@inproceedings{grozea-2018-ensemble,
title = "Ensemble of Translators with Automatic Selection of the Best Translation {--} the submission of {FOKUS} to the {WMT} 18 biomedical translation task {--}",
author = "Grozea, Cristian",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/W18-6445/",
doi = "10.18653/v1/W18-6445",
pages = "644--647",
abstract = "This paper describes the system of Fraunhofer FOKUS for the WMT 2018 biomedical translation task. Our approach, described here, was to automatically select the most promising translation from a set of candidates produced with NMT (Transformer) models. We selected the highest fidelity translation of each sentence by using a dictionary, stemming and a set of heuristics. Our method is simple, can use any machine translators, and requires no further training in addition to that already employed to build the NMT models. The downside is that the score did not increase over the best in ensemble, but was quite close to it (difference about 0.5 BLEU)."
}