
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 243–247
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

243

BrainT at IEST 2018: Fine-tuning Multiclass Perceptron For Implicit
Emotion Classification

Vachagan Gratian
Universität Stuttgart

vgratian@utopianlab.am

Marina Haid
Universität Stuttgart

haidmarina@gmail.com

Abstract
We present BrainT, a multi-class, averaged
perceptron tested on implicit emotion predic-
tion of tweets. We show that the dataset is
linearly separable and explore ways in fine-
tuning the baseline classifier. Our results indi-
cate that the bag-of-words features benefit the
model moderately and prediction can be im-
proved with bigrams, trigrams, skip-one- tetra-
grams and POS-tags. Furthermore, we find
preprocessing of the n-grams, including stem-
ming, lowercasing, stopword filtering, emoji
and emoticon conversion generally not useful.
The model is trained on an annotated corpus
of 153,383 tweets and predictions on the test
data were submitted to the WASSA-2018 Im-
plicit Emotion Shared Task. BrainT1 attained
a Macro F-score of 0.63.

1 Introduction

Our task is to predict emotions of tweets in a
dataset where words explicitly mentioning the
emotion are masked (Figure 1 and 2). Follow-
ing the definition of Ekman (1992), there are six
”basic” emotions, these tweets have the labels joy,
fear, surprise, disgust, anger or sadness. As the
model has no access to the explicit emotion word,
it has to detect it from its implicit context, i.e. the
situational or causal description of the event. This
aspect of the task makes it comparable to centre
word prediction from context words.

Twitter language distinguishes itself by a het-
erogeneous variety of internet vernaculars, abun-
dance of abbreviations, emojis, hashtags and de-
viation from conventional spelling, grammar, syn-
tax and lexicon. This makes recognition of emo-
tions intricate even for human readers as evident
from the noticeably low inter-annotator agree-
ment reported by Balabantaray et al. (2012) or the

1Source code is publicly available at:
https://github.com/ims-teamlab2018/
Braint

Figure 1: Example of a tweet expressing joy.

Figure 2: The tweet in the dataset: the gold label (left)
and the tweet text (right) where the emotion word is
masked.

”testing” of the IEST dataset on English native-
speakers which resulted in an F-score of 0.45
(Klinger et al., 2018).

2 Related Work

Previous research on sentiment analysis and emo-
tion analysis of Twitter data often disagrees on
the benefits or disadvantages of the various ap-
proaches, algorithms and feature models.

In Psomakelis et al. (2014) linear and multi-
layer classifiers are evaluated on sentiment anal-
ysis of tweets and is found that learning-based
approaches outperform lexicon-based approaches
explaining this chiefly by the lack of contex-
tual information that lexical entries (such as
polarity scores) express in the unigram model.
Kouloumpis et al. (2011) found a mixed feature
set of unigrams and n-grams beneficial for sen-
timent analysis, but found that adding POS-tags
to the feature set drops the model’s performance
and questioned its usefulness specifically on Twit-
ter data. Aston et al. (2014) observe that the
voted perceptron performs quite well using only
character n-grams and propose a feature-reduction
method that dramatically decreases runtime with-

https://github.com/ims-teamlab2018/Braint
https://github.com/ims-teamlab2018/Braint


244

out compromising performance. Conversely, Bal-
abantaray et al. (2012) evaluate a ”greedy” fea-
ture model, including n-grams, POS-tags, bigram
POS-tags, dependency tags, affection labels etc.
Interestingly, the authors of this paper add a sev-
enth class, no emotion to the six basic emotion
classes and find that the multi-class SVM attains
a high accuracy score with a panoramic feature
model.

3 Methods

3.1 Multi-class Perceptron
We design our model following the ”one-against-
all” approach described in Allwein et al. (2001) by
reducing the multi-class prediction task into k =
6 binary classification problems. We add weight
vectors for each emotion class (wjoy, wfear, ...).
Prediction is made by assigning each tweet vector
xi the label that gets the highest confidence:

ŷ = argmax wy · x

y ∈ {sad, joy, disgust, fear, surprise, anger}

For each incorrect prediction, the model is updated
by adding the tweet vector xi to the true label’s
weights yi and subtracting it from all the other
weights:

if ŷ 6= yi :

wy ← wy + xi

wŷ ← wŷ − xi

After our first experiments we upgraded our
model to the averaged perceptron as defined in
Collins (2002) and as discussed in Kazama and
Torisawa (2007). Doing so, we set the final
weights to be the average of all updated weights
during training. Additionally, we randomize the
order of tweets before each training epoch to re-
duce overfitting.

3.2 Features
Our feature set consists of unigrams, bigrams, tri-
grams and what we call skip-one-tetragrams. We
use a combination of n-grams as our feature set
and optionally add POS-tags.

The unigrams are modified depending on the se-
lected preprocessing mode. This can be either re-
ductive (surface word is reduced to its stem or low-
ercased, stop words and punctuation are removed,
emojis and emoticons are replaced by labels, num-
bers are replaced by 〈NUM〉 tag) or additive in

which case stems, labels and tags are added to
the feature set alongside the surface form. Bi-
grams and trigrams are added to the feature set as
they are. Tetragrams are duplicated and respec-
tively the second and the third tokens2 are replaced
with 〈SKIP 〉. We expect that this will gener-
alize phrases that only differ in one token. E.g.,
”he loves red apples” with skip-one is ”he loves
〈SKIP 〉 apples” and will match with ”he loves
green apples” in another tweet.

We calculate the feature values using one of the
following measures: binary (0 or 1), count, fre-
quency or tf-idf.

4 Experiments

4.1 Dataset

The dataset we use is provided by the WASSA
2018 Implicit Emotion Shared Task3. It is a corpus
of 153,383 tweets annotated with distant supervi-
sion where each tweet originally contained one of
the six emotion words (joy, fear, surprise, disgust,
anger, sadness) or their synonyms. These words
are masked in the dataset, as are usernames and
URLs. The dataset is described in detail in Klinger
et al. (2018). We use a test set consisting of 28,757
tweets, provided by the IEST as well.

4.2 Preprocessing

We tokenize and normalize tweets using methods
that allow for the orthographic anomalies of tweets
(e.g., missing space between words and punctu-
ation marks; use of punctuation marks as emoti-
cons). Tokens are labelled by their type (word,
punctuation, numerical, emoji, emoticon, hash-
tag or URL). Depending on our choice between
the reductive or additive modes, word tokens are
replaced or complemented with stems, all other
types by a label or tag. For example, the emoji
and the emoticon :)))) both are replaced or com-
plemented by laughing4. Numbers like e.g. 1948
are replaced or complemented by 〈NUM〉.

We also add counts of word classes in the tweet
using the NLTK5 part-of-speech tagger. Option-

2Doing the same with the first and last tokens would re-
duce it to a trigram.

3Available at:
http://implicitemotions.wassa2018.com/
data/

4We created our own libraries for common emojis and
emoticons. For not common emojis we used the Python li-
brary emoji.

5https://www.nltk.org/

http://implicitemotions.wassa2018.com/data/
http://implicitemotions.wassa2018.com/data/


245

Feature vectors Conv Macro F
Binary 0.8 0.382
Count 0.78 0.412
Freq 0.57 0.436
TF-IDF 0.79 0.401

Table 1: Results of testing the baseline with unigrams.
T = 150.

ally stopwords and punctuation marks can be re-
moved and tokens can be lowercased.

These preprocessing options are only applied to
unigrams, since they would otherwise disturb the
word order in n-grams.

4.3 Experimental Setup

We evaluate our model on the test data described
in section 4.1. We consider Macro F-score as the
evaluation metric and calculate Precision and Re-
call scores for each emotion class. We run our
experiments with learning rates ranging from 0.1
to 0.5, but choose for 0.3 in later experiments as
the model seems to converge slightly better in this
case. For the initial model we set the number
of epochs T = 150, but with averaging of the
weights, T = 50 seems reasonable as the learning
curve plateaus already after 30-35 epochs. During
each epoch we calculate the accuracy of the pre-
dictions on the train data (we refer to this measure
as Convergence or Conv).

Additionally, after each epoch the model is eval-
uated on the test data whereby the weights are not
adjusted so the test data remains unseen. With
these two measures we can track how the model
adapts to the train data in comparison to its perfor-
mance on the test data.

4.4 Results

We conduct four groups of experiments in increas-
ing complexity of the feature set.

Group 1. First, we test the ”vanilla” percep-
tron with unigrams and with minimal preprocess-
ing (only tokenization). We try all four vector
value calculations, but since frequency attains the
highest score, we choose only that one for the next
experiments. Results of this group of experiments
are shown in table 1.

Group 2. We then update our model to the av-
eraged perceptron and shuffle tweets before each
epoch. This raises the F-score from 0.44 to 0.52.
Subsequently we evaluate the model with more ad-
vanced preprocessing options. Both reductive and
additive modes are considered. Results of Group 2

reductive options Conv Macro F
none 0.47 0.519
replace emoji/emoticon with label 0.47 0.516
replace number with tag 0.47 0.519
remove stopwords 0.50 0.481
remove punctuation 0.48 0.511
lowercase 0.46 0.511
replace word with stem 0.49 0.529
all of the above 0.52 0.468

Table 2: Results of reductive preprocessing options us-
ing unigram frequencies. T = 50.

additive options Conv Macro F
add emoji/emoticon label 0.50 0.545
add number tag 0.50 0.545
add covercased token 0.50 0.546
add stem 0.49 0.536
add stem + emoji/emoticon label 0.49 0.537
add stem + emoji/emoticon label 0.50 0.546
+ number tag
all of the above 0.49 0.537

Table 3: Results of additive preprocessing options us-
ing unigram frequencies. T = 50.

experiments are included in Tables 2 and 3. Since
the impact of these options is either negative or
positive but negligible, we choose for no unigram
preprocessing options in the next experiments.

Group 3. In Group 3 of the experiments we
incrementally add bigrams, trigrams, skip-one-
tetragrams and POS-tags to the feature set (Table
5 and Figure 3).

Group 4. Finally, we repeat the experiments of
Group 3 non-incrementally. Table 5 shows the re-
sults.

4.5 Discussion

We observe a strong improvement of the averaged
perceptron with shuffling over the baseline per-
ceptron. Predictions get better as more n-grams
are added to the feature set, which is self-evident
as they capture more contextual information. The
learning curve converges on the training data af-
ter trigrams are added, which indicates that the
dataset is linearly separable.

As it was found by Saif et al. (2014), we

Feature vectors Conv Macro F
Unigram 0.50 0.546
Bigram 0.88 0.607
Trigram 0.99 0.616
Skip-one-Tetragram 1.00 0.625
POS-tags 0.99 0.632

Table 4: Results of third group of experiments: Feature
sets are added incrementally. T = 50.



246

Figure 3: Macro F-scores obtained on different feature
sets. Feature sets are added incrementally (i.e. the fea-
ture type on the right contains all on its left).

Feature vectors Conv Macro F
Unigram 0.50 0.546
Bigram 0.90 0.585
Trigram 0.99 0.571
Skip-one-Tetragram 1.00 0.559
POS-tags 0.99 0.301

Table 5: Group 4 experiments: feature set includes only
one n-gram or the POS-tags. T = 50.

confirm that classic stopword filtering decreases
performance and observe that similarly low-
ercasing, punctuation removal, stemming and
emoji/emoticon conversion have a negative or neu-
tral impact.

5 Future Work

The model and approaches described in this pa-
per can be improved in two directions: enhanc-
ing the feature set and addressing the limitations
of the multi-class perceptron. In the ”one-against-
all” model the output of each classifier is treated
as a confidence measure, for a more precise pre-
diction this score can be calibrated into probabil-
ity. As demonstrated in Figure 4, models trained
on different feature sets show different strengths
and weaknesses in their predictions. This dispari-
ties can be exploited by adding ”redundant” clas-
sifiers for the same emotion class and train them
differently. A final prediction can be made based
on a simple majority vote or a distance measure
between the individual predictions. As described
in Garcia Cifuentes (2009), this can improve the
models performance. In this scenario, the prepro-
cessing options described in 4.2 could also prove
to be helpful.

We would also like to try other multi-class re-
duction approaches on the same implicit emo-

Figure 4: Confusion matrix of two models trained on
Unigram and skip-one-Tetragram features.

tion prediction task, such as ”all-pairs” or ”error-
correcting code”, both known to perform bet-
ter than the ”one-against-all” approach (Allwein
et al., 2001).

6 Conclusion

In this paper we evaluate a multiclass aver-
aged perceptron on implicit emotion detection in
tweets. We discuss how different preprocessing
options and feature sets affect its performance. In
particular, we demonstrate that the bag-of-words
model enhanced with bigrams, trigrams, skip-one-
tetragrams and POS-tags shows strong improve-
ments over the initial baseline. Conversely, stop-
word filtering, lowercasing, stemming, emoji and
emoticon conversion, proved not to be helpful in
our experimental settings.



247

References
Erin L Allwein, Robert E Schapire, and Yoram Singer.

2001. Reducing multiclass to binary: a unifying ap-
proach for margin classifiers. The Journal of Ma-
chine Learning Research, 1:113–141.

Nathan Aston, Jacob Liddle, and Wei Hu. 2014. Twit-
ter sentiment in data streams with perceptron. Jour-
nal of Computer and Communications, 2(03):11.

Rakesh C Balabantaray, Mudasir Mohammad, and
Nibha Sharma. 2012. Multi-class twitter emotion
classification: A new approach. International Jour-
nal of Applied Information Systems, 4(1):48–53.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8.
Association for Computational Linguistics.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Cristina Garcia Cifuentes. 2009. Multi-class classifica-
tion with machine learning and fusion.

Junichi Kazama and Kentaro Torisawa. 2007. A new
perceptron algorithm for sequence labeling with
non-local features. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL).

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter sentiment analysis:
The good the bad and the omg! Icwsm, 11(538-
541):164.

Evangelos Psomakelis, Konstantinos Tserpes, Dimos-
thenis Anagnostopoulos, and Theodora Varvarigou.
2014. Comparing methods for twitter sentiment
analysis. In Proceedings of the International Joint
Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management-Volume
1, pages 225–232. SCITEPRESS-Science and Tech-
nology Publications, Lda.

Hassan Saif, Miriam Fernández, Yulan He, and Harith
Alani. 2014. On stopwords, filtering and data spar-
sity for sentiment analysis of twitter.


