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Abstract

We describe UBC-NLP contribution to IEST-
2018, focused at learning implicit emotion
in Twitter data. Among the 30 participating
teams, our system ranked the 4th (with 69.3%
F-score). Post competition, we were able to
score slightly higher than the 3rd ranking sys-
tem (reaching 70.7%). Our system is trained
on top of a pre-trained language model (LM),
fine-tuned on the data provided by the task or-
ganizers. Our best results are acquired by an
average of an ensemble of language models.
We also offer an analysis of system perfor-
mance and the impact of training data size on
the task. For example, we show that training
our best model for only one epoch with< 40%
of the data enables better performance than the
baseline reported by Klinger et al. (2018) for
the task.

1 Introduction

Emotion is essential in human experience and
communication, lending special significance to
natural language processing systems aimed at
learning it. Emotion detection systems can be ap-
plied in a host of domains, including health and
well-being, user profiling, education, and mar-
keting. There is a small, yet growing, body of
NLP literature on emotion. Early works focused
on creating and manually labeling datasets. The
SemEval 2007 Affective Text task Strapparava
and Mihalcea (2007) and Aman and Szpakowicz
(2007) are two examples that target the news and
blog domains respectively. In these works, data
were labeled for the 6 basic emotions of Ekman
(Ekman, 1972). More recent works exploit dis-
tant supervision (Mintz et al., 2009) to automat-
ically acquire emotion data for training systems.
More specifically, a number of works use hashtags
like #happy and #sad, especially occurring fi-
nally in Twitter data, as a proxy of emotion (Wang

et al., 2012; Mohammad and Kiritchenko, 2015;
Volkova and Bachrach, 2016). Abdul-Mageed and
Ungar (2017) report state-of-the-art results using a
large dataset acquired with hashtags. Other works
exploit emojis to capture emotion carrying data
(Felbo et al., 2017). Alhuzali et al. (2018) intro-
duce a third effective approach that leverages first-
person seed phrases like “I’m happy that” to col-
lect emotion data.

Klinger et al. (2018) propose yet a fourth
method for collecting emotion data that depends
on the existence of the expression ”emotion-word
+ one of the following words (when, that or be-
cause)” in a tweet, regardless of the position of the
emotion word. In the “Implicit Emotion” shared
task 1, participants were provided data represent-
ing the 6 emotions in the set (anger, disgust, fear,
joy, sad, surprise). The trigger word was removed
from each tweet. To illustrate, the task is to predict
the emotion in a tweet like “Boys who like Star-
bucks make me [#TRIGGERWORD#] because we
can go on cute coffee dates” (with the triggered
word labeled as joy). In this paper, we describe our
system submitted as part of the competition. Over-
all, our submission ranked the 4th out of the 30
participating teams. With further experiments, we
were able to acquire better results, which would
rank our model at top 3 (70.7% F-score).

The rest of the paper is organized as follows:
Section 2 describes the data. Section 3 offers a
description of the methods employed in our work.
Section 3 is where we present our results, and we
perform an analysis of these results in Section 5.
We list negative experiments in Section 6 and con-
clude in Section 7.

1http://implicitemotions.wassa2018.com

http://implicitemotions.wassa2018.com
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2 Data

We use the Twitter dataset released by the organiz-
ers of the “Implicit Emotion” task, as described in
the previous section. The data are partitioned into
153, 383 tweets for training, 9591 tweets for val-
idation, and 28, 757 data points for testing. The
training and validation sets were provided early
for system development, while the test set was
released one week before the deadline of system
submission. The full details of the dataset can be
found in Klinger et al. (2018). We now describe
our methods in the nesxt section.

3 Methods

3.1 Pre-processing

We adopt a simple pre-processing scheme, similar
to most of the pre-trained models we employ. This
involves lowercasing all text and filtering out urls
and user mentions. We also split clusters of emojis
into individual emojis, following Duppada et al.
(2018). For our vocabulary V, we retain the top
100k words and then remove all words occurring
< 2 times, which leaves |V | = 23, 656.

3.2 Models

We develop a host of models based on deep neural
networks, using some of these models as our base-
line models. As an additional baseline, we com-
pare to Klinger et al. (2018) who propose a model
based on Logistic Regression with a bag of word
unigrams (BOW). All our deep learning models
are based on variations of recurrent neural net-
works (RNNs), which have proved useful for sev-
eral NLP tasks. RNNs are able to capture sequen-
tial dependencies especially in time series data, of
which language can be seen as an example. One
weakness of RNNs, however, lies in gradient ei-
ther vanishing or exploding during training. Long-
short term memory (LSTM) networks were devel-
oped to target this problem, and hence we employ
these in our work. We also use a bidirectional ver-
sion (BiLSTM) where the vector of representation
is built as a concatenation of two vectors, one that
runs from left-to-right and another running from
right-to-left. Ultimately, we generate a fixed-size
representation for a given tweet using the last hid-
den state for the Fwd and Bwd LSTM. Our sys-
tems can be categorized as follows: (1) Systems
tuning simple pre-trained embeddings, (2) Sys-
tems tuning embeddings from language models,

and (3) Systems directly tuning language models.
We treat #1 and #2 as baseline systems, while our
best models are based on #3.

3.2.1 Systems With Simple Embeddings
Character and/or Word embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2016) have boosted performance on a host of
NLP tasks. Most state of the art systems now fine-
tune these embeddings as a simple transfer learn-
ing technique targeting the first layer of a network
(McCann et al., 2017). We make use of one such
pre-trained embeddings (fastText) to identify the
utility of tuning its learned weights on the task.

FastText: The first embedding model is fast-
Text 2(Bojanowski et al., 2016), which builds rep-
resentations based on characters, rather than only
words, thus alleviating issues of complex mor-
phology characetrestic of many languages like
Arabic, Hebrew, and Swedish, but also enhancing
representations for languages of simpler morphol-
ogy like English. Additionally, fastText partially
solves issues with out-of-vocabulary words since
it exploits character sequences. FastText is trained
on the Common Crawl dataset, consisting of 600B
tokens.

For this and the next set of experiments (i.e., ex-
periments in 3.2.2), we train both an LSTM and
BiLSTM. Since we treat these as baseline sys-
tems, especially with our goal to report our ex-
periments in available space for the competition,
we try a small set of hyper-parameters, identifying
best settings on our validation set. We train each
network for 4 epochs each. For optimization, we
use Adam (Kingma and Ba, 2014). The model’s
weights W are initialized from a normal distri-
bution W ∼ N with a small standard deviation
of σ = 0.05. We apply two sources of regular-
ization: dropout: we apply a dropout rate of 0.5
on the input embeddings to prevent co-adaptation
of hidden units’ activation, and L2 − norm: we
also apply an L2-norm regularization with a small
value (0.0001) on the hidden units layer to prevent
the network from over-fitting on training set. Each
of the networks has a single hidden layer. Net-
work architectures and hyper-parameters are listed
in Table 1.

3.2.2 Embedding From LMs
Peters et al. (2018) build embeddings directly from

2https://fasttext.cc/docs/en/
english-vectors.html

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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Hyper-Parameter Value
Embed-dim-fastText 300
Embed-dim-ELMo 1024
layers 1
units 300
batch size 32
epochs 4
dropout 0.5

Table 1: Network architecture and hyper-parameters
for experiments with simple pre-trained embeddings
with fastText 3.2.1 and ELMo 3.2.2 across our LSTM
and BiLSTM networks.

language models, which they refer to as ELMo.
ELMo is shown to capture both complex char-
acteristics of words (as syntax and semantics) as
well as the usage of these words across various
linguistic contexts, thanks to its language model-
ing component. ELMo is trained on a dataset of
Wikipedia and is publicly available 3, which we
use as our input layer. More specifically, we ex-
tract the weighted sum of the 3 layers (word em-
bedding, Bi-lstm-outputs1, and Bi-lstm-outputs2)
and follow the same network architectures and
hyper-parameters employed with fastText as we
explain before.

3.2.3 Fine-Tuning LMs: ULMFiT
Another recent improvement in training NLP sys-
tems is related to the way these systems are fine-
tuned, especially vis-a-vis how different layers in
the network operate during training time. Howard
and Ruder (2018) present ULMFiT4, an exam-
ple such systems that is pre-trained on a language
model exploiting Wikitext-103. Ultimately, ULM-
FiT employs a number of techniques for train-
ing. These include “gradual unfreezing”, which
aims at fine-tuning each layer of the network in-
dependently and then fine-tuning all layers to-
gether. Gradual unfreezing proves useful for re-
ducing the risk of overfitting as also found in Felbo
et al. (2017). ULMFiT also uses “discriminative
fine-tuning”, which tunes each layer with differ-
ent learning rates, the idea being different lay-
ers capture different types of information (Howard
and Ruder, 2018; Peters et al., 2018). Howard
and Ruder (2018) also use different learning rates,
which they refer to as “slanted triangular learning

3https://github.com/allenai/bilm-tf
4http://nlp.fast.ai/category/

classification.html.

rates”, at different times of the training process.
With ULMFiT, we experiment with different vari-
ations of LMs 5: forward (Fwd), backward (Bwd),
and an average of these (BiLM (Fwd+Bwd)). We
follow Howard and Ruder (2018) in training each
of the Fwd and Bwd models independently on the
training data provided by the task organizers, and
then combining their predictions using an ensem-
ble averaging. This is the setting we refer to as
BiLM. As we show in Section 3, this is a benefi-
cial measure (similar to what Howard and Ruder
(2018) also found). For our hyper-parameters for
this iteration of experiments, we identify them on
our validation set. We list the network architec-
tures and hyper-parameters for this set of experi-
ments in Table 2.

Hyper-Parameter Value
dim-size 400
vocab 23, 656
batches 64
layers 3
units 1, 150
epochs 19

Table 2: Hyper-parameters for our submitted system
exploiting fine-tuned language models from Howard
and Ruder (2018).

4 Results

Table 3 shows results of all our models in F-score.
As the Table shows, all our models achieve siz-
able gains over the logistic regression model in-
troduced by (Klinger et al., 2018) as a baseline for
the competition (F-score = 60%). Even though
our models trained based on fastText and ELMo
each has a single hidden layer, which is not that
deep, these at least 1.5% higher than the logistic
regression model. We also observe that ELMo em-
beddings, which are acquired from language mod-
els rather than optimized from sequences of to-
kens, achieves higher performance than FastText
embeddings. This is not surprising, and aligns
with the results reported by Peters et al. (2018).

For results with ULMFiT, as Table 3 shows, it
acquires gains over all the other models. As men-
tioned earlier, we experiment with different vari-
ations of LMs (Fwd, Bwd, and BiLM). Results in
our submitted system are based on the Fwd model,
and are at 69.4%. After system submission, we

5Fwd and Bwd LMs are offered by the authors of the
ULMFiT model (Howard and Ruder, 2018).

https://github.com/allenai/bilm-tf
http://nlp.fast.ai/category/classification.html.
http://nlp.fast.ai/category/classification.html.
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also experimented with the Bwd and BiLM mod-
els and were able to acquire even higher gains,
putting our best performance at 70.7% (which
moves us to the top 3 position).

System Dev Test
Baseline (Klinger et al., 2018)
BOW Log-Reg 0.601 0.601

Embeddings
FastText (Bojanowski et al., 2016)
LSTM 0.629 0.629
Bi-LSTM 0.628 0.626

Embed. from LM (ELMo) (Peters et al., 2018)
LSTM 0.635 0.635
Bi-LSTM 0.615 0.614

Fine-Tuned LM (Howard and Ruder, 2018)
Fwd LM (submitted system) 0.694 0.693
Bwd LM 0.686 0.693
BiLM 0.707 0.707

Table 3: Results: BiLM refers to an ensemble of both
the Fwd and Bwd LMs.

5 Analysis

5.1 Error Analysis

Figure 1: Confusion matrix of errors in F-score across
the different emotion classes.

Using predictions from our best model (as de-
scribed in Table 2), we investigate the extent with
which each emotion is mislabeled and the cate-
gories with which it is confused. Figure 1 shows
the confusion matrix of this analysis. As the Fig-
ure shows, anger is predicted with least F-score
(% = 63), followed by sadness (% = 66). Figure

1 also shows that anger is most confused for sur-
prise and sadness is most confused for anger. Ad-
ditionally, disgust is the third most confused cat-
egory (% = 66), and is mislabeled as surprise
9% of the time. These results suggest overlap in
the ways each of the emotions is expressed in the
training data.

To further investigate these observations, we
measure the shared vocabulary between the differ-
ent classes. Figure 2 shows percentages of lex-
ical overlap in the data, and does confirm that
some categories share unigram tokens to varying
degrees. Lexical overlap between classes seem to
align with the error matrix in Figure 1. For exam-
ple, anger overlaps most with surprise (% = 9)
and sadness overlaps most with anger (% = 10).
These findings are not surprising, since our mod-
els are based on lexical input and do not involve
other types of information (e.g., POS tags). Table
4 offers examples of overlap in the form of lexi-
cal sequences between test data and training data
across a number of classes.

Figure 2: Heat Map for percentages of shared vocabu-
lary between emotion classes.

5.2 Size of Training Data

We also investigate the impact of training data size
on model accuracy. For this purpose, we train
models with different data sizes with the best pa-
rameter settings shown in Table 2 6. Figure 3
shows the impact of different percentages of train-
ing examples on model performance. We test

6Due to the high computational cost of training these
models, we only train each model with one epoch for this
analysis.
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Test Example True Predicted Train Example True
I’m [#TRIGGERWORD#]
that
like none of
my friends at school
have seen national
lamoon’s day

disgust sad

[#TRIGGERWORD#]
that like
none of
my videos
from last night ..

sad

hey luke! I’m so
[#TRIGGERWORD#]
because you
don’t follow me,
not lies,
but please follow me

anger sad

i’m so
[#TRIGGERWORD#]
because
you don’t
follow me

sad

Table 4: Examples overlapping lexical sequences in test and training data.

model performance for this analysis on our vali-
dation data.

Interestingly, as Figure 3 shows, the model ex-
ceeds the baseline model reported by the task or-
ganizers (Klinger et al., 2018) when trained on
only 10% of the training data. Additionally, the
model outperforms the fastText and ELMo mod-
els by only seeing 40% of the training data. Once
the model has access to 80% of the training data,
its gains start to increase relatively slowly. In ad-
dition to the positive, yet unsurprising, impact that
training data size has on performance, the results
also reflect the utility of employing the pre-trained
language model.

Figure 3: Impact of training data size on model per-
formance, tested on our validation data. Results in F-
score.

In order to further inspect this observation re-
garding the impact of language modeling, we use
the same architecture reported in Table 2 to train
a classifier that does not have access to the pre-
trained LM. We find the classifier to achieve only
63.8 F-score. Again, this demonstrates the advan-

tage of using the pra-trained LM.

6 Negative Experiments

We performed a number of negative experiments
that we report briefly here. Our intuition is
that training our models with Twitter-specific data
should help classification. For this reason, we
trained ULMFiT with 4.5 million tweets with the
same settings reported in Table 2. We did not find
this set of experiments to yield gains over the re-
sults reported in Table 3, however. For example,
an Fwd LM trained on Twitter domain data yields
67.9% F-score, which is 1.4% less than the F-
score obtained by the Wikipedia-trained Fwd LM
in 3. The loss might be due to the smaller size of
the Twitter data we train on, as compared to the
Wikipedia data the ULMFiT is originally trained
on (i.e., > 103 million tokens).

7 Conclusion

In this paper, we described our system submitted
to IEST-2018 task, focused on learning implicit
emotion from Twitter data. We explored the util-
ity of tuning different word- and character-level
pre-trained representations and language model-
ing methods to minimize training loss. We found
that the method introduced by Howard and Ruder
(2018) yields best performance on the task. We
note that our baselines employing sub-word em-
beddings (fastText) and embeddings from lan-
guage models (ELMo) can be improved by us-
ing deeper neural architectures with larger model
capacity, which we cast for future work. We
have also shown that the classifier confuses certain
emotion classes with one another, possible due to
overlap of lexical sequences between training and
test data. This reflects the difficulty of the task.
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