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Abstract

We introduce the RUSE1 metric for the
WMT18 metrics shared task. Sentence em-
beddings can capture global information that
cannot be captured by local features based on
character or word N-grams. Although train-
ing sentence embeddings using small-scale
translation datasets with manual evaluation is
difficult, sentence embeddings trained from
large-scale data in other tasks can improve
the automatic evaluation of machine transla-
tion. We use a multi-layer perceptron re-
gressor based on three types of sentence em-
beddings. The experimental results of the
WMT16 and WMT17 datasets show that the
RUSE metric achieves a state-of-the-art per-
formance in both segment- and system-level
metrics tasks with embedding features only.

1 Introduction

This study describes a segment-level metric for
automatic machine translation evaluation (MTE).
The MTE metrics with a high correlation with hu-
man evaluation enable the continuous integration
and deployment of a machine translation (MT)
system. Various MTE metrics have been proposed
in the metrics task of the Workshops on Statistical
Machine Translation (WMT) that was started in
2008. However, most MTE metrics are obtained
by computing the similarity between an MT hy-
pothesis and a reference based on the character or
word N-grams, such as SentBLEU (Lin and Och,
2004), which is a smoothed version of BLEU (Pa-
pineni et al., 2002), Blend (Ma et al., 2017),
MEANT 2.0 (Lo, 2017), and chrF++ (Popović,
2017). Therefore, they can exploit only limited
information for the segment-level MTE. In other
words, the MTE metrics based on character or
word N-grams cannot make full use of sentence
embeddings. They only check for word matches.

1https://github.com/Shi-ma/RUSE

Figure 1: Outline of the RUSE metric.

We extend our previous work (Shimanaka et al.,
2018) and propose a segment-level MTE met-
ric using universal sentence embeddings capa-
ble of capturing global information that cannot
be captured by local features based on character
or word N-grams. The experimental results in
both segment- and system-level metrics tasks con-
ducted using the datasets for to-English language
pairs on WMT16 and WMT17 indicated that the
proposed regression model using sentence embed-
dings, RUSE, achieves the best performance.

The main contributions of the study are summa-
rized below:

• We propose a novel supervised regression
model for the segment-level MTE based on
universal sentence embeddings.

• We achieved a state-of-the-art performance
in segment- and system-level metrics tasks
on the WNT16 and WMT17 datasets for
to-English language pairs without using any
complex features.
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Figure 2: Outline of InferSent. Figure 3: Outline of Quick-Thought.

2 Related Work

DPMFcomb (Yu et al., 2015a) achieved the best
performance in the WMT16 metrics task (Bo-
jar et al., 2016). It incorporates 55 default
metrics provided by the Asiya MT evaluation
toolkit2 (Giménez and Màrquez, 2010), as well
as three other metrics, namely DPMF (Yu et al.,
2015b), REDp (Yu et al., 2015a), and ENTFp (Yu
et al., 2015a), using ranking SVM to train parame-
ters of each metric score. DPMF evaluates the syn-
tactic similarity between an MT hypothesis and a
reference translation. REDp evaluates an MT hy-
pothesis based on the dependency tree of the ref-
erence translation that comprises both lexical and
syntactic information. ENTFp (Yu et al., 2015a)
evaluates the fluency of an MT hypothesis.

After the success of DPMFcomb, Blend3 (Ma
et al., 2017) achieved the best performance in the
WMT17 metrics task (Bojar et al., 2017). Sim-
ilar to DPMFcomb, Blend is essentially an SVR
model with RBF kernel that uses the scores of var-
ious metrics as features. It incorporates 25 lex-
ical metrics provided by the Asiya MT evalua-
tion toolkit, as well as four other metrics, namely
BEER (Stanojević and Sima’an, 2015), Charac-
TER (Wang et al., 2016), DPMF, and ENTFp.
BEER is a linear model based on character N-
grams and replacement trees. CharacTER eval-
uates an MT hypothesis based on character-level
edit distance.

DPMFcomb is trained through relative ranking
(RR) of human evaluation data in terms of relative

2http://asiya.lsi.upc.edu/
3http://github.com/qingsongma/blend

ranking (RR). The quality of five MT hypotheses
of the same source segment is ranked from 1 to
5 via a comparison with the reference translation.
In contrast, Blend is trained through direct assess-
ment (DA) of human evaluation data. DA pro-
vides the absolute quality scores of hypotheses by
measuring to what extent a hypothesis adequately
expresses the meaning of the reference transla-
tion. The experiment results in the segment-level
MTE conducted using the datasets for to-English
language pairs on WMT16 showed that Blend
achieved a performance better than DPMFcomb. In
this study, as with Blend, we propose a regression
model trained using DA human evaluation data.

Instead of using local and lexical features,
ReVal4 (Gupta et al., 2015a,b) proposes using
sentence-level features. It is a metric using Tree-
LSTM (Tai et al., 2015) for training and captur-
ing the holistic information of sentences. It is
trained using datasets of pseudo similarity scores
generated by translating RR data and out-domain
datasets of similarity scores of SICK5. How-
ever, the training dataset used in this metric con-
sists of approximately 21,000 sentences; thus, the
learning of Tree-LSTM is unstable, and accurate
learning is difficult. We use sentence embeddings
trained using various RNN and Transformer as
sentence information. Furthermore, we apply uni-
versal sentence embeddings to this task. These
embeddings were trained using large-scale data
obtained in other tasks. Therefore, the proposed
approach avoids the problem of using a small
dataset for training sentence embeddings.

4https://github.com/rohitguptacs/ReVal
5http://clic.cimec.unitn.it/composes/sick.html
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cs-en de-en fi-en lv-en ro-en ru-en tr-en zh-en

WMT15 500 500 500 - - 500 - -
WMT16 560 560 560 - 560 560 560 -
WMT17 560 560 560 560 - 560 560 560

Table 1: Number of segment-level DA human evaluation datasets for to-English language pairs10 in
WMT15 (Stanojević et al., 2015), WMT16 (Bojar et al., 2016), and WMT17 (Bojar et al., 2017).

cs-en de-en fi-en lv-en ro-en ru-en tr-en zh-en

WMT16
systems 6 10 9 - 7 10 8 -

sentences 2,999 2,999 3,000 - 2,998 1,999 3,000 -

WMT17
systems 4 11 6 9 - 9 10 16

sentences 3,005 3,004 3,002 2,001 - 3,001 2,017 2,001

Table 2: Number of MT systems and system-level DA human evaluation datasets for to-English language pairs in
WMT16 (Bojar et al., 2016) and WMT17 (Bojar et al., 2017).

3 RUSE: Regressor Using Sentence
Enbeddings

The proposed metric evaluates the MT hypothesis
with universal sentence embeddings trained using
large-scale data obtained in other tasks. First, we
describe three types of sentence embeddings used
in the proposed metric in Section 3.1. We then
explain the proposed regression model and feature
extraction for MTE in Section 3.2.

3.1 Universal Sentence Embeddings
Several approaches have been proposed to learn
sentence embeddings. These sentence embed-
dings are learned through large-scale data such
that they constitute potentially useful features for
MTE. These have been proven effective in various
NLP tasks, such as document classification and
measurement of semantic textual similarity, and
we call them universal sentence embeddings.

First, InferSent6 (Conneau et al., 2017) con-
structs a supervised model computing universal
sentence embeddings trained using Stanford Nat-
ural Language Inference (SNLI) datasets7 (Bow-
man et al., 2015). The Natural Language In-
ference task is a classification task of sentence
pairs with three labels, namely entailment, con-
tradiction, and neutral; thus, InferSent can train
sentence embeddings that are sensitive to differ-
ences in meaning. This model encodes a sen-
tence pair u and v and generates features by sen-
tence embeddings u⃗ and v⃗ with a bi-directional

6https://github.com/facebookresearch/InferSent
7https://nlp.stanford.edu/projects/snli/

LSTM architecture with max pooling (Figure 2).
InferSent demonstrates high performance across
various document classification and semantic tex-
tual similarity tasks.

Second, Quick-Thought8 (Logeswaran and Lee,
2018) builds an unsupervised model of univer-
sal sentence embeddings trained using some con-
secutive sentences. Given an input sentence and
its context, a classifier distinguishes context sen-
tences from other contrastive sentences based on
their embeddings (Figure 3). For a given sentence
s, its embeddings are the concatenation of the out-
puts of the two encoders [f(s); g(s)]. As a re-
sult of the training, this encoder can produce sen-
tence embedding. Quick-Thought demonstrates
high performance, especially when applied to doc-
ument classification tasks.

Finally, Universal Sentence Encoder9 (Cer
et al., 2018) is trained using multitask learn-
ing, whereby a single encoding model is used
to feed multiple downstream tasks. Universal
Sentence Encoder supports a task to estimate the
neighboring sentences for unsupervised learning
and tasks conversational input–response and nat-
ural language inference for supervised learning.
The unsupervised learning model trained on data
drawn from a variety of web sources, such as
Wikipedia, web news, web question-answer pages
and discussion forums, is augmented with training

8https://github.com/lajanugen/S2V
9https://www.tensorflow.org/hub/modules/google/universal-

sentence-encoder-large/2
10en: English, cs: Czech, de: German, fi: Finnish, ro: Ro-

manian, ru: Russian, tr: Turkish, lv: Latvian, zh: Chinese
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cs-en de-en fi-en ro-en ru-en tr-en avg.

SentBLEU (Bojar et al., 2016) 0.557 0.448 0.484 0.499 0.502 0.532 0.504
COBALT-F (Bojar et al., 2016) 0.671 0.591 0.554 0.639 0.618 0.627 0.617
METRICS-F (Bojar et al., 2016) 0.696 0.601 0.557 0.662 0.618 0.649 0.631
DPMFcomb (Bojar et al., 2016) 0.713 0.584 0.598 0.627 0.615 0.663 0.633
RUSE (MLP) with IS+QT+USE 0.717 0.661 0.682 0.725 0.663 0.661 0.685
RUSE (SVR) with IS+QT+USE 0.720 0.632 0.678 0.708 0.670 0.675 0.681

Table 3: Segment-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT16. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

SentBLEU (Bojar et al., 2017) 0.435 0.432 0.571 0.393 0.484 0.538 0.512 0.481
chrF++ (Bojar et al., 2017) 0.523 0.534 0.678 0.520 0.588 0.614 0.593 0.579
MEANT 2.0 (Bojar et al., 2017) 0.578 0.565 0.687 0.586 0.607 0.596 0.639 0.608
Blend (Bojar et al., 2017) 0.594 0.571 0.733 0.577 0.622 0.671 0.661 0.633
RUSE (MLP) with IS+QT+USE 0.614 0.637 0.756 0.705 0.680 0.704 0.677 0.682
RUSE (SVR) with IS+QT+USE 0.624 0.644 0.750 0.697 0.673 0.716 0.691 0.685

Table 4: Segment-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT17. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

on supervised data from the SNLI corpus. Univer-
sal Sentence Encoder demonstrates a higher per-
formance across various document classification
and semantic textual similarity tasks compared to
InferSent.

3.2 Regression Model for MTE
This study proposes a segment-level MTE met-
ric for to-English language pairs. This problem
can be treated as a regression problem that esti-
mates the translation quality as a real number from
an MT hypothesis t and a reference translation r.
Once d-dimensional sentence vectors t⃗ and r⃗ are
generated, the proposed model applies the follow-
ing three matching methods to extract the relations
between t and r (Figure 1).

• Concatenation: (⃗t, r⃗)

• Element-wise product: t⃗ ∗ r⃗

• Absolute element-wise difference: |⃗t− r⃗|

Thus, we perform regression using 4d-
dimensional features of t⃗, r⃗, t⃗ ∗ r⃗ and |⃗t− r⃗|.

4 Experiments

We performed experiments using the evaluation
datasets of the WMT metrics task to verify the per-
formance of the proposed metric.

4.1 Setup

Datasets. We used segment-level datasets for to-
English language pairs from the WMT15 (Stano-
jević et al., 2015), WMT16 (Bojar et al., 2016),
and WMT17 (Bojar et al., 2017) metrics tasks
as summarized in Table 1. For testing, we also
used system-level datasets from the WMT16 and
WMT17 metrics tasks as summarized in Table 2.

Training. We divided the dataset for training
and development at a 9:1 ratio. First, for testing
in WMT16, we divided the segment-level dataset
of WMT15 into 1800 instances for training and
200 instances for development. Next, for testing
in WMT17, we divided the segment-level datasets
of WMT15 and WMT16 into 4824 instances for
training and 536 instances for development. Fi-
nally, for submission to WMT18, we divided the
segment-level dataset of WMT15, WMT16, and
WMT17 into 8352 instances for training and 928
instances for development.

Testing. We scored each sentence using our
metric for to-English language pairs in both seg-
ment and system levels. For testing on the system-
level metrics task, we calculated the average score
for each system as a system-level score. We eval-
uated our metric using the Pearson correlation co-
efficient between the metric scores and the DA hu-
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cs-en de-en fi-en ro-en ru-en tr-en avg.

BLEU (Bojar et al., 2016) 0.989 0.808 0.864 0.840 0.837 0.895 0.872
BEER (Bojar et al., 2016) 0.990 0.879 0.972 0.852 0.901 0.982 0.929
MPEDA (Bojar et al., 2016) 0.993 0.937 0.976 0.932 0.929 0.982 0.958
ReVal (Bojar et al., 2016) 0.986 0.985 0.970 0.957 0.976 0.958 0.972
RUSE (MLP) with IS+QT+USE 0.990 0.968 0.977 0.962 0.953 0.991 0.974
RUSE (SVR) with IS+QT+USE 0.990 0.954 0.976 0.940 0.944 0.984 0.965

Table 5: System-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT16. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

BLEU (Bojar et al., 2017) 0.971 0.923 0.903 0.979 0.912 0.976 0.864 0.933
UHH TSKM (Bojar et al., 2017) 0.996 0.937 0.921 0.990 0.914 0.987 0.902 0.950
BEER (Bojar et al., 2017) 0.972 0.960 0.955 0.978 0.936 0.972 0.902 0.954
Blend (Bojar et al., 2017) 0.968 0.976 0.958 0.979 0.964 0.984 0.894 0.960
RUSE (MLP) with IS+QT+USE 0.995 0.964 0.985 0.996 0.956 0.993 0.937 0.975
RUSE (SVR) with IS+QT+USE 0.996 0.964 0.983 0.988 0.951 0.993 0.930 0.972

Table 6: System-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT17. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

man scores.

Features. Publicly available pre-trained sen-
tence embeddings, such as InferSent6, Quick-
Thought8, and Universal Sentence Encoder9, were
used as the features mentioned in Section 3. In-
ferSent is a collection of 4096-dimensional sen-
tence embeddings trained on both 560,000 sen-
tences of the SNLI dataset (Bowman et al.,
2015) and 433,000 sentences of the MultiNLI
dataset (Williams et al., 2018). Quick-Thought
is a collection of 4800-dimensional sentence em-
beddings trained on both 45 million sentences of
the BookCorpus dataset (Zhu et al., 2015) and
129 million sentences of the UMBC corpus (Han
et al., 2013). Universal Sentence Encoder is a
collection of 512-dimensional sentence embed-
dings trained on many sentences from a variety of
web Sources, such as Wikipedia, web news, web
question-answer pages, and discussion forums.

Model. Our regression model used a multi-layer
perceptron (MLP) from Chainer11 and Support
Vector Regression (SVR) from sckit-learn12 with
the features mentioned in Section 3.2.

MLP regressor. Hyper-parameters were de-
termined through grid search in the following pa-

11https://chainer.org/
12http://scikit-learn.org/

rameters using the development data. We used
ReLU as an activation function in all layers.

• Number of layers ∈ {1, 2, 3}

• Number of units ∈ {512, 1024, 2048, 4096}

• Batch size ∈ {64, 128, 256, 512, 1024}

• Dropout rate ∈ {0.1, 0.3, 0.5}

• Optimizer ∈ {Adam}

SVR. We used an SVR model with the RBF
kernel. The hyper-parameters were determined
through a 10-fold cross validation in the follow-
ing parameters using the training and development
data.

• C ∈ {0.1, 1.0, 10}

• ϵ ∈ {0.01, 0.1, 1.0}

• γ ∈ {0.001, 0.01, 0.1}

Baseline Metrics. We compared the proposed
metric with the four baseline metrics for each
dataset. One is BLEU, which is the de facto stan-
dard metric for machine translation evaluation.
The others are the top three metrics in each task.
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cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

Blend (Bojar et al., 2017) 0.594 0.571 0.733 0.577 0.622 0.671 0.661 0.633
RUSE (MLP) with IS+QT+USE 0.614 0.637 0.756 0.705 0.680 0.704 0.677 0.682
RUSE (MLP) with IS 0.556 0.568 0.706 0.650 0.626 0.649 0.634 0.627
RUSE (MLP) with QT 0.601 0.587 0.737 0.685 0.661 0.692 0.647 0.658
RUSE (MLP) with USE 0.592 0.596 0.681 0.621 0.598 0.645 0.620 0.622

Table 7: Ablation analysis on the segment-level dataset in WMT17.

cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

Blend (Bojar et al., 2017) 0.968 0.976 0.958 0.979 0.964 0.984 0.894 0.960
RUSE (MLP) with IS+QT+USE 0.995 0.964 0.985 0.996 0.956 0.993 0.937 0.975
RUSE (MLP) with IS 0.984 0.972 0.963 0.969 0.955 0.982 0.881 0.958
RUSE (MLP) with QT 0.997 0.952 0.997 0.998 0.945 0.992 0.936 0.974
RUSE (MLP) with USE 0.999 0.947 0.982 0.975 0.958 0.960 0.932 0.965

Table 8: Ablation analysis on the system-level dataset in WMT17.

4.2 Result

Segment-level metrics task. Tables 3 and 4
show the experimental results on the segment
level. Our proposed metrics achieved the best per-
formance in all to-English language pairs. For the
segment-level tasks, both MLP and SVR regres-
sors outperformed the state-of-the-art metrics.

System-level metrics task. Tables 5 and 6
present the experimental results on the system
level. Our proposed metric based on the MLP re-
gressor achieved the best performance in several
to-English language pairs and outperformed the
state-of-the-art metrics on average.

4.3 Discussion

These results indicated that adopting universal
sentence embeddings in MTE is possible by train-
ing a regression model using DA human evalu-
ation data. Blend is an ensemble method using
combinations of various MTE metrics as features;
hence, our results showed that universal sentence
embeddings can more accurately consider the sim-
ilarity between the MT hypothesis and the refer-
ence than a complex model.

MLP vs. SVR in the RUSE metric. These ex-
perimental results showed that in the RUSE met-
ric, MLP performed better than SVR in many
cases. In addition, MLP can be trained and in-
ferred faster than SVR by making effective use of
GPU. Therefore, we submitted a model of RUSE
(MLP) with IS+QT+USE trained on the whole

dataset to WMT18.

Ablation analysis. Tables 7 and 8 show that
our metric with Quick-Thought feature only out-
performed the state-of-the-art metrics in both
segment- and system-level metrics tasks. Quick-
Thought is an unsupervised model of universal
sentence embeddings trained using some consec-
utive sentences. Therefore, Quick-Thought can be
trained in corpora of languages other than English.
Our method is effective if there are universal sen-
tence embeddings and DA human evaluation data.
Thus, our method with Quick-Thought may be ef-
fective in MTE for other than to-English language
pairs.

5 Conclusions

In this study, we applied universal sentence em-
beddings to MTE based on the DA of human eval-
uation data. Our segment-level MTE metric RUSE
achieved the best performance in both segment-
and system-level metrics tasks on the WMT16 and
WMT17 datasets. We conclude that:

• Universal sentence embeddings can more
comprehensively consider information than
an ensemble metric using combinations of
various MTE metrics based on the features
of character or word N-grams.

• Universal sentence embeddings trained on a
large-scale dataset are more effective than
sentence embeddings trained on a small or
limited in-domain dataset.
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Miloš Stanojević and Khalil Sima’an. 2015.
BEER 1.1: ILLC UvA Submission to Metrics
and Tuning Task. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages
396–401.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved Semantic Representa-
tions From Tree-Structured Long Short-Term Mem-
ory Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing, pages 1556–1566.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl,
and Hermann Ney. 2016. CharacTER: Translation
Edit Rate on Character Level. In Proceedings of
the First Conference on Machine Translation, pages
505–510.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational

757



Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 1112–1122. Association
for Computational Linguistics.

Hui Yu, Qingsong Ma, Xiaofeng Wu, and Qun Liu.
2015a. CASICT-DCU Participation in WMT2015
Metrics Task. In Proceedings of the Tenth Workshop
on Statistical Machine Translation, pages 417–421.

Hui Yu, Xiaofeng Wu, Wenbin Jiang, Qun Liu, and
Shouxun Lin. 2015b. An Automatic Machine Trans-
lation Evaluation Metric Based on Dependency
Parsing Model. arXiv preprint arXiv:1508.01996.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Rus-
lan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Aligning Books and
Movies: Towards Story-Like Visual Explanations
by Watching Movies and Reading Books. 2015
IEEE International Conference on Computer Vision
(ICCV), pages 19–27.

758


