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Abstract

The task of word-level quality estimation
(QE) consists of taking a source sentence and
machine-generated translation, and predicting
which words in the output are correct and
which are wrong. In this paper, propose a
method to effectively encode the local and
global contextual information for each target
word using a three-part neural network ap-
proach. The first part uses an embedding layer
to represent words and their part-of-speech
tags in both languages. The second part lever-
ages a one-dimensional convolution layer to
integrate local context information for each
target word. The third part applies a stack of
feed-forward and recurrent neural networks to
further encode the global context in the sen-
tence before making the predictions. This
model was submitted as the CMU entry to the
WMT2018 shared task on QE, and achieves
strong results, ranking first in three of the six
tracks.1

1 Introduction

Quality estimation (QE) refers to the task of mea-
suring the quality of machine translation (MT)
system outputs without reference to the gold trans-
lations (Blatz et al., 2004; Specia et al., 2013). QE
research has grown increasingly popular due to
the improved quality of MT systems, and poten-
tial for reductions in post-editing time and the cor-
responding savings in labor costs (Specia, 2011;
Turchi et al., 2014). QE can be performed on mul-
tiple granularities, including at word level, sen-
tence level, or document level. In this paper, we
focus on quality estimation at word level, which
is framed as the task of performing binary clas-
sification of translated tokens, assigning “OK” or
“BAD” labels.

1Our software is available at https://github.com/
junjiehu/CEQE.

Early work on this problem mainly focused
on hand-crafted features with simple regres-
sion/classification models (Ueffing and Ney, 2007;
Biçici, 2013). Recent papers have demonstrated
that utilizing recurrent neural networks (RNN) can
result in large gains in QE performance (Martins
et al., 2017). However, these approaches encode
the context of the target word by merely concate-
nating its left and right context words, giving them
limited ability to control the interaction between
the local context and the target word.

In this paper, we propose a neural architecture,
Context Encoding Quality Estimation (CEQE),
for better encoding of context in word-level QE.
Specifically, we leverage the power of both (1)
convolution modules that automatically learn lo-
cal patterns of surrounding words, and (2) hand-
crafted features that allow the model to make more
robust predictions in the face of a paucity of la-
beled data. Moreover, we further utilize stacked
recurrent neural networks to capture the long-term
dependencies and global context information from
the whole sentence.

We tested our model on the official bench-
mark of the WMT18 word-level QE task. On
this task, it achieved highly competitive results,
with the best performance over other competitors
on English-Czech, English-Latvian (NMT) and
English-Latvian (SMT) word-level QE task, and
ranking second place on English-German (NMT)
and German-English word-level QE task.

2 Model

The QE module receives as input a tuple 〈s, t,A〉,
where s = s1, . . . , sM is the source sentence,
t = t1, . . . , tN is the translated sentence, andA ⊆
{(m,n)|1 ≤ m ≤ M, 1 ≤ n ≤ N} is a set of
word alignments. It predicts as output a sequence
ŷ = y1, . . . , yN , with each yi ∈ {BAD,OK}. The
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overall architecture is shown in Figure 1
CEQE consists of three major components: (1)

embedding layers for words and part-of-speech
(POS) tags in both languages, (2) convolution en-
coding of the local context for each target word,
and (3) encoding the global context by the recur-
rent neural network.

2.1 Embedding Layer

Inspired by (Martins et al., 2017), the first em-
bedding layer is a vector representing each tar-
get word tj obtained by concatenating the embed-
ding of that word with those of the aligned words
sA(:,tj) in the source. If a target word is aligned to
multiple source words, we average the embedding
of all the source words, and concatenate the target
word embedding with its average source embed-
ding. The immediate left and right contexts for
source and target words are also concatenated, en-
riching the local context information of the em-
bedding of target word tj . Thus, the embedding
of target word tj , denoted as xj , is a 6d dimen-
sional vector, where d is the dimension of the word
embeddings. The source and target words use the
same embedding parameters, and thus identical
words in both languages, such as digits and proper
nouns, have the same embedding vectors. This al-
lows the model to easily identify identical words
in both languages. Similarly, the POS tags in both
languages share the same embedding parameters.
Table 1 shows the statistics of the set of POS tags
over all language pairs.

Language Pairs Source Target
En-De (SMT) 50 57
En-De (NMT) 49 58
De-En 58 50
En-Lv (SMT) 140 38
En-Lv (NMT) 167 43
En-Cz 440 57

Table 1: Statistics of POS tags over all language pairs

2.2 One-dimensional Convolution Layer

The main difference between the our work and the
neural model of Martins et al. (2017) is the one-
dimensional convolution layer. Convolutions pro-
vide a powerful way to extract local context fea-
tures, analogous to implicitly learning n-gram fea-
tures. We now describe this integral part of our
model.

After embedding each word in the target sen-
tence {t1, . . . , tj , . . . , tN}, we obtain a matrix of
embeddings for the target sequence,

x1:N = x1 ⊕ x2 . . .⊕ xN ,

where ⊕ is the column-wise concatenation oper-
ator. We then apply one-dimensional convolution
(Kim, 2014; Liu et al., 2017) on x1:N along the
target sequence to extract the local context of each
target word. Specifically, a one-dimensional con-
volution involves a filter w ∈ Rhk, which is ap-
plied to a window of h words in target sequence to
produce new features.

ci = f(w · xi:i+h−1 + b),

where b ∈ R is a bias term and f is some func-
tions. This filter is applied to each possible win-
dow of words in the embedding of target sen-
tence {x1:h,x2:h+1, . . . ,xN−h+1:N} to produce
features

c = [c1, c2, . . . , cN−h+1].

By the padding proportionally to the filter size h
at the beginning and the end of target sentence,
we can obtain new features cpad ∈ RN of target
sequence with output size equals to input sentence
length N . To capture various granularities of local
context, we consider filters with multiple window
sizes H = {1, 3, 5, 7}, and multiple filters nf =
64 are learned for each window size.

The output of the one-dimensional convolution
layer, C ∈ RN×|H|·nf , is then concatenated with
the embedding of POS tags of the target words, as
well as its aligned source words, to provide a more
direct signal to the following recurrent layers.

2.3 RNN-based Encoding
After we obtain the representation of the source-
target word pair by the convolution layer, we fol-
low a similar architecture as (Martins et al., 2017)
to refine the representation of the word pairs using
feed-forward and recurrent networks.

1. Two feed-forward layers of size 400 with rec-
tified linear units (ReLU; Nair and Hinton
(2010));

2. One bi-directional gated recurrent unit (Bi-
GRU; Cho et al. (2014)) layer with hidden
size 200, where the forward and backward
hidden states are concatenated and further
normalized by layer normalization (Ba et al.,
2016).
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Figure 1: The architecture of our model, with the convolutional encoder on the left, and stacked RNN on the right.

Category Description
Binary target word is a stopword
Binary target word is a punctuation mark
Binary target word is a proper noun
Binary target word is a digit

Float backoff behavior of ngram wi−2 wi−1 wi

(wi is the target word)
Float backoff behavior of ngram wi−1 wi wi+1

Float backoff behavior of ngram wi wi+1 wi+2

One-hot highest order of ngram that includes
target word and its left context

One-hot highest order of ngram that includes
target word and its right context

One-hot highest order of ngram that includes
source word and its left context

One-hot highest order of ngram that includes
source word and its right context

Table 2: Baseline Features

3. Two feed-forward layers of hidden size 200
with rectified linear units;

4. One BiGRU layer with hidden size 100 us-
ing the same configuration of the previous Bi-
GRU layer;

5. Two feed-forward layers of size 100 and 50
respectively with ReLU activation.

We concatenate the 31 baseline features extracted
by the Marmot2 toolkit with the last 50 feed-
forward hidden features. The baseline features are
listed in Table 2. We then apply a softmax layer on
the combined features to predict the binary labels.

2https://github.com/qe-team/marmot

3 Training

We minimize the binary cross-entropy loss be-
tween the predicted outputs and the targets. We
train our neural model with mini-batch size 8 us-
ing Adam (Kingma and Ba, 2015) with learning
rate 0.001 and decay the learning rate by multiply-
ing 0.75 if the F1-Multi score on the validation set
decreases during the validation. Gradient norms
are clipped within 5 to prevent gradient explosion
for feed-forward networks or recurrent neural net-
works. Since the training corpus is rather small,
we use dropout (Srivastava et al., 2014) with prob-
ability 0.3 to prevent overfitting.

4 Experiment

We evaluate our CEQE model on the WMT2018
Quality Estimation Shared Task3 for word-
level English-German, German-English, English-
Czech, and English-Latvian QE. Words in all lan-
guages are lowercased. The evaluation metric is
the multiplication of F1-scores for the “OK” and
“BAD” classes against the true labels. F1-score is
the harmonic mean of precision and recall. In Ta-
ble 3, our model achieves the best performance on
three out of six test sets in the WMT 2018 word-
level QE shared task.

4.1 Ablation Analysis

In Table 4, we show the ablation study of the
features used in our model on English-German,
German-English, and English-Czech. For each

3http://statmt.org/wmt18/quality-estimation-task.html
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Language Pairs F1-BAD F1-OK F1-Multi Rank
En-De (SMT) 0.5075 0.8394 0.4260 3
En-De (NMT) 0.3565 0.8827 0.3147 2
De-En 0.4906 0.8640 0.4239 2
En-Lv (SMT) 0.4211 0.8592 0.3618 1
En-Lv (NMT) 0.5192 0.8268 0.4293 1
En-Cz 0.5882 0.8061 0.4741 1

Table 3: Best performance of our model on six datasets
in the WMT2018 word-level QE shared task on the
leader board (updated on July 27th 2018)

language pair, we show the performance of CEQE
without adding the corresponding components
specified in the second column respectively. The
last row shows the performance of the complete
CEQE with all the components. As the base-
line features released in the WMT2018 QE Shared
Task for English-Latvian are incomplete, we train
our CEQE model without using such features. We
can glean several observations from this data:

1. Because the number of “OK” tags is much
larger than the number of “BAD” tags, the
model is easily biased towards predicting the
“OK” tag for each target word. The F1-OK
scores are higher than the F1-BAD scores
across all the language pairs.

2. For German-English, English Czech, and
English-German (SMT), adding the baseline
features can significantly improve the F1-
BAD scores.

3. For English-Czech, English-German (SMT),
and English-German (NMT), removing POS
tags makes the model more biased towards
predicting “OK” tags, which leads to higher
F1-OK scores and lower F1-BAD scores.

4. Adding the convolution layer helps to boost
the performance of F1-Multi, especially on
English-Czech and English-Germen (SMT)
tasks. Comparing the F1-OK scores of
the model with and without the convolution
layer, we find that adding the convolution
layer help to boost the F1-OK scores when
translating from English to other languages,
i.e., English-Czech, English-German (SMT
and NMT). We conjecture that the convo-
lution layer can capture the local informa-
tion more effectively from the aligned source
words in English.
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Figure 2: Effect of the dropout rate during training.

5 Case Study

Table 5 shows two examples of quality prediction
on the validation data of WMT2018 QE task for
English-Czech. In the first example, the model
without POS tags and baseline features is biased
towards predicting “OK” tags, while the model
with full features can detect the reordering error.
In the second example, the target word “panelu” is
a variant of the reference word “panel”. The target
word “znaky” is the plural noun of the reference
“znak”. Thus, their POS tags have some subtle
differences. Note the target word “zmnit” and its
aligned source word “change” are both verbs. We
can observe that POS tags can help the model cap-
ture such syntactic variants.

5.1 Sensitivity Analysis

During training, we find that the model can easily
overfit the training data, which yields poor perfor-
mance on the test and validation sets. To make
the model more stable on the unseen data, we ap-
ply dropout to the word embeddings, POS embed-
dings, vectors after the convolutional layers and
the stacked recurrent layers. In Figure 2, we exam-
ine the accuracies dropout rates in [0.1, 0.3, 0.7].
We find that adding dropout alleviates overfitting
issues on the training set. If we reduce the dropout
rate to 0.1, which means randomly setting some
values to zero with probability 0.1, the training F1-
Multi increases rapidly and the validation F1-multi
score is the lowest among all the settings. Prelim-
inary results proved best for a dropout rate of 0.3,
so we use this in all the experiments.
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Language Pairs Method F1-BAD F1-OK F1-Multi

De-En

- (Convolution + POS + features) 0.4774 0.8680 0.4144
- (POS + features) 0.4948 0.8474 0.4193
- features 0.5095 0.8735 0.4450
- POS 0.4906 0.8640 0.4239
CEQE 0.5233 0.8721 0.4564

En-Cz

- (Convolution + POS + features) 0.5748 0.7622 0.4381
- (POS + features) 0.5628 0.8000 0.4502
- features 0.5777 0.7997 0.4620
- POS 0.5192 0.8268 0.4293
CEQE 0.5884 0.7991 0.4702

En-De (SMT)

- (Convolution + POS + features) 0.4677 0.8038 0.3759
- (POS + features) 0.4768 0.8166 0.3894
- features 0.4902 0.8230 0.4034
- POS 0.5047 0.8431 0.4255
CEQE 0.5075 0.8394 0.4260

En-De (NMT)

- (Convolution + POS + features) 0.3545 0.8396 0.2976
- (POS + features) 0.3404 0.8752 0.2979
- features 0.3565 0.8827 0.3147
- POS 0.3476 0.8948 0.3111
CEQE 0.3481 0.8835 0.3075

Table 4: Ablation study on the WMT18 Test Set

6 Conclusion

In this paper, we propose a deep neural architec-
ture for word-level QE. Our framework leverages a
one-dimensional convolution on the concatenated
word embeddings of target and its aligned source
words to extract salient local feature maps. In
additions, bidirectional RNNs are applied to cap-
ture temporal dependencies for better sequence
prediction. We conduct thorough experiments on
four language pairs in the WMT2018 shared task.
The proposed framework achieves highly compet-
itive results, outperforms all other participants on
English-Czech and English-Latvian word-level,
and is second place on English-German, and
German-English language pairs.
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