical ranking for question genera-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics, HLT 10, page 609617. Association for Com-
putational Linguistics.

Michael Heilman and Noah A. Smith. 2010b. Rating
computer-generated questions with mechanical turk.
In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Ama-
zons Mechanical Turk, CSLDAMT 10, page 3540.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden,
and Marilyn Walker. 2018. A deep ensemble model
with slot alignment for sequence-to-sequence natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
volume 1, pages 152–162.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proc. ACL.

Igor Labutov, Sumit Basu, and Lucy Vanderwende.
2015. Deep questions without deep understanding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), vol-
ume 1, page 889898.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL (System Demon-
strations), pages 55–60.

Ruslan Mitkov and Le An Ha. 2003. Computer-aided
generation of multiple-choice tests. In Proceedings
of the HLT-NAACL 03 Workshop on Building Edu-
cational Applications Using Natural Language Pro-
cessing - Volume 2, HLT-NAACL-EDUC 03, page
1722. Association for Computational Linguistics.

Jack Mostow and Wei Chen. 2009. Generating instruc-
tion automatically for the reading strategy of self-
questioning. In The 14th International Conference
on Artificial Intelligence in Education, page 8.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. arXiv:1602.06023 [cs].
ArXiv: 1602.06023.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. arXiv:1611.09268 [cs].
ArXiv: 1611.09268.

Andrew M. Olney, Arthur C. Graesser, and Natalie K.
Person. 2012. Question generation from concept
maps. Dialogue & Discourse, 3(2):7599.

305



Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), page 15321543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv:1606.05250
[cs]. ArXiv: 1606.05250.

Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean,
Svetlana Stoyanchev, and Cristian Moldovan. 2010.
The first question generation shared task evaluation
challenge. Association for Computational Linguis-
tics.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions.
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), 1:629640.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 1073–1083.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):19291958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessan-
dro Sordoni, Philip Bachman, Saizheng Zhang,
Sandeep Subramanian, and Adam Trischler. 2017.
Machine comprehension by text-to-text neural ques-
tion generation. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, page 1525.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study.
arXiv:1704.01792 [cs]. ArXiv: 1704.01792.

306



Proceedings of The 11th International Natural Language Generation Conference, pages 307–317,
Tilburg, The Netherlands, November 5-8, 2018. c©2018 Association for Computational Linguistics

Evaluation methodologies in Automatic Question Generation 2013-2018

Jacopo Amidei and Paul Piwek and Alistair Willis
School of Computing and Communications

The Open University
Milton Keynes, UK

{jacopo.amidei, paul.piwek, alistair.willis}@open.ac.uk

Abstract

In the last few years Automatic Question
Generation (AQG) has attracted increasing
interest. In this paper we survey the evalu-
ation methodologies used in AQG. Based
on a sample of 37 papers, our research
shows that the systems’ development has
not been accompanied by similar develop-
ments in the methodologies used for the
systems’ evaluation. Indeed, in the pa-
pers we examine here, we find a wide va-
riety of both intrinsic and extrinsic evalu-
ation methodologies. Such diverse eval-
uation practices make it difficult to reli-
ably compare the quality of different gen-
eration systems. Our study suggests that,
given the rapidly increasing level of re-
search in the area, a common framework
is urgently needed to compare the perfor-
mance of AQG systems and NLG systems
more generally.

1 Introduction

Evaluation is a critical phase for the development
of Natural Language Generation (NLG) systems.
It helps to improve performance by highlighting
weaknesses, and to identify new tasks to which
generation systems can be applied. Given that
generation systems and evaluation methodologies
should be developed hand in hand, a system-
atic study of evaluation methodologies for NLG
should take a central role in the effort of build-
ing machines which are able to reach human-like
levels of linguistic communication. Such a study
should investigate the current evaluation practices
used in various areas of NLG in order to see
their weaknesses and suggest directions to im-
prove them.

The aim of this paper is to analyze the evalu-
ation methodologies used in Automatic Question
Generation (AQG) as a representative subtask of
NLG. To the best of our knowledge, since the in-
troduction of the Question Generation Shared Task
Evaluation Challenge (QG-STEC) (Rus et al.,
2010), no attempts have been made to introduce
a common framework for evaluation in AQG.

To approach this task, we examined the papers
in the ACL anthology with a publication date be-
tween the years 2013-2018 (more precisely Jan-
uary 2013 to June 2018). Table 1 shows the distri-
bution of the papers involved in the current study
across this period. The ACL anthology website
represents a resource of inestimable value1 for this
work.

Year of publication # papers
2018 (Jan-June) 7 (so far)
2017 13
2016 9
2015 5
2014 1
2013 2

Table 1: Number of papers per year describing
question generation systems.

We used the single term question generation as
the search term with the search engine provided in
the ACL Anthology website. From the papers that
were returned by this query, we focussed only on
those papers that were about question generation
systems. This gave us 37 papers to analyze, of
which 36 were published in conference proceed-
ings and 1 was published in a journal. The num-
ber of papers by year is given in Table 1 and illus-
trated in Figure 1. Figure 1 indicates the rapid in-
crease in publications in this area in recent years.

1http://aclweb.org/anthology/
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Figure 1: Number of papers on AQG published by
year in the ACL anthology.

Note that this study of the literature was carried
out in June 2018, and so several major conferences
in this area (including ACL, INLG, EMNLP and
COLING) had not taken place.2

Publication type Journal or conference name # of papers
Conference proceed-
ing

INLG 7

ACL 7
NAACL-HLT 6
Workshop on Innovative Use
of NLP for Building Educa-
tional Application

6

EMNLP 3
IJCNLP 1
EACL 1
SIGDIAL 1
COLING 1
NLPTEA 1
RANLP 1
Workshop on Representation
Learning for NLP

1

Journal Computational Linguistics 1

Table 2: Number of papers per conference pro-
ceedings or journal.

Before looking more closely at the publications
involved, let us introduce the AQG tasks studied
in these papers. AQG is the task

of automatically generating questions
from various inputs such as raw text,
database, or semantic representation
(Rus et al., 2008).

The above definition, adopted by the AQG com-
munity, leaves room for researchers to decide what
kind of questions and input work with. Following
Piwek and Boyer (2012) a particular AQG task can
be characterized by three aspects: the input, the

2A complete list of papers used in this study, as well as
useful information to reproduce the results presented in the
present paper, can be found at the following link:

https://bit.ly/2IuPJIa

output, and finally the relationship between the in-
put and the output. The 37 papers we analyzed can
be divided into the following three categories:

1. Input: text;
Output: text;
Relation: the output question is answered by
the input text or the output question asks a
clarification question about the input text.

2. Input: knowledge base structured data (for
example triples 〈subject, object, subject/ob-
ject relation〉);
Output: text;
Relation: the output question is answered by
the information structure in the input.

3. Input: image or image and text or image seg-
mentation annotations;
Output: text;
Relation: the output question is answered by
the information pictured in the input.

For the sake of simplicity we will denote with
Text2Text the task expressed by category 1,
Kb2Text the task expressed by category 2 and fi-
nally Mm2Text the task expressed by category 3,
where Mm is short for “Multi-modal”. Within
each category, we find papers with different aims.
We show these in the following list, where the
number in brackets shows how many papers fall
into that class:

1. Text2Text (30)

• Web searching (1)
• Chatbot component (1)
• Creation of comparative questions re-

lated to the input topic (1)
• Clarification questions (1)
• Question Answering (5)
• Dataset creation purpose (1)
• Educational purpose (9)
• AQG general purposes (11)

2. Kb2Text (4)

• Question Answering (1)
• Dataset creation purpose (1)
• Educational purpose (1)
• AQG general purposes (1)

3. Mm2Text (3)
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• Data augmentation Visual Question An-
swering (VQA) purpose (1)
• AQG general purposes (2)

Regarding the papers in the Text2Text category, we
found some variety in the different types of output.
Although in the majority of cases, the system’s
output was an interrogative sentence, there are 5
papers in which the output is a “fill the gap” ques-
tion, 3 papers where output is a multiple choice
question (with its associated set of distractors) and
3 papers in which the output is a question/answer
pair. Also in both the Kb2Text and Mm2Text cate-
gories there is 1 paper each in which the output is
a question/answer pair. We also note that one pa-
per in the Text2Text category developed a question
generator which takes a paragraph of text and an
associated answer as input. In this case, the gen-
erated question must be answered by the answer
given in the input. We conclude this section by
specifying that AQG general purposes means that
the system was not tied to a particular domain or
task-dependent setting, whereas Question Answer-
ing means that the AQG system is developed in
order to be used in the Question Answering task.

2 Related Work

Two of the key references for evaluation in NLG
are Krahmer and Theune (2010) and Gatt and
Krahmer (2018). Both devote an entire section
to evaluation. In particular, Section 7 of Gatt and
Krahmer’s paper gives a helpful description of the
methodologies used in NLG for the purpose of
evaluation, alongside examples and a discussion
of the relevant problems.

Another highly relevant work is that of Gkatzia
and Mahamood (2014). Gkatzia and Mahamood
studied the use of evaluation methodologies for
NLG, performing a study which analyzed a cor-
pus of 79 conference and journal papers pub-
lished between the years 2005-2014. Their results
show the increasing prevalence of automatic eval-
uation over human evaluation and the prevalence
of intrinsic evaluation over extrinsic ones (we dis-
cuss intrinsic and extrinsic methods in Section 3).
Gkatzia and Mahamood also report that the eval-
uation approaches are correlated with the publica-
tion venue, so that papers published in the same
journal or conference tend to use the same evalu-
ation methodologies. Our paper represents a con-
tinuation and refinement of the Gkatzia and Ma-
hamood paper, with our specific focus on AQG.

Regarding more specific work on AQG we refer
to Rakangor and Ghodasara (2015) and Le et al.
(2014), both of which survey AQG, with the latter
focussing specifically on educational applications
of AQG. For each paper considered, Rakangor and
Ghodasara present the methodology used, the gen-
erated question type, the language of the generated
question, the evaluation methodologies and its re-
sults. In contrast, Le et al. report on the educa-
tional support type and the evaluation methodolo-
gies, in one table and the question type and evalu-
ation results in the other table. Although Le et al.
present these results in two tables, the tables in fact
have only one paper in common. In comparison,
in this paper we focus all our attention on the eval-
uation methodologies used. For this reason, we
report neither the systems’ specifications nor the
systems’ performance.

A final publication of importance to the cur-
rent work is the report on the Question Generation
Shared Task Evaluation Challenge (QG-STEC)
(Rus et al., 2010). In the QG-STEC, two tasks, A
and B, were defined. Although both tasks shared
the same output type, task A took a paragraph and
a target question type as input, whereas task B took
a single sentence and a target question type as in-
put. Both tasks were evaluated through a human
evaluation methodology, based on the 5 criteria:
relevance, syntactic correctness and fluency, am-
biguity, question type and variety. However, the
Inter Annotator Agreement (IAA) reached in the
evaluation phase was low. An attempt to improve
the IAA for task B is described in Godwin and Pi-
wek (2016), in which the authors define an inter-
active process where the annotators discussed their
opinions about the criteria used in the evaluation.
Although their method improves the IAA, the re-
producibility of their results is not guaranteed.

3 Evaluation methodologies for AQG

In this section we present the findings of our anal-
ysis. We focus our analysis on two dimensions: in-
trinsic evaluation methodology and extrinsic eval-
uation methodology.

Intrinsic evaluation methods measure the per-
formance of a system by evaluating the system’s
output “in its own right, either against a refer-
ence corpus or by eliciting human judgements of
quality” (Gatt and Belz, 2010, p. 264). For ex-
ample, this could involve measuring the output’s
grammaticality and fluency. The prevailing intrin-
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sic methods are human evaluation and automatic
evaluation. In order to assess the quality of a gen-
erated sentence, the former method uses human
judgements, while the latter applies an algorithm
that automatically calculates a score, for example
by checking the similarity between the generated
sentence and a set of reference sentences.

Extrinsic methods measure the performance of
a system by evaluating the system’s output with
respect to its ability to accomplish the task for
which it was developed. An example of extrin-
sic evaluation methods is that used to evaluate the
STOP system (Reiter et al., 2003). STOP gen-
erates “short tailored smoking cessation letters,
based on responses to a four-page smoking ques-
tionnaire” (p. 41) with the aim of helping people
to give up smoking. This system was evaluated
“by recruiting 2553 smokers, sending 1/3 of them
letters produced by STOP and the other 2/3 con-
trol letters, and then measuring how many people
in each group managed to stop smoking”3. In this
case the system was evaluated in the real world
to see whether it has the desired effect, of help-
ing people to quit smoking. The results showed
that there were no relevant differences between the
STOP letters and the control letters.

3.1 A general overview
Table 3 shows the evaluation methodologies used
in the papers that we examined. With respect to

Evaluation methodologies # of papers
Text2Text Kb2Text Mm2Text Total

Intrinsic human
only

13 1 - 14

Intrinsic automatic
only

9 - 1 10

Extrinsic (human)
only

2 - - 2

Intrinsic human &
Intrinsic automatic

3 2 2 7

Intrinsic human &
Extrinsic (human)

2 - - 2

Intrinsic automatic
& Extrinsic (auto-
matic)

1 - - 1

Intrinsic human &
Intrinsic automatic
& Extrinsic (auto-
matic)

- 1 - 1

Table 3: Evaluation methodologies used.

the frequency of use of intrinsic compared to ex-
trinsic methods, Table 3 confirms the trend iden-
tified in Gkatzia and Mahamood (2014). Gkatzia
and Mahamood found out that the 74.7% of the
papers used the intrinsic evaluation method. In
our analysis we found that 83% of the papers used

3See Ehud Reiter’s blog https://ehudreiter.
com/2017/01/19/types-of-nlg-evaluation/

this methodology. However, we note that with re-
spect to Gkatzia and Mahamood’s results, we have
an inverted trend between the use of an extrinsic
method compared to both intrinsic and extrinsic.
Indeed, Gkatzia and Mahamood found that 15.2%
of the papers used extrinsic methods, against the
6% we get in our analysis, and 10.1% of the pa-
pers used both methodologies, where our analysis
shows that 11% of the papers use a combination of
both.

Furthermore, our analysis confirms the trend
between the use of automatic compared to human
intrinsic evaluation methodologies. In Gkatzia and
Mahamood (2014) the authors report that in 45.4%
of the cases human evaluation is used, whereas
in 38.2% of the cases automatic evaluation were
adopted. Similarly, our analysis shows that be-
tween the papers that prefer intrinsic evaluation
methods, 45% used human evaluation, 32% used
automatic evaluation and 23% used both human
and automatic evaluation.

Table 1 shows that in the period since 2016,
there has been a considerable increase in the num-
ber of publications in this area. It therefore makes
sense to ask whether this increase has been accom-
panied with a change in the evaluation methodolo-
gies used.

Evaluation methodologies # of papers
2013-2015 2016-2018

Intrinsic human only 6 8
Intrinsic automatic only 1 9
Extrinsic (human) only - 2
Intrinsic human & Intrinsic au-
tomatic

1 6

Intrinsic human & Extrinsic (hu-
man)

- 2

Intrinsic automatic & Extrinsic
(automatic)

- 1

Intrinsic human & Intrinsic au-
tomatic & Extrinsic (automatic)

- 1

Table 4: Variation of the evaluation methodolo-
gies used between 2013 - 2015 and between 2016
- 2018.

Table 4 shows how the range of evalua-
tion methodologies used has changed. Between
the years 2013 - 2015 only intrinsic evaluation
methodologies were used – with 75% of papers
using human evaluation, 12.5% using automatic
evaluation and 12.5% using both methodologies –
for the years between 2016 - 2018 extrinsic evalu-
ation methods have also been introduced. Indeed,
although the majority of the papers in this period
(79%) used intrinsic evaluation methods, 7% of
papers used extrinsic evaluation methods and 14%
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used both the methodologies. We can also see a
change in the tendency to use intrinsic methods.
Between the years 2016 - 2018, 35% of the papers
used human evaluation (a decrease of 40% from
the years between 2013 - 2015), 39% of the pa-
pers used automatic evaluation (a 26.5% increase
on the years between 2013 - 2015) and 26% of the
papers used both methodologies (a 13.5% increase
on the years between 2013 - 2015).

3.2 Automatic evaluation

Table 5 presents a list of automatic metrics used in
the papers studied in the present research. From
our analysis it turns out that the most used au-
tomatic metric is BLEU followed by METEOR.
Note that Table 5 only describes those that use the
specified metrics; other papers use metrics that are
defined for the specific aims described in the paper
that introduces them.

Evaluation methodologies # of papers
Text2Text Kb2Text Mm2Text Total

BLEU (Papineni
et al., 2002)

8 3 2 13

METEOR (Baner-
jee and Laviel,
2005)

4 2 1 7

ROUGE (Lin and
Och, 2004)

3 1 - 4

Precision 4 - - 4
Recall 4 - - 4
F1 4 - - 4
Accuracy 2 0 1 3
∆BLEU (Galley
et al., 2015)

- - 1 1

Embedding Greedy
(Rus and Lintean.,
2012)

- 1 - 1

Others 5 - - 5

Table 5: Automatic metrics used.

In our survey we found out that 31% of the pa-
pers used just a single metric, whereas the other
69% used more than one. The average is 2 metrics
per paper, with a minimum of 1 metric (6 papers)
and a maximum of 5 metrics (1 paper). In almost
50% of cases (9 papers), 3 metrics were used. We
noticed that only a single paper used an embed-
ding based metric (see Sharma et al. (2017)). In
a majority of studies, word-overlap based metrics
were used (see Sharma et al. (2017)).

In the last few years, many studies in NLG
have shed light on the correlation between hu-
man judgement and automatic metrics. The re-
sults, which have shown how this correspondence
is somewhat weak4, shed doubt on the feasibility

4For an in depth discussion of this point we refer to Reiter
and Belz (2009) and to Gatt and Krahmer (2018), especially
section 7.4.1 and the references presented there.

of using these metrics for evaluating the overall
quality of a system.

To the best of our knowledge, the area of AQG
is currently missing a study which aims to verify
the correlation between human judgement and au-
tomatic metrics5. Such research would have two
merits: on one hand, this kind of meta-evaluation
study would give a better characterisation of the
general problem. On the other hand, the research
could provide guidance to researchers about which
metric is most appropriate in evaluating a particu-
lar model or system.

In conclusion, we believe that research in AQG
would benefit from a systematic study that aims
to clarify the relation between different evaluation
methodologies.

3.3 Human evaluation

Among the various human evaluation methodolo-
gies, eliciting quality judgments is most common:
human annotators are asked to assess the quality
of a question based on criteria such as question’s
grammaticality and fluency. Only two papers used
a preference judgement methodology, in which the
human annotators are asked either to assess pair-
wise preference between questions or given a cou-
ple of questions, one human generated and one au-
tomatically generated, assess which one is auto-
matically generated (or which one is the the hu-
man generated). One of these papers also used
the other methodology of eliciting quality judge-
ments.

Quality judgment methodologies typically ask
annotators to use Likert or rating scales to record
their judgements. In our analysis, we found that
56% of the papers used some kind of numerical
scale. For example, human annotators were of-
ten asked to assess the grammaticality of a ques-
tion on a scale from 1 (worst) to 5 (best). On the
other hand, 44% of the papers used a linguistic
(or semantic) scale. In these cases, human annota-
tors were typically asked to classify the questions
in some category such as coherent, somewhat co-
herent or incoherent. The number of categories
used in the Likert or rating scales by the papers
that adopted quality judgment methodologies are
shown in Table 6.

Only three papers used more than one scale in
the evaluation. One of these uses a free scale in

5Yuan et al. (2017) raise some doubts about the capacity
of BLEU to effectively measure the quality of systems used
in Text2Text tasks.

311



which the annotators have to choose a positive in-
teger to count the inference steps necessary for an-
swer a question.

Number of categories # of papers
Text2Text Kb2Text Mm2Text Total

2 6 - - 6
3 6 - 2 8
4 1 1 - 2
5 8 1 - 9
7 - 1 - 1

Table 6: Number of categories used in the Likert
or rating scales.

Table 6 shows that the two most common num-
ber of categories used in the Likert or rating scales
are 3 and 5. In a recent paper, Novikova et al.
(2018) suggest that the use of a continuous scale
and relative assessments can improve the quality
of human judgments. Although in our study, we
found 2 papers that used relative assessment, we
did not find any papers that use a continuous scale.

Another interesting point is the number of anno-
tators used in the evaluation. This number varies a
lot from paper to paper. We found a minimum of 1
annotator (2 papers) to a maximum of 364 annota-
tors (1 paper). Taking the papers which provided
information on the number of annotators used (24
papers), and removing five papers that used 53, 63,
67, 81 and 364 annotators – these can be seen as
outliers – we found out that the average number of
annotators used was almost 4. The most common
number was two annotators, used by 29% (7 pa-
pers) of the papers. 3 annotators were used by 17%
(4 papers) and 4 annotators were used by 13% (3
papers). The others paper used 5, 7, 8 or 10 anno-
tators.

There is a similar breadth in the number of out-
put questions used (that is, the questions gener-
ated by the systems), and the criteria (that is, the
question features to be checked) used in the eval-
uation. The number of questions ranged from a
minimum of 60 questions (1 paper) to a maximum
of 2186 (1 paper). Amongst those papers which
actually provide this information (17 papers, or
65%), we found out that the average number of
questions used per paper is almost 493. 7 papers
(27%) did not report this information, whereas 2
papers (8%) report information about the amount
of data from which the questions were generated,
without giving the exact number of questions used
for the evaluation.

Regarding the criteria used, we noticed that
35% of the papers (8 studies) used an overall qual-

ity criterion, that is, a single criterion which was
used to evaluate the question’s overall quality. On
the other hand, 52% of the papers (12 studies) used
specific criteria, for example, question grammati-
cality, question answerability, etc. A full list of
these criteria is shown in Table 7. 13% of the pa-
pers (3 studies) used both specific criteria and an
overall criterion. As Table 7 shows, there is a wide
assortment of criteria used across the set of col-
lected papers.

Criterion used # of papers
Text2Text Kb2Text Mm2Text Total

Grammaticality 7 - - 7
Semantic correctness 4 - - 4
Answer existence 3 - - 3
Naturalness 2 1 - 3
Question type 3 - - 3
Clarity 3 - - 3
Discriminator quality 3 - - 3
Relevance 2 - - 2
Correctness 2 - - 2
Well-formedness 1 - - 1
Key selection accuracy 1 - - 1
Corrected retrieval 1 - - 1
Fluency 1 - - 1
Coherence 1 - - 1
Timing 1 - - 1
Inference step 1 - - 1
Question diversity 1 - - 1
Importance 1 - - 1
Specificity 1 - - 1
Predicate identification - 1 - 1
Difficulty 1 - - 1
Overall criterion 7 2 2 11

Table 7: Criteria used.

As we can see from Table 7, the specific cri-
teria are mainly used in the Text2Text task. Just
two criteria are used in the Kb2Text task and none
in the Mm2Text, where an overall quality criterion
was preferred. We note that some criteria, for ex-
ample timing or importance, are specific to one of
the aims of the paper in which they are used. In-
deed, as shown in the introduction, we can find
different aims behind the papers’ motivations. We
note that among the papers analyzed here, often
only little information is provided about the eval-
uation guidelines6. We cannot exclude that, given
the evaluation guidelines, some of the criteria pre-
sented in Table 7 can be collapsed together. That
is, it is possible that different researchers use dif-
ferent names in order to check the same question
feature. In order to have a better way to check
the quality across systems, we suggest that re-
searchers should publish the evaluation guidelines
used in the evaluation, as well as the quantitative
results.

6Human evaluations are driven by some annotation guide-
line which is a direct manifestation of some annotation
scheme. Whereas the latter characterize the criteria to be
evaluated, the first strictly define such criteria and suggest
how they should be evaluated.
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Table 8 supplies an overview about the IAA
reached in the human evaluations. We note that
54% of the papers (14 studies) did not supply this
information. Only one of the two papers that used
preference judgments reported the agreement be-
tween evaluators. In that paper, Fleiss’ κ was used
to measure the IAA reached between 3 to 5 evalu-
ators. The results, for three batches with different
evaluators and questions, were 0.242, 0.234 and
0.182. Table 8 presents the IAA results reported
by the papers that used quality judgement meth-
ods. Between the papers that reported this infor-
mation, we found that the IAA was measured in
26 cases and 9 of these were measured with two
different coefficients, for a total of 35 IAA values.
The agreements were measured for specific crite-
ria or for the overall quality criterion. In one case
the agreement over all the criteria was reported. It

Metric used for calculate IAA # of criteria
measured

Average Min. Max.

Cohen’s κ 14 0.46 0.10 0.80
Krippendorff’s α 2 0.143 0.05 0.236
Fleiss’s κ 4 0.45 0.33 0.62
Pearson’s r 4 0.71 0.47 0.89
Average measure 9 0.80 0.50 0.91
k no better specified 2 0.085 0.08 0.09

Table 8: Measures of Inter-Annotator Agreement.

is notable that the agreement reached in the var-
ious evaluations is generally quite low. Indeed,
following Artstein and Poesio (2008), only agree-
ment greater than or equal to 0.8 should be consid-
ered. Quoting Artstein and Poesio, p. 591:

Both in our earlier work (Poesio and
Vieira 1998; Poesio 2004a) and in the
more recent (Poesio and Artstein 2005)
efforts we found that only values above
0.8 ensures an annotation of reasonable
quality. We therefore felt that if a thresh-
old needs to be set, 0.8 is a good value.

Taking this as an appropriate quality threshold,
among the papers that report IAA, very few eval-
uations should be considered appropriate. More
specifically, we found that only 23% (8 over 35
values) of the evaluations reported IAA scores that
were greater than or equal to 0.8.7

7Using the popular Krippendorff’s Kappa scales of inter-
pretation (Krippendorff, 1980) – where any data annotation
with agreement in the interval [0.8, 1] should be considered
good, agreement in the interval [0.67, 0.8) should be con-
sidered tentative, and data annotation with agreement below
0.67 should be discarded– we conclude that 43% (15 out of
35) of the evaluations should be considered tentative.

Checking the agreement for number of annota-
tors we found that in the case with 364 annotators
the IAA, measured for two criteria and a not better
specified κ, was between 0.08 and 0.09. We found
only 2 cases for 5 evaluators, which reported a
value of 0.05 for Krippendorff’s α and an average
measure of 0.89. Two papers used 4 annotators al-
together: one reported a value of Krippendorff’s
α of 0.236, with the other reporting a Pearson’s r
of 0.71. Another paper used 3 evaluators and the
Fleiss’s κ to measure the IAA for 4 criteria. The
results are reported in Table 8.

All other papers reporting an IAA measure were
in evaluations that used 2 annotators. The results
of these cases are shown in Table 8 highlighting
Cohen’s κ, the Average measure and Pearson’s r.8

There are sometimes attempts to design the ex-
perimental methodology to improve the level of
IAA. In order to improve the agreement, one paper
collapsed two score classes into one, whereas two
papers allowed a difference of one score between
the annotators rating. Two examples of the latter
case are the maximum value for Cohen’s κ and the
maximum value for the average measure reported
in Table 8.

We conclude this section by noting that the
problem of a low IAA was present also in the
Shared Task Evaluation Challenge (QG-STEC)
(Rus et al., 2010). In that case, an attempt to im-
prove the IAA for task B was carried out by God-
win and Piwek (2016). Godwin and Piwek define
an interactive process in which the annotators can
discuss their opinions about the criteria used in the
evaluation. At the end of the evaluation process,
repeated three times with three annotators on dif-
ferent data each time, they got high IAA with a
peak of 0.94 for one of the five criteria used in the
evaluation.

Although other papers (see for example Bayerl
and Paul (2011), Lommel et al. (2014) and Hwee
Tou Ng and Foo (1999)) propose techniques which
aim to improve the IAA, in a recent paper (Amidei
et al., 2018) we suggest thinking carefully about
this practice in the case of NLG tasks. Indeed, if
evaluation results have to inform generation sys-

8Regarding Pearson’s r, we should clarify that in the case
of 2 evaluators, IAA was measured for 3 criteria and not 4 as
reported in table 8. However, because the Pearson’s r mea-
sured for the fourth criterion was 0.71, that is the average
value, the Pearson’s r measure in the case of 2 evaluator is
exactly the one shown in Table 8. Furthermore, for the aver-
age measure there is a case with 5 annotators. Removing that
case, the average for 2 annotators is 0.79.
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tems developers of the extent to which they can
improve the communicative power of their sys-
tems, the aim of attaining a higher IAA runs the
danger of biasing system developers towards ig-
noring important aspects of human language. An
unchecked and unquestioned focus on the reduc-
tion of disagreement among annotators runs the
danger of creating generation goals that reward
output that is more distant from, rather than closer
to, natural human-like language.

3.4 Extrinsic evaluation

As shown in Table 3, extrinsic evaluation method-
ologies are rare in the area. As reported by Gkatzia
and Mahamood (2014) this is generally true for
NLG tasks. Amongst the papers that have cho-
sen to use this kind of evaluation technique, hu-
man judges were used in 4 times out of the 6. In
the papers where human judges were not used, the
Question Generation (QG) system was tested as
a component of a Question Answering (QA) sys-
tem. The performance was evaluated by checking
the difference between the QA system without the
use of the QG system against the performance of
the QA system with the use of the QG system. The
aim of those papers was to improve QA systems by
creating more accurate question/answer pairs to be
used for training purposes.

As a consequence of the different tasks in play,
the other papers used humans in different ways.
We can find tasks such as: answer the generated
questions or use the generated questions in a web
page and then answer a survey about the utility of
those questions. Or also: engage in a conversation
with a chatbot which involves a question-based di-
alogue, and then rate the conversations.

Also in this case, the number of humans in-
volved in the evaluation varies from paper to pa-
per, ranging from 2 to 81. In contrast to the case
of intrinsic human evaluation, in this case the IAA
is not reported. We note that human agreement in
extrinsic evaluation is not as relevant as in the case
of intrinsic evaluation. Indeed, for intrinsic evalu-
ations, agreement is required to have a reliability
and validity measure of the evaluation scheme and
guidelines (Artstein and Poesio, 2008). The agree-
ment measure should gather evidence that differ-
ent humans can make similar judgements about
the questions evaluated. This fact, following Krip-
pendorff (2011) should allow us to answer the
question of: “how much the resulting data can be

trusted to represent something real”? (page 1). In
human intrinsic evaluation, the agreement can be
seen as a measure of the replicability of the results.
For example, Carletta (1996, p. 1) wrote:

At one time, it was considered suffi-
cient. . . to show examples based on the
authors’ interpretation. Research was
judged according to whether or not the
reader found the explanation plausible.
Now, researchers are beginning to re-
quire evidence that people besides the
authors themselves can understand and
make the judgments underlying the re-
search reliably. This is a reasonable re-
quirement because if researchers can’t
even show that different people can
agree about the judgments on which
their research is based, then there is no
chance of replicating the research re-
sults.

In the case of extrinsic methods, the evaluation
aim is to check if the generated sentences fulfil the
task for which they were generated. To test this,
humans need to use those sentences in real con-
texts. Now, humans make use of the same tools
in different ways, and similarly they answer ques-
tions in different ways. For this reason, it is not ex-
pected that humans reach similar results in a real
context of language use.

4 Discussion

Although systems and tools have been developed
in the AQG area over the last few years, Table
1 illustrates that this has not been accompanied
by similar improvements in evaluation methodolo-
gies. Indeed, with the exception of the Shared
Task Evaluation Challenge (QG -STEC) (Rus
et al., 2010), no attempts have been undertaken to
introduce a common framework for evaluation that
allows for comparisons between systems.

We have seen that in human evaluation, differ-
ent criteria and scales/categories are used. To ad-
dress this, we recommend that researchers share
their evaluation guidelines, and work towards
adopting common guidelines that can used to
check quality across systems. Furthermore, out of
the papers examined here, the problem of evalua-
tion validity emerges. In those studies where it has
actually been reported, the IAA is generally low.
Also in this case we suggest researchers systemat-
ically determine the IAA and share their results, as
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well as ideas to attempt to understand and classify
any divergences between annotators.

Automatic evaluation can be thought of as a
technique to provide a way to standardize the eval-
uation. Unfortunately, a comparison of human
and automatic evaluation is missing in the area.
This makes it difficult to understand to what extent
the automatic metrics capture the systems’ quality.
Lacking such comparison, and following Reiter
(2018), we suggest considering metrics such as
BLEU as tools for systems’ diagnostic more than
evaluation techniques able to measure the output
quality of the systems.

There is scope for more extrinsic evaluation,
which can “provide useful insight of domains’
need, and thus they provide better indications of
the systems’ usefulness and utility” (Gkatzia and
Mahamood, 2014, p. 60). Unfortunately, extrinsic
evaluations are not yet widely used.

Though the QG-STEC evaluation scheme has
only limited uptake, with the much increased pop-
ularity of AQG, it is timely to revisit and address
the need for a shared evaluation scheme. The va-
riety of evaluation methodologies, as brought to
light by the present work, demonstrates how diffi-
cult it currently is to check question quality across
generation systems. This prevents us from under-
standing the actual contributions that are made by
new generation systems that are being introduced
ever more frequently.

We conclude this section with the following ob-
servation. The problem of having a high degree of
variation in methodologies is compounded by the
use of different datasets in the evaluation phase
(see Table 9). The use of a common dataset for
evaluation – as suggested by the Shared Task Eval-
uation Campaign (STEC) (Gatt and Belz, 2010) –
could remove bias coming from the training phase.
This is particularly true for generation systems that
use machine learning techniques. We note that the
high variability in the dataset used in the evalua-
tion phase is also due to the variation in the pa-
pers’ motivations. However, Table 9 suggests that
the aim of building a common framework for AQG
tasks should involve creation of a dataset to be
used only for evaluation purposes. If we want to
understand the degree to which a system advances
the state of the art, we need to compare differ-
ent systems on the same dataset, or better, a set
of datasets, of course, using the same evaluation
methodologies.

Tasks Dataset or source of test articles
Text2Text SQuAD; MS-MARCO; Wik-

iQA; TriviaQA; TrecQA;
Wikinews; Penn Treebank; QG-
STEC datasets; StackExchange;
Wikipedia; OMG! website;
Project Gutemberg; Read-
Works.org; Engarde corpus;
CrunchBase; Newswire (Prop-
Bank); textbook from OpenStax
and Saylor; not specify TOEFL
book; not specify science text
books; not specify course Web
page; not specify news articles
not specify teachers articles; 40
people’s personal data.

Kb2Text Ontology documenting K-12 Bi-
ology concepts; SimpleQues-
tions; Freebase; WikiAnswers.

Mm2Text COCO-QA; COCO-VQA;
IGCCrowd; Bing; COCO; Flickr.

Table 9: Dataset used.

An open evaluation platform in which re-
searchers share their evaluation methodologies
and their results can be effective to compare the
quality across systems. In such a platform, the
shared evaluation methodologies, alongside some
datasets used only for evaluation, can be used by
researchers to test their systems’ performance and
the results can be recorded in the open platform.
Another benefit of this platform could be to gener-
ate an evolutionary process which allows the com-
munity to select the evaluation methodologies that
are considered more effective.

5 Conclusion

In this paper we have analysed 37 papers which
were about AQG. The aim of our work was to
study the evaluation methodologies used in the
area. Our work confirms the conclusion of Gkatzia
and Mahamood (2014) for NLG in general. In
AQG we lack a standardised approach for evalu-
ating generation systems. Indeed, our overview
shows a quite variegated evaluation landscape
which prevents comparison of question quality
across generation systems. A careful look at the
papers published in the AQG area in the last five
years shows how little attention has been given to
the evaluation methodology introduced in the QG-
STEC. Given the ever-increasing number of publi-
cations in the area, a common framework for test-
ing the performance of generation systems is ur-
gently needed.
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Abstract

The TL;DR challenge fosters research in
abstractive summarization of informal text,
the largest and fastest-growing source of
textual data on the web, which has been
overlooked by summarization research so
far. The challenge owes its name to the
frequent practice of social media users to
supplement long posts with a “TL;DR”—
for “too long; didn’t read”—followed by a
short summary as a courtesy to those who
would otherwise reply with the exact same
abbreviation to indicate they did not care
to read a post for its apparent length. Posts
featuring TL;DR summaries form an excel-
lent ground truth for summarization, and
by tapping into this resource for the first
time, we have mined millions of training
examples from social media, opening the
door to all kinds of generative models.

1 Task overview

The task of participants is straightforward: given
a social media posting, generate a summary. Ours
is to evaluate the participants’ approaches quanti-
tatively and qualitatively, which will include mea-
sures from the literature as well as manual review
via crowdsourcing. For diversity, we intend to offer
additional evaluation categories that further con-
strain a summary, e.g., summaries that include the
topic of an underlying discussion, summaries in
the form of questions, or, for fun sake, wacky sum-
maries. To ensure reproducibility, we employ the
cloud-based TIRA1 evaluation platform, to which
participants will deploy working prototypes of their
summarizers for blind and semi-automated evalua-
tion.

1www.tira.io

2 Motivation

Text summarization ranks among the oldest synthe-
sis tasks of computer science, addressing the nowa-
days almost stereotypical problem of information
overload. Traditionally, the task has been tackled
within natural language processing and informa-
tion retrieval by extracting phrases from a to-be-
summarized text. However, the task draws increas-
ing attention from the machine learning community.
Owing to advances in theory, algorithms, and hard-
ware, the training of complex models has become
feasible that abstract over the to-be-summarized
text. Here, deep generative models have delivered
some impressive results (Chopra et al., 2016; Nalla-
pati et al., 2016; See et al., 2017; Chen and Bansal,
2018). Since these models need substantially large
amounts of training data in order to understand
and generate natural language text, the availabil-
ity of suitable corpora is important. The most
commonly used datasets for abstractive summariza-
tion, namely the Gigaword corpus (Graff and Cieri,
2003) and the CNN Dailymail news dataset (Her-
mann et al., 2015), comprise short articles from the
news domain, representing only one of the many
genres of written text. Target summaries in both
these corpora are extractive where either the first
sentence or some key points are combined together
to train the model. In particular, there have been
no resources covering user-generated content un-
til now, severely limiting the range of applications
of summarization research and technology on the
web.

Social media platforms and search engines alike
rely on showcasing contents to their users in order
to maintain and increase user engagement. Besides
the intelligent, personalized recommendation and
retrieval systems which retrieve the right content at
the right time, they mostly resort to extractive sum-
marization techniques for presentation. While con-
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tents with a high production value, such as news,
regularly come with pre-produced summaries tai-
lored to the most important platforms and search en-
gines, this is not the case for user-generated content,
which makes up for the vast majority of content on
many platforms. At the same time, user-generated
content, due to the informal nature of its writing,
does not readily lend itself to extractive summariza-
tion techniques. Abstractive approaches may offer
great value to these platforms by capturing the gist
of a piece of user-generated content while harmo-
nizing the style of presentation. This is particularly
important in cases where the user interface is lim-
ited, such as that of mobile devices or the narrow
audio-only interface of conversational AI agents.

Through our competition, we want to spur the
development of novel model architectures and opti-
mizations for generative models, in order to bridge
the gap between the quality of automatic sum-
maries and those written by humans. In accordance
with the motto of INLG, we encourage discussions
about a multitude of unsolved research questions
related to text summarization and its evaluation.
To the best of our knowledge, we are the first to
tackle abstractive summarization of user-generated
content at scale. As organizers of many previous
shared tasks in the areas of natural language pro-
cessing and machine learning, we look back on
years of experience in provisioning and administer-
ing the infrastructure required.

3 Task Description

The task of participants is to provide a software
that, given a text, generates an abstractive sum-
mary for it. This task is at the heart of modern
summarization technology that may be used in the
aforementioned scenarios. Participants are encour-
aged to perform any preprocessing/normalization
of the provided training data as well as to incorpo-
rate third party data as they see fit. Their training
process must accordingly be described in detail in
the paper accompanying their final submissions.

The task is challenging, but—given recent ad-
vances in deep generative modeling—not impossi-
ble, anymore. Key to solving this task is to identify
means that will allow for generating summaries
that are short as well as self-explanatory, to work
around the idiosyncratic usage in user-generated
content, and to find levers to adjust summary qual-
ity. In this regard, a promising direction may also
be the combination of traditional, extractive sum-

Table 1: Sample content-summary pair
Content: not necessarily my lucky day , but some kids this is how it went was
sitting out on the dock at a local lake with a friend sharing some beers . little
boy aged 2-3 yrs old walks up with a wooden stick and starts poking at the
water . it was windy out and the dock was moving , and sure enough the kid
leans over just enough to topple head first into the water . i had already pulled
my phone out and wallet out just in case i was to accidentally fall in so i went
straight over and hopped in . saw his little hand reaching up and tossed him
straight back onto the dock . walked him to his dad who didn ’ t speak any
english and was very confused why i had his son soaking wet . left later that
day and saw the kid back on the dock ! it blew my mind.

TL;DR: saved a 2 year old from drowning at a lake because i was drinking
beers with a friend .

marization approaches with deep generative mod-
els as demonstrated by Liu et al. (Liu et al., 2018).

3.1 Data
The competition can be immediately started, since
its training dataset is already available (Völske
et al., 2017). We have mined Reddit for user post-
ings that include a TL;DR summary, collecting
a total of 4,044,501 content-summary pairs (see
Table 1 for an example). In terms of size, our
dataset matches the state-of-the-art Gigaword cor-
pus. This dataset covers a wide range of everyday
topics, drawing examples from 32,778 subreddits,
each of which focuses on a particular topic. The
mining process was carefully adjusted to include
and extract the many syntactical variants of TL;DR
summaries while excluding automatically gener-
ated postings and summaries by bots. To ensure
high quality, we frequently reviewed large samples
of the data, adjusting the mining process until at
least 95% of the samples were of sufficient quality.
Each item of the dataset is a pair of posting and
summary written by the same author.

For the competition, we will use a subset of
this dataset comprising 3,084,410 of the content-
summary pairs to harmonize the length distribu-
tions. In this subset, the average length of a posting
is 211 words, ranging from from 100 to 400 words,
and that of a summary is 25 words, ranging from 10
to 200 words. Participants are free to split this into
training and validation sets as deemed fit. The
test dataset comprises 1000 items held out from
the training data, each of which has been carefully
reviewed by at least three human annotators for
quality. Of these, 800 will be used in the initial
automatic evaluation runs, and the remaining 200
in a final round of manual evaluation.

3.2 Protocol
The competition will comprise three phases: (1)
participants will train summarization models using
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Nov Dec Jan Feb Mar Apr
2018 2019

Training data available

Submission system open

Crowd eval

Figure 1: Planned timeline for the TL;DR challenge.

the provided training data on their own hardware;
(2) with the submission system open, participants
will deploy their trained models on the TIRA in-
frastructure; the systems will generate candidate
summaries against the automatic evaluation test
samples, without network access or direct involve-
ment of the participants. (3) once the submission
dates conclude, the candidate summaries gener-
ated by the submitted models will be evaluated by
crowdsourcing workers against the private test set.

Phase (1) will begin two and a half months be-
fore Phase (2), from which point both will run in
parallel until the submissions system closes. Par-
ticipants will be able to train and submit models
at their discretion. For the duration of Phase (2),
submitted summaries will be automatically eval-
uated using the ROUGE measure against half of
the test set samples. Automatic evaluation scores
will populate the public leaderboard. The final
portion of the test set will only be used in the man-
ual evaluation round, so that overfitting against the
leaderboard scores can be avoided.

To ensure blind evaluation, and reproducibility,
the trained summarization models will be submit-
ted as working software that performs summary
inference given a set of input texts. Participants
will deploy this software and all required dependen-
cies on a virtual machine provided by the challenge
organizers. The test dataset will not be accessible
to participants while the competition is running;
test set summaries will be generated offline on the
aforementioned virtual machine, without direct in-
put from the participants. All evaluation runs will
be started from a clone of the participant’s virtual
machine, without network access, such that no test
set data can be leaked. We operate the cloud infras-
tructure as well as the TIRA evaluation platform
ourselves, so that no third party need be involved.
TIRA has been successfully employed for various
large-scale competitions since 2012; it is battle-

tested.
Finally, we will encourage participants to share

their code bases in a central organization at GitHub
as a kind of Open Source Proceedings.

3.3 Schedule
We envision the milestones shown in Figure 1 for
scheduling the TL;DR challenge:

• November 5th, 2018: Challenge announced;
training data available.

• January 15th, 2019: Submissions system
and public leaderboard open. Challenge par-
ticipants will be able to submit working sum-
marizers to the TIRA infrastructure; the online
leaderboard will be continuously updated to
reflect the latest performance on the test set.

• April 1st, 2019: Deadline for final software
submissions; crowd evaluation begins.

3.4 Evaluation
To determine the winners of the TL;DR challenge,
we will deploy a two step process involving both
automatic measures and a thorough human evalua-
tion of the generated summaries. Content selection
evaluation metrics such as ROUGE, BLEU, and
METEOR, will be reported to provide participants
with a first impression of the coherence and infor-
mation capturing capabilities of their models. Ad-
ditionally, embedding based metrics such as cosine
similarity of word and sentence representations of
the generated summaries will be reported against
the reference summaries.

For qualitative evaluation, human annotators re-
cruited via Amazon Mechanical Turk will read the
candidate summaries and rate them based on the
standard summary evaluation criteria established
by the DUC competitions (Dang, 2005). Each gen-
erated summary will be judged by at least three an-
notators to ensure accuracy; annotators will rate in-
dividual summaries, as well as pairs of summaries
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from different participants to establish preference
and break ties. The final ranking, and the winner
of the TL;DR challenge, will be derived from the
human annotators’ quality judgments. The crowd-
sourcing evaluation phase will employ 200 test
samples not used during the automatic evaluation
phase. Based on the number of submitted summa-
rization systems, participation in the crowd evalu-
ation phase may be limited to the top performers
on the automatic evaluation leaderboard—based on
our projections, up to approximately thirty submis-
sions will be considered for crowd evaluation.

Some time after the conclusion of the competi-
tion, all testing data and annotator decisions will be
made available to the research community at large;
we expect that the analysis of the resulting data,
and how it correlates with automatically computed
ROUGE scores, will benefit the development of
better evaluation metrics.

Outside of the ranking, we intend to offer evalu-
ation scenarios in constrained summarization, such
as generating summaries that include the topic of
the underlying discussion, summaries in the form
of questions, or wacky summaries deliberately in-
cluding off-color vocabulary. We envision such sce-
narios to gain interest as summarization technology
becomes integrated into conversational agents.

4 Conclusion

We strongly believe that our shared task proposal
will encourage creation of diverse datasets for neu-
ral summarization. The TL;DR dataset poses a
different set of challenges for neural generation
models compared to News corpora. By emphasiz-
ing on the effectiveness and limitations of exisiting
models through our challenge, the NLG community
can focus on novel models and evaluation measures
for developing better summarization technology.
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Abstract

This paper summarises the experimental
setup and results of the first shared task
on end-to-end (E2E) natural language gen-
eration (NLG) in spoken dialogue sys-
tems. Recent end-to-end generation sys-
tems are promising since they reduce the
need for data annotation. However, they
are currently limited to small, delexi-
calised datasets. The E2E NLG shared
task aims to assess whether these novel ap-
proaches can generate better-quality out-
put by learning from a dataset contain-
ing higher lexical richness, syntactic com-
plexity and diverse discourse phenom-
ena. We compare 62 systems submitted
by 17 institutions, covering a wide range
of approaches, including machine learn-
ing architectures – with the majority im-
plementing sequence-to-sequence models
(seq2seq) – as well as systems based on
grammatical rules and templates.

1 Introduction

This paper summarises the first shared task
on end-to-end (E2E) natural language genera-
tion (NLG) in spoken dialogue systems (SDSs).
Shared tasks have become an established way of
pushing research boundaries in the field of nat-
ural language processing, with NLG benchmark-
ing tasks running since 2007 (Belz and Gatt,
2007). This task is novel in that it poses new
challenges for recent end-to-end, data-driven NLG
systems for SDSs which jointly learn sentence
planning and surface realisation and do not re-
quire costly semantic alignment between mean-
ing representations (MRs) and the corresponding
natural language reference texts, e.g. (Dušek and
Jurčı́ček, 2015; Wen et al., 2015b; Mei et al.,

2016; Wen et al., 2016; Sharma et al., 2016; Dušek
and Jurčı́ček, 2016a; Lampouras and Vlachos,
2016).1 So far, end-to-end approaches to NLG
are limited to small, delexicalised datasets, e.g.
BAGEL (Mairesse et al., 2010), SF Hotels/Restau-
rants (Wen et al., 2015b), or RoboCup (Chen and
Mooney, 2008), whereas the E2E shared task is
based on a new crowdsourced dataset of 50k in-
stances in the restaurant domain, which is about
10 times larger and also more complex than pre-
vious datasets. For the shared challenge, we re-
ceived 62 system submissions by 17 institutions
from 11 countries, with about 1/3 of these sub-
missions coming from industry. We assess the
submitted systems by comparing them to a chal-
lenging baseline using automatic as well as human
evaluation. We consider this level of participa-
tion an unexpected success, which underlines the
timeliness of this task.2 While there are previous
studies comparing a limited number of end-to-end
NLG approaches (Novikova et al., 2017a; Wise-
man et al., 2017; Gardent et al., 2017), this is the
first research to evaluate novel end-to-end genera-
tion at scale and using human assessment.

2 The E2E NLG dataset

2.1 Data Collection Procedure

In order to maximise the chances for data-driven
end-to-end systems to produce high quality out-
put, we aim to provide training data in high quality
and large quantity. To collect data in large enough
quantity, we use crowdsourcing with automatic

1Note that as opposed to the “classical” definition of NLG
(Reiter and Dale, 2000; Gatt and Krahmer, 2018), generation
for dialogue systems does not involve content selection and
its sentence planning stage may be less complex.

2In comparison, the well established Conference in Ma-
chine Translation WMT’17 (running since 2006) received
submissions from 31 institutions to a total of 8 tasks (Bojar
et al., 2017a).
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MR
name[The Wrestlers],

priceRange[cheap],
customerRating[low]

Reference
The wrestlers offers competitive prices,

but isn’t highly rated by
customers.

Figure 1: Example of an MR-reference pair.

Attribute Data Type Example value

name verbatim string The Eagle, ...
eatType dictionary restaurant, pub, ...
familyFriendly boolean Yes / No
priceRange dictionary cheap, expensive, ...
food dictionary French, Italian, ...
near verbatim string Zizzi, Cafe Adriatic, ...
area dictionary riverside, city center, ...
customerRating dictionary 1 of 5 (low), 4 of 5 (high), ...

Table 1: Domain ontology of the E2E dataset.

quality checks. We use MRs consisting of an un-
ordered set of attributes and their values and col-
lect multiple corresponding natural language texts
(references) – utterances consisting of one or sev-
eral sentences. An example MR-reference pair is
shown in Figure 1, Table 1 lists all the attributes in
our domain.

In contrast to previous work (Mairesse et al.,
2010; Wen et al., 2015a; Dušek and Jurčı́ček,
2016), we use different modalities of meaning rep-
resentation for data collection: textual/logical and
pictorial MRs. The textual/logical MRs (see Fig-
ure 1) take the form of a sequence with attribute-
value pairs provided in a random order. The pic-
torial MRs (see Figure 2) are semi-automatically
generated pictures with a combination of icons
corresponding to the appropriate attributes. The
icons are located on a background showing a map
of a city, thus allowing to represent the meaning of
attributes area and near (cf. Table 1).

In a pre-study (Novikova et al., 2016), we
showed that pictorial MRs provide similar col-
lection speed and utterance length, but are less
likely to prime the crowd workers in their lexi-
cal choices. Utterances produced using pictorial
MRs were considered to be more informative, nat-
ural and better phrased. However, while pictorial
MRs provide more variety in the utterances, this
also introduces noise. Therefore, we decided to
use pictorial MRs to collect 20% of the dataset.

Our crowd workers were asked to verbalise all
information from the MR; however, they were not

Figure 2: An example pictorial MR.

E2E data part MRs References

training set 4,862 42,061
development set 547 4,672
test set 630 4,693
full dataset 6,039 51,426

Table 2: Total number of MRs and human refer-
ences in the E2E data sections.

penalised for skipping an attribute. This makes the
dataset more challenging, as NLG systems need to
account for noise in training data. On the other
hand, the systems are helped by having multiple
human references per MR at their disposal.

2.2 Data Statistics

The resulting dataset (Novikova et al., 2017b) con-
tains over 50k references for 6k distinct MRs (cf.
Table 2), which is 10 times bigger than previ-
ous sets in comparable domains (BAGEL, SF Ho-
tels/Restaurants, RoboCup). The dataset contains
more human references per MR (8.27 on average),
which should make it more suitable for data-driven
approaches. However, it is also more challenging
as it uses a larger number of sentences in refer-
ences (up to 6 compared to 1–2 in other sets) and
more attributes in MRs.

For the E2E challenge, we split the data into
training, development and test sets (in a roughly
82-9-9 ratio). MRs in the test set are all previously
unseen, i.e. none of them overlaps with train-
ing/development sets, even if restaurant names are
removed. MRs for the test set were only released
to participants two weeks before the challenge
submission deadline on October 31, 2017. Par-
ticipants had no access to test reference texts. The
whole dataset is now freely available at the E2E
NLG Challenge website at:

http://www.macs.hw.ac.uk/
InteractionLab/E2E/
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System BLEU NIST METEOR ROUGE-L CIDEr norm. avg.

♥TGEN baseline (Novikova et al., 2017b): seq2seq with MR classifier reranking 0.6593 8.6094 0.4483 0.6850 2.2338 0.5754
♥SLUG (Juraska et al., 2018): seq2seq-based ensemble (LSTM/CNN encoders, LSTM

decoder), heuristic slot aligner reranking, data augmentation
0.6619 8.6130 0.4454 0.6772 2.2615 0.5744

♥TNT1 (Oraby et al., 2018): TGEN with data augmentation 0.6561 8.5105 0.4517 0.6839 2.2183 0.5729
♥NLE (Agarwal et al., 2018): fully lexicalised character-based seq2seq with MR

classification reranking
0.6534 8.5300 0.4435 0.6829 2.1539 0.5696

♥TNT2 (Tandon et al., 2018): TGEN with data augmentation 0.6502 8.5211 0.4396 0.6853 2.1670 0.5688
♥HARV (Gehrmann et al., 2018): fully lexicalised seq2seq with copy mechanism,

coverage penalty reranking, diverse ensembling
0.6496 8.5268 0.4386 0.6872 2.0850 0.5673

♥ZHANG (Zhang et al., 2018): fully lexicalised seq2seq over subword units, attention
memory

0.6545 8.1840 0.4392 0.7083 2.1012 0.5661

♥GONG (Gong, 2018): TGEN fine-tuned using reinforcement learning 0.6422 8.3453 0.4469 0.6645 2.2721 0.5631
♥TR1 (Schilder et al., 2018): seq2seq with stronger delexicalization (incl. priceRange

and customerRating)
0.6336 8.1848 0.4322 0.6828 2.1425 0.5563

♦SHEFF1 (Chen et al., 2018): 2-level linear classifiers deciding on next slot/token,
trained using LOLS, training data filtering

0.6015 8.3075 0.4405 0.6778 2.1775 0.5537

♣DANGNT (Nguyen and Tran, 2018): rule-based two-step approach, selecting phrases
for each slot + lexicalising

0.5990 7.9277 0.4346 0.6634 2.0783 0.5395

♥SLUG-ALT (late submission, Juraska et al., 2018): SLUG trained only using complex
sentences from the training data

0.6035 8.3954 0.4369 0.5991 2.1019 0.5378

♦ZHAW2 (Deriu and Cieliebak, 2018): semantically conditioned LSTM RNN language
model (Wen et al., 2015b) + controlling the first generated word

0.6004 8.1394 0.4388 0.6119 1.9188 0.5314

♠TUDA (Puzikov and Gurevych, 2018): handcrafted templates 0.5657 7.4544 0.4529 0.6614 1.8206 0.5215

♦ZHAW1 (Deriu and Cieliebak, 2018): ZHAW2 with MR classification loss + reranking 0.5864 8.0212 0.4322 0.5998 1.8173 0.5205
♥ADAPT (Elder et al., 2018): seq2seq with preprocessing that enriches the MR with

desired target words
0.5092 7.1954 0.4025 0.5872 1.5039 0.4738

♥CHEN (Chen, 2018): fully lexicalised seq2seq with copy mechanism and attention
memory

0.5859 5.4383 0.3836 0.6714 1.5790 0.4685

♠FORGE3 (Mille and Dasiopoulou, 2018): templates mined from training data 0.4599 7.1092 0.3858 0.5611 1.5586 0.4547

♥SHEFF2 (Chen et al., 2018): vanilla seq2seq 0.5436 5.7462 0.3561 0.6152 1.4130 0.4462

♠TR2 (Schilder et al., 2018): templates mined from training data 0.4202 6.7686 0.3968 0.5481 1.4389 0.4372

♣FORGE1 (Mille and Dasiopoulou, 2018): grammar-based 0.4207 6.5139 0.3685 0.5437 1.3106 0.4231

Table 3: A list of primary systems in the E2E NLG challenge, with word-overlap metric scores.

System architectures are coded with colours and symbols: ♥seq2seq, ♦other data-driven, ♣rule-based, ♠template-based. Un-
less noted otherwise, all data-driven systems use partial delexicalisation (with name and near attributes replaced by placeholders
during generation), template- and rule-based systems delexicalise all attributes. In addition to word-overlap metrics (see Sec-
tion 4.1), we show the average of all metrics’ values normalised into the 0-1 range, and use this to sort the list. Any values
higher than the baseline are marked in bold.

3 Systems in the Competition

The interest in the E2E Challenge has by far ex-
ceeded our expectations. We received a total of
62 submitted systems by 17 institutions (about 1/3
from industry). In accordance with ethical con-
siderations for NLP shared tasks (Parra Escartı́n
et al., 2017), we allowed researchers to withdraw
or anonymise their results if their system performs
in the lower 50% of submissions. Two groups
from industry withdrew their submissions and one
group asked to be anonymised after obtaining au-
tomatic evaluation results.

We asked each of the remaining teams to iden-
tify 1-2 primary systems, which resulted in 20 sys-
tems by 14 groups. Each primary system is de-
scribed in a short technical paper (available on
the challenge website) and was evaluated both by
automatic metrics and human judges (see Sec-

tion 4). We compare the primary systems to a
baseline based on the TGEN generator (Dušek and
Jurčı́ček, 2016a). An overview of all primary sys-
tems is given in Table 3, including the main fea-
tures of their architectures. A more detailed de-
scription and comparison of systems will be given
in (Dušek et al., 2018).

4 Evaluation Results

4.1 Word-overlap Metrics
Following previous shared tasks in related fields
(Bojar et al., 2017b; Chen et al., 2015), we se-
lected a range of metrics measuring word-overlap
between system output and references, including
BLEU, NIST, METEOR, ROUGE-L, and CIDEr.
Table 3 summarises the primary system scores.
The TGEN baseline is very strong in terms of
word-overlap metrics: No primary system is able
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# TrueSkill Rank System

1 0.300 1–1 ♥SLUG

2

0.228 2–4 ♠TUDA
0.213 2–5 ♥GONG

0.184 3–5 ♣DANGNT
0.184 3–6 ♥TGEN

0.136 5–7 ♥SLUG-ALT (late)
0.117 6–8 ♦ZHAW2
0.084 7–10 ♥TNT1
0.065 8–10 ♥TNT2
0.048 8–12 ♥NLE
0.018 10–13 ♦ZHAW1
0.014 10–14 ♣FORGE1

-0.012 11–14 ♦SHEFF1
-0.012 11–14 ♥HARV

3 -0.078 15–16 ♠TR2
-0.083 15–16 ♠FORGE3

4
-0.152 17–19 ♥ADAPT

-0.185 17–19 ♥TR1
-0.186 17–19 ♥ZHANG

5 -0.426 20–21 ♥CHEN

-0.457 20–21 ♥SHEFF2

N
at

ur
al

ne
ss

# TrueSkill Rank System

1 0.211 1–1 ♥SHEFF2

2

0.171 2–3 ♥SLUG

0.154 2–4 ♥CHEN

0.126 3–6 ♥HARV

0.105 4–8 ♥NLE
0.101 4–8 ♥TGEN

0.091 5–8 ♣DANGNT
0.077 5–10 ♠TUDA
0.060 7–11 ♥TNT2
0.046 9–12 ♥GONG

0.027 9–12 ♥TNT1
0.027 10–12 ♥ZHANG

3

-0.053 13–16 ♥TR1
-0.073 13–17 ♥SLUG-ALT (late)
-0.077 13–17 ♦SHEFF1
-0.083 13–17 ♦ZHAW2
-0.104 15–17 ♦ZHAW1

4 -0.144 18–19 ♣FORGE1
-0.164 18–19 ♥ADAPT

5 -0.243 20–21 ♠TR2
-0.255 20–21 ♠FORGE3

Table 4: TrueSkill measurements of quality (left) and naturalness (right).
Significance cluster number, TrueSkill value, range of ranks where the system falls in 95% of cases or more, system name.
Significance clusters are separated by a dotted line. Systems are colour-coded by architecture as in Table 3.

to beat it in terms of all metrics – only SLUG

comes very close. Several other systems beat
TGEN in one of the metrics but not in others.3

Overall, seq2seq-based systems show the best
word-based metric values, followed by SHEFF1,
a data-driven system based on imitation learning.
Template-based and rule-based systems mostly
score at the bottom of the list.

4.2 Results of Human Evaluation

However, the human evaluation study provides a
different picture. Rank-based Magnitude Estima-
tion (RankME) (Novikova et al., 2018) was used
for evaluation, where crowd workers compared
outputs of 5 systems for the same MR and as-
signed scores on a continuous scale. We evaluated
output naturalness and overall quality in separate
tasks; for naturalness evaluation, the source MR
was not shown to workers. We collected 4,239 5-
way rankings for naturalness and 2,979 for quality,
comparing 9.5 systems per MR on average.

The final evaluation results were produced us-
ing the TrueSkill algorithm (Herbrich et al., 2006;
Sakaguchi et al., 2014), with partial ordering into
significance clusters computed using bootstrap re-
sampling (Bojar et al., 2013, 2014; Sakaguchi
et al., 2014). For both criteria, this resulted in 5

3Note, however, that several secondary system submis-
sions perform better than the primary ones (and the baseline)
with respect to word-overlap metrics.

clusters of systems with significantly different per-
formance and showed a clear winner: SHEFF2 for
naturalness and SLUG for quality. The 2nd clus-
ters are quite large for both criteria – they contain
13 and 11 systems, respectively, and both include
the baseline TGEN system.

The results indicate that seq2seq systems domi-
nate in terms of naturalness of their outputs, while
most systems of other architectures score lower.
The bottom cluster is filled with template-based
systems. The results for quality are, however,
more mixed in terms of architectures, with none
of them clearly prevailing. Here, seq2seq systems
with reranking based on checking output correct-
ness score high while seq2seq systems with no
such mechanism occupy the bottom two clusters.

5 Conclusion

This paper presents the first shared task on end-to-
end NLG. The aim of this challenge was to assess
the capabilities of recent end-to-end, fully data-
driven NLG systems, which can be trained from
pairs of input MRs and texts, without the need for
fine-grained semantic alignments. We created a
novel dataset for the challenge, which is an order-
of-magnitude bigger than any previous publicly
available dataset for task-oriented NLG. We re-
ceived 62 system submissions by 17 participating
institutions, with a wide range of architectures,
from seq2seq-based models to simple templates.
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We evaluated all the entries in terms of five differ-
ent automatic metrics; 20 primary submissions (as
identified by the 14 remaining participants) under-
went crowdsourced human evaluation of natural-
ness and overall quality of their outputs.

We consider the SLUG system (Juraska et al.,
2018), a seq2seq-based ensemble system with a
reranker, as the overall winner of the E2E NLG
challenge. SLUG scores best in human evalua-
tions of quality, it is placed in the 2nd-best clus-
ter of systems in terms of naturalness and reaches
high automatic scores. While the SHEFF2 sys-
tem (Chen et al., 2018), a vanilla seq2seq setup,
won in terms of naturalness, it scores poorly on
overall quality – it placed in the last cluster. The
TGEN baseline system turned out hard to beat: It
ranked highest on average in word-overlap-based
automatic metrics and placed in the 2nd cluster in
both quality and naturalness.

The results in general show the seq2seq archi-
tecture as very capable, but requiring reranking
to reach high-quality results. On the other hand,
while rule-based approaches are not able to beat
data-driven systems in terms of automatic metrics,
they often perform comparably or better in human
evaluations.

We are preparing a detailed analysis of the re-
sults (Dušek et al., 2018) and a release of all sys-
tem outputs with user ratings on the challenge
website.4 We plan to use this data for experiments
in automatic NLG output quality estimation (Spe-
cia et al., 2010; Dušek et al., 2017), where the
large amount of data obtained in this challenge al-
lows a wider range of experiments than previously
possible.

Acknowledgements

This research received funding from the EPSRC
projects DILiGENt (EP/M005429/1) and MaDrI-
gAL (EP/N017536/1). The Titan Xp used for this
research was donated by the NVIDIA Corpora-
tion.

References

Shubham Agarwal, Marc Dymetman, and Éric
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Abstract

This paper addresses the task of generat-
ing descriptions of people for an observer
that is moving within a scene. As the ob-
server moves, the descriptions of the peo-
ple around him also change. A referring
expression generation algorithm adapted
to this task needs to continuously moni-
tor the changes in the field of view of the
observer, his relative position to the peo-
ple being described, and the relative po-
sition of these people to any landmarks
around them, and to take these changes
into account in the referring expressions
generated. This task presents two advan-
tages: many of the mechanisms already
available for static contexts may be ap-
plied with small adaptations, and it intro-
duces the concept of changing conditions
into the task of referring expression gen-
eration. In this paper we describe the de-
sign of an algorithm that takes these as-
pects into account in order to create de-
scriptions of people within a 3D virtual
environment. The evaluation of this al-
gorithm has shown that, by changing the
descriptions in real time according to the
observers point of view, they are able to
identify the described person quickly and
effectively.

1 Introduction

The task of Referring Expression Generation
(REG) has traditionally been considered in static
contexts, where neither the properties of the ob-
jects being described nor their relation to the ob-
server change over time. This is a good starting
point to address the problem because it includes
the elements that are involved in more complex

situations. The case where the observer is moving
along a static context is a slight departure from the
basic static case, with two significant advantages:
many of the mechanisms available for static con-
texts may be applied with small adaptations, and it
introduces the concept of changing conditions into
the task of referring expression generation. For
this reason, it is a worthwhile problem to explore.

A challenge when trying to address this prob-
lem is the need to continuously gather data on the
relevant conditions – the field of view of the ob-
server, his relative position to the people being de-
scribed, and the relative position of these people to
any landmarks around them in terms of how they
appear in the field of view of the observer.

Gathering these data in a real life context may
be very difficult, but if the situation is modeled in a
3D environment that represents the chosen scene,
with a camera following the observer in first per-
son mode, the compilation of all these data be-
comes a feasible task, and the generation of de-
scriptions in real time becomes possible.

We have studied different proposals to solve
similar problems and have developed a meta-
algorithm based on the work depicted in (Méndez
et al., 2017), where the authors studied the behav-
ior of classic REG algorithms applied to this prob-
lem (section 3). Then, we have built a 3D scene
and have populated it with people in order to test
this meta-algorithm when the observer can move
around the scene (section 4). The results of this
evaluation have shown that the descriptions can be
improved in order for the observers to find the tar-
get person more easily, so we have extended the
previous algorithm to include additional informa-
tion to the descriptions (section 5). We have sub-
sequently evaluated the new algorithm using the
same scenes (section 6) and the results show that
the observers are able to find the target person
faster and with a much higher hit rate than before.
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2 Related Work

A Referring Expression (RE) is a description cre-
ated with the intention of distinguishing a certain
element (i.e. referent) from a number of other
elements (i.e. distractors). It must identify the
referent unambiguously, effectively ruling out all
the distractors. Therefore, any expression that
meets these criteria can be called a referring ex-
pression. However, not all of them can be consid-
ered equally good: they may be too long or too
short, they may not contain enough information or
they may have too many unhelpful details that hin-
der the listener.

The field of Referring Expression Generation
(REG) has been widely explored for several
decades (see (Krahmer and van Deemter, 2012)
for an extensive survey), and there have been many
studies for generating appropriate REs in different
contexts. However, most of these solutions have
approached the problem considering static con-
texts where neither the objects being described nor
the point of view of the observer change over time.

In (Méndez et al., 2017) the authors assume
that people and objects are described in different
ways, since attributes such as size, shape or color,
used to describe objects, are not so suitable for
describing people. In order to identify what fea-
tures are relevant for individuals when they have
to describe other people, they conducted a num-
ber of surveys with human evaluators. These stud-
ies provided two important insights. The first one
was that distance (from the viewer and to land-
marks) influences the identification of referents,
and REs that include information about nearby ob-
jects or people appeared to be easier to understand.
The second insight obtained from the study was
a list of preferred attributes when describing peo-
ple in crowded environments. Based on these re-
sults, they proposed as future work the creation of
a meta-algorithm that, depending on the particular
circumstances pertaining to a given scene, selected
a particular referring expression generation algo-
rithm out of a set of the classic solutions studied.

Additionally, in recent years, computational ap-
proaches to REG have increasingly explored the
task of adapting to dynamic contexts. The gen-
eration of appropriate referring expressions in the
context of interactive dialogues is one of the prob-
lems that has received a lot of attention. Stoia et al.
(2006) presented a REG system in dialogues that
takes into account the current field of view of the

speakers, how distant they are from the target, and
the dialogue history. Similarly, Fang et al. (2014)
describe two approaches to REG in situated dia-
log with artificial agents, both of which generate
multiple small expressions that lead to the target
object with the goal of minimizing the collabora-
tive effort between the human and the agent. Ja-
narthanam and Lemon (2009) explored a method
for automatically adapting referring expressions to
the lexical knowledge of users. Gatt et al. (2011)
proposed a new model for interactive REG which
incorporated both property preferences and prim-
ing effects and obtained good results in compar-
ison with human experimental data. Garoufi and
Koller (2014) presented a model of effective refer-
ence generation in situational contexts which dis-
tinguishes speaker helpfulness in a certain situa-
tion with the aim of modelling helpful speaker be-
haviour. Baltaretu et al. (2017) describe an ap-
proach that discusses the use of moving landmarks
to generate route directions and how the listen-
ers evaluate these instructions. The results show
that listeners understand these instructions with-
out much effort, but speakers tend to use stable
landmarks more often. Unlike these approaches,
which take advantage of situational dialogue and
interaction with the user, the work described in this
paper does not assume that the interaction with the
user is possible or desirable, that is, we cope with
the dynamics of the environment and try to pro-
vide the users with the best possible description,
rather than requiring their collaboration to gener-
ate it.

Considering the physical context when gener-
ating REs, there are some works which have ex-
plored the REG problem in the context of 3D en-
vironments. The GIVE challenges (Byron et al.,
2009; Koller et al., 2010; Striegnitz et al., 2011)
focused on the generation of instructions in a
virtual 3D environment to help a user solve a
treasure-hunt task. One interesting aspect of us-
ing a virtual environment was that spatial and re-
lational expressions played a bigger role than in
other NLG tasks, and the necessary information to
create the descriptions was already present in the
environment. Garoufi et al. (2015) present an in-
teresting work which has used the GIVE environ-
ment to study how a generation system that uses
listener gaze to provide rapid feedback improves
the generation of REs in comparison with two sys-
tems that do not consider the listener’s gaze.
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Figure 1: Design of the meta-algorithm

3 Design of a Meta-Algorithm for
Character Descriptions

Based on the results and conclusions described in
(Méndez et al., 2017), we decided to design and
implement a meta-algorithm that, based on classic
REG solutions, could dynamically decide which
of them was more suitable to describe a given sit-
uation.

The classic algorithms considered were: Incre-
mental (Reiter and Dale, 1992; Dale and Reiter,
1995), Greedy (Dale, 1989, 1992), Nearby People
with Incremental – extend the description with re-
lation to the nearest person, using the Incremental
algorithm to describe that person –, and Nearby
Objects with Greedy – extend the description with
relation to nearest object, using the Greedy algo-
rithm to describe the referent.

Taking into account the results obtained in
the empirical evaluation of these algorithms in
(Méndez et al., 2017), the meta-algorithm works
as follows (see Figure 1 for a graphical descrip-
tion of the process).

First, the meta-algorithm tries to create a
Nearby People with Incremental description. In
order to do that, the meta-algorithm uses the
Greedy algorithm to determine if there is a nearby
person that is very easily identifiable (can be de-
scribed by using only two attributes). If there
is, the meta-algorithm returns the Incremental de-
scription of the referent plus the Greedy descrip-
tion of the nearby person.

If there is no other character near the target that

is sufficiently distinguishable, the meta-algorithm
goes on to find out if the referent stands out in the
scene (can be referred to by using exactly two at-
tributes). If this is the case, the meta-algorithm
generates an Incremental description for the refer-
ent.

If the referent does not stand out, the meta-
algorithm then tries to use the Nearby Objects with
Greedy Algorithm. We use the Greedy Algorithm
here only to describe the referent. Because of the
low number and variation of objects in the scenes,
we have considered the name of the object to be
descriptive enough.

If there are no distinguishable objects near the
referent, the meta-algorithm finishes by generat-
ing the description of the referent using the Greedy
Algorithm.

The evaluation of this meta-algorithm with 38
users (15 women and 23 men) and 9 different
scenes showed a total hit rate of 95% (324 correct
answers out of 342). Even though in the evalua-
tions used to design the meta-algorithm the users
had shown a slight preference for the descriptions
generated by the Nearby People with Incremental
Algorithm, in this last evaluation the results were a
little better when the descriptions were generated
by the Nearby Objects with Greedy Algorithm,
since all the users found the right target when this
algorithm was used. In addition, after the evalu-
ation some of the users reported that some of the
mistakes they had made had to do with the diffi-
culty to remember long descriptions.
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Algorithm Description Hits Scene
Greedy The girl in the blue shirt standing, leaning on a table 96% 10
Nearby Objects The boy in the red rolled up sleeves shirt near the window 89% 7
Nearby People The girl in the blue sweater with black hair. She is near,

next to the girl in the yellow tank top
89% 3

Nearby People The girl in the green tank top who is standing up. She is
near, next to the girl standing pointing at something

85% 6

Nearby Objects The boy in the black shirt sitting near the window 85% 1
Nearby Objects The boy in the blue t-shirt with black hair sitting near the

window
67% 2

Greedy The girl in the red shirt with redhead hair 63% 5
Nearby Objects The boy in the green shirt with redhead hair sitting near the

column
48% 9

Incremental The boy in the red t-shirt with spike blond hair who is sit-
ting down. He is far

48% 4

Incremental The boy in the blue rolled up sleeves shirt with spike red-
head hair. He is near

44% 8

Table 1: Results of the meta-algorithm evaluation

4 Perspective-Based Evaluation of the
Meta-Algorithm

One of the difficulties when generating descrip-
tions in changing environments is to decide when
and how to change the referring expression we use
to describe an element’s situation, even more if we
take into account that not everybody refers to an
element in the same manner. In order to gener-
ate this kind of descriptions, the first step we took
was to test the behavior of the meta-algorithm de-
scribed in section 3 in dynamic conditions, in or-
der to check the suitability of the generated de-
scriptions as the user’s viewpoint changed.

A survey was carried out in order to study how
the changes in the user’s point of view affected the
perceived accuracy of the descriptions generated
by algorithms thought to work in static conditions.
The survey was completed by 27 people (45% of
women and 55% of men), with ages from 20 to 45
years old. The users were shown ten scenes in a
3D virtual environment, together with the descrip-
tion of the target character they had to identify in
each of them, generated by the meta-algorithm.

The description was presented to the users as a
written message on the top part of the screen, and
it was kept there until the users clicked on what
they considered to be the target character. They
were not told whether they could see the target
character or not, and they could move around the
environment in order to find the described person.

The users had to click on it once they thought they
had found it, but the provided description did not
change as they moved.

All the scenes were reproductions of pictures
taken in our canteen (so they all represent real
situations), and all of them included more than
30 characters, both male and female, most of
them between 18 and 25 years old, with varied
characteristics, and typical actions included peo-
ple speaking, drinking or working together, either
standing up or sitting down. The scenes and char-
acters were selected so that they put to test some
difficult situations, such as characters that were
initially out of sight, other characters that might
get out of sight as the users moved around the
scene, or some others that were difficult to see
from a long distance and that looked similar to
other characters close to them.

Table 1 shows the description generated for
each scene of the evaluation, along with the al-
gorithm selected by the meta-algorithm to gen-
erate it and the percentage of users that found
the described character. Most correct clicks were
achieved when the descriptions were generated by
the nearby objects or people algorithms to describe
the target; some of these descriptions made refer-
ence to the posture of the target to describe it.

In contrast, the incremental algorithm has got
low hit rates in the two scenes where it was se-
lected by the meta-algorithm to generate the de-
scriptions. The reason behind it is that this al-
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gorithm is selected when there are no salient ob-
jects or characters than can be used by other al-
gorithms, and the incremental algorithm does not
provide enough discriminating power when there
are too many characters that look like the target
one. This, in turn, has more to do with the dif-
ficulty to describe the characters in these scenes
than with the algorithm itself, as it has been se-
lected by the meta-algorithm precisely because it
works better than the rest in these situations.

An advantage of the incremental algorithm is
the inclusion of the distance between the user posi-
tion and the target character as a descriptor. How-
ever, as the user moves around the scene, the meta-
algorithm fails in updating this reference, thus
making the description invalid. This points to
the need of changing the description as the user
moves, to keep it aligned with the user perspective
of the scene, which will be included in the algo-
rithm described in the next section.

Many users got some scenes wrong when they
had to find easy to identify persons, because there
was a character that looked like them in the users’
field of view at the start. A way to fix this is to
specify in the description if the target is in the
user’s field of view or not, and if it is near or far.
Regarding the distance, the users were sometimes
confused by the indication of the target being far,
when they considered that it was not that far. Thus,
a finer distinction of the distance to the target may
also improve the quality of the descriptions.

5 Implementation of a Perspective-Based
Algorithm to Describe People

With the results of the previous survey, and using
the graphical engine Unity 3D, an extension to the
meta-algorithm described in section 3 has been de-
veloped to generate descriptions of characters in
real time that change according to the user’s posi-
tion within the environment.

The developed algorithm was implemented in
a game where the user had to find the charac-
ter that was being described, for which he could
move around the environment and the provided
description changed accordingly. The content of
the description is based on the character’s physi-
cal appearance, which does not change, its posi-
tion within the environment, and its situation with
respect to other relevant characters and objects that
are present in the environment. Therefore, a com-
plete description consists in the composition of

two different parts:

• attribute-based description, which refers to
the static characteristics of an individual and
its environment, and they cannot change dur-
ing the simulation. This part of the descrip-
tion is generated using the meta-algorithm;

• perspective-based description, which has to
be generated in real time according to the sit-
uation of the user relative to the situation of
the described character.

The perspective-based description of a charac-
ter is composed of sub-descriptions, which are
generated according to the data that is obtained
from the scene. There are three possible types of
sub-descriptions:

• description of reference points: this descrip-
tion contains information related to the refer-
ence points scattered all over the scene, such
as the end of a corridor or a corner;

• description of the visibility: it contains the
information about the visibility of the target
from the user’s point of view, such as the fact
that the described person is behind a column
or another person, or even behind the user;

• distance between the described person and
the user: it contains a textual explanation
of the distance between the described person
and the user: near, a little far (i.e. medium
distance) and far. This is a source of mis-
match with the meta-algorithm, as it only
considered that targets might be either near
or far.

These sub-descriptions are generated and up-
dated in real time, and they are shown to the users
as soon as the conditions used to generate the cur-
rent description change (e.g. the described charac-
ter starts being visible, or the user gets close to the
target character), according to the following rules:

1. First the algorithm checks the distance be-
tween the user and the reference points pre-
viously placed into the scene. If the distance
from the user to one of these points is greater
than a predefined constant (that depends on
the dimensions of the scene), the generated
description is updated with information about
the proximity of the described character to
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(a) Zoom of the initial situation of scene 3. The target person
is a girl that is not near the observer, hidden behind a column.
The provided initial description is The girl in the blue sweater
with black hair, next to the girl in the yellow tank top. The
described person is behind a column. She is not far

(b) Final situation of scene 3. The observer has moved closer
to the target person and is looking at her from the other side.
The provided description is The girl in the blue sweater with
black hair, next to the girl in the yellow tank top. She is near.
You can see the described person

Figure 2: Sample scene used in the evaluation. A red circle has been drawn around the described person

that point (e.g. the described person is at the
end of the corridor, if the user is far from the
end of the corridor).

2. Then, the algorithm checks if the target char-
acter is in the user’s point of view (i.e. ap-
proximately in front of the user). If not, the
generated description must contain the posi-
tional references of the described person to
the user: it indicates whether the described
person is to the left, right or behind the user.

3. If the described person is within the user’s
field of view, the algorithm checks the abso-
lute distance between the target and the user
and indicates the user whether he is near, not
far or far from the described person.

Finally, the description that is shown to the user
has to be composed. First, if the description pro-
vided by the meta-algorithm contains information
about the distance from the user to the target char-
acter, it is removed, as the new algorithm may treat
this information differently. Then, by combining
sub-descriptions, and using the previous rules, the
perspective-based descriptions are generated (e.g.
The boy in the black shirt sitting near the window.
The described person is behind another person.
He is not far).

6 Evaluation of the Perspective-Based
Algorithm

A second evaluation was carried out six months
after the first one, using the same conditions and
instructions as in the first one. The main objec-
tive of this evaluation was to test the improvements
added to the meta-algorithm by comparing the ob-
tained results with those of the first survey. There-
fore, the people that had to be found by the ob-
server, and the scenes used for it, were the same
as in the previous one. This way, a reliable com-
parison could be made between both versions of
the meta-algorithm in order to test their effective-
ness. A sample scene used for this evaluation can
be seen in Figure 2. The number of people that
completed the survey was twenty seven, the same
as in the first survey. 85% of them were between
20 and 30 years old, and the remaining 15% were
between 30 and 40. 63% of the participants were
male, and the remaining 37% were female. Five
of the evaluators had also completed the first sur-
vey, but after six months they assured they did not
notice the scenes and characters were the same as
in the first one.

Table 2 shows the results obtained in this eval-
uation. The column corresponding to the descrip-
tion only shows the initial descriptions of the tar-
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Algorithm Initial Description Hits Scene
Greedy The girl in the blue shirt standing, leaning on a table. You can see

the described person. She is a little far
96% 10

Nearby Objects The boy in the red rolled up sleeves shirt near the window. The
described person is far from you

92% 7

Nearby People The girl in the blue sweater with black hair, next to the the girl
in the yellow tank top. The described person is behind a column.
She is a little far

92% 3

Nearby People The girl in the green tank top who is standing up. The described
person is a little far from you

92% 6

Nearby Objects The boy in the black shirt sitting near the window. The described
person is behind another person. He is a little far.

89% 1

Nearby Objects The boy in the blue t-shirt with black hair sitting near the window.
The described person is far from you

89% 2

Nearby Objects The boy in the red t-shirt near the column. He is at the back of
the canteen

89% 4

Nearby Objects The boy in the green shirt sitting near the column. The described
person is far from you

85% 9

Incremental The boy in the blue rolled up sleeves shirt with spike redhead hair.
The described person is a little far from you

85% 8

Greedy The girl in the red shirt with redhead hair. The described person
is far from you

78% 5

Table 2: Results of the perspective-based meta-algorithm evaluation

get characters, so that they can be compared with
the ones in Table 1. An example of the initial and
final descriptions for scene 3 in shown in Figure 2.

All the scenes have obtained an increased hit
rate, except for the first one, which scores the
same as in the first evaluation (96%). The first
five scenes in the first evaluation still occupy the
same positions in the second one, but with higher
hit rates, as we have mentioned. So does the sixth
one, but with a much higher hit rate than before.
The last four ones have also experienced improve-
ments in their hit rates, with slight variations in
their relative positions.

Some remarkable differences can be found be-
tween the descriptions in Tables 1 and 2. In scenes
6 and 8, the target is not described as being near
any more, but a little far. This is due to the finer
distinction that the new algorithm makes for de-
scribing distances. In addition, in scene 4, the al-
gorithm used to generate the description is differ-
ent in both evaluation. This is caused by the in-
clusion of a landmark in the scene (i.e. the back
of the canteen) which causes the meta-algorithm
to change the algorithm selected to generate the
description.

On average, the new perspective-based meta-

algorithm has a hit rate of 88% (240/270). Com-
paring it to the previous algorithm that got 71%
(194/270), we can see an improvement in the al-
gorithm’s capabilities to adapt the descriptions to
different points of view.

A lot of factors have influenced the overall im-
provement in the results. For example, the par-
ticipants of the second survey who had also com-
pleted the first survey provided us with some feed-
back about the improvements they had perceived.
One of their comments was that they felt more
confident looking for the target character if they
knew at the beginning where to start looking for
it. This confirms that having the algorithm detail
the distance of the observer to the target character
and specifying if he/she was in the field of view
of the observer has provided better indications for
the users to find the described person.

The change of the description in real time has
helped the observers in a more realistic way, mim-
icking how a real person would be providing the
description. Again, the users’ feedback shows that
they get lost less frequently when the algorithm
offers them clues about where the target person is.

In both evaluations, we measured the time it
took the users to click on the person they though
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Scene First Eval Second Eval
10 0.82 0.90
7 2.99 4.30
3 3.01 3.50
6 2.12 4.40
1 3.79 5.00
2 4.88 5.30
4 3.50 2.90
9 1.66 0.48
8 0.70 0.30
5 7.40 4.70

Table 3: Average response times (in seconds) for
each scene

that was being described. Table 3 shows the aver-
age response times for each scene, sorted descend-
ingly according to the hit rates obtained in the sec-
ond evaluation. At first sight, it seems that the re-
sults obtained with the new version of the algo-
rithm are slightly worse than those of the first ver-
sion. However, a careful analysis of the collected
data has shown that this is due to the increased hit
rate of the second evaluation. In the first evalu-
ation, the users who clicked on the wrong target
answered much faster than the ones who tried to
find the right one. Comparing the ones who took
the right choice, the average response times are
slightly better using the second version of the al-
gorithm, although the difference is not significant
and may be even due to the users ability to play in
first person games.

Even though this evaluation is not statistically
significant, provided that there were only 10
scenes and 27 evaluators, the improvement ob-
tained using the perspective-based algorithm was
quite consistent across all the scenes, so we can
conclude that adding information regarding the lo-
cation and visibility of the target character, along
with updates in the descriptions when the user’s
point of view changes, allow the users to better
find the person that is being described, very much
in line with some the previous work described in
section 2.

7 Discussion

The current work has focused on describing peo-
ple in dynamic contexts in which the observer can
move around the environment, while the rest of the
people are static.

The first question that arises is whether the de-

scribed approach only works for people or if it is
possible to generalize it to describe other entities.
As far as we can tell, the way in which people
are described differs from the way in which other
entities are. Previous results presented earlier in
this paper suggest that, when describing people,
the attributes and order in which they are used dif-
fer from those used to describe objects. The al-
gorithms we have used to describe people are not
specifically tailored for the situations and environ-
ments in which the experiments have been run, so
it is certainly possible to adapt them to describe
other entities. It is not the case, however, of the
meta-algorithm and the perspective-based meta-
algorithm, as their design is based on experimen-
tal results drawn exclusively from descriptions of
people, so further study is required in order to fig-
ure out how the adaptation to describe objects or
other entities might be carried out.

The second question that arises is whether the
proposed approach should have been used to de-
scribe objects instead of people, as the environ-
ment is static, or whether we should have been
immersed in a more realistic, dynamic environ-
ment where the rest of the characters could also
move. The answer to the first part of the question
is that our main interest was in describing people,
as much less research work seems to have been
carried out in this area. This links with the second
part of the question, for which the answer is that
describing characters that can move around the en-
vironment is a much more complicated problem,
since they can change their position, posture, the
way they dress or, more important for some of
the algorithms we have used, they can become or
stop being a reference element in the description
(e.g. Nearby People with Incremental), which in-
troduces a high degree of complexity in the de-
scriptions and requires the algorithms to monitor
many more variables when deciding which ele-
ments to include in the descriptions. This work
provides a first approach to deal with more dy-
namic environments where not only the observer’s
point of view is to be considered, but also other
elements that move around the environment.

There are other limitations to the current ap-
proach, such as the lack of references to groups
of people (or even objects) doing something (e.g.
the boy in the red t-shirt sitting near the girls play-
ing Scrabble), which becomes even more compli-
cated in dynamic contexts where groups may form
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and break, and which also leads us to evaluate un-
der what conditions should we consider that some
people are forming a group or not.

Some of the limitations of the proposed algo-
rithm have not been studied yet, such as the results
it would produce in environments where there is
little variation in the aspect of the characters be-
ing described (e.g. all the characters are wearing
a uniform). Another limitation is the fact that we
have tested the algorithm in scenes where the num-
ber of relevant objects that may be included in the
description is small, so just using the name of the
objects in the descriptions was enough, but addi-
tional decisions on how to use object descriptions
may be necessary if this situation changes.

8 Conclusions and Future Work

Throughout this work we have seen that the prob-
lem we have addressed – describing people when
the observers can change their point of view –
poses challenging issues that have been satisfac-
torily solved, although there is still space for im-
provement. He have shown that, by using the
techniques that have been used traditionally to de-
scribe static situations, we can generate acceptable
descriptions when we shift to more dynamic envi-
ronments, closer to real life situations, in which
the observer can move to get a better perspective
of the person being described. In contrast with
the works described in section 2, which assume
that the users can interact and collaborate to let
the system generate small bits of the description
that takes them progressively closer to the target,
we do not take that for granted, so we always pro-
vide users with a full description of the target from
the current point of view, which is updated as the
users move across the scene.

In addition, we have put forward that, if we take
into account certain aspects that change as the ob-
server moves, the descriptions we generate can be
more accurate and can help the observer identify
the target person more easily. The aspects we have
taken into account in this work have been: the dis-
tance between the observer and the target subject;
the visibility that the observer has of the described
person; and the relative position among the ob-
server, the referent and significant landmarks that
can help locate the objective more easily.

The proposed solution to generate descriptions
is based on the use of crisp values to determine
thresholds in order to generate linguistic labels to

refer, for example, to distances. However, this
specific aspect can benefit from the use of fuzzy
logic to generate descriptions of spatial relation-
ships. Although we have not been able to find
an approach of this kind in the reviewed literature,
there have been some efforts to solve similar prob-
lems in the fields of image analysis and computer
vision, as described by Bloch and Ralescu (2003),
who have subsequently developed several meth-
ods to describe spatial relations between objects
(Hudelot et al., 2008). Other authors have tack-
led the problem of automatic scene descriptions
in image analysis using fuzzy rule-based systems
(Keller and Wang, 2000) and fuzzy sets (Matsakis
et al., 2001), through the use of histograms of an-
gles and forces and a dictionary of labels.

In addition, the generation of descriptions in
more realistic environments, where the elements
of the scene can move and change, is another prob-
lem that still needs to be tackled and that poses
even more challenging issues to solve.
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Abstract

The manual creation of gold standards
for named entity recognition and entity
linking is time- and resource-intensive.
Moreover, recent works show that such
gold standards contain a large propor-
tion of mistakes in addition to being
difficult to maintain. We hence present
BENGAL, a novel automatic generation
of such gold standards as a complement
to manually created benchmarks. The
main advantage of our benchmarks is
that they can be readily generated at
any time. They are also cost-effective
while being guaranteed to be free of
annotation errors. We compare the per-
formance of 11 tools on benchmarks in
English generated by BENGAL and on 16
benchmarks created manually. We show
that our approach can be ported easily
across languages by presenting results
achieved by 4 tools on both Brazilian Por-
tuguese and Spanish. Overall, our results
suggest that our automatic benchmark
generation approach can create varied
benchmarks that have characteristics
similar to those of existing benchmarks.
Our approach is open-source. Our expe-
rimental results are available at http:
//faturl.com/bengalexpinlg
and the code at https://github.
com/dice-group/BENGAL.

1 Introduction

The creating of gold standard is of central im-
portance for the objective assessment and devel-
opment of approaches all around computer sci-
ence. For example, evaluation campaigns such as
BioASQ (Tsatsaronis et al., 2012) have led to an

improvement of the F-measure achieved by bio-
medical question answering systems by more than
5%. While the manual creation of Named En-
tity Recognition (NER) and Entity Linking (EL)
gold standards (also called benchmarks) has the
advantage of yielding resources which reflect hu-
man processing, it also exhibits significant dis-
advantages: a) Annotation mistakes: Human an-
notators have to read through every sentence in
the corpus and often (a) miss annotations or (b)
assign wrong resources to entities for reasons as
various as fatigue or lack of background knowl-
edge (and this even when supported with annota-
tion tools). For example, Jha et al. (2017) was
able to determine that up to 38,453 of the anno-
tations in commonly used benchmarks (see GER-
BIL (Usbeck et al., 2015) for a list of these bench-
marks) were erroneous. A manual evaluation of
25 documents from the ACE2004 benchmark re-
vealed that 195 annotations were missing and 14
of 306 annotations were incorrect. Similar find-
ings were reported for AIDA/CONLL (Tjong Kim
Sang and De Meulder, 2003) and OKE2015 (Nuz-
zolese et al., 2015). b) Volume: Manually cre-
ated benchmarks are usually small (commonly
< 2, 500 documents, see Table 2). Hence, they
are of little help when aiming to benchmark the
scalability of existing solutions (especially when
these solutions use caching). c) Lack of updates:
Manual benchmark generation approaches lead to
static corpora which tend not to reflect the newest
reference knowledge graphs (also called Knowl-
edge Base (KB)s). For example, several of the
benchmarks presented in GERBIL (Usbeck et al.,
2015) link to outdated versions of Wikipedia or
DBpedia. d) Popularity bias: van Erp et al. (2016)
show that manual benchmarks are often biased to-
wards popular resources. e) Lack of availabil-
ity: The lack of benchmarks for resource-poor lan-
guages inhibits the development of corresponding
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NER and EL solutions.
Automatic methods are a viable and supple-

mentary approach for the generation of gold stan-
dards for NER and EL, especially as they address
some of the weaknesses of the manual bench-
mark creation process. The main contribution
of our paper is a novel approach for the auto-
matic generation of benchmarks for NER and EL
dubbed BENGAL. Our approach relies on the
abundance of structured data in Resource Descrip-
tion Framework (RDF) on the Web and is based on
Natural Language Generation (NLG) techniques
which verbalize such data to generate automati-
cally annotated natural language statements. Our
automatic benchmark creation method addresses
the drawbacks of manual benchmark generation
aforementioned as follows: a) It alleviates the hu-
man annotation error problem by relying on data
in RDF which explicitly contain the entities to
find. b) BENGAL is able to generate arbitrarily
large benchmarks. Hence, it can enhance the mea-
surement of both the accuracy and the scalability
of approaches. c) BENGAL can be updated eas-
ily to reflect the newest terminology and reference
KBs. Hence, it can generate corpora that reflect
the newest KBs. d) BENGAL is not biased to-
wards popular resources as it can choose entities
to include in the benchmark generated following a
uniform distribution. e) BENGAL can be ported to
any token-based language. This is exemplified by
porting BENGAL to Portuguese and Spanish.

2 Related Work

2.1 Gold Standards for NER and EL

According to GERBIL (Usbeck et al., 2015),
the 2003 CoNLL shared task (Tjong Kim Sang
and De Meulder, 2003) is the most used bench-
mark dataset for recognition and linking. The
ACE2004 and MSNBC (Cucerzan, 2007) news
datasets were used by Ratinov et al. (Ratinov
et al., 2011) to evaluate their seminal work on link-
ing to Wikipedia. Another often-used corpus is
AQUAINT, e.g., used by Milne and Witten (Milne
and Witten, 2008). Detailed dataset statistics on
some of these benchmarks can be found in Table 2.

A recent uptake of publicly available cor-
pora (Röder et al., 2014; Steinmetz et al., 2013)
based on RDF has led to the creation of many
new datasets. For example, the Spotlight cor-
pus and the KORE 50 dataset were proposed
to showcase the usability of RDF-based annota-

tions (Mendes et al., 2011). The multilingual N3
collection (Röder et al., 2014) was introduced to
widen the scope and diversity of NIF-based cor-
pora. Another recent observation is the shift to-
wards gold standards for micropost documents
like tweets. For example, the Microposts2014 cor-
pus (Cano Basave et al., 2014) was created to eval-
uate NER on smaller pieces of text.

Semi-automatic approaches to benchmark cre-
ation are commonly crowd-based. They use one or
more recognizers to create a first set of annotations
and then hand over the tasks of refinement and/or
linking to crowd workers to improve the quality.
Examples of such approaches include Voyer et al.
(2010) and CALBC (Rebholz-Schuhmann et al.,
2010). Oramas et al. (2016) introduced a voting-
based algorithm which analyses the hyperlinks
presented in the input texts retrieved from different
disambiguation systems such as Babelfy (Moro
et al., 2014). Each entity mention in the input text
is linked based on the degree of agreement across
three EL systems.

BENGAL is the first automatic approach that
makes use of structured data and can be replicated
on any RDF KB for EL benchmarks.

2.2 NLG for the Web of Data

A plethora of works have investigated the genera-
tion of Natural Language (NL) texts from Seman-
tic Web Technologies (SWT) such as Staykova
(2014); Bouayad-Agha et al. (2014). However,
the generation of NL from RDF has only recently
gained momentum. This attention comes from the
great number of published works such as (Cimi-
ano et al., 2013; Duma and Klein, 2013; Ell and
Harth, 2014; Biran and McKeown, 2015) which
used RDF as an input data and achieved promis-
ing results. Moreover, the works published in the
WebNLG (Colin et al., 2016) challenge, which
used deep learning techniques such as (Sleimi and
Gardent, 2016; Mrabet et al., 2016), also con-
tributed to this interest. RDF has also been show-
ing promising benefits to the generation of bench-
marks for evaluating NLG systems, e.g., (Gar-
dent et al., 2017; Perez-Beltrachini et al., 2016;
Mohammed et al., 2016; Schwitter et al., 2004;
Hewlett et al., 2005; Sun and Mellish, 2006).
However, RDF has never been used for creating
NER and NEL benchmarks. BENGAL addresses
this research gap.
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3 The BENGAL approach

BENGAL is based on the observation that more
than 150 billion facts pertaining to more than 3
billion entities are available in machine-readable
form on the Web (i.e., as RDF triples).1 The basic
intuition behind our approach is hence as follows:
Given that NER and EL are often used in pipelines
for the extraction of machine-readable facts from
text, we can invert the pipeline and go from facts to
text, thereby using the information in the facts to
produce a gold standard that is guaranteed to con-
tain no errors. In the following, we begin by giv-
ing a brief formal overview of RDF. Thereafter,
we present how we use RDF to generate NER and
EL benchmarks automatically and at scale.

3.1 Preliminaries and Notation

3.1.1 RDF
The notation presented herein is based on the RDF
1.1 specification. An RDF graphG is a set of facts.
Each fact is a triple t = (s, p, o) ∈ (R∪B)×P ×
(R∪B∪L) whereR is the set of all resources (i.e.,
things of the real world), P is the set of all pred-
icates (binary relations), B is the set of all blank
nodes (which basically express existential quan-
tification) and L is the set of all literals (i.e., of
datatype values). We call the set R ∪ P ∪ L ∪ B
our universe and call its elements entities. A frag-
ment of DBpedia2 is shown below. We will use
this fragment in our examples. For the sake of
space, our examples are in English. However, note
that we ported BENGAL to Portuguese and Span-
ish so as to exemplify that it is not biased towards a
particular language. Also, the morphological rich-
ness of both led us to choose them as languages.

:Albert_Einstein dbo:birthPlace :Ulm .
:Albert_Einstein dbo:deathPlace :

Princeton .
:Albert_Einstein rdf:type dbo:Scientist

.
:Albert_Einstein dbo:field :Physics .
:Ulm dbo:country :Germany.
:Albert_Einstein rdfs:label "Albert

Einstein"@en.

Listing 1: Example RDF dataset.

3.1.2 Benchmarks
We define a benchmark as a set C of anno-
tated documents Di. Each document Di is a se-
quence of characters si1 . . . sin. Each subsequence

1http://stats.lod2.eu
2http://dbpedia.org

sij . . . sik (with j < k) of the document Di which
stands for a resource r ∈ R is assumed to be
marked as such. We model the marking of re-
sources by the function m : C × N × N → R
and write m(Di, j, k) = r to signify that the sub-
string sij . . . sik stands for the resource r. In case
the substring sij . . . sik does not stand for a re-
source, we write m(Di, j, k) = ε. Let D0 be
the example shown in Listing 2. We would write
m(D0, 0, 14) = :AlbertEinstein.

Albert Einstein was born in Ulm.

Listing 2: Example sentence.

3.2 Verbalization

The notation and formal framework for
verbalization in BENGAL are based on
SPARQL2NL (Ngonga Ngomo et al., 2013).
Let W be the set of all words in the dictionary
of our target language (e.g., English). We define
the realization function ρ : R ∪ P ∪ L → W ∗

as the function which maps each entity to a
word or sequence of words from the dictionary.
Formally, the goal of our NLG approach is to
devise an extension of ρ to conjunctions of RDF
triples. This extension maps all triples t to their
realization ρ(t) and defines how these atomic
realizations are to be combined. We denote the
extension of ρ by the same label ρ for the sake
of simplicity. We adopt a rule-based approach
to devise the extension of ρ, where the rules
extending ρ to RDF triples are expressed in a
conjunctive manner. This means that for premises
P1, . . . , Pn and consequences K1, . . . ,Km we
write P1 ∧ . . . ∧ Pn ⇒ K1 ∧ . . . ∧ Km. The
premises and consequences are explicated by
using an extension of the Stanford dependencies.3

We rely especially on the constructs explained
in Table 1. For example, a possessive depen-
dency between two phrase elements e1 and e2
is represented as poss(e1, e2). For the sake
of simplicity, we sometimes reduce the con-
struct subj(y,x) ∧ dobj(y,z) to the triple
(x,y,z) ∈W 3.

3.3 Approach

BENGAL assumes that it is given (1) an RDF graph
G ⊆ (R∪B)×P × (R∪B∪L), (2) a number of

3For a complete description of the vocabulary,
see http://nlp.stanford.edu/software/
dependencies_manual.pdf.
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Figure 1: Overview of the BENGAL approach.

Table 1: Dependencies used by BENGAL.

Dependency Explanation

cc Stands for the relation between a conjunct and a given conjunction (in most cases and or or). For example
in the sentence John eats an apple and a pear, cc(PEAR,AND) holds. We mainly use this construct to
specify reduction and replacement rules.

conj∗ Used to build the conjunction of two phrase elements, e.g. conj(subj(EAT,JOHN),
subj(DRINK,MARY)) stands for John eats and Mary drinks. conj is not to be confused with the
logical conjunction ∧, which we use to state that two dependencies hold in the same sentence. For example
subj(EAT,JOHN) ∧ dobj(EAT,FISH) is to be read as John eats fish.

dobj Dependency between a verb and its direct object, for example dobj(EAT,APPLE) expresses to eat
an/the apple.

nn The noun compound modifier is used to modify a head noun by the means of another noun. For instance
nn(FARMER,JOHN) stands for farmer John.

poss Expresses a possessive dependency between two lexical items, for example poss(JOHN,DOG) expresses
John’s dog.

subj Relation between subject and verb, for example subj(BE,JOHN) expresses John is.

documents to generate, (3) a minimal resp. max-
imal document size (i.e., number of triples to use
during the generation process) dmin resp. dmax,
(4) a set of restrictions pertaining to the resources
to generate and (5) a strategy for generating single
documents. Given the graph G, BENGAL begins
by selecting a set of seed resources from G based
on the restrictions set using parameter (4). There-
after, it uses the strategy defined via parameter (5)
to select a subgraph of G. This subgraph con-
tains a randomly selected number d of triples with
dmin ≤ d ≤ dmax. The subgraph is then verbal-
ized. The verbalization is annotated automatically
and finally returned as a single document. Each
single document then may be paraphrased if this
option is chosen in the initial phase. This process
is repeated as many times as necessary to reach
the predefined number of documents. In the fol-
lowing, we present the details of each step under-
lying our benchmark generation process displayed
in Figure 1.

3.3.1 Seed Selection
Given that we rely on RDF, we model the seed se-
lection by means of a SPARQL SELECT query
with one projection variable. Note that we can
use the wealth of SPARQL to devise seed selec-
tion strategies of arbitrary complexity. However,
given that NER and EL frameworks commonly
focus on particular classes of resources, we are
confronted with the condition that the seeds must
be instances of a set of classes, e.g., :Person,
:Organization or :Place. The SPARQL
query for our example dataset would be as follows:
SELECT ?x WHERE { {?x a :Person.} UNION

{?x a :Organization.} UNION {?x a :
Place.} }

Listing 3: Example seed selection query.

3.3.2 Subgraph Generation
Our approach to generating subgraphs is reminis-
cent of SPARQL query topologies as available in
SPARQL query benchmarks. As these queries
(e.g., FEASIBLE4 queries) describe real informa-

4http://aksw.org/Projects/Feasible
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tion needs, their topology must stand for the type
of information that is necessitated by applications
and humans. We thus distinguish between three
main types of subgraphs to be generated from
RDF data: (1) star graphs provide information
about a particular entity (e.g, the short biography
of a person); (2) path graphs describe the relations
between two entities (e.g., the relation between a
gene and a side-effect); (3) hybrid graphs are a
mix of both and commonly describe a specialized
subject matter involving several actors (e.g., a de-
scription of the cast of a movie).

Star Graphs. For each si ∈ S, we gather all
triples of the form t = (si, p, o) ∈ R × P ×
(R ∪ L).5 The triples are then added to a list
L(si) sorted in descending order according to a
hash function h. After randomly selecting a doc-
ument size d between dmin and dmax, we select d
random triples from L(si). For the dataset shown
in Listing 1 and d = 2, we would for example get
Listing 4.

:AlbertEinstein :birthPlace :Ulm .
:AlbertEinstein :deathPlace :Princeton .

Listing 4: Example dataset generated by the star
strategy.

Symmetric Star Graphs. As above with t ∈
{(si, p, o) ∈ G ∨ (o, p, si) ∈ G}.

Path Graphs. For each si ∈ S, we begin
by computing list L(si) as in the symmetric star
graph generation. Then, we pick a random triple
(si, p, o) or (o, p, si) from L(si) that is such that o
is a resource. We then use o as seed and repeat the
operation until we have generated d triples, where
d is randomly generated as above. For the example
dataset shown in Listing 1 and d = 2, we would
for example get Listing 5.

:AlbertEinstein :birthPlace :Ulm .
:Ulm :country :Germany .

Listing 5: Example dataset generated by the path
strategy.

Hybrid Graphs. This is a 50/50-mix of the star
and path graph generation approaches. In each it-
eration, we choose and apply one of the two strate-
gies above randomly. For example, the hybrid
graph generation can generate:

:AlbertEinstein :birthPlace :Ulm .
:AlbertEinstein :deathPlace :Princeton .

5Note that we do not consider blank nodes as they cannot
be verbalized due to the existential quantification they stand
for.

:Ulm :country :Germany .

Listing 6: Example dataset generated by the
hybrid strategy.

Summary Graph Generation. This last strat-
egy is a specialization of the star graph genera-
tion where the set of triples to a resource is not
chosen randomly. Instead, for each class (e.g.,
:Person) of the input KB, we begin by filter-
ing the set of properties and only consider prop-
erties that (1) have the said class as domain and
(2) achieve a coverage above a user-set threshold
(60% in our experiments) (e.g., :birthPlace,
:deathPlace, :spouse). We then build a
property co-occurence graph for the said class in
which the nodes are the properties selected in
the preceding step and the co-occurence of two
properties p1 and p2 is the instance r of the in-
put class where ∃o1, o2 : (r, p1, o1) ∈ K ∧
(r, p2, o2) ∈ K. The resulting graph is then
clustered (e.g., by using the approach presented
by Ngonga Ngomo and Schumacher (2009)). We
finally select the clusters which contain the prop-
erties with the highest frequencies in K that al-
low the selection of at least d triples from K.
For example, if :birthPlace (frequency =
10), :deathPlace (frequency = 10) were in
the same cluster while :spouse (frequency =
8) were in its own cluster, we would choose the
pair (:birthPlace, :deathPlace) and re-
turn the corresponding triples for our input re-
source. Hence, we would return Listing 4 for our
running example.

3.3.3 Verbalization module
The verbalization (micro-planning) strategy for
the first four strategies consists of verbalizing
each triple as a single sentence and is derived
from SPARQL2NL (Ngonga Ngomo et al., 2013).
To verbalize the subject of the triple t = (s, p, o),
we use one of its labels according to Ell et al.
(2011) (e.g., the rdfs:label). If the object
o is a resource, we follow the same approach as
for the subject. Importantly, the verbalization
of a triple t = (s, p, o) depends mostly on the
verbalization of the predicate p (see Table 1
for semantics). If p can be realized as a noun
phrase, then a possessive clause can be used to
express the semantics of (s, p, o). For example, if
p can be verbalized as a nominal compound like
birth place, then the verbalization ρ(s, p, o)
of the triple is as follows: poss(ρ(p),ρ(s)) ∧
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subj(BE,ρ(p)) ∧ dobj(BE,ρ(o)). In case p’s
realization is a verb, then the triple can be verbal-
ized as subj(ρ(p),ρ(s)) ∧ dobj(ρ(p),ρ(o)). In
our example, verbalizing (:AlbertEinstein,
dbo:birthPlace, :Ulm) would thus lead to
Albert Einstein’s birth place is
Ulm., as birth place is a noun.

In the case of summary graphs, we go be-
yond the verbalization of single sentences
and merge sentences that were derived from
the same cluster. For example, if p1 and
p2 can be verbalized as nouns, then we
apply the following rule: ρ(s, p1, o1) ∧
ρ(s, p2, o2) ⇒ conj(poss(ρ(p1), ρ(s)) ∧
subj(BE1, ρ(p1)) ∧ dobj(BE1, ρ(o1)) ∧
poss(ρ(p2), ρ(pronoun(s))) ∧
subj(BE2, ρ(p2)) ∧ dobj(BE2, ρ(o2)). Note
that pronoun(s) returns the correct pronoun
for a resource based on its type and gender. There-
with, we can generate Albert Einstein’s
birth place is Ulm and his death
place is Princeton.

3.3.4 Paraphrasing
With this step, BENGAL avoids the generation of
a large number of sentences that share the same
terms and the same structure. Additionally, this
step makes the use of reverse engineering strate-
gies for the generation more difficult as it increases
the diversity of the text in the benchmarks. Our
paraphrasing is largely based on Androutsopoulos
and Malakasiotis (2010) and runs as follows:

1. Change the structure of the sentence: We use
the location of verbs in each sentence to ran-
domly change passive into active structures
and vice-versa. Sentences which describe
type information (e.g., Einstein is a
person) are not altered.

2. Replace synonyms: We use POS tags to se-
lect alternative labels from the knowledge
base and a reference dictionary to replace en-
tity labels by a synonym.

An example of a paraphrase generated by BEN-
GAL is shown in Listing 7.

Original: Edmund Pettus Bridge is a
bridge. It crosses Alabama River.
Its type is Through arch bridge. It
was declared a National Historic
Landmark on March 11, 2013.

Paraphrased: Edmund Pettus Bridge is a
bridge. It crosses Alabama River.

Through arch bridge is its type.
Pettus was declared a National
Historic Landmark on March 11, 2013.

Listing 7: Example Paraphasing at Summary
Generation

4 Experiments and Results

We generated 13 datasets in English (B1-B13), 4
datasets in Brazilian Portuguese and 4 datasets in
Spanish to evaluate our approach.6 B1 to B10
were generated by running our five sub-graph gen-
eration methods with and without paraphrasing.
The number of documents was set to 100 while
(dmin, dmax) was set to (1, 5). B11 shows how
BENGAL can be used to evaluate the scalability
of approaches.7 Here, we used the hybrid gener-
ation strategy to generate 10,000 documents. B12
and B13 comprise 10 longer documents each with
dmin set to 90. For B12, we focused on generating
a high number of entities in the documents while
B13 contains less entities but the same number of
documents.

We compared B1-B13 with the 16 manually
created gold standards for English found in GER-
BIL. The comparison was carried out in two ways.
First, we assessed the features of the datasets.
Then, we compared the micro F-measure of 11
NER and EL frameworks on the manually and au-
tomatically generated datasets. We chose to use
these 11 frameworks because they are included in
GERBIL. This inclusion ensures that their inter-
faces are compatible and their results comparable.
In addition, we assessed the performance of multi-
lingual NER and EL systems on the datasets P1-P4
to show that BENGAL can be easily ported to lan-
guages other than English.

4.1 English Dataset features

The first aim of our evaluation was to quantify
the variability of the datasets B1–B13 generated
by BENGAL. To this end, we compared the dis-
tribution of the part of speech (POS) tags of the
BENGAL datasets with those of the 16 benchmark
datasets. An analysis of the Pearson correlation
of these distributions revealed that the manually

6All BENGAL datasets can be found at https:
//hobbitdata.informatik.uni-leipzig.de/
bengal/

7The scalability results are available at https://goo.
gl/9mnbwC and cannot be presented herein due to space
limitations.
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created datasets (D1–D16) have a high correla-
tion (0.88 on average) with a minimum of 0.61
(D10–D16). The correlation of the POS tag dis-
tributions between BENGAL datasets and a manu-
ally created dataset vary between 0.34 (D7–B11)
and 0.89 (D14–B9) with an average of 0.67. This
shows that BENGAL datasets can be generated to
be similar to manually created datasets (D14–B9)
as well as to be very different to them (D7–B11).
Hence, BENGAL can be used for testing sentence
structures that are not common in the current man-
ually generated benchmarks.8

We also studied the distribution of entities and
tokens across the datasets in our evaluation. Ta-
ble 2 gives an overview of these distributions,
where E is the set of entities in the corpus C.
The distribution of values for the different features
is very diverse across the different manually cre-
ated datasets. This is mainly due to (1) different
ways to annotate entities and (2) the domains of
the datasets (news, description of entities, microp-
osts). As shown in Table 2, BENGAL can be easily
configured to generate a wide variety of datasets
with similar quality and number of documents to
those of real datasets. This is mainly due to our ap-
proach being able to generate benchmarks ranging
from (1) benchmarks with sentences containing a
large number of entities without any filler terms
(high entity density) to (2) benchmarks which con-
tain more information pertaining to entity types
and literals (low entity density).

4.2 Annotator performance

We used GERBIL to evaluate the performance of
11 annotators on the manually created as well as
the BENGAL datasets. We evaluated the anno-
tators within an A2KB (annotation to knowledge
base) experiment setting: Each document of the
corpora was sent to each annotator. The annota-
tor had to find and link all entities to a reference
KB (here DBpedia). We measured both the per-
formance of the NER and the EL steps.

Table 3 shows the micro F1-score of the differ-
ent annotators on chosen datasets. The manually
created datasets showed diverse results. We ana-
lyzed the results further by using the F1-scores of
the annotators as features of the datasets. Based
on these feature vectors, we calculated the Pear-
son correlations between the datasets to identify

8Our complete results at https://goo.gl/TBDxCa.

datasets with similar characteristics.9 The Pear-
son correlations of the F-measures achieved by the
different annotators on the AIDA/CoNLL datasets
(D2–D5) are very high (0.95–1.00) while the cor-
relation between the results on the Spotlight cor-
pus (D7) and N3-Reuters-128 (D13) is around -
0.62. The results on D1 and D12–D15 have a cor-
relation to the AIDA/CoNLL results (D2–D5) that
is higher than 0.5. In contrast, the correlations of
D7 and D8 to the AIDA/CoNLL datasets range
from -0.54 to -0.36. These correlations highlight
the diversity of the manually created datasets and
suggest that creating an approach which emulates
all datasets is non-trivial.

Like the correlations between the manually cre-
ated datasets, the correlations between the results
achieved on BENGAL datasets and hand-crafted
datasets vary. The results on BENGAL corre-
late most with the results on the OKE 2015 data.
The highest correlations were achieved with the
OKE 2015 Task 1 dataset and range between 0.89
and 0.92. This suggests that our benchmark can
emulate entity-centric benchmarks. The correla-
tion of BENGAL with OKE is however reduced
to 0.82 in D13, suggesting that BENGAL can be
parametrized so as to diverge from such bench-
marks. A similar observation can be made for the
correlation D12 and ACE2004, where the correla-
tion increased with the size of the documents in
the benchmark. The correlation between the re-
sults across BENGAL datasets varies between 0.54
and 1, which further supports that BENGAL can
generate a wide range of diverse datasets.

4.3 Annotator Performance on Spanish and
Brazilian Portuguese

We implemented BENGAL for Brazilian Por-
tuguese by using the RDF verbalizer presented
in Moussallem et al. (2018) and ran four
multilingual NER and EL (MAG (Moussallem
et al., 2017), DBpedia Spotlight, Babelfy, and
PBOH (Ganea et al., 2016)) frameworks thereon.
We also evaluated the performance of these anno-
tators on subsets of the HAREM datasets (Freitas
et al., 2010)10. We then extended this verbalizer
to Spanish using the adaption of SimpleNLG to
Spanish (Soto et al., 2017). We generated Span-
ish BENGAL datasets and evaluated the aforemen-

9All values are at http://goo.gl/Mg3rE1.
10All Portuguese results at http://faturl.com/

bengalpt.
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Table 2: Excerpt of the features of the datasets used in our evaluation. The datasets B4, B6, B8 and B10
are paraphrased versions of B3, B5, B7 resp. B9 and share similar characteristics.

ID Name Doc. |C| Tokens |T | Entities |E| |T |/|C| |E|/|C| |E|/|T |
D1 ACE2004 57 21312 306 373.9 5.4 0.01
D2 AIDA/CoNLL-Complete 1393 245008 34929 175.9 25.1 0.14
D8 IITB 104 66531 18308 639.7 176.0 0.28
D11 Microposts2014-Train 2340 40684 3822 17.4 1.6 0.09
D15 OKE 2015 Task 1 evaluation 101 3064 664 30.3 6.6 0.22

B1 BENGAL Path 100 100 1202 362 12.02 3.6 0.30
B2 BENGAL Path Para 100 100 1250 362 12.5 3.6 0.29
B3 BENGAL Star 100 100 3039 880 30.39 8.8 0.29
B5 BENGAL Sym 100 100 2718 725 27.18 7.25 0.26
B9 BENGAL Summary 100 100 2033 637 20.33 6.37 0.31
B11 BENGAL Hybrid 10000 10000 556483 165254 55.6 16.5 0.30
B12 BENGAL Hybrid Long 10 10 9162 2417 241.7 916.2 0.26
B13 BENGAL Star Long 10 10 7369 316 31.6 736.9 0.04

Table 3: Excerpt of micro F1-scores of the annotators for the A2KB experiments on chosen datasets.
N/A means that the annotator stopped with an error.
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D1 0.26 0.13 0.18 0.21 0.14 0.13 N/A 0.19 0.25 0.36 0.27
D2 0.68 0.45 0.54 0.47 0.39 0.51 N/A 0.34 0.67 0.43 0.36
D8 0.14 0.13 0.26 0.21 0.15 0.10 N/A 0.07 0.14 0.07 0.23
D11 0.38 0.31 0.45 0.39 0.36 0.32 0.07 0.25 0.40 0.36 0.32
D15 0.57 0.41 0.46 0.47 0.28 0.55 0.33 0.27 0.53 0.53 0.47

B1 0.65 0.47 0.69 0.70 0.39 0.50 0.45 0.49 0.61 0.45 0.61
B2 0.67 0.49 0.68 0.70 0.38 0.54 0.41 0.47 0.61 0.44 0.62
B3 0.62 0.48 0.57 0.65 0.27 0.47 0.35 0.38 0.53 0.36 0.43
B5 0.42 0.40 0.42 0.44 0.17 0.34 0.29 0.30 0.35 0.24 0.33
B9 0.51 0.39 0.57 0.52 0.26 0.43 0.39 0.30 0.46 0.44 0.51
B11 0.68 0.68 0.69 0.74 0.24 0.49 0.41 0.47 0.65 0.44 0.51
B12 0.83 N/A 0.79 0.84 0.40 0.73 N/A 0.50 0.79 0.23 0.28
B13 0.33 0.38 0.33 0.40 0.11 0.17 N/A 0.22 0.45 0.44 0.50

tioned NER and EL systems on them. 11 We also
included VoxEL (Rosales-Méndez et al., 2018), a
recent gold standard for Spanish. While the ex-
tension of BENGAL to Portuguese is an important
result in itself, our results also provide additional
insights in the NER and EL performance of exist-
ing solutions. Our results suggest that existing so-
lutions are mostly biased towards a high precision
but often achieve a lower recall on this language.
For example, both Spotlight’s and Babelfy’s recall
remain below 0.6 in most cases while their preci-
sion goes up to 0.9. This clearly results from the
lack of training data for these resource-poor lan-
guages. In contrast, the Spanish annotators pre-
sented low but consistent results, which confirms

11All Spanish results at http://faturl.com/
bengales.

the lack of training data of these approaches on
Spanish.

5 Discussion and Conclusion

We presented and evaluated BENGAL, an ap-
proach for the automatic generation of NER and
EL benchmarks. Our results suggest that our
approach can generate diverse benchmarks with
characteristics similar to those of a large propor-
tion of existing benchmarks in several languages.

Overall, our results suggest that BENGAL

benchmarks can ease the development of NER and
EL tools (especially for resource-poor languages)
by providing developers with insights into their
performance at virtually no cost. Hence, BENGAL

can improve the push towards better NER and EL
frameworks. In future work, we plan to extend the
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ability of BENGAL to generate longer and more
complex sentences as well as the capability of gen-
erating different surface forms for a given entity
by relying on referring expression models such as
NeuralREG model (Castro Ferreira et al., 2018).
We also intend to provide thorough evaluations of
annotators across other resource-poor languages
and create corresponding datasets to push the de-
velopment of tools to process these languages.
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Abstract

An increasing amount of research tackles
the challenge of text generation from ab-
stract ontological or semantic structures,
which are in their very nature potentially
large connected graphs. These graphs
must be “packaged” into sentence-wise
subgraphs. We interpret the problem of
sentence packaging as a community de-
tection problem with post optimization.
Experiments on the texts of the Verb-
Net/FrameNet structure annotated-Penn
Treebank, which have been converted into
graphs by a coreference merge using Stan-
ford CoreNLP, show a high F1-score of
0.738.

1 Introduction

An increasing amount of research in Natural
Language Text Generation (NLTG) tackles the
challenge of generation from abstract ontological
(Bontcheva and Wilks, 2004; Sun and Mellish,
2006; Bouayad-Agha et al., 2012; Banik et al.,
2013; Franconi et al., 2014; Colin et al., 2016)
or semantic (Ratnaparkhi, 2000; Varges and Mel-
lish, 2001; Corston-Oliver et al., 2002; Kan and
McKeown, 2002; Bohnet et al., 2010; Flanigan
et al., 2016) structures. Unlike input structures
to surface generation, which are syntactic trees,
ontological and genuine semantic representations
are predominantly connected graphs or collections
of elementary statements (as, e.g., RDF-triples or
minimal predicate-argument structures) in which
re-occurring elements are duplicated (but which
can be, again, considered to be a connected graph).
In both cases, the problem of the division of the
graph into sentential subgraphs, which we will re-
fer henceforth to as “sentence packaging”, arises.
In the traditional generation task distribution, sen-

tence packaging is largely avoided. It is assumed
that the text planning module creates a text plan
from selected elementary statements (elementary
discourse units), establishing discourse relations
between them. The sentence planning module
then either aggregates the elementary statements
contained in the text plan into more complex state-
ments or keeps them as separate simple state-
ments, depending on the language, style, prefer-
ences of the targeted reader, etc. (Shaw, 1998;
Dalianis, 1999; Stone et al., 2003). Even if data-
driven, as, e.g., in (Bayyarapu, 2011), this strat-
egy may suggest itself mainly for input represen-
tations with a limited number of elementary ele-
ments and simple sentential structures as target. In
the context of scalable report (or any other narra-
tion) generation, which can be assumed to start,
for instance, from large RDF-graphs (i.e., RDF-
triples with cross-referenced elements), or from
large semantic graphs, the aggregation challenge
is incomparably more complex. In the light of this
challenge and the fact that in a narration the dis-
course structure is, as a rule, defined over senten-
tial structures rather than elementary statements,
sentence packaging on semantic representations
appears as an alternative that is worth to be ex-
plored. More recent data-driven concept-to-text
approaches to NLTG, e.g., (Konstas and Lapata,
2012), text simplification, e.g., (Narayan et al.,
2017), dialogue act realization, e.g., (Mairesse and
Young, 2014; Wen et al., 2015), deal with sentence
packaging, but, as a rule, all of them concern in-
puts of limited size, with at most 3 to 5 resulting
sentence packages, while realistic large input se-
mantic graphs may give rise to dozens. In what
follows, we present a model for sentence packag-
ing of large semantic graphs, which contain up to
75 sentences.

In general, the problem of sentence packaging
consists in the optimal decomposition of a given
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graph into subgraphs, such that: (i) each subgraph
is in itself a connected graph; (ii) the outgoing
edges of the predicative vertices in a subgraph ful-
fil the valency conditions of these vertices (i.e.,
the obligatory arguments of a predicative vertice
must be included in the subgraph); (iii) the appear-
ance of a vertice in several subgraphs is subject to
linguistic restrictions of co-reference.1 In graph-
theoretical terms, sentence packaging can be thus
viewed as an approximation of dense subgraph de-
composition, which is a very prominent area of re-
search in graph theory. It has been also studied
in the context of numerous applications, includ-
ing biomedicine (e.g., for protein interaction net-
work (Bader and Hogue, 2003) or brain connectiv-
ity analysis (Hagmann et al., 2008)), web mining
(Sarıyuece et al., 2015), influence analysis (Ugan-
der et al., 2012), community detection (Asim et al.,
2017), etc. Our model is inspired by the work on
community detection. The model has been val-
idated in experiments on the VerbNet/FrameNet
annotated version of the Penn TreeBank (Mille
et al., 2017), in which coreferences in the indi-
vidual texts of the corpus have been identified us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014) and fused to obtain a graph representation.
The experiments show that we achieve an F1-score
of 0.738 (with a precision of 0.792 and a recall of
0.73), which means that our model is able to cope
with the problem of sentence packaging in NLTG.

The remainder of the paper is structured as fol-
lows. In Section 2, we introduce the semantic
graphs that are assumed to be decomposed and an-
alyze them. Section 3 outlines the experiments we
carried out, and Section 4 discusses the outcome of
these experiments. In Section 5, we briefly review
the work that is related to ours. In Section 6, fi-
nally, we draw some conclusions and outline pos-
sible lines of future work.

2 Semantic Graphs

2.1 Overview

We assume a semantic graph to which the problem
of sentence packaging is applied to be a labeled
graph with semantemes, i.e., word sense disam-
biguated lexical items, as vertice labels and pred-
icative argument relations as edge labels. The ver-
tice labels are furthermore assumed to be typed
in terms of semantic categories such as ‘action’,

1Many more criteria apply, including language, style,
topic, etc. In this work, we focus on formal criteria.

‘object’, ‘property’, etc. A semantic graph of
this kind can be a Abstract Meaning Representa-
tion (AMR) (Banarescu et al., 2013) obtained from
the fusion of coreference vertices across individual
sentential AMRs or a VerbNet or FrameNet struc-
ture obtained from the merge of sentential Verb-
Net respectively FrameNet structures that contain
coreferences. An RDF-triple store which is an-
notated with semantic metadata, e.g., in OWL
(https://www.w3.org/OWL/) can be equally con-
verted into such a graph (Rodriguez-Garcia and
Hoehndorf, 2018). Without loss of generality, we
will assume, in what follows, that our semantic
graphs are hybrid VerbNet / Framenet graphs in
that we use first level VerbNet type ids / FrameNet
type ids as vertice labels and VerbNet relations as
edge labels.

As already mentioned in the Introduction, we
use the VerbNet/FrameNet annotated version of
the Penn TreeBank (henceforth dataset) to which
we apply the co-reference resolution from Stan-
ford OpenCore NLP to obtain a graph represen-
tation (and which we split into a development
set and test set, with 85% and 15% texts that
contained 78% and 22% of the sentences respec-
tively). Consider the schematic representation of
the semantic graph of one of the texts from the
development set in Figure 1. It consists of two
isolated subgraphs: one of them (to the left) com-
prises three sentences and the second (to the right)
corresponds to a single sentence. The blue (dark)
nodes correspond to verbal and nominal predicate
tokens.

Figure 1: Example of a semantic graph of a text

As illustrated in Figure 2, a significant number
(to be precise: 94%) of the text graphs obtained
after the co-reference merge in the development
set contain subgraphs which combine several sen-
tences (in total, 77% of sentences were combined),
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Figure 2: Sentence distribution in the graphs of
the VerbNet/FrameNet annotated version of the
Penn TreeBank

such that the task of sentence packaging is a nec-
essary task in the context of NLTG. Even if the
number of texts with a large number of merged
sentences is relatively small, we can observe in
Figure 2 that the line corresponding to the cumu-
lative sum has a constant slope for the majority of
texts, which implies that the number of sentences
per bin of texts of the same size is close to con-
stant. This means that each bin contributes evenly
when we evaluate the quality of obtained packag-
ing since we focus on recovering the sentences and
assessing each of them individually, without aver-
aging within a text.

2.2 Graph Analysis for Sentence Packaging
The generation information that characterizes a
graph in the context of sentence packaging con-
cerns: (i) the optimal number of sentences into
which this given graph can be divided, and (ii)
the profile (in semantic or graph theory terms) of
a typical sentence of this graph. We use this infor-
mation in the subsequent stages of sentence pack-
aging.

2.2.1 Estimation of the Number of Sentences
In order to estimate the number of sentences into
which a given semantic graph is to be decom-
posed, we built up a linear regression model with
Ridge regularization on the development set with
the features listed in the first column of Table 1.
The statistics on chosen features are shown in the
other columns, where Q2 is a median, N1 is an ab-
solute number of sentences with a non-zero value
of a parameter, and N2 is a corresponding relative
number.

The highest R2-value was reached with the
combination of all features, including FrameNet

min Q2 mean max N1 N2

# tokens 2 17 17.5 95 28253 1.0
# edges 1 21 21.7 130 28253 1.0
# predicate nodes 0 11 11.3 67 28189 0.99
# argument nodes 1 12 12.6 67 28253 1.0
# roots 1 4 5 37 28253 1.0
# VerbNet nodes 0 3 3.2 15 26355 0.93
# Argument1 0 6 5.9 40 27794 0.98
# Argument2 0 4 4.3 30 27024 0.96
# Elaboration 0 2 2.2 19 22247 0.79
# NonCore 0 0 0.7 8 13415 0.47
# Set 0 0 1.2 26 12680 0.45

Table 1: Statistics of the features in the develop-
ment set used for building up the linear regression
model

Figure 3: Predicting the number of sentences on
the development set

and VerbNet classes of roots, which made R2-
value increase by 0.5 percentage point from 0.968
to 0.973; cf. Figure 3. The value is high, which
means that the obtained model allows an accurate
prediction of the number of sentences and can be
used as an input parameter in community detection
algorithms. We did not opt for using the number
of predicates corresponding to different types for
the regression since most of the types cover less
than 7% of sentences from the development set.

2.2.2 Sentence Profiling
In order to obtain the prototypical profiles of the
sentences in our dataset, we enriched the types of
features used for the linear regression model above
by features that play an important role in sentence
formation: the type(s) of the parent node(s) of
each node in the development set and the types
of its arguments. With these enriched features at
hand, we first built a multivariate normal distribu-
tion (MVN) of the most common non-correlated
features of sentences chosen iteratively by cross-
validation in such a way that a matrix of feature
vectors is not singular for any set of folds. We
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Figure 4: Correspondence of the sentences to the
MVN distribution

ended up with the MVN distribution of 20 non-
correlated features chosen from the top 100 fea-
tures that appeared most frequently in sentences of
400 randomly chosen texts from the development
set.

As an alternative to an iterative selection of the
appropriate features, we applied Principal Compo-
nent Analysis (PCA) (Jolliffe, 1986) to a space of
the most common 100 features and selected prin-
cipal vectors that describe 90% of the variance for
building an MVN distribution. This step made the
matrix of values of sentence features to be invert-
ible, as required for the MVN distribution.

We assessed the proximity of the sentences of
the development set to these initially obtained
MVN distributions. As illustrated in Figure 4, the
distribution of the degrees of correspondence to
the joint distribution of 20 non-correlated features
is right-skewed, with many sentences on the left
that fit the distribution poorly. In order to remedy
this, we implemented, for cases of a weak corre-
spondence of a significant part of sentences (more
than 15%) of the development set with the joint
distribution, a clustering algorithm in a space of
selected features (K-means, k=10) and built the
distribution separately for each cluster. The prox-
imity of the profile of the sentence being packaged
has been assessed with respect to the joint distri-
bution of each of the clusters – with success, as the
results in Table 2, Subsection 3.2 below show.

3 Experiments

3.1 Background
Community detection aims to cluster a given so-
cial network (graph) into groups of tightly con-
nected or similar vertices (Asim et al., 2017). The
different algorithms which have been proposed

are often adapted to the particular characteristics
of the investigated network (Fortunato and Hric,
2016). Some algorithms take into account only the
network structure (the mutual arrangement of ver-
tices and the relationships between them) and are
aimed at maximizing the modularity value (Blon-
del et al., 2008). Other algorithms consist in clus-
tering the vertices by combining the most similar
elements in terms of their attribute values without
link analysis (Combe et al., 2015). Recently, the
tendency has been to use both relationships be-
tween vertices and their characteristics and iden-
tify overlapping groups for optimal network de-
composition (Yang et al., 2013). In our work, we
experimented so far with algorithms which oper-
ate with links between vertices and allow for fast
partitioning of huge graphs.

3.2 Setup of the Experiments
We first began to experiment with three commu-
nity detection algorithms: LOUVAIN (Blondel
et al., 2008), METIS (Karypis and Kumar, 2000),
and COPRA (Gregory, 2010). However, already
the first simple tests showed that COPRA per-
formed poorly on our data in that it decomposed
each graph into a small set of isolated subgraphs
that did not include all the vertices of the origi-
nal graph (see the exact figures below). Therefore,
we discarded COPRA from further experiments,
while LOUVAIN and METIS were taken to serve
as baselines. Since METIS requires as input the
number of communities (= sentences) into which a
given graph is to be decomposed, we use linear re-
gression presented in Subsection 2.2.1 as prepro-
cessing stage.

To improve the quality of the initial decomposi-
tion made using community detection algorithms
(i.e., our baselines) we carried out a local descent
search, adding neighbour vertices to each sub-
graph one by one and keeping them if the corre-
spondence of the subgraph to the multivariate dis-
tribution increased. The optimization is performed
as a post-processing stage as follows:

1. for each s ∈ S, with S: = set of sentence
subgraphs obtained by LOUVAIN / METIS

(a) determine the degree of correspondence
to the joint distribution (in case of sev-
eral subgraphs, choose the most appro-
priate one) that is to be optimized.

(b) apply local descent search, adding nodes
from s′ ∈ S (with s′ 6= s) iteratively
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each time when it leads to the increase
of the optimized parameter (subgraphs
can share common nodes, i.e., overlap)

2. stop local descent search when there is no
node that improves s.

F1-score was chosen as a measure for the com-
parison of the quality of decompositions obtained
by different algorithms on the test set. It is cal-
culated for each original sentence since we con-
sider a sentence as a separate unit. Its value takes
into account which part of the original sentence
was covered by the obtained subgraph and how
many nodes that did not belong to the original sen-
tence were mistakenly appended. Each isolated
subgraph corresponds to one unit only, although
it can include several original sentences. For those
original sentences that are not captured in the ma-
jority of their nodes in any individual subgraph,
F1-score is equal to 0. The macro-F1, i.e. the av-
erage F1-score over all sentences, is a final mea-
sure.

The results are displayed in Table 2. ‘No de-
composition’ stands for the case when any graph
in the test set is considered to be a sentence
(it can be considered as an additional baseline);
‘METISLR’ for “METIS with linear regression as
a preprocessing stage”, ‘DCK’ for “descent search
with K-means”, and ‘DC¬K’ “for descent search
without K-means”.

Recall Precision F1-score
No decomposition 0.313 0.264 0.274
LOUVAIN 0.69 0.726 0.68
METISLR 0.693 0.814 0.727
LOUVAIN+DCK 0.707 0.709 0.681
LOUVAIN+DC¬K 0.705 0.704 0.678
LOUVAIN+PCA+
DCK

0.701 0.714 0.681

METISLR+DCK 0.73 0.792 0.738
METISLR+DC¬K 0.731 0.788 0.736
METISLR+PCA+
DCK

0.714 0.795 0.731

Table 2: Results of testing the obtained models

As already mentioned above, COPRA showed
a very poor performance on our data. The exact
numbers were: mean recall = 0.113, mean preci-
sion = 0.088, and mean F1-score = 0.084). There-
fore, we did not include them into Table 2 and did
not combine COPRA with other techniques.

4 Discussion

4.1 Performance Assessment
We can observe that the local descent search with
the chosen optimization function leads to an in-
crease of the mean F1-score in each case. The
use of a larger number of features with PCA leads
to slightly poorer results, but still shows an im-
provement in comparison to the baseline com-
munity detection (LOUVAIN, and METISLR).
However, METISLR is somewhat better than
our optimizations with respect to precision and
METISLR+DC¬K is the best (even if by only a
very minor margin, compared to the best F1-score
reaching METISLR+DCK).

The very low figures for ‘No Decomposition’,
i.e., the interpretation of each single graph as
a sentence, show us that the problem of sen-
tence packaging (or, in other words, decomposi-
tion of textual semantic graphs into sentential sub-
graphs) is indeed a relevant problem in large scale
semantics-to-text generation.

Carrying out the error analysis, we assessed sev-
eral obtained subgraphs in detail and identified at
least two causes of the low values of precision
and recall. The first cause lies in a suboptimal
performance of the coreference resolution related
to the merge of co-referenced nodes. For exam-
ple, for the entity ‘Mr. Peladeau’, which appeared
in a given text ten times, the module generated
a node labeled ‘Peladeau’ and ten nodes labeled
‘Mr.’, connecting the ‘Peladeau’ node to all ten
‘Mr.’ nodes. This decreased our precision. We
fixed the erroneous graphs by combining non-root
nodes that were connected to the same input and
output nodes with the same types of arguments
and recalculated the measures. Some sentences
were significantly affected by this change. For
instance, for the mentioned example, the preci-
sion increased from 0.35 to 0.44. However, the
overall mean F1-score increased only by 0.5% be-
cause this error affected a relatively small number
of subgraphs.

Another cause for poor quality of some obtained
subgraphs consisted in the creation of subgraphs
that contained subgraphs of several ground truth
sentences. This led to the low value of precision,
even if the recall was relatively high. To account
for this problem, we defined a procedure that al-
lowed us to separate such compound graphs into a
set of subgraphs. This procedure duplicates those
nodes that have two or more non-overlapping in-
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put paths from roots which include a node with
a defined VerbNet class. Since the output paths
of duplicated nodes and the input paths without a
node from VerbNet should not be necessarily as-
signed to all the copies of a node, we remove these
paths to avoid overloading each single subgraph
with redundant information.

The application of the node duplica-
tion procedure to the graphs obtained by
LOUVAIN+PCA+DCK led to an increase of the
overall mean precision (taking into account only
covered ground truth sentences) from 0.85 to 0.96
and to a decrease of the recall from 0.86 to 0.67
since the procedure also affected some optimal
sentence subgraphs by splitting them further into
single clause subgraphs. At the same time, the
coverage of the original sentences was improved
(857 instead of 687 out of 908 were covered),
which compensated the lower recall and led to an
increase of the F1-score by 10%. The potential
values of precision and recall that could be
reached if we combine subgraphs that belong to
the same sentences are 0.91 and 0.77 respectively,
which results in an F1-score of 0.83. To tackle the
problem of combining the subgraphs of clauses,
full-text clustering could be used (Devyatkin
et al., 2015). Adding back the removed paths
linked to copied nodes will also contribute to the
increase of overall quality of sentences.

4.2 Example

For illustration, consider in Figure 5 a subgraph
obtained from a larger initial graph, which is
shown in Figure 6 (the obtained subgraph is cir-
cled). The subgraph corresponds to the ground
truth subgraph with a precision of 0.938 and a re-
call of 0.882. It might be seen that the obtained
subgraph contains enough information to generate
a sentence with a similar meaning as the original
one.

The original sentence that corresponds to the
subgraph in Figure 5 is He said the company is
experimenting with the technique on alfalfa, and
plans to include cotton and corn, among other
crops.; cf. also Figure 7 for the text (with the
corresponding sentence highlighted) captured by
the initial graph. The text comprises 755 to-
kens of 41 sentences, which formed 10 isolated
graphs after coreference resolution. The largest
graph contains 578 vertices, which correspond to
32 sentences with 18 vertices that link sentences.

Figure 5: A sample subgraph extracted from a
text graph

The LOUVAIN+PCA+DCK method applied to the
whole graph detected 31 sentences out of 41. An
additional separation of the obtained graphs by the
procedure described above led to the detection of
9 extra sentences. Thus, the 98% of the ground
truth sentences were recovered to a certain extent.

5 Related Work

A number of natural language text generators take
as input sentence structures – for instance, sen-
tence templates, as in the case of SimpleNLG gen-
erators (Gatt and Reiter, 2009), syntactic struc-
tures, as in the case of surface-oriented generators
(Belz et al., 2011; Mille et al., 2018a), or more
abstract semantic structures such as, e.g., AMRs;
cf., e.g., (May and Priyadarshi, 2017; Song et al.,
2018). For these generators, the problem of sen-
tence packaging or aggregation is obviously ob-
solete. As already mentioned in the Introduction,
in setups that start from input that is not yet cast
into sentence structures, traditional NLTG fore-
sees the task of (content) aggregation, which is
dealt with as part of sentence planning (or mi-
croplanning): the elementary content elements, as
assumed to be present in the text plan, are aggre-
gated into more complex elements; see, among
others, (Shaw, 1998; Dalianis, 1999; Stone et al.,
2003; Gardent and Perez-Beltrachini, 2017).

Our work is more in line with Konstas and La-
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Figure 6: Example of the initial graph with one of the detected sentence subgraphs circled

Figure 7: Original plain text with the recovered sentence subgraph highlighted
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pata (2012)’s data-driven concept-to-text model,
which creates from the input database records hy-
pergraphs that are then projected onto multiple
sentence reports. We also depart from graphs
(which we create from isolated semantic sentence
structures by establishing coreference links be-
tween coinciding elements across different struc-
tures), only that we work with graphs that are
considerably larger than those Konstas and Lap-
ata work with (up to 75 resulting sentences per
graph vs. >10 resulting sentences per graph). Fur-
thermore, while we use community detection al-
gorithms (and focus only on the problem of sen-
tence packaging), they view the entire problem of
the verbalization of a hypergraph as a graph traver-
sal problem.

The difference in the size of the input data (and
thus the number of the resulting sentences) is also
a distinctive feature of our proposal when we com-
pare it to other works that deal with sentence pack-
aging. For instance, Narayan et al. (2017) split
in their experiments on text simplification com-
plex sentences into 2 to 3 more simple sentences.
As content representation, they use the WebNLG
dataset of RDF-triples (Gardent et al., 2017). To
split a given set of RDF-triples into several sub-
sets, they learn a probabilistic model. Wen et al.
(2015) use LSTM-models to generate utterances
from a given sequence of tokens in the context of
a dialogue application.

Since for our experiments we apply coreference
resolution to create from the VerbNet/Framenet
annotated sentences of the Penn Treebank large
connected graphs, our work could be also con-
sidered to be related to the recent efforts on the
creation of datasets for NLTG; cf., e.g., (Gardent
et al., 2017; Novikova et al., 2017; Mille et al.,
2018b). However, so far, the coreference resolu-
tion has been entirely automatic, with no subse-
quent thorough validation and manual correction.
Both would be needed to ensure high quality of the
resulting dataset.

6 Conclusions and Future Work

We have presented a community detection-
based strategy for packaging semantic (Verb-
Net/FrameNet) graphs into sentential subgraphs
and tested it on a large dataset. We have shown
that, in principle, sentence packaging can be in-
terpreted as a community detection problem since
community detection algorithms aim to identify

densely connected subgraphs–which can be ex-
pected from sentential structures. The evaluation
suggests that the subgraphs obtained by commu-
nity detection can be further improved by a post-
processing stage, e.g., by descent search or PCA.

The duplication of nodes for an additional de-
composition of obtained graphs led to an increase
of the performance. To avoid the unnecessary
splitting of optimal subgraphs, as observed in
some cases, the offered procedure might be fur-
thermore restricted, for example, by duplicating
only the nodes with high centrality measures.

In the future, we plan to explore community de-
tection algorithms which will allow us to take the
attributes of the vertices into account. For this
purpose, the optimization function must be mod-
ified to take into account the mutual compatibility
of vertices rather than their similarity, since ver-
tices within one sentence usually have different
properties and do not form homogeneous commu-
nities in a general sense. Furthermore, we plan
to explore to what extent reinforcement learning-
based graph partitioning algorithms that take the
specifics of the semantic graphs into account in
terms of features are suitable for the problem of
sentence packaging.
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Abstract

Neural approaches to data-to-text genera-
tion generally handle rare input items us-
ing either delexicalisation or a copy mech-
anism. We investigate the relative im-
pact of these two methods on two datasets
(E2E and WebNLG) and using two eval-
uation settings. We show (i) that rare
items strongly impact performance; (ii)
that combining delexicalisation and copy-
ing yields the strongest improvement; (iii)
that copying underperforms for rare and
unseen items and (iv) that the impact of
these two mechanisms greatly varies de-
pending on how the dataset is constructed
and on how it is split into train, dev and
test1.

1 Introduction

The input to data-to-text generation often contains
rare items, i.e. low frequency items such as names,
locations and dates. This makes it difficult for
neural models to predict their verbalisation. To
address these issues, neural approaches to data-
to-text generation typically resort either to delex-
icalisation (Wen et al., 2015; Dušek and Jurcicek,
2015; Trisedya et al., 2018; Chen et al., 2018) or to
a copy mechanism (Chen, 2018; Elder et al., 2018;
Gehrmann et al., 2018). Character-based encod-
ings (Agarwal and Dymetman, 2017; Deriu and
Cieliebak, 2018) and byte pair encodings have also
been used (Elder, 2017; Zhang et al., 2018). How-
ever, when applying a character-based approach
within a standard sequence-to-sequence model to
the WebNLG and E2E datasets, the results were
low. Hence we chose not to discuss them.

1All the data, scripts and evaluation results used in
this study can be found at https://gitlab.com/
shimorina/inlg-2018.

When using delexicalisation, the data is pre-
processed to replace rare items with placeholders
and the generated text is post-processed to replace
these placeholders with appropriate values based
on a mapping between placeholders and initial val-
ues built during preprocessing. While this method
is often used, it has several drawbacks. It requires
an additional pre- and post-processing step. These
processing steps must be re-implemented for each
new data-to-text application. The matching proce-
dure needed to correctly match a rare input item
(e.g., Barack Obama) with the corresponding part
in the output text (e.g., the former President of the
United States) may be quite complex which may
result in incorrect or incomplete delexicalisations.
In contrast, the copy mechanisms standardly used
in neural approaches to summarisation (See et al.,
2017; Gu et al., 2016; Cheng and Lapata, 2016),
paraphrasing (Cao et al., 2017), answer genera-
tion (He et al., 2017) and data-to-text generation
(Gehrmann et al., 2018; Chen et al., 2018) is a
generic technique which is easy to integrate in the
encoder-decoder framework and can be used in-
dependently of the particular domain and applica-
tion.

In this paper, we investigate the impact of copy-
ing and delexicalisation on the quality of gener-
ated texts using two sequence-to-sequence models
with attention: one using the copy and coverage
mechanism of See et al. (2017), the other using
delexicalisation. We evaluate their respective out-
put on two data-to-text datasets, namely the E2E
(Novikova et al., 2017) and the WebNLG (Gar-
dent et al., 2017a) datasets. We also compare the
two methods in two different settings: the original
train/dev/test partition produced by the E2E and
by the WebNLG challenge vs. a more constrained
train/dev/test split which aims to further minimise
the amount of redundancy between train, dev and
test data. This latter experimental setting is in-
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MR Reference
Original:
name[The Cricketers],
eatType[coffee shop],
food[Chinese],
customer rating[average],
familyFriendly[no],
near[The Portland Arms]
Delexicalised:
name[NAME],
eatType[coffee shop],
food[Chinese],
customer rating[average],
familyFriendly[no],
near[NEAR]

Original:
The Cricketers is a cof-
fee shop that also has Chi-
nese food, located near The
Portland Arms. It is not
family friendly, and has an
average customer rating.
Delexicalised:
NAME is a coffee shop
that also has Chinese food,
located near NEAR. It is
not family friendly, and has
an average customer rat-
ing.

Original:
(Bakewell pudding – re-
gion – Derbyshire Dales),
(Bakewell pudding – dish-
Variation – Bakewell tart),
(Bakewell pudding – serv-
ingTemperature – Warm or
cold),
(Bakewell pudding –
course – Dessert),
(Bakewell pudding –
mainIngredients – Ground
almond, jam, butter, eggs)
Delexicalised:
(FOOD – region – RE-
GION),
(FOOD – dishVariation –
DISHVARIATION),
(FOOD – servingTemper-
ature – SERVINGTEM-
PERATURE),
(FOOD – course –
DESSERT),
(FOOD – mainIngredients
– MAININGREDIENTS)

Original:
Bakewell pudding, also
called bakewell tart, origi-
nates from the Derbyshire
Dales. Classified as a
dessert which can be
served warm or cold,
its main ingredients are
ground almond, jam, butter
and eggs.

Delexicalised:
FOOD, also called DISH-
VARIATION, originates
from the REGION. Classi-
fied as a COURSE which
can be served SERV-
INGTEMPERATURE,
its main ingredients are
MAININGREDIENTS.

Table 1: Entry examples of the E2E (first row) and
WebNLG (second row) datasets with and without
delexicalisation.

spired by a recent paper by Aharoni and Goldberg
(2018), which shows that the train/dev/test split
may have a strong impact on how much the model
learns to generalise and how much it memorises.

Our study suggests the following.

• Rare items strongly impact the performance
of Data-to-Text generation.
• Combining delexicalisation and copying

yields the strongest improvements.
• Copying underperforms for items not, or

rarely, seen in the training data.
• The content (e.g., distribution and number

of named entities) and the partitioning (con-
straints on the test set) of the training data
strongly affect the impact of both copying
and delexicalisation.

2 Experiments

2.1 Datasets

Two recently released corpora for data-to-text gen-
eration served as experimental datasets for our
study: the E2E (Novikova et al., 2017) and the
WebNLG (Gardent et al., 2017a) datasets.

In the E2E dataset, the input to generation is a
dialogue act consisting of three to eight slot-value
pairs describing a restaurant, while the output is a
restaurant recommendation verbalising this input.
Table 1 shows an example with an input consist-
ing of six slot-value pairs. In average, each input
is associated with 8.1 references. The number of
possible values for each slot ranges from two (bi-
nary slots) to 34 (restaurant name). Tables 2 and 3
summarise the statistics of the E2E dataset.

In WebNLG, the aim is to verbalise a set of
RDF (Resource Description Framework) triples
describing entities of different categories. An RDF
triple is of the form (subject, property, object)
where subject and object denotes entities or val-
ues and property denotes a binary relation holding
between subject and object. The inputs consist of
sets of (one to seven) triples and the entities belong
to fifteen distinct DBpedia categories2.

Both dataset releases gave rise to a shared task
in NLG in 20173. Note though that for WebNLG,
the present study relies on the final release data
(version 2)4, which is a larger dataset than that
used for the WebNLG Challenge 2017.

2.2 Delexicalising Datasets

We derive delexicalised datasets from the original
E2E and WebNLG datasets as follows.

For each dataset, we replicated the delexicali-
sation procedure which was applied to the base-
line systems developed for the E2E (Novikova
et al., 2017) and for the WebNLG challenge (Gar-
dent et al., 2017b) respectively5. As shown in Ta-
ble 1, both input data and output text were delexi-
calised. In E2E, only the name and near slots were
delexicalised (because contrary to the other slots,

2http://wiki.dbpedia.org/
dbpedia-dataset-version-2015-10

3http://www.macs.hw.ac.uk/
InteractionLab/E2E/, http://webnlg.loria.
fr/pages/results.html

4available at https://gitlab.com/shimorina/
webnlg-dataset

5For the full details of these delexicalisation procedures,
see (Novikova et al., 2017; Gardent et al., 2017b) and the
webpages of the two challenges mentioned above.

361



Attribute Value Range Example
area 2 city centre, riverside
customer rating 6 3 out of 5, low, high
eatType 3 restaurant, coffee shop, pub
familyFriendly 2 no, yes
food 7 English, Chinese, Fast food
name 34 The Plough, Alimentum, Zizzi
near 19 Café Sicilia, Crowne Plaza Hotel
priceRange 6 more than £30, cheap, moderate

Count Example
Properties 373 dateOfBirth, genre
Subjects 732 Buzz Aldrin
Objects 2,916 1932-03-15, jazz

Table 2: Statistics on attribute values in E2E (left) and on RDF-triple constituents in WebNLG (right).

E2E Dataset
Unconstrained Constrained

Instances MRs Instances MRs
train 40,868 4,862 40,826 4,877
dev 4,521 547 3,946 547
test 4,577 630 5,194 615

WebNLG Dataset
Unconstrained Constrained

Instances MRs Instances MRs
train 34,352 12,876 34,536 12,895
dev 4,316 1,619 4,217 1,594
test 4,224 1,600 4,148 1,606

Table 3: Training/development/test sets statistics in E2E and WebNLG in original (unconstrained) and
constrained splits. Instances count is a number of (data, text) pairs; MRs count is a number of unique
data inputs.

they have a large number of distinct values). In
WebNLG, delexicalisation was done on the sub-
jects and objects of RDF triples.

While delexicalisation was flawless in E2E,
WebNLG data poses additional challenges as the
subject and object values in the input do not nec-
essarily match the corresponding text fragment in
the output. As a result, not all subjects and objects
were delexicalised.

In the delexicalised E2E corpus, placeholders
constitute 5.7% of all tokens, while they reach
15.7% in the WebNLG data.

2.3 The Copy Mechanism

The copy mechanism is widely used in text pro-
duction approaches where it is relevant for han-
dling rare input but also, for instance, in text
summarisation, for copying input into the output.
Thus, Cao et al. (2017) uses a copy mechanism to
generate paraphrases, Gu et al. (2016), Cheng and
Lapata (2016) for text summarisation and He et al.
(2017) for answer generation.

Here we use the copy mechanism introduced
by See et al. (2017). The decoder uses an ex-
tended vocabulary which consists of a predefined
target vocabulary Pvocab which is dynamically ex-
tended at inference time with the tokens contained
in the input. At each time step during decoding,
the model then decides whether to copy from the
input or to generate from the target vocabulary us-
ing a probability distribution over the extended vo-

cabulary which is computed based on a generation
probability (sampling from the target vocabulary)
and on the attention distribution (sampling from
the input).

The attention distribution at is calculated as in
(Bahdanau et al., 2015):

eti = vT tanh(Whhi +Wsst + battn)
at = softmax(et)

with v,Wh,Ws and battn parameters to be
learned, st is the decoder state and hi is a variable
ranging over the encoder hidden states.

The generation probability pgen is then defined
as:

pgen = σ(W T
h .ht +W T

s .st +W T
x .xt + bptr)

where Wh,Ws,Wx, bptr are parameters to be
learned, xt is the decoder input and ht is the con-
text vector produced by the attention mechanism
as the weighted sum

∑E
1 a

t
ihi of the encoder states

(with N the number of encoder states).
Finally, the probability distribution over the ex-

tended vocabulary is defined as:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=wati

ati

2.4 Constraining Datasets
The train/dev/test split is often constrained to en-
sure that there is no overlap in terms of input be-
tween the training, the development and the test

362



set. As Aharoni and Goldberg (2018) recently
showed however, this may result in a setup where
certain input fragments (in that case, subject and
object entities present in the input set of RDF
triples) are present so often in the test set that mod-
els built on this standard split, overfit and mem-
orise rather than learn. Thus, in the split-and-
rephrase application they studied, Aharoni and
Goldberg (2018) observed that, given some input
containing the entity e and some set of facts T (e)
about this entity, the model will regularly output a
text which mentions e but is unrelated to the set of
facts T (e). That is, instead of learning to generate
text from data, the model learns to associate a text
with an entity.

To better assess the impact of delexicalisation
and copying on the output of data-to-text gener-
ation models, we therefore consider two ways of
partitioning the corpus into train, dev and test: the
traditional way (Unconstrained) where the over-
lapping constraint applies to entire inputs (i.e., sets
of RDF triples in WebNLG and dialogue moves in
E2E) and a more challenging split (Constrained)
where the no-overlap constraint applies to input
fragments (i.e., RDF triples in WebNLG and slot-
values in E2E). Table 3 shows the statistics for
both splits for each dataset.

Unconstrained The unconstrained split is the
original split provided by the challenge organisers.

The E2E dataset was split into training, vali-
dation and test sets following a 76.5/8.5/15 ratio.
It was ensured that the input were distinct for all
three sets and that a similar distribution of input
and reference text lengths was kept. We found
1,430 identical (data, text) pairs in the original
E2E data. They were deleted for the subsequent
experiments.

In WebNLG, the original split follows an
80/10/10 ratio. As with the E2E dataset, there is
a null intersection in terms of input between train,
dev and test. In addition, sets of triples of differ-
ent sizes and sets of triples of different categories
were proportionally distributed between training,
dev and test sets.

Constrained We consider a second partitioning
where we aim to minimise the overlap between
train, dev and test in terms of input fragments.

As shown in Table 2, in the E2E dataset, most
of the slots have under eight possible values. As
these few values appear with a large number of

distinct slot-value combinations (49,966 input-text
instances), they are unlikely to trigger fact memo-
risation. We therefore focus on those slots which
have a higher number of values and restrict the test
set using restaurant names, a slot with 34 possible
values. Four restaurant names were selected to oc-
cur only in the test data and to support a distribu-
tion of inputs types and text length similar to that
of the original train/dev/test (cf. Table 3).

Nonetheless, it is worth noting that the E2E
dataset was constructed in such a way that a spe-
cific restaurant name may have mutually exclusive
values in different inputs, such as low customer
rating and high customer rating. This might re-
sult in weak association between restaurant names
and specific inputs and therefore, in little risk of
memorising facts related to a specific restaurant
name. As we shall see in Section 3, this intu-
ition is confirmed by the results which show lit-
tle differences, for the E2E data, in terms of both
automatic and human-based metrics between the
Constrained and the Unconstrained setting. Note
also that since the E2E Constrained split is defined
with respect to a slot value (restaurant names)
which is delexicalised, the constrained vs. un-
constrained split distinction loses its impact in the
delexicalised setting.

For the WebNLG dataset, the constraint on the
train/dev/test partition is in terms of triples. In
addition to the exclusion from the test set all in-
puts (set of RDF triples) which occur in either
the dev or the train set, we require that no RDF
triple occurs in two of these sets. Let t = (s, p, o)
be an RDF-triple, with p a property and s, o sub-
ject and object RDF resources. In the constrained
dataset, if, t is in the test set, then t may not be
in either the dev or the training set but variants
such as (s′, p, o), (s, p, o′), (s′, p, o′) or (s, p′, o)
may (with s 6= s′, p 6= p′ and o 6= o′). In this
way, models can be trained which must learn to
verbalise properties independently of their argu-
ments. Again, care was taken to keep the distribu-
tion in terms of input length similar to that of the
original split (cf. Table 3).

2.5 Model Parameters

We trained two types of models: a standard
sequence-to-sequence model and the same model
augmented with a copy and coverage mecha-
nism (denoted as C in the tables). For the stan-
dard sequence-to-sequence model, we made use
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E2E name[Cocum], eatType[pub], customer rating[high], near[Burger King]
prediction Cotto is a family-friendly pub with a high customer rating.
annotation Cotto {wrong}, family-friendly {added}, pub {right}, high customer rating {right}, near Burger King {missed}
WebNLG A Wizard of Mars – author – Diane Duane
prediction A Wizard of Mars was written in the United States in 1995.
annotation A Wizard of Mars {right}, was written {right}, in the United States {wrong}, in 1995 {added}.

Table 4: Manual annotation of text predictions for E2E and WebNLG data. Annotations are between
curly braces.

of an LSTM encoder-decoder model with atten-
tion (Luong et al., 2015) from the OpenNMT-py
toolkit6, a PyTorch port of OpenNMT (Klein et al.,
2017). The default parameters of OpenNMT-py
were used for training and decoding. The encoder
and decoder both have two layers. Models were
trained for 13 epochs, with a mini-batch size of
64, a dropout rate of 0.3, and a word embedding
size of 500. They were optimised with SGD with
a starting learning rate of 1.0.

Data was not lowercased, nor was it truncated
(the maximal sequence length was used in the
source and target).

Special options available in OpenNMT-py were
used to augment the standard model with the copy
and the coverage mechanisms. The OpenNMT-
py implementation of training additional copy and
coverage attention layers follows See et al. (2017).

2.6 Evaluation

Automatic Evaluation Systems were evalu-
ated using four automatic corpus-based metrics:
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Denkowski and Lavie, 2014),
ROUGEL (Lin, 2004). We made use of the scripts
used for the E2E Challenge evaluation7. The first
three metrics were originally developed for ma-
chine translation, the last one for summarisation.
Roughly speaking, BLEU calculates the n-gram
precision; NIST is based on BLEU, but adds more
weight to rarer n-grams; METEOR computes the
harmonic mean of precision and recall, featuring
also stem and synonymy matching; ROUGEL cal-
culates recall for common longest subsequences in
a reference and candidate text. Given our task—
handling rare items (or named entities in the cor-
pora in question)—we also applied the slot-error
rate (SER) to evaluate outputs which seems to be
more suitable for evaluating the presence of named
entities. SER was calculated by exact matching

6https://github.com/OpenNMT/OpenNMT-py
7https://github.com/tuetschek/

e2e-metrics

slot values in the candidate texts,

SER =
S +D + I

N
,

where S is a number of substitutions, D is a num-
ber of deletions, I is a number of insertions, and
N is a total number of slots in the reference. The
resulting SER is an average of SER for each pre-
diction. While computing SER for the dialogue
slot-based E2E corpus is straightforward (the bi-
nary slot familyFriendly was excluded), it results
in some noise for WebNLG where subjects and
objects are numerous (3,648 vs. 79 values in E2E)
and where they were rephrased in references (cf.
also Section 2.2).

Manual Annotation To allow comparisons be-
tween constrained and unconstrained settings,
we intersected inputs of constrained and uncon-
strained test sets and gathered corresponding pre-
dictions from them for all the models. The inter-
section between the two test sets has 40 inputs in
the E2E corpus and 153 in WebNLG. For E2E,
we manually evaluated all 40 predictions available
for each system (constrained and unconstrained);
for WebNLG, we chose 44 predictions ensuring
the presence of different sizes and categories. By
manually assessing outputs for the same inputs for
all the systems, contrasts between constrained and
unconstrained settings are better highlighted.

Manual inspection of outputs revealed that most
of generated predictions did not encounter issues
with grammar or fluency. For this reason, we
chose to focus on semantic adequacy of predicted
texts. The evaluation was done by one human
judge. After the evaluation was finished, the hu-
man annotator confirmed that, except for one sys-
tem (see Section 3), all system outputs demon-
strated fluent and grammatical English sentences.

Once presented with an input and a correspond-
ing prediction text, a human judge was asked to
evaluate semantic information present in the pre-
diction. A minimal unit of analysis was a slot-
value pair in E2E and an RDF triple element (sub-
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Unconstrained Constrained
NIL C D D+C NIL C D D+C

BLEU 0.56 0.68 0.67 0.68 0.52 0.57 0.72 0.72
NIST 7.54 8.67 8.60 8.74 7.12 7.67 8.93 8.90
METEOR 0.38 0.46 0.45 0.46 0.39 0.41 0.47 0.47
ROUGEL 0.62 0.71 0.70 0.70 0.58 0.62 0.74 0.74
SER 26.07% 7.25% 4.08% 4.56% 29.6% 17.09% 5.18% 4.2%
right 81.72% 95.7% 96.24% 96.77% 72.04% 82.8% 95.7% 94.09%
wrong 16.13% 0% 0% 0% 27.96% 16.13% 0% 0%
missed 2.15% 4.3% 3.76% 3.23% 0% 1.08% 4.3% 5.91%
added 6.45% 0% 5.38% 2.15% 0% 4.84% 2.15% 0%

Table 5: E2E dataset (D: Delexicalisation, D+C: delexicalisation and copying, C: copy and coverage,
NIL: Neither copy nor delexicalisation). The upper half of the table presents automatic evaluation results;
the lower half—human evaluation results. Best scores are in bold.

ject, object, or property) in WebNLG. For each se-
mantic unit, the judge indicated if it was rendered
correctly (right) or incorrectly (wrong) in the text.
If the unit was missing, it was noted as missed;
new semantic content, not present in the source in-
put, was labelled as added. Then, the number of
each type of annotations was calculated for each
input and converted to percentage with respect to
the number of slot-value pairs (E2E) or number
of triple constituents (WebNLG). Given the E2E
example in Table 4, statistics about the example
is the following: right: 2, wrong: 1, added: 1,
missed: 1 (near[Burger King] was omitted). To-
tal number of slots being 4, the performance in
the percentage is then right: 50%, wrong: 25%,
added: 25%, missed: 25%.

WebNLG example annotations were done tak-
ing into account the three parts of a triple. If
a property was not translated correctly, we con-
sidered that a model missed out that information.
While a subject or object was not rendered cor-
rectly, they were annotated as wrong. All the se-
mantic information beyond the size of initial set
of triples was evaluated as added. The WebNLG
example in Table 4 received the following scores,
the total number of constituents being three: right:
2 (66%), wrong: 1 (33%), missed: 0 (0%), added:
1 (33%). If semantic information was repeated, it
was rated as added.

The human evaluation analysis presented above
is modest due to the lack of resources. To justify
it, we argue that our focus is solely on semantic
adequacy which is a more objective parameter in
evaluations than, say, fluency or grammaticality.
Furthermore, human scores showed strong corre-

lations with most of automatic metrics. For ex-
ample, right exhibits statistically significant cor-
relations of 0.9, 0.55, 0.89, 0.85, −0.87 with
BLEU, NIST, METEOR, ROUGEL, SER respec-
tively (Spearman’s ρ; p < 0.05). Wrong has
−0.91, −0.71, −0.88, −0.96, 0.78 correlation co-
efficients respectively.

With no intent to question the documented unre-
liability of automatic metrics in NLG, we attribute
such high correlations to the design of our config-
urations which cover some extreme cases where
models are supposed to show a drastic drop in per-
formance.

3 Results and Discussion

We compared the output of the sequence-to-
sequence model with attention described in Sec-
tion 2.5 on two datasets (WebNLG and E2E) and
considering eight different configurations depend-
ing on how rare words are handled (without delex-
icalisation, with delexicalisation, with a copy-and-
coverage mechanism and with both delexicalisa-
tion and a copy-and-coverage mechanism) and on
how the train/dev/test partition is constructed (un-
constrained vs. constrained).

As pointed out in Section 2.6, automatic scores
are reported using the whole test sets whereas hu-
man evaluation is based on shared MR instances
between the non-constrained and constrained test
sets (40 instances for E2E and 44 for WebNLG).

The results are summarised in Table 5 (E2E)
and 6 (WebNLG). Some example predictions are
shown in Tables 7 and 8.
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Unconstrained Constrained
NIL C D D+C NIL C D D+C

BLEU 0.54 0.61 0.56 0.56 0.09 0.34 0.44 0.48
NIST 9.70 10.90 10.19 10.11 2.37 6.81 7.37 8.09
METEOR 0.37 0.42 0.39 0.39 0.10 0.29 0.33 0.36
ROUGEL 0.64 0.71 0.67 0.68 0.26 0.54 0.61 0.65
SER 43.66% 34.76% 34.93% 31.83% 92.5% 66.91% 50.48% 45.45%
right 69.26% 83.33% 83.70% 87.04% 10% 41.11%* 70.00% 76.67%
wrong 9.63% 5.56% 9.26% 7.78% 49.26% 32.59% 17.78% 15.93%
missed 21.11% 11.11% 7.04% 5.19% 40.74% 26.30% 12.22% 7.41%
added 0.37% 0% 0% 0% 1.11% 1.11% 0% 0%

Table 6: WebNLG dataset (D: Delexicalisation, D+C: delexicalisation and copying, C: copy and cover-
age, NIL: Neither copy nor delexicalisation). The upper half of the table presents automatic evaluation
results; the lower half—human evaluation results. Best scores are in bold. * – word repetitions present
in predictions.

Delexicalisation and Copying vs. Standard
Encoding-Decoding A first observation is that,
when neither delexicalisation nor copying is used,
there is a strong drop in semantic adequacy. In the
worst case, the SER increases by 25.4 for the E2E
dataset (constrained setting, NIL vs. D+C) and by
47.05 points (constrained setting, NIL vs. D+C) in
the WebNLG dataset. Similarly, the proportion of
correcly predicted items (right) decreases by up to
23.66 points for the E2E dataset (constrained set-
ting, NIL vs. D) and 60 points for the WebNLG
dataset (constrained setting, NIL vs. D).

A similar, though weaker, trend can be observed
for the other automatic metrics (e.g., ∆BLEU
E2E, NIL vs. D+C, unconstrained: −0.12 points).

Delexicalisation, Copying or Both The re-
sults show two trends. First, combining copy-
ing and delexicalisation yields the best results
across the board. Second, while in the uncon-
strained setting, there is not much difference in
terms of results between copying and delexicali-
sation, in the constrained setting, copying yields
lower results (∆BLEU E2E: −0.15, ∆BLEU
WebNLG: −0.10, ∆right E2E: −12.9%, ∆right
WebNLG:−28.89%, ∆SER E2E: +11.91, ∆SER
WebNLG: +16.43; constrained setting, C vs. D).
This suggests that copying only partially captures
rare items. Looking at the outputs, copying seems
to work better when the item to be copied has been
seen in the training data. When an entity was
not seen, the network often chooses to generate
a frequent entity seen in the source, rather than
copying. For instance, for the E2E data, restau-

rant names (which had not been seen in the train-
ing data) were not copied over in the constrained
setting. In most cases, the input restaurant name
was replaced by a restaurant name that is frequent
in the training data. For example, given the MR
name[Cocum], eatType[coffee shop], near[The
Rice Boat], the text Near The Rice Boat there is a
coffee shop called Fitzbillies was generated, where
Fitzbillies, a frequently occurring restaurant name
in the training data (2,371 instances), was gener-
ated instead of the input restaurant name Cocum.

Constrained vs. Unconstrained Setting There
is a clear difference in terms of relative perfor-
mance in the constrained vs. the unconstrained
setting between the two datasets.

For the E2E dataset, since the constrained
dataset is defined with respect to slot values
(name and near) which are delexicalised, the
constrained setting is in fact similar to the un-
constrained setting. And indeed the scores are
similar (e.g., unconstrained vs. constrained,
D, E2E: ∆BLEU: −0.05, ∆SER: −1.1 and
∆right: +0.54%). When using copying however,
the results are lower in the constrained setting
again suggesting that copying underperforms for
items that have rarely been seen at training and
development time (e.g., unconstrained vs. con-
strained, C, E2E: ∆BLEU: 0.11, ∆SER: −9.84
and ∆right: 12.9%).

For the WebNLG data, the difference between
constrained and unconstrained setting is much
stronger for both delexicalisation and copying. For
instance, for copying the BLEU score in the un-
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constrained setting is 0.61 vs. 0.34 in the con-
strained setting. Semantic adequacy also drops no-
ticeably (unconstrained: 83%, constrained: 41%).
This is in line with Aharoni and Goldberg (2018)’s
observation that in the unconstrained setting, the
model learns to memorise association between
facts and entities and thereby fails to generate text
that adequately captures the meaning of the in-
put data. The low scores for the copying mecha-
nism also confirm the observation made above that
copying underperforms for rare data fragments.

This difference between datasets is further dis-
cussed in the next paragraph.

Semantic Adequacy As mentioned above, the
manual and automatic evaluation metrics we used
to assess semantic adequacy strongly correlate.
They both show that semantic adequacy is much
lower for the WebNLG data (higher SER, higher
proportion of wrong and missed items). This is
not surprising, since the WebNLG dataset con-
tains a much higher number of distinct values
(3,648 against 79 in the E2E dataset) and exhibits
a greater mismatch between input and output value
names8. That is, the delta shows that the efficiency
of copying and delexicalisation varies depending
on the variety and content of the dataset.

The two datasets also differ with respect to the
proportion of added slots which is higher for the
E2E dataset and suggests an overfitting effect due
to a skewed distribution in favour of inputs con-
taining more than 3 attributes. Thus, the human
evaluation shows that the majority of cases with
added slots are cases where the input consists of
three slots (the minimal number of attributes in
E2E). The overgeneration can be explained by the
restricted number of three-slot inputs in the E2E
dataset (only 2.5% MRs out of the whole corpus).
That claim is also supported by predictions pro-
duced by adversarial examples. While inputting
dialogue moves consisting of 2 slots (the non-
existent number of attributes in E2E), all eight
E2E models tend to overgenerate by predicting
texts with 3 or 4 slot-value pairs.

Fluency As mentioned in Section 2.6, while
annotating the data for semantic adequacy, we
found that almost all systems outputs were well-
formed English sentences. The only exception

8In the E2E dataset, the value name in the input is usually
realised by the same string in the corresponding text while in
WebNLG, they often differ, e.g., USA/the United States of
America.

was the WebNLG model with copy mechanism
where stutterings were spotted in half of the ex-
amined instances. Despite those repetitions, it was
always possible to detect the subject-predicate-
object structure (e.g., 1001 kelvins is an escape
velocity of 1001 kelvins; Asterix was created by
R. Goscinny and was created by R. Goscinny), so
the annotation was not hampered.

4 Related Work

Delexicalisation remains one of the most popular
techniques for handling rare named entities. We
analysed the submissions participating in the E2E
and WebNLG challenges, which used a neural ap-
proach. Among them, six teams applied delexi-
calisation (Chen et al., 2018; Davoodi et al., 2018;
Juraska et al., 2018; Puzikov and Gurevych, 2018;
Trisedya et al., 2018; van der Lee et al., 2017),
three resorted to the copy mechanism (Chen,
2018; Elder et al., 2018; Gehrmann et al., 2018),
two developed character-based systems (Agarwal
and Dymetman, 2017; Deriu and Cieliebak, 2018),
and another two made use of byte pair encodings
(Elder, 2017; Zhang et al., 2018).

A copy mechanism allows to detect a word in
an input sequence and to copy it to an output se-
quence. The copy mechanism is widely used in
text production approaches where it is relevant for
handling rare input but also, for instance in text
summarisation, for copying input into the output.
See et al. (2017), Gu et al. (2016), Cheng and La-
pata (2016) introduced pointer networks (Vinyals
et al., 2015) extended with a copy mechanism for
text summarisation. Similarly, Cao et al. (2017)
uses a copy mechanism to generate paraphrases
and He et al. (2017) to generate answers. The copy
mechanism is often paired with coverage, which
tries overcoming a common problem of repeated
or omitted content in neural network outputs. It
was used for instance in NMT (Tu et al., 2016)
and summarisation (See et al., 2017).

Finally, some approaches apply neither copying
nor delexicalisation. In particular, Nayak et al.
(2017), working in the restaurant domain for di-
alogue systems, investigated ways of including
slot values directly into the input representation of
sequence-to-sequence models.

5 Conclusion

We investigated the impact of copying and delexi-
calisation on two datasets and using two different
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MR name[Wildwood], eatType[pub], food[Italian], area[city centre], familyFriendly[no], near[Raja In-
dian Cuisine]

reference Wildwood is an Italian pub situated in the city centre, near the Raja Indian Cuisine. It is not
family-friendly.

unconstr., NIL Wildwood is an Italian pub located in the city centre near the Ranch. It is not family-friendly.
unconstr., C Wildwood is an Italian pub located in the city centre near Raja Indian Cuisine. It is not family-

friendly.
unconstr., D Wildwood is an Italian pub located in the city centre near Raja Indian Cuisine. It is not family-

friendly.
unconstr., D+C Wildwood is an Italian pub located near the Raja Indian Cuisine in the city centre. It is not family-

friendly.
constr., NIL In the city centre near Raja Indian Cuisine there is an Italian pub called the Aromi. It is not

family-friendly.
constr., C There is a pub near Raja Indian Cuisine in the city centre called Aromi. It serves Italian food and

is not family-friendly.
constr., D Wildwood is an Italian pub near Raja Indian Cuisine in the city centre. It is not family-friendly.
constr., D+C Wildwood is an Italian pub located near the Raja Indian Cuisine in the city centre. It is not family-

friendly.

Table 7: Example predictions for E2E. Mistakes are in bold.

MR 108 St Georges Terrace – floorCount – 50; 108 St Georges Terrace – completionDate – 1988
reference 108 St Georges Terrace has a floor count of 50 and was completed in 1988.
unconstr., NIL 108 St Georges Terrace cost 120 million Australian dollars.
unconstr., C 108 St Georges Terrace was completed in 1988 and has 50 floors.
unconstr., D 108 St Georges Terrace has 50 floors and was completed in 1988.
unconstr., D+C 108 St Georges Terrace has 50 floors and was completed in 1988.
constr., NIL The coach of the Democratic Party in the United States is the Conservative Party (UK).
constr., C 108 Georges Terrace completionDate were created by 108 Georges.
constr., D 108 St Georges Terrace has 50 floors and was completed in 1988.
constr., D+C 108 St Georges Terrace has 50 floors and was completed in 1988.

Table 8: Example predictions for WebNLG. Mistakes are in bold.

ways of splitting the data into train, dev and test.
The results show some regularities and highlight
some interesting differences.

Overall, the results indicate that delexicalisation
outperforms copying. Furthermore, they show
that copying underperforms on rare items. Since
delexicalisation is a somewhat ad hoc process, an
interesting direction for future research would be
to devise copying methods that are more accurate
and that can better handle rare data items.

Another direction for future research would
be to further investigate how the content and
train/dev/test split of a dataset impact learning.
Our results suggest two ways in which these may
induce overfitting.

In the WebNLG dataset, strong associations be-
tween entities and facts seem to result in gen-
eration models that memorise facts with entities
rather than generate a text that adequately ver-
balises the input. This is highlighted in the man-
ual evaluation by the high number of wrong and
missed data items observed both in the constrained
and in the unconstrained setting.

In the E2E dataset, on the other hand, we saw

that added facts are frequent and manual evalu-
ation suggests that this is due to an overfitting
effect whereby, because most inputs consists of
more than three slot-value pairs, the models tend
to overgenerate by predicting texts that verbalise
four or more slot-value pairs.

In both cases, the copy-and-coverage mecha-
nism does not suffice to ensure correct output and
the results further decrease in the constrained set-
ting. It would therefore be interesting to see to
what extent better methods can be devised both
for creating datasets and for devising train/dev/test
splits that adequately test the ability of models to
generalise.

Another direction for future work is to investi-
gate the capability of byte pair encoding models
and subword representations to handle rare input
tokens in data-to-text generation.
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Ondřej Dušek and Filip Jurcicek. 2015. Training
a natural language generator from unaligned data.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
451–461. Association for Computational Linguis-
tics.

Henry Elder. 2017. Adapt centre submission for the
webnlg challenge. Technical report, WebNLG Chal-
lenge System Descriptions.

Henry Elder, Sebastian Gehrmann, Alexander OCon-
nor, and Qun Liu. 2018. E2e nlg challenge sub-
mission: Towards controllable generation of diverse
natural language. Technical report, E2E Challenge
System Descriptions.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for nlg micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 179–188. Association for Computa-
tional Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The webnlg
challenge: Generating text from rdf data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133. As-
sociation for Computational Linguistics.

Sebastian Gehrmann, Falcon Dai, Henry Elder, and
Alexander Rush. 2018. End-to-end content and plan
selection for natural language generation. Technical
report, E2E Challenge System Descriptions.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640. Association for Computational
Linguistics.

Shizhu He, Cao Liu, Kang Liu, and Jun Zhao.
2017. Generating natural answers by incorporating
copying and retrieving mechanisms in sequence-to-
sequence learning. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 199–
208. Association for Computational Linguistics.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden,
and Marilyn Walker. 2018. A deep ensemble model
with slot alignment for sequence-to-sequence natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 152–162. Association for Computational Lin-
guistics.

369



Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72. Association for Computational
Linguistics.

Chris van der Lee, Thiago Castro Ferreira, Emiel Krah-
mer, and Sander Wubben. 2017. Tilburg university
models for the webnlg challenge. Technical report,
WebNLG Challenge System Descriptions.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

Neha Nayak, Dilek Hakkani-Tr, Marilyn Walker, and
Larry Heck. 2017. To plan or not to plan? dis-
course planning in slot-value informed sequence to
sequence models for language generation. In Proc.
Interspeech 2017, pages 3339–3343.
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Abstract

This paper proposes an approach to NLG
system design which focuses on generat-
ing output text which can be more easily
processed by the reader. Ways in which
cognitive theory might be combined with
existing NLG techniques are discussed
and two simple experiments in content or-
dering are presented.

1 Introduction

Document Planning is a difficult task for which
there has been little research compared with other
aspects of NLG. This is evident in the recent sur-
vey of NLG (Gatt and Krahmer, 2017) which de-
votes relatively little space to the problem. Exist-
ing approaches focus on human authored corpora
as a gold standard, extracting relations from them
in order to structure messages.

This paper proposes NLG system design with
the guiding principle of producing output text
which is optimal input for the human comprehen-
sion process. Comprehension in this context is
the readers ability to process text. Construction-
Integration (CI) theory (Kintsch, 1998) states that
the cognitive process of reading is iterative. A
highly interconnected knowledge graph based on
both the text and the readers prior knowledge
forms the readers mental model as text is pro-
cessed.

A basic system is presented which orders mes-
sages using distributional semantics. The system
uses a simple graph database to generate texts de-
scribing a products suitability for a task. An ex-
ample generated text can be seen in Figure 1 with
message ID’s shown in parentheses.

The Nepal Extreme consists of an out-
sole, a rand, an upper and a lining (M0).
It has a crampon rating which is re-
quired for mountaineering (M1). The
outsole is stiff which is good (M3). The
outsole and the rand consist of rubber
which is durable, this suits mountaineer-
ing (M2,M4). The upper consists of syn-
thetic leather and synthetic fabric which
are both durable and water-resistant,
this is good (M10,M8,M9,M11). The
lining has insulation which suits moun-
taineering (M5). It also consists of
Gore-Tex which is waterproof, this is re-
quired for mountaineering (M7). Gore-
Tex is breathable as well which is good
(M6).

Figure 1: Generated Product Description (mes-
sage ID’s in parenthesis)

2 NLG Document Planning

Document Planning within NLG is most often de-
fined as the tasks of Content Determination and
Document Structuring (Reiter and Dale, 1999).
The system must decide what to say, how to say
it and in what order. Further, if there is an optimal
way to convey the input data such that the reader
better comprehends it or is moved to action by it,
then text should be generated in this way.

Approaches to Document Structuring gener-
ally focus on the relationships between messages.
Schema based approaches (McKeown, 1985) and
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988), (Hovy, 1993) offer methods for
generating text driven by the relations between
messages or groups of messages. Whilst they have
some limited success it is difficult to generalize
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them across domains. They also require much
manual work and each relation needs to be defined
by annotators who often do not agree even within
a domain.

Machine Learning has been investigated as a
method for both Content Determination and Doc-
ument Structuring (Lapata, 2006), (Barzilay and
Lee, 2004), (Liang et al., 2009). Such models rely
on existing corpora within the domain and often
paired data-corpus. If the domain is changed, or if
there is disagreement as to what the correct corpus
should be within a domain then such approaches
experience difficulty.

3 The Construction-Integration Model

RST and Schemata focus on the relations between
messages. Focus mechanisms can be used to
check if different messages contain identical sub-
jects or objects, utilizing this information when or-
dering messages. Focus (Sidner, 1979), Centering
Theory (Grosz et al., 1995), (Poesio et al., 2004)
and Scripts (Schank and Abelson, 1975) all offer
appealing models for how people read and process
text. It has been difficult however to implement
any of them in an NLG context, especially in a
general fashion. Perhaps this is because structur-
ing a narrative is a complex task with many vari-
ables, of which individual approaches might only
address a subset.

With the CI model (Kintsch, 1998) argues that
a text is not in itself sufficient to account for the
meaning acquired when the reader processes it.
The reader’s prior knowledge and experience add
to the mental model which is established and iter-
atively modified as the text is processed. Whilst
relations play a role, it is primarily the argument
concepts of a proposition which activate and fil-
ter relevant concepts in the reader’s mental model.
This has some experimental backing, such as the
work of (Schwanenflugel and White, 1991) which
found that word priming from previous discourse
altered the processing of words in future para-
graphs.

Long-term memory (LTM) is the complete set
of a readers knowledge. We do not have clearly
indexed and direct access to this knowledge, even
if it is relevant in the current context. Short-term
memory (STM) contains our immediate thoughts
although it is limited to a small number of con-
cepts. The capacity of STM has a long history
of study (Murdock Jr, 1960) and whilst estimates

vary, they are often in the range of 10-15 terms.
This is orders of magnitude lower than the num-
ber of terms and inferred concepts present in even
short narratives, making STM an unsuitable mech-
anism to explain our ability to comprehend text
(Ericsson and Kintsch, 1995). Kintsch describes
human comprehension as loosely analogous to a
computer system. Data is stored in both STM (reg-
isters / cache) as well as LTM (a large but slower
access storage device). Working memory (WM) is
the processor in this analogy. When a reader has
expert knowledge of a domain they are able to use
STM as an index to LTM, allowing for increased
cognitive ability using WM. Expert readers can
then create a rich set of inferences in their mental
model which can then be used to better compre-
hend the text.

Kintsch suggests propositions as a suitable first
class concept for modeling meaning in language.
A proposition in the context of CI theory is a
predicate-argument schema. This is a simplified
view of propositions as conceived in formal logics.
These simple propositions form complex ones,
which in turn can be used to generate the text. CI
theory adds additional nodes to this network which
are not present in the text. These can be thought
of as inferences based on the context of the propo-
sitions. Kintsch calls these ‘knowledge elabora-
tions’ and relations between them and the propo-
sition nodes from the text are added to form a com-
plex highly interconnected network in the readers
mental model.

4 Operationalization of the CI Model

Whilst a graph representation of data contains all
the input information required to generate a given
text, CI theory suggests this only forms a sub-
set of the complete model of comprehension held
by the reader. A system based on CI would re-
quire some method of simulating knowledge elab-
orations. This additional information would allow
for the simulation of inferences, with the complete
mental model being a combination of the propo-
sitional representation of the text and these infer-
ences.

Distributional Semantic methods such as word
embeddings created with word2vec (Mikolov
et al., 2013) can provide indication of some kinds
of relatedness between terms. Large data sets,
such as Wikipedia, could be used as general
knowledge. Domain specific corpora could also
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be used if available, either in place of or in some
combination with general knowledge. By com-
bining a graph representation of propositions with
distributional semantics we would appear to have
something which at a very basic level fits the CI
model proposed by Kintsch. The angle between
vector representations of arguments can be used to
weight the system knowledge graph.

Knowledge elaborations are not added to the
system knowledge base, this is not possible as
there is no direct access to the users mental model.
If distributional semantics can provide weights for
the edges in our system graph, these can be con-
sidered when planning content. An assumption
is made that when a path has short inter-message
distances (lower angles between vectors), readers
will be able to construct a richer interconnected
network of propositions and knowledge elabora-
tions than they would when inter-message distance
is high.

Content would be selected from the system
graph based on queries which return subsets of the
graph. For example all paths between a start node
and an end node. With the optional aid of con-
tent structuring rules, these subgraphs can be clus-
tered and ordered based upon the edge weights as
well as the connectivity of propositions, the lat-
ter being similar to implementations such as the
WISHFUL system (Zukerman and McConachy,
1998). An optimization function would need to
be implemented which finds the most appropriate
representation of text given the graph data, input
queries, distributional semantics and any imposed
structural rules.

The bottom-up approach suggested here could
be used in combination with existing top-down
methods such as RST. A domain expert could
inform the writer of the most important factors
for a specific NLG system, providing an out-
line for the system. The comprehension driven
techniques would then provide a sensible default
where the narrative structure has not been defined.
A convention-over-configuration approach.

5 System

The simple system used for exploratory investiga-
tion of NLG motivated by CI theory is outlined
here. This is an early version of the system and
further work is required to properly assess its ca-
pabilities. System input is in the form of messages
which are extracted as paths from a knowledge

graph. These messages are then ordered to form
a Document Plan, before simple Micro Planning
techniques are applied and the text is realized.

5.1 Vector Space Model

The Vector Space Model (VSM) was created using
the Python Gensim implementation of Word2Vec.
The corpus was stripped of all characters which
were not within the alphabet for the given lan-
guage. The corpus was lemmatized (using spaCy).
The VSM is trained on English Wikipedia using
Word2Vec. The training settings were skip-gram
with 600 dimensions, a window of 5, negative
sampling of 5 and all words with a lower total fre-
quency than 5 were discarded.

Whilst Word2Vec has been used as a starting
point, it is possible that models generated using
systems such as GloVe (Pennington et al., 2014)
and ELMo (Peters et al., 2018) would improve
an NLG system which relies upon distributional
semantics. Vector Space Specialisation (Mrksic
et al., 2017) may also be useful.

5.1.1 System Input
Figure 2 shows nodes and relations from the graph
database (Neo4j) for a Product which consists of
Components, with each Component being made of
Materials. All Products, Components and Materi-
als (collectively Items) may have Attributes which
have suitabilities for different Tasks. Items may
also have a direct suitability for a Task.

The system will describe the suitability of a
product for a task. The input to the system is an
unordered list of proposition chains, with each
proposition chain itself being an ordered list of
proposition triples. All possible paths from the
product to the task are extracted from the graph
shown in Figure 2. Directionality of the edges is
ignored at this stage. To generate the text shown
in Figure 1 each unique path from the product
(Nepal Extreme) to the task (mountaineering) is
found and combined to form the list of proposition
chains shown in Figure 3. In the special case
where a task requires an attribute which is not
present on the product or any of its child items, a
chain is created to represent it. These proposition
chains are messages in the NLG system.

5.1.2 Ordering to form the Document Plan
A vector representation for each message is cal-
culated by combining the vectors for each argu-
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Figure 2: Product Composition, Attributes and Task.

ment. Vectors for individual arguments are taken
from the VSM described in 5.1. The document
plan is an ordered list of messages. To populate
the document plan, messages are ordered using a
greedy algorithm which minimizes inter-message
distance. Inter-message distance is defined as the
angle between the message vectors. The algorithm
will stop once all input messages have been added
to the document plan. The ordering of messages
for the text example shown in Figure 1 can be seen,
with inter-message distance in radians, in Figure 4.

5.2 Micro Planning

The focus of this paper is on content ordering at
the Document Plan level. More advanced Mi-
cro Planning techniques could be used and would
probably improve the quality of the text. The
Aggregation and Referring Expression techniques
(REG) used are far from state of the art and are
meant only as a quick means to add variety and
remove obvious repetition.

5.2.1 Aggregation

Functions were created to realize different patterns
of proposition chains. The system iterates over
the Document Plan, adding to a sublist of chains
which are to be realized. If at any point the sys-
tem determines it would be unable to realize this
sublist, it reverts back to the last point at which it
could and calls a suitable realizer function for the
it. The system then starts from the chain which
could not be realized, before continuing until all
chains have been realized. It is always possible
to realize a sublist of a single chain. Aggregation
candidates can be seen on Figure 2 where paths
diverge and re-converge, although the specific or-
dering means aggregation is not always possible.

Repeated propositions are removed at this stage.
For example in Figure 3 the proposition triple at
the beginning of both chains M3 and M4 describe
how the ‘Nepal Extreme CONSIST outsole‘. This
information was used for the purpose of ordering
however it is only sent to be realized once, in the
introductory sentence (M0) in Figure 1.
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Q = A01 ‘Nepal Extreme’ NULL A03 ‘mountaineering’

M1 = A01 ‘Nepal Extreme’ POSSESS A02 ‘crampon rating’
A02 ‘crampon rating’ REQUIRE A03 ‘mountaineering’

M2 =

A01‘Nepal Extreme’ CONSIST A04‘rand’
A04‘rand’ CONSIST A05‘rubber’
A05‘rubber’ POSSESS A06‘durable’
A06‘durable’ AID A03‘mountaineering’

M3 =
A01‘Nepal Extreme’ CONSIST A07‘outsole’
A07‘outsole’ POSSESS A08‘stiff’
A08‘stiff’ AID A03‘mountaineering’

M4 =

A01‘Nepal Extreme’ CONSIST A07‘outsole’
A07‘outsole’ CONSIST A05‘rubber’
A05‘rubber’ POSSESS A06‘durable’
A06‘durable’ AID A03‘mountaineering’

M5 =
A01‘Nepal Extreme’ CONSIST A09‘lining’
A09‘lining’ POSSESS A10‘insulation’
A10‘insulation’ AID A03‘mountaineering’

M6 =

A01‘Nepal Extreme’ CONSIST A09‘lining’
A09‘lining’ CONSIST A11‘Gore-Tex’
A11‘Gore-Tex’ POSSESS A12‘breathable’
A12‘breathable’ AID A03‘mountaineering’

M7 =

A01‘Nepal Extreme’ CONSIST A09‘lining’
A09‘lining’ CONSIST A11‘Gore-Tex’
A11‘Gore-Tex’ POSSESS A13‘waterproof’
A13‘waterproof’ REQUIRE A03‘mountaineering’

M8 =

A01‘Nepal Extreme’ CONSIST A14‘upper’
A14‘upper’ CONSIST A15‘synthetic fabric’
A15‘synthetic fabric’ POSSESS A06‘durable’
A06‘durable’ AID A03‘mountaineering’

M9 =

A01‘Nepal Extreme’ CONSIST A14‘upper’
A14‘upper’ CONSIST A15‘synthetic fabric’
A15‘synthetic fabric’ POSSESS A16‘water-resistant’
A16‘water-resistant’ AID A03‘mountaineering’

M10 =

A01‘Nepal Extreme’ CONSIST A14‘upper’
A14‘upper’ CONSIST A17‘synthetic leather’
A17‘synthetic leather’ POSSESS A06‘durable’
A06‘durable’ AID A03‘mountaineering’

M11 =

A01‘Nepal Extreme’ CONSIST A14‘upper’
A14‘upper’ CONSIST A17‘synthetic leather’
A17‘synthetic leather’ POSSESS A16‘water-resistant’
A16‘water-resistant’ AID A03‘mountaineering’

Figure 3: Input for text in Figure 1.

5.2.2 Referring Expression Generation

REG in the system is very simple. Pronouns are
used only when the subject of the sentence is the
same as that of the previous sentence. Whilst typ-
ically a Micro Planning task, this is done during
realization, determined by the specific function
which is called to realize the pattern of proposi-
tion chains.

5.3 Realization

Realization is performed using SimpleNLG (Gatt
and Reiter, 2009). The realizer functions them-
selves use helper functions which construct com-
monly occurring patterns of text. An introductory
sentence (labeled M0 in Figure 1) is included at
the beginning of the output text detailing the prod-
uct and its components. This is the only fixed or-
dering rule. The conjunction of components is re-
alized in the order that the components would oth-
erwise first be mentioned.

6 Experiments

6.1 Message Ordering

The first experiment evaluates the output of the
simple product description system described in
Section 5. The products within the system are all
outdoor footwear. This domain was chosen be-
cause outdoor footwear can be broken down into
a small number of components and attributes, then
explained in broad terms. This would not hold true
in a live system as there would be many ambiguity
problems. It does however allow for a simple and
contained preliminary test. The components of the
product are parts of the boot/shoe such as upper,
lining, rand and sole. Examples of materials are
leather, suede and rubber. Attributes are most of-
ten adjectives such as durable or waterproof al-
though they can also be concepts such as deep
lugs. The tasks in this system are mountaineer-
ing, hiking and trail walking. With Item, Product,
Component, Material, Attribute and Task being la-
bels for nodes on the graph, the relations which
are available are CONSIST, POSSESS, AID, HIN-
DER, REQUIRE and PRECLUDE. These rela-
tionships can be seen on Figure 2. The experi-
ment presented the below task descriptions to par-
ticipants.

• Mountaineering - Walking and climbing in
the mountains, often in the winter time when
there is ice and snow.

• Hillwalking - Walking in the hills during ev-
ery season except for winter. There may be
some rough ground and it may be wet.

• Trail Walking - Walking on forest paths or
other well kept trails. Usually in warmer
weather although there may be some light
rain.

In order to keep the system as simple as possible
just four relations were used.

• AID - Attribute aids in the completion of the
task, but is not essential. This is realized as
‘is good for’ or ‘suits’.

• HINDER - Attribute hinders the completion
of the task, but not to the point where it ren-
ders impossible. This is realized as ‘is not
good for’ or ‘does not suit’.
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Figure 4: Ordering of Chains

• REQUIRE - Attribute is essential for the task.
This is rendered as ‘is essential for’ or ‘is re-
quired for’.

• PRECLUDE - Attribute precludes the item
from the task. This was rendered as ‘unsuit-
able for’. This was perhaps too close to ‘does
not suit’.

6.1.1 Experiment Setup

Participants were recruited for an online survey us-
ing email lists and social media. There were 37 re-
spondents of which 28 stated English as their na-
tive language. Participants were shown 12 scenar-
ios of which 6 were system generated narratives
(like Figure 1) and 6 were hand crafted lists (like
Figure 5 as might be seen on an online retail web-
site. Each subset of 6 was equally divided such
that participants received 3 product descriptions
where the product was designed for the task (a
match) and 3 descriptions where the product was
not designed for the task (not a match). Partici-
pants were shown 4 statements and asked whether
they agreed with each as it related to the current
description using a five point Likert scale. The
statements can be seen on Table 1

6.1.2 Hypothesis

Although this was exploratory research, the work-
ing hypothesis was that the ordering of the infor-
mation would be evaluated as superior for the nar-
rative descriptions, compared to list based descrip-
tions. It was also suspected that narratives would
outperform lists in the other categories although
without a pilot experiment there was no real basis
for this.

Attributes:

• Has a crampon rating.
• Upper - Made of synthetic leather

and synthetic fabric. Is water-
resistant and durable.
• Lining - Made of Gore-Tex. Is wa-

terproof and breathable. Has insu-
lation.
• Outsole - Made of durable rubber.

Is stiff.
• Rand - Made of durable rubber.

Usefulness:

• Crampon rating and waterproof are
essential for mountaineering.
• Water-resistant, durable, insula-

tion, breathable and stiff are good
for mountaineering.

Figure 5: List Based Description of Product Con-
struction

6.1.3 Results and Evaluation

Table 1 shows the mean response for each ques-
tion. Table 2 shows the results of the ANOVA
test performed for each statement. The results
show that several factors have an impact on the
perceived quality of text. For all statements there
was a statistically significant effect (p < 0.005) for
whether the product being described was designed
for the given task e.g. texts for mountaineer-
ing boots scored lower when being described for
other tasks. There were also highly significant
(p < 3e-05) effects when comparing narrative to
list structure for all statements except S2 (The de-
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scription explains the suitability of the product for
the task). Lists were more highly rated overall
although whether this would hold as the number
of propositions increases is unclear and worthy of
further examination.

There is a lot of ambiguity with the definitions
used for the relations, Items, Attributes and Tasks.
The line between Components and Attributes can
be blurred, with ‘deep lugs’ being a good exam-
ple. This could be a Component of the outsole
or an Attribute of it. Ultimately the distinction has
little impact on the system as it is the path from the
Product to the Task which is important and this is
unaffected by a change to the label of a node. Fur-
ther, it is the name of the node which is used for
word embeddings, not the label itself. The only
impact for the final text is that the relation (and
therefore verb) used will be CONSIST for a Com-
ponent and POSSESS for an Attribute.

Where ambiguity is more of a problem is in the
relations and the Tasks. There is a lot of overlap
between mountaineering, hiking and trail walking.
It is not always the case that these tasks are carried
out in isolation. A mountaineer might walk over
easier terrain using footwear which is suboptimal
in order to approach a technical climb for which
the footwear is essential.

6.2 Ordering Different Languages

A second experiment was conducted using the
same system, the only difference being that ar-
gument concepts were translated to different lan-
guages for the purposes of ordering. Vector
space models were trained for French and Spanish
Wikipedia using almost identical settings as the
English model (Section 5.1). The only change in
the training pipeline was to allow additional char-
acters such as accented vowels. Arguments were
translated into French and Spanish by a single na-
tive speaker for each language. The domain was
explained to each annotator and they were asked
to translate arguments to the semantically closest
word or phrase, with annotators having the ability
to translate from a single term to a short phrase or
vice versa.

6.2.1 Results and Evaluation
There were some difficulties in translation. Only
one annotator was used per language. Any further
work involving the definition of terms based on
semantics, whether within English or to another
language, should be done with multiple annotators

and their agreement assessed.
Even with allowing annotators to translate into

multiple terms, some did not directly translate.
Hiking and Trail Walking were difficult to separate
in French although ambiguity may exist in English
as well. Trail Walking more often refers to walks
at lower elevation on well maintained paths. Hik-
ing includes walking off the path and on steeper,
less stable terrain. A cursory Internet search for
images based on these terms would appear to back
this definition up, although exactly at which point
Hiking becomes Trail Walking is ambiguous. The
French annotator felt that ‘randonnée’ was the best
term for both Hiking and Trail Walking although
it was closer to Hiking. The phrase ‘sentier de
randonnée’ is what Google translate returns for
Trail Walking although this refers to the actual
path which is walked upon, not the task. The con-
cept could be expressed as a complex proposition
although as this system only allows for simple lists
of proposition triples, ‘randonnée’ was used for
both tasks.

Table 3 shows the mean deviation of the or-
dering position of chains in Spanish and French
when compared with the original English order-
ings. The overline indicates narratives where the
stated product was not designed for the given task.
It is difficult to evaluate the ordering based on
translated proposition arguments as the English or-
dering makes for a poor gold standard. It is not
clear if when using such a simple data source and
such trivial propositions that there is a correct or-
dering.

Figure 6 shows the English realized text based
on ordering using Spanish translations of graph
nodes. The French example for the Nepal Extreme
boot, used as an example throughout, was almost
identical to the original English text in 1. There-
fore, it has been omitted due to space restrictions.

7 Conclusion and Future Work

This paper describes a new approach to Document
Planning based on the psychological model of-
fered by Construction-Integration (CI) theory. It
is interesting that CI suggests graph structure as
a representation for human comprehension. Even
if we cannot directly implement CI, the idea of
manipulating graph data on the machine (speaker)
end such that it might influence the ‘graph data’ on
the human (hearer) end is worth pursuing. Inves-
tigation into this new approach is still in the early

377



Statement N N L L

S1 The description is easy to read and understand 3.61 3.35 4.09 3.94
S2 The description explains the suitability of the product for the task 3.89 3.46 4.05 3.71
S3 The description is presented in a sensible order 3.63 3.29 4.05 3.75
S4 Overall, this is a good description 3.50 3.18 4.01 3.67
N : Narrative (matching Product)

L : List (matching Product)

N : Narrative (non-matching Product)

L : List (non-matching Product)

Table 1: Mean Response

S1 S2 S3 S4
Variable F p F p F p F p

Type 18.237 <0.001 2.135 0.145 18.43 <0.001 20.955 <0.001
Match 8.585 <0.01 22.685 <0.001 13.319 <0.001 15.003 <0.001

Participant 0.009 0.93 0.508 0.477 3.139 0.077 0.176 0.675
Product 1.001 0.44 1.503 0.129 1.376 0.183 1.615 0.093

Table 2: ANOVA Results

Task French Spanish French Spanish

Mountaineering 1.58 2.47 2.03 2.37
Hiking 2.60 2.27 2.96 1.67
Trail Walking 2.36 1.93 3.27 2.76

Table 3: Mean Order Variance per Language

stages and much remains to be done.
To fully test Comprehension Driven NLG,

richer data sets and more comprehensive genera-
tion models will be required. Identifying and eval-
uating these are key prerequisites of future work.
The qualitative evaluation of the first experiment
presented in this paper only investigates the pref-
erences of participants. Evaluation of recall and
deep understanding will also be required. It is un-
clear as to whether the list based summary in its
current form is a suitable gold standard to com-
pare system generated narrative. Suitable methods
of evaluating the Document Plan independently of
the downstream system components will also be
needed.

Existing approaches to Document Planning
look at human authored corpora and attempt to
construct narratives based upon patterns identified
within them. This is either with hand crafted sys-
tems, ML/AI or a combination of the two. Whilst
this corpus analysis is useful, it is a limitation of
such methods that the text structure is insufficient
to explain the comprehension process of reading

The Nepal Extreme consists of an up-
per, an outsole, a rand and a lining
(M0). It has a crampon rating which
is required for mountaineering (M1).
The upper consists of synthetic fabric
and synthetic leather which are both
water-resistant and durable, this is good
(M9,M11,M10,M8). The outsole and the
rand consist of rubber which is durable,
this suits mountaineering (M4,M2). It is
also stiff which is good (M3). The lin-
ing consists of Gore-Tex which is water-
proof (M7), this is required for moun-
taineering. Gore-Tex is breathable as
well which suits mountaineering (M6).
It has insulation which is good (M5).

Figure 6: Example Text (Spanish Order).

it.
Attempting to combine an NLG system’s

knowledge base with the mental knowledge base
of the reader may appear highly impractical. Both
however are processing systems, with the output
from the former being the input to the latter. It
therefore makes sense to optimize the writers out-
put such that it can be more easily processed by
the reader.

Future work will focus on identifying NLG
techniques which generate output with this as a
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primary consideration. It is the use of the human
comprehension process itself, almost as a special-
ist node in a heterogeneous system, which will
frame the research.

The most important task is designing an exper-
iment which can demonstrate that either recall or
deep understanding has been improved using an
NLG system designed following comprehension
principles. Work is in progress towards a system
which will attempt to select optimal paths through
a distributional semantical weighted proposition
graph to explain a concept. The system will look
for paths, with smaller individual edge weights,
rather than shorter paths which may be avail-
able but have greater inter-message distance. It is
hoped this will increase the chance that connected
inferences are generated in the reader’s mental
model. Continued work on sentence ordering as
discussed in this paper will be used to order the
content.

As with many NLG systems, what has been dis-
cussed so far only operates on a small number of
messages which at most would constitute a single
paragraph or short communication format. Docu-
ment Planning is not however restricted to short
texts and more research in the planning of long
form documents is required. Whilst this is a very
complex task, paragraphs could be identified by
clustering based on distributional semantics con-
tent. The most prominent propositions within
paragraphs could be identified and used to gen-
erate top and tail statements, bridging paragraphs
and even chapters. All of these techniques would
first and foremost be comprehension driven.
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Abstract

Till now, neural abstractive summarization
methods have achieved great success for
single document summarization (SDS).
However, due to the lack of large scale
multi-document summaries, such methods
can be hardly applied to multi-document
summarization (MDS). In this paper, we
investigate neural abstractive methods for
MDS by adapting a state-of-the-art neural
abstractive summarization model for SDS.
We propose an approach to extend the
neural abstractive model trained on large
scale SDS data to the MDS task. Our ap-
proach only makes use of a small number
of multi-document summaries for fine tun-
ing. Experimental results on two bench-
mark DUC datasets demonstrate that our
approach can outperform a variety of base-
line neural models.

1 Introduction

Document summarization is a task of automati-
cally producing a summary for given documents.
Different from Single Document Summarization
(SDS) which generates a summary for each
given document, Multi-Document Summarization
(MDS) aims to generate a summary for a set of
topic-related documents. Previous approaches to
document summarization can be generally catego-
rized to extractive methods and abstractive meth-
ods. Extractive methods produce a summary by
extracting and merging sentences from the original
document(s), while abstractive methods generate
a summary using arbitrary words and expressions
based on understanding the document(s). Due
to the difficulty of natural language understand-
ing and generation, previous research on docu-
ment summarization is more focused on extrac-

tive methods (Yao et al., 2017). However, ex-
tractive methods suffer from the inherent draw-
backs of discourse incoherence and long, redun-
dant sentences, which hampers its application in
reality (Tan et al., 2017). Recently, with the suc-
cess of sequence-to-sequence (seq2seq) models in
natural language generation tasks including ma-
chine translation (Bahdanau et al., 2014) and di-
alog systems (Mou et al., 2016), abstractive sum-
marization methods has received increasing atten-
tion. With the resource of large-scale corpus of
human summaries, it is able to train an abstrac-
tive summarization model in an end-to-end frame-
work. Neural abstractive summarization models
(See et al., 2017; Tan et al., 2017) have surpass the
performance of extractive methods on single doc-
ument summarization task with abundant training
data.

Unfortunately, the extension of seq2seq models
to MDS is not straightforward. Neural abstrac-
tive summarization models are usually trained on
about hundreds of thousands of gold summaries,
but there are usually very few human summaries
available for the MDS task. More specifically,
in the news domain, there is only a few hundred
multi-document summaries provided by DUC and
TAC conferences in total, which are largely in-
sufficient for training neural abstractive models.
Apart from insufficient training data, neural mod-
els for abstractive MDS also face the challenge of
much more input content, and the study is still in
the primary stage.

In this study, we investigate applying seq2seq
models to the MDS task. We attempt various
ways of extending neural abstractive summariza-
tion models pre-trained on the SDS data to the
MDS task, and reveal that neural abstractive sum-
marization models do not transfer well on a differ-
ent dataset. Then we study the factors which affect
the transfer performance, and propose methods to
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adapt the pre-trained model to the MDS task. We
also study leveraging the few MDS training data
to further improve the pre-trained model. We con-
duct experiment on the benchmark DUC datasets,
and experiment results demonstrate our approach
is able to achieve considerable improvement over
a variety of neural baselines.

The contributions of this study are summarized
as follows:

• To the best of our knowledge, our work is one
of the very few pioneering works to investi-
gate adapting neural abstractive summariza-
tion models of single document summariza-
tion to the task of multi-document summa-
rization.

• We propose a novel approach to adapt the
neural model trained on the SDS data to the
MDS task, and leverage the few MDS train-
ing data to further improve the pre-trained
model.

• Evaluation results demonstrate the efficacy of
our proposed approach, which outperforms a
variety of neural baselines.

We organize the paper as follows. In Section 2
we introduce related work. In Section 3 we de-
scribe the previous neural abstractive summariza-
tion model. Then we introduce our proposed ap-
proach in Section 4. Experiment results and dis-
cussion are presented in Section 5. Finally, we
conclude this paper in Section 6.

2 Related Work

2.1 Extractive Summarization Methods
The study of MDS is pioneered by (McKeown
and Radev, 1995), and early notable works also
include (McKeown et al., 1999; Radev et al.,
2000). Extractive summarization systems that
compose a summary from a number of important
sentences from the source documents are by far
the most popular solution for MDS (Avinesh and
Meyer, 2017). Redundancy is one of the biggest
problems for extractive methods (Gambhir and
Gupta, 2017), and the Maximal Marginal Rele-
vance (MRR) (Carbonell and Goldstein, 1998) is
a well-known algorithm for reducing redundancy.
In the past years various models under extrac-
tive framework have been proposed (Tao et al.,
2008; Wan and Yang, 2008; Wang et al., 2011;
Tan et al., 2015). One important architecture is

to model MDS as a budgeted maximum cover-
age problem, including the prior approach (Mc-
Donald, 2007) and improved models (Woodsend
and Lapata, 2012; Li et al., 2013; Boudin et al.,
2015). There are still recent studies under tradi-
tional extractive framework (Peyrard and Eckle-
Kohler, 2017; Avinesh and Meyer, 2017).

2.2 Abstractive Summarization Methods

Abstractive summarization methods aim at gen-
erating the summary based on understanding the
original documents. Sequence-to-sequence mod-
els with attention mechanism have been applied
to the abstractive summarization task. Success at-
tempts are on sentence summarization (Rush et al.,
2015; Chopra et al., 2016; Nallapati et al., 2016) or
single document summarization (Tan et al., 2017;
See et al., 2017; Paulus et al., 2017), which have
abundant gold summaries to train an end-to-end
system.

Until very recently, there occurs attempt for ab-
stractive multi-document summarization under the
seq2seq framework. The lack of enough train ex-
amples is the major obstacle to this end. To ad-
dress this, Liu et al. (2018) study the task of gen-
erating English Wikipedia under a viewpoint of
multi-document summarization. They construct
a large corpus with reference summaries, so that
end-to-end training of a seq2seq is capable. Their
study reveals that seq2seq model works when
there are abundant training data for MDS. Very re-
cently Baumel et al. (2018) try to apply pre-trained
abstractive summarization model of SDS to the
query-focused summarization task. They sort the
input documents and then iteratively apply the
SDS model to summarize each single document
until the length limit is reached. Their major con-
cern is incorporating query information into the
abstractive model or using the query to filter the
original documents, which is different from our
work focusing on generic multi-document sum-
marization. Moreover, the intuitive idea of using
the SDS model for summarizing each single doc-
ument in the multi-document set is adopted in the
baseline models for comparison as well.

3 Preliminaries

In this work we investigate abstractive MDS ap-
proach based on the state-of-the-art neural abstrac-
tive model in Tan et al. (2017). Compared with an-
other neural abstractive model in See et al. (2017),

382



h"# h$#

h%,%#

h%,"#

h%,$#

h% h" h$

sentence encoder

h%#d

sentence decoder

h%,(%

h%,"

h%,%

w
ord

encoder

graph ranking model

<eod>

w
ord

decoder

<eod>

Figure 1: SinABS model. The figure is borrowed
from Tan et al. (2017).

Tan et al. (2017) adopt a hierarchical encoder-
decoder framework which we found is more scal-
able to more and longer input documents. The
model is named SinABS in this paper. SinABS
uses a hierarchical encoder-decoder framework
like Li et al. (2015), where a PageRank (Page
et al., 1999) based attention mechanism is pro-
posed to identify salient sentences in the original
documents. The SinABS model is illustrated in
Figure 1.We introduce the SinABS model follow-
ing Tan et al. (2017).

3.1 Encoder

The target of the encoder is to encode the input
documents into vector representations. SinABS
adopts a hierarchical encoder framework, where
a word encoder encword is used for encoding a
sentence into the sentence representation from its
words, as hi,k = encword(hi,k−1, ei,k), where
hi,k represents the hidden state when LSTM re-
ceives word ei,k. Then a sentence encoder encsent

is used for encoding an input document into the
document representation from its sentences, as
hi = encsent(hi−1,xi), where xi = hi,−1 is the
last hidden state when word encoder receives the
whole sentence i. The input to the word encoder is
the word sequence of a sentence, appended with an
“<eos>” token indicating the end of a sentence.
The last hidden state after the word encoder re-
ceives “<eos>” is used as the embedding repre-
sentation of the sentence. A sentence encoder is
used to sequentially receive the embeddings of the
sentences. A pseudo sentence of an “<eod>” to-
ken is appended at the end of the document to in-
dicate the end of the whole document. The hidden
state after the sentence encoder receives “<eod>”
is treated as the representation of the input doc-

ument, denoted as c. Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) is
used as the word encoder encword and also the sen-
tence encoder encsent.

3.2 Decoder

Similar to the hierarchical encoder, The sentence
decoder decsent receives the document represen-
tation d as the initial state h

′
0 = d, and pre-

dicts the sentence representations sequentially, by
h

′
j = decsent(h

′
j−1,x

′
j−1), where x

′
j−1 is the en-

coded representation of the previously generated
sentence s

′
j−1. The word decoder decword receives

a sentence representation h
′
j as the initial state

h
′
j,0 = h

′
j , and predicts the word representations

sequentially, by h
′
j,k = decword(h

′
j,k−1, ej,k−1),

where ej,k−1 is the embedding of the previously
generated word. The predicted word representa-
tions are first concatenated with the context vector
cj , and then mapped to vectors of the vocabulary
size dimension by a projection layer, and finally
normalized by a softmax layer as the probability
distribution of generating the words in the vocab-
ulary. A word decoder stops when it generates the
“<eos>” token and similarly the sentence decoder
stops when it generates the “<eod>” token.

3.3 Attention Mechanism

The attention mechanism used in SinABS sets a
different context vector cj when generating the
words of sentence j, by cj =

∑
i α

j
ihi. The graph-

based attention mechanism in Tan et al. (2017)
adopts the topic-sensitive PageRank algorithm to
compute the attention weights, by

f = (1− λ)(I − λWD−1)−1y (1)

where f = [f1, . . . , fn] ∈ Rn denotes the rank
scores of the n original sentences. D is a diagonal
matrix with its (i, i)-element equal to the sum of
the i-th column of W . W (i, j) = hT

i Phj where
P is a parameter matrix to be learned. λ is a damp-
ing factor and set to 0.9. y ∈ Rn is a one hot
vector and only y0 = 1. The ranked scores are
then integrated with a distraction mechanism, and
finally computed as:

αj
i =

max(f ji − f j−1
i , 0)

∑
l

(
max(f jl − f

j−1
l , 0)

) (2)
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Figure 2: Framework of our model. The differ-
ence from Figure 1 is the docset encoder and the
concentrated attention mechanism.

4 Our Approach

4.1 Overview

In this section we introduce our approach. Our ab-
stractive MDS model is the extension of the single
document summarization model SinABS. It is an
encoder-decoder framework, which takes all the
documents of a document set as input, then en-
codes the documents into a document set repre-
sentation, and further generates the summary with
a decoder. To adapt SinABS to the MDS task, our
model is different from SinABS in the encoder
model and the attention mechanism, and it will
also be tuned on the MDS dataset to adapt to the
MDS task. The framework of our model is illus-
trated in Figure 2.

4.2 Multi-Document Encoder

The major difference of MDS is that we need to
generate a summary for multiple input documents.
So our system needs to deal with the multiple in-
put documents although SinABS is trained to gen-
erate a summary for one document. Considering
that the decoder generates the summary from the
representation vector encoded by the encoder, we
can generate a summary for a document set if the
document set is encoded to a representation vector
containing its key information. In our approach,
we achieve this by adding a document set encoder,
to encode a set of document representation vectors
into a document set representation. Thus the hier-
archical encoder structure becomes three levels.

The document set encoder encdocset takes docu-
ment vectors {dm}, m ∈ [1,M ] where M is the
number of documents in a document set as input,
produces a new document set vector d̃, and then
d̃ is provided to the decoder to generate the sum-
mary for the document set. The decoder will be
a two-level hierarchical framework similar to that

in Tan et al. (2017). Since there is no order and
dependency relationship between different docu-
ments in a document set, it is not reasonable to
use LSTM as the document set encoder. Instead,
we define the document set encoder as:

d̃ = encdocset ({dm}) =
∑

m

wmdm (3)

where w = [w1, . . . , wm] ∈ Rm is a weight vec-
tor to merge the document vectors into a document
set representation. The weight vector w can be a
fixed one as w = [1/m, . . . , 1/m], but in our sys-
tem we hope to assign different wm to different
dm, since different documents may contribute dif-
ferently to the overall summary. However, it is un-
reasonable to treat w as a parameter vector and
learn it directly, because the weight wm for dm

should be based on dm. The position of a docu-
ment should not affect its weight since there is no
order in a document set.

In our system the weight for a document is de-
cided based on the document itself, and its con-
tribution to the representation of the overall docu-
ment set. Therefore, we define:

wm =
qT [dm;dΣ]∑
m′ qT [dm′ ;dΣ]

(4)

where dΣ =
∑

m dm and [dm;dΣ] is the concate-
nation of dm and dΣ. The intuitive explanation of
Eq. 4 is that the weight of dm is decided by its re-
lationship (modeled by parameterized dot product)
with the representation of the whole document set
dΣ. q is the parameter to be learned, whose di-
mension is twice the dimension of dm or dΣ.

4.3 Attention

The decoder receives the document set vector d̃
as initial state and generates the output summary
from the document set representation. The dif-
ference of the decoder to SinABS is that when
computing the attention distribution now it should
be computed on all the sentences in a document
set. Not only the amount of original sentences be-
comes larger, but also the original sentences come
from different documents. Nevertheless, we be-
lieve the topic-sensitive PageRank attention mech-
anism is still able to identify salient sentences,
since similar idea in LexRank and TextRank meth-
ods achieves good performance on MDS. There-
fore, the attention distribution is now computed on
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all the input sentences, by conducting the topic-
sensitive PageRank algorithm in Eq. 1 and Eq. 2
on all the original sentences.

However, a problem does occur because the
amount of original sentences is much larger than
that of single document summarization task. Even
though the graph-based attention mechanism is
still able to rank the relevance and salience of orig-
inal sentences, the attention distribution will be
too disperse and even. This results in that too
many sentences are considered to produce the con-
text vector, making the context vector contain too
much information. We believe a more concen-
trated attention distribution will be better. There-
fore, when computing the attention weights, only
the top K ranked sentences can have attention
weights. This can be easily realized by switching
the rank scores of sentences not in largest K sen-
tences to minimum value and re-normalizing the
attention weights. K is a hyper-parameter.

4.4 Model Tuning

SinABS is trained on the single document summa-
rization corpus - CNN/DailyMail. Although both
the CNN/DailyMail corpus and DUC datasets are
news data, the reference summaries of the datasets
differ much. In order to better adapt the Sin-
ABS model on the MDS task, we attempt to fine
tune the pre-trained SinABS model, although we
have only a few reference summaries for the MDS
task. In our approach we tune the decoders of
the model. The parameters are the LSTM pa-
rameters of the word and sentence decoders, and
the weight vector q in the document set encoder.
The loss function and the optimization algorithm
are the same with those of the original SinABS
model, and we use the cross-entropy loss and the
Adam (Kingma and Ba, 2014) algorithm to train
the model. To prevent overfitting the training is
stopped when performance begins to decrease.

5 Experiments

5.1 Dataset

We conduct experiments on the DUC datasets
which are widely used in document summariza-
tion. We use the MDS tasks of DUC 2002 and
2004 as test sets, which contain 50 document sets
and 59 document sets, respectively. When evaluat-
ing on the DUC 2004 dataset, the DUC 2001-2003
and DUC 2005-2007 datasets are used for tun-
ing the model, and DUC 2001, DUC 2003-2007

datasets are used when testing on the DUC 2002
dataset. The MDS tasks of DUC 2005-2007 are
query focused summarization, but we ignore the
query since these datasets are only used for train-
ing. There are on average 10 documents per set
in DUC 2004 and 9.58 documents per set in DUC
2002. For the datasets of DUC 2005-2007 we use
only the top 10 documents which are most similar
to the topic of a document set.

5.2 Implementation

We implement our approach based on the
source code and pre-trained model on the
CNN/DailyMail corpus provided by Tan et al.
(2017). We process the DUC datasets similar to
Tan et al. (2017), including tokenizing and lower-
casing the text, replacing all digit characters with
the “#” symbol and label all name entities with
CoreNLP toolkit1. The “#” symbols are mapped
back to the original digits after decoding accord-
ing to the context. We also implement our model
in Theano2 based on the SinABS model. K is set
to 15 based on developing on the training set.

5.3 Evaluation Metric

ROUGE: We use ROUGE-1.5.5 (Lin and Hovy,
2003) toolkit and report the Rouge-1, Rouge-2
and Rouge-SU4 F1-scores, which has been widely
adopted by DUC and TAC for automatic summary
quality evaluation. It measured summary quality
by counting overlapping units such as the n-gram,
word sequences and word pairs between the can-
didate summary and the reference summary.

Edit distance: In order to test if our model is
truly abstractive, instead of simply copying rel-
evant fragments verbatim from the input docu-
ments, we compute the word edit-distance be-
tween each generated sentence si and the most
similar original sentence of it, as edi, and report
the average ED = 1

n

∑n
i=1 edi.

Considering the significant difference of length
between sentences, we also divide the word edit-
distance for each generated sentence by its word
number wi as ED/w = 1

n

∑n
i=1

edi/wi.

5.4 Baselines

To verify the effectiveness of our approach, we
investigate various strategies to adapt SinABS to
MDS task for comparison. Since SinABS takes

1http://stanfordnlp.github.io/CoreNLP/
2https://github.com/Theano/Theano
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one document as input but there are multiple input
documents in the MDS task, we explore four pos-
sible approaches to address this (“ex.” indicates
extractive method and “ab.” indicates abstractive
method. SinABS is denoted as ∆).

Single-ab.: One representative document of ev-
ery document set is selected as the input document
to the SinABS model. This is the most straightfor-
ward way to adapt single document summariza-
tion model to the MDS task. The representative
document is chosen by conducting the PageRank
(Page et al., 1999) algorithm on every document
set. This baseline is denoted as P.R.+∆.

Single-ex.+Merge+Single-ab.: Different from
selecting one representative document, we also in-
vestigate constructing a pseudo document as the
input to SinABS. We achieve this by first using
extractive single document summarization method
to summarize every input document, and then con-
catenate these summaries to form a new document.
The motivation of this strategy is to keep only the
important content of original documents, so that
the input is both the key information and suitable
for SinABS to handle. The methods for extrac-
tive summarization are Lead, LexRank, TextRank
and Centroid. These four baselines are denoted as
Lead/Lex./Text./Cent.+∆ respectively.

Single-ab.+Merge+Single-ab.: Generate the
abstractive summary for every original document
with SinABS. Then the abstractive summaries are
concatenated to form a pseudo document, as the
input to SinABS again. The difference from
Single-ex.+Merge+Single-ab. is that no extractive
methods are required. This baseline his denoted as
∆+∆.

Single-ab.+Multi-ex.: Generate the summary
for every original document, then summarize
these summaries using some extractive MDS
method instead of SinABS to get the final sum-
mary. The extractive MDS methods used are
Lead, LexRank, TextRank, Centroid and Cov-
erage. Note that Coverage is specially de-
signed for the MDS task, therefore it is not
used in Single-ex.+Merge+Single-ab. base-
lines. These five baselines are denoted as
∆+Lex./Text./Cent./Cov./Lead.

We introduce the extractive MDS methods used
in previous baselines as follows. These extractive
methods themselves can also be the baselines for
comparison.

Lead: This baseline method takes the first sen-

tences one by one in single document or the first
document in the document collection, where doc-
uments in the collection are assumed to be ordered
by name.

Coverage: It takes the first sentence one by one
from the first document to the last document in the
document collection.

LexRank: LexRank (Erkan and Radev, 2004)
computes sentence importance based on the con-
cept of eigenvector centrality in a graph represen-
tation of sentences. In this model, a connectivity
matrix based on intra-sentence cosine similarity is
used as the adjacency matrix of the graph repre-
sentation of sentences.

TextRank: TextRank (Mihalcea and Tarau,
2004) builds a graph and adds each sentence as
vertices, the overlap of two sentences is treated as
the relation that connects sentences. Then graph-
based ranking algorithm is applied until conver-
gence. Sentences are sorted based on their final
score and a greedy algorithm is employed to im-
pose diversity penalty on each sentence and select
summary sentences.

Centroid: In centroid-based summarization
(Radev et al., 2000) method, a pseudo-sentence of
the document called centroid is calculated. The
centroid consists of words with TF-IDF scores
above a predefined threshold. The score of each
sentence is defined by summing the scores based
on different features including cosine similarity of
sentences with the centroid, position weight and
cosine similarity with the first sentence.

Method R-1 R-2 R-SU4 ED ED/w

P.R. +∆ 28.3 4.83 8.8 24 0.88

Lead+∆ 31.9 5.85 10.1 30 0.87
Lex. +∆ 31.0 5.52 9.8 25 0.87
Text.+∆ 32.3 5.68 10.4 34 0.89
Cent.+∆ 32.4 6.42 10.4 31 0.90

∆+Lead 31.5 5.34 9.9 27 0.87
∆+Cov. 32.4 5.65 10.3 29 0.88
∆+Lex. 32.7 5.80 10.5 20 0.96
∆+Text. 32.6 5.96 10.4 32 0.79
∆+Cent. 31.7 5.44 10.0 43 0.80

∆+∆ 31.5 5.30 10.0 48 0.88

Our Model 34.0 6.96 11.4 22 1.01

Table 1: Comparison results with abstractive base-
lines on the DUC 2002 test set.

386



5.5 Results

Method R-1 R-2 R-SU4 ED ED/w

P.R. +∆ 31.7 5.56 10.1 27 0.85

Lead+∆ 31.8 5.74 10.0 28 0.83
Lex. +∆ 32.9 6.28 10.8 33 0.89
Text.+∆ 33.3 6.10 10.7 41 0.90
Cent.+∆ 34.4 6.68 11.1 44 0.93

∆+Lead 33.2 6.12 10.6 27 0.83
∆+Cov. 34.4 6.84 11.2 27 0.84
∆+Lex. 34.0 6.30 11.0 20 0.91
∆+Text. 34.3 6.71 11.1 35 0.78
∆+Cent. 32.8 5.77 10.3 44 0.80

∆+∆ 31.3 4.70 9.6 52 0.88

Our Model 36.7 7.83 12.4 22 1.10

Table 2: Comparison results with abstractive base-
lines on the DUC 2004 test set.

The comparison results with abstractive base-
lines are presented in Table 1 and Table 2, respec-
tively. As seen from Table 1 and Table 2, select-
ing one document as the representation of a doc-
ument set (Single-ab.) performs poorly. This in-
dicates considering the information of all docu-
ments is necessary for MDS task. Generally gen-
erating the abstractive summary for every docu-
ment first and then merging these summaries with
extractive MDS methods (i.e. Single-ab.+Multi-
ex.) performs slightly better than constructing
pseudo single document by extractive summa-
rization methods (i.e. Single-ex.+Merge+Single-
ab.). It may be explained that Single-ab.+Multi-ex.
keeps the integrity of a document, thus the Sin-
ABS model will perform better. Similarly Single-
ab.+Merge+Single-ab. does not perform well be-
cause the constructed document is much different
from a real one. Our system achieves the best per-
formance on both datasets, since our model at the
same time keeps the integrity of all original docu-
ments and takes into consideration only the salient
sentences by ranking all original sentences in the
attention mechanism.

The edit distance results verify that our method
produces sentences that are quite different from
original sentences, indicating the property of ab-
stractive summarization.

Method Encoder Attention Tuning

Model-1 fixed raw no
Model-2 fixed concentrated no
Model-3 fixed concentrated yes
Our Model learned concentrated yes

Table 3: Details of model validation.

Method R-1 R-2 R-SU4 ED ED/w

Model-1 31.7 5.89 10.0 42 0.89
Model-2 32.2 6.16 10.3 43 0.90
Model-3 32.8 6.42 10.8 24 1.06
Our Model 34.0 6.96 11.4 22 1.01

Table 4: Model validation results on DUC 2002.

5.6 Model Validation

We conduct ablation experiments to verify the ef-
fectiveness of our model. Since we make three ex-
tensions to the SinABS model, namely the learned
weights in the document set encoder, the attention
mechanism and the tuning of the model. We val-
idate their effect with three baseline models, by
each changes one of the three parts. The difference
of the three baselines are listed in Table 3. Model-
1 is the simplest model without tuning, which uses
a fixed weight vector w = [1/m, . . . , 1/m], and
uses the raw attention mechanism in Tan et al.
(2017). Model-2 verifies the effectiveness of mak-
ing the attention distribution more concentrated on
the 15 most salient sentences. Model-3 verifies
tuning the decoder but not the document set en-
coder. Compared with Model-3, our model further
learns different weights for different documents in
the document encoder. Results are presented in
Table 4 and Table 5. As seen from Table 4 and
Table 5, all the three strategies considerably im-
prove the performance, validating how to better
adapt single abstractive summarization model to
the MDS task.

Method R-1 R-2 R-SU4 ED ED/w

Model-1 33.9 6.64 11.0 45 0.90
Model-2 34.1 7.10 11.2 49 0.91
Model-3 34.9 7.52 11.8 21 1.06
Our Model 36.7 7.83 12.4 22 1.10

Table 5: Model validation results on DUC 2004.
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Method Coherence N.R. Readability

Lead+∆ 2.32 2.74 2.71
Cent.+∆ 2.63 2.84 3.29
∆+Cov. 2.30 3.53 2.92
∆+Text. 3.18 3.75 3.34
∆+∆ 2.23 2.57 2.57
Our Model 3.76 3.92 4.08

Table 6: Human evaluation results on 20 samples
from the DUC 2002 and DUC 2004 datasets.

5.7 Human Evaluation

We also conduct human evaluation to evaluate the
linguistic quality of the generated abstractive sum-
maries, and compare with some significant base-
lines. We randomly sample 10 document sets from
the DUC 2002 dataset and another 10 document
sets from the DUC 2004 dataset for human evalu-
ation. Three volunteers who are fluent in English
were asked to perform manual ratings on three di-
mensions: Coherence, Non-Redundancy (N.R. for
short) and Readability. The ratings are in the for-
mat of 1-5 numerical scores (not necessarily in-
tegral), with higher scores denote better quality.
The average results are shown in Table 6. It can be
observed that our system also outperforms other
abstractive summarization approaches in human
evaluation, achieving good coherence and read-
ability.

5.8 Case Study

We show the abstractive summaries generated for
an example from the DUC 2004 test set in Fig-
ure 3. It can be seen that the abstractive summaries
generally read well, and has the potential to better
convey the key information of original documents.

6 Conclusion and Future Work

Abstractive Multi-Document Summarization
(MDS) is still a challenging and open problem.
Although sequence-to-sequence models have
achieved great progress in single document
summarization, the demands of large amount of
training data makes it hard to apply it to the MDS
task. In this paper, we address this problem from
another direction, that we investigate leveraging
pre-trained successful single document summa-
rization model to the MDS task. We propose a
framework to realize this goal by adding a docu-
ment set encoder into the hierarchical framework,

Lead+∆:
politics , opposition leader hun sen and the prime minister were ousted
<eos> in the u.s. khmer rouge , the government ’s prime minister ’s ruling
party has had a lengthy majority of its leader in cambodia ’s human rights
record . <eos> of the country ’s opposition party leaders and opposition
members , the government have become prime minister <eos> of parlia-
ment with its prime minister , the presidency of the khmer rouge has been
ruled out by the government ’s leading opposition <eos> two political par-
ties previously clashed with the government ’s top two parties <eod>

∆+Text:
king hun sen on tuesday praised by cambodia ’s top two political parties, a
coalition government led by prime minister <eos> in a short letter sent to
news agencies, the king said he had received copies of fiscal and his cambo-
dian people ’s party in the government. <eos> cambodia ’s leading opposi-
tion party ruled out sharing the top position in the presidency of parliament
with its opposition <eos> in talks between the two party opposition bloc
and the cambodian people ’s party to form a new government. <eod>

Our System:
opposition leader cambodian people ’s party won the election. <eos> in
the u.s. , they were arrested in bangkok and charged with a lengthy coup
of human rights . <eos> leading opposition party , the top position in
parliament with its political rights , was arrested in bangkok , insisting it
would lead to the presidency of thailand ’s leading government . <eos>
prime minister , political parties won a three - month agreement and agreed
to a coalition government . <eos> the government would not end in a new
coup vote and his arrest was rejected by the parties of parliament . <eod>

Figure 3: Example of generated abstractive sum-
mary by our system.

and we propose three strategies to further improve
the model performance. Experimental results
demonstrate our approach is able to achieve
promising results on standard MDS datasets.

Our study is still primary effort towards abstrac-
tive MDS. Future work we can do includes alle-
viating the requirement of a good pre-trained ab-
stractive summarization model, designing better
attention mechanism for MDS, and investigating
our approach based on other model architectures.
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Abstract

Developing conventional natural language
generation systems requires extensive at-
tention from human experts in order to
craft complex sets of sentence planning
rules. We propose a Bayesian nonparamet-
ric approach to learn sentence planning
rules by inducing synchronous tree sub-
stitution grammars for pairs of text plans
and morphosyntactically-specified depen-
dency trees. Our system is able to learn
rules which can be used to generate novel
texts after training on small datasets.

1 Introduction

Developing and adapting natural language gener-
ation (NLG) systems for new domains requires
substantial human effort and attention, even when
using off-the-shelf systems for surface realiza-
tion. This observation has spurred recent in-
terest in automatically learning end-to-end gen-
eration systems (Mairesse et al., 2010; Konstas
and Lapata, 2012; Wen et al., 2015; Dušek and
Jurčı́ček, 2016); however, these approaches tend
to use shallow meaning representations (Howcroft
et al., 2017) and do not make effective use of prior
work on surface realization to constrain the learn-
ing problem or to ensure grammaticality in the re-
sulting texts.

Based on these observations, we propose a
Bayesian nonparametric approach to learning sen-
tence planning rules for a conventional NLG sys-
tem. Making use of existing systems for surface
realization along with more sophisticated meaning
representations allows us to cast the problem as a
grammar induction task. Our system induces syn-
chronous tree substitution grammars for pairs of
text plans and morphosyntactically-specified de-
pendency trees. Manual inspection of the rules and

texts currently produced by our system indicates
that they are generally of good quality, encourag-
ing further evaluation.

2 Overview

Whether using hand-crafted or end-to-end gener-
ation systems, the common starting point is col-
lecting a corpus with semantic annotations in the
target domain. Such a corpus should exhibit the
range of linguistic variation that developers hope
to achieve in their NLG system, while the seman-
tic annotations should be aligned with the target
input for the system, be that database records, flat
‘dialogue act’ meaning representations, or hierar-
chical discourse structures.

For our system (outlined in Figure 1) we fo-
cus on generating short paragraphs of text contain-
ing one or more discourse relations in addition to
propositional content. To this end we use as input
a text plan representation based on that used in the
SPaRKy Restaurant Corpus (Walker et al., 2007).
These text plans connect individual propositions
under nodes representing relations drawn from
Rhetorical Structure Theory (Mann and Thomp-
son, 1988).

Rather than using a fully end-to-end approach
to learn a tree-to-string mapping from our text
plans to paragraphs of text, we constrain the learn-
ing problem by situating our work in the context
of a conventional NLG pipeline (Reiter and Dale,
2000). In the pipeline approach, NLG is decom-
posed into three stages: document planning, sen-
tence planning, and surface realization. Our ap-
proach assumes that the text plans we are working
with are the product of document planning, and we
use an existing parser-realizer for surface realiza-
tion. This allows us to constrain the learning prob-
lem by limiting our search to the set of tree-to-tree
mappings which produce valid input for the sur-
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Corpus

Text Plans Logical Forms

Gibbs Sampler and 
Statistical Model

Weighted
sTSG Rules Sentence Planning

Logical Forms

Surface Realization

Novel Texts

Training Generation

Figure 1: Overview of our pipeline. Square boxes
represent data; rounded boxes represent programs.
Blue boxes represent our system and the outputs
dependent on it, while boxes with white back-
ground represent existing resources used by our
system.

face realizer, leveraging the linguistic knowledge
encoded in this system. Restricting the problem
to sentence planning also means that our system
needs to learn lexicalization, aggregation, and re-
ferring expression generation rules but not rules
for content selection, linearization, or morphosyn-
tactic agreement.

The input to our statistical model and sam-
pling algorithm consists of pairs of text plans
(TPs) and surface realizer input trees, here called
logical forms (LFs). At a high level, our sys-
tem uses heuristic alignments between individual
nodes of these trees to initialize the model and
then iteratively samples possible alternative and
novel alignments to determine the best set of syn-
chronous derivations for TP and LF trees. The
synchronous tree substitution grammar rules in-
duced in this way are then used for sentence plan-
ning as part of our NLG pipeline.

3 Synchronous TSGs

Synchronous tree substitution grammars (TSGs)
are a subset of synchronous tree adjoining gram-
mars, both of which represent the relationships be-
tween pairs of trees (Shieber and Schabes, 1990;
Eisner, 2003). A tree substitution grammar con-
sists of a set of elementary trees which can be used
to expand non-terminal nodes into a complete tree.

Consider the example in Figure 2, which shows
the text plan and logical form trees for the sen-
tence, Sonia Rose has very good food quality, but
Bienvenue has excellent food quality.

The logical form in this figure could be derived

contrast

assert food quality

excellentBienvenue

Arg
0 Arg1

assert food quality

very goodSoniaRose

Arg0

Arg1

Arg Arg

but

have

quality

foodexcellent

M
od

M
od

Bienvenue

Arg
0 Arg1

have

quality

foodgood

very

Mod

Mod Mod

Sonia Rose
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Next

Figure 2: Text plan (top) & logical form (bottom)
for the text Sonia Rose has very good food quality
but Bienvenue has excellent food quality.
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Figure 3: Possible elementary trees for the TP (top
row) and LF (bottom row) in Figure 2, omitting
some detail for simplicity.

in one of three ways. First, we could simply have
this entire tree memorized in our grammar as an
elementary tree. This would make the derivation
trivial but would also result in a totally ungeneral-
izable rule. On the other hand, we could have the
equivalent of a CFG derivation for the tree consist-
ing of rules like but → First Next, First → have,
have → Arg0 Arg1, and so on. These rules would
be very general, but the derivation then requires
many more steps. The third option, illustrating the
appeal of using a tree substitution grammar, in-
volves elementary trees of intermediate size, like
those in Figure 3.

The rules in Figure 3 represent a combination
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of small, CFG-like rules (e.g. the elementary tree
rooted at but), larger trees representing memorized
chunks (i.e. the rule involving Bienvenue), and in-
termediate trees, like the one including have →
quality → food. In these elementary trees, the
empty node sites at the end of an arc represent
substitution sites, where another elementary tree
must be expanded for a complete derivation. In
typical applications of TSGs over phrase struc-
ture grammars, these substitution sites would be
labeled with non-terminal categories which then
correspond to the root node of the elementary tree
to be expanded. In our (synchronous) TSGs over
trees with labeled arcs, we consider the ‘nonter-
minal label’ at each substitution site to be the tree
location, which we define as the label of the parent
node paired with the label of the incoming arc.

A synchronous tree substitution grammar, then,
consists of pairs of elementary trees along with an
alignment between their substitution sites. For ex-
ample, we can combine the TP elementary tree
rooted at contrast with the LF elementary tree
rooted at but, aligning each (contrast,Arg) sub-
stitution site in the TP to the (but, F irst) and
(but,Next) sites in the LF.

4 Dirichlet Processes

The Dirichlet process (DP) provides a natural way
to trade off between prior expectations and obser-
vations. For our purposes, this allows us to define
prior distributions over the infinite, discrete space
of all possible pairs of TP and LF elementary trees
and to balance these priors against the full trees we
observe in the corpus.

We follow the Chinese Restaurant Process for-
mulation of DPs, with concentration parameter
α = 1.1 Here, the probability of a particular el-
ementary tree e being observed is given by:

P (e) =
freq(e)

#obs + α
+

α

#obs+ α
Pprior(e), (1)

where freq(e) is the number of times we have ob-
served the elementary tree e, #obs is the total
number of observations, and Pprior is our prior.

It is clear that when we have no observations,
we estimate the probability of e entirely based on
our prior expectations. As we observe more data,
however, we rely less on our priors in general.

1Other concentration parameters are possible, but α =
1 is the standard default value, and we do not perform any
search for a more optimal value at this time.

5 Statistical Model

Our model uses Dirichlet processes with other DPs
as priors (i.e. Hierarchical Dirichlet Processes, or
HDPs). This allows us to learn more informa-
tive prior distributions (the lower-level DPs) to im-
prove the quality of our predictions for higher-
level DPs. Section 5.1 describes the HDPs used
to model elementary trees for text plans and log-
ical forms, which rely on prior distributions over
possible node and arc labels. This model in turn
serves as the prior for the synchronous TSG’s pairs
of elementary trees, as described in Section 5.2
along with the HDP over possible alignments be-
tween the frontier nodes of these pairs of elemen-
tary trees. A plate diagram of the model is pre-
sented in Figure 4.

5.1 HDP for TSG Derivations

We begin by defining TSG base distributions for
text plans and logical forms independently. Our
generative story begins with sampling an elemen-
tary tree for the root of the tree and then repeating
this sampling procedure for each frontier node in
the expanded tree.

Since the tree locations l corresponding to fron-
tier nodes are completely determined by the cur-
rent expansion of the tree, we only need to define
a distribution over possible elementary trees con-
ditioned on the tree location:

T |l ∼DP(1.0, P (e|l)) (2)

P (e|l) =N(n(root(e))|l) (3)

Πa∈a(root(e))A(a|n(root(e)))

Πchild∈children(root(e))P (child|l(child)),

whereN andA are Dirichlet processes over possi-
ble node labels and arc labels, we use N(n|l) for
the probability of node label n at tree location l ac-
cording to DP N , and similarly for A. We further
overload our notation to use n(node) to indicate
the node label for a given node, a(node) to indi-
cate the outward-going arc labels from node, and
l(e) or l(node) to indicate the location of a given
subtree or node within the tree as an (n, l) pair.
root(e) is a function selecting the root node of an
elementary tree e and children(node) indicates the
child subtrees of a given node.

The distributions over node labels given tree lo-
cationsN |l and arc labels given source node labels
A|n are DPs over simple uniform priors:
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Figure 4: Dependencies in our statistical model,
omitting parameters for clarity. Each node rep-
resents a Dirichlet process over base distributions
(see Sec. 5) with α = 1. n here indexes node
labels for TPs or LFs as appropriate, while l simi-
larly represents tree locations.

N |l ∼DP(1.0,Uniform({n ∈ corpus})) (4)

A|n ∼DP(1.0,Uniform({a ∈ corpus})) (5)

5.2 HDP for sTSG Derivations

Our synchronous TSG model has two additional
distributions: (1) a distribution over pairs of TP
and LF elementary trees; and (2) a distribution
over pairs of tree locations representing the prob-
ability of those locations being aligned to each
other.

Similarly to the generative story for a single
TSG, we begin by sampling a pair of TP & LF
elementary trees, a TreePair, for the root of the
derivation. We then sample alignments for the
frontier nodes of the TP to the frontier nodes of
the LF. For each of these alignments, we then sam-
ple the next TreePair in the derivation and repeat
this sampling procedure until no unfilled frontier
nodes remain.

The distribution over TreePairs for a given pair
of tree locations is given by a Dirichlet process
with a simple prior which multiplies the probabil-
ity of a given TP elementary tree by the probability
of a given LF elementary tree:

pair|lTP, lLF ∼
DP(1.0, P (eTP, eLF|lTP, lLF)) (6)

P (eTP, eLF|lTP, lLF) =

TTP(eTP|lTP)TLF(eLF|lLF) (7)

The distribution over possible alignments is
given by an DP whose prior is the product of the
probabilities of pair of (TP and LF) tree locations
in question. These probabilities are each modeled
as a DP with a uniform prior over possible tree lo-
cations.

Al ∼DP(1.0, P (lTP, lLF)) (8)

P (lTP, lLF) =P (lTP)P (lLF) (9)

P (l·) ∼DP(1.0,Uniform({l·})) (10)

5.3 Sampling
Our Gibbs sampler adapts the blocked sampling
approach of (Cohn et al., 2010) to synchronous
grammars. For each text in the corpus, we resam-
ple a synchronous derivation for the entire text be-
fore updating the associated model parameters.

6 Generation

While our pipeline can in principle work with
any reversible parser-realizer, our current imple-
mentation uses OpenCCG2 (White, 2006; White
and Rajkumar, 2012). We use the broad-coverage
grammar for English based on CCGbank (Hock-
enmaier, 2006). The ‘logical forms’ associated
with this grammar are more or less syntactic in
nature, encoding the lemmas to be used, the de-
pendencies among them, and morphosyntactic an-
notations in a dependency semantics. Parsing the
corpus with OpenCCG provides the LFs we use
for training.

After training the model, we have a collection
of synchronous TSG rules which can be applied
to (unseen) text plans to produce new LFs. For
this rule application we use Alto3 (Koller and
Kuhlmann, 2012) because of its efficient imple-
mentation of parsing for synchronous grammars.
The final stage in the generation pipeline is to re-
alize these LFs using OpenCCG, optionally per-
forming reranking on the resulting texts. Some
examples of the resulting texts are provided in the
next section.

2https://github.com/OpenCCG/openccg
3https://bitbucket.org/tclup/alto
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7 Example output

As a testbed during development we used the
SPaRKy Restaurant Corpus (2007), a corpus
of restaurant recommendations and comparisons
generated by a hand-crafted NLG system. While
the controlled nature of this corpus is ideal for
testing during development, our future evalua-
tions will also use the more varied Extended SRC
(Howcroft et al., 2017).4

After training on about 700 TP-LF pairs for 5k
epochs, our system produces texts such as:

1. Chanpen Thai has the best overall quality among the se-
lected restaurants. Its price is 24 dollars and it has good
service. This Thai restaurant has good food quality,
with decent decor.

2. Since Komodo’s price is 29 dollars and it has good
decor, it has the best overall quality among the selected
restaurants.

3. Azuri Cafe, which is a Vegetarian restaurant has very
good food quality. Its price is 14 dollars. It has the best
overall quality among the selected restaurants.

4. Komodo has very good service. It has food food qual-
ity, with very good food quality, it has very good
food quality and its price is 29 dollars.

Here we see examples of pronominalization
throughout, as well as the deictic referring expres-
sion this Thai restaurant (in 1), which avoids re-
peating either the pronoun ‘it’ or the name of the
restaurant again. The system also makes good
use of discourse connectives (like ‘since’ in 2)
as well as non-restrictive relative clauses (as in
3). However, the system does not always han-
dle punctuation correctly (as in 3) and sometimes
learns poor semantic alignments, aligning but om-
mitting part of the meaning in saying ‘Vegetarian’
for ‘Kosher, Vegetarian’ in 3 and completely mis-
aligning ‘good’ to ‘food’ in (4) due to the frequent
co-occurrence of these words in the corpus. More-
over, example 4 also demonstrates that some com-
binations of rules based on poor alignments can
lead to repetition.

While there is clearly still room for improve-
ment, the quality of the texts overall is encourag-
ing, and we are currently preparing a systematic
human evaluation of the system.

8 Related Work

While the present work aims to learn sentence
planning rules in general, White and Howcroft
(2015) focused on learning clause-combining

4For details about differences between these two corpora,
we refer the interested reader to Howcroft et al. (2017).

rules, using a set of templates of possible rule
types to extract a set of clause-combining oper-
ations based on pattern matching. The resulting
rules were, like ours, tree-to-tree mappings; how-
ever, our rules proceed directly from text plans to
final logical forms, while their approach assumed
lexicalized text plans (i.e. logical forms without
any aggregation operations applied) paired with
logical forms as training input. In learning a syn-
chronous TSG, the model presented here aims to
avoid using hand-crafted rule templates, which
are more dependent on the specific representation
chosen for surface realizer input.

As mentioned in the introduction, there have
been a number of attempts in recent years to learn
end-to-end generation systems which produce text
directly from database records (Konstas and La-
pata, 2012), dialogue acts with slot-value pairs
(Mairesse et al., 2010; Wen et al., 2015; Dušek
and Jurčı́ček, 2016), or semantic triples like those
used in the recent WebNLG challenge (Gardent
et al., 2017). In contrast, we assume that content
selection and discourse structuring are handled be-
fore sentence planning. In principle, however, our
methods can be applied to any generation subtask
involving tree-to-tree mappings.

9 Discussion and Conclusion

We have presented a Bayesian nonparametric ap-
proach to learning synchronous tree substitution
grammars for sentence planning. This approach
is designed to address specific weaknesses of end-
to-end approaches with respect to discourse struc-
ture as well as grammaticality. Our preliminary
analysis suggests that our approach can learn use-
ful sentence planning rules from smaller datasets
than those typically used for training neural mod-
els. We are currently preparing to launch an exten-
sive human evaluation of our model compared to
current neural approaches to text generation.
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Abstract

Image captioning models are typically
trained on data that is collected from peo-
ple who are asked to describe an image,
without being given any further task con-
text. As we argue here, this context inde-
pendence is likely to cause problems for
transferring to task settings in which im-
age description is bound by task demands.
We demonstrate that careful design of data
collection is required to obtain image de-
scriptions which are contextually bounded
to a particular meta-level task. As a task,
we use MeetUp!, a text-based communica-
tion game where two players have the goal
of finding each other in a visual environ-
ment. To reach this goal, the players need
to describe images representing their cur-
rent location. We analyse a dataset from
this domain and show that the nature of
image descriptions found in MeetUp! is
diverse, dynamic and rich with phenom-
ena that are not present in descriptions ob-
tained through a simple image captioning
task, which we ran for comparison.

1 Introduction

Automatic description generation from real-world
images has emerged as a key task in vision &
language in recent years (Fang et al., 2015; De-
vlin et al., 2015; Vinyals et al., 2015; Bernardi
et al., 2016), and datasets like Flickr8k (Hodosh
et al., 2013), Flickr30k (Young et al., 2014) or Mi-
crosoft CoCo (Lin et al., 2014; Chen et al., 2015)
are typically considered to be general benchmarks
for visual and linguistic image understanding. By
exploiting these sizeable data collections and re-
cent advances in computer vision (e.g. ConvNets,
attention, etc.), image description models have

achieved impressive performance, at least for in-
domain training and testing on existing bench-
marks.

Nevertheless, the actual linguistic definition and
foundation of image description as a task remains
unclear and is a matter of ongoing debate, e.g. see
(van Miltenburg et al., 2017) for a conceptual dis-
cussion of the task from a cross-lingual perspec-
tive. According to (Bernardi et al., 2016), image
description generation involves generating a tex-
tual description (typically a sentence) that verbal-
izes the most salient aspects of the image. In prac-
tice, however, researchers have observed that elic-
iting descriptions from naive subjects (i.e. mostly
crowd-workers) at a consistent level of quality is a
non-trivial task (Rashtchian et al., 2010), as work-
ers seem to interpret the task in different ways.
Thus, previous works have developed relatively
elaborate instructions and quality checking con-
ventions for being able to systematically collect
image descriptions.

In this paper, we argue that problems result from
the fact that the task is typically put to the work-
ers without providing any further context. This
entirely monological setting essentially suggests
that determining the salient aspects of an image
(like highly important objects, object properties,
scene properties) can be solved in a general, “neu-
tral” way, by humans and systems. We present
ongoing work on collecting image descriptions
in task-oriented dialogue where descriptions are
generated collaboratively by two players. Impor-
tantly, in our setting (which we call the MeetUp!
environment), image descriptions serve the pur-
pose of solving a higher-level task (meeting in a
room, which in the game translates to determin-
ing whether an image that is seen is the same as
the one that the partner sees). Hence, our partici-
pants need not be instructed explicitly to produce
image descriptions. In this collaborative setting,
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we observe that the notion of saliency is non-static
throughout a dialogue. Depending on the history
of the interaction, and the current state, speakers
seem to flexibly adjust their descriptions (ranging
from short scene descriptions to specific object de-
scriptions) to achieve their common goal. More-
over, the descriptions are more factual than those
collected in a monological setting. We believe that
this opens up new perspectives for image caption-
ing models, which can be trained on data that is
bounded to its contextual use.

2 Related Work

As described above, the fact that the seemingly
simple task of image captioning can be interpreted
differently by crowd-workers has already been
recognised in the original publications describing
the datasets (Hodosh et al., 2013; Young et al.,
2014; Chen et al., 2015). However, it has been
treated as a problem that can be addressed through
the design of instructions (e.g., “do not give peo-
ple names”, “do not describe unimportant details”,
(Chen et al., 2015)). (van Miltenburg et al., 2016;
van Miltenburg, 2017) later investigated the range
of pragmatic phenomena to be found in such cap-
tion corpora, with the conclusion that the instruc-
tions do not sufficiently control for them and leave
it to the labellers to make their own decisions. It
is one contribution of the present paper to show
that providing a task context results in more con-
strained descriptions.

Schlangen et al. (2016) similarly noted that re-
ferring expressions in a corpus that was collected
in a (pseudo-)interactive setting (Kazemzadeh
et al., 2014), where the describers were provided
with immediate feedback about whether their ex-
pression was understood, were more concise than
those collected in a monological setting (Mao
et al., 2016).

Similar to MeetUp, the use of various dialogue
game set-ups has lately been established for dia-
logue data collection. Das et al. (2017) designed
the “Visual Dialog” task where a human asks an
agent about the content of an image. De Vries
et al. (2017) similarly collected the GuessWhat?
corpus of dialogues in which one player has to
ask polar questions in order to identify the cor-
rect referent in the pool of images. de Vries et al.
(2018) also develop a new navigation task, where
a “tourist” has to reach a target location via com-
munication with a “guide” given 2D images of

various map locations. While similar in some re-
spects, MeetUp is distinguished by being a sym-
metrical task (no instruction giver/follower) and
broader concerning language data (more phenom-
ena such as repairs, strategy negotiation).

3 Data collection

3.1 MeetUp image descriptions
The MeetUp game is a two-player text-based com-
munication game set in a visual 2D environment.1

The game starts with two players being placed in
different ‘rooms’. Rooms are represented to the
players through images.2 Each player only sees
their own location. The objective of the game
is to find each other; that is, to be in the same
room. To solve this task, players can communi-
cate via text messages and move freely (but un-
noticed by the other player) to adjacent rooms.
In the process of the game, the players naturally
produce descriptions of what they currently see—
and, interestingly, sometimes of what they have
previously seen—to determine whether they have
reached their goal or not. When they think that
they have indeed achieved their goal, they indicate
this via a particular command, and the dialogue
ends.

The corpus we use here consists of 25 MeetUp
(MU) games, collected via crowd-sourcing with
Amazon Mechanical Turk. Workers were required
to be native speakers of English. The dialogues all
end with a matching phase where the players try
to establish whether they are in the same room, by
exchanging descriptions and come to the conclu-
sion that they are (correctly in fact, in all but one
dialogue). In some games, the players earlier al-
ready suspected to be in the same room and had
such a “matching phase”, but concluded that they
weren’t.

The complexity of the game board is likely to
have an influence on the shape of the dialogue. For
this data collection, we handcrafted a set of game
boards to contain a certain degree of room type re-
dundancy (e.g., more than one bed room per game
board) and varying levels of overall complexity, as
indicated in Table 2.

For our investigations here, we take these
“matching phase” sub-dialogues and the images

1See https://github.com/dsg-bielefeld/
meetup for more details.

2The images were taken from the ADE20k dataset (Zhou
et al., 2016), which is a collection of images of indoor and
outdoor scenes.
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1. Modern kitchen with grey marble accents featuring The popu-
lar stainless steel appliances.
2. Modern kitchen with stainless steel appliances well decorated
3. This kitchen looks very beautiful I can eat off the floors that’s

how clean it looks.
4. A very clean looking kitchen, black and silver are the color

theme. Looks like it is in an expensive place.
Figure 1: Example of a scene and corresponding monological captions

Time Private to A Public Private to B
31 (01:45) A: I am now in a kitchen with wood floors and a poster that says CON-

TRATTO
. . . .

59 (02:50) B: Wait– I found the kitchen!
. . . .

60 (02:55) N−→ kitchen
61 (02:55) You can go [/n]orth [/e]ast

[/s]outh [/w]est
62 (03:13) A: I am back in kitchen. It has a white marble dining table in center
63 (03:29) B: Yes. There are four chairs on the island.
64 (03:35) A: Exactly
65 (03:37) B: And the big Contratto poster.
66 (03:48) B: Three lights above the island?
67 (03:53) A: yep
71 (04:05) B: /done
72 (04:07) A: /done
73 (04:10)

Well done! You are all indeed in the same room!

Table 1: Excerpt from a dialogue involving image description (of the image shown in Figure 1)

Gameboard Rooms Types R/T Ratio
House 11 9 1.2
Airport 22 15 1.5
Hospital 13 12 1.08

Shopping Mall 15 14 1.07
School 17 14 1.2

Table 2: Description of gameboards

that they are about (note that for the non-matching
situations, there are two images for one sub-
dialogue), to give us a set of 33 images together
with corresponding utterances. We will call these
utterances dialogical image descriptions (DDs),
in contrast to the monological image descriptions
(MDs) described in the next subsection.

An example of such a description is shown in
Table 1. From left to right columns represent
line number in a dialogue, timestamp of a mes-
sage, messages private to player A, messages seen
by both, private messages of player B. Lines 60-
72 in the transcript contain part of the dialogue
where players act on suspicion that they might be
in the same location and start describing images
presented to them individually. In earlier stages
of the dialogue (lines 31 and 59), this room had
already been referenced to. It indicates that the
player keeps a memory of what has already been
mentioned and can refer back to that.

3.2 Monological image descriptions

In order to compare dialogical descriptions with
data produced in a typical non-context caption en-
vironment, we also collected MDs on Amazon
Mechanical Turk (AMT). We presented workers
with the 33 images and instructed them to pro-
duce captions for them. We adopted the instruc-
tions from the MS COCO collection (Chen et al.,
2015), which ask workers to “describe the impor-
tant parts” of the image, and, importantly, to pro-
vide at least eight (8) words per image description.
We collected four captions per image; and thus
132 captions overall. An example of four mono-
logical image descriptions for one image is shown
in Figure 1.

4 Analysis

An important task is to determine what types of
referring expressions are present in the datasets.
In order to identify and analyse referring expres-
sions, we used the brat annotation tool (Stenetorp
et al., 2012) to tokenise and annotate both DDs
and MDs. The first author of the paper anno-
tated whether an utterance contains descriptions
of scene with objects (a kitchen with wood floors),
or objects only (a white marble dining table), ex-
presses players’ actions (moving north now) or is
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MDs DDs
DDroam DDmatch DDall

Number of descr. 132 94 174 268
Number of tokens 1655 915 1400 2315

Average length 12.5 9.73 8.05 8.64
Type / Token ratio 0.30 0.38 0.34 0.29
Number of REXs 138 184 344 528

REX per description 1.0 1.96 1.98 1.97
Average length of REXs 1.82 2.26 2.23 2.24

Table 3: Analysis of image descriptions

related to players’ beliefs about their current state
(I think we are in the same room). For our analysis
we define referring expressions (REXs) as nomi-
nal phrases that refer to the objects in the scene
(four chairs) or to the scene itself (a kitchen).

Additionally, we identified parts of speech in
both DDs and MDs using Stanford Log-linear
Part-Of-Speech Tagger (Toutanova et al., 2003).
Examples of REXs according to this definition are
displayed in bold in Figure 1 for MDs and in Ta-
ble 1 for DDs.

Table 3 gives some basic statistics about the two
data sets. The goal is to look at the task depen-
dence of image descriptions. Each MU dialogue
can be divided into phases, two of which are ex-
emplified in Table 1. The roaming phase (part of
it are lines 31, 59) is typically filled with move-
ments and players informing each other about their
location. The matching phase (lines 60-72) ends
the dialogue with the determination that the two
players are present in the same place. In order to
demonstrate dynamics of interactions in MeetUp,
we look at all DDs as well as at their statisti-
cal characteristics in two phases. There were al-
most two times more DDs than MDs overall, with
matching phase requiring a high number of de-
scriptions as well. At the same time, MDs tend
to be longer than all DDs, though both sets have
nearly identical type/token ratio.

4.1 Referring expressions in MDs and DDs

When looking at the number of REXs in Table
3, in the MeetUp set-up players produced almost
four times more overall referring expressions than
the workers that produced the MD set. The ma-
jority of these occurred in the matching phases,
which indicates that the different subgoals be-
tween phases have an influence. There were also
nearly two times as many REXs per individual de-
scription in the MeetUp setting than in the mono-
logical descriptions. Additionally, given the fact

that MeetUp descriptions are generally more con-
densed than the MDs (8.64 vs. 12.5), it appears
that MDs contain much material not directly rel-
evant for reference to the scene or its objects. In
particular we observed that there are on average
11 words in MDs (88%) which are not REXs and
thus not related to an image, while there are nearly
only 6 (70%) non-REX words in DDs. MeetUp
players also produce longer REXs and this param-
eter is stable for all MeetUp phases. These ob-
servations show that the MeetUp descriptions are
more focused on the task, less broad, contain much
more referring expressions, which are longer then
the ones in the non-task-driven set-up.

4.2 Adjectives in MD and DD
Table 4 displays the most frequent adjectives in
both datasets in the spirit of (Baltaretu and Fer-
reira, 2016), who compared type and frequency of
adjectives in a similar task design. It clearly shows
a trend that seems to be present in the overall data:
MDs cover a broader range of object properties or
image attributes than the DDs.

Adj Num
clean 15
small 11
large 9
empty 9
beautiful 8
white 7
nice 7
dark 5
old 5
many 5

Adj Num
white 18
blue 11
red 11
left 7
small 6
same 5
open 4
yellow 4
black 4
right 3

Table 4: First 10 most frequent adjectives in both
MDs (left) and DDs (right)

For example, evaluative adjectives (beautiful,
nice) appear very often in MDs, while none of
them is observed for the DDs. The latter ones
seem to concentrate on attributes like colour, size,
position, qualities of objects, while monological
captions additionally have adjectives which refer
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to age, feelings, a number of objects in the scene.
Furthermore, 78 adjectives occur only once among
all words in MDs, while this number is almost half
that for the DDs (38). It additionally supports the
idea that absence of the task makes humans to pro-
duce broad image descriptions, which are not nec-
essarily grounded in scene objects.

5 Conclusion

The task of collecting appropriate training data for
image caption generation systems, and language
& vision in general, is not a trivial one. We found
that in a standard crowdsourcing-based collection
procedure, annotators tend to produce interpreta-
tive, non-factual descriptions, leading to poten-
tially unsystematic or noisy data. We have pre-
sented a task-oriented interactive set-up for data
collection where image descriptions are naturally
used by speakers to solve a higher level task. Our
data collected in a small-scale pilot study indi-
cates that dialogical image descriptions consis-
tently lead to factual descriptions containing many
more reasonable referring expressions than mono-
logical descriptions. The analysis presented here
will be used to further control MeetUp! data col-
lection in order to avoid data that is similar to non-
task-drive monological captions.
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Abstract

We explored the task of creating a textual
summary describing a large set of objects
characterised by a small number of fea-
tures using an e-commerce dataset. When
a set of consumer products is large and
varied, it can be difficult for a consumer
to understand how the products in the set
differ; consequently, it can be challenging
to choose the most suitable product from
the set. To assist consumers, we generated
high-level summaries of product sets. Two
generation algorithms are presented, dis-
cussed, and evaluated with human users.
Our evaluation results suggest a positive
contribution to consumers’ understanding
of the domain.

1 Introduction
When presented with a large amount of data

in tabular form, an additional textual summary
could aid a reader’s comprehension of the other-
wise overwhelming information at hand. The task
of automatically creating a summary from numer-
ical data is an ongoing research area within Natu-
ral Language Generation (NLG). We explored this
task in the context of generating a textual summary
describing a large set of objects [products] from a
large database, where each object is characterised
by several product features.

Product set overviews can be written by hand
if the category is known beforehand. For exam-
ple, manually written product reviews often start
with an overview paragraph that discusses a wider
set of products of which the product is a member.
However, when a consumer searches for products

with keywords or through filters (e.g. on an e-
commerce website), an overview of the returned
set of search results would have to be automati-
cally generated.

In this paper, we test the hypothesis that au-
tomatically generated textual summaries can be
of benefit to customers. This can be seen as a
specific instance of Shneiderman’s Visual Infor-
mation Seeking mantra (Shneiderman, 1996) of
“Overview first, zoom and filter, then details-on-
demand”. One of the main ideas presented there
is that it is beneficial for a reader to be exposed to
an overview of the information before diving into
specific details of interest.

There have been related NLG research about
sets of objects, although with different goals or fo-
cuses. For example, to refer to or identify a set of
objects within a larger set (Van Deemter, 2002), to
perform a data-to-text analysis of tabularized data
by records1, to generate a page title for set items
with shared characteristics from existing metadata
(Mathur et al., 2017), or to address the issue of
missing data encountered in summarisation (In-
glis et al., 2017). In contrast, our work explores
summaries that describe commonalities and differ-
ences within a set in order to help a user make in-
formed decisions in selecting an object from the
set. Our work focuses particularly on Content De-
termination step in the NLG pipe-line (Reiter and
Dale, 2000), including selecting features and val-
ues to be presented.

2 Analysis of Hand-written Reviews
To inform our algorithms, we manually anal-

ysed 30 hand-written reviews gathered with the
search term “best TV review” on Google. We used

1www.ax-semantics.com
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the 30 top ranked pages which contained a list of
TVs (not just one single product). We then de-
fined a per-clause tagging scheme to identify as-
pects that could be generated from product specifi-
cations and to systematically observe how review-
ers described sets of products. In our scheme, a
clause could have multiple tags. There was one
annotator involved in the tagging (the first author).
Our finding are summarised below.

Feature Selection: We analysed how often each
product feature gets mentioned in the reviews. We
found, as shown in Table 1, besides the price,
the most frequent features (in descending order)
are screen size, resolution, smart/internet feature,
brand, backlight technology, ports, and contrast.

Feature Frequency (%)
Screen Size 73
Resolution 60
Smart/Internet 43
Brand 40
Backlight Technology 30
Connectivity (Ports) 30
Contrast 30

Table 1: Frequency Count of Features in Reviews

Price Description: The product price in the re-
views are typically mentioned only vaguely, us-
ing terms like “desirable price”, “cheap”, “expen-
sive” or “premium”. The description is vague even
when numbers are involved e.g. “around £300”.
But when a crisp description is used it is more of-
ten found in the form of stating the starting point,
e.g., “you can get a 1080p TV starting at £270”
or the maximum e.g. “Discover the best 32 inch
Smart TVs under £300 here”.

Description of a Set of Items: Usually in a
review, only a small number of sentences ex-
plicitly describe the set as a whole, for exam-
ple “Most 32-inch TVs these days are labeled as
HD Ready”. When they do they uses quantify-
ing words like “most”. Numbers are described
vaguely e.g. weight is mentioned as “light” or “re-
sponse time” is either “fast” or ”slow”. Some fea-
tures, for example the screen size, are mentioned
both as exact numbers and vague description.

Price–Features Relationship: The relationship
with price is used as a secondary justification to
the features that the reviewers already think im-
portant, for example, “A TV with a 1920 × 1080

resolution [are] not even that much more expen-
sive” or “good image quality and available smart
features [...] carry a price premium.”

Based on this analysis, we decided that our
summaries should describe the shape of the price
curve, the important features, and the effect of
these features on price.

A large part of the reviews gathered included
domain knowledge, for example, descriptions of
technical terms and other insights. This part of the
reviews clearly could not be produced from spec-
ification table. There were also mentions of fea-
tures that can be, non trivially, derived from the
table, e.g. picture quality (which can be based on
columns like resolution and contrast).

3 The Algorithms

3.1 Alg1. Summarising a set of products

In our previous work (Kuptavanich, 2018), we pre-
sented an algorithm (called Alg1 here) to gener-
ate summaries consisting of (a) the shape of the
price curve, (b) common features within the set
and (c) features that influence price (Figure 1 gives
an example of the generated text). The algorithm
mainly used the influence of a feature on the prod-
uct price to determine its importance.

Figure 1: Alg1 Summary Example

3.2 Alg2. Dynamically summarising and
contextualising a set of products

Alg1 only included content that could be gen-
erated from descriptions of items in a set being
summarised. Following our analysis of the hand-
written reviews, we adapted the algorithm. The
resulting Alg2 allows for dynamic creation of sets
through the use of feature filters and the contextu-
alisation of these sets with respect to the unfiltered
wider set as described below.

Shape of the Price Curve: Alg1 reports the me-
dian price and the price range of the set. [alg2]
additionally compares the median price of the fil-
tered set against the median price of the wider cat-
egory. For instance, the first 3 lines of Figure 3
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show a situation where the user has filtered the set
of TVs to those that are 40–59 inches with 4K ul-
tra high definition. The underlined portion is gen-
erated only by Alg2.

Description of Important Features: In the
TV domain, the following features occurred
most frequently: display size, display resolution,
smart/internet feature, support content service,
brand, display technology, connectivity technol-
ogy (ports) and HDR. We therefore focussed on
these features, but generated more detail about
them than in Algo1. The description of each fea-
ture consisted of two parts. The first used quan-
tifiers to describe the common values for the fea-
ture within the set. The second compared the me-
dian price of products with the said feature values
against the median price of general products in this
category and reported feature values that impacted
on price (Figure 2).

Figure 2: Our Description of Important Features

(a) Quantifiers. Here we generated expressions
such as “Most products in the result are...” If
the values of a feature are continuous numbers e.g.
weight, we report them in the same fashion as the
price (i.e. range and median value). Otherwise,
we use the quantifiers “most” (more than 50%),
“a large proportion” (more than 25%) and “some”
(more than 10%).

(b) Comparatives and Qualifiers. In the sec-
ond part, we also use phrases such as “more expen-
sive” , “less expensive” or “about the same price”
(when the difference is less than 5%). If the dif-
ference falls between 5 - 10%, we qualify this us-
ing the word “slightly”. This generates texts such
as “TVs with Smart-Internet Feature are generally
slightly more expensive (£475 vs £450).” (Fig-
ured 3, in the next section).

The processes from document structuring
through realization was carried out through tem-
plate/schemata approach (McKeown, 1985). Also,
the tone of the discourse is primarily to provide
factual product overview without trying to be per-
suasive. Both algorithm were implemented using
the Jinja22template engine.

2jinja.pocoo.org

4 Evaluation Experiment
Our previous work (Kuptavanich, 2018) re-

vealed difficulties designing a suitable task that re-
flected real consumer behaviours in the task based
experiments, but a promising result with human
rating. We therefore decided only to focus on hu-
man rating evaluation3. The scenario of interest is
where a consumer is searching for products on an
e-commerce website. Our Laboratory Human Rat-
ings Evaluation experiment had three goals. First,
we wanted to find out whether the text summaries
generated by Alg2 were preferred over those gen-
erated by Alg1, and also over the static introduc-
tory text provided on the e-commerce site. Sec-
ond, we asked the participants to identify parts of
the summaries that were useful, parts that were un-
necessary, and what they want to see added. Third,
we wanted to also find out what product features
are important in the decision-making process.

4.1 Method

Materials: We scraped TV product data from
Amazon UK4 during May - June 2018 to obtain
1478 products. We used this database to generate
the summaries using both Alg1 and Alg2. As our
baseline, we used Amazon’s static text provided
on their TV browsing page. An excerpt is shown
in Figure 4. The full text can be found on Amazon
UK TVs5 page.

We used two product search scenarios on Ama-
zon UK, based on its search filters. Each scenario
produced a different set of search results and thus
generated different summaries for Alg1 and Alg2.

Participants: Participants were 18 graduate stu-
dents in Computing Science and Chemistry De-
partment of University of Aberdeen recruited
through the departments’ internal student mailing
lists.

Design and Procedure: In total, there were 2
pre-determined product search scenarios:
• Scenario 1: 40 – 59 inch TVs with Ultra HD
• Scenario 2: TVs of any size that are smart TVs

First, summaries [amz], [alg1], and [alg2] were
presented in random order. To ensure that partici-
pants engaged with the task, each participant was
asked to select one product. Then they were asked

3https://ehudreiter.com/2017/01/19/types-of-nlg-
evaluation

4www.amazon.co.uk
5www.amazon.co.uk/LED-Smart-4K-

TVs/b?node=560864
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Figure 3: [alg2] Summary Example

Figure 4: An Excerpt from the Baseline Summary

to rank the summaries; “Please rank the sum-
maries (#1 being most useful)” Then, they were
asked 3 free text questions:
[Q1]: “From the summaries above, which part do

you think is most useful? (please quote)”
[Q2]: “What would you like to see added to the

summaries?”
[Q3]: “Which part do you think is not necessary?”

After the 2nd scenario was completed, we asked
the participants to select 3 products they liked.
Then we asked:
[Q4]: “When buying a TV which feature do you

think is most important?”
[Q5]: “What information do you think should be

in a summary?”
[Q6]: “What kind of summary would help you

choose a good TV?”

For [Q4], participants could choose from a list
with the following choices: price, screen size, sup-
ported content service, smart/internet, resolution,
Freeview, connectivity (ports) and also could spec-
ify their own features.

Hypotheses: Our research hypotheses were:
[Hyp1]: Participants prefer the [alg2] summary

over the baseline [amz] summary
[Hyp2]: Participants prefer the [alg2] summary

over the [alg1] summary

4.2 Results

Summary Preference: The number of times
each summary was ranked first, second or third in
the 36 trials is as shown in Figure 5. The average
ranking of each algorithm 1.47 [alg2], 1.81 [alg1],
and 2.72 [amz] respectively.

Figure 5: Ranking Counts of Each Algorithm

Out of all 36 trials, there were 31 (86.11%)
where the participants preferred [alg2] over [amz]
and 24 (66.67%) where the participants preferred
[alg2] over [alg1].

A Friedman (1940) analysis of the rankings
confirmed that the distributions of rankings were
different for [amz], [alg1] and [alg2] (p-value of
2.8× 10−7). A post-hoc Friedman Aligned Ranks
test (García et al., 2010) showed that [alg2] was
significantly better than [amz] (p-value of 1.09 ×
10−9), thus confirming [Hyp1]. We could not con-
firm [Hyp2] as the p-value for [alg2] vs [alg1] was
0.104, though the numerical difference was in the
expected direction.
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Free Text Answer: Many responses (7 in total)
asked for the summary to be short and precise or
even bulleted. Furthermore, to [Q1] most partic-
ipants found the price range and the relationship
between price and features useful, which was sup-
ported by the data in the ranking. For [Q2], par-
ticipants wanted to see product rating and other
features, e.g. display frequency, model year or
warranty added to the summary. They wanted to
see some explanation of the technical terms and/or
specification (e.g. what a smart TV is and what it
can do). To [Q3], most participants did not find the
Amazon summary useful and thought that it was
not necessary. To [Q4], participants emphasized
price (14 counts), screen size (11 counts), res-
olution (10 counts) and smart/internet feature (8
counts) when buying a TV. To the questions [Q5]
and [Q6], participants thought that the features and
their descriptions (including terminology expla-
nations), how the features impact the price, user
reviews, and information about warranty make a
good summary.

5 Discussion and Future Work
Generalisation of our findings – which were

based on only a very small set of scenarios – is
tricky: we do not know whether they generalise
to different kinds of products (e.g., groceries or
paintings) and to product sets of different sizes
(e.g. a set of just 3 products). However, our re-
sults suggest that customers find high-level prod-
uct set summaries of the type we investigated
more useful than Amazon’s static product cate-
gory overviews. This was further confirmed by the
free text question where many participants quote
substantial parts of [alg2] summary as being use-
ful.

In future, we aim to experiment with refine-
ments and extensions of [alg2]. For instance, in
order to expand the algorithm work with various
product domains, an automation of the analysis of
hand-written reviews has to be implemented.

Additionally, based on participants’ comments,
technical information (as canned text) could also
be included into the summary.

Since a number of readers pointed out that the
summaries generated by [alg2] were too lengthy,
the future version of the summary could be shorten
(e.g., by omitting price comparisons in some
cases). Some comments proposed that the sum-
mary should group together features that make the
products different, separately from those the prod-

ucts have in common, this, as well, has a potential
as a next feature to be experimented on.

In addition, to mimic more of human-written
texts, approches to reduce the repetition in the gen-
erated text could be considered.

Finally, a more seamless integration of the sum-
mary to e-commerce websites could also be con-
sidered, maybe as a browser extension or a website
wrapper.
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Abstract

Sequence-to-sequence models have shown
strong performance in a wide range of
NLP tasks, yet their applications to sen-
tence generation from logical represen-
tations are underdeveloped. In this pa-
per, we present a sequence-to-sequence
model for generating sentences from log-
ical meaning representations based on
event semantics. We use a semantic pars-
ing system based on Combinatory Cat-
egorial Grammar (CCG) to obtain data
annotated with logical formulas. We
augment our sequence-to-sequence model
with masking for predicates to constrain
output sentences. We also propose a novel
evaluation method for generation using
Recognizing Textual Entailment (RTE).
Combining parsing and generation, we test
whether or not the output sentence en-
tails the original text and vice versa. Ex-
periments showed that our model outper-
formed a baseline with respect to both
BLEU scores and accuracies in RTE.

1 Introduction

In recent years, syntactic and semantic parsing
has been developed and improved significantly.
Syntactic parsing based on syntactic theories has
been accomplishing reasonable accuracy to sup-
port various application tasks (Clark and Cur-
ran, 2007; Lewis and Steedman, 2014; Yoshikawa
et al., 2017). Mapping sentences to logical formu-
las automatically has also been studied in depth,
so there are semantic parsing systems that can
produce high quality formulas (Bos, 2008, 2015;
Martı́nez-Gómez et al., 2016).

∗This work was done prior to joining Amazon.

One advantage of using logical formulas in se-
mantic parsing is that they have expressive power
that goes beyond simple representations such as
predicate-argument structures. More specifically,
logical formulas can capture aspects of sentence
meanings that arise from complex syntactic struc-
tures such as coordination, functional words such
as negation and quantifiers, and the scope of in-
teractions between them (Steedman, 2000, 2012).
In combination with the restricted use of higher-
order logic (HOL) developed in formal semantics,
those logical formulas have recently been used for
RTE (Mineshima et al., 2015; Abzianidze, 2015)
and Semantic Textual Similarity (STS) (Yanaka
et al., 2017) and achieved high accuracy.

Compared with these recent developments in
syntactic and semantic parsing, automatic gener-
ation of sentences from expressive logical formu-
las has received relatively less attention, despite
a long and venerable tradition of work on sur-
face realization, including those based on Mini-
mal Recursion Semantics (MRS) (Carroll et al.,
1999; Carroll and Oepen, 2005) and CCG (White,
2006; White and Rajkumar, 2009). If one can gen-
erate sentences from formulas, it would be pos-
sible to perform other NLP tasks in combination
with RTE, including those challenging tasks such
as paraphrase extraction (Levy et al., 2016) and
sentence splitting and rephrasing (Narayan et al.,
2017; Aharoni and Goldberg, 2018).

Meanwhile, sequence-to-sequence models
showed high performance in machine translation
and many other areas in NLP (Sutskever et al.,
2014), yet their applications to sentence gener-
ation from logical meaning representations are
still underdeveloped, mainly due to a lack of
data and the structural complexity of meaning
representations (Konstas et al., 2017). To address
this challenge, we introduce a first sequence-to-
sequence model for sentence generation from
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logical formulas. We use the semantic parsing
system ccg2lambda (Martı́nez-Gómez et al.,
2016)1 to obtain data annotated with logical
formulas including higher-order ones. Since the
distinction between content words and function
words plays an important role in parsing and
generation, we augment the sequence-to-sequence
model with masking for predicates, so that content
words in input logical formulas occur in output
sentences with a list of function words utilized in
the parsing system.

We also propose a novel evaluation method for
sentence generation. BLEU (Papineni et al., 2002)
is widely used to evaluate the quality of decoded
sentences, but it has difficulties in assessing fine-
grained meaning relations between sentences. In-
stead, we use an RTE system for evaluation. We
test whether or not the output sentence entails
the original text and vice versa. This idea is
motivated by the assumption that unlike surface-
based methods such as BLEU, textual entailment
is sensitive to syntactic and semantic aspects of
sentences, thus making it possible to distinguish
fine-grained meaning relations between original
and output sentences. RTE has also been shown
to be effective for evaluation of machine transla-
tion (Padó et al., 2009). Experiments show that
our model outperforms a baseline with respect to
both BLEU scores and accuracy in RTE.

2 Background and Related Work

2.1 Input logical formula
For input, we use logical formulas obtained from
ccg2lambda (Martı́nez-Gómez et al., 2016), a
parsing and inference system that can be used for
RTE. This system parses sentences into syntactic
trees based on CCG (Steedman, 2000), a syntac-
tic theory suitable for semantic composition from
syntactic structures. The meaning of each word
is specified using a lambda term. Logical for-
mulas are obtained compositionally, by combin-
ing lambda terms in accordance with the mean-
ing composition rules specified in the CCG tree
and semantic templates. Semantic templates are
defined manually based on formal semantics (Mi-
neshima et al., 2015).

For logical formulas, we use standard Neo-
Davidsonian event semantics (Parsons, 1990). For
instance, the sentence Eddy walked on the green
grass is represented as ∃e.(walk(e) ∧ subj(e) =

1https://github.com/mynlp/ccg2lambda

eddy∧ ∃x.(green(x)∧ grass(x)∧ on(e, x))). In this
semantics, content words such as nouns and verbs
are represented as predicates, and function words
such as determiners, negation, and connectives are
represented as logical operators with scope rela-
tions.

We decided not to include the following linguis-
tic information in the input formulas: the definite–
indefinite and singular–plural distinctions for NPs
and tense and aspect for VPs. The intention is to
normalize these semantic differences, so that the
resulting formulas are easily usable in reasoning
tasks based on RTE, where such fine-grained lin-
guistic distinctions may sometimes make it more
difficult to establish entailment relations between
sentences. While more fine-grained linguistic in-
formation in logical formulas is readily obtainable
by modifying semantic templates, we leave testing
formulas with such additional semantic informa-
tion for future work.

2.2 Related Work

A large amount of work has been done to convert
meaning representations to their surface forms. In
addition to those works mentioned in Section 1,
there has been also a line of work on generat-
ing sentences from meaning representations used
in semantic parsing systems (Wong and Mooney,
2007; Lu et al., 2009). Recently, Mei et al.
(2016) has proposed an end-to-end neural sen-
tence generation model from such meaning rep-
resentations. These studies use datasets annotated
with meaning representations, such as ROBOCUP

(www.robocup.org) and GEOQUERY (Zelle
and Mooney, 1996). However, these meaning rep-
resentations are much simpler than logical formu-
las used in formal semantics in that they do not
contain logical operators such as disjunction and
quantifiers nor variable binding structures in stan-
dard first-order logic.

Recent rule-based approaches to generation us-
ing formal semantics and higher-order logic in-
clude a type-theoretic system based on Grammat-
ical Framework (GF) (Ranta, 2011) and a system
called Treebank Semantics based on event seman-
tics (Butler, 2016).

Closest to our work is the one based on
AMRs (Konstas et al., 2017), which has achieved
high performance in sentence generation using
neural networks from AMR-graphs (Banarescu
et al., 2013). While AMR has been used as an
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intermediate meaning representation for a wide
range of tasks, it has less descriptive power than
standard first-order logic (Bos, 2016). In addition,
current AMRs do not support inference systems
and thus cannot deal with logical inference as han-
dled by RTE systems.

3 Method

We present a sequence-to-sequence model with at-
tention for formula-to-sentence conversion.

3.1 Embedding
In using the sequence-to-sequence model, the
point to address is how to linearize logical for-
mulas. We test two ways of embedding: one is
a token-based method where a formula is sepa-
rated by each token (predicate and operator) and
the other is based on graph representations con-
verted from input logical formulas.

The token-based method tokenizes logical ex-
pressions. Below is an example of token-separated
linearization:

[exists, e, (, walk, (, e, ),&,Subj, (, e, ), ...]

On the other hand, a graph representation re-
flects the structure of a logical formula. We use the
formula-to-graph conversion presented in Wang
et al. (2017). This method converts a formula to a
tree structure and then obtains its graph represen-
tation by identifying the nodes for a same variable
and replacing edges of the tree accordingly. See
Wang et al. (2017) for the detail.

3.2 Sequence-to-Sequence with Attention
Our baseline model is a sequence-to-sequence
with attention mechanism. Let x = (x1, . . . , x|x|)
and y = (y1, . . . , y|y|) be an input formula and an
output sentence, respectively. Then, the probabil-
ity of the sentence y given a formula x is

PΘ(y|x) =

|y|∏

i=1

PΘ(yi|y<i,x),

yi|y<i,x ∼ softmax (f(Θ,y<i,x)), (1)

where y<i denotes the previously generated se-
quence of words at step i, x is the input formula
and Θ are the model parameters. The function f is
defined as

f(Θ,y<i,x) = Wo MLP

([
gi
ci

])
+ bo,

gi = LSTM dec(vT (yi−1),gi−1),

Figure 1: Masking

where MLP is a multi-layer perceptron with tanh
activation, vT (y) is an embedding vector of y, and
ci is a weighted average (attention)

∑|x|
j=1 αijhj of

the hidden vectors hj for each xj , where

αi = softmax (ei),

eij = MLP(gi−1,hj),

hj = LSTM enc(vS(xj),hj−1),

and LSTM enc is an LSTM encoder, which cal-
culates a hidden state hj using embedding vector
vS(xj) and its previous hidden state.

We train the entire model by optimizing the log-
likelihood with respect to the training data.

3.3 Masking
Logical formulas contain predicates for content
words that should invariably appear in decoded
sentences. For instance, in the sentence Eddy
walked on the green grass, its content words are
Eddy, walked, green, and grass, while on and the
are function words. Using ccg2lambda, we obtain
the following formula for this sentence:

exists e.(walk(e) & (Subj(e) = eddy) &

exists x.(green(x) & grass(x) & on(e, x))).

To utilize the information available in a logical
formula, we use a masking vector m ∈ {0, 1}N ,
where N is the size of the output vocabulary,
which zeroes out the probabilities of words that
do not appear in the formula (see Figure 1). Thus,
instead of Eq. 1, we take the element-wise multi-
plication of the softmax probability and mask m
as

yi|y<i ∼m⊗ softmax (f(Θ,y<i,x)).

To construct the masking vector, we use a dic-
tionary that maps a lemma to a list of its inflected
forms, since logical formulas contain only lemma-
tized forms of words. The idea of using a mask-
ing vector can be seen as a simplified method of
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employing a coverage vector, as has been widely
used in a line of work on chart realization by Kay
(1996). Our method provides a simple adaptation
to sequence-to-sequence models. We obtained
the dictionary by applying the lemmatizer imple-
mented in C&C parser (Clark and Curran, 2007)
to all training data used in the experiment.

In the previous example, there is a dictionary
entry that maps walk to the list walk, walks,
walked and walking. We set 1 in m at positions
that correspond to these inflected forms (see dict1
in Figure 1). Additionally, we made functional
words always available at decoding, by using a
predefined list of those words (see dict2 in Fig-
ure 1).

4 Experiment

4.1 Dataset
We create a dataset annotated with logical for-
mulas from the SNLI corpus (Bowman et al.,
2015), a collection of 570,000 English sentence
pairs manually labeled with an entailment rela-
tion. We use 50,000 hypothesis sentences from its
training portion and split them into 42,000, 4,000,
and 4,000 sentences for our training, development,
and test sets, respectively. We map the sentences
into logical formulas using ccg2lambda. We use
C&C parser for converting tokenized sentences
into CCG trees.

Table 1 shows the number of words in the con-
structed corpus (vocab), the max length (max-
len) and average length (ave-len) of sequences
obtained for the token-based (token) and graph-
based methods (graph). Here output shows in-
formation on the output sentences.

As a baseline, we use Treebank Semantics (But-
ler, 2016)2, a rule-based system for parsing and
generation with logical formulas based on event
semantics.

4.2 Evaluation
For evaluation, AMR generation tasks (Konstas
et al., 2017) use BLEU, which does not directly
consider the meaning and structure of a sentence.
For instance, two sentences No one visited the
old man to greet him and Someone visited the old
man to greet him are similar but differ in meaning.
To avoid this problem, we propose an evaluation
method using parsing and RTE. Namely, we first

2http://www.compling.jp/ajb129/
generation.html

vocab max-len ave-len
token 6,822 419 44
graph 6,747 145 17

output 8,875 40 8

Table 1: Information about sequences.

BLEU S1 ⇒ S2 S2 ⇒ S1 S1 ⇔ S2

token 43.0 87.3 87.3 87.3
+mask 60.0 92.3 90.8 89.8

graph 42.2 86.3 90.0 86.3
+mask 50.0 92.5 92.3 90.8

rule 38.3 61.5 62.3 58.8

Table 2: Evaluation results.

parse an input sentence S1 to obtain a formula P
and then generate a sentence S2 from the formula
P . Finally, we check whether S1 entails S2 and
vice versa. Our method based on RTE can detect
differences in meaning in cases like the above.

We measure the accuracy of RTE for unidirec-
tional and bidirectional entailments: S1 ⇒ S2,
S2 ⇒ S1 and S1 ⇔ S2. We use ccg2lambda for
parsing original and generated sentences and prov-
ing entailment relations between them. We use
400 pairs of sentences taken from the test set for
RTE experiments. The inference system outputs
yes (entailment), no (contradiction) or unknown.
The gold answer is set to yes. The parsing and in-
ference system of ccg2lambda achieved high pre-
cision in RTE tasks; Martı́nez-Gómez et al. (2017)
reported that the precision was nearly 100% for the
SICK dataset (Marelli et al., 2014). Thus, a pre-
dicted entailment (yes) judgement can serve as a
reliable measure for evaluating the entailment re-
lation between S1 and S2.

4.3 Results

Table 2 shows BLEU scores and RTE accuracy.
Here, token and graph show the results for a
token-based model with attention and the graph-
based model with attention, respectively, and
+mask means the model with masking. The base-
line is shown by rule, which is the performance of
Treebank Semantics. As shown here, all the mod-
els outperformed the baseline with respect to both
BLEU score and RTE accuracy. For the RTE ac-
curacy, the increase in the score of the graph +
mask model was slightly larger than the increase
for the token + mask model.

Table 3 shows examples of decoded sentences
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Input sentence (S1) Decoded sentence (S2)
(1) the girls are swimming in the ocean. the girls are swimming in the ocean.
(2) a dog is playing fetch with his owner. a dog is playing fetch with owner.
(3) a man is sitting on the couch. the men are sitting on a couch.
(4) a tall man. the man is tall.
(5) a child is standing. the children are standing together.
(6) there are several people in this picture. people are pictured in a picture.

Table 3: Examples of decoded sentences obtained from the graph + mask model

obtained from the graph + mask model. (1) and
(2) are examples that preserve the form of input
sentences. (3) is an example where singular form
is changed to plural form, as well as articles a
and the. This is because our semantics neutralizes
these distinctions. The decoded sentence is gram-
matically correct, accommodating be-verbs. In
(4), the input is a noun phrase, while the decoded
result is a sentence. Example (5) contains an un-
necessary word together, but the subject is also
changed so that the decoded sentence is meaning-
ful. In example (6), the there-construction in the
input is removed while preserving the same con-
tent.

5 Conclusion

To our knowledge, this is the first study to de-
scribe a neural sentence generation model from
logical formulas. We also proposed a new eval-
uation method based on RTE. In future work, we
will refine our model for generation of longer sen-
tences and test formulas with richer semantic in-
formation.
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Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055–
2061.

Shashi Narayan, Claire Gardent, Shay Cohen, and
Anastasia Shimorina. 2017. Split and rephrase. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages
617–627.
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Abstract

Image description datasets, such as
Flickr30K and MS COCO, show a high
degree of variation in the ways that crowd-
workers talk about the world. Although
this gives us a rich and diverse collection
of data to work with, it also introduces un-
certainty about how the world should be
described. This paper shows the extent of
this uncertainty in the PEOPLE domain. We
present a taxonomy of different ways to
talk about other people. This taxonomy
serves as a reference point to think about
how other people should be described, and
can be used to classify and compute statis-
tics about labels applied to people.

1 Introduction

There are currently two major data sets used to
train and evaluate automatic description systems:
Flickr30K and MS COCO (Young et al., 2014; Lin
et al., 2014). Both of these data sets contain im-
ages with multiple crowd-sourced descriptions per
image. These datasets are typically used to train
data-driven natural language generation systems
to automatically learn to associate visual features
with natural language descriptions (Bernardi et al.,
2016). Following the training phase, image descrip-
tion systems are evaluated by comparing their out-
put with human generated descriptions for the same
image (using textual similarity metrics like BLEU
or METEOR, Papineni et al. 2002; Denkowski and
Lavie 2014). The standard for what the image
descriptions should look like is implicit in the cor-
pus. The only point at which any explicit guide-
lines are provided is during the crowd-sourcing
task, where annotators are given general instruc-
tions about what their description should look like.
Here are the Flickr30K instructions (the MS COCO

instructions are similar):

1. Describe the image in one complete
but simple sentence. 2. Provide an ex-
plicit description of prominent entities.
3. Do not make unfounded assumptions
about what is occurring. 4. Only talk
about entities that appear in the image.
5. Provide an accurate description of the
activities, people, animals and objects
you see depicted in the image. 6. Each
description must be a single sentence un-
der 100 characters.
(Hodosh et al., 2013, edited for brevity)

These guidelines leave much of the task open
for interpretation by the annotator. For example,
it is unclear how the descriptions will be used, or
what the target audience is (as pointed out by van
Miltenburg et al. 2017). Thus, the underspecified
nature of the task invites variation and creativity.
It is important for us to understand the extent of
this variation because image description corpora
currently set the standard for what an image de-
scription should look like.

Earlier work has looked at stereotyping behavior,
reporting bias, and the use of negations in image
descriptions (van Miltenburg, 2016; Misra et al.,
2016; van Miltenburg et al., 2016, 2017), and re-
cently Van Miltenburg et al. (2018) provided an
overview of measures to quantify diversity. This pa-
per looks at the variation in the labels used to refer
to other people, and presents a taxonomy (based on
the Flickr30K dataset) that shows the range of prop-
erties that crowd-workers consider in the descrip-
tion process. This taxonomy ranges from physical
attributes, such as hair color, to attributes concern-
ing socio-economic status (e.g. unemployed).

After discussing related work (§2), we present
our method to select person-labels and to catego-
rize (partial) labels into semantic categories (§3).
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Following this, Section 4 shows the resulting tax-
onomy, with examples from the Flickr30K dataset.
Section 5 discusses our taxonomy in light of the
recently published Face2Text dataset (Gatt et al.,
2018), and considers the reliability of perceived
attributes. We believe these contributions will be
useful for practitioners interested in the generation
of person-descriptions. Our code and data is pub-
licly available online.1

2 Related work

Natural Language Generation researchers tasked
with describing other people have mostly been con-
cerned with generating referring expressions with-
out visual context, usually for well-known entities
(e.g. Castro Ferreira et al. 2016; Kutlak et al. 2016).
The closest related work comes from Gatt et al.
(2018) and Van Miltenburg (2016).

Gatt et al. (2018) present a dataset of images of
human faces, with multiple elicited descriptions per
image. They annotated a part of their dataset to esti-
mate how many of the descriptions refer to physical
(85%), emotional (44%), or inferred (46%) prop-
erties of the subjects depicted in the images. In
contrast, the present paper presents a more precise
taxonomy, and discusses Gatt et al.’s Face2Text
dataset in light of this taxonomy.

Van Miltenburg (2016) used the Flickr30K-
entities dataset (Plummer et al., 2015) to cluster
entity mentions based on their co-reference to the
same entities. We refer to these mentions as la-
bels. Their clustering approach yields hundreds of
groups of labels referring to similar entities. Here
is one of those clusters, relating to FACIAL HAIR:

beard, goatee, beard and mustache, gray beard,
black beard, white beard, red beard, braided beard,
gray braided beard, long, white beard, long brown
beard, flaming red beard, big beard, short beard,
bubble beard, large white beard, thick beard,
neatly trimmed beard, scruffy beard, red facial
hair

Van Miltenburg (2016) uses this example as
anecdotal evidence for the richness of image de-
scription data, without further analysis. Our paper
aims to provide a deeper analysis of the labels used
to refer to other people, by manually categorizing
the labels into semantically coherent sub-groups.
For example, if we look more closely at the FA-
CIAL HAIR cluster, we can see that these terms
include references to the KIND OF HAIR (beard,

1https://github.com/evanmiltenburg/LabelingPeople

goatee, mustache), the COLOR (gray, black, white),
LENGTH (long, short), SIZE (big, large), ORDER-
LINESS (neatly trimmed, scruffy), and PRESENTA-
TION (braided). This means that, when asked to
talk about an image, people consider at least six
different variables just to describe facial hair.

3 Method

We created a taxonomy of the labels used to refer to
other people by manually sorting the entity labels
into different semantic categories, instead of clus-
tering the labels (as in Van Miltenburg 2016). The
advantage of manually sorting the labels is that we
have full control over the categories. This makes
it possible to make more fine-grained distinctions,
and to show the breadth of the label distribution. In
this paper, we use the English Flickr30K corpus,
focusing on the different ways that crowd-workers
describe other people.

3.1 Initial selection

The starting point for our categorization is a list of
labels. We compiled this list using the Flickr30K-
entities annotations provided by Plummer et al.
(2015), and listed all labels that were classed as
PEOPLE. After normalization, we found 19,634
unique labels, which is too much to categorize by
hand.2 (It is not possible to crowd-source our cat-
egorization task, because the categories are not
known beforehand.) Hence we focus our efforts
only on the 5,526 labels that end with any of the
nouns girl, boy, woman, man, female, male, or
any of their plural forms.3 This makes the task
more manageable, but it also potentially reduces
the variation in the data because the selected labels
are more homogeneous. Nevertheless, as we will
see in Section 4, we still found a broad range of
variation in the labels.

During the categorization task, we found sev-
eral typing errors, and words unrelated to people-
labeling. We addressed these issues by semi-
automatically correcting the typing errors, and cre-
ating a list of stopwords that were automatically
removed from the labels. This further reduced the
number of unique labels-to-be-categorized from
5526 to 3401.

2We normalized the labels by lowercasing them, and re-
moving the characters @+,&().

3We applied the same approach to the attributes in the
Visual Genome dataset (Krishna et al., 2017), but for reasons
of space we focus on Flickr30K. Results are available online.
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Category Examples

ABILITY wheelchair bound, able-bodied, disabled, handicapped, blind, one-armed, legless, crippled
ACTIVITY running, chasing, waving, speaking, parachuting, roller-skating, protesting, partying, hiking
AGE young, old, middle-aged, adult, elderly, infant, twenty-something, teen-aged, adolescent
ATTRACTIVENESS attractive, beautiful, pretty, sexy, cute, ugly, adorable, hot, handsome, nice, good looking
BUILD petite, muscular, slender, lanky, heavy chested, potbellied, well built, burly, stocky, potbellied
CLEANLINESS dirty, shaggy, scruffy, muddy, disheveled, messy, well-groomed, grouchy looking, dirty faced
CLOTHING – AMOUNT shirtless, topless, barefooted, scantily clad, nude, unclothed, undressed, semi-naked, shoe-less

– COLOR green black uniformed, brightly dressed, red shirted, colorfully clothed, vibrantly colored
– KIND uniformed, casually dressed, sari-garbed, leather-clad, robed, suited, kilted, gothic-dressed

ETHNICITY african-american, asian, oriental, caucasian, chinese, foreign, middle-eastern, indian, tribal
EYES blue-eyed, brown eyed, green eyed, bespectacled, glasses-wearing, sun-glassed
FITNESS physically fit, healthy fit, in shape, healthy and fit, weak looking, out-of-shape
GROUP cast, circle, audience, crowd, ensemble, couple, team, roomful, group, trio, bunch, gathering
HAIR – COLOR blond, dark-haired, brown-haired, brunette, redheaded, fair, dark, ginger, dirty-blonde, graying

– FACIAL bearded, goateed, shaved, white-bearded, mustachioed, stubbled, green bearded, clean-shaven
– LENGTH bald, short-haired, long-haired, balding, nearly bald, partially bald, shaved head, bald-headed
– STYLE curly-haired, frizzy-haired, pony-tailed, shaggy-haired, curly, dreadlocked, spiky haired

HEIGHT tall, short, petite, taller, long, littler, tall looking, shorter, rather tall, slightly taller
JUDGMENT stylish, tacky looking, strange, silly, odd looking, hip, comical, flamboyant, shady, shadowy
MOOD happy, excited, curious, enthusiastic, tired, thoughtful, pensive, angry-looking, weary, sad
OCCUPATION military, navy, photographer, coast guard, executive, cooking professional, bartender
RELIGION muslim, hindu, amish, christian, islamic, religious, jewish, buddhist, catholic, mormon, hindi
SOCIAL GROUP homeless, goth, hippie, rasta, peasant, unemployed, poor looking, trash, middle class, high class
STATE drunk, extremely drunk, wet, bloody, pregnant, sweaty, cold, handcuffed, ill, injured, deceased
WEIGHT overweight, fat, slim, skinny, obese, plump, heavyset, heftier, mildly overweight, heavy, hefty

Table 1: Taxonomy of labels referring to other people, with selected examples for each category. All
examples are (partial) labels from the Flickr30K dataset.

3.2 Sorting procedure
We manually sorted (partial) labels into semantic
categories, shown in Table 1. Nothing crucially
hinges on these specific categories, but from our
experience with image description datasets, we be-
lieve they provide a good first approximation, cap-
turing the breadth of the labels used by the crowd.
Our sorting procedure works as follows.

1. Start with a set of labels to be categorized.
2. Remove task-specific stopwords and unrelated

phrases (e.g. a picture of ) from the labels.
This reduces the number of unique labels.

3. Select (partial) labels from the list, add them
to an existing category file, or create a new
category file with those labels.

4. Match the labels with the categories. We use a
context-free grammar (CFG, see Figure 1; im-
plemented using the NLTK, Bird et al. 2009)
because each label may consist of multiple
modifiers from different categories. For exam-
ple: African-American young man has both
ETHNICITY and AGE modifiers.

5. Remove matches from the set of labels to be
categorized.

6. Either stop categorization, or go to 3.

LABEL→ MOD, GENDEREDNOUN
LABEL→ MOD, MOD, GENDEREDNOUN
MOD→ ABILITY | ACTIVITY | AGE | . . .
GENDEREDNOUN→ woman | man | girl | boy | . . .
AGE→ young | old | middle-aged | adult | elderly | . . .
ETHNICITY→ African-American | Asian | oriental | . . .

Figure 1: Subset of our Context-Free Grammar,
designed to match labels with different categories
of modifiers. Production rules are based on our
category files (which are updated in step 3).

Our goal is to get an overview of the different
kinds of labels used by the crowd-workers, not to
achieve a perfect categorization of all labels. Thus,
our stopping criterion is as follows. The sorting
task is finished whenever there are no more exam-
ples matching existing categories, or warranting
new categories. New categories are warranted if
there are multiple (partial) labels that clearly fall
under the same umbrella, but do not fit into any of
the existing categories.

4 Results

We sorted the (partial) labels into 20 different cat-
egories, until we were left with only 341 labels
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(10%) that could not be fully matched with our
categories by the CFG matcher. Examples of un-
categorized labels are birthday girl and blood pres-
sure of a man. The former could be classed as a
role associated with an event, but we did not find
many such examples. The latter is an artifact of
the automated label categorization process for the
Flickr30K Entities dataset.

Table 1 shows the 20 different label categories,
with examples for each category. With this ta-
ble, we have an empirically derived taxonomy that
provides an overview of the choices that crowd-
workers make in order to describe other people.
The different categories show the diversity and
breadth of the label distribution. In future work,
we hope to extend the coverage of our taxonomy
(ideally to all 19,634 person-labels in Flickr30K-
Entities), and present statistics about the proportion
of person-labels from the Flickr30K dataset that
fall into each category.

Our taxonomy also provides a reference point
to think about the characteristics that we would
and would not like image description systems to
describe. For example, the automatic description
of features like RELIGION, WEIGHT, or SOCIAL

GROUP would probably do more harm than good.
Table 1 also shows us what makes image descrip-
tion difficult. For this domain alone, to produce
human-like descriptions, systems need to be able
to predict 20 different kinds of features, and de-
cide which feature values are relevant to mention.
A further complication is that even after deciding
which characteristics to describe, there are still
within-category choices to be made. For example,
when describing a game of basketball, one might
choose to talk about a man playing basketball (see-
ing basketball-playing as a transient property), or
male basketball player (seeing basketball-playing
as an inherent property). These choices go beyond
the scope of this paper, but see Beukeboom 2014;
Fokkens et al. 2018 for a discussion.

5 Discussion and Future Research

5.1 Extending the taxonomy to Face2text

We obtained the Face2Text corpus (Gatt et al., 2018,
v0.1) from the authors to see to what extent our tax-
onomy could be applied to their data. The main dif-
ference between the Flickr30K-Entities labels and
the Face2Text descriptions is that the former are
part of a larger description, whereas the latter are
full-blown descriptions themselves. As a result, the

Face2Text descriptions are much longer (a mean of
26.9 tokens versus 2.4 for the Flickr30k-entities la-
bels). This leads to crowd-workers providing much
more (and seemingly more specific) information
about the people in the images. For example, there
are 24 occurrences of ‘jaw’ in Face2Text, with mod-
ifiers such as angular, pointy, traditional square to
denote the specific shape of the jaw. Such details
do not seem relevant enough to mention in a short
label, as in the Flickr30K-Entities dataset.

In future work, we hope to extend our taxonomy
to cover the Face2Text data. This would make
users more aware of the contents of the corpus,
and enable them to make a conscious choice about
the kinds of features they would like their face
description systems to generate.

5.2 Consistency is no substitute for truth

In earlier research, Song et al. (2017) present a sys-
tem that is able to predict (to varying degrees of
success) perceived social attributes from faces. Hu-
man participants rated faces from a large database
for their attractiveness, friendliness, familiarity, but
also to what extent they thought the subjects were
egotistical, emotionally stable, or responsible.4

It is important to stress that these ratings only
indicate perceived characteristics, and do not neces-
sarily reflect the actual characters of the individuals
in the dataset. More generally, even though peo-
ple may be able to consistently ascribe a particular
property to an individual, this alone does not en-
tail that the property actually applies (see Todorov
et al. 2013; Agüera y Arcas et al. 2017 for a dis-
cussion). When considering different ways to label
other people, we should ask ourselves: is it reason-
able to predict this label category based on visual
information alone?

5.3 Limitations

The approach taken in this paper has three main
limitations, which we will discuss in turn.

First, our taxonomy is based on a subset of the
person-labels in the Flickr30K-Entities dataset, and
thus may overlook other relevant label categories.

4Song et al. (2017) list the following 20 pairs of social
traits: (attractive, unattractive), (happy, unhappy), (friendly,
unfriendly), (sociable, introverted), (kind, mean), (caring,
cold), (calm, aggressive), (trustworthy, untrustworthy), (re-
sponsible, irresponsible), (confident, uncertain), (humble, ego-
tistical),(emotionally stable, emotionally unstable), (normal,
weird), (intelligent, unintelligent), (interesting, boring), (emo-
tional, unemotional), (memorable, forgettable), (typical, atypi-
cal), (familiar, unfamiliar) and (common, uncommon).
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We emphasize that our work is not meant to pro-
vide an exhaustive categorization of the labels used
in the Flickr30K data. Rather, our goal is to high-
light the breadth of the label distribution. The fact
that the broad taxonomy developed in this paper is
based on a subset of all the labels (less than a third
of the Flickr30K data) only supports the main point
of this paper, which is that humans use a wide array
of terms to refer to other people.

Second, our taxonomy is constructed manually,
and it is unclear whether replication would yield
similar results. This is a natural result of a manual
categorization of the person labels, and it would be
interesting to see if we could automatically induce
a similar taxonomy from the corpus data (for ex-
ample using LDA; Blei et al. 2003). To facilitate
future research in this area, we made all our code
and data available online.1

Finally, our taxonomy is exclusively based on
English, without any input from other languages.
It may be the case that speakers of other languages
highlight other features, in making reference to
other people. This idea opens up another avenue of
research, asking two related questions:

1. Do speakers of the same language tend to men-
tion the same person-attributes for the same
images?

2. Are there any cross-linguistic differences in
what features are mentioned in reference to
other people?

Although some work has mentioned cross-
linguistic differences in how annotators refer to
other people (e.g. Li et al. 2016; van Miltenburg
et al. 2017), we are not aware of any systematic
study that specifically looks at how speakers of dif-
ferent languages make reference to other people,
and what features they tend to mention.

6 Conclusion

We have looked at the variation in the ways crowd-
workers talk about other people in the Flickr30K
dataset. Our main result is that this variation cov-
ers a wide range of variables, from appearance to
socio-economic status. We formalized this varia-
tion in a taxonomy of person-labels, which should
help us reflect on the image description task, and
the kinds of descriptions that image description
systems should produce. Future research should
be aware that, even though crowd-workers may
systematically produce particular labels, this does

not mean that the label is true. We encourage the
development of standards and guidelines, that tell
us which kinds of labels to use in what kind of situ-
ations. Such guidelines may benefit system evalua-
tion and help us avoid the inappropriate labeling of
other people.
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Abstract

We present a data resource which can be
useful for research purposes on language
grounding tasks in the context of geo-
graphical referring expression generation.
The resource is composed of two data sets
that encompass 25 different geographical
descriptors and a set of associated graph-
ical representations, drawn as polygons
on a map by two groups of human sub-
jects: teenage students and expert meteo-
rologists.

1 Introduction

Language grounding, i.e., understanding how
words and expressions are anchored in data, is one
of the initial tasks that are essential for the con-
ception of a data-to-text (D2T) system (Roy and
Reiter, 2005; Reiter, 2007). This can be achieved
through different means, such as using heuristics
or machine learning algorithms on an available
parallel corpora of text and data (Novikova et al.,
2017) to obtain a mapping between the expres-
sions of interest and the underlying data (Reiter
et al., 2005), getting experts to provide these map-
pings, or running surveys on writers or readers that
provide enough data for the application of map-
ping algorithms (Ramos-Soto et al., 2017).

Performing language grounding ensures that
generated texts include words whose meaning is
aligned with what writers understand or what read-
ers would expect (Roy and Reiter, 2005), given
the variation that is known to exist among writers
and readers (Reiter and Sripada, 2002). Moreover,
when contradictory data appears in corpora or any
other resource that is used to create the data-to-
words mapping, creating models that remove in-
consistencies can also be a challenging part of lan-

guage grounding which can influence the develop-
ment of a successful system (Reiter et al., 2005).

This paper presents a resource for language
grounding of geographical descriptors. The origi-
nal purpose of this data collection is the creation of
models of geographical descriptors whose mean-
ing is modeled as graded or fuzzy (Fisher, 2000;
Fisher et al., 2006), to be used for research on gen-
eration of geographical referring expressions, e.g.,
(Turner et al., 2010, 2008; de Oliveira et al., 2015;
Ramos-Soto et al., 2016, 2017). However, we be-
lieve it can be useful for other related research pur-
poses as well.

2 The resource and its interest

The resource is composed of data from two differ-
ent surveys. In both surveys subjects were asked
to draw on a map (displayed under a Mercator pro-
jection) a polygon representing a given geograph-
ical descriptor, in the context of the geography of
Galicia in Northwestern Spain (see Fig. 1). How-
ever, the surveys were run with different purposes,
and the subject groups that participated in each
survey and the list of descriptors provided were
accordingly different.

The first survey was run in order to obtain a high
number of responses to be used as an evaluation
testbed for modeling algorithms. It was answered
by 15/16 year old students in a high school in Pon-
tevedra (located in Western Galicia). 99 students
provided answers for a list of 7 descriptors (in-
cluding cardinal points, coast, inland, and a proper
name). Figure 2 shows a representation of the an-
swers given by the students for “Northern Galicia”
and a contour map that illustrates the percentages
of overlapping answers.

The second survey was addressed to meteorolo-
gists in the Galician Weather Agency (MeteoGali-
cia, 2018). Its purpose was to gather data to create
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Figure 1: Snapshot of the version of the survey
answered by the meteorologists (translated from
Spanish).

fuzzy models that will be used in a future NLG
system in the weather domain. Eight meteorolo-
gists completed the survey, which included a list
of 24 descriptors. For instance, Figure 3 shows a
representation of the answers given by the meteo-
rologists for “Eastern Galicia” and a contour map
that illustrates the percentage of overlapping an-
swers.

Table 1 includes the complete list of descrip-
tors for both groups of subjects. 20 out of the
24 descriptors are commonly used in the writing
of weather forecasts by experts and include car-
dinal directions, proper names, and other kinds
of references such as mountainous areas, parts of
provinces, etc. The remaining four were added to
study intersecting combinations of cardinal direc-
tions (e.g. exploring ways of combining “north”
and “west” for obtaining a model that is similar to
“northwest”).

The data for the descriptors from the surveys
is focused on a very specific geographical con-
text. However, the conjunction of both data sets
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El Norte de Galicia

Figure 2: Representation of polygon drawings by
students and associated contour plot showing the
percentage of overlapping answers for “Northern
Galicia”.
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Figure 3: Representation of polygon drawings by
experts and associated contour plot showing the
percentage of overlapping answers for “Eastern
Galicia”.

provides a very interesting resource for perform-
ing a variety of more general language grounding-
oriented and natural language generation research
tasks, such as:

• Testing algorithms that create geographical
models. These models would aggregate the
answers from different subjects for each de-
scriptor. The differences among the sub-
jects can be interpreted from a probabilistic
or fuzzy perspective that allows a richer char-
acterization of the resulting models. For in-
stance, in Fig. 2 the contour plots could be
taken as the basis or support for the semantics
of the expression “Northern Galicia”, with a
core region that is accepted by the majority,
and a gradual decay as one moves to the outer
periphery of the regions outlined.

• Analyzing differences between the expert
and non-expert groups for the descriptors
they have in common (as Table 1 shows, both
groups share 6 descriptors).

• Studying how to combine models represent-

Subject 
Group

Spanish English translation

Common
Norte de Galicia, Sur de Galicia, Oeste de 
Galicia, Este de Galicia, Interior de Galicia, 

Rías Baixas

Northern Galicia, Southern Galicia, Western 
Galicia, Eastern Galicia, Inland Galicia, Rías 

Baixas

Students Costa de Galicia Galician Coast

Experts

Tercio Norte, Extremo Norte
Áreas de montaña de Lugo,

Áreas de montaña de Ourense,
Oeste de A Coruña, Comarcas Atlánticas,

Litoral Atlántico, Litoral Cantábrico,
Litoral Norte, Interior de Coruña,

Interior de Pontevedra, Oeste de Ourense,
Sur de Ourense, Sur de Lugo,

Noroeste de Galicia, Noreste de Galicia, 
Suroeste de Galicia, Sureste de Galicia  

Northern Third, Extreme North,
Mountainous areas in Lugo,

Montainous areas in Ourense,
Western A Coruña, Atlantic Regions,

Atlantic Coast, Cantabrian Coast,
Northern Coast, Inland Coruña,

Inland Pontevedra, Western Ourense,
Southern Ourense, Southern Lugo,

Northwestern Galicia, Northeastern Galicia, 
Southwestern Galicia, Southeastern Galicia

Table 1: List of geographical descriptors in the re-
source.
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ing the semantics of different cardinal direc-
tions, such as “south” and “east” to obtain a
representation of “southeast”.

• Developing geographical referring expres-
sion generation algorithms based on the em-
pirically created models.

3 Qualitative analysis of the data sets

The two data sets were gathered for different
purposes and only coincide in a few descriptors,
so providing a direct comparison is not feasible.
However, we can discuss general qualitative in-
sights and a more detailed analysis of the descrip-
tors that both surveys share in common.

At a general level, we had hypothesized that
experts would be much more consistent than stu-
dents, given their professional training and the re-
duced number of meteorologists participating in
the survey. Comparing the visualizations of both
data sets we have observed that this is clearly the
case; the polygons drawn by the experts are more
concentrated and therefore there is a higher agree-
ment among them. On top of these differences,
some students provided unexpected drawings in
terms of shape, size, or location of the polygon
for several descriptors.

If we focus on single descriptors, one inter-
esting outcome is that some of the answers for
“Northern Galicia” and “Southern Galicia” over-
lap for both subject groups. Thus, although ‘north’
and ‘south’ are natural antonyms, if we take into
account the opinion of each group as a whole,
there exists a small area where points can be con-
sidered as belonging to both descriptors at the
same time (see Fig. 4). In the case of “west”
and “east”, the drawings made by the experts were
almost divergent and showed no overlapping be-
tween those two descriptors.

Figure 4: Areas overlapping “north” and “south”
for both subject groups (in blue).

Regarding “Inland Galicia”, the unions of the
answers for each group occupy approximately the
same area with a similar shape, but there is a very
high overlapping among the answers of the me-
teorologists. A similar situation is found for the
remaining descriptor “Rı́as Baixas”, where both
groups encompass a similar area. In this case, the
students’ answers cover a more extensive region
and the experts coincide within a more restricted
area.

3.1 A further analysis: apparent issues

As in any survey that involves a task-based collec-
tion of data, some of the answers provided by the
subjects for the described data sets can be consid-
ered erroneous or misleading due to several rea-
sons. Here we describe for each subject group
some of the most relevant issues that any user of
this resource should take into account.

In the case of the students, we have identified
minor drawing errors appearing in most of the de-
scriptors, which in general shouldn’t have a neg-
ative impact in the long term thanks to the high
number of participants in the original survey. For
some descriptors, however, there exist polygons
drawn by subjects that clearly deviate from what
could be considered a proper answer. The clearest
example of this problem involves the ‘west’ and
‘east’ descriptors, which were confused by some
of the students who drew them inversely (see Fig.
5, around 10-15% of the answers).

In our case, given their background, some of the
students may have actually confused the meaning
of + “west” and “east”. However, the most plausi-
ble explanation is that, unlike in English and other
languages, in Spanish both descriptors are phonet-
ically similar (“este” and “oeste”) and can be eas-
ily mistaken for one another if read without atten-
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Western Galicia Eastern Galicia

Figure 5: Contour maps of student answers for
“Western Galicia” and “Eastern Galicia”.
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Figure 6: Representation of polygon drawings by
experts and associated contour plots showing the
percentage of overlapping answers for “Northeast-
ern Galicia”.

tion.
As for the expert group, a similar case is found

for “Northeastern Galicia” (see Fig. 6), where
some of the given answers (3/8) clearly correspond
to “Northwestern Galicia”. However, unlike the
issue related to “west” and “east” found for the
student group, this problem is not found recipro-
cally for the “northwestern” answers.

4 Resource materials

The resource is available at (Ramos-Soto et al.,
2018) under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Li-
cense. Both data sets are provided as SQLite
databases which share the same table structure,
and also in a compact JSON format. Polygon
data is encoded in GeoJSON format (Butler et al.,
2016). The data sets are well-documented in the
repository’s README, and several Python scripts
are provided for data loading, using Shapely
(Gillies et al., 2007–2018); and for visualization
purposes, using Cartopy (Met Office, 2010–2015).

5 Concluding remarks

The data sets presented provide a means to per-
form different research tasks that can be use-
ful from a natural language generation point of
view. Among them, we can highlight the creation
of models of geographical descriptors, compar-
ing models between both subject groups, study-
ing combinations of models of cardinal directions,
and researching on geographical referring expres-
sion generation. Furthermore, insights about the
semantics of geographical concepts could be in-
ferred under a more thorough analysis.

One of the inconveniences that our data sets
present is the appearance of the issues described in

Sec. 3.1. It could be necessary to filter some of the
answers according to different criteria (e.g., devi-
ation of the centroid location, deviation of size,
etc.). For more applied cases, manually filtering
can also be an option, but this would require a cer-
tain knowledge of the geography of Galicia. In
any case, the squared-like shape of this region may
allow researchers to become rapidly familiar with
many of the descriptors listed in Table 1.

As future work, we believe it would be invalu-
able to perform similar data gathering tasks for
other regions from different parts of the world.
These should provide a variety of different shapes
(both regular and irregular), so that it can be fea-
sible to generalize (e.g., through data-driven ap-
proaches) the semantics of some of the more com-
mon descriptors, such as cardinal points, coastal
areas, etc. The proposal of a shared task could
help achieve this objective.
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Abstract

In this paper we present an automatic re-
view generator system which can gener-
ate personalized reviews based on the user
identity, product identity and designated
rating the user wishes to allot to the re-
view. We combine this with a sentiment
analysis system which performs the com-
plimentary task of assigning ratings to re-
views based purely on the textual content
of the review. We introduce an additional
loss term to ensure cyclic consistency of
the sentiment rating of the generated re-
view with the conditioning rating used to
generate the review. The introduction of
this new loss term constraints the genera-
tion space while forcing it to generate re-
views adhering better to the requested rat-
ing. The use of ‘soft’ generation and cyclic
consistency allows us to train our model in
an end to end fashion. We demonstrate the
working of our model on product reviews
from Amazon dataset.

1 Introduction

In this age of growing e-commerce markets, re-
views are taken very seriously, however, manually
writing these reviews has become an extremely la-
borious task. This leads us to work on systems
which can automatically generate realistic looking
reviews which can be automatically customized to
the user writing it, the product being reviewed and
the desired rating the generated review should ex-
press. This makes the reviewing process much
easier which can potentially increase the num-
ber of reviews posted leading to a more informed
choice for potential buyers.

Natural Language Generation has always been
one of the most challenging task in the field of

natural language processing. Most of the present
day approaches very loosely constraint the gener-
ation process often leading to ill formed or mean-
ingless generations. Ensuring semantic and syn-
tactic coherence across the generated sentence is
also an immensely challenging task. We explore
enforcing additional constraints on the generation
process which we hope will restrict the genera-
tion manifold and generate more meaningful and
semantically consistent sentence also adhering to
the desired ratings. In this paper we attempt to
perform the following tasks:

• We implement an automatic review gener-
ator using Long Short Term Memory Net-
works (LSTM) (Hochreiter and Schmidhu-
ber, 1997), which has proved useful in re-
membering context and modelling sentence
syntax. We also incorporate a soft attention
mechanism which helps the model to attend
better to the relevant context and generate
better reviews. Such a review generator sys-
tem caters to each individual users review-
ing style and would convert a user provided
rating into a review personalized to the users
writing style and based on their rating.

• Sentiment Analysis from reviews. This in-
cludes going through the reviews and trying
to gauge user sentiment and assign a score
based on it. Score parameters have been
found to be much easier to go through and
base ones decisions upon rather than manu-
ally going through hundreds of reviews.

• In this paper we propose an additional cyclic
consistency loss term which allows for joint
training of the generation network with the
sentiment analysis network. This improves
the generator network which is now more
constrained and is forced to generate reviews
which adhere to the provided rating.
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• The use of ‘soft’ generation instead of a sam-
pling based generation allows end to end gra-
dient propagation allowing us to train our
models end to end.

2 Dataset

In this paper we validate our generation frame-
work on the Amazon dataset which contains re-
views and scores for products sold on amazon.com
and is part of the dataset collected by McAuley
and Leskovec (2013). We used the reviews in
the books category. Specifically, we have 80,256
books and 19,675 users after using the same pre-
processing as used in (Dong et al., 2017). The rat-
ings are converted into 5 integer levels from 1-5.

3 Attribute Based Review generation

In this section we explain the network we used
for the attribute based review generation. The net-
work we implement uses an architecture similar
to the one proposed by Dong et al (2017). The
overview of the architecture is shown in Figure 1.
The architecture consists of 3 parts i.e. Attribute
Encoder, Sequence Generator and a soft attention
mechanism. We now describe these parts in detail.

3.1 Attribute Encoder
Let us represent the attributes by a vector a where
each element of a represents a specific attribute.
In our case the attribute vector consists of user ID,
product ID and the rating on a scale of 1-5 each
represented as one hot vectors. The model begins
by using a multi layer perceptron with a single hid-
den layer to learn the attribute embeddings.

g(ai) = W i
a · (ai)

Where ai are the one hot representations of
the various attributes. This allows each of the
attributes to be encoded separately. We then
combine the various attribute embeddings by
concatenating them and passing them through
another layer of a Multi Layer Perceptron.

ea = tanh(Wg · [g(a1), ...., g(an)] + ba)

Here ea denotes the final joint representation of the
attribute embeddings and n represents the number
of attributes (n = 3 in our case). [.] represents the
concatenation operator.
The weight matrix Wg here is chosen to generate

an output of size Ln where L is the number of lay-
ers in the generator network and n is the hidden
state size of the LSTM units in the generator net-
work. ea is now used to initialize the hidden states
of the multi layer LSTM based generator network.

3.2 Sequence Generator

The sequence generator network is based on a
Multi Layer LSTM architecture. Unlike Dong
et al, we initialize our word embeddings using
a concatenation of the Glove (Pennington et al.,
2014) and Cove embeddings (McCann et al.,
2017). The word embeddings are fine tuned as the
network trains. The attribute encodings defined
in the previous section are used to initialize the
hidden state of the generator network. The Ln
dimensional attribute encoding is split into L
parts of length n each which are used to initialize
the hidden states of the L layers of the LSTM
network. This basic model of the generator
network without the soft attention mechanism is
shown in Figure 2

3.3 Soft Attention Mechanism

Soft attention has recently been utilized to better
utilize contextual information in a variety of
tasks (Maas et al., 2011), (Wang and Manning,
2012). In this paper, we utilize the soft attention
mechanism to make better use of the encoding
information from the attributes. The architecture
which implements the soft attention mechanism
is shown in Figure 3. The attention is computed
from the hidden vector of the LSTM over all
the attribute embeddings we learned using the
attribute encoder. This attention is then used to
compute the attention weighted context vector ct.
This is represented by the equations:

ri
t = exp(Tanh(W s

h · hL
t + W s

a · g(ai))

si
t =

ri
t∑n

j=1 rj
t

ct =

n∑

i=1

si
t · g(ai)

Here si
t is the attention weight of the ith attribute

and n is the number of attributes. Here Wh and
Wa are parameter matrices. We use this attention
weighted context vector to predict the next word
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generated by the sequence generator as:

hatt
t = tanh(W1 · ct + W2 · hL

t )

ot = (Wp · hatt
t )

Here W1, W2 and Wp are parameter matrices. The
generation thus involves a sequence of discrete
decision making which samples a token from a
multinomial distribution parameterized using soft-
max function at each time step t:

x̂t ∼ softmax(ot/τ)

where ot is the logit vector as the inputs to the
softmax function. The temperature τ is set to
τ → 0 as training proceeds, yielding increasingly
peaked distributions that finally emulate discrete
case. The generation process ends when the EOS
token is generated or when 3 complete sentences
are generated, whichever happens first.

4 Training

The review network is initially pre-trained inde-
pendently of the sentiment analysis network by
maximizing the log likelihood of the generated
sequence. After running a few epochs of training
the generator alone, we enforce an additional
cyclic consistency term in the loss function.
The idea is the sentiment analysis score of the
generated review should be consistent with the
original rating provided as an attribute. Similar
consistency terms can be applied to the other
attributes as well, but here we explore only the
consistency of the rating score term. A cross en-
tropy loss between the predicted sentiment rating
class and the ground truth rating class is used
as the additional loss function to enforce cyclic
consistency. Since sampling words from the
generator will make the model non-differentiable
preventing end to end training, hence we keep
things in the probabilistic domain by resorting to
a continuous approximation by using the proba-
bility vector instead of the sampled one hot vector.
The probability vector is used as the output at the
current step and the input to the next step along
the sequence of decision making. This leads to a
‘soft’ predicted sequence G̃(a), which we use to
compute the cyclic rating consistency loss term
and this being fully probabilistic is differentiable
allowing end to end training of the network. The
cyclic consistency loss term can be denoted as:

Lcyc = E(a,r)∈D qD(G̃(a), r)

where qD is the loss from the sentiment rating
class predictor and r is the ground truth rating.
Hence the joint loss function becomes:

Ltot = −Llikelihood + λLcyc

Adam optimizer (Kingma and Ba, 2014) with
default parameters is used to train the model.
NLTK tokenizer (Bird et al., 2009) is used to to-
kenize the sentences and all words which appear
less than 10 times in the corpus are replaced by
the < UNK > token. All LSTM layers use 512
dimensional hidden units and 3 layers are used in
the generator LSTM. The test time generations are
generated using greedy search algorithms.

Figure 1: The model first learns attribute embed-
dings and then uses an LSTM network to generate
the reviews one word at a time. A soft attention
mechanism is used to learn alignments between at-
tribute embeddings and the generated words.

Figure 2: The basic setup of the generator network
without attention

5 Sentiment Analysis Rating Predictor

For sentiment analysis we use a bidirectional RNN
with Gated Recurrent Units (GRU) (Chung et al.,
2014) pipeline which takes as input the gener-
ated review and generates a rating score at the
end. The words are first embedded to vectors us-
ing an embedding layer which is initialized using
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User Product Rating Generated Review
A X 1 the story was really boring.

i was expecting much more. the ending was abrupt.
A X 5 i loved the characters.

the movie was thoroughly enjoyable. the plot was well written.
B X 1 this book is not as good as the previous one.

i was looking forward to reading this. i will not be reading the next one.
B X 5 the books from this author just keep getting better.

will highly recommend this book to everyone.
looking forward to more books from the author.

A Y 1 the plot of this book is really confusing.
the book is not well written. i was unable to read the whole book.

A Y 5 i really enjoyed reading this book.
the characters are amazing.

Table 1: Some examples from the review generator network for various users, products and rating scores

Figure 3: The soft attention is computed by using
the present hidden state of the generator LSTM
and the attribute vector. Attention weighted at-
tribute vector embeddings are used as input to the
generator along with the previous generated word
to generate the review.

concatenations of Glove embeddings (Penning-
ton et al., 2014) and CoVe embeddings (McCann
et al., 2017). We noticed a substantial performance
improvement by using the CoVe embeddings in
addition to the Glove embeddings compared to the
traditionally used Glove embeddings or word2vec
embeddings (Mikolov et al., 2013). We also allow
the embeddings to be fine tuned with training.
The final hidden layer generated by the GRU is
then passed onto a Multi Layer Perceptron which
finally predicts the sentiment rating class.

6 Results

After a sufficient amount of training the network
learns to generate some realistic looking reviews.
The additional loss term seems to force the review
to not be repetitive and not to use generic words
besides ensuring that the generated review ad-
heres to the expected rating. For evaluation of the
generated sentence quality, we use BLEU score
which measures the precision of n-gram match-

Method BLEU-4 (%) BLEU-1 (%)
Rand 0.86 20.36

MELM 1.28 21.59
NNpr 1.53 22.44
NNur 3.61 26.37

Att2Seq 4.51 30.24
Att2Seq+A 5.03 30.48

Cyclegen(Ours) 5.46 30.63

Table 2: Evaluation of our generated sentence
quality using BLEU score and comparison with
baseline systems (details in Appendix A)
Baseline results as in (Dong et al., 2017)

Method Att2seq Att2seq+A CycleGen
Accuracy(%) 82.3 85.6 87.5

Table 3: Accuracy of polarity (positive/negative)
of the generated sentences by manual human com-
parison against input polarities (1-3 is considered
negative and 4-5 is considered positive)

ing by comparing the generated results with refer-
ences, and penalizes length using a brevity penalty
term. Here we use BLEU-1 (unigram) and BLEU-
4 (upto 4 grams) to evaluate our models. The re-
sults for the same and comparison with some other
works on the same task are shown in Table 2. We
also perform some human evaluation of the polar-
ity of the generated reviews against input polarity.
The results for the same are shown in Table 3.

We also notice that the baseline sentiment anal-
ysis rating system which was trained directly on
the Amazon reviews dataset attained an accuracy
of 70.1% which improves to 72.4% when fine-
tuned using this end to end framework. Some of
the reviews generated by the system and their cor-
responding ratings are demonstrated in the Table
1
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A Details of Baseline Systems

We describe the comparison methods as follows.
Note that the comparison baselines are same as
used in (Dong et al., 2017):

• Rand: The predicted results are randomly
sampled from all the reviews in the TRAIN
set. This baseline method suggests the ex-
pected lower bound for this task.

• MELM: Maximum Entropy Language
Model uses n-gram (up to trigram) features,
and the feature template attribute n-gram (up
to bigram). The feature hashing technique is
employed to reduce memory usage in each
feature group. Noise contrastive estimation
(Gutmann and Hyvärinen, 2012) is used
to accelerate the training by dropping the
normalization term, with 20 contrastive
samples in training.

• NN-pr: This Nearest Neighbor based method
retrieves the reviews that have the same prod-
uct ID and rating as the input attributes in the
TRAIN set. Then we randomly choose a re-
view from them, and use it as the prediction.

• NN-ur: The same method as NN-pr but uses
both user ID and rating to retrieve candidate
reviews

• Att2seq: The basic LSTM encoder decoder
model without any attention mechanism.

• Att2seq+A: The present state of the art
model on this task as explained in (Dong
et al., 2017)
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Abstract

The task of linearization is to find a gram-
matical order given a set of words. Tradi-
tional models use statistical methods. Syn-
tactic linearization systems, which gen-
erate a sentence along with its syntactic
tree, have shown state-of-the-art perfor-
mance. Recent work shows that a multi-
layer LSTM language model outperforms
competitive statistical syntactic lineariza-
tion systems without using syntax. In this
paper, we study neural syntactic lineariza-
tion, building a transition-based syntactic
linearizer leveraging a feed forward neural
network, observing significantly better re-
sults compared to LSTM language models
on this task.

1 Introduction

Linearization is the task of finding the grammat-
ical order for a given set of words. Syntactic
linearization systems generate output sentences
along with their syntactic trees. Depending on
how much syntactic information is available dur-
ing decoding, recent work on syntactic lineariza-
tion can be classified into abstract word ordering
(Wan et al., 2009; Zhang et al., 2012; de Gispert
et al., 2014), where no syntactic information is
available during decoding, full tree linearization
(He et al., 2009; Bohnet et al., 2010; Song et al.,
2014), where full tree information is available, and
partial tree linearization (Zhang, 2013), where par-
tial syntactic information is given as input. Lin-
earization has been adapted to tasks such as ma-
chine translation (Zhang et al., 2014), and is po-
tentially helpful for many NLG applications, such
as cooking recipe generation (Kiddon et al., 2016),
dialogue response generation (Wen et al., 2015),
and question generation (Serban et al., 2016).

Previous work (Wan et al., 2009; Liu et al.,
2015) has shown that jointly predicting the syn-
tactic tree and the surface string gives better re-
sults by allowing syntactic information to guide
statistical linearization. On the other hand, most
such methods employ statistical models with dis-
criminative features. Recently, Schmaltz et al.
(2016) report new state-of-the-art results by lever-
aging a neural language model without using syn-
tactic information. In their experiments, the neu-
ral language model, which is less sparse and cap-
tures long-range dependencies, outperforms previ-
ous discrete syntactic systems.

A research question that naturally arises from
this result is whether syntactic information is help-
ful for a neural linearization system. We em-
pirically answer this question by comparing a
neural transition-based syntactic linearizer with
the neural language model of Schmaltz et al.
(2016). Following Liu et al. (2015), our lin-
earizer works incrementally given a set of words,
using a stack to store partially built dependency
trees, and a set to maintain unordered incoming
words. At each step, it either shifts a word onto
the stack, or reduces the top two partial trees on
the stack. We leverage a feed forward neural net-
work, which takes stack features as input and pre-
dicts the next action (such as SHIFT, LEFTARC

and RIGHTARC). Hence our method can be re-
garded as an extension of the parser of Chen and
Manning (2014), adding word ordering function-
alities.

In addition, we investigate two methods for
integrating neural language models: interpolat-
ing the log probabilities of both models and in-
tegrating the neural language model as a feature.
On standard benchmarks, our syntactic linearizer
gives results that are higher than the LSTM lan-
guage model of Schmaltz et al. (2016) by 7 BLEU
points (Papineni et al., 2002) using greedy search,
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and the gap can go up to 11 BLEU points by in-
tegrating the LSTM language model as features.
The integrated system also outperforms the LSTM
language model by 1 BLEU point using beam
search, which shows that syntactic information is
useful for a neural linearization system.

2 Related work

Previous work (White, 2005; White and Rajku-
mar, 2009; Zhang and Clark, 2011; Zhang, 2013)
on syntactic linearization uses best-first search,
which adopts a priority queue to store partial hy-
potheses and a chart to store input words. At each
step, it pops the highest-scored hypothesis from
the priority queue, expanding it by combination
with the words in the chart, before finally putting
all new hypotheses back into the priority queue.
As the search space is huge, a timeout threshold
is set, beyond which the search terminates and the
current best hypothesis is taken as the result.

Liu et al. (2015) adapt the transition-based de-
pendency parsing algorithm for the linearization
task by allowing the transition-based system to
shift any word in the given set, rather than the
first word in the buffer as in dependency parsing.
Their results show much lower search times and
higher performance compared to Zhang (2013).
Following this line, Liu and Zhang (2015) fur-
ther improve the performance by incorporating
an n-gram language model. Our work takes the
transition-based framework, but is different in two
main aspects: first, we train a feed-forward neu-
ral network for making decisions, while they all
use perceptron-like models. Second, we investi-
gate a light version of the system, which only uses
word features, while previous works all rely on
POS tags and arc labels, limiting their usability on
low-resource domains and languages.

Schmaltz et al. (2016) are the first to adopt neu-
ral networks on this task, while only using surface
features. To our knowledge, we are the first to
leverage both neural networks and syntactic fea-
tures. The contrast between our method and the
method of Chen and Manning (2014) is reminis-
cent of the contrast between the method of Liu
et al. (2015) and the dependency parser of Zhang
and Nivre (2011). Comparing with the depen-
dency parsing task, which assumes that POS tags
are available as input, the search space of syntactic
linearization is much larger.

Recent work (Zhang, 2013; Song et al., 2014;

Liu et al., 2015; Liu and Zhang, 2015) on syn-
tactic linearization uses dependency grammar. We
follow this line of works. On the other hand, lin-
earization with other syntactic grammars, such as
context free grammar (de Gispert et al., 2014) and
combinatory categorial grammar (White and Ra-
jkumar, 2009; Zhang and Clark, 2011), has also
been studied.

3 Task

Given an input bag-of-words x = {x1, x2, ..., xn},
the goal is to output the correct permutation y,
which recovers the original sentence, from the set
of all possible permutations Y . A linearizer can
be seen as a scoring function f over Y , which is
trained to output its highest scoring permutation
ŷ = argmaxy′∈Y f(x, y′) as close as possible to
the correct permutation y.

3.1 Baseline: an LSTM language model
The LSTM language model of Schmaltz et al.
(2016) is similar to the medium LSTM setup of
Zaremba et al. (2014). It contains two LSTM lay-
ers, each of which has 650 hidden units and is
followed by a dropout layer during training. The
multi-layer LSTM language model can be repre-
sented as:

ht,i, ct,i = LSTM(ht,i−1,ht−1,i, ct−1,i) (1)

p(wt,j |wt−1, ..., w1) =
exp(vᵀ

jht,I)∑
j′ exp(v

ᵀ
j′ht,I)

, (2)

where ht,i and ct,i are the output and cell memory
of the i-th layer at step t, respectively, ht,0 = xt is
the input of the network at step t, I is the number
of layers, wt,j represents outputting wj at t step,
vj is the embedding ofwj , and the LSTM function
is defined as:
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σ
σ
σ

tanh


W4n,2n

(
ht,i−1
ht−1,i

)

(3)

ct,i = f � ct−1,i + i� g (4)

ht,i = o� tanh(ct,i), (5)

where σ is the sigmoid function, W4n,2n is the
weights of LSTM cells, and � is the element-wise
product operator.

Figure 1 shows the linearization procedure of
the baseline system, when taking the bag-of-words
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I love

love NLP

NLP

<eos>

Figure 1: Linearization procedure of the baseline.

{“NLP”,“love”,“I”} as input. At each step, it takes
the output word from the previous step as input
and predicts the current word, which is chosen
from the remaining input bag-of-words rather than
from the entire vocabulary. Therefore it takes n
steps to linearize a input consisting of n words.

4 Neural transition-based syntactic
linearization

Transition-based syntactic linearization can be
considered as an extension to transition-based de-
pendency parsing (Liu et al., 2015), with the main
difference being that the word order is not given in
the input, so that any word can be shifted at each
step. This leads to a much larger search space. In
addition, under our setting, extra dependency rela-
tions or POS on input words are not available.

The output building process is modeled as a
state-transition process. As shown in Figure 2,
each state s is defined as (σ, ρ,A), where σ is a
stack that maintains a partial derivation, ρ is an un-
ordered set of incoming input words and A is the
set of dependency relations that have been built.
Initially, the stack σ is empty, while the set ρ con-
tains all the input words, and the set of depen-
dency relations A is empty. At the end, the set
ρ is empty, while A contains all dependency rela-
tions for the predicted dependency tree. At a cer-
tain state, a SHIFT action chooses one word from
the set ρ and pushes it onto the stack σ, a LEFT-
ARC action makes a new arc {j ← i} from the
stack’s top two items (i and j), while a RIGHTARC

action makes a new arc {j → i} from i and j. Us-
ing these possible actions, the unordered word set
{“NLP0”,“love1”,“I2”} is linearized as shown in
Table 1, and the result is “I2← love1→ NLP0”.1

1For a clearer introduction to our state-transition process,
we omit the POS-p actions, which are introduced in Section
4.2. In our implementation, each SHIFT-w is followed by
exact one POS-p action.

Figure 2: Deduction system of transition-based
syntactic linearization

step action σ ρ A

init [] (1 2 3) ∅
0 Shift-I [1] (2 3)
1 Shift-love [1 2] (3)
2 Shift-NLP [1 2 3] ()
3 RArc-dobj [1 2] () A ∪ {2→ 3}
4 LArc-nsubj [2] () A ∪ {1← 2}
5 End [] () A

Table 1: Transition-based syntactic linearization
for ordering {“NLP3”,“love2”,“I1”}, where RArc
and LArc are the abbreviations for RightArc and
LeftArc, respectively. More details on actions are
in Section 4.2.

4.1 Model

To predict the next transition action for a given
state, our linearizer makes use of a feed-forward
neural network to score the actions as shown in
Figure 3. The network takes a set of word, POS
tag, and arc label features from the stack as in-
put and outputs the probability distribution of the
next actions. In particular, we represent each word
as a d-dimensional vector ewi ∈ Rd using a word
embedding matrix is Ew ∈ Rd×Nw , where Nw is
the vocabulary size. Similarly each POS tag and
arc label are also mapped to a d-dimensional vec-
tor, where etj , e

l
k ∈ Rd are the representations of

the j-th POS tag and k-th arc label, respectively.
The embedding matrices of POS tags and arc la-
bels are Et ∈ Rd×Nt and El ∈ Rd×Nl , where
Nt and Nl correspond to the number of POS tags
and arc labels, respectively. We choose a set of
feature words, POS tags, and arc labels from the
stack context, using their embeddings as input to
our neural network. Next, we map the input layer
to the hidden layer via:

h = g(Ww
1 x

w +Wt
1x

t +Wl
1x

l + b1), (6)
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Figure 3: Neural syntactic linearization model

where xw, xt, and xl are the concatenated fea-
ture word embeddings, POS tag embeddings, and
arc label embeddings, respectively, Ww

1 , Wt
1, and

Wl
1 are the corresponding weight matrices, b1 is

the bias term and g() is the activation function of
the hidden layer. The word, POS tag and arc label
features are described in Section 4.3.

Finally, the hidden vector h is mapped to an out-
put layer, which uses a softmax activation function
for modeling multi-class action probabilities:

p(a|s, θ) = softmax(W2h), (7)

where p(a|s, θ) represents the probability distribu-
tion of the next action. There is no bias term in
this layer and the model parameter W2 can also
be seen as the embedding matrix of all actions.

4.2 Actions

We use 5 types of actions:

• SHIFT-w pushes a word w onto the stack.

• POS-p assigns a POS tag p to the newly
shifted word.

• LEFTARC-l pops the top two items i and j off
stack and pushes {j l←− i} onto the stack.

• RIGHTARC-l pops the top two items i and j
off stack and pushes {j l−→ i} onto the stack.

• END ends the decoding procedure.

Given a set of nwords as input, the linearizer takes
3n steps to synthesize the sentence. The number
of actions is large, making it computationally in-
efficient to do softmax over all actions. Here for
each set of words S we only consider all possible
actions for linearizing the set, which constraints
SHIFT-wi to all words in the set.

(1) S1.w; S1.t; S2.w; S2.t; S3.w; S3.t;

(2)

i = 1, 2
lc1(Si).w; lc1(Si).t; lc1(Si).l;
lc2(Si).w; lc2(Si).t; lc2(Si).l;
rc1(Si).w; rc1(Si).t; rc1(Si).l;
rc2(Si).w; rc2(Si).t; rc2(Si).l;

(3)

i = 1, 2
lc1(lc1(Si)).w; lc1(lc1(Si)).t;
lc1(lc1(Si)).l; rc1(rc1(Si)).w;
rc1(rc1(Si)).t; rc1(rc1(Si)).l;

Table 2: Feature templates, where Si denotes the
ith item on the stack, w, t and l denotes the word,
POS tag and arc label, respectively.

4.3 Features

The feature templates our model uses are shown
in Table 2. We pick (1) the words and POS tags
of the top 3 items on the stack, (2) the words, POS
tags, and arc labels of the first and the second left-
most / rightmost children of the top 2 items on the
stack and (3) the words, POS tags and arc labels
of the leftmost of leftmost / rightmost of rightmost
children of the top two items on the stack. Under
certain states, some features may not exist, and we
use special tokens NULLw, NULLt and NULLl to
represent non-existent word, POS tag, and arc la-
bel features, respectively. Our feature templates
are similar to that of Chen and Manning (2014),
except that we do not leverage features from the
set, because the words inside the set are unordered.

4.4 The light version

We also consider a light version of our linearizer
that only leverages words and unlabeled depen-
dency relations. Similar to Section 4.1, the sys-
tem also uses a feed-forward neural network with
1 hidden layer, but only takes word features as in-
put. It uses 4 types of actions: SHIFT-w, LEFT-
ARC, RIGHTARC, and END. All actions are same
as described in Section 4.2, except that LEFTARC

and RIGHTARC are not associated with arc labels.
Given a set of n words as input, the system takes
2n steps to synthesize the sentence, which is faster
and less vulnerable to error propagation.

5 Integrating an LSTM language model

Our model can be integrated with the baseline
multi-layer LSTM language model. Existing work
(Zhang et al., 2012; Liu and Zhang, 2015) has
shown that a syntactic linearizer can benefit from
a surface language model by taking its scores as
features. Here we investigate two methods for
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the integration: (1) joint decoding by interpolat-
ing the conditional probabilities and (2) feature-
level integration by taking the output vector (hI )
of the LSTM language model as features to the
linearizer.

5.1 Joint decoding
To perform joint decoding, the conditional action
probability distributions of both models given the
current state are interpolated, and the best action
under the interpolated probability distribution is
chosen, before both systems advancing to a new
state using the action. The interpolated conditional
probability is:

p(a|si, hi; θ1, θ2) = log p(a|si; θ1)
+ α log p(a|hi; θ2), (8)

where si and θ1 are the state and parameters of the
linearizer, hi and θ2 are the state and parameters
of the LSTM language model, and α is the inter-
polation hyper parameter.

The action spaces of the two systems are dif-
ferent because the actions of the LSTM language
model correspond only to the shift actions of the
linearizer. To match the probability distributions,
we expand the distribution of the LSTM language
model as shown in Equation 9, where wa is the
associated word of a shift action a. Generally,
the probabilities of non-shift actions are 1.0, and
those of shift actions are from the LSTM language
model with respect to wa:

p(a|hi; θ2) =
{
p(wa|hi; θ2), if a is shift
1.0, otherwise

(9)

We do not normalize the interpolated probability
distribution, because our experiments show that
normalization only gives around 0.3 BLEU score
gains, while significantly decreasing the speed.
When a shift action is chosen, both systems ad-
vance to a new state; otherwise only the linearizer
advances to a new state.

5.2 Feature level integration
To take the output of an LSTM language model as
a feature in our model, we first train the LSTM lan-
guage model independently. During the training of
our model, we take hI , the output of the top LSTM
layer after consuming all words on the stack, as a
feature in the input layer of Figure 3, before finally
advancing both the linearizer and the LSTM lan-
guage model using the predicted action. This is

analogous to adding a separately-trained n-gram
language model as a feature to a discriminative
linearizer (Liu and Zhang, 2015). Compared with
joint decoding (Section 5.1), p(a|si, hi; θ1, θ2) is
calculated by one model, and thus there is no need
to tune the hyper-parameter α. The state update
remains the same: the language model advances
to a new state only when a shift action is taken.

6 Training

Following Chen and Manning (2014), we set
the training objective as maximizing the log-
likelihood of each successive action conditioned
on the dependency tree, which can be gold or au-
tomatically parsed. To train our linearizer, we
first generate training examples {(si, ti)}mi=1 from
the training sentences and their gold parse trees,
where si is a state, and ti ∈ T is the correspond-
ing oracle transition. We use the “arc standard”
oracle (Nivre, 2008), which always prefers SHIFT

over LEFTARC. The final training objective is
to minimize the cross-entropy loss, plus an L2-
regularization term:

L(θ) = −
∑

i

log pti +
λ

2
‖θ‖2,

where θ represents all the trainable parameters:
W1,b1,W2,E

w,Et,El. A slight variation is
that the softmax probabilities are computed only
among the feasible transitions in practice. As de-
scribed in Section 4.2, for an input set of words,
the feasible transitions are: SHIFT-w, where w is a
word in the set, POS-p for all POS tags, LEFTARC-
l and RIGHTARC-l for all arc labels, and END.

To train a linearizer that takes an LSTM lan-
guage model as features, we first train the LSTM
language model on the same training data, then
train the linearizer with the parameters of the
LSTM language model unchanged.

7 Experiments

7.1 Setup
We follow previous work and conduct experiments
on the Penn Treebank, using Wall Street Journal
sections 2-21 for training, 22 for development and
23 for final testing. Gold-standard dependency
trees are derived from bracketed sentences in the
treebank using Penn2Malt.2 In order to study the
influence of parsing accuracy of the training data,

2https://stp.lingfil.uu.se/∼nivre/research/Penn2Malt.html
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System BEAMSIZE=1 BEAMSIZE=10 BEAMSIZE=64 BEAMSIZE=512
BLEU Time BLEU Time BLEU Time BLEU Time

LSTM 14.01 6m26s 26.83 13m 33.05 54m41s 37.08 405m10s
SYN 20.97 11m39s 27.72 26m40s 30.01 113m19s 31.12 891m39s
SYN+LSTM 21.17 18m15s 30.43 37m15s 34.35 157m16s 36.84 1058m
SYN×LSTM 24.91 18m12s 32.75 37m12s 35.88 156m50s 36.96 1070m
SYNl×LSTM 24.55 9m50s 32.84 23m7s 36.11 77m6s 37.99 624m39s

Table 3: Main results and decoding times.

ID #training sent #iter F1
syn90 all 30 90.28
syn85 all 1 85.38
syn79 9000 1 79.68
syn54 900 1 54.86

Table 4: Parsing accuracy settings, the F1 scores
are measured on the training set.

we use ten-fold jackknifing to construct WSJ train-
ing data with different accuracies. More specifi-
cally, the data is first randomly split into ten equal-
size subsets, and then each subset is automati-
cally parsed with a constituent parser trained on
the other subsets, before the results are finally con-
verted to dependency trees using Penn2Malt. In
order to obtain datasets with different parsing ac-
curacies, we randomly sample a small number of
sentences from each training subset and choose
different training iterations, as shown in Table 4.
In our experiments, we use ZPar3 (Zhu et al.,
2013) for automatic constituent parsing.

Our syntactic linearizer is implemented with
Keras.4 We randomly initialize Ew, Et, El, W1

and W2 within (−0.01, 0.01), and use default set-
ting for other parameters. The hyper-parameters
and parameters which achieve the best perfor-
mance on the development set are chosen for final
evaluation. Our vocabulary comes from SENNA5,
which has 130,000 words. The activation func-
tions tanh and softmax are added on top of the
hidden and output layers, respectively. We use
Adagrad (Duchi et al., 2011) with an initial learn-
ing rate of 0.01, regularization parameter λ =
10−8, and dropout rate 0.3 for training. The in-
terpolation coefficient α for joint decoding is set
0.4. During decoding, simple pruning methods are
applied, such as a constraint that POS-p actions al-
ways follow SHIFT-w actions.

We evaluate our linearizer (SYN) and its vari-
ances, where the subscript “l” denotes the light

3https://github.com/frcchang/zpar
4https://keras.io/
5http://ronan.collobert.com/senna/

version, “+LSTM” represents joint decoding with
an LSTM language model, and “×LSTM” repre-
sents taking an LSTM language model as features
in our model. We compare results with the cur-
rent state-of-the-art: an LSTM (LSTM) language
model from Schmaltz et al. (2016), which is sim-
ilar in size and architecture to the medium LSTM
setup of Zaremba et al. (2014). None of the sys-
tems use future cost heuristic. All experiments are
conducted using Tesla K20Xm.

7.2 Tuning

We show some development results in this sec-
tion. First, using the cube activation function
(Chen and Manning, 2014) does not yield a good
performance on our task. We tried other activa-
tions including Linear, tanh and ReLU (Nair and
Hinton, 2010), and tanh gives the best results.
In addition, we tried pretrained embeddings from
SENNA, which does not yield better results com-
pared to random initialization. Further, dropout
rates from 0.3 to 0.8 give good training results. Fi-
nally, we tried different values from 0.1 to 1.0 for
the interpolation coefficient α, finding that values
between 0.3 and 0.7 give the best performances,
while values larger than 1.5 yield poor perfor-
mances.

7.3 Main results

The main results on the test set are shown in Ta-
ble 3. Compared with previous work, our lin-
earizers achieve the best results under all beam
sizes, especially under the greedy search scenario
(BEAMSIZE=1), where SYN and SYN×LSTM
outperform the baseline of LSTM by 7 and 11
BLEU points, respectively. This demonstrates
that syntactic information is extremely important
when beam size is small. In addition, our syntac-
tic systems are still better than the baseline under
very large beam sizes (such as, BEAMSIZE=512),
which lead to slow performance and are less use-
ful practically. On the other hand, the baseline
(LSTM) benefits more from beam size increases.
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System sentences
LSTM-512 the bush administration , known as 31 , 1992 , earlier this year said it would extend voluntary restraint

agreements steel quotas until march .
SYNl×LSTM-512 earlier this year , the bush administration said it would extend steel agreements until march 31 , 1992

, known as voluntary restraint quotas .
REF the bush administration earlier this year said it would extend steel quotas , known as voluntary re-

straint agreements , until march 31 , 1992 .
LSTM-512 shearson lehman hutton inc. said , however , that it is “ going to set back with the customers , ”

because of friday ’s plunge , president of jeffrey b. lane concern “ reinforces volatility relations .
SYNl×LSTM-512 however , jeffrey b. lane , president of shearson lehman hutton inc. , said that friday ’s plunge is “

going to set back with customers because it reinforces the volatility of “ concern , ” relations .
REF however , jeffrey b. lane , president of shearson lehman hutton inc. , said that friday ’s plunge is “

going to set back ” relations with customers , “ because it reinforces the concern of volatility .
LSTM-512 the debate between the stock and futures markets is prepared for wall street will cause another situa-

tion about whether de-linkage crash undoubtedly properly renewed friday .
SYNl×LSTM-512 the wall street futures markets undoubtedly will cause renewed debate about whether the stock situa-

tion is properly prepared for an other crash between friday and de-linkage .
REF the de-linkage between the stock and futures markets friday will undoubtedly cause renewed debate

about whether wall street is prope rly prepared for another crash situation .

Table 5: Output samples.

The results are consistent with (Ma et al., 2014)
in that both increasing beam size and using richer
features are solutions for error propagation.

SYN×LSTM is better than SYN+LSTM. In
fact, SYN×LSTM can be considered as interpo-
lation with α being automatically calculated un-
der different states. Finally, SYNl×LSTM is bet-
ter than SYN×LSTM except under greedy search,
showing that word-to-word dependency features
may be sufficient for this task.

As for the decoding times, SYNl×LSTM
shows a moderate time growth along increas-
ing beam size, which is roughly 1.5 times
slower than LSTM. In addition, SYN+LSTM and
SYN×LSTM are the slowest for each beam size
(roughly 3 times slower than LSTM), because
of the large number of features they use and the
large number of decoding steps they take. SYN is
roughly 2 times slower than LSTM.

Previous work, such as Schmaltz et al. (2016),
adopts future cost and the information of base
noun phrase (BNP) and shows further improve-
ment on performance. However, these are highly
task specific. Future cost is based on the assump-
tion that all words are available at the beginning,
which is not true for other tasks. On the other
hand, our model does not rely on this assumption,
thus can be better applicable on other tasks. BNPs
are the phrases that correspond to leaf NP nodes in
constituent trees. Assuming BNPs being available
is not practical either.
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Figure 4: Performance on different lengths.

7.4 Influence of sentence length

We show the performances on different sentence
lengths in Figure 4. The results are from LSTM
and SYNl×LSTM using beam size 1 and 512.
Sentences belonging to the same length range
(such as 1–10 or 11–15) are grouped together,
and corpus BLEU is calculated on each group.
First of all, SYNl×LSTM-1 is significantly bet-
ter than LSTM-1 on all sentence lengths, explain-
ing the usefulness of syntactic features. In ad-
dition, SYNl×LSTM-512 is notably better than
LSTM-512 on sentences that are longer than 25,
and the difference is even larger on sentences that
have more than 35 words. This is an evidence that
SYNl×LSTM is better at modeling long-distance
dependencies. On the other hand, LSTM-512 is
better than SYNl×LSTM-512 on short sentences
(length ≤ 10). The reason may be that LSTM is
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Data SYN×LSTM SYNl×LSTM
Gold 36.03 36.41
syn90 35.91 36.31
syn85 35.84 36.22
syn79 35.40 35.96
syn54 33.32 34.98

Table 6: Results of various parsing accuracy.

good at modeling relatively shorter dependencies
without syntactic guidance, while SYNl×LSTM,
which takes more steps for synthesizing the same
sentence, suffers from error propagation. Overall,
this figure can be regarded as empirical evidence
that syntactic systems are better choices for gener-
ating long sentences (Wan et al., 2009; Zhang and
Clark, 2011), while surface systems may be better
choices for generating short sentences.

Table 5 shows some linearization results of long
sentences from LSTM and SYNl×LSTM using
beam size 512. The outputs of SYNl×LSTM are
notably more grammatical than those of LSTM.
For example, in the last group, the output of
SYNl×LSTM means “the market will cause an-
other debate about whether the situation now is
prepared for another crash”, while the output of
LSTM is obviously less fluent, especially for the
parts “... markets is prepared for wall street will
cause ...” and “... crash undoubtedly properly re-
newed ..”.

In addition, LSTM makes locally grammati-
cal outputs, while suffering more mistakes in the
global level. Taking the second group as an exam-
ple, LSTM generates grammatical phrases, such
as “going to set back with the customers” and “be-
cause of friday ’s plunge”, while misplacing “pres-
ident of”, which should be in the very front of
the sentence. On the other hand, SYNl×LSTM
can capture patterns such as “president of some
inc.” and “someone, president of someplace said”
to make the right choices. Finally, SYNl×LSTM
can makes grammatical sentences with different
meanings. For example in the first group, the re-
sult of SYNl×LSTM means “the bush adminis-
tration will extend the steel agreement”, while the
true meaning is “the bush administration will ex-
tend the steel quotas”. For syntactic linearization,
such semantic variation is tolerable.

7.5 Results with auto-parsed data

There is no syntactically annotated data in many
domains. As a result, performing syntactic lin-
earization in these domains requires automatically

Actions Top similar actions
S-wednesday S-tuesday S-friday S-thursday S-monday
S-huge S-strong S-serious S-good S-large
S-taxes S-bills S-expenses S-loans S-payments
S-secretary S-department S-officials S-director
S-largely S-partly S-primarily S-mostly S-entirely

Table 7: Top similar actions for shift actions

600 400 200 0 200 400 600

400

200

0

200

400

P-PRP$

P-VBG

P-FW

P-VBN

P-POS

P-''

P-VBP

P-WDT

P-JJ

P-WP

P-VBZ
P-DT

P-#

P-RP

P-$

P-NN

P-VBD

P-,

P-.
P-TO

P-PRP
P-RB

P--LRB-

P-:

P-NNSP-NNP

P-``

P-WRB

P-CC

P-LS
P-PDT

P-RBS

P-RBR

P-CD

P-EXP-IN P-WP$

P-MD

P-NNPS

P--RRB-
P-JJS

P-JJR

P-SYM

P-VB

P-UH

noun

verb

adjective

adverb

punctuation

misc

Figure 5: t-SNE visualization of POS embeddings

parsed training data, which may affect the per-
formance of our syntactic linearizer. We study
this effect by training both SYN×LSTM and
SYNl×LSTM with automatically parsed training
data of different parsing accuracies, and show the
results, which are generated with beamsize 64 on
the devset, in Table 6. Generally, a higher parsing
accuracy can lead to a better linearization result for
both systems. It conforms to the intuition that syn-
tactic quality affects the fluency of surface texts.
On the other hand, the influence is not large, the
BLEU scores of SYNl×LSTM and SYN×LSTM
drop by 1.5 and 2.8 BLEU points, respectively, as
the parsing accuracy decreases from gold to 54%.
Both observations are consistent with that of Liu
and Zhang (2015) for discrete syntactic lineariza-
tion. Finally, SYNl×LSTM shows less BLEU
score decreases than SYN×LSTM. The reason is
that SYNl×LSTM only takes word features, and
is less vulnerable to parsing accuracy decrease.

7.6 Embedding similarity

One main advantage of neural systems is that they
use vectorized features, which are less sparse than
discriminative features. Taking W2 as the embed-
ding matrix of actions, we calculate the top similar
actions for the SHIFT-w actions by cosine distance
and show examples in Table 7. In addition, Fig-
ure 5 presents the t-SNE visualization (Maaten and
Hinton, 2008) of the embeddings for the POS-p
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actions. Generally, the embeddings of similar ac-
tions are closer than these of other actions. From
both results, we can see that our model learns rea-
sonable embeddings from the Penn Treebank, a
small-scale corpus, which shows the effectiveness
of our system from another perspective.

8 Conclusion

We studied neural transition-based syntactic lin-
earization, which combines the advantages of both
neural networks and syntactic information. In ad-
dition, we compared two ways of integrating a
neural language model into our system. Experi-
mental results show that our system achieves im-
proved results comparing with a state-of-the-art
multi-layer LSTM language model. To our knowl-
edge, we are the first to investigate neural syntactic
linearization.

In the future work, we will investigate LSTM
on this task. In particular, an LSTM decoder, tak-
ing features form the already-built subtrees as part
of its inputs, is taken to model the sequences of
shift-reduce actions. Another possible direction
is creating complete graphs with their nodes be-
ing the input words, before encoding them with
self-attention networks (Vaswani et al., 2017) or
graph neural networks (Kipf and Welling, 2016;
Beck et al., 2018; Zhang et al., 2018; Song et al.,
2018). This approach can be better at capturing
word-to-word dependencies than simply summing
word embeddings up.
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Abstract

One of the biggest challenges of end-
to-end language generation from mean-
ing representations in dialogue systems is
making the outputs more natural and var-
ied. Here we take a large corpus of 50K
crowd-sourced utterances in the restaurant
domain and develop text analysis methods
that systematically characterize types of
sentences in the training data. We then au-
tomatically label the training data to allow
us to conduct two kinds of experiments
with a neural generator. First, we test the
effect of training the system with differ-
ent stylistic partitions and quantify the ef-
fect of smaller, but more stylistically con-
trolled training data. Second, we propose
a method of labeling the style variants dur-
ing training, and show that we can modify
the style of the generated utterances using
our stylistic labels. We contrast and com-
pare these methods that can be used with
any existing large corpus, showing how
they vary in terms of semantic quality and
stylistic control.

1 Introduction

Dialogue systems have become one of the key ap-
plications in natural language processing, but there
are still many ways in which these systems can
be improved. One obvious possible improvement
is in the system’s language generation to make it
more natural and more varied. Both a benefit and
a challenge of neural natural language generation
(NLG) models is that they are very good at re-
ducing noise in the training data. When they are
trained on a sufficiently large dataset, they learn
to generalize and become capable of applying the
acquired knowledge to unseen inputs. The more

data the models are trained on, the more robust
they become, which minimizes the effect of noise
in the data on their learning. However, the higher
amount of training data can also drown out inter-
esting stylistic features and variations that may not
be very frequent in the data. In other words, the
model, being statistical, will prefer producing the
most common sentence structures, i.e. those which
it observed most frequently in the training data and
is thus most confident about.

In our work, we consider language generators
whose inputs are structured meaning representa-
tions (MRs) describing a list of key concepts to be
conveyed to the human user during the dialogue.
Each piece of information is represented by a slot-
value pair, where the slot identifies the type of in-
formation and the value is the corresponding con-
tent. A language generator must produce a syn-
tactically and semantically correct utterance from
a given MR. The utterance should express all the
information contained in the MR, in a natural and
conversational way. Table 1 shows an example
MR for a restaurant called “The Waterman” paired
with two (out of many) possible output utterances,
the first of which might be considered stylistically
interesting, since the name of the restaurant fol-
lows some aspects of the description and contains
a concession, while the second example might be
considered as more stylistically conventional.

Recently, the size of training corpora for NLG
has become larger, and these same corpora have
begun to manifest interesting stylistic variations.
Here we start from the recently released E2E
dataset (Novikova et al., 2017b) with nearly 50K
samples of crowd-sourced utterances in the restau-
rant domain provided as part of the E2E NLG
Challenge.1 We first develop text analysis meth-
ods that systematically characterize types of sen-

1http://www.macs.hw.ac.uk/InteractionLab/E2E/
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MR

name [The Waterman], food
[English], priceRange [cheap], cus-
tomer rating [low], area [city centre],
familyFriendly [yes]

Utt. #1

There is a cheap, family-friendly
restaurant in the city centre, called
The Waterman. It serves English
food, but received a low rating by cus-
tomers.

Utt. #2

The Waterman is a family-friendly
restaurant in the city centre. It serves
English food at a cheap price. It has
a low customer rating.

Table 1: Example of a meaning representation and
two corresponding utterances of different styles.

tences in the training data. We then automatically
label the training data – with the help of a heuristic
slot aligner and a handful of domain-independent
rules for discourse marker extraction – in order to
allow us to conduct two kinds of experiments with
a neural language generator: (1) we test the effect
of training the system with different stylistic par-
titions and quantify the effect of smaller, but more
stylistically controlled training data; (2) we pro-
pose a method of labeling the style variants during
training, and show that we can modify the style of
the output using our stylistic labels. We contrast
these methods, showing how they vary in terms
of semantic quality and stylistic control. These
methods promise to be usable with any sufficiently
large corpus as a simple way of producing stylistic
variation.

2 Related Work

The restaurant domain has always been the do-
main of choice for NLG tasks in dialogue systems
(Stent et al., 2004; Gašić et al., 2008; Mairesse
et al., 2010; Howcroft et al., 2013), as it offers a
good combination of structured information avail-
ability, expression complexity, and ease of in-
corporation into conversation. Hence, even the
more recent neural models for NLG continue to
be tested primarily on data in this domain (Wen
et al., 2015; Dušek and Jurčı́ček, 2016; Nayak
et al., 2017). These tend to focus solely on syn-
tactic and semantic correctness of the generated
utterances, nevertheless, there have also been re-

cent efforts to collect training data for NLG with
emphasis on stylistic variation (Nayak et al., 2017;
Novikova et al., 2017a; Oraby et al., 2017).

While there is previous work on stylistic vari-
ation in NLG (Paiva and Evans, 2004; Mairesse
and Walker, 2007), this work did not use crowd-
sourced utterances for training. More recent work
in neural NLG that explores stylistic control has
not needed to control semantic correctness, or ex-
amined the interaction between semantic correct-
ness and stylistic variation (Sennrich et al., 2016;
Ficler and Goldberg, 2017). Also related is the
work of Niu and Carpuat (2017) that analyzes how
dense word embeddings capture style variations,
Kabbara and Cheung (2016) who explore the abil-
ity of neural NLG systems to transfer style with-
out the need for parallel corpora, which are dif-
ficult to collect (Rao and Tetreault, 2018), while
Li et al. (2018) use a simple delete-and-retrieve
method also without alignment to outperform ad-
versarial methods in style transfer. Finally, Oraby
et al. (2018) propose two different methods that
give neural generators control over the language
style, corresponding to the Big Five personalities,
while maintaining semantic fidelity of the gener-
ated utterances.

To our knowledge, there is no previous work
exploring the use of and utility of stylistic selec-
tion for controlling stylistic variation in NLG from
structured MRs. This may be either because there
have not been sufficiently large corpora in a par-
ticular domain, or because it is surprising, as we
show, that relatively small corpora (2000 samples)
whose style is controlled can be used to train a
neural generator to achieve high semantic correct-
ness while producing stylistic variation.

3 Dataset

We perform the stylistic selection on the E2E
dataset (Novikova et al., 2017b). It is by far the
largest dataset available for task-oriented language
generation in the restaurant domain. It offers al-
most 10 times more data than the San Francisco
restaurant dataset (Wen et al., 2015), which had
frequently been used for NLG benchmarks. This
significant increase in size allows successful train-
ing of neural models on smaller subsets of the
dataset. Careful selection of the training subset
can be used to influence the style of the utterances
produced by the model, as we show in this paper.

A portion of the human reference utterances
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Samples Unique MRs

Training 42,061 4,862
Validation 4,672 547
Test 630 630

Total 47,363 6,039

Table 2: Number of samples vs. unique meaning
representations in the training, validation and test
set of the E2E dataset.

Slots 3 4 5 6 7 8

Sentences 1.09 1.23 1.41 1.65 1.84 1.92
Proportion 5% 18% 32% 28% 14% 3%

Table 3: Average number of sentences in the ref-
erence utterance for a given number of slots in the
corresponding MR, along with the proportion of
MRs with specific slot counts.

was collected using pictures as the source of in-
formation, which was shown to inspire more natu-
ral utterances compared to textual MRs (Novikova
et al., 2016). The reference utterances in the
E2E dataset exhibit superior lexical richness and
syntactic variation, including more complex dis-
course phenomena. It aims to provide higher-
quality training data for end-to-end NLG systems
to learn to produce better phrased and more natu-
rally sounding utterances.

Although the E2E dataset contains a large num-
ber of samples, each MR is associated on average
with more than 8 different reference utterances, ef-
fectively supplying almost 5K unique MRs in the
training set (Table 2). It thus offers multiple al-
ternative ways of expressing the same information
in an utterance, which the model can learn. We
take advantage of this aspect of the dataset when
selecting the subset of samples for training with a
particular purpose of stylistic variation.

The dataset contains 8 different slot types,
which are fairly equally distributed in the dataset.
Each MR comprises 3 to 8 slots, whereas the ma-
jority of MRs consist of 5 and 6 slots. Even though
most of the MRs contain many slots, the majority
of the corresponding human utterances consist of
one or two sentences only (Table 3), suggesting
a reasonably high level of sentence complexity in
the references.

Domain Utterance

TV

You might like the Dionysus 44 tele-
vision that has an a+ eco rating and
720p resolution, while only using 32
watts in power consumption. (Wen
et al., 2016)

Laptop
For the price of 449 dollars, you
could purchase the Satellite Hypnos
38 laptop. (Wen et al., 2016)

People
Born in the London Borough of
Havering, Alex Day started perform-
ing in 2006. (Gardent et al., 2017)

Food
Sago is the main ingredient in binig-
nit, but sweet potatoes are also used
in it. (Gardent et al., 2017)

Table 4: Examples of utterances in different
datasets/domains, also exhibiting interesting dis-
course phenomena.

4 Stylistic Selection

We note that the E2E dataset is significantly larger
than what is needed for a neural model to learn to
produce correct utterances in this domain. Thus,
we seek a way to help the model learn more than
just to be correct. We strive to achieve higher
stylistic diversity of the utterances generated by
the model through stylistic selection of the train-
ing samples. We start by characterizing variation
in the crowd-sourced dataset and detect what op-
portunities it offers for the model to learn more
advanced sentence structures. Table 5 illustrates
some of the stylistic variation that we observe,
which we describe in more detail below. We then
judge the level of desirability of specific discourse
phenomena in our context, and devise rules based
on the parse tree to extract the samples that man-
ifest those stylistic phenomena. This gives us the
ability to create subsets of the samples with an ar-
bitrary combination of stylistic features that we are
interested in. We then explore the extent to which
we can make the model’s output demonstrate these
stylistic features.

4.1 Stylistic Variation in the Dataset
This section gives an overview of different dis-
course phenomena in the E2E dataset that we con-
sider relevant in the context of a task-oriented di-
alogue in the restaurant domain. The majority of
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Category Utterance

Aggregation
Located in the city centre is a family-friendly coffee shop called Fitzbillies. It is
both inexpensive and highly rated.

Contrast
The Rice Boat is a Chinese restaurant in the riverside area. It has a customer
rating of 5 out of 5 but is not family friendly.

Fronting
With a 1 out of 5 rating Midsummer House serves Italian cuisine in the high
price range, found not far from All Bar One.

Subordination Wildwood pub is serving 5 star food while keeping their prices low.

Exist. clause
In the city center, there is an average priced, non-family-friendly, Japanese
restaurant called Alimentum.

Imperative/modal
In Riverside, you’ll find Fitzbillies. It is a passable, affordable coffee shop which
interestingly serves Chinese food. Don’t bring your family though.

Table 5: Examples of the categories of discourse phenomena extracted from the utterances in the E2E
dataset.

these would, however, generalize to other domains
too, since they appear not only in summaries of
restaurants, but, for example, in those of TVs, lap-
tops (Wen et al., 2016), people and food (Gardent
et al., 2017) too (see examples in Table 4). The
extraction rules we have implemented can thus be
widely used in task-oriented data-to-text language
generators. We split the sentence features in the
following six categories. An example of each is
given in Table 5:

• Aggregation: Discourse phenomena group-
ing information together in a more concise
way. This includes specifiers such as “both”
or “also”, as well as apposition and gerunds.
Another type of aggregation uses the same
quantitative adjective for characterizing mul-
tiple different qualities (such as “It has a low
customer rating and price range.”).

Note that some of the following categories
contain other markers that also represent ag-
gregation.

• Contrast: Connectors and adverbs express-
ing concession or contrast between two or
more qualities, such as “but”, “despite”,
“however”, or “yet”.

• Fronting: Fronted adjective, verb and prepo-
sitional phrases, typically highlighting quali-
ties of the eatery before its name is given.

In this category we also include specifica-
tional copular constructions, which are for-

mulations with inverted predication around a
copula, bringing a particular quality of the
eatery in the front (e.g. “A family friendly op-
tion is The Rice Boat.”).

• Subordination: Clauses introduced by a
subordinating conjunction (such as “if” or
“while”), or by a relative pronoun (such as
“whose” or “that”).

• Existential clause: Sentences formulated us-
ing the expletive “there”.

• Imperative and modal verb: Sentences in-
volving a verb in the imperative form or a
modal verb, making the utterance sound more
personal and interactive.

4.2 Discourse Marker Weighting
Many human-produced utterances, naturally, con-
tain multiple of the discourse phenomena de-
scribed in Section 4.1. Such utterances are pre-
ferred to those only containing a single discourse
phenomenon of interest, especially if it is a com-
mon one, such as the existential clause. We
therefore devise a weighting schema for different
groups of discourse markers, whose purpose is to
represent the markers’ general desirability in the
output utterances, as well as to counteract the spar-
sity of some of the markers compared to others. In
other words, the weighting is supposed to ensure
all the most desirable utterances are picked from
the training set during the selection, but some that
only contain less interesting (and typically more
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prevalent) discourse phenomena would be omitted
in favor of the more complex ones. Our reason-
ing behind that is that the greater the proportion
of the most desirable discourse phenomena in the
stylistically selected training set, the more confi-
dently the model is expected to generate utterances
in which they are present.

For an illustration, let us assume there are eight
different reference utterances for an MR. All of
them will be scored based on the discourse mark-
ers they contain, but only those that score above
a certain threshold will be selected, while the rest
will be ignored. The purpose of that is to encour-
age the model to learn to use, say, a contrastive
phrase if there is an opportunity for it in the MR,
and not be distracted by other possible realizations
of the same MR, which are not as elegant (such as
the example utterance #1 vs. #2 in Table 1). Thus,
we can set the weighting schema in such a way that
sentences containing only, for example, “which”
or an existential clause, will not be picked. How-
ever, if there is no high scoring utterance for an
MR, the utterance with the highest score is picked
so that the model would not miss an opportunity
to learn from any MR samples.

Our final weighting schema is specified in Ta-
ble 6. When there are discourse markers from
multiple subsets present in the utterance, the
weights are accumulated. It is then the total weight
that is used to determine whether the utterance
satisfies the stylistic threshold or should be elimi-
nated.

The weights have been determined through a
combination of the discourse markers’ frequency
in the dataset, their intra-category variation, as
well as their general desirability in the particular
domain of our task. The weights can be easily ad-
justed for any new domain according to the above,
or any other factors. As an example, another such
factor could be the length of the utterance. We
have experimented with a length penalty, i.e. giv-
ing an utterance that contains a verb in gerund
form as the only advanced construct, but that is
composed of three sentences, a lower score than
a short one-sentence utterance with a gerund verb.
However, we did not find the use of this extra coef-
ficient helpful in our domain, as it resulted in elim-
inating a significant proportion of desirable utter-
ances too.

5 Data Annotation

5.1 Contrastive Relation

One of the discourse phenomena whose actualiza-
tion could benefit from explicit indication of when
it should be applied, is the contrastive relation be-
tween two (or more) slot realizations in the utter-
ance. There are several reasons why such a com-
parison of specific slots would be desired in the
restaurant domain. One of them is to provide em-
phasis that one attribute is positive, whereas the
other is negative. Another natural reason in dia-
logue systems could be to indicate that the clos-
est match to the user’s query that was found is
a restaurant that does not satisfy one of the re-
quested criteria. A third instance is when the value
of one attribute creates the expectation of a partic-
ular value of another attribute, but the latter has in
reality the opposite value.

Some of the above could presumably be learned
by the model if sufficient training data was avail-
able. However, they involve fairly complex sen-
tence constructs with various potentially confus-
ing rules for the neural network. The slightly more
than 2K samples with a contrasting relation can be
drowned among the thousands of other samples in
the E2E dataset, meaning that it is difficult for the
learned model to produce them.

Hence, we augment the input given to the model
with the information about which slots should be
put into a contrastive relation. We hypothesize that
this explicit indication will help the model to learn
to apply contrasting significantly more easily de-
spite the small proportion of training samples ex-
hibiting the property.

In order to extract the information as exactly
as possible from the training utterance, we use
a heuristic slot aligner (Juraska et al., 2018) to
identify two slots that are in a contrastive rela-
tion. For the relation we only consider the two
scalar slots (price range and customer rating), plus
the boolean slot family friendly. Whenever a con-
trastive relation appears to the aligner to involve a
slot other than the above three, we discard it as an
undesirable utterance formulation. Depending on
the values of the two identified slots, we assign the
sample either of the following labels:

• Contrast: If the slots have different values
on the 3-level positivity scale that they can
be mapped to (the family friendly slot is only
mapped to levels {1, 3}). An example would
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Category Subset of markers Proportion Weight

Aggregation
“also, both, neither,...”, quantitative adjectives 1.8% 3
apposition 4.6% 2
gerund 11.2% 2

Contrast “but, however, despite, although,...” 5.4% 3

Fronting fronted adjective/prepositional/verb clause 14.5% 2

Subordination
subordinating conj. 2.9% 2
relative pronouns 19.3% 1

Existential clause expletive “there” 10.0% 1

Imperative/modal
imperative 1.0% 2
modal verb 4.1% 2

Table 6: The weighting schema for different discourse markers for each introduced category of discourse
phenomena. For each set of markers we indicate the heuristically determined proportion of reference
utterances in the training set they appear in.

be customer rating being “low” (→ 1) and
family friendly having value “yes” (→ 3).

• Concession: If the slots have an equivalent
value. For instance, customer rating being “5
out of 5” (→ 3) and price range having value
“cheap” (→ 3).

The label is added in the form of a new
auxiliary slot in the MR, containing the
names of the two corresponding slots as its
value, such as <contrast> [priceRange
customer rating].

We observed instances in the dataset that, se-
mantically, can be classified neither as contrast
nor as concession, but using our above rules, they
would be considered a concession. An example
of such a reference utterance is: “Strada is a low
price restaurant located near Rainbow Vegetarian
Café serving English food with a low customer
rating but not family-friendly.” Notice that the
emphasized part of the utterance contains a ques-
tionable use of the word “but”, as both of the
attributes of the restaurant (customer rating and
family-friendliness) are negative. Such utterances
were, however, scarce, and thus we considered
them as an acceptable noise.

5.2 Emphasis
Another utterance property that might in practice
be desired to be indicated explicitly and, in that
way, enforced in the output utterance, is empha-
sis. Through fronting discourse phenomena, such
as specificational copular constructions or fronted

User
query

Is there a family-friendly Indian
restaurant nearby?

Response
with no

emphasis

The Rice Boat in city centre near
Express by Holiday Inn is serv-
ing Indian food at a high price. It
is family-friendly and received a
customer rating of 1 out of 5.

Response
with

emphasis

A family-friendly option is The
Rice Boat. This Indian cuisine is
priced on the higher end and has a
rating of 1 out of 5. They are lo-
cated near Express by Holiday Inn
in the city centre.

Table 7: Example of emphasizing the information
about family-friendliness in an utterance convey-
ing the same content.

prepositional phrases, certain information about
the subject can be emphasized at the beginning of
the utterance.

This could be used to make the dialogue sys-
tem’s responses sound more context-aware and
thus natural. Consider the following example in
the restaurant domain. Assume the user asks the
agent for a recommendation of a family-friendly
Indian restaurant (see Table 7). Considering they
have explicitly specified the “family-friendly” re-
quirement in the query, it is arguably more natural
for the response utterance to be in the form of the
second response example in the table rather than
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MR name [Wildwood], eatType [coffee shop], food [English], priceRange [moderate],
customer rating [1 out of 5], near [Ranch]

Reference A low rated English style coffee shop around Ranch called Wildwood has moder-
ately priced food.

No emph. Wildwood is a coffee shop providing English food in the moderate price range. It is
located near Ranch.

With emph. There is an English coffee shop near Ranch called Wildwood. It has a moderate
price range and a customer rating of 1 out of 5.

Table 8: Examples of generated utterances with or without an explicit emphasis annotation.

the first.
We argue that the order of the information given

in the response matters and should not be entirely
random. That motivated us to identify instances
in the training set where some information about
the restaurant is provided in the utterance before
its name. In order to do so, and to extract the in-
formation about which slot(s) the segment of the
utterance represents, we employ the heuristic slot
aligner once again. Subsequently, we augment the
corresponding input to the model with additional
<emph> tokens before the slots that should be
emphasized in the output utterance. This addi-
tional indication will give the model an incentive
to learn to realize such slots at the beginning of
the utterance when desired. From the perspective
of the dialogue manager in a dialogue system, it
simply needs to indicate slots to emphasize along
with the generated MR whenever applicable.

6 Evaluation

6.1 Experimental Setup

For our sequence-to-sequence NLG model we use
the standard encoder-decoder (Cho et al., 2014) ar-
chitecture equipped with an attention mechanism
as defined in Bahdanau et al. (2015). The samples
are delexicalized before being fed into the model
as input, so as to enhance the ability of the model
to generalize the learned concepts to unseen MRs.
We only delexicalize categorical slots whose val-
ues always propagate verbatim from the MR to the
utterance. The corresponding values in the input
MR get thus replaced with placeholder tokens for
which the values from the original MR are eventu-
ally substituted in the output utterance as a part of
post-processing.

We use a 4-layer bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) encoder and a 4-layer

LSTM decoder, both with 512 cells per layer. Dur-
ing inference time, we use beam search with the
beam width of 10 and length normalization of the
beams as defined in Wu et al. (2016). The length
penalty that we determined was providing the best
results on the E2E dataset was 0.6. The beam
search candidates are reranked using a heuristic
slot aligner as described in Juraska et al. (2018),
and the top candidate is returned as the final utter-
ance.

6.2 Style Subsets
In the initial experiments, we trained the model
on the reduced training set, which only contains
the utterances filtered out based on the weighting
schema defined in Table 6. Setting the threshold
to 2, we obtained a training set of 17.5K samples,
which is approximately 40% of the original train-
ing set. Although this reduced training set had a
higher concentration of more desirable reference
utterances, the dataset turned out to be still too
general with most of the rare discourse phenomena
drowned out. However, many of them, including
contrast, apposition and fronting, appeared multi-
ple times in the generated utterances in the test set,
which was not the case for a model trained on the
full training set.

Therefore, our next step was to verify whether
our model is capable of learning all the concepts
of the discourse phenomena individually and ap-
ply them in generated utterances. To that end,
we repeatedly trained the model on subsets of the
E2E dataset, each containing only samples with a
specific group of discourse markers, as listed in
the second column of Table 6.2 We then evalu-
ated the outputs on the correspondingly reduced

2The samples did not necessarily contain the respective
discourse marker exclusively, and many exhibited additional
markers.
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test set, using the same method we used for identi-
fying samples with specific discourse markers, as
described in Section 4.1. In other words, we iden-
tified what proportion of the generated utterances
did exhibit the desired discourse phenomenon.

The results show that the model is indeed able
to learn how to produce various advanced sentence
structures that are, moreover, syntactically correct
despite being trained on a rather small training set
(in certain cases less than 2K samples). In all of
the experiments, 97–100% of the generated utter-
ances conformed to the style the model was trained
to produce. Any occasional incoherence that we
observed (e.g. “It has a high customer rating, but
are not kid friendly.”) was actually picked up from
poor reference utterances in the training set. The
only exception in the syntactic correctness was
the Imperative/modal category. Since this is one
of the least represented categories among the six,
and due to the particularly high complexity and di-
versity of the utterances, the model trained exclu-
sively on the samples in this category generated a
significant proportion of slightly incoherent utter-
ances.

6.3 Data Annotation

The first set of experiments we performed with the
data annotation involved explicit indication of em-
phasis in the input (see Section 5.2). As the results
in Table 9 show, the model trained on data with
emphasis annotation reached an almost 98% suc-
cess rate of generating an utterance with the de-
sired slots emphasized.3 In order to get a better
idea of the impact of the annotation, notice that the
same model trained on non-annotated data does
not produce a single utterance with emphasis. The
latter model defaults to producing utterances in a
rigid style, which always starts with the name of
the restaurant (see Table 8).

We notice that the error rate of the slot realiza-
tion rises (from 3.45% to 5.82%) when the anno-
tation is introduced. Nevertheless, it is still lower
than the error rate among the reference utterances
in the test set, in which over 8% of slots have miss-
ing mentions. Thus we find it acceptable consider-
ing the desired stylistic improvement of the output
utterances.

The experiments with contrastive relation anno-
tation also show a significant impact of the added

3There were 3,309 slots across all the test MRs that were
labeled as to-be-emphasized.

Emph. realiz. Slot error rate

Reference 100.00% 8.48%
No emph. 0.00% 3.45%
With emph. 97.85% 5.82%

Table 9: Comparison of the emphasis realization
success rate (precision) and the slot realization er-
ror rate in the generated outputs using data an-
notation against the reference utterances, as well
as the outputs of the same model trained on non-
annotated data.

labels on the style of the output utterances pro-
duced by our model. However, the success rate
of the realization of a contrast/concession formu-
lation was only 49.12%, and the slot realization
error rate jumped up to 8.34%. The contrast and
concession discourse phenomena being syntacti-
cally more complex, and at the same time being
less prevalent among the training utterances, it is
understandable that it was more difficult for the
model to learn how to use them properly.

6.4 Aggregation

One of the aggregation discourse markers that we
identified in Section 4.1 as contributing to the
stylistic variation in an interesting way is, un-
fortunately, very sparsely represented in the E2E
dataset. It is the last aggregation type described in
the category overview in Section 4.1. Its scarcity
in the training set would not make it feasible to
train a successful neural model on the subset of
the corresponding samples only.

Nevertheless, we analyze the potential for this
aggregation in the training set. Since there are
only two scalar slots in this dataset – price range
and customer rating – we obtain the frequencies
of their value combinations. Both of these take on
values on a scale of 3, however, the values are dif-
ferent for each of the slots. Moreover, there are
two sets of values for both slots throughout the
dataset. We have observed, however, that the val-
ues between the two sets are used somewhat inter-
changeably in the utterances, e.g. “low” seems to
be a valid expression of the “less than £20” value
of the price range slot, and vice versa.

As can be seen in Table 10, the potential for
the aggregation is rather limited. Although the
6,604 samples in which a feasible value combi-
nation can be found corresponds to over 15% of
the training set, due to the values not matching ex-
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Price range Customer rating Frequency

less than £20 low 2,153
£20-25 3 out of 5 919

moderate 3 out of 5 1,282
more than £30 high 1,329
more than £30 5 out of 5 921

Table 10: Combinations of the slot values for
which aggregation would be feasible. Note that
only the combinations with a non-zero frequency
are listed.

actly between the two slots, aggregation was not
elicited in the utterances. Moreover, a high value
in the customer rating means it is a positive at-
tribute, while a high value in the price range slot
indicates a negative attribute. We conjecture this
might have also deterred the crowd-source work-
ers who produced the utterances from aggregating
the values together.

7 Conclusion

In this paper we have presented two different
methods of giving a neural language generation
system greater stylistic control. Our results in-
dicate that the data annotation method has a sig-
nificant impact on the model being able to learn
how to use a specific style and sentence struc-
tures, without an unreasonable impact on the er-
ror rate. As our future work, we plan to utilize
transfer learning in the style-subset method to im-
prove the model’s ability to apply various differ-
ent styles at the same time, wherein we would also
make further use of the weighting schema. Finally,
these methods are a convenient way for achieving
the goal of stylistic control when training a neural
model with an arbitrary existing large corpus.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

Merrienboer Cho, Bougares Gulcehre, and Bengio
Schwenk. 2014. Learning phrase representations
using RNN encoder-decoder for statistical machine
translation. EMNLP.
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Abstract

This paper describes our submission to
the E2E NLG Challenge. Recently,
neural seq2seq approaches have become
mainstream in NLG, often resorting to
pre- (respectively post-) processing delex-
icalization (relexicalization) steps at the
word-level to handle rare words. By
contrast, we train a simple character
level seq2seq model, which requires no
pre/post-processing (delexicalization, tok-
enization or even lowercasing), with sur-
prisingly good results. For further im-
provement, we explore two re-ranking ap-
proaches for scoring candidates. We also
introduce a synthetic dataset creation pro-
cedure, which opens up a new way of cre-
ating artificial datasets for Natural Lan-
guage Generation.

1 Introduction

Natural Language Generation from Dialogue Acts
involves generating human understandable utter-
ances from slot-value pairs in a Meaning Rep-
resentation (MR). This is a component in Spo-
ken Dialogue Systems, where recent advances in
Deep Learning are stimulating interest towards us-
ing end-to-end models. Traditionally, the Nat-
ural Language Generation (NLG) component in
Spoken Dialogue Systems has been rule-based,
involving a two stage pipeline: ‘sentence plan-
ning’ (deciding the overall structure of the sen-
tence) and ‘surface realization’ (which renders ac-
tual utterances using this structure). The result-
ing utterances using these rule-based systems tend

∗Work done during internship at Naver Labs (Previously
Xerox Research Centre Europe.)

†Previously Xerox Research Centre Europe.

to be rigid, repetitive and limited in scope. Re-
cent approaches in dialogue generation tend to di-
rectly learn the utterances from data (Mei et al.,
2015; Lampouras and Vlachos, 2016; Dušek and
Jurčı́ček, 2016; Wen et al., 2015).

Recurrent Neural Networks with gated cell vari-
ants such as LSTMs and GRUs (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014) are now
extensively used to model sequential data. This
class of neural networks when integrated in a Se-
quence to Sequence (Cho et al., 2014; Sutskever
et al., 2014) framework have produced state-of-art
results in Machine Translation (Cho et al., 2014;
Sutskever et al., 2014; Bahdanau et al., 2015),
Conversational Modeling (Vinyals and Le, 2015),
Semantic Parsing (Xiao et al., 2016) and Natu-
ral Language Generation (Wen et al., 2015; Mei
et al., 2015). While these models were initially
developed to be used at word level in NLP related
tasks, there has been a recent interest to use char-
acter level sequences, as in Machine Translation
(Chung et al., 2016; Zhao and Zhang, 2016; Ling
et al., 2016).

Neural seq2seq approaches to Natural Lan-
guage Generation (NLG) are typically word-
based, and resort to delexicalization (a process in
which named entities (slot values) are replaced
with special ‘placeholders’ (Wen et al., 2015)) to
handle rare or unknown words (out-of-vocabulary
(OOV) words, even with a large vocabulary). It
can be argued that this de-lexicalization is unable
to account for phenomena such as morphological
agreement (gender, numbers) in the generated text
(Sharma et al., 2016; Nayak et al., 2017).

However, Goyal et al. (2016) and Agarwal and
Dymetman (2017) employ a char-based seq2seq
model where the input MR is simply represented
as a character sequence, and the output is also gen-
erated char-by-char; avoiding the rare word prob-
lem, as the character vocabulary is very small.

451



This work builds on top of the formulation of
Agarwal and Dymetman (2017) and describes our
submission for the E2E NLG challenge (Novikova
et al., 2017). We further explore re-ranking tech-
niques in order to identify the perfect ‘oracle pre-
diction’ utterance. One of the strategies for re-
ranking uses an approach similar to the ‘inverted
generation’ technique of (Chisholm et al., 2017).
Sennrich et al. (2015), Li et al. (2015) and Kon-
stas et al. (2017) have also trained a reverse model
for back translation in Machine Translation and
NLG. A synthetic data creation technique is used
by Dušek et al. (2017) and Logacheva and Specia
(2015) but as far as we know, our protocol is novel.
Our contributions in this paper and challenge can,
thus, be summarized as:

1. We show how a vanilla character-based
sequence-to-sequence model performs suc-
cessfully on the challenge test dataset in
terms of BLEU score, while having a ten-
dency to omit semantic material. As far as
we know, we are the only team using charac-
ter based seq2seq for the challenge.

2. We propose a novel data augmentation
technique in Natural Language Generation
(NLG) which consists of ‘editing’ the Mean-
ing Representation (MR) and using the origi-
nal ReFerences (RF). This fabricated dataset
helps us in extracting features (to detect er-
rors), used for re-ranking the generated can-
didates (Section 2.2).

3. We introduce two different re-ranking strate-
gies corresponding to our primary and sec-
ondary submission (in the challenge), defined
in Section 2.3.1

2 Model
In the sequel, we will refer to our vanilla char2char
model with the term Forward Model.

2.1 Forward Model
We use a Character-based Sequence-to-Sequence
RNN model (Sutskever et al., 2014; Cho et al.,
2014) with attention mechanism (Bahdanau et al.,
2015). We feed a sequence of embeddings of the
individual characters composing the source Mean-
ing Representation (MR) -seen as a string- to the

1Due to space limitations, our description here
omits a number of aspects. For a more extensive
description, analysis and examples, please refer to
http://www.macs.hw.ac.uk/InteractionLab/
E2E/final_papers/E2E-NLE.pdf.

Encoder RNN and try to predict the character se-
quence of the corresponding utterances (RF) in the
generation stage with the Decoder RNN.

Coupled with the attention mechanism, seq2seq
models have become de-facto standard in gener-
ation tasks. The encoder RNN embeds each of
the source characters into vectors exploiting the
hidden states computed by the RNN. The decoder
RNN predicts the next character based on its cur-
rent hidden state, previous character, and also the
“context” vector ci, computed by the attention
model.

While several strategies have been proposed to
improve results using Beam Search in Machine
Translation (Freitag and Al-Onaizan, 2017), we
used the length normalization (aka length penalty)
approach Wu et al. (2016) for our task. A heuris-
tically derived length penalty term is added to the
scoring function which ranks the probable candi-
dates used to generate the best prediction.

2.2 Protocol for synthetic dataset creation
We artificially create a training set for the classifier
(defined in Section 2.3.2) to detect errors (primar-
ily omission of content) in generated utterances,
by a data augmentation technique. The systematic
structure of the slots in MR gives us freedom to
naturally augment data for our use case. To the
best of our knowledge, this is the first approach
of using data augmentation in the proposed fash-
ion and opens up new directions to create artificial
datasets for NLG. We first define the procedure for
creating a dataset to detect omission and then show
how a similar approach can be used to create a syn-
thetic dataset to detect additions.

Detecting omissions. This approach assumes
that originally there are no omissions in RF for a
given MR (in the training dataset). These can be
considered as positive pairs when detecting omis-
sions. Now if we artificially add another slot to
the original MR and use the same RF for this new
(constructed) MR, naturally the original RF tends
to show omission of this added slot.

MRoriginal
+ Added slot−−−−−−−→MRnew

MRoriginal
- Removed slot−−−−−−−−→MRnew

(1)

This is a two stage procedure: (a) Select a slot
to add. (b) Select a corresponding slot value. In-
stead of sampling a particular slot in step (a), we
add all the slots one by one (that could be aug-
mented in MR apart from currently present slots).
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Having chosen the slot type to be added, we add
the slot value according to probability distribution
of the slot values for that slot type. The original
(MRoriginal,RF) pair is assigned a class label of 1
and the new artificial pairs (MRnew,RF) a label of
0, denoting a case of omission (first line of (1)).
Thus, these triplets (MR, RF, Class Label) allow
us to treat this as a classification task.

Detecting additions. In order to create a dataset
which can be used for training our model to detect
additions, we proceed in a similar way. The differ-
ence is that now we systematically remove one slot
in the original MR to create the new MRs (second
line of (1)).

In both cases, we control the procedure by ma-
nipulating MRs instead of the Natural Language
RF. This kind of augmented dataset opens up the
possibility of using any classifier to detect the
above mentioned errors.

2.3 Re-ranking Models

In this section, we define two techniques to re-rank
the n-best list and these serve as primary and sec-
ondary submissions to the challenge.

2.3.1 Reverse Model

We generated a list of top-k predictions (using
Beam Search) for each MR in what we call the for-
ward phase of the model. In parallel, we trained a
reverse model which tries to reconstruct the MR
given the target RF, similar to the autoencoder
model by Chisholm et al. (2017). This is guided by
an intuition that if our prediction omits some infor-
mation, the reverse reconstruction of MR would
also tend to omit slot-value pairs for the omit-
ted slot values in the prediction. We then score
and re-rank the top-k predictions based on a dis-
tance metric, namely the edit distance between the
original MR and the MR generated by the reverse
model, starting from the utterance predicted in the
forward direction.

To avoid defining the weights when combining
edit distance with the log probability of the model,
we used a simplified mechanism. At the time of re-
ranking, we choose the first output in our n-best
list with zero edit distance as our prediction. If
no such prediction can be found, we rely upon the
first prediction in our (probabilistically) sorted n-
best list. Figure 1 illustrates our pipeline approach.

2.3.2 Classifier as a re-ranker
To treat omission (or more generally any kind
of semantic adequacy mis-representation such as
repetition or addition of content) in the predictions
as a classification task, we developed a dataset
(consisting of triplets) using the protocol defined
earlier. However, to train the classifier we relied
on hand-crafted features based on string matching
in the prediction (with corresponding slot value
in the MR). In total, there were 7 features, cor-
responding to each slot (except ‘name’ slot). To
maintain the class balance, we replicated the orig-
inal (MR,RF) pair (with a class label of 1) for each
artificially generated (MR,RF) pair (with a class
label of 0, corresponding to omissions).

We used a logistic regression classifier to detect
omissions following a similar re-ranking strategy
as defined for the reverse model. For each prob-
able candidate by the forward model, we first ex-
tracted these features and predicted the label by
this logistic regression classifier. The first output
in our n-best list with a class label 1 is then chosen
as the resulting utterance. As a fallback mecha-
nism, we rely on the best prediction by the for-
ward model (similar to the reverse model). We
chose the primary submission to the challenge as
the pipeline model with classifier as re-ranker. Our
second submission was based on re-ranking us-
ing the reverse model while the vanilla forward
char2char model was our third submission.

3 Experiments

The updated challenge dataset comprises 50K
canonically ordered and systematically structured
(MR,RF) pairs, collected following the crowd-
sourcing protocol explained in Novikova et al.
(2016). Consisting of 8 different slots (and their
respective different values), note that the statistics
in the test set differ significantly from the training
set. We used the open source tf-seq2seq frame-
work2, built over TensorFlow (Abadi et al., 2016)
and provided along with (Britz et al., 2017), with
some standard configurations. We experimented
with different numbers of layers in the encoder and
decoder as well as different beam widths, while
using the bi-directional encoder with an “addi-
tive” attention mechanism. In terms of BLEU, our
best performing model had the following config-
uration: encoder 1 layer, decoder 2 layers, GRU
cell, beam-width 20, length penalty 1.

2https://github.com/google/seq2seq .
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Figure 1: Illustration of the pipeline for the re-ranking approach (based on inverse reconstructions using
reverse model) as described in Section 2.3. Apart from Forward and Reverse seq2seq models, we have a
re-ranker based on the edit distance of the actual MR and the inverse reconstructed MR.

4 Evaluation

We chose our primary system to be the re-ranker
using the classifier. Table 1 summarizes our rank-
ing among all the 60+ submissions (primary as
well as additional) on the test set. In terms of
BLEU, two of our systems were in the top 5
among all 60+ submissions to the challenge.

Submission BLEU Overall Rank
Re-ranking using classifier (Primary) 0.653 18
Re-ranking using reverse (Secondary) 0.666 5
Forward (Third) 0.667 4
Baseline 0.659 10

Table 1: Automatic BLEU evaluations released by
organizers on the final challenge submission. We
had 3 submissions as described in Section 2. Two
of our systems were in the top 5 among all 60+
submissions.

Metric TrueSkill Range Cluster
Quality 0.048 (8-12) 2

Naturalness 0.105 (4-8) 2

Table 2: Human evaluation was crowd-sourced on
the primary system according to the TrueSkill al-
gorithm (Sakaguchi et al., 2014)

Results for human evaluation, as released by
the challenge organizers, are summarized in Ta-
ble 2 of (Dušek et al., 2018). They followed the
TrueSkill algorithm (Sakaguchi et al., 2014) judg-
ing all the primary systems on Quality and Natu-
ralness. We obtained competitive results in terms
of both metrics, our system being in the 2nd clus-

ter out of 5 (for both evaluations). On the other
hand, most systems ranked high on quality tended
to have lower ranks for naturalness and vice versa.

5 Analysis

We found that the presence of an ‘oracle pre-
diction’ (perfect utterance) was dependent on the
number of slots in the MR. When the number of
slots was 7 or 8, the presence of an oracle in the
top-20 predictions decreased significantly, as op-
posed to the case when the number of slots was
less than 7. However, the most prominent issue
was that of omissions, among the utterances pro-
duced in first position (by forward model). There
were no additions or non-words. We observed
a similar issue of omissions in human references
(target for our model) as well. Our two differ-
ent strategies, thus, improved the semantic ade-
quacy by re-ranking the probable candidates and
successfully finding the ‘oracle’ prediction in the
top-20 list. However, in terms of automatic evalu-
ation, the BLEU score showed an inverse relation-
ship with adequacy. Nevertheless, we chose our
primary system to be the re-ranker with a classi-
fier over the forward model.

We did not find any issues while “copying” the
restaurant ‘name’ or ‘near’ slots on the dev set.
However, on the test set, as the statistics of the
data changed in terms of both slots, we found a
tendency of the model to generate the more fre-
quent slot values (corresponding to both slots in
the training dataset), instead of copying the actual
slot value.
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6 Conclusion

We show how a char2char model can be em-
ployed for the task of NLG and show competi-
tive results in this challenge. Our vanilla character
based model, building on Agarwal and Dymetman
(2017), requires minimal effort in terms of any
processing of dataset while also producing great
diversity in the generated utterances. We then pro-
pose two re-ranking strategies for further improve-
ments. Even though re-ranking methods show im-
provements in terms of semantic adequacy, we
find a reversal of trend in terms of BLEU.

Our synthetic data creation technique could be
adapted for augmenting NLG datasets and the
classifier-based score could also be used as a re-
ward in a Reinforcement Learning paradigm.
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Abstract

In natural language generation (NLG), the
task is to generate utterances from a more
abstract input, such as structured data. An
added challenge is to generate utterances
that contain an accurate representation of
the input, while reflecting the fluency and
variety of human-generated text. In this
paper, we report experiments with NLG
models that can be used in task oriented
dialogue systems. We explore the use of
additional input to the model to encourage
diversity and control of outputs. While our
submission does not rank highly using au-
tomated metrics, qualitative investigation
of generated utterances suggests the use of
additional information in neural network
NLG systems to be a promising research
direction.

1 Introduction

Natural Language Generation (NLG) is a broad
field, ranging from text-to-text translation to ex-
periments in computational poetry (Gatt and Krah-
mer, 2018). Whether the task is to summarize,
translate, or entertain, a core challenge is doing so
in a manner that is compatible with human needs
and preferences.

Formally, NLG systems aim to create utter-
ances from a set of abstract inputs. These inputs
can be closely aligned, e.g. machine translation
(Sutskever et al., 2014), or require significant ab-
stractive reasoning, as in summarization or data-
to-text tasks (See and Manning, 2017; Wiseman
et al., 2017). Traditionally NLG systems have
followed a rule-based approach (Reiter and Dale,
2000). While robust, these systems are noted to
generate repetitive and stilted output, which can

Meaning Representation
name[The Wrestlers]
eatType[restaurant]
food[Japanese]
priceRange[more than £30]
area[riverside]
familyFriendly[no]
near[Raja Indian Cuisine]
additionalWords[looking adults offerings
really try good prices situated]
Generated utterance
If you’re looking for an adults only
Japanese restaurant, try The Wrestlers. It
is really good and situated near Raja In-
dian Cuisine. The prices are more than
£30.

Table 1: Utterance generated with a novel dia-
logue act containing additional words

make interacting with rule based systems a tedious
experience (Wen et al., 2015).

Data driven models using deep neural networks
have achieved state-of-the-art results in many
NLG tasks/datasets such as RoboCup, Weather-
gov, SF Hotels/Restaurants and AMR-to-text (Mei
et al., 2016; Wen et al., 2016; Konstas et al.,
2017). However Sharma et al. (2017) notes that
high performance on datasets such as Wen et al.
(2015)’s SF Restaurant indicates they no longer
pose a sufficient challenge and that the community
ought to progress to using larger and more com-
plex datasets.

Two new crowd sourced datasets, each contain-
ing tens of thousands of examples and focusing on
complex sentence structures, have been recently
released; WebNLG and E2E (Colin et al., 2016;
Novikova et al., 2017). This paper focuses on
the E2E dataset which was created using a new
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methodology to maximize both the quality of col-
lected utterances as well as their naturalness and
variety (Novikova et al., 2016).

Wei et al. (2017) note that neural networks
learning from highly unaligned datasets have trou-
ble choosing between equally plausible outputs
and tend towards short and less meaningful out-
puts. They suggest that the number of plausible
outputs can be decreased by providing additional
information to the model. In Table 1 we augment
the meaning representation (MR) with a novel di-
alogue act (DA) containing additional words to be
included in the generated utterance. By condition-
ing the output on these words the model has man-
aged to generate an utterance with a complex sen-
tence structure and wide vocabulary.

Our contribution is to propose a pipeline sys-
tem. Additional words are sampled from a sec-
ondary model which uses DAs from a given MR
as inputs. These additional words are put into a
new DA and added to the existing MR, as shown
in Table 1. The augmented MR is then used as in-
put to a model which generates the final utterance.

The approach of augmenting the source se-
quence takes inspiration from recent work in para-
phrase generation (Guu et al., 2017) and gen-
erating structured queries from natural language
(Zhong et al., 2017). As noted by Sharma et al.
(2016) delexicalization can often lead to gram-
matically incorrect sentences. We opt instead to
use a pointer network (Vinyals et al., 2015) which
allows the model to copy tokens directly from
the source sequence into the generated utterance.
The model does not perform well relative to the
baseline and this is possibly due to the failure of
the secondary model to generate appropriate addi-
tional words. Improving upon the pipeline system
remains an area of active research for us.

2 System Description

Here we present details of the pipeline system.
First we describe how the training data for the
pointer network with additional words model is
constructed. This is followed by an explanation
of the additional word generator which uses DAs
from a given MR as input.

Typical approaches to generating diverse out-
puts focus on objective functions that affect the de-
coding step (Li et al., 2015). Our approach of aug-
menting the input sequence is similar to previous
work on common sense dialogue models (Young

et al., 2017) and content-introducing text genera-
tion (Mou et al., 2016). Other approaches to con-
trollable text generation have focused on more ab-
stract inputs. Language models which generate
text about a specific topic, product, person, senti-
ment (Li et al., 2016; Tang et al., 2016; Fan et al.,
2017; Dong et al., 2017).

2.1 Additional words model

We augment the MR with an extra DA containing
additional words to be included in the generated
sentence. To obtain the data for this we looked
at each target sentence and, using a set of rules,
determined what words the model would learn to
include. These selected words were added to the
source sequence inside a custom DA. This ability
of the model to accept additional words ensured
that we would have both diversity of outputs and
fine grained control over those outputs at test time.

For our additional words model we extracted to-
kens from the target sequence that adhered to the
following set of rules:

• Not part of a list of stopwords

• Does not appear in the source sequence or
meaning representation

• Does not contain punctuation or numbers

After the original list was compiled we removed
the most frequently appearing token located and
any tokens which occurred less than 6 times.

Table 2 contains an example of an augmented
MR and utterance pair used for training.

Source sequence
name[The Vaults]
eatType[pub]
priceRange[more than £30]
customer rating[5 out of 5]
near[Café Adriatic]
additionalWords[star Prices start]
Target sequence
The Vaults pub near Café Adriatic has a 5
star rating. Prices start at £30.

Table 2: Example from the additional words
model training set
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2.1.1 Generating additional words
The unique contents of each DA in the MR are
treated as a single token. We omit the name and
near DAs as they were observed to have little cor-
relation with the semantics of the additional words
chosen. The model attempts to correlate specific
DAs with the additional words that appear in tar-
get sentences. An example of the source and target
sequences used for training are shown in Table 3.
We use a sequence-to-sequence network with at-
tention as the model.

Additional words are sampled from the model.
We scale the final output layer of the model be-
fore applying softmax and sampling tokens for the
generated utterance. The value used for scaling is
known as temperature. Higher values of temper-
ature lead to more diverse outputs. Temperature
values close to 0 lead to the model choosing more
conservative outputs. We use values of 0.9 to 1.1,
to encourage the generation of a more diverse set
of additional words.

Source sequence
pub
more than £30
5 out of 5
Target sequence
star Prices start

Table 3: Example pair used for training the addi-
tional word generator

3 Experiments

The data set was tokenized using the NLTK port
of the moses tokenizer with aggressive hyphen
splitting. For each DA a custom start and stop
token was added to the source sequence; e.g.

name start The Vaults name end
The models used were from the OpenNMT-py

library (Klein et al., 2017). Our model architecture
contains 2 layers of bidirectional recurrent neu-
ral networks (RNN) with long short-term mem-
ory (LSTM) cells (Hochreiter and Schmidhuber,
1997). We use 500 hidden units for the encoder
and decoder layer, and 500 units for the word vec-
tors which are learned jointly across the whole
model. We add dropout of 0.3 applied between
the LSTM stacks.

The models are trained using Adam (Kingma
and Ba, 2014) with learning rate 0.001 and learn-

ing rate decay of 0.5 applied after 8 epochs. The
models were trained for 10 epochs and the best
performing checkpoint on the development set
was chosen.

The exploration and choice of hyperparameters
was aided by the use of Bayesian hyperparameter
optimization platform SigOpt (2014).

4 Results & Discussion

We report results using automated evaluation met-
rics; BLEU (Papineni et al., 2002), NIST (Przy-
bocki et al., 2009), METEOR (Lavie and Agar-
wal, 2007), and ROUGE-L (Lin, 2004). Table
4 shows the performance of the baseline rela-
tive to our models using both sample additional
words and those extracted from target sentences,
these are the gold standard additional words. The
baseline model is TGen, a sequence-to-sequence
model with attention (Dušek and Jurčı́ček, 2016).

The model using extracted additional words
performs better in almost all metrics. The poor
performance of models using sampled words ver-
sus gold standard words highlights an issue with
the generation of additional words. These results
maintain their relative ranking in the test set as
shown in Table 5.

Human evaluation was carried out on the pri-
mary systems. The two metrics used were Qual-
ity; which measures grammatical correctness and
overall adequacy in the context of the MR, and
Naturalness; could the utterance have been pro-
duced by a native speaker. Crowd workers were
used to collect pairwise comparisons for each sys-
tem. Systems were ranked using the TrueSkill
algorithm (Sakaguchi et al., 2014). Our model
ranked 4th, below the baseline which came in 2nd,
as shown in Table 4 (Dušek et al., 2018)

Automated evaluation and subsequent human
evaluation results show our additional words
model performs poorly relative to the baseline. A
manual observation of the model’s outputs reveal
many errors such as repeated phrases and occa-
sionally absent or incorrect information. We in-
clude a collection of generated utterances from
the test set in table 7 to highlight areas where the
model performs both well and poorly relative to
the baseline.

Utterances from the baseline model tend to be
more consistent but when viewed over many hun-
dreds of samples this can be dry and repetitive.
In most cases the baseline model appears to have
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Model BLEU NIST METEOR ROUGE-L CIDEr
Additional words - temperature 1.1 0.5307 7.1738 0.4108 0.6112 1.5658
Additional words - temperature 1.0 0.5574 7.4078 0.4171 0.6308 1.6380
Additional words - temperature 0.9 0.5659 7.5196 0.4209 0.6327 1.7652
Baseline 0.6925 8.4781 0.4703 0.7257 2.3987
Additional words - extracted from target 0.7381 9.9435 0.4726 0.7508 2.2858

Table 4: Dev set results

Model BLEU NIST METEOR ROUGE-L CIDEr
Additional words - temperature 1.1 0.5092 7.1954 0.4025 0.5872 1.5039
Additional words - temperature 1.0 0.5265 7.3991 0.4095 0.5992 1.6488
Additional words - temperature 0.9 0.5573 7.7013 0.4154 0.6130 1.8110
Baseline 0.6593 8.6094 0.4483 0.6850 2.2338

Table 5: Test set results

Model Naturalness Quality
Baseline 2nd 2nd
Additional words -
temperature 1.1

4th 4th

Table 6: True skill clusters

learned its own simple templates for generating ut-
terances from an MR. The following is an example
of the template-like output the baseline produces
if provided with all 8 possible DAs; ”[name] is
a [food] [eatType] near [near] in the [area]. It
has a [customer rating] and a price range of [price
range]. It is [family friendly].” While the baseline
model outperformed rule based systems in the E2E
challenge, its generated utterances do not appear
to fully reflect the diversity of the dataset which
has been collected.

5 Future Work

Many verbalization issues in the additional word
model arise due to a conflict between an additional
word and the existing DAs in the MR. This can
be seen in some of the examples in Table 7. The
model used for generating additional words could
be improved substantially. Increasing the mini-
mum frequency of occurrence for additional words
in the training data may give the model more ex-
amples from which to better learn correct syntax.
The pointer network with additional words model
also suffers from an issue, common with pointer
networks, in which source tokens are incorrectly
repeated in the generated utterance. One way to
handle this would be to have a second stage of
training with a coverage loss as in See and Man-

ning (2017).

6 Conclusion

We proposed the use of an additional DA to im-
prove the diversity and level of control over ut-
terances. Results show both the underlying net-
work and the method used for generating addi-
tional words could be improved. Observation of
generated samples show this approach has the po-
tential to yield high quality and varied responses.
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MR name[The Cricketers] eatType[coffee shop] customerrating[low] fami-
lyFriendly[no] near[Express by Holiday Inn]

Additional words DA additionalWords[satisfaction considered Join]
Additional words model The Cricketers is a coffee shop near Express by Holiday Inn. It has a low

customer satisfaction rating and is not considered family-friendly. Join Us.
Baseline The Cricketers is a coffee shop near Express by Holiday Inn. It has a low

customer rating and is not family-friendly.
MR name[Zizzi] eatType[coffee shop] area[riverside]
Additional words DA additionalWords[Located along river side offering snacks]
Additional words model Located along the river side , Zizzi is a coffee shop offering snacks .
Baseline Zizzi is a coffee shop in the riverside area with a price range of less than 20.
MR name[The Mill] eatType[restaurant] food[English] priceRange[high] cus-

tomerrating[average] area[riverside] familyFriendly[yes] near[Café Rouge]
Additional words DA additionalWords[offers fare higher bracket]
Additional words model The Mill is a family friendly restaurant that offers English fare in the higher

price bracket . It is located near Café Rouge in the riverside area .
Baseline The Mill is an english restaurant near Café Rouge in the riverside area. It is

children friendly and has a high price range and an average customer rating.
MR name[Strada] eatType[coffee shop] customerrating[1 out of 5] near[All Bar

One]
Additional words DA additionalWords[try perfect however]
Additional words model For a coffee shop near All Bar One, try Strada. It has a perfect customer rating

of 1 out of 5 however .
Baseline Strada is a coffee shop near All Bar One with a customer rating of 1 out of 5.
MR name[Blue Spice] eatType[coffee shop] customerrating[average] near[Burger

King]
Additional words DA additionalWords[neat]
Additional words model Blue Spice is a coffee shop located neat Burger King.
Baseline Blue Spice is a coffee shop near Burger King. It has an average customer

rating.
MR name[Wildwood] eatType[pub] area[riverside]
Additional words DA additionalWords[Located river serving]
Additional words model Located near the river , Wildwood is a pub serving pub .
Baseline Wildwood is a pub by the riverside.

Table 7: Example generated utterances using MRs from the test set
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Abstract

E2E NLG Challenge is a shared task on
generating restaurant descriptions from sets
of key-value pairs. This paper describes the
results of our participation in the challenge.
We develop a simple, yet effective neural
encoder-decoder model 1 which produces
fluent restaurant descriptions and outper-
forms a strong baseline. We further analyze
the data provided by the organizers and con-
clude that the task can also be approached
with a template-based model developed in
just a few hours.

1 Introduction

Natural Language Generation (NLG) is the task of
generating natural language utterances from struc-
tured data representations. The E2E NLG Chal-
lenge2 is a shared task which focuses on end-to-
end data-driven NLG methods. These approaches
attract a lot of attention, because they perform joint
learning of textual structure and surface realization
patterns from non-aligned data, which allows for a
significant reduction of the amount of human anno-
tation effort needed for NLG corpus creation (Wen
et al., 2015; Mei et al., 2016; Dušek and Jurcicek,
2016; Lampouras and Vlachos, 2016).

The contribution of our submission to the chal-
lenge can be summarized as follows: (1) we show
how exploiting data properties allows us to design
more accurate neural architectures; (2) we develop
a simple template-based system which achieves
performance comparable to neural approaches.

1https://github.com/UKPLab/e2e-nlg-
challenge-2017

2http://www.macs.hw.ac.uk/
InteractionLab/E2E

MR:
name[The Eagle] eatType[coffee shop]
food[French] priceRange[moderate]
customerRating[3/5] area[riverside]
kidsFriendly[yes] near[Burger King]

Human Natural Language Reference:

“The three star coffee shop, The Eagle, gives families a mid-
priced dining experience featuring a variety of wines and
cheeses. Find The Eagle near Burger King.”

Figure 1: E2E NLG Challenge data specification.

1.1 Task Definition

The organizers of the shared task provided a crowd-
sourced data set of 50k instances in the restaurant
domain (Novikova et al., 2017b). Each training
instance consists of a dialogue act-based meaning
representation (MR) and up to 16 references in
natural language (Figure 1).

The data was collected using pictorial represen-
tations as stimuli, with the intention of creating
more natural, informative and diverse human ref-
erences compared to the ones one might generate
from textual inputs.

The task is to generate an utterance from a given
MR, which is both similar to human-generated ref-
erence texts and highly rated by humans. Sim-
ilarity is assessed using standard evaluation met-
rics: BLEU (Papineni et al., 2002), NIST (Dodding-
ton, 2002), METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015). However, the final assessment is done via
human ratings obtained using a mixture of crowd-
sourcing and expert annotations.

To facilitate a better assessment of the proposed
approaches, the organizing team used TGen (Dušek
and Jurcicek, 2016), one of the recent E2E data-
driven systems, as a baseline. It is a sequence-to-
sequence neural system with attention (Bahdanau
et al., 2014). TGen uses beam search for decod-
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ing, incorporates a reranker over the top k outputs,
penalizing the candidates that do not verbalize all
attributes from the input MR. TGen also includes a
delexicalization module which deals with sparsely
occurring MR attributes (name, near) by mapping
such values to placeholder tokens when preprocess-
ing the input data, and substituting the placeholders
with actual values as a post-processing step.

2 Our Approach

This section describes two different approaches we
developed for the shared task.

The first one (Model-D, for “data-driven”) is an
encoder-decoder neural system which is similar to
TGen, but uses a more efficient encoder module.
The second approach is a simple template-based
model (Model-T, for “template-based”) which we
developed based on the results of the data analysis.

2.1 Model-D

Model-D was motivated by two important proper-
ties of the E2E NLG Challenge data:

• fixed number of unique MR attributes

• low diversity of the lexical instantiations of
the MR attribute values

Each input MR contains a fixed number of
unique attributes (between three and eight), which
allows us to associate a positional id with each at-
tribute and omit the corresponding attribute names
(or keys) from the encoding procedure. This short-
ens the encoded sequence, presumably making the
learning procedure easier for the encoder. This also
unifies the lengths of input MRs and thus allows
us to use simpler and more efficient neural net-
works which are not sequential and process input
sequences in one step (e.g. multilayer perceptron
(MLP) networks).

One might argue that using an MLP would be
complicated by the fact that neither the number
of active (non-null value) input MR keys nor the
number of tokens constituting the corresponding
values is fixed. For example, an MR key price
may have a one-token value of “low” or a more
lengthy “less than £10”. However, realizations of
the MR attribute values exhibit low variability: six
out of eight keys have less than seven unique values,
while the remaining two keys (name, near) denote
named entities and thus are easy to delexicalize.
This allows us to treat each value as a single token,

posID Key Value

1 area PAD
2 customerRating high
3 eatType PAD
4 familyFriendly yes
5 food PAD
6 name Wrestlers
7 near PAD
8 priceRange PAD

Table 1: Input representation of the running exam-
ple using positional ids.

even if it consists of multiple words (e.g. “more
than £30”, “Fast food”).

Each predicted output is a textual description of a
restaurant. As reported by Novikova et al. (2017b),
the average number of words per reference is 20.1.
We used the value of 50 as a cut-off threshold,
filtering out training instances with long restaurant
descriptions.

The overall architecture of our model is shown
in Figure 2. The system is an encoder-decoder
model (Cho et al., 2014b; Sutskever et al., 2014)
consisting of three main modules: an embedding
matrix, one dense hidden layer as an encoder and
a RNN-based decoder with gated recurrent units
(GRU) (Cho et al., 2014a).

Let us first describe the input specifications of
the model. We will use the following MR instance
as a running example:

name[Wrestlers] customerRating[high]
familyFriendly[yes]

Considering the alphabetic ordering of the MR
key names, we can assign positional ids to the keys
as shown in Table 1. The remaining five keys are
assigned dummy PAD values.

Given an instance of a (MR, text) pair, we decom-
pose the MR into eight components (mrj in Fig-
ure 2), each corresponding to a value for a unique
MR key, and add an end-of-sentence symbol (EOS)
to denote the end of the encoded sequence. Each
component is represented as a high-dimensional
embedding vector. Each embedding vector is fur-
ther mapped to a dense hidden representation via
an affine transformation followed by a ReLu (Nair
and Hinton, 2010) function. These hidden repre-
sentations are further used by the decoder network,
which in our case is a unidirectional GRU-based
RNN with an attention module (Bahdanau et al.,
2014). The decoder is initialized with an average
of the encoder outputs.

The decoder generates a sequence of tokens, one
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name[The Bakers], food[English], . . .

mr1 mr2 mr3 . . . mr9
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Figure 2: Schematic view of the neural network architecture (Model-D).

token at a time, until it predicts the EOS token. Our
model employs the greedy search decoding strategy
and does not use any reranker module.

2.2 Model-T

Taking into consideration low lexical variation of
the MR attribute values, one might be interested
in whether it is possible to design a deterministic
NLG system to tackle the task. We examined the
ways MR attribute keys and values are verbalized
in the training data and discovered that the majority
of textual descriptions follow a similar ordering of
MR attribute verbalizations:

[name] is a [familyFriendly] [eatType]
which serves [food] food in the [price]
price range. It has a [customerRating]
customer rating. It is located in the
[area] area, near [near].

Here [X] denotes the value of the MR key X.
This pattern became a central template of Model-T.
Not all MR attribute verbalizations fit into this
schema. For example, a key-value pair customer-
Rating[3 out of 5] would be verbalized as “. . . has
a 3 out of 5 customer rating”, which is not the best
phrasing one can come up with. A better way to
describe it is “. . . has a customer rating of 3 out of
5”. We incorporate such variations into Model-T
with a set of simple rules which modify the general
template depending on a specific value of an MR
attribute.

As mentioned in Section 2.1, each instance’s in-
put can have up to eight MR attributes. In order
to account for this fact, we decomposed the gen-
eral template into smaller components, each corre-
sponding to a specific MR attribute mentioned in
the input. We further developed a set of rules which
activate each component depending on whether an
MR attribute is part of the input. For example, if

Metric TGen Model-D Model-T

BLEU 0.6925 0.7128 ± 0.013 0.6051
NIST 8.4781 8.5020 ± 0.092 7.5257
CIDEr 2.3987 2.4432 ± 0.088 1.6997
ROUGE-L 0.7257 0.7378 ± 0.015 0.6890
METEOR 0.4703 0.4770 ± 0.012 0.4678

Table 2: Evaluation results according to automatic
metrics (development set).

price is not in the set of input MR attributes, then
the general template becomes:

[name] is a [familyFriendly] [eatType]
which serves [food] food. It has a
[customerRating] customer rating.
It is located in the [area] area,
near [near].

Finally, we also add a simple post-processing
step to handle specific punctuation and article
choices.

3 Metric Evaluation

Table 2 shows the results of metric evaluation of
the systems. Since we were provided with only
one TGen prediction file and a single performance
score, comparing score distributions is not possible
and statistical significance tests are not meaning-
ful due to the non-deterministic nature of the ap-
proaches based on neural networks and randomized
training procedures (Reimers and Gurevych, 2017).
In order to facilitate a fair comparison with other
competing systems, we report the mean develop-
ment score of Model-D (averaged across twenty
runs with different random seeds) and performance
variance for each automatic metric. Model-T is a
deterministic system, so it is sufficient to report the
results of a single run.

The results show that Model-D outperforms
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Error type TGen Model-D Model-T

dropped contents 9 49 0
punctuation errors 1 12 0
modified contents 4 4 0
bad grammar 4 1 0

Table 3: Common errors made by the compared
models (100 randomly sampled development in-
stances).

TGen as measured by all five metrics, albeit the per-
formance variance is quite large. Model-T clearly
scores below both TGen and Model-D. This is
expected, since Model-T is not data-driven, and
hence the texts it generates might be different from
the reference outputs.

Previous studies have shown that widely used
automatic metrics (including the ones used in our
competition) lack strong correlation with human
judgments (Scott and Moore, 2007; Reiter and Belz,
2009; Novikova et al., 2017a). We decided to exam-
ine the predictions made by the compared systems
on one hundred randomly sampled input instances,
focusing on generic errors, which make sense to
look out for in many NLG scenarios. Table 3 shows
the error types and the number of mistakes found in
each of the prediction files. The error types should
be self-explanatory (sample predictions are given
in Appendix A.2).

As far as the (subjective) manual analysis goes,
Model-T outputs descriptions with the best linguis-
tic quality. Table 3 shows that the predictions of
the template-based system contain no errors – this
is because we incorporated our notion of grammati-
cality into the templates’ definition, which allowed
Model-T to avoid the errors found in predictions of
the other two approaches.

The majority of errors made by Model-D are
either wrong verbalizations of the input MR val-
ues or punctuation mistakes. The latter ones are
limited to the cases of missing a comma between
clauses or not finishing a sentence with a full stop.
An easy solution to this problem is adding a post-
processing step which fixes punctuation mistakes
before outputting the text.

Crucially, Model-D often drops or modifies
some MR attribute values. According to the or-
ganizers, 40% of the data by design contain either
additional or omitted information on the output
side (Novikova et al., 2017b): crowd workers were
allowed to not lexicalize attribute values which they
deemed unimportant. We decided to examine the

training data and find out if the discrepancies of
Model-D were learned from the data.

4 Training Data Analysis

The E2E NLG Challenge is based on noisy data,
but the organizers provided multiple instances to
account for this noise. In order to better understand
the behaviour of Model-D and determine if it took
advantage of having multiple references per train-
ing instance, we have randomly sampled a hundred
training instances and manually checked their lin-
guistic quality. Table 4 shows the most common
errors we encountered.

Most mistakes come from ungrammatical con-
structions, e.g. incorrect phrase attachment
decisions (“The price of the food is high and
is located . . . ”), incorrect usage of articles
(“located in riverside”), repetitive constructions
(“Cotto, an Indian coffee shop located in . . . , is
an Indian coffee shop . . . ”). Some restaurant de-
scriptions follow a tweet-style narration pattern
which is understandable, but ungrammatical (“The
Golden Palace Italian riverside coffee shop price
range moderate and customer rating 1 out of 5”).

A considerable number of instances have restau-
rant descriptions which contain information that
does not entirely follow from the given input MR.
These are cases in which input content elements
are modified or dropped, which goes in line with
what we observed in the outputs of Model-D.

Some instances (10%) contained descriptions
which we marked as questionable due to pragmatic
and/or stylistic considerations. For example, restau-
rants which have familyFriendly[no] as part of the
input MR are often described by crowd workers as
“adults-only” establishments, which has an undesir-
able connotation. Finally, it is necessary to men-
tion that some crowd workers followed inconsistent
spelling and punctuation rules when hyphenating
compound modifiers (“family friendly restaurant”,
“the restaurant is family friendly”) or capitalizing
MR attributes (“Riverside”, “Fast food”). Punctua-
tion errors were mainly restricted to missing a full
stop at the end of a restaurant description or failing
to delimit sentence clauses with commas.

The results of manual data analysis show that
Model-D indeed generates texts that are similar to
the restaurant descriptions in the provided data set.
Unfortunately, our data-driven approach is not flex-
ible enough to make use of multiple references; it
cannot cancel out the noise present in some train-
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Error type Example %

bad grammar “it’s French food falls within a high price range” 15
modified contents area[riverside]→ “city centre” 12
dropped contents priceRange[high]→ ∅ 10

questionable lexicalization
“Adult-only Chinese restaurant, The Waterman, offers top-rated
food in the city centre”

9

punctuation errors
“X is a coffee shop and also a Japanese restaurant great for
family and close to Crowne Plaza Hotel”

6

Table 4: Data annotation discrepancies (100 randomly sampled training instances).

Model-T Best result

Metric evaluation
BLEU 0.5657 0.6805
NIST 7.4544 8.7777
METEOR 0.4529 0.4571
ROUGE-L 0.6614 0.7084
CIDEr 1.8206 2.3371
Human evaluation
Quality 0.228/(2.0, 4.0)/2 0.300/(1.0, 1.0)/1
Naturalness 0.077/(5.0, 10.0)/2 0.211/(1.0, 1.0)/1

Table 5: Final evaluation results on the test set. Hu-
man evaluation results have the following format:
score/(range)/cluster.

ing instances. One way of alleviating this problem
could be reformulating the loss function to inform
the system about the existence of multiple ways of
generating a good restaurant description. Given a
training instance, Model-D would generate a corre-
sponding candidate text which could be compared
to all human references. Each comparison results
in computing a certain cost; the gradients could
be then computed on the minimal cost among all
comparisons.

4.1 Final Evaluation

For the final submission we have chosen Model-T’s
predictions – despite lower metric scores, they con-
tained most grammatical outputs and kept all input
information in the generated text.

The results of the final evaluation on the test data
are presented in Table 5. They were produced by
the TrueSkill algorithm (Sakaguchi et al., 2014),
which performs pairwise system comparisons and
clusters them into groups. For completeness, we in-
clude the highest reported scores among all the par-
ticipants (rightmost column). Note, however, that
the numerical scores are not directly interpretable,
but the relative ranking of a system in terms of its
range and cluster is important – systems within one
cluster are considered tied.

Model-T was assigned to the second best cluster
both in terms of quality and naturalness, despite
the much lower metric scores. Retrospectively, this
justifies our decision to choose Model-T instead
of Model-D for the final submission. The E2E
NLG Challenge focuses on end-to-end data-driven
NLG methods, which is why systems like Model-T
might not exactly fit into the task setup. Neverthe-
less, we view such a system as a necessary candi-
date for comparison, since the E2E NLG Challenge
data was designed to learn models that produce
“more natural, varied and less template-like system
utterances” (Novikova et al., 2017b).

5 Conclusion

In this paper we have presented the results of our
participation in the E2E NLG Challenge. We have
developed two conceptually different approaches
and analyzed their performance, both in quantity
and in quality. We have shown that sometimes the
costs of developing complex data-driven models
are not justified and one is better off approaching
the problem with simpler techniques. We hope that
our observations and conclusions shed some light
on the limitations of modern NLG approaches and
possible ways of overcoming them.
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cas Curry, and Verena Rieser. 2017a. Why We
Need New Evaluation Metrics for NLG. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2231–
2242, Copenhagen, Denmark. Association for Com-
putational Linguistics.
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A Supplemental Material

A.1 Manual Data Analysis Results
As mentioned in Section 4, manual analysis of the training data revealed certain annotation problems.
Below we provide sentence IDs of the instances which we considered as containing errors:

• modified contents: 4136, 34141, 32915, 35936, 6152, 2005, 1463, 14529, 14339, 21804, 25779,
11049;

• dropped contents: 4136 (price and food), 17455 (familyFriendly), 38742 (area), 1463 (customerRat-
ing), 27664 (food, priceRange), 19882 (priceRange), 25779 (customerRating, area), 40293 (food),
807 (familyFriendly), 15216 (familyFriendly);

• ungrammatical: 39810, 1904, 36233, 33671, 28698;

– tweet-style descriptions: 19425, 38875, 14873;
– word attachment problems, bad phrasing: 15276, 30950, 31973, 36468, 12442, 18623, 25773;

• punctuation errors: 6152, 14993, 38742, 14339, 35967, 25795;

• questionable realization: customerRating (8806, 24983, 29189), familyFriendly (20220, 10729),
priceRange (29189), style (14993, 28362, 32494).

A.2 Example Predictions
The majority of predictions from all three systems are grammatically correct. Here is a random sample:

• Input: name[Cocum], eatType[coffee shop], food[English], priceRange[moderate], customerRating[3 out of 5], fami-
lyFriendly[no]

• TGen: Cocum is a moderately priced coffee shop serving english food. It has a customer rating of 3 out of 5 and is not kid
friendly.

• Model-D: Cocum is a moderately priced coffee shop serving English food . It is not kid friendly and has a customer rating
of 3 out of 5 .

• Model-T: Cocum is a coffee shop which serves English food in the moderate price range. It has a customer rating of 3 out
of 5. It is not family friendly.

To illustrate common prediction mistakes (regardless of the system), we have hand-picked some
samples. Full predictions by all models can be found in the GitHub repository.

A.2.1 Bad Grammar
• Input: name[The Wrestlers], eatType[coffee shop], food[Chinese], priceRange[less than £20], area[riverside], fami-

lyFriendly[no], near[Raja Indian Cuisine]

• TGen: The Wrestlers is a coffee shop providing chinese food in the less than £20 price range. It is located in the riverside.
It is near Raja Indian Cuisine. Its no children feel allowed.

• Model-D: The Wrestlers is a coffee shop providing Chinese food in the less than £20 price range . It is located in the
riverside . It is near Raja Indian Cuisine .

• Model-T: The Wrestlers is a coffee shop which serves Chinese food in the price range of less than £20. It is located in the
riverside area, near Raja Indian Cuisine. It is not family friendly.

• Input: name[Wildwood], eatType[coffee shop], food[English], priceRange[high], customerRating[1 out of 5], near[Ranch]

• TGen: Wildwood is a high priced coffee shop that serves english food. It is located near Ranch and has a customer rating
of 1 out of 5.

• Model-D: Wildwood is a coffee shop near Ranch , serving English food , has a high price range and a customer rating of 1
out of 5 .

• Model-T: Wildwood is a coffee shop which serves English food in the high price range. It has a customer rating of 1 out
of 5 and is located near Ranch.
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A.2.2 Modified and/or Dropped Contents
• Input: name[The Golden Palace], eatType[coffee shop], food[English], priceRange[high], customerRating[average],

area[riverside]

• TGen: The Golden Palace is a high priced coffee shop serving english food in the riverside area. It has an average
customer rating.

• Model-D: The Golden Palace is a high priced coffee shop located in the city centre .

• Model-T: The Golden Palace is a coffee shop which serves English food in the high price range. It has an average customer
rating and is located in the riverside area.

A.2.3 Dropped Contents
• Input: name[The Eagle], eatType[coffee shop], food[English], priceRange[moderate], customerRating[1 out of 5],

area[riverside], familyFriendly[yes], near[Burger King]

• TGen: The Eagle is a moderately priced coffee shop that serves english food. It is located in the riverside area near Burger
King. It is kid friendly and has a customer rating of 1 out of 5.

• Model-D: The Eagle is a moderately priced coffee shop located near Burger King .

• Model-T: The Eagle is a family-friendly coffee shop which serves English food in the moderate price range. It has a
customer rating of 1 out of 5 and is located in the riverside area, near Burger King.
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Abstract

This paper presents the two systems we
entered into the 2017 E2E NLG Chal-
lenge: TemplGen, a templated-based sys-
tem and SeqGen, a neural network-based
system. Through the automatic evalua-
tion, SeqGen achieved competitive results
compared to the template-based approach
and to other participating systems as well.
In addition to the automatic evaluation, in
this paper we present and discuss the hu-
man evaluation results of our two systems.

1 Introduction

This paper describes our two primary systems for
the 2017 E2E NLG Challenge (Novikova et al.,
2017): (1) TemplGen, a template-based system
that automatically mined templates and (Smiley
et al., 2018) (2) SeqGen, a neural network sys-
tem based on the encoder-decoder architecture
(Davoodi et al., 2018).

This NLG challenge involves taking a mean-
ing representation (MR) as input and generating
natural language output from it. Many existing
NLG systems are template-based because it is eas-
ier to control the correctness and the grammat-
icality of the generated text. For this competi-
tion, we explored two approaches, i.e., template-
based and neural network-based, in order to exam-
ine whether a sequence-to-sequence model based
on neural networks would produce better results
than a template-based system.

We first briefly introduce the challenge and its
dataset in Section 2. We then present the details of
our two systems in Section 3. We demonstrate and
discuss the results of our systems in Section 4 and
conclude in Section 5.

2 The E2E NLG Challenge

The E2E NLG challenge is concerned with the
restaurant domain and the dataset was crowd-
sourced via CrowdFlower (Novikova et al.,
2016). The crowdsourced dataset consists of
50,602 instances derived from 5,751 unique MRs
(Novikova et al., 2017), and it is larger than
previous end-to-end datasets, such as BAGEL
(Mairesse et al., 2010) and SF Hotels/Restaurants
(Wen et al., 2015).

While creating this dataset, crowd workers were
asked to create a verbalization based on a given
MR. They were allowed to omit information that
they did not find useful. Each MR could contain
three to eight different attributes selected from all
available attributes: name, eat type, food, price
range, customer rating, area, family friendly, and
near. In 40% of the instances, verbalizations con-
tain either omissions or additional information.
The dataset is split in a 76.5/8.5/15 ratio into train-
ing, development, and test.

The following sample shows a MR and its
corresponding natural language (NL) output:

MR:
name [Alimentum],
area [city centre],
familyFriendly [no]

NL:
There is a place in the city centre,
Alimentum, that is not family-friendly.

3 Our Two Participating Systems

Many NLG systems are based on templates be-
cause the system developers can relatively easily
control the system to ensure both grammatical and
semantic correctness. However, due to the lack
of variability of the used templates, such systems
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may produce language that does not sound natural
and is often perceived as repetitive.

Another type of NLG system is based on neu-
ral networks. Although such systems have shown
promising results, training such models/systems
requires a large amount of training data. Further-
more, neural network-based systems may produce
ungrammatical text often with repetitions in the
same sentences. There is also no guarantee that
the generated text is actually factually correct.

3.1 TemplGen : a Template-based System

First, we delexicalized the data using string match
to automatically replace the attribute values con-
tained in the MR with the attribute name (Oraby
et al., 2017). The attribute values were largely
consistent, but for additional coverage we added
a few fuzzy matching rules to account for vari-
ants such as Crown vs. Crowne. We did this for
all attributes except for family friendly which has
a wide range of potential realizations (e.g., posi-
tive: children are welcome, kid friendly, or nega-
tive: adult only, not for kids). Therefore, we use
a binary yes/no value for that attribute. For each
delexicalized sentence, we check to see whether
all attributes in the MR were captured during the
delexicalization process. If there is a difference
between the number of attributes in the MR and
the number that were successfully delexicalized,
we discard that instance. In total, we discarded
roughly 45% of the training sentences. This is
slightly more than the 40% of instances in the data
that contained omissions or additions. We then use
the delexicalized templates to create a dictionary
look-up of the MRs.

With the templates now identified, we identify
templates that are composed of multiple sentences
and split along sentence boundaries. The individ-
ual sentences are then stored as partial templates
along with the attributes reverse engineered from
the templates. Table 1 shows the original tem-
plate containing 2 sentences and the derived partial
templates containing one sentence each. Through
this process we collect templates containing all 8
of the attributes individually as well as combina-
tions from 2-8. By extracting individual templates
for each attribute alone, we guarantee that we can
cover any combination of attributes by generating
up to 8 separate sentences although this would not
sound very natural.

In the testing phase, we are supplied with an

MR which may consist of an unseen combination
of attributes. We treat the attributes of the MR as
a set, filling the templates using an algorithm that
selects the best fitting template.

All templates in the candidate set are relexical-
ized with the current MR. From there we filter
candidates by performing basic sentiment analysis
using the NLTK1 implementation of the VADER
sentiment analysis tool (Gilbert, 2014) and re-
moving sentences whose sentiment is incongruent
(e.g., great restaurant described as having low rat-
ing). To determine this, we look for sentences with
non-neutral scores for both positive and negative
polarities but no word indicating a reversal such
as however. The final output from the candidate
set is selected at random.

3.2 The sequence-to-sequence system

Our sequence-to-sequence system consists of
three main components: Delexicalization, Seq-to-
Seq model, and Relexicalization.

Delexicalization. One of the challenges in NLG
is generating both semantically and grammati-
cally accurate texts. In order to train a satisfy-
ing seq-to-seq model, it is often required to have
a large amount of parallel texts. However, among
the attributes of the E2E data, most of the non-
categorical attributes are very sparse which makes
the learning process difficult. Thus, in order to
generate accurate sentences based on the mean-
ing representations, we delexicalized the values
of some of the attributes to avoid data sparsity
(Mairesse et al., 2010; Wen et al., 2015).

The delexicalization process involves replac-
ing the values of the attributes with placeholders.
Among the E2E attributes, we delexicalized the
values of the attributes which seem to take a value
from an open set of values. These include name,
price range, customer rating and near. We delexi-
calized both the meaning representations and their
corresponding natural language sentences. Delex-
icalizing price range and customer rating is more
challenging than the others because both attributes
have more value variations in the meaning repre-
sentations and the natural language texts than the
other attributes do. Hence, the learning task is be-
tween a MR template and a NL template.

Table 2 shows an example of a delexical-
ized meaning representation and its correspond-
ing delexicalized natural language sentence. The

1http://www.nltk.org
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Attributes Template
Original customer rating, name, eat-

Type, food, near, area
With a rating of CUSTOMER RATING , NAME
EATTYPE serves FOOD food. It is located near
NEAR and AREA .

Partial 1 customer rating, name, eat-
Type, food

With a rating of CUSTOMER RATING , NAME
EATTYPE serves FOOD food.

Partial 2 near, area It is located near NEAR and AREA .

Table 1: Partial templates extracted from training data.

delexicalized meaning representations are used
as input of our Sequence-to-Sequence model, in
which the delexicalized natural language sen-
tences are the model target output.

Seq-to-Seq Model. Neural Machine Transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014) is an end-to-end
approach for machine translation. Sequence-to-
Sequence models adopt the encoder-decoder ar-
chitecture, in which an input sequence is encoded
by the encoder and the output sequence is gener-
ated by the decoder (Jean et al., 2014; Luong et al.,
2014; Sennrich et al., 2016).

In this challenge, we considered the task as a
translation problem which takes a sequence of to-
kens (i.e., delexicalized meaning representations)
as input, and generates a sequence of tokens (i.e.,
delexicalized natural language sentences) in the
same language. In our current implementation,
we used the state-of-the-art neural machine trans-
lation model (Britz et al., 2017). Table 3 shows the
parameters of SeqGen model.

Relexicalization. As a last step, the placehold-
ers in the automatically generated delexicalized
sentences should be replaced by their actual val-
ues. Thus, for the training and development set,
we kept the values of the attributes as they ap-
peared in the original sentences and relexicalized
the placeholders with these values. Since there
is no corresponding sentence for meaning repre-
sentations of the test sets, we used the value of
the placeholders as they appeared in the original
meaning representation. This may have a negative
impact on the quality and naturalness.

4 Results and Discussion

4.1 Results

Evaluation for the E2E was conducted using both
automatic metrics and human scoring. These re-
sults are given in Table 4 with the automatic scor-
ing described in Section 4.2 and the human evalu-

ation in Section 4.3.

4.2 Automatic Scoring

Table 4 shows the results comparing the baseline
system with the results from our systems. Systems
were evaluated automatically using BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), ME-
TEOR (Denkowski and Lavie, 2014), ROUGE L
(Lin, 2004), and CIDEr (Vedantam et al., 2015).
The first column contains the results for the
BASELINE system – a sequence-to-sequence
model with attention (Dušek et al., 2018). The
other two columns in the table contain the au-
tomatic scores for our system where the results
for TemplGen is composed of both the training
and development data and SeqGen which is the
sequence-to-sequence model with beam search de-
coder with beam size of 5. We tried a beam search
decoder with various beam sizes and observed that
the search decoder with beam size of 5 achieved
the best results compared to the search decoder
with larger beam sizes as well as the decoder with
no beam search.

For the automatic metrics, none of our systems
outperformed the baseline system. However, the
SeqGen system outperforms TemplGen and ex-
hibits similar performance to the baseline model
which is also sequence-to-sequence based.

4.3 Human Evaluation

For the human evaluation metric (Dušek et al.,
2018), raters were shown the reference sentence
along with 5 generations from various competing
systems. They were asked to rank the generations
for quality and naturalness. For quality, raters
were given the MR along with the system refer-
ence output. They were asked to rank the output
based on grammatical correctness, fluency, ade-
quacy, and so on. Naturalness measures whether
the utterance could have been written by a native
speaker. Raters were not given the MR for the

474



Original Meaning Representation Original Natural Language Sentences
name [The Rice Boat], food [Indian], area [city
centre], near [Express by Holiday Inn]

The Rice Boat is an Indian restaurant in the city
centre near the Express by Holiday Inn

Delexicalized Meaning Representation Delexicalized Natural Language Sentences
name [name x], food [Indian], area [city centre],
near [near x]

name x is an Indian restaurant in the city centre
near near x

Table 2: An example of the delexicalized MR and its corresponding natural language sentence.

Hyper-parameter Parameter value
Batch size 16
# of hidden units 256
# of encoder layers 3
# of decoder layers 1
RNN cell GRU
Optimizer Adam
Input Dropout 1.0
Output Dropout 0.5

Table 3: The list of hyper-parameters tuned for Se-
qGen model.

Metric Baseline TemplGen SeqGen
BLEU 0.6593 0.4202 0.6336
NIST 8.6094 6.7686 8.1848
METEOR 0.4483 0.3968 0.4322
ROUGE L 0.6850 0.5481 0.6828
CIDEr 2.2338 1.4389 2.1425
Quality 1 of 5 3 of 5 4 of 5
Naturalness 1 of 5 5 of 5 3 of 5

Table 4: The results of automatic and human eval-
uation on the test set.

naturalness evaluation. Thus, this metric does not
take into account faithfulness to the MR. The re-
sults of the human evaluation are based on the sys-
tem’s inferred TrueSkill score (Sakaguchi et al.,
2014) which is computed based on pairwise com-
parisons between systems. For quality, TemplGen
out scored SeqGen ranking 3rd and 4th, respec-
tively, out of 5 clusters of systems. The results are
reversed for naturalness, with SeqGen performing
better than TemplGen ranking 3rd and 5th, respec-
tively, out of 5 clusters. Systems within each clus-
ter are considered statistically indistinguishable.

4.4 Discussion

For the human evaluations, we scored in the third
cluster of groups. For a production NLG sys-

tem, quality of generations would be the most im-
portant metric as users would expect faithfulness
to the underlying data along with other standards
such as grammaticality. Because a variety of fea-
tures are encompassed within the metric of quality
(e.g., fluency and adequacy), it is difficult to de-
termine where our algorithm succeeds and fails.
To help determine this, we took a closer look at
25 sentences generated by our SeqGen and Tem-
plGen models.

Although SeqGen is an end-to-end approach,
there are some limitations. First, we do not have
control of the decoder to make it generate all the
attributes that appeared in the meaning represen-
tations. Thus, the model may suffer from not gen-
erating all the attributes or generating extra at-
tributes. In both cases, the relexicalization com-
ponent either cannot relexicalize all the placehold-
ers or there are extra placeholders that cannot be
relexicalized. The first row in Table 5 shows an
example of SeqGen generated sentence in which
it does not generate text corresponding to all the
attributes in the MR. Another issue that we no-
ticed in the generated sentences by SeqGen model
is related to the quality of the natural language
sentences in terms of grammatically correctness.
This issue may be due to the delexicalization. The
scond row in Table 5 shows an example where the
sentence is grammatically incorrect. In this exam-
ple, the issue is caused by less than £20ly priced.

As for TemplGen, overall, we find that it did
not perform well when evaluated on the automatic
metrics. This is not particularly surprising as we
did not make any attempts to optimize TemplGen
for these metrics.

On the other hand, our analysis of the sentences
generated by the TemplGen model shows that ev-
ery generation contained all of the attributes from
the MR while one contained additional informa-
tion. However, we noticed a few issues with flu-
ency that may have contributed to lowering the
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Examples generated by SeqGen model
# MR NL
1 name[The Phoenix], eat-

Type[restaurant], food[French],
priceRange[cheap], area[riverside],
familyFriendly[yes], near[Raja
Indian Cuisine]

The Phoenix is a family friendly restaurant located
near Raja Indian Cuisine.

2 name[The Phoenix], eat-
Type[restaurant], food[Fast food],
priceRange[less than £20], area[city
centre], familyFriendly[no],
near[Raja Indian Cuisine]

The phoenix is a less than £20ly priced fast food
restaurant located in the city centre near Raja In-
dian Cuisine. It is not child friendly.

Examples generated by TempGen model
1 name[The Waterman], eat-

Type[restaurant], food[Indian],
priceRange[moderate], area[city
centre], familyFriendly[yes],
near[Raja Indian Cuisine]

The Waterman is a child friendly restaurant which
serves moderately priced Indian food. It is near
Raja Indian Cuisine in the city centre area.

2 name[The Plough], eatType[pub],
food[Chinese], priceRange[high],
area[riverside], familyFriendly[yes],
near[Raja Indian Cuisine],

The Plough, a Chinese pub near Raja Indian Cui-
sine, offers family friendly riverside dining for high.

Table 5: Sample natural language output of MRs generated by both models.

scores for quality. Of the suboptimal generations,
some were perhaps less fluent due to being com-
posed of multiple sentences as a result of our strat-
egy of randomly selecting a partition of attributes
that satisfies the MR. Prioritizing partitions that
encompass more attributes may be a simple so-
lution. Finally, other generations sound disfluent
due to issues with word choice such as the selec-
tion of the partial template containing just an ad-
jective to insert high from the MR where a noun
phrase such as a high price would have sounded
more natural (cf. last row in Table 5).

For future work, we will put some restrictions
on the decoder such that it would not generate
repetitive tokens (including placeholders) and also
push the model to generate all the attributes men-
tioned in the corresponding meaning representa-
tion.We also plan to use the released data set for
generating semantically similar sentences for the
meaning representations.

5 Conclusions

In this paper, we described our two systems for the
2017 E2E challenge: a rule-based system and a
sequence-to-sequence neural network system. Al-
though our rule-based system did not score well by

automatic metrics, it was able to deliver sentences
which are faithful to their underlying MR. On the
other hand, our sequence-to-sequence system was
also able to achieve decent performance compared
to other participating systems.
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Abstract
E-health applications aim to support the
user in adopting healthy habits. An im-
portant feature is to provide insights into
the user’s lifestyle. To actively engage the
user in the insight mining process, we pro-
pose an ontology-based framework with
a Controlled Natural Language interface,
which enables the user to ask for specific
insights and to customize personal infor-
mation.

1 Introduction

E-health services based on wearable sensors, such
as smart watches, need methods to discover in-
sights from the sensor data. Insights describe
user-specific behavior patterns, or habits, that are
relevant for guiding the user towards a healthy
lifestyle. For example, an insight might reveal that
the user is especially sedentary at the weekend.

Blind discovery of significant insights is essen-
tially a search problem and requires a lot of data.
If the discovery of insights took place in dialogue
with the user, the search problem could be re-
stricted to areas that interest the user the most.
Also, the user could provide complementary in-
formation that cannot be inferred from the data.

In this paper, we propose a description logics-
based approach towards an interactive system for
the discovery of insights. Concretely, we describe
an ontological framework implemented on top of
a statistical insight miner (Härmä and Helaoui,
2016) that enables the natural language-based re-
trieval and customization of insights from wear-
able sensor data.

2 Proposed framework

Our framework consists of five layers, see Fig. 1.
Data is acquired in the data layer and further pro-
cessed in the information extraction layer. The in-
formation & knowledge integration layer abstracts

Verbalization layer

Information extraction layer

Data layer

Information & knowledge integration layer

Reasoning layer

sensor datatext

informationCNL

NL textCNL query

speech

Figure 1: Proposed framework for the interactive
health insight miner.

the extracted information into formal facts. The
resulting knowledge base can include user- and
situation-specific information as well as common
sense knowledge. The reasoning layer leverages
logic-based algorithms that reason with the avail-
able knowledge. The verbalization layer trans-
forms the facts into coherent and comprehensi-
ble natural language (NL) messages. Similar sys-
tems for data-to-text summarization have been
proposed in the literature (e.g. Portet et al., 2009).

We additionally introduce a Controlled Natural
Language (CNL). It is a formal language that can
be translated unambiguously into knowledge base
facts, but is also understandable by humans. By
adopting the CNL, the user can interact with the
system, i.e., add and query facts from the knowl-
edge base. Natural language or spoken text can be
fed into the system after translation into CNL.

3 Representing, summarizing and
verbalizing insights

The user’s lifestyle is described by an ontology
that contains the routines, habits, and targets of the
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user. These concepts are leveraged to represent in-
sights as knowledge base facts.

Inspired by NaturalOWL (Galanis and Androut-
sopoulos, 2007), we include lexical annotations
in the ontology, which specify how ontology con-
cepts are to be translated into natural text. This
way, the ontology also acts as a lexicon. We
include the lexical categories (e.g., noun, deter-
miner, preposition, or verb) in the annotations to
facilitate the use of standard Natural Language
Generation (NLG) techniques, such as adapting
verb conjugations, adapting the verb tense, or ag-
gregating sentence parts.

To enable user interaction, we specify a CNL
based on the vocabulary defined in the ontology.
The CNL plays the role of a human and machine
understandable interface which allows to directly
map the user’s input to the formal concepts of the
ontology. This way, the user can add personal
information to the system, e.g., “On Monday at
work, I play tennis”. This statement will be for-
malized as a fact and added to the knowledge base.
The CNL also provides the basis for verbalizing
the system’s responses to the user’s queries, such
as “What are insights about Sunday afternoon?”
We use the Backus-Naur form to specify the CNL
as a context-free grammar.

To create an NL summary of a number
of insights, we implement the following NLG
steps (Bouayad-Agha et al., 2014): (1) Content
selection: We let the user ask for specific insights,
for example insights about their step count on Sun-
day. (2) Discourse planning: We group those in-
sights together that are semantically related. The
insights are first grouped by the measurement to
which they refer (e.g. step count) and then ordered
within each group from more general to more spe-
cific. For the grouping and ordering steps, we
leverage our semantic model (ontology) and apply
reasoning algorithms to determine which relation-
ships hold between which insights. (3) Lexicaliza-
tion: We follow a template-based approach using
the lexical annotations in the ontology. (4) Aggre-
gation: We verbalize each group of equally spe-
cific insights using an aggregation template. Fi-
nally, for (5) realization, we use the realization en-
gine SimpleNLG (Gatt and Reiter, 2009).

4 Implementation

We demonstrate the viability of our framework
by implementing one use case related to lifestyle

insight mining. The ontology is implemented
in OWL using the Protégé1 editor. We use
OWL API2 4.1.3 together with the reasoner Her-
miT3 1.3.8 to implement our system in Java.
To implement the verbalization functionality, we
build upon the library SimpleNLG4.

5 Example run

> What are insights about my sedentary time on
Sunday?
> On Sunday your sedentary time is lower than on
Tuesday, Friday, Wednesday or Thursday.
On Sunday in the afternoon your sedentary time
is lower than on Friday, Wednesday, Thursday or
Tuesday in the afternoon.
> What are insights about when I go running?
> Could not find any insights about this.
> On Sunday in the afternoon, I go running.
> What are insights about when I go running?
> On Sunday in the afternoon when you go run-
ning your sedentary time is lower than on Tuesday,
Friday, Thursday or Wednesday in the afternoon.
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Aki Härmä and Rim Helaoui. 2016. Probabilistic scor-
ing of validated insights for personal health services.
In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–6.

François Portet, Ehud Reiter, Albert Gatt, Jim Hunter,
Somayajulu Sripada, Yvonne Freer, and Cindy
Sykes. 2009. Automatic generation of textual sum-
maries from neonatal intensive care data. Artificial
Intelligence, 173(7-8):789–816.

1http://protege.stanford.edu/
2https://github.com/owlcs/owlapi
3http://www.hermit-reasoner.com/
4https://github.com/simplenlg/

simplenlg

479



Proceedings of The 11th International Natural Language Generation Conference, pages 480–481,
Tilburg, The Netherlands, November 5-8, 2018. c©2018 Association for Computational Linguistics

Multi-Language Surface Realisation as REST API based NLG
Microservice

Andreas Madsack, Johanna Heininger, Nyamsuren Davaasambuu,
Vitaliia Voronik, Michael Käufl and Robert Weißgraeber
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Abstract

We present a readily available API that
solves the morphology component for sur-
face realizers in 10 languages (e.g., En-
glish, German and Finnish) for any topic
and is available as REST API. This can
be used to add morphology to any kind
of NLG application (e.g., a multi-language
chatbot), without requiring computational
linguistic knowledge by the integrator.

1 Introduction

The proliferation of chatbots changed the way
we see user interfaces. Alexa, Siri or Cortana
want to draw us into a conversation, causing two
challenges from a “natural” language perspective:
grammar and context. Services like RASA or
Google’s Dialogflow, only provide the use of tem-
plates for the responses. In languages where the
grammatical agreement is mostly represented by a
variation for singular or plural this is fairly easy.
However, for a language like German, French, or
even Russian you have to write a large set of tem-
plates – or simplify your answers, consequently
restricting your creativity and eliminating the nat-
uralness of the responses.

Having implemented a few successful projects
building chatbots using our NLG system (Weiß-
graeber and Madsack, 2017), we saw the need
to open up some underlying parts of our system
to enable deeply integrated and componentized
approaches. Using existing complete NLG sys-
tems for projects like chatbots works, but demands
learning to use a system designed not to gener-
ate dialogues but complete articles. Instead of us-
ing our NLG system you may want a simpler way
for story building, and possible integrations with
the chatbot-serving app and data, for adding con-
text from data signals while rendering your text

response.
Whatever you are using to generate context, re-

sponse interference and response context – for ex-
ample from results given based on the parse of
the Natural Language Understanding system you
are using – your response has to be enriched with
grammatical agreement.

2 Example: Dialogue interface for an
e-commerce system

As an example, we will use a fictional order sta-
tus update from an e-commerce system sent to the
customer. The system should respond to the cus-
tomer by using a fully grammatical sentence – and
not only a list of products – in the customer’s lan-
guage. These messages can be personalized and
used with mixed (unknown) languages and prod-
ucts where a templating approach can not guaran-
tee to be grammatically accurate.

In English a potential response message could
be: “We confirm your order of two new black TVs
and an Amazon Echo”.

3 Solution

In this paper we describe an approach that offers
an intermediate solution for this problem, that is
neither about writing simple templates, nor using
a complete NLG system. Instead it uses a “Gram-
mar API” microservice for the morphology com-
ponents of the surface realiser and otherwise uses
openly available software tools in the application
chain.

This API offers three endpoints to allow granu-
lar access to morphological components.

The first one is verb. Given tense, number,
person, and gender the inflected verb is returned.
For example in Finnish providing lemma=sanoa,
tense=present, number=s, and person=1st returns
sanon (to say→ I say).
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language lemma parameters result
en-us TV adjs=[new, black] prep=of conj=’ ’ num=2

num type=cardinal
of two new black TVs

nl-nl televisie adjs=[nieuw, zwart] prep=van num=2
num type=cardinal

van twee nieuwe, zwarte tele-
visies

fi-fi televisio adjs=[uusi, musta] case=ela num=2
num type=cardinal

kahdesta uudesta, mustasta
televisiosta

ru-ru телевизор adjs=[новый,чёрный] num=2 case=gen
num type=cardinal

двух новых, чёрных теле-
визоров

Table 1: Examples for API parameters with resulting nounphrases

The second api endpoint is quantifier. The nu-
meral type parameter sets ordinal or cardinal and
also the value of the numeral needs to be set: e.g.,
in Dutch providing num type=ordinal, num=3,
and gender=f returns derde (third).

The third and most interesting endpoint is noun-
phrase. A nounphrase consists of a noun and op-
tionally also of one or more adjectives, a deter-
miner, a quantifier, and/or a preposition. The need
for case, gender, or animacy depends on the lan-
guage. See table 1 for some examples.

3.1 API backend

The inflection is based on grammatical algorithms
that run through a decision chain for each request,
where all grammatical features of the language are
implemented.

Corner-cases are covered by using lexicon en-
tries. Grammatical features are implemented glob-
ally in a general way, and then added in each lan-
guage by its individual configuration.

Languages covered by the first release of the
Grammar API include English, German, French,
Dutch, Spanish, Portuguese, Italian, Czech, Rus-
sian, and Finnish.

4 Related Work

Especially in academic works, the reference sys-
tem to embed a surface realizer into one’s own
projects is SimpleNLG (Gatt and Reiter, 2009),
mostly because it is the only openly accessible
component.

Having to add a local library into your sys-
tem does not follow modern software architec-
ture methodologies, where cloud based services
are readily available to cover all tasks of your
toolchain and only need to be plugged in together
with glue code, e.g. Dialogflow.

5 Availability

The Grammar API is available as a commercial
web service for industrial applications, with En-
glish offered for free. Academic institutions and
researchers however can get access to the API for
all languages at no cost. For more information see
https://301.ax/grammar-api/ .

6 Conclusion and Future Work

By providing access to the grammar subcompo-
nents from our integrated NLG systems, emerg-
ing use cases where NLG is integrated into other
systems can be supported, allowing to build NLG-
enabled applications faster than ever by lowering
the barrier-to-entry on computational linguistics
know how for software developers.

In our current work we concentrate on two main
aspects that will be released into the API:

(1) Backend optimisations inside the algo-
rithms, replacing some of the rule-based methods
with statistics-based components.

(2) Providing expanded API endpoints, e.g.
making it possible to render complete parts of a
sentence from POS-Tag information.

Additionally, our microservice can be used as
a surface realizer for NLG tasks in other applica-
tions.
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Abstract

This paper argues that a new generic ap-
proach to statistical NLG can be made to
perform Referring Expression Generation
(REG) successfully. The model does not
only select attributes and values for refer-
ring to a target referent, but also performs
Linguistic Realisation, generating an ac-
tual Noun Phrase. Our evaluations suggest
that the attribute selection aspect of the al-
gorithm exceeds classic REG algorithms,
while the Noun Phrases generated are as
similar to those in a previously developed
corpus as were Noun Phrases produced by
a new set of human speakers.

1 Introduction

Referring Expressions Generation (REG) is a sub-
task of Natural Language Generation (NLG) that
decides how to distinguish a target referent from
its distractors, as when we say “the sofa”, “the red
sofa”, and so on, to distinguish the referent from
other furniture. Most current REG algorithms are
rule-based (Gatt and Krahmer, 2018), though Ma-
chine Learning is also starting to be used (e.g.
Di Fabbrizio et al., 2008).

REG is usually treated as an independent stage
or component of NLG pipelines (e.g. Reiter and
Dale, 2000; Reiter, 2007; Gatt and Krahmer, 2018;
Di Fabbrizio et al., 2008). The present paper
changes the relationship between NLG and REG:
it regards REG as a special case of usual NLG,
and proposes a vector-based algorithm to trans-
form REG tasks into a generic NLG tasks. The
paper adopts the NLG algorithm of our previous
work (which is also vector-based; Li, 2019), but
certain adaptations needed to be made to allow the
algorithm to perform the traditional REG attribute
selection task.

Our REG algorithm produces referring expres-
sions (REs) by learning from a data-text corpus of
REs. In a nutshell, the algorithm splits the tex-
tual expressions in the training corpus into small
spans according to their meaning, and reassembles
these spans into new expressions when it refers
to a referent. We evaluate the performance of
the REG function on the Tuna corpus (Gatt et al.,
2007) against 3 strong baselines. Experimental
results show that our algorithm outperforms the
baselines in terms of Dice scores. An additional
experiment also shows positive results for our al-
gorithm on an experts-based evaluation based on
a BLEU-based comparison between algorithm-
generated and human-produced referring expres-
sions.

2 Related Work

The main REG algorithms have often focussed on
the semantic core of the REG task, which is to
select semantic attributes for a referring expres-
sion (e.g., sofa, red), disregarding the expres-
sion of these attributes in words (e.g., “the red
sofa”) (Krahmer and Van Deemter, 2012). The
term REG is sometimes restricted to “one-shot”
references, where it is the task of one single NP to
identify the referent. We will use the term REG in
this restricted sense. Consequently, linguistic con-
text is irrelevant, so pronouns and other anaphoric
NPs (as in the GREC challenge, for instance (Gatt
et al., 2009)) will not be taken into account.

Early REG approaches sought to find a mini-
mum set of attributes that jointly single out the ref-
erent, this is called the Full Brevity (FB) approach
(Dale, 1989), or to “greedily” add maximally dis-
criminatory attributes one by one, that is, adding
attributes one at a time, choosing always the one
that removes the largest number of distractors, un-
til the referent has been uniquely identified; this is
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called the Greedy algorithm (GR).
The approach that is often thought to be most

suitable for relatively simple referential situations
(cf. §6 below), known as the Incremental Algo-
rithm (IA), resembles GR to the extent that it adds
attributes one by one until the referent has been
singled out. However, the order in which the IA
selects attributes is not based on their discrimina-
tory power (as was the case with GR), but on their
place in what is known as the Preference Order
(PO). The PO is a list that works like an oracle that
tells us in what order Attributes should be selected
and, although efforts have been made to determine
the PO on independent grounds, in practice it is
nontrivial to find the best PO for a given REG task.
Thus each PO defines another IA. Therefore, when
we evaluate our own REG approach in §4.3, we
will not only compare it with FB and GR, but with
a number of different IAs, with different POs.

Statistical methods have come to REG relatively
late. The hybrid approach of Di Fabbrizio et al.
(2008) used statistical methods to determine the
PO of the IA. The Bayesian approach of Frank
and Goodman (2012) went further, but although
it has some attractive features, it does not yet per-
form at the same level as IA. Other statistical ap-
proaches have focussed specifically on the logical
structure of complex REs (FitzGerald et al., 2013)
and on collaborative aspects of referring (Garoufi
and Koller, 2014), among other issues.

REG algorithms have typically focussed on
Content Selection (i.e., selection of semantic at-
tributes). For example, when the usefulness of
REs for readers was addressed in the Shared Task
Evaluation Challenges (STECs; Gatt and Belz,
2010), the sets of properties produced by each of
the algorithms submitted to the STECs were con-
verted into actual Noun Phrases (by one and the
same simple Linguistic Realisation algorithm) be-
fore they were shown to readers.

3 Summary of the Text-Reassembling
Generation Model

We are developing a new approach to NLG (Li,
2019), which we call the Text-Reassembling Gen-
eration (TRG) model. Earlier experiments with
this method have focussed on the SUMTIME cor-
pus (Sripada et al., 2002), and more specifically on
Lexical Choice and the generation of SUMTIME-
style sentences such as “MAINLY W-NW 10
OR LESS” (a brief weather prediction about the

Table 1: A simplified training corpus for training
the Vector-Based Approach to NLG. Wind speed
(ws) are expressed in Knots and wind direction
(dir) is presented by Compass points.

Text Data
W 10-12 {ws=10,dir=265}
WS 22-24 {ws=22,dir=130}
MAINLY 10 OR LESS {ws=9,dir=10}
... ...

strength and direction of wind). In the present pa-
per, we show how this approach can be adapted
to perform the REG task (a task not previously
considered in this work). Here we sketch the out-
lines of TRG; the next section applies these ideas
to REG.

TRG uses a generation strategy that we call
“splitting-and-reassembling”. It splits the training
sentences into text fragments (i.e. the strings con-
sist of words, numbers, punctuations, and so on)
during training; then, it reuses (reassembles) the
fragments to generate new sentences. The training
process aims to extract sentence fragments. From
a training corpus, the approach learns what frag-
ment express what non-linguistic data by inspect-
ing what non-linguistic data most likely co-occurs
with what fragment.

Vector-based Knowledge Representation (KR)
is often used in deep learning-based and other Ma-
chine Learning approaches (Ramachandram and
Taylor, 2017). TRG adopts attribute-value pairs
for representing non-linguistic data (see §4.1 for
details), and the attribute-value pairs are further
represented by vectors. Table 1 presents a simpli-
fied training corpus of SUMTIME sentences about
wind. For example, the fragment “10-12” co-
occurs with ws=10 (i.e., the first data record). If
this pattern was observed frequently in the training
set, our model can learn that the fragment “10-12”
expresses ws=10.

Another part of our approach is schema extrac-
tion, in which each text fragment is replaced by a
placeholder that leaves out everything except the
type of attribute expressed. After the replacement,
the text becomes a sequence of placeholders, and
we call the sequence the schema. For example, re-
visiting the example of Figure 1, the three corpus
texts are transformed into two schemas:

W 10-12 ⇒ [direction] [speed]
WS 22-24 ⇒ [direction] [speed]
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MAINLY 10 OR LESS ⇒ [speed]

The two schemas are:

schema 1: [direction] [speed]
schema 2: [speed]

where the placeholders are denoted by square
brackets.

Generation is a two-step process: given a set of
non-linguistic data as input, TRG firstly selects a
schema. It then replaces each placeholder in the
schema with a text fragment which expresses the
non-linguistic data (i.e., the input). Note that this
approach can generate texts which do not appear
in the training corpus. Because TRG represents
input data by vectors, both schema selection and
text fragment selection are based on vector com-
parison between the input data vector and corpus
data vectors. Unlike most of its predecessors, it
is purely statistical in that it does not use a hand-
crafted grammar or other hand-crafted rules.

4 The Vector-Based REG Algorithm

In this section we show how the TRG algorithm
was made to apply to REG, which generates ex-
pressions that distinguish a target from its dis-
tractors. A RE typically expresses only a subset
of the features of the target referent. For exam-
ple, although in the Tuna corpus, furniture has 4
properties including type, colour, size, and
orientation. Speakers referring to a large red
frontal chair (in the presence of other large frontal
chairs) may only say “the red chair”, because this
suffices to distinguish the referent from all the
other objects in the domain (called the distractors).
The choice of features tells us something about the
referent, but also about the differences between the
target(s) and distractors.

To generate an appropriate referring expression,
information of both the target and the distractors
needs to be considered. To bring REG within the
scope of TRG, we therefore combine the features
of the target referent with the differences between
the target and distractors, treating this as a new
group of features. Then we generate a RE as well
as a description of the new group, and this descrip-
tion is the textual RE for the target. The resulting
algorithm is called the Vector-Based approach to
REG (VB-REG).

In the following sections, we first introduce how
we represent a domain object (i.e., a target or a
distractor) and the differences between the target

colour = 𝑟𝑒𝑑,	

[ 1,  0,  0,  0,  1,  0,  1,  0,  0,  0,  1,  0,  0,  0 ]

typecolour size orientation

orientation = 𝑓𝑟𝑜𝑛𝑡𝑎𝑙size = 𝑙𝑎𝑟𝑔e,
type = 𝑐ℎ𝑎𝑖𝑟

Figure 1: An example of vector represen-
tation for a domain object with the fea-
ture set {colour=red, size=large,
type=chair, orientation=frontal}.

and distractors (§4.1). We then discuss our strat-
egy for generating REs for a target referent (§4.2
and §4.3). Finally, we explain how to generate an
actual referential noun phrase (§4.4).

4.1 Representing a Reference Problem as a
Fixed-Length Vector

We represent a target or a distractor with fea-
tures which are represented as attribute-value
pairs, e.g., colour=red and type=chair.
Here colour and type are attributes and
red and chair are the values. A chair
whose colour is red, size is large, and ori-
entation is frontal can be represented by the
feature set: {colour=red, size=large,
type=chair, orientation=frontal}.

In order to apply our model, we need to repre-
sent feature sets in a vector. Recall that there are
in total 14 features in the Tuna corpus (Gatt et al.,
2007); they are:

colour=red type=chair
colour=blue type=desk
colour=green type=fan
colour=grey type=sofa
orientation=front size=large
orientation=back size=small
orientation=left
orientation=right

We therefore use a 14-dimension vector to
represent an arbitrary feature set, with each
dimension corresponding to an attribute-value
pair. Also, each dimension is a binary vari-
able (i.e., 1 or 0), with 1 indicating that the
corresponding feature appears in the feature
set, and 0 otherwise. In this way, the fea-
ture set {colour=red, size=large,
type=chair, orientation=frontal}
of the expression “a large red frontal
chair” can be converted to a vector
[1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], that we
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Table 2: An example of a simplified REG case
from the Tuna corpus.

Target: {colour=grey,size=large,...}
Distractor 1: {colour=blue,size=small,...}
Distractor 2: {colour=red,size=large,...}
Distractor 3: {colour=blue,size=large,...}
Distractor 4: {colour=red,size=large,...}

call the target vector (namely t). Two objects are
indistinguishable if their vector representations
are the same.

Since the words that are used for referring to
an object depend not just on that object (i.e., the
referent), but on other objects as well (i.e., the dis-
tractors), we model the difference between a tar-
get and its distractors with an additional vector,
which we call the difference vector (d). In con-
trast to the feature set vector, here, the difference
vector has only 4 dimensions, with each dimen-
sion corresponding to one of the attribute types of
the Tuna corpus, i.e., colour, size, type, and
orientation. The value of the dimensions in-
dicates the degree to which the target differs from
the distractors for a corresponding attribute.

Let attr be an attribute, Pattr the probability
that the value of attr of the target matches the
same attribute value of any of the distractors.

Pattr =
count(attrtarget = attrdistractor)

count(distractor)
(1)

We show how to compute the difference vector d
with the example in Table 2.

In Table 2, the value of the colour attribute of
the target is grey. However, no distractor has the
same value for the colour attribute, meaning that
Pcolour = 0. Thus, we have

d(colour) = 1− Pcolour = 1 (2)

This means that target’s colour is very different
from the distractors, i.e., an outlier among the
colour of the distractors. For the size attribute,
target’s size feature (i.e., size=large) occurs
three times among the four distractors. Thus, we
have

Psize =
3

4

d(size) = 1− Psize =
1

4

That indicates that the size of the target is unlikely
to be an outlier to the distractors. Finally, the dif-
ference vector d is given as

d = [d(colour),d(size),d(type),d(orien)] = [1,
1

4
, ...]

As we described, the referring expression gen-
eration considers both the target information (pre-
sented by t) and the differential (presented by d)
between the target and distractors. We join the two
vectors as a big vector (namely knowledge vector
or k) for combining the two parts of information.
In this case, k is:

k = [ t
... d ] = [1, 0, 0, 0, ..., 1,

1

4
, ...]

In this way, the two parts of information are
merged together, and the length of k is fixed, even
though the number of distractors varies. A tra-
ditional REG task is, therefore, represented by a
fixed-length vector, the REG processing can be
performed by our NLG algorithm. The following
steps sketch the process for doing this.

4.2 Extracting Schemas From a Corpus
So far, we represented REG tasks as knowl-
edge vectors; this section extracts from the cor-
pus a set of what we call expression schemas, or
schemas for short. Both the knowledge vectors
and schemas will be used to train the REG model.
A schema represents the overall structure of an
RE. For example, from an occurrence of “the red
chair” in the corpus, we extract the schema

“the” [colour] [type]

Similarly, “the old man wearing glasses” derives
the schema

“the” [age] “man” [hasGlasses]

The words are replaced according to the align-
ment labels in the training corpus. For exam-
ple, in Tuna corpus, the words “red”, “chair”,
“old”, and “wearing glasses” are labelled with
colour=red, type=chair, age=old, and
hasGlasses=true respectively in the two
sample expressions (Figure 2). In this way, we ex-
tract a schema from each corpus expression.

4.3 Schema Selection
This step uses schema selection to perform tra-
ditional REG attribute selection, among other
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Figure 2: The (simplified) alignment examples for
human-produced expressions in Tuna corpus in
XML format.

things. It focusses on how to obtain a schema
for a given REG task (represented by a knowledge
vector i.e. our vectorised KR), focussing on what
attributes should be expressed. Instead of creat-
ing new schemas, we reuse the existing schemas
extracted from the training corpus. Because the
schemas omit the specific attribute values, multi-
ple expressions share the same schema (and mul-
tiple schemas share the same set of placeholders).
To select a schema for a given RE task, we adopt
the lexical selector of Li et al. (2016) as schema se-
lector, which is fully statistical, and which accepts
the knowledge vector.

To train the schema selector, we represent each
unique schema i extracted from the training corpus
as a column vector (denoted by sTi ), whose dimen-
sion is equal to the total number of data records
in the training set M. If the schema of the j-
th data record of the corpus is same as schema i,
then the j-th element of sTi equals 1, and 0 oth-
erwise. In addition, we also need to construct a
matrix (namely K) which encodes the informa-
tion of all the data records of the corpus. K con-
sists of knowledge vectors of each feature group of
the training data, with each row corresponding to a
knowledge vector k of a data record. Suppose the
training corpus includes m records and n features
in total, then K is a m − by − n matrix. Based
on K and sTi , our model training process finds a
projection vector (i.e., the column vector pT

i ) of

Equation 3 by Least Square (Li et al., 2016).

K · pT
i = sTi (3)

pT
i = pinv(K) · sTi (4)

The projection vector pT
i indicates how the infor-

mation of a knowledge vector kr projects on the
use of the schema i. Therefore, a weight (wr) that
i should be adopted for expressing r is estimated
by Equation 5.

wr = kr · pT
i (5)

When every pT
i is found, given an unseen knowl-

edge vector (k∗), we select the schema (denoted
by x) for k∗ such that x maximises k∗ · pT

i=x (Li
et al., 2016):

x = argmax
x

(k∗ · pT
i=x) (6)

When a schema is selected, we pick up and out-
put the attributes of all the placeholders within the
schema as the outcome for the REG task. Note that
in the Tuna corpus, a given referent can never be
described using two different values of the same
attribute (e.g., a sofa cannot be both red and blue).
Therefore, selecting attributes suffices for this part
of the REG task.

In the above we have focussed on attribute se-
lection. However, when a schema is selected, we
do not only select attributes, we also fix the over-
all syntactic pattern of the RE. Thus, schema se-
lection performs an important part of Linguistic
Realisation as well.

4.4 Generating Complete Referential Noun
Phrases

Expression schemas contain a lot of information
about a referential Noun Phrase – including its
syntactic structure and the use of function words –
but they still contains placeholders for attributes.
This section focuses on generating textual REs.
The remaining generation task is to replace place-
holders by actual words, after schema selection.

Analogous to schema selection, we adopt the
selector of (i.e., Li et al., 2016) to do this. Place-
holders are classified according to their corre-
sponding attributes (e.g. colour or type). Two
placeholders belong to the same class if they ex-
press the same attribute (whatever they are in the
same or different REs), and we train an individual
lexical selector for each class of placeholders.
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For each placeholder class, we first build up
a small training corpus that consists of all the
words (or multi-word phrases) corresponding to
the placeholder, with the features that the word (or
the multi-word phrase) expresses.

Looking through the Tuna corpus, from the ex-
pressions, for example, “the red sofa” and “the
blue chair”, we find that the placeholder [colour]
can be described by words “red” and “blue”. So
the extracted small corpus for [colour] contains the
two words, which is shown in Table 3

Table 3: The extracted small corpus for place-
holder [colour] from Tuna corpus

Text Data

red {colour=red}
blue {colour=blue}
... ...

Then, for each class of placeholder (e.g. for
[colour]), we train a lexical selector with the cor-
responding small corpus (e.g. Table 3). The train-
ing and word selecting processes are the same as
in Schema Selection (§4.3). First, the words (and
phrases) and corpus data in the small group are
represented by vectors and a matrix; then they are
used to find the projecting vectors through Equa-
tion 3; finally, words (or word phrases) are se-
lected through Equation 6 for the placeholders of
the class according to the given knowledge vector
(that used to select the schema). Therefore, after
selecting a schema, we replace its placeholders by
the selected words (or word phrases) to transform
the schema into a textual expression.

To summarise our approach to REG, we gener-
ate a textual RE (i.e., a Noun Phrase) for a REG
task by adopting a three-step generation strategy:
Given a REG task, we first represent the task as
a knowledge vector which includes the knowledge
of both target and distractor. Secondly, we select
a schema, and finally, select words for each place-
holder in the schema. If the process stops just af-
ter the schema selection, we still achieve the tradi-
tional RE task by picking up the attributes of the
placeholder in the schema as the selected attribute
set.

5 Evaluating the VB-REG Algorithm

We evaluated both Attribute Selection and Lin-
guistic Realisation by making use of the Tuna cor-

pus (Gatt et al., 2007), which contains two do-
mains: Furniture and People. The Tuna corpus
consists of corpus records; each record consists
of a REG trail (i.e. one or two targets and some
distractors) and a Noun Phrase produced by a par-
ticipant to express the target. The Noun Phrases
were collected in two conditions: the participants
were either allowed to use location descriptions
(e.g. “in the top left”) or not (van der Sluis et al.,
2006).

Here we focus on those corpus records which
have one singular target object (rather than a set of
two) and where the locational descriptions were
not allowed to use. There are 210 corpus records
in Furniture domain, and 180 records in People do-
main. We also discarded the records in which the
locational descriptions were still used.

Our evaluation assumes a type of Knowl-
edge Representation based on an attribute-value
schema. Corpora such as ReferIt (Kazemzadeh
et al., 2014), which do not use this type of KR,
are not directly amenable to this approach.

5.1 Evaluating Attribute Selection in the
VB-REG Algorithm

We evaluate the quality of our attribute selection
using Dice score and PRP (Perfect Recall Percent-
age) scores, which are the most often used REG
evaluation metrics (Van Deemter, 2016). Dice cal-
culates the degree of similarity between sets: in
our case, the set of properties expressed by the REs
in the corpus versus the set of properties expressed
by the REs generated by our algorithm; PRP gives
the percentage of cases in which a generated RE
expresses exactly the same properties as an RE in
the corpus.

For each domain, we randomly divided the tri-
als into two parts of the same size, for training
and testing respectively. We repeated the experi-
ment 10 times with different division of the trails
to perform 10-fold cross-validation. We trained
our model as explained in §4; then, we selected
attributes for the testing data, and calculated the
Dice and PRP scores based on the expressions of
test data and the attributes generated. The scores
of 10-fold cross-validation are shown in Table 4.
The average Dice score (Mean) of the 10-fold ex-
periments of Furniture domain is 0.916 with PRP
being 61.6; for People domain, the average Dice
score is 0.848 with PRP being 46.0.

To compare with other REG algorithms, we
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Table 4: REG evaluation results, showing Dice
scores, standard deviation (SD), PRP scores

Furniture People
Dice SD PRP Dice SD PRP

fold 0 .930 .11 66.2 .828 .19 40.0
fold 1 .907 .13 60.3 .813 .22 44.8
fold 2 .917 .11 59.5 .854 .18 48.5
fold 3 .915 .12 60.6 .852 .18 46.6
fold 4 .914 .11 58.3 .885 .16 58.9
fold 5 .932 .12 69.2 .838 .17 44.8
fold 6 .924 .11 64.9 .832 .15 34.9
fold 7 .905 .13 60.3 .815 .17 36.4
fold 8 .923 .10 60.0 .892 .14 56.3
fold 9 .894 .14 56.6 .871 .15 49.2
Mean .916 .12 61.6 .848 .17 46.0

Table 5: The performance comparison of our al-
gorithm (VB-REG) with the Incremental Algo-
rithms, Full Brevity algorithm, and Greedy Algo-
rithm on Furniture domain.

Dice SD PRP

IA-COS .917 .12 6.9
IA-CSO .917 .12 6.9
IA-RAND .840 .15 31.4
IA-OCS .829 .14 25.0
IA-SCO .815 .14 19.2
IA-OSC .803 .16 22.4
IA-SOC .780 .16 18.6
FB .841 .17 39.1
GR .829 .17 37.2
VB-REG .916 .12 61.6

show the tables from Van Deemter (2016, see Ta-
ble 5 and Table 6) which shows the performance
of the classic REG algorithms on the part of the
Tuna corpus on which we focus (i.e., excluding
location and references to sets): Full Brevity al-
gorithm (FB), Greedy Algorithm (GR), and Incre-
mental Algorithms (IA-xxx), the IA-xxx suffixes
denote different Preference Orders. For exam-
ple, IA-COS is the version for the furniture corpus
that had colour (C), orientation (O), and size (S)
as its first-most, second-most, and third-most pre-
ferred attribute; IA-GBHOATSS was the version
of IA for the people corpus that used the Pref-
erence Order has Glasses, has Beards, Hair, etc.

Our approach, which is statistical and domain
independent (hence does not distinguish between
the furniture and people domain), preforms ex-
tremely well compared to the classic algorithms.

Table 6: Performance comparison of our al-
gorithm (VB-REG) with the Incremental Algo-
rithms, Full Brevity algorithm, and Greedy Algo-
rithm on the People domain.

Dice SD PRP

IA-GBHOATSS .844 .17 44.7
IA-BGHOATSS .822 .17 36.4
IA-GHBOATSS .776 .21 29.5
IA-BHGOATSS .728 .19 15.9
IA-HGBOATSS .688 .18 3.8
IA-HBGOATSS .658 .20 4.5
IA-RAND .598 .23 11.4
IA-SSTAOHBG .344 .11 0.0
FB .764 .23 34.1
GR .693 .20 8.3
VB-REG .848 .17 46.0

Although our Mean Dice Score of Furniture do-
main (i.e. 0.916) is slightly lower than the cham-
pion, our algorithm beats the others in all other
columns (Mean Dice scores of People domain and
PRP for both domains).

5.2 Evaluating the fluency of NPs generated
by the VB-REG algorithm

We also evaluate the fluency of the Noun Phrases
generated by the VB-REG algorithm. We decided
to use BLEU as a metric, with Noun Phrases pro-
duced by human experts as our baseline, using the
same Tuna records and the same experimental set-
tings as before. For each domain, the Tuna corpus
was, once again, randomly divided into two parts:
the training corpus and testing corpus.

The training corpus is only used to train the VB-
REG model. After training, the model selects at-
tributes and generates textual REs for each test-
ing corpus data. The selected attributes are shown
to 2 experts who are familiar with NLG but not
with the Tuna corpus. The experts were also pro-
vided with relevant corpus texts. Then they were
asked to produce referring expressions (i.e., Noun
Phrases) for the attributes. They were asked to
work individually, then discuss and produce only
one answer sheet that both of them agreed on. The
experts thus worked as a human Surface Realiser.

For each data in the testing corpus, we obtained
three Noun Phrases: one generated by VB-REG
algorithm, one produced by human experts; the
third one was the original expression in the test-
ing corpus. We calculated the BLEU scores of
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Table 7: 10 fold REG evaluation results of BLEU
scores

Furniture People
VB-REG expert VB-REG expert

fold 0 .837 .889 .964 .923
fold 1 .751 .844 .910 .904
fold 2 .864 .815 .973 .923
fold 3 .873 .834 .931 .899
fold 4 .840 .844 .963 .888
fold 5 .822 .745 .979 .948
fold 6 .960 .793 .949 .977
fold 7 .853 .807 .883 .900
fold 8 .781 .901 .968 .897
fold 9 .840 .928 .983 .958
Mean .842 .840 .950 .922
p-value .943 .026

the generated expression and expert expression
by using the testing corpus (the corpus expres-
sion) as the reference for BLEU. Finally, we calcu-
lated the mean scores of every testing record. We
performed 10-fold cross-validation; outcomes are
shown in Table 7. The high BLEU scores suggest
that our model achieves high fluency levels. In the
furniture domain, our model performs at a similar
level as the experts (no significant difference); in
the people domain, our model “outperforms” our
experts (p = 0.026). The p-values are calculated
by a paired sample t-test.

6 Discussion

We have proposed a statistical model for automat-
ically selecting attributes for REG and expressing
these in an actual noun phrase. Our evaluation
shows that the method performs well in terms of
both attribute selection and text fluency.

Unlike previous approaches to REG (see e.g.,
§2), the VB-REG algorithm does not contain the
idea of unique identification in any shape or form.
Instead of singling out the referent from the dis-
tractors, our approach simply learns how human
speakers refer. This approach has interesting
consequences, not least for the dual phenomena
of over- and under-specification, on which much
work on REG has focussed. In a nutshell, our ap-
proach generates over- and under-specified REs to
the extent that they occur in the data. Thus, if a
corpus contains many underspecified REs (as may
be the case if the corpus is based on children’s
speech, e.g., (Matthews et al., 2012)), then our

REG algorithm will loyally reproduce these. If our
corpus contains many highly over-specified REs
(e.g. if the domain is complicated (Paraboni et al.,
2007) or contains a lot of clutter (Koolen, 2013)),
then so will our algorithm.

Referring Expressions Generation is more than
the relatively simple reference task on which we
have focussed here. For example, reference can
use logical operators such as negation; reference
can be to sets (including e.g. geographic regions
(Turner et al., 2010)); it can involve gradable at-
tributes; it can involve guesses about the hearer’s
knowledge (R.Kutlak et al., 2016); it can involve
collaboration between speaker and hearer (Garoufi
and Koller, 2014), and so on (Van Deemter, 2016).
Although our evaluation has focussed on the sin-
gular part of the Tuna corpus only, we believe that
the VB-REG approach is suitable for dealing with
the above complications, provided some adapta-
tions are made to our KR method (e.g. allowing
us to represent how a set of target referents differs
from all other domain elements). We hope to test
this hypothesis in future.

VB-REG generates textual REs through schema
selection and word selection. This generation
strategy suffices for generating the type of REs
found in the TUNA corpus, as we have seen, but
syntactically complex REs can pose a problem.
Consider the expression “the old man carrying a
young dog”, whose schema is

“the” [age] “man carrying a” [age] [animal]

, containing two placeholders for age. When VB-
REG selects words for [age] (as in §3) above, it
lacks the information that the [age] is for the man
or the dog. In this case, VB-REG would select the
same word for the two [age] placeholders. This
limitation stems from the NLG approach in which
VB-REG is embedded; if VB-REG is embedded
into an NLG approach that does not have this lim-
itation (e.g., providing a mechanism to distinguish
the two [age] placeholders), the resulting algo-
rithm will not suffer from this limitation.

In addition, VB-REG adopts the strategy that
all the schema shares the same set of placehold-
ers to adapt to small-scale corpus (e.g. Tuna), but
the strategy may cause a syntactically error. Se-
lection of lexicalisations for placeholders is done
without taking the context of the schema into ac-
count. However, it is not guaranteed that all lex-
icalisation always fits into all placeholder (of dif-
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ferent schemas). For example, we could have the
following two textual descriptions:

“the man wearing glasses”
“the bespectacled man”

They would lead to the schemas:
“the” “man” [hasGlasses]
“the” [hasGlasses] “man”

where both “wearing glasses” and “bespectacled”
present the candidate phrases for the placeholder
[hasGlasses]. Thus the generated textual REs
could be ”the man bespectacled” or ”the wearing
glasses man”, which are not syntactically correct.
Although the strategy works well in our evalua-
tion, it would be safe if a restrictive strategy is
adopted. If the scale of training corpus allows, we
can let each schema use an unique set of place-
holder (i.e. placeholders are no longer shared by
schemas). Because usually multiple corpus texts
derive the same schema, the frequent schemas still
obtain enough training data under the restrictive
strategy.

7 Conclusion and Future Work

This paper has presented REG as a special case
of NLG. It is important to note that the key strat-
egy that we employed for representing an REG
task – which separates properties of the refer-
ent from differences between the referent and
the distractors – can be applied to any vector-
based NLG approach, for example the neural-
network-based NLG approaches (e.g. Wen et al.,
2015) and Concept-based NLG approaches (e.g.
Belz, 2008; Konstas and Lapata, 2013). In this
way, these NLG approaches can perform REG
by adopting our knowledge representation as their
input. Neural-network-based approaches adopt
fixed-length vectors as their input, and generate
texts word by word, so our knowledge vectors and
the corresponding corpus texts can be used to train
them. Concept-text generation models can like-
wise adopt vectorised inputs. These approaches
usually adopt concept sets (i.e. sets of pairs of at-
tributes and values) as their input. Vector-based
KR can be transformed into concept sets by re-
garding the vector entries as pairs of an entry index
and an entry value. Thus our knowledge vectors
can be adopted by these approaches.

One important item for future work is further
evaluation. Although the model performs very
well on the Tuna reference task, further exper-
imental evidence on more challenging reference

tasks is required in order to assess the generality of
the proposed approach. It would be interesting, for
instance, to apply the method to the ReferIt corpus
(Kazemzadeh et al., 2014).
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Abstract

In this paper we study empirically the va-
lidity of measures of referential success
for referring expressions involving grad-
ual properties. More specifically, we study
the ability of several measures of referen-
tial success to predict the success of a user
in choosing the right object, given a refer-
ring expression. Experimental results in-
dicate that certain fuzzy measures of suc-
cess are able to predict human accuracy in
reference resolution. Such measures are
therefore suitable for the estimation of the
success or otherwise of a referring expres-
sion produced by a generation algorithm,
especially in case the properties in a do-
main cannot be assumed to have crisp de-
notations.

1 Introduction

Referring expression generation (REG) is one
of the subtasks of Natural Language Generation
(NLG) systems. Given a context comprised of a
set of objects and a collection of properties that
can be predicated of those objects, the REG prob-
lem is to find referring expressions – that is, sub-
sets of those properties – that allow a user to lo-
cate a specific object and distinguish it from its
distractors (Dale and Reiter, 1995; Krahmer and
van Deemter, 2012; van Deemter, 2016).

The task definition given above corresponds to
the content determination part of REG; in standard
accounts, REG also involves a realisation step in
which the form of a referring expression needs to
be determined (Castro Ferreira, 2018).

From a general point of view, the REG problem
intends to emulate through automatic means the
process carried out by a human being whose pur-
pose is to identify a certain object in a specific

context, using natural language, so that another
receiving user is able to precisely and univocally
identify it.

One source of complexity for REG is context-
dependence and graduality. This has become in-
creasingly evident in work that has sought solu-
tions to the REG problem in naturalistic scenes,
as part of a broader research focus on the vision-
language interface (Kazemzadeh et al., 2014; Mao
et al., 2016; Yu et al., 2016). However, con-
text dependence is also a central concern for ap-
proaches to REG that assume a more structured in-
put representation where entities and their proper-
ties are available, but the extent to which a prop-
erty applies to a referent is not necessarily an all-
or-none decision (Horacek, 2005; van Deemter,
2006; Turner et al., 2008; Williams and Scheutz,
2017). Under these conditions, it is no longer
possible to assume that properties are crisp or
Boolean, or even that both sender and receiver
necessarily assume the same semantics for those
properties. For example, it may not be realistic to
assume that all objects are red to the same degree,
or that both sender and receiver have the same
model of what counts as ‘red’. Furthermore, the
utility of the term ‘red’ in identifying the refer-
ent will depend in part on context, that is, whether
there are any other red entities, and whether they
are red to the same extent.

The above issues affect how referential success
is to be defined, that is, what criteria an algorithm
should use to determine whether a candidate re-
ferring expression is likely to succeed in helping
a receiver identify the intended referent. There
are three questions that arise in this connection:
1) How to model the semantics of gradual proper-
ties, 2) how to compute the degree of success of a
candidate referring expression based on those se-
mantics; and 3) whether such a measure of the de-
gree of success is valid, in the sense that it indeed
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correlates with the ease and success with which a
receiver in fact resolves the reference.

In this work we present the results of an empir-
ical study of these issues, using geometric objects
and basic properties such as color, size and posi-
tion, all of which can be viewed as gradual. As
we shall see, in relation to question number 1, we
take results from the theory of fuzzy sets for the
modeling of properties. In relation to question 2,
the use of eight gradual measures related to refer-
ential success, which derive from the well-known
concept of specificity of possibility distributions,
is proposed. In relation to the third, an experimen-
tal study is made to validate these measures, as
well as to gain a better understanding of the fac-
tors influencing referential success in the presence
of gradual properties. The results are encourag-
ing, in that they show that specificity measures do
predict behavioural outcomes and hence that the
framework proposed here provides a plausible ac-
count of success that can be incorporated in exist-
ing REG algorithms.

The rest of this paper is organized as fol-
lows: Section 2 introduces the problem of referen-
tial success of referring expressions with gradual
properties, and the role specificity measures can
play in this setting. In the same section we de-
scribe the set of measures that will be employed
in the study. Section 3 describes an experiment
to evaluate whether such specificity measures are
useful in predicting the success of a referring ex-
pression. The results of the experiment are pre-
sented in Section 4. Finally, Section 5 is devoted
to some discussion and conclusions.

2 Background

A referring expression re = {p1, . . . , pn} is said
to have referential success for a certain object o
when the object is the only one satisfying all the
properties in the expression re. Formally:

⋂

p∈re
[[ p ]] = {o} (1)

where [[ p ]] is the set of objects satisfying p.
When the properties are Boolean the above ex-

pression is both Boolean and easy to compute.
Many REG algorithms are in fact couched as
search procedures, where the process of search-
ing for a combination of properties terminates as
soon as the criterion in (1) is fulfilled (Dale and
Reiter, 1995; Krahmer and van Deemter, 2012).

Additionally, since it is assumed that both sender
and receiver have identical interpretations of the
semantics of the relevant properties, it is accepted
that when Eq. (1) holds, the receiver should be
able to identify the target object, at least in princi-
ple. In practice, the ease and/or speed with which
references are both produced and resolved by hu-
mans depends also on whether the choice of prop-
erties conforms to preferences, salient characteris-
tics of objects, etc (Pechmann, 1989; Tarenskeen
et al., 2015; Rubio-Fernandez, 2016).

However, in many application domains we work
with gradual properties instead of Boolean ones
(Gatt et al., 2016; van Deemter, 2006; Turner et al.,
2008). This means that the success criterion in 1)
no longer applies, unless the properties in question
are transformed into crisp ones, as is done for ex-
ample in the conversion of numerical properties to
inequalities by van Deemter (2006). This, how-
ever, is not easily applicable to properties that are
not typically modelled as numeric, but which are
still gradual. Examples include colour (to what
extent is the object red?) or location (how far to-
wards the top or the left is the object?).

2.1 Properties as fuzzy sets

In this paper, the theoretical starting point for a
treatment of referential success as gradual is a set
of insights developed within the field of Fuzzy Set
Theory and used to determine the core properties
that measures of referential success need to satisfy
(Marı́n et al., 2016).

In Fuzzy Set Theory, gradual properties (i.e.
properties in which objects have varying degrees
of membership) are modelled using possibility
distributions and associated with linguistic terms
through tools such as linguistic variables or, more
broadly, the results of the Computational Theory
of Perceptions (Zadeh, 1999).

Possibility distributions are fuzzy sets that rep-
resent the available information about the actual
(unique) value of a given variable. In the context
that concerns us, these types of functions can be
used to represent the available information about
what object a given expression refers to, whereby
degrees of possibility indicate that some values are
more plausible than others.

Thus, in order to analyze the referential success
of the expression, it is useful to determine how
difficult it is to find out the actual value (i.e. the
object referred to) among those that belong to the
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associated possibility distribution to a greater or
lesser degree. As a particular case, crisp sets can
be employed for such purpose, all values being
equally and completely plausible. For instance,
one may say that the value of a variable X is in
{3, 5, 6}, but we don’t know which value in the
set is the actual value of X .

2.2 The concept of specificity
For general (fuzzy) possibility distributions, the
well-known measures of specificity (Yager, 1982)
allow to determine how easy it is to determine the
real value in view of the possibility distribution
(that is, to which extent the distribution specifies
the value). This can be interpreted in some con-
texts as the extent to which a possibility distribu-
tion is a singleton (i.e. the possibility distribu-
tion clearly indicates a unique value). There are
infinitely many specificity measures, that can be
classified into different families (linear, product,
etc.). They serve to assess the amount of uncer-
tainty about the value of the variable. As an exam-
ple in the crisp case, the set {3, 5, 6} is less spe-
cific than the set {3, 5}, and hence X ∈ {3, 5, 6}
is a more uncertain statement than X ∈ {3, 5}.
Several additional theoretical results have been ad-
duced based on this core insight (Dubois and
Prade, 1987; Yager, 1990, 1992; Garmendia et al.,
2003; Marı́n et al., 2017b).

The definition of specificity measures suggests
a clear connection with the concept of referen-
tial success that is particularly useful when fuzzy
properties are involved: A referring expression re
has referential success to the extent that 1) the
(fuzzy) set of objects satisfying re, denoted by
Ore, viewed as a possibility distribution, is ‘spe-
cific’ (in the sense explained above), and ii) Ore

contains the object intended to be referred.
Hence, the referential success of an expression

re is upper-bounded by the specificity of the as-
sociated fuzzy set and the fulfillment of re by
the intended object. In recent theoretical work,
it has been shown that specificity measures can
be used to derive measures of referential suc-
cess for expressions containing gradual proper-
ties (Marı́n et al., 2016), and conversely, that ref-
erential success measures can derive specificity
measures (Marı́n et al., 2018).

2.3 Spsecificity measures
In view of the previous discussion, as indicated
by Marı́n et al. (2017a), given a fuzzy set asso-

ciated with a referring expression and a set of ob-
jects in a given domain of discourse, the specificity
of the fuzzy set indicates to what extent there is
some single object of which the expression is true,
that is, to what extent this expression has referen-
tial success in the set for some (unknown) object.
Since there is an infinity of possible specificity
measures, an important question is which family
of measures is useful and empirically valid in the
context of REG. We shall restrict our experimental
study to the validity of a few measures that have
been shown to be the most suitable for our pur-
poses from a theoretical perspective (Marı́n et al.,
2017b).

Let O be the universe of objects in a given con-
text. Let A ∈ [0, 1]O with |O| = m be the possi-
bility distribution associated with a given referring
expression. Let us consider that memberships of
objects in A are ranked as a1 ≥ a2 ≥ · · · ≥ am.

Taking into account the previous framework,
the specificity measures considered in this work
are shown in table 1a. All these measures sat-
isfy an important property for our purposes: when
there are two objects that comply with the refer-
ring expression to degree 1 (that is, when a2 = 1),
the measures yield 0, which is a desirable result in
terms of referential success (since it indicates that
the expression is applicable to at least two objects,
rather than just the target). Intuitively, this implies
that if a target referent with property p has a sim-
ilar distractor with p, a referring expression that
uses p will be less successful.

The value computed by these measures can be
thought of as reflecting the distance between a2
and a1, that is the distance, in terms of their mem-
bership in re, between the second-ranked and the
highest-ranked entity in re of the second-ranked
entity a2, from the This is due to the fact that in
all the cases, specificity is upper bounded by the
value of a1. As a consequence, in the particular
case that the fuzzy set A is not normalized (that
is, when a1 < 1), the measure can yield the same
value for different situations. For instance, m1 in
Table 1, yields the same value in case a1 = 1,
a2 = 0.5 and in case a1 = 0.5, a2 = 0.

In order to distinguish these two cases, we pro-
pose to use measures that work as indices of the
relation between the measures in Table 1, and the
value of a1. These are shown in table 1b, and
are defined as follows: mi in Table 1b is obtained
from mi−1 in Table 1a as mi−1/a1, assuming by
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Name Definition
m1 a1 − a2
m3 a1 ∗ (a1 − a2)
m5 a1 ∗ (1− a2)
m7 min{1, 1− a2}
(a) Specificity measures

Name Definition
m2 (a1 − a2)/a1
m4 a1 ∗ (a1 − a2)/a1
m6 a1 ∗ (1− a2)/a1
m8 min{1, 1− a2}/a1

(b) Normalised versions of measures in Table 1a.

Table 1: Specificity measures and their normalised counterparts

convention that a1 = 0 implies mi = 0 for all
measures in Table 1b. All measures in Table 1b
are in [0, 1]. Note that in case a1 = 1, that is, when
there is at least one object that fully complies with
the referring expression, measures mi in Table 1b
coincide with the corresponding measuresmi−1 in
Table 1a. As a final remark, note that m1 = m4.

3 Validating the specificity measures: An
experiment

We conducted an empirical study with a view to
addressing the third question highlighted in the
introduction, that is, to assess the validity of the
specificity measures introduced in the previous
section. The study took the form of an experi-
ment in which the task was to identify a referent
in a visual domain given a referring expression.
This yielded two behavioural measures, identifi-
cation time (id-time) and accuracy, both of which
have been previously used in task-based REG eval-
uations (Gatt and Belz, 2010). Our aims were
twofold: on the one hand, the experiment was in-
tended as an empirical investigation of the impact
of certain variables, notably gradability of proper-
ties, on the success of referring expressions; on the
other, the data serves as a testbed to see whether
the variance in id-time and (probability of) accu-
racy could be predicted by the measures in Table
1.

3.1 Participants

Twenty-one participants (17 male, age range 21–
54; median age 26), with different academic pro-
files (mostly staff of the University of Granada),
took part in the study. Participation was voluntary.

3.2 Materials and design

Each experimental item consisted of a visual dis-
play consisting of 5 geometric shapes (triangles,
circles and/or squares), one of which was the tar-
get referent, which was accompanied by a refer-
ring expression which mentioned one property in
addition to the head noun. There were four pos-

sible properties, for each of which 5 degrees of
membership distinct from 0 were defined:

1. Colour: Using the HSB colour space, all
colours had constant hue and brightness, with
membership defined in terms of saturation.

2. Size: Three different size intervals (small,
medium and large) were defined. An object’s
maximum membership in a given size was
defined in terms of whether the object fell to-
wards lower (resp. higher) extremes of the
interval in the case of small (resp. large), or
towards the middle of the interval in the case
of medium size.

3. Vertical location: The screen height was di-
vided into three equal-sized intervals, corre-
sponding to bottom, middle and top. Once
again, membership was highest for objects
close to the extremes of the intervals in the
case of bottom and top, and towards the mid-
dle of the interval otherwise.

4. Horizontal location: Treated as above, by di-
viding the width of the screen into three equal
intervals.

A further factor was similarity, which referred
to whether there was one distractor in the display
which was similar to the target on the identifying
property. Let m be the degree of membership of
some referent o in some identifying property p,
and let d be one of the distractors in the visual do-
main, with membership m′ in p. Then, o and d
were defined as similar if |m−m′| ≤ α for some
threshold α, and dissimilar otherwise. Thresholds
were set differently for the four properties.

The above is a 4 (property) × 2 (similarity) ×
5 (membership) within-subjects design. We cre-
ated 40 different target items with different shapes
and colour/size/vertical/horizontal combinations.
Items were rotated through a latin square so that
different participants saw different items in differ-
ent conditions.
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(a) Measure m2 (b) Measure m4

(c) Measure m6 (d) Measure m8

Figure 1: Specificity measures for the property Colour, by similarity and membership degree

3.3 Relationship to specificity measures

For a given experimental item involving a refer-
ring expression containing property p, it is pos-
sible to compute the specificity of the expression
based on the degree of membership of the target
referent in p. As an example, Figure 1 plots the
normalised measures in Table 1b against member-
ship degree for the two different values of simi-
larity, for the property colour (the plots are in fact
identical for all properties). Note that in the dis-
similar case, where no distractors are present that
are close to the referent, the specificity is either
maximal or linearly increasing with membership.
The opposite is true for the similar condition.

3.4 Procedure

The experiment was implemented as part of
an Android application called Refer4Learning
(Marı́n et al., 2017a), originally designed to help
teachers in the early stages of child education to
work on basic concepts such as color, size, or po-
sition of simple geometric objects. For the pur-
poses of the present experiment, a version of the
app was created for use with adult participants to
administer experimental trials.

Figure 2: Screenshot of the experiment app. The
referring expression in this case is the circle at the
medium height.

As shown in Figure 2, trials consisted of a vi-
sual display with an instruction of the form touch
the NP, where NP described the intended referent,
which contained the identifying property (e.g. the
circle at the middle height). The instruction was
also played as an audio file.

Of the four properties used, size required spe-
cial treatment. While the degree of membership
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in a colour or location property can usually be de-
termined based on the visual configuration or the
user’s knowledge (e.g. an object in a shade of pink
has less membership in red than a stereotypically
red object), for size, one typically requires refer-
ence points to determine what counts as stereotyp-
ically large, small etc, or else there is complete
reliance on a comparison to other objects in the
domain (van Deemter, 2006).

In the present case, this would result in a po-
tential confusion between membership degree (to
what extent is this object large?) and similarity
(how much larger is it than others?). Hence, a stan-
dard of comparison was provided for expressions
using size, showing three representative sizes for
the target shape. An example is shown at the bot-
tom of Figure 2, involving circles (since the target
referent and distractors happen to be circles in this
instance).

The app recorded the object a participant iden-
tified as well as the time taken to identify it. Each
participant saw the 40 trials in random order.

4 Results

The analysis proceeds in two stages. First, we in-
vestigate the impact of the fixed effects of prop-
erty, similarity and membership on participant re-
sponses as reflected in their id-time and accuracy.
Second, we analyse the relationship between the
primary measures of specificity and indexes pre-
sented in Section 2 and the results.

4.1 Effects of membership degree, similarity
and property

Figure 3a summarises the frequency of correct
responses, according to the identifying property,
the similarity condition, and the target’s degree of
membership in the identifying property. The same
is shown for mean reaction time in Figure 3b.

These figures suggest that similarity and mem-
bership degree had an impact on both accuracy and
id-time. However, the picture varies considerably
from one property to another. For example, accu-
racy goes down with increasing membership when
the identifying property is colour and there is a
similar distractor, while id-time is faster for size
as membership increases, particularly in the dis-
similar condition.

Figure 4 shows the impact of membership and
similarity more clearly, by aggregating over all the
four levels of the property fixed effect. Figure

4a shows that accuracy of identification is lower
when there is a similar distractor to the target.
In the case of id-time (Figure 4b), participants
took longer to identify the target in the presence
of a similar distractor. While membership degree
does not appear to exert a clear impact on time
in the similar case, in the dissimilar case, there is
a downward trend in id-time as membership de-
gree increases. This suggests that, in the absence
of a similar distractor, people resolved references
faster the more clearly the target belonged to the
identifying property.

In the remainder of this part of the analysis,
we use hierarchical mixed models, conducting an
analysis separately for accuracy (modelled as a bi-
nomial variable) and time. In each case, we first
build a separate model with each of the three fac-
tors as fixed effect, and establish whether the fixed
effect helps to predict the dependent by compar-
ing this model’s goodness-of-fit to that of a null
model consisting of only an intercept. We then
construct a full model combining all fixed effects
and their interactions and report the outcomes of
a significance test. Models for accuracy are logit
mixed models; those for id-time are linear mixed
models. All models include by-subject and by-
item random intercepts. Models are compared us-
ing log likelihood and the Bayesian Information
Criterion (BIC; lower values indicate better fit).
Membership is modelled as a continuous predic-
tor; similarity and property are centered around a
mean of zero to facilitate interpretation of main ef-
fects. Models are built using the lme4 package in
R (Bates et al., 2015); significance testing is con-
ducted with lmerTest (Kuznetsova et al., 2014).

Table 2 shows the simple model comparisons
for both accuracy and time. These suggest that of
all the single predictors, it is similarity that has the
highest explanatory value. The likelihood of par-
ticipants identifying the correct target can to some
extent be predicted from the membership degree
of the target in the identifying property, though
this model fits the data only marginally better than
the null model. The role of membership degree is
more clear in the case of id-time. There is no obvi-
ous impact of the type of property used to identify
the target referent.

Next, we combine all fixed effects and their in-
teractions in a single model to predict accuracy
and time. The breakdown of the models is shown
in Table 3. In both models, the effect of similarity
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(a) Accuracy (b) Identification time (id-time)

Figure 3: Time and accuracy as a function of property, similarity and membership (best viewed in colour).

(a) Accuracy (b) Identification time (id-time)

Figure 4: Time and accuracy as a function of similarity and membership (best viewed in colour).

Model BIC LL χ2

0. Intercept 546.74 -263.27
1. Similarity 502.31 -237.69 51.159∗∗∗

2. Membership 550.34 -261.7 3.134.
3. Property 552.88 -262.97 0.5939

(a) Accuracy
Model BIC LL χ2

0. Intercept 16019 -7996.1
1. Similarity 16003 -7984.5 23.313∗∗∗

2. Membership 16020 -7993.4 5.4181∗

3. Property 16024 -7995 2.2904

(b) Identification time

Table 2: Single-factor model comparisons. All
comparisons are to Model 0, the null model with
no fixed effects. BIC: Bayesian Information Cri-
terion; LL: Log Likelihood. ∗∗∗: significant at
p < .001; ∗: significant at p < .05; .: marginally
significant at p ≥ .05.

turns out to be due to its interaction with mem-
bership degree. This corresponds to observations
made above in connection with Figure 4: As mem-
bership degree increases, participants were more
likely to identify the wrong target, and were slower
in responding, in case there was a similar distrac-
tor.

On the other hand, a main effect of property is
also evident. The nature of this main effect can
be interpreted with reference to Figure 3 where, as
noted above, the impact of membership degree and
similarity differs between properties. In the case
of id-time, membership interacts significantly with
property type. This is likely due to the tendency
for participants to respond faster as membership
increases, when size or horizontal location is the
identifying property (cf. Figure 3b).

4.2 Validation of specificity measures
In order to validate the specificity measures, we
address two questions: 1) to what extent does the
specificity of a referring expression, computed us-
ing one of the measures in Table 1, predict the
accuracy and speed with which participants re-
solve references?; 2) do the specificity measures
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Fixed Effects Estimate Std. Error z-value
(Intercept) 2.88 0.45 6.39∗∗∗

S 0.07 0.74 0.09
M 0.07 0.13 0.53
P -0.66 0.33 -2.01∗

S ×M -0.73 0.26 -2.77∗∗

S × P -0.42 0.66 -0.64
M × P 0.18 0.12 1.58
S ×M × P 0.29 0.23 1.26

(a) Accuracy

Fixed Effects Estimate Std. Error t-value
(Intercept) 3620.53 329.01 11∗∗∗

S 119.29 508.24 0.24
M -182.07 76.62 -2.38∗

P 585.02 232.54 2.52∗

S ×M 314.26 153.24 2.05∗

S × P 102.32 454.59 0.23
M × P -142.17 69.58 -2.04∗

S ×M × P -125.16 137.06 -0.91

(b) Identification time (id-time)

Table 3: Full models incorporating all fixed effects and interactions. Legend: ∗∗∗ significant at p < .001;
∗∗ significant at p < .01; ∗ significant at p < .05.

correlate negatively with id-time, as would be ex-
pected?

BIC LL z−test
m1 508.54 -240.81 4.871∗∗

m2 500.68 -236.87 6.92∗∗

m3 532.98 -253.02 3.809∗∗

m4 508.54 -240.81 4.871∗∗

m5 517.13 -245.1 4.934∗∗

m6 504.32 -238.69 6.851∗∗

m7 528.52 -250.79 4.621∗∗

m8 516.73 -244.9 6.191∗∗

(a) Dependent: Accuracy (binomial)
BIC LL t−test

m1 15994 -7980.4 -5.662∗∗

m2 16013 -7989.8 -3.581∗∗

m3 16002 -7984.4 -4.883∗∗

m4 15994 -7980.4 -5.662∗∗

m5 15996 -7981 -5.555∗∗

m6 16015 -7990.9 -3.25∗

m7 15998 -7982.4 -5.277∗∗

m8 16018 -7992.4 -2.738∗

(b) Dependent: Response time

Table 4: Models with each of the eight success
measures as predictor. BIC: Bayesian Information
Criterion; LL: Log-likelihood. ∗∗p < .01; ∗p <
.01.

In order to check whether the specificity mea-
sures have predictive power, we conducted two
sets of mixed-models analysis, one on accuracy
and one on id-time. In each case, constructed
models contain one of the measures as the sole
predictor. The outcomes are summarised in Table
4. All measures emerge as significant predictors of
the likelihood with which a participant identifies a
target referent accurately, and of the variance in
id-time.

Accuracy To investigate the role of different
measures in predicting accuracy, Table 5 divides
the experimental data into instances on which a
participant correctly identified the target referent
and those where they did not. For each, we con-

X̄corr X̄incorr X̄corr − X̄incorr

m1 0.418 0.238 0.180
m2 0.756 0.476 0.280
m3 0.293 0.161 0.132
m4 0.418 0.238 0.180
m5 0.455 0.301 0.154
m6 0.824 0.588 0.235
m7 0.493 0.360 0.134
m8 0.890 0.689 0.201

Table 5: Accuracy: Means and differences for the
8 specificity measures. X̄in/corr: mean measure
of specificity for in/correctly identified referents.

Pearson’s r Spearman’s ρ
m1 -0.184 -0.258
m2 -0.117 -0.202
m3 -0.159 -0.239
m4 -0.184 -0.258
m5 -0.181 -0.293
m6 -0.107 -0.202
m7 -0.172 -0.265
m8 -0.091 -0.163

Table 6: Correlation coefficients between time and
each referential success measure

sider the mean of each specificity measure and the
difference in means. The latter can be thought of
as a measure of ‘sensitivity’: The greater the dif-
ference between means of correct vs. incorrect tri-
als, the more a measure is able to differentiate be-
tween the two. On these grounds, we obtain an
ordering of the measures as follows: m3 < m7 <
m5 < m1 < m4 < m8 < m6 < m2.

Identification time We further investigated the
correlation between id-time and each specificity
measure using both Pearson and Spearman corre-
lations. These are summarised in Table 6. The
correlations go in the predicted direction (i.e. they
are negative), though they are generally on the
low side. The low coefficients suggest that the
relationship between time and specificity is non-
linear; in the case of Pearson’s r, a further assump-
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tion that is probably violated in our data is that of
monotonicity.

Figure 5: Relationship between m2 and id-time

As one example, Figure 5 plots id-time against
measure m2 (similar patterns obtain for all mea-
sures). What the figure suggests is a tendency for
the measure to divide cases into classes which do
not linearly correspond with time. This is in spite
of the evidence in Table 4, that specficity mea-
sures are good predictors of the variance in reac-
tion time, as well as accuracy.

Ranking the measures according to the Spear-
man correlation coefficient yields a different or-
dering from the one obtained for accuracy: m5 <
m7 < m1 < m4 < m3 < m2 < m6 < m8.

In summary, the results indicate that referential
success measures can reliably predict human per-
formance in resolving referring expressions. Cru-
cially, however, the relationship is strongest with
respect to accuracy, rather than id-time. This is to
be expected: our measures of referential success
are after all intended as measures of how likely it
is that a referring expression singles out a particu-
lar object.

5 Discussion and Conclusions

This paper addressed the notion of referential suc-
cess, arguing that predicting the success of a re-
ferring expression generated by a REG algorithm
needs to take into account the graduality of the
available properties and contextual factors, includ-
ing the degree of membership in a property of a
target’s distractors.

While gradable properties have been addressed
in the REG literature (van Deemter, 2006), the im-
plications of graduality for referential success re-
main under-explored and the complex interactions
between the evaluation of the properties of an en-

tity and the visual context it is in have only re-
cently begun to benefit from principled accounts
(Yu et al., 2016; Williams and Scheutz, 2017).

The account of referential success given here is
based on the concept of specificity, a measure of
the identifiability of an entity based on the pos-
sibility distribution associated with its properties.
Hence, we do not consider any property as nec-
essarily crisp. Rather, by taking fuzzy member-
ship degrees into account, we are able to quantify
to what extent an entity is a member of the fuzzy
set representing a property, and how close to it its
distractors in their membership of that property.
We identified a number of measures of specificity
with desirable formal properties (including that
they induce a ranking on membership degrees) and
addressed the validity of this theoretical frame-
work through an experiment. The results show
that the theoretical assumptions are on the right
track: Specificity measures are able to predict a
significant proportion of the variance in identifi-
cation time during referential tasks. Furthermore,
they are able to account for the odds of selecting
the correct referent given a referring expression.
From a behavioural perspective, our experiments
also confirm that reference resolution by humans
is affected by similarity and property membership.

From the perspective of REG, the work pre-
sented here serves at least two important purposes:
First, it provides a principle revision of the crite-
rion that is typically used by algorithms to deter-
mine when a referent has been successfully iden-
tified by a description. Second, measures of refer-
ential success are also useful to evaluate the output
of algorithms. This is especially the case for iden-
tification accuracy, where we find a strong rela-
tionship between referential success measures and
the probability that a referring expression allows a
receiver to identify the intended object.

This work also opens a number of avenues
for future work. We are interested in extending
our empirical validaiton of specificity measures to
more complex scenarios, including descriptions in
which a referent is identified by more than one
property. Second, we are studying how current
REG algorithms can be modified to use fuzzy mea-
sures of referential success as a stopping criterion,
i.e. to determine when a referring expression is
likely to provide sufficient information for a user
to resolve it successfully.
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Abstract

RNN-based sequence generation is now
widely used in NLP and NLG (natural lan-
guage generation). Most work focusses
on how to train RNNs, even though also
decoding is not necessarily straightfor-
ward: previous work on neural MT found
seq2seq models to radically prefer short
candidates, and has proposed a number of
beam search heuristics to deal with this. In
this work, we assess decoding strategies
for referring expression generation with
neural models. Here, expression length
is crucial: output should neither contain
too much or too little information, in or-
der to be pragmatically adequate. We
find that most beam search heuristics de-
veloped for MT do not generalize well
to referring expression generation (REG),
and do not generally outperform greedy
decoding. We observe that beam search
heuristics for termination seem to over-
ride the model’s knowledge of what a good
stopping point is. Therefore, we also ex-
plore a recent approach called trainable
decoding, which uses a small network to
modify the RNN’s hidden state for better
decoding results. We find this approach
to consistently outperform greedy decod-
ing for REG.

1 Introduction

Recently, many NLP problems that involve
some form of natural language generation have
been modeled with encoder-decoder architectures
based on recurrent neural networks, e.g. in ma-
chine translation (Bahdanau et al., 2014), summa-
rization (Ranzato et al., 2016), conversation mod-
eling (Vinyals and Le, 2015), image captioning

(a) (b)

refexp: woman in light blue
background left

refexp: lady

Figure 1: RefCOCO (Yu et al., 2016) examples for
referring expressions to targets (red box) in images

(Xu et al., 2015), etc. A simple and efficient way
to apply the decoder model during testing is to
generate the most likely word at each time step,
until an end symbol has been generated or the
maximal number of time steps has been reached.
However, this greedy search method does not gen-
erally produce optimal generation output, and has
been shown to produce repetitive or invariable sen-
tences in certain tasks, e.g. (Li et al., 2016). Thus,
a common practice (particularly in MT) is to use
beam search where a fixed number of hypothe-
ses are considered (and expanded) at each time
step. Unfortunately, beam search is a heuristic al-
gorithm that can be defined and parametrized in
different ways, and brings with it further model-
ing decisions that need to be explored. A partic-
ularly tricky issue in neural MT, for instance, is
to define a good stopping criterion for search, as
neural models tend to radically prefer short hy-
potheses (Graves, 2012). To the best of our knowl-
edge, it has not yet been systematically investi-
gated whether beam search heuristics developed
for MT carry over to other generation tasks, in par-
ticular, to tasks in the area of language and vision.

In this paper, we investigate decoding strategies
for neural referring expression generation (REG)
applied to objects in real-world images. This task
is closely related to image captioning in the sense
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that a visual entity has to be described by a ver-
bal, semantically adequate expression. But be-
yond semantic adequacy, REG also requires prag-
matic reasoning: referring expressions typically
do not only depend on the object they refer to, but
also on the visual context of that object, as human
speakers tend to tailor their utterances such that
a listener can easily understand them in the cur-
rent context. For instance, a short RE that sim-
ply names the object (e.g. lady in Figure 1(b)) is
unlikely to be produced than in a scene that con-
tains more objects of the same category, see Figure
1(a). Thus, previous work on neural REG has in-
vestigated techniques of incorporating contextual
knowledge into the model during training, looking
at different visual representations and optimiza-
tion techniques (Mao et al., 2015; Yu et al., 2016).
Somewhat surprisingly, however, relatively com-
plex architectural set-ups are needed to improve
over simple, context-agnostic baselines that gener-
ate descriptions for the objects as captioning mod-
els do for entire images (Yu et al., 2017).

In this paper, we take a closer look at the decod-
ing step in neural REG. As referring expressions
tend to be much shorter than full sentences in MT,
for instance, it is not guaranteed that heuristics de-
veloped for beam search in MT are equally suc-
cessful. More importantly even, the problem of
determining the appropriate length of a referring
expression, i.e. terminating beam search, is con-
ceptually different than determining the length of a
good translation: a translation is complete when it
covers the meaning of the words in the source sen-
tence, and indeed, the length of the source is used
as criterion in beam search for MT (see Section
2.3). A referring expression, on the other hand,
is complete when it describes the visual target in
a pragmatically adequate way, i.e. when it neither
provides too little nor too much information.

We explore a range of different variants of beam
search that have been proposed for MT and, in-
terestingly, find that most of them decrease per-
formance as compared to simple greedy decoding
in REG. Whereas greedy decoding leads to refer-
ring expressions that, on average, have an ade-
quate length, beam search produces REs that are
markedly shorter and various heuristics can only
partially remedy for this problem. Therefore, we
look at trainable decoding, a method proposed by
Gu et al. (2017), that offers a principled solution
for obtaining a decoder that maximizes a given ob-

jective (e.g. BLEU scores). This method has been
shown to outperform greedy decoding and to be
computationally more efficient than beam search
in MT (Gu et al., 2017; Chen et al., 2018). We
find that it qualitatively outperforms both greedy
and beam search in the case of neural REG.

2 Related Work

2.1 Symbolic formalizations of REG

Traditionally, research on NLG has conceived of
REG as a multi-stage process that involves the
tasks of lexicalization, content selection and sur-
face realization (Reiter and Dale, 2000; Krahmer
and Van Deemter, 2012). But foundational work
in REG has mostly focused on algorithms for at-
tribute selection (Dale and Reiter, 1995). In this
paradigm, the task is to generate a distinguishing
referring expression for an object in a visual scene,
which is defined as a target object, a set of distrac-
tor objects and a set of symbolic attributes (e.g.
type, position, size, color, ...), see Krahmer and
Van Deemter (2012). In this setting, an attribute is
said to rule out a distractor object, if the target and
distractor have different values. Dale and Reiter
(1995)’s well-known Incremental Algorithm (IA)
iterates over the attribute set in a pre-defined or-
der, selects an attribute if it rules out objects from
the set of distractors and terminates when the set is
empty. In the context of our work, this algorithm
can be seen as a decoding procedure over a sym-
bolically specified input for REG that heuristically
defines the stopping criterion, i.e. when to termi-
nate the expansion of the RE. A lot of subsequent
work has looked at refining and extending this
algorithm, testing it on human-generated expres-
sions (Krahmer et al., 2003; Mitchell et al., 2010;
van Deemter et al., 2012; Clarke et al., 2013).

2.2 Neural REG from real-world images

More recently, research on REG has started to
investigate set-ups based on real-world images
(Kazemzadeh et al., 2014; Gkatzia et al., 2015;
Mao et al., 2015; Zarrieß and Schlangen, 2016),
representing scenes with many different types of
real-world objects. Here, the input to the REG
system is defined as a low-level visual represen-
tation such that various aspects of the task have
to be addressed, including lexicalization and con-
tent selection. Inspired by research on image cap-
tioning, Mao et al. (2015) proposed the first neural
end-to-end model for REG that uses a CNN to rep-
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resent the image, followed by an LSTM to gener-
ate the referring expression. Yu et al. (2016, 2017)
investigate a number of ways to incorporate prag-
matic reasoning into a CNN-LSTM architecture
for REG, and also collected two datasets of refer-
ring expressions for objects in the MSCOCO cor-
pus in the ReferItGame setup (Kazemzadeh et al.,
2014). All these authors state that they use beam
search during decoding, but do not investigate the
effect of this search method (nor do they state ex-
actly which variant of beam search was used). Our
work suggests that the effectiveness of contextual
features interacts with the decoding procedure.

2.3 Decoding for neural MT

We now turn to (neural) MT, where decoding algo-
rithms for sequence generation have been inves-
tigated in detail. Here, beam search is the stan-
dard method for syntax- and phrase-based models
(Rush et al., 2013), as well as for neural encoder-
decoders (Freitag and Al-Onaizan, 2017). How-
ever, an important difference between the two is
that candidates in phrase-based MT are completed
in the same number of steps, whereas neural mod-
els generate hypotheses of different length and
are biased for shorter output (Huang et al., 2017).
To counteract this bias, OpenNMT (Klein et al.,
2017) adopts three metrics for normalizing the
coverage, length and end of sentence of candidate
translations. Unfortunately, two of these metrics
(coverage and end of sentence normalization) are
based on the length of the source sentence, which
is not available in REG. Another common NMT
framework (Bahdanau et al., 2014) uses a shrink-
ing beam where beam size is reduced each time a
completed hypothesis is found, and search termi-
nates when the beam size has reached 0.

Another shortcoming of beam search observed
in previous work is that the beam tends to con-
tain many candidates that share the same (most
likely) prefix (Freitag and Al-Onaizan, 2017).
This means that a relatively high value for beam
size is needed to ensure that more diverse hy-
potheses that could potentially lead to more prob-
able output are not excluded too early. A range
of works have looked at modifying the objective
of beam search such that more diverse candidates
are considered during search (Li et al., 2016; Fre-
itag and Al-Onaizan, 2017). See Section 4 for an
overview of the beam search heuristics we use in
this paper.

To overcome the limitations of heuristically de-
fined beam search, Gu et al. (2017) introduce
the notion of trainable decoding that takes a pre-
trained neural MT system and optimizes the de-
coder for any objective. They treat the decoder
as a small actor network that learns to manipulate
the hidden state of the underlying trained MT sys-
tem. Whereas Gu et al. (2017) train the decoder
actor network with a policy gradient method, Chen
et al. (2018) present a supervised method to train
the decoder. We will follow the latter approach, as
described in Section 4.

3 REG Models

As the focus of this work is on the decoding
step for neural REG models, we adopt a standard
model architecture in language and vision: we use
the pre-softmax layer of a pre-trained CNN to rep-
resent the image and the image region that a given
target expression refers to. We train a standard
LSTM to generate a word at each time step, condi-
tioned on the visual vector and the previous words.
Our LSTM mainly follows the implementation of
(Xu et al., 2015)1, one of the most widely known
models for image captioning, but does not use at-
tention over the image.

We note that Xu et al. (2015) use a deep de-
coding layer that computes the output word prob-
ability given the LSTM state, the context vector
and the previous word including dropout and non-
linear (tanh) activation functions, similar to Yu
et al. (2017) who also use dropout in the decod-
ing layer, but only linear activation functions. Mao
et al. (2015), on the other hand, adopt a simple lin-
ear layer for decoding the LSTM. In the following,
we will investigate how these modeling decisions
affect the performance, and how they interact with
different search methods during inference.2 We
distinguish two variants of our model according to
their decoding layer:

Linear decoding layer:

p = softmax(Whh+ bh) (1)

where p is the distribution over the vocabulary,
Wh is the weight matrix, bh is the bias term, and h
is the hidden state of the LSTM.

1https://github.com/yunjey/
show-attend-and-tell

2Please note that there are two aspects of decoding in our
set-up: the decoding layer of the LSTM, and the decoding
inference procedure applied during testing.
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Deep decoding layer:

h1 = dropout(h0)

h2 = tanh((Whh1 + bh) + (Wzz + bz) + xprev)

h3 = dropout(h2)

p = softmax(Wouth3 + bout)

(2)

where h0 is the hidden state, z is the visual vector
and xprev the embedding of the previous word.

Finally, we also vary the input visual represen-
tation that the LSTM is conditioned on. Whereas
Mao et al. (2015) extract visual representations of
the region representing the target referent and the
global image, Yu et al. (2016) report a slightly
detrimental effect of including these global con-
text features. Thus, we distinguish two variants of
the model according to its visual representation:

Target: 4103-dimensional vector, obtained by
cropping the image to the target region, resizing
to 224 × 224, extracting its CNN pre-softmax
features with VGG19 (Simonyan and Zisserman,
2014) and concatenating 7 spatial features of the
region (see Schlangen et al. (2016) for these)

Global+target: 8119-dimensional vector, ob-
tained by extracting the CNN pre-softmax features
with VGG19 (Simonyan and Zisserman, 2014) for
the entire image, and concatenating it with target-
only

Training We set the word embedding layer size
to 512, and the hidden state to 1024. We optimized
with ADAM (with α = 0.001), and the batch size
set to 50. The word embedding layer is initial-
ized with random weights. The number of training
epochs was tuned for each model on the validation
set.

4 Decoding Strategies

We now explain the different decoding strategies
that will be combined with the REG models.

4.1 Greedy decoding

This is the simplest way to apply an LSTM based
generator for testing: at each time step, the most
likely word is selected and added to the generation
history. Greedy decoding terminates when the end
symbol is generated.

4.2 Beam search

Beam search generalizes greedy decoding and
keeps a fixed number K of generation candidates

that are expanded at each time step (greedy de-
coding corresponds to beam search with K = 1).
This is computationally less efficient than greedy
search, but often yields better results in NLP (see
Section 2). A definition of a standard beam search
algorithm that a lot of previous work has followed
can be found in Graves (2012).

As discussed in Section 2.3, the general skele-
ton of the beam search algorithm allows for a num-
ber of modifications, that concern the following
criteria: (i) pruning: which candidates are added
to the beam for the next time step, (ii) termination:
when does search stop, (iii) normalization: how to
treat candidates of different length, (iv) beam size:
constant or dynamic value forK. The summary of
search strategies we will test is shown in Table 1.

In the simple beam search version, the decoder
checks after each iteration, whether the top-most
candidate is complete. If this is not the case, all
current candidates remain for the next iteration, in-
cluding complete hypotheses that have a rank> 1.
During development, we noticed that this causes
short, lower ranked complete hypotheses to climb
up the beam too quickly and win over long hy-
potheses (see results in Section 6.3). Therefore,
we also introduce a new variation of simple beam,
called same-len in Table 1.The same-len variant
excludes complete hypotheses on the beam that
have a rank > 1, whereas in the standard version
these would remain on the beam. In the same-len
version a complete hypothesis either wins (when
it is on top) or is pruned, which means that all can-
didates on the beam are of the same length (when
counting the end symbol).

When candidates of different length are kept on
the beam, we can normalize according to the fol-
lowing scores taken from Klein et al. (2017):

lp(y) =
(5 + |Y |)α
(5 + 1)α

(3)

where |Y | is the length of the candidate output and
α is usually set to a value between 0.6 and 0.8 (Wu
et al., 2016). We could not find an explanation for
the constant being set to 5 in the literature. This
length penalty is then used to boost probabilities
of longer sequences in the following way:

score(y, x) =
logP (y|x)

lp(y)
(4)

where P (y|x) corresponds to the probability as-
signed to the candidate y at the given time step.
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Figure 2: Illustration of neural REG architecture including
an actor network that manipulates the hidden state; the dot-
ted line indicates the information flow in the standard model
where the hidden state is directly passed to the decoding layer

4.3 Trainable decoding

Finally, we set up a trainable decoder as in Chen
et al. (2018) that adds a new actor module to the
trained REG model. As illustrated in Figure 2, the
actor learns to manipulate the hidden state that is
then passed to the decoding layer. When training
the actor, the weights of the underlying REG sys-
tem are fixed. Thus, instead of optimizing the en-
tire architecture in one stage, we adopt a procedure
that first learns an REG model as usual, and then
learns to decode this model in a second step.

For training the decoding actor in a supervised
way, we need an ‘artificial’ corpus of referring ex-
pressions paired with objects in images that are
both considered to be likely by the model and
achieve a good BLEU score when compared to
the original human expression. Thus, for an ob-
ject x we use the REG model and beam search
to produce a set of referring expressions Y =
y1, y2, ..., yn that correspond to all completed hy-
potheses from all time steps, with a certain beam
size K. But in contrast to the methods explained
in Section 4.2, we do not need to define a heuristic
stopping criterion. Instead, we use an oracle that
selects y from the set Y that achieves the high-
est BLEU score given the human references. Of
course, this oracle is only needed at training time.
The actor itself is a simple feedforward layer that
updates the hidden state as follows:

h′ = h+ relu(Whh) (5)

This is a slightly simpler definition than the one
used in Chen et al. (2018) where the actor is also
conditioned on the original input vector. We ex-
perimented with their version, but found a simple

layer with ReLU activation to yield the best per-
formance. When applying the actor at test time,
it is possible to combine it with beam search (Gu
et al., 2017). However, we only use it in a greedy
fashion, as beam search did not lead to clear im-
provements in our experiments.

Training The main parameters to configure for
training concern the definition of the oracle for
compiling the new training data. We set K (beam
size of the oracle) to 10, and use BLEU1 (re-
stricted to unigrams) as objective. We train the
actor for 10 epochs, with ADAM.

5 Data

We conduct experiments on the RefCOCO(+)
datasets, same as (Yu et al., 2016), which con-
tain referring expressions to objects in MSCOCO
(Lin et al., 2014) images. The data was col-
lected via crowdsourcing with the ReferIt Game
(Kazemzadeh et al., 2014) where two players were
paired and a director needed to refer to a prede-
termined object to a matcher, who then selected
it. Note that (Mao et al., 2015) performed experi-
ments on a different data set for MSCOCO images
in a non-interactive set-up. Thus, our evaluation
set-up largely follows Yu et al. (2016, 2017).

RefCOCO and RefCOCO+ contain 3 referring
expressions on average per object, and overall
150K expressions for 50K objects. The two
datasets have been collected for an (almost) identi-
cal set of objects, but in RefCOCO+, players were
asked not to use location words (on the left, etc.).
See Yu et al. (2016) for more details. We use the
predefined training and test splits. The respective
test sets are divided into two subsets: testA is re-
stricted to objects of the category human, testB
consists of all other object types.

6 Experiments

6.1 Evaluation

Since we compare a whole range of REG models
and decoding strategies, we opt for automatic eval-
uation measures, even though these might not fully
reflect the performance that would be achieved
in interaction with human users, cf. (Zarrieß and
Schlangen, 2016). Unfortunately, different mea-
sures have been used in Yu et al. (2016) (BLEU1,
Meteor, ROUGE), and (Yu et al., 2017) (CIDEr,
Meteor), which makes comparison less straight-
forward. Also note that Yu et al. (2017) state that
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they collected additional expressions for the test-
sets, resulting in 10 expressions per objects. As we
did not have access to these additional expressions
at the time of writing, we follow Yu et al. (2016)
and evaluate on the original RefCOCO collections
with 3 expressions on average per object.

In the experiments below, we look at three
measures: BLEU1 for unigrams (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015) and lenr
(length ratio) as provided by the MSCOCO eval-
uation server (Chen et al., 2015). We are inter-
ested in the length ratio as a simple approximation
of traditionally used measures in REG (Gatt and
Belz, 2010), reflecting whether the generation out-
put contains too much or too little information (at-
tributes or words). BLEU1 gives us an indication
of the lexical overlap between output and target,
whereas CIDEr operates on the level of n-grams.

6.2 Simple beam search

In Table 2, we present results for the different con-
figurations of our REG model, tested with greedy
decoding and the simple variant of beam search,
with K = 3 and K = 10. Our results for
greedy decoding are comparable in BLEU1 to the
baseline results reported by Yu et al. (2016), with
lower performance on RefCOCO+. This is likely
due to different hyperparameter settings. The
model comparison also shows that the combina-
tion of global context features and a deep decod-
ing layer is clearly disadvantageous, especially for
RefCOCO+. However, for the region model, the
linear decoder outperforms the deep one on Ref-
COCO+, but underperforms it on RefCOCO.

When analyzing the effect of beam size on per-
formance for 16 model-test set combinations in
Table 2, some clear patterns can be observed:

• a wider beam always leads to shorter expres-
sions as shown be the average length ratio, the
effect is drastic on the RefCOCO+ data (e.g. the
av. ratio on testB is 0.92 for greedy decoding
and 0.45 for beam search with K = 3)

• a wider beam leads to lower BLEU1 scores for
most models and test sets, except for 1 out of 16
model-test set combinations

• a wider beam sometimes leads to better CIDEr
scores, BLEU1 and CIDEr disagree in 7 out of
16 model-test set combinations

These results clearly suggest that the stopping
criterion defined in standard beam search is not

appropriate for neural REG models. The greedy
decoding can estimate the appropriate expression
length surprisingly well, even in the region model
that does not have access to global context. In con-
trast, the standard beam search that keeps candi-
dates of different length seems clearly biased to-
wards output that is too short. However, the fact
that CIDEr scores still improve in some cases sug-
gests that beam search leads to linguistically more
well-formed expressions (expressions with a lot of
repetitions are avoided, e.g. the blue blue shirt).

6.3 Modified beam search

In Table 3, we report performance of the region
and global model with the linear decoder and in-
vestigate the effect of different beam search vari-
ants on performance (for reasons of space, we omit
the models with a deep decoder, as these were
more unstable on RefCOCO+).

• a shrinking beam has a clearly detrimental effect
on performance in all cases

• the other beam search variants consistently im-
prove over simple beam search on all metrics

• there is no clear improvement of the beam
search variants over greedy decoding

• len-norm and same-len achieve better length ra-
tios than simple beam, but not better than greedy
decoding

These results support our initial hypothesis that
knowing when to terminate is an essential aspect
of REG, and this aspect is learnt relatively well
by the LSTM. Beam search heuristics for termi-
nation seem to override the model’s knowledge of
what a good stopping point is. The heuristics for
length normalization and stopping have some pos-
itive effect over simple beam search, but are not
fully effective, and might need more extensive tun-
ing. But overall, this suggests that a more princi-
pled decoding solution for neural REG is needed
as greedy decoding also leads to undesired output
patterns (repeated words, for instance).

6.4 Trainable decoding

Table 4 compares the results for the greedy
decoder against a decoder trained to optimize
BLEU1 scores, as explained in Section 4. Some
interesting observations can be made:

• the trained decoder improves over the greedy
decoder on all test sets, models and measures
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method filtering termination normalization beam size

simple – when top y is complete – constant
len-norm – when top y is complete length (eq. 3, 4) constant
same-len discard y if complete, but not top when top y is complete – constant
pruning (Freitag and
Al-Onaizan, 2017)

discard y if complete, but not top;
discard y if m candidates with
same history are in beam

when top y is complete – constant

shrinking (Bahdanau
et al., 2014)

– when beam size is 0, select top
y that is complete

length (eq. 3, 4) -1 for each
complete y

Table 1: Beam search variants, y refers to generation candidates

testA testB testA+ testB+
model K Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr

Yu et al. (2016)’s BL - 0.477 - - 0.553 - - 0.391 - - 0.331 - -

target,deep 1 0.484 0.625 0.89 0.516 1.096 0.77 0.361 0.436 1.04 0.264 0.552 0.85
target,deep 3 0.452 0.604 0.77 0.471 1.088 0.63 0.304 0.412 0.67 0.180 0.587 0.43
target,deep 10 0.430 0.592 0.70 0.454 1.093 0.60 0.208 0.379 0.50 0.148 0.582 0.38

target,lin 1 0.445 0.555 0.85 0.513 1.078 0.85 0.378 0.443 1.00 0.296 0.506 0.99
target,lin 3 0.420 0.568 0.70 0.480 1.077 0.69 0.302 0.415 0.65 0.252 0.604 0.57
target,lin 10 0.369 0.535 0.62 0.464 1.065 0.66 0.222 0.393 0.51 0.212 0.601 0.48
target+global,deep 1 0.400 0.602 1.12 0.464 1.011 0.86 0.329 0.387 1.04 0.231 0.525 0.95
target+global,deep 3 0.440 0.597 0.72 0.399 1.014 0.56 0.231 0.337 0.57 0.140 0.567 0.36
target+global,deep 10 0.387 0.569 0.62 0.371 1.003 0.53 0.147 0.326 0.41 0.150 0.576 0.37
target+global,lin 1 0.461 0.593 0.89 0.497 1.043 0.78 0.357 0.382 0.91 0.281 0.558 0.92
target+global,lin 3 0.426 0.588 0.72 0.443 1.046 0.61 0.267 0.350 0.61 0.192 0.590 0.45
target+global,lin 10 0.370 0.546 0.61 0.420 1.028 0.58 0.186 0.327 0.47 0.154 0.586 0.39

Table 2: Effect of beam size K on generation performance (beam with K = 1 corresponds to greedy decoding); comparing
models with region and global features, and a deep vs. linear decoding layer.

testA testB testA+ testB+
model decoder,K Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr

target greedy,1 0.445 0.555 0.85 0.513 1.078 0.85 0.378 0.443 1.00 0.296 0.506 0.99
target simple,3 0.420 0.568 0.70 0.480 1.077 0.69 0.302 0.415 0.65 0.252 0.604 0.57
target len-norm,3 0.454 0.598 0.77 0.504 1.097 0.75 0.314 0.417 0.71 0.275 0.616 0.64
target len-norm,10 0.444 0.595 0.74 0.502 1.090 0.75 0.279 0.409 0.65 0.275 0.622 0.64
target same-len,3 0.464 0.601 0.81 0.507 1.100 0.77 0.337 0.417 0.82 0.294 0.615 0.72
target same-len,10 0.451 0.598 0.77 0.505 1.092 0.75 0.302 0.403 0.73 0.283 0.624 0.68
target pruning,10 0.461 0.602 0.80 0.506 1.099 0.76 0.324 0.410 0.80 0.285 0.610 0.70
target shrinking,3 0.237 0.317 2.48 0.272 0.600 2.06 0.254 0.319 1.45 0.230 0.460 1.34
target shrinking,10 0.361 0.462 1.11 0.400 0.792 1.19 0.299 0.382 0.81 0.277 0.501 1.03

target+global greedy,1 0.461 0.593 0.89 0.497 1.043 0.78 0.357 0.382 0.91 0.281 0.558 0.92
target+global simple,3 0.426 0.588 0.72 0.443 1.046 0.61 0.267 0.350 0.61 0.192 0.590 0.45
target+global len-norm,3 0.456 0.613 0.79 0.480 1.073 0.68 0.282 0.359 0.64 0.221 0.589 0.51
target+global len-norm,10 0.441 0.601 0.76 0.484 1.073 0.69 0.237 0.355 0.57 0.218 0.593 0.50
target+global same-len,3 0.462 0.616 0.84 0.490 1.079 0.71 0.328 0.380 0.79 0.264 0.588 0.64
target+global same-len,10 0.447 0.606 0.79 0.490 1.072 0.71 0.269 0.357 0.66 0.255 0.582 0.60
target+global pruning,10 0.459 0.617 0.83 0.488 1.068 0.70 0.302 0.366 0.74 0.258 0.588 0.61
target+global shrinking,3 0.240 0.368 2.21 0.282 0.731 1.73 0.179 0.226 1.89 0.167 0.429 1.79
target+global shrinking,10 0.379 0.469 0.89 0.436 0.843 1.00 0.275 0.314 0.75 0.233 0.545 0.62

Table 3: Model with linear decoding layer, different ways of normalizing/parametrizing beam search

testA testB testA+ testB+
model decoder Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr

target,deep greedy 0.484 0.625 0.89 0.516 1.096 0.77 0.361 0.436 1.04 0.264 0.552 0.85
target,deep bleu-actor 0.507 0.658 0.95 0.534 1.112 0.82 0.377 0.4 1.02 0.269 0.527 0.75

target,lin greedy 0.445 0.555 0.85 0.513 1.078 0.85 0.378 0.443 1.00 0.296 0.506 0.99
target,lin bleu-actor 0.487 0.625 0.99 0.535 1.089 0.94 0.377 0.452 1.09 0.320 0.579 0.97

target+global,lin greedy 0.461 0.593 0.89 0.497 1.043 0.78 0.357 0.382 0.91 0.281 0.558 0.92
target+global,lin bleu-actor 0.498 0.655 1.02 0.549 1.083 0.93 0.375 0.419 1.02 0.315 0.587 0.93

Table 4: Results for trainable decoding (actor model)
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(a1) lexical finetuning

greedy: left vase
actor: left glass
(a2)

greedy: man on left
actor: girl on left

(b1) use object names

greedy: left
actor: left dog
(b2)

greedy: bottom right
actor: stove bottom right

(c1) use precise attributes

greedy: guy on left
actor: person on far left
(c2)

greedy: person on left
actor: person in blue
shirt on left

(d) add function words

greedy: right bike
actor: bike on the right
(e) avoid rare words

greedy: bride
actor: woman in white
dress

Figure 3: Examples from the RefCOCO validation set for strategies learned by the trained decoder

with only few exceptions (CIDEr scores on
testA+ and testB+ for the deep region model)

• the improvements are substantial in many cases
(between 2 and 8 points for BLEU1, and up to 7
points for CIDEr)

• given the trained decoder, the global model now
improves over the region model in the case of
testB (BLEU, CIDEr, lenr) and testB+ (CIDEr)

These results demonstrate the importance of ap-
plying the right decoding procedure when gener-
ating with neural REG models. Interestingly, the
qualitative improvements in performance we ob-
tain clearly exceed the effects found with the same
methods for MT (Chen et al., 2018), but generally
support previous findings on positive effects when
optimizing a sequence model for external evalu-
ation metrics (Ranzato et al., 2016). A possible
explanation is that our REG models benefit from a
two-stage optimization procedure, similar to cur-
riculum learning (Bengio et al., 2009). Another
important question is whether BLEU1, the objec-
tive we used to train the decoder, is conceptually
appropriate for REG or whether we simply tune
the model to our final evaluation measure. The
fact that the actor model also improves the CIDEr
scores and length ratios is a first positive indication
that the BLEU1-actor does not just fit to the met-
ric in a superficial way. The qualitative analysis in
Section 6.6 will shed more light on this.

6.5 Global context

Besides the effect of different decoding strategies
on the performance of our neural REG model, an

interesting and somewhat counterintuitive obser-
vation is that the models that incorporate global
context features do not generally outperform the
local models which only ‘look’ at the target ref-
erent. This finding seems to contradict some very
basic assumptions that have been formulated in the
REG literature, namely that the content of a refer-
ring expression (e.g. its attributes) depend on the
distractors, cf. (Krahmer and Van Deemter, 2012).
At the same time, a lot of theoretical and computa-
tional work on referring expressions has observed
that human speakers tend to overspecify, i.e. use
attributes even though they are not strictly needed
to discriminate the target referent from its distrac-
tors (Koolen et al., 2011). Moreover, our findings
seem to corroborate previous work on RefCOCO
that even observed a detrimental effect of includ-
ing global context features in a neural REG model.

Unfortunately, the RefCOCO corpora lack a
ground truth annotation for attributes, hence, is it
is hard to analyze whether the (missing) effect of
global context is due to shortcomings of existing
neural models for REG or due to inherent patterns
in the data (such as e.g. overspecification). We be-
lieve that a more systematic approach to assess-
ing the effect of distractors on content of referring
expressions in real-world image corpora is a very
promising direction for future research.

6.6 Analysis: Strategies learned via BLEU

We manually go through examples in the Ref-
COCO validation set, and broadly categorize the
cases where the actor model improves over the
greedy decoder. Figure 3 illustrates some frequent

510



patterns we discovered with representative exam-
ples for each. Our analysis suggests that the ac-
tor has indeed automatically discovered strategies
that lead to contextually more appropriate expres-
sions: it learns to (a) fine-tune its lexicon and use
object names in a sematically more adequate way,
(b) include object names more often making ex-
pressions more pragmatically adequate, and (c)
use more precise attributes also leading to more
pragmatically adequate output. At the same time,
the decoder also learns a strategy that can be con-
sidered as ‘metric fitting’, namely to (d) use more
function words (articles, prepositions) which is a
rather cheap strategy to increase BLEU scores. Fi-
nally, we find that the actor sometimes prevents
the model from using short expressions containing
rare words, as e.g. ‘bride’ in Figure 3(e).

These findings support the interpretation that a
two-stage optimization set-up can help an REG
model to pragmatically fine-tune its generation
output. Vedantam et al. (2017) have recently
adopted a similar approach, tuning a context-
agnostic captioning system to produce discrimina-
tive captions at the stage of decoding (Yu et al.,
2016).

7 Conclusion

We have investigated decoding strategies for neu-
ral REG, finding a clear advantage of trainable de-
coding optimized for BLEU over standard beam
search methods. We think that this two-stage op-
timization set-up offers interesting directions for
future work and can possibly be applied, for in-
stance, in interactive learning scenarios and be
tuned to more explicit communicative objectives.
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2003. Graph-based generation of referring expres-
sions. Computational Linguistics, 29(1):53–72.

Emiel Krahmer and Kees Van Deemter. 2012. Compu-
tational generation of referring expressions: A sur-
vey. Computational Linguistics, 38(1):173–218.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. CoRR, abs/1611.08562.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollr,
and C.Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision
ECCV 2014, volume 8693, pages 740–755. Springer
International Publishing.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L. Yuille, and Kevin Murphy. 2015.
Generation and comprehension of unambiguous ob-
ject descriptions. ArXiv / CoRR, abs/1511.02283.

Margaret Mitchell, Kees van Deemter, and Ehud Re-
iter. 2010. Natural reference to objects in a visual
domain. In Proceedings of the 6th international nat-
ural language generation conference, pages 95–104.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceedings
of ICLR.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge university
press.

Alexander Rush, Yin-Wen Chang, and Michael
Collins. 2013. Optimal beam search for machine
translation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 210–221.

David Schlangen, Sina Zarriess, and Casey Kenning-
ton. 2016. Resolving references to objects in pho-
tographs using the words-as-classifiers model. In
Proceedings of the 54rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016).

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. In
Computer Vision and Pattern Recognition (CVPR),
volume 3.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recog-
nition, pages 4566–4575.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. In International Conference on Machine
Learning, pages 2048–2057.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C.
Berg, and Tamara L. Berg. 2016. Modeling Con-
text in Referring Expressions. Springer International
Publishing, Cham.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L
Berg. 2017. A joint speakerlistener-reinforcer
model for referring expressions. In Computer Vision
and Pattern Recognition (CVPR), volume 2.

Sina Zarrieß and David Schlangen. 2016. Easy things
first: Installments improve referring expression gen-
eration for objects in photographs. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 610–620, Berlin, Germany. Association
for Computational Linguistics.

512



Author Index

Agarwal, Shubham, 129, 451
Al Khatib, Khalid, 79
Alnajjar, Khalid, 274
Alonso, Jose, 421
Amidei, Jacopo, 307
Anguill, Pierre, 140
Anselma, Luca, 244
Aoki, Kasumi, 135
Aoki, Tatsuya, 135

Baghaee, Tina, 152
Balazs, Jorge, 119
Bekki, Daisuke, 408
Belz, Anja, 140, 146, 199
Birmingham, Brandon, 146
Bishnu, Ankita, 426
Bohnet, Bernd, 199
Bugarín Diz, Alberto, 67

Camargo de Souza, José G., 233
Cascallar Fuentes, Andrea, 67
Castro Ferreira, Thiago, 171
Chali, Yllias, 152
Chang, Ernie, 233
Chen, Guanyi, 57, 159
Chen, Wei-Fan, 79
Chiyah Garcia, Francisco Javier, 99
Choi, Hyungtak, 165
Cieliebak, Mark, 22
Coghill, George, 177

Dai, Falcon, 46
Davaasambuu, Nyamsuren, 480
Davoodi, Elnaz, 472
de Jong, Ruud, 73
de la Rosa, Ricardo, 329
Demberg, Vera, 391
Deriu, Jan Milan, 22
Douratsos, Ioannis, 109
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