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Abstract

Sociolinguistics is often concerned with how
variants of a linguistic item (e.g., nothing vs.
nothin’) are used by different groups or in
different situations. We introduce the task
of inducing lexical variables from code-mixed
text: that is, identifying equivalence pairs such
as (football, fitba) along with their linguis-
tic code (football→British, fitba→Scottish).
We adapt a framework for identifying gender-
biased word pairs to this new task, and present
results on three different pairs of English di-
alects, using tweets as the code-mixed text.
Our system achieves precision of over 70%
for two of these three datasets, and produces
useful results even without extensive parame-
ter tuning. Our success in adapting this frame-
work from gender to language variety suggests
that it could be used to discover other types of
analogous pairs as well.

1 Introduction

Large social media corpora are increasingly used
to study variation in informal written language
(Schnoebelen, 2012; Bamman et al., 2014; Nguyen
et al., 2015; Huang et al., 2016). An outstanding
methodological challenge in this area is the bottom-
up discovery of sociolinguistic variables: linguistic
items with identifiable variants that are correlated
with social or contextual traits such as class, regis-
ter, or dialect. For example, the choice of the term
rabbit versus bunny might correlate with audience
or style, while fitba is a characteristically Scottish
variant of the more general British football.

To date, most large-scale social media studies
have studied the usage of individual variant forms
(Eisenstein, 2015; Pavalanathan and Eisenstein,
2015). Studying how a variable alternates be-
tween its variants controls better for ‘Topic Bias’
(Jørgensen et al., 2015), but identifying the rele-
vant variables/variants may not be straightforward.

For example, Shoemark et al. (2017b) used a data-
driven method to identify distinctively Scottish
terms, and then manually paired them with Stan-
dard English equivalents, a labour intensive process
that requires good familiarity with both language
varieties. Our aim is to facilitate the process of
curating sociolinguistic variables by providing re-
searchers with a ranked list of candidate variant
pairs, which they only have to accept or reject.

This task, which we term lexical variable in-
duction, can be viewed as a type of bilingual lexi-
con induction (Haghighi et al., 2008; Zhang et al.,
2017). However, while most work in that area as-
sumes that monolingual corpora are available and
labeled according to which language they belong
to, in our setting there is a single corpus contain-
ing code-mixed text, and we must identify both
translation equivalents (football, fitba) as well as
linguistic code (football→British, fitba→Scottish).
To illustrate, here are some excerpts of tweets from
the Scottish dataset analysed by Shoemark et al.,
with Standard English glosses in italics:1

1. need to come hame fae the football
need to come home from the football

2. miss the fitba
miss the football

3. awwww man a wanty go tae the fitbaw
awwww man I want to go to the football

The lexical variable induction task is challenging:
we cannot simply classify documents containing
fitba as Scottish, since the football variant may also
occur in otherwise distinctively Scottish texts, as
in (1). Moreover, if we start by knowing only a
few variables, we would like a way to learn what
other likely variables might be. Had we not known

1Note that it is hard to definitively say whether tweets
such as these are mixing English and Scots codes, or whether
they are composed entirely in a single Scottish code, which
happens to share a lot of vocabulary with Standard English.
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the (football, fitba) variable, we might not detect
that (2) was distinctively Scottish. Our proposed
system can make identifying variants quicker and
also suggest variant pairs a researcher might not
have otherwise considered, such as (football, fit-
baw) which could be learned from tweets like (3).

Our task can also be viewed as the converse of
the one addressed by Donoso and Sanchez (2017),
who proposed a method to identify geographical
regions associated with different linguistic codes,
using pre-defined lexical variables. Also comple-
mentary is the work of Kulkarni et al. (2016), who
identified words which have the same form but dif-
ferent semantics across different linguistic codes;
here, we seek to identify words which have the
same semantics but different forms.

We frame our task as a ranking problem, aim-
ing to generate a list where the best-ranked pairs
consist of words that belong to different linguistic
codes, but are otherwise semantically and syntac-
tically equivalent. Our approach is inspired by
the work of Schmidt (2015) and Bolukbasi et al.
(2016), who sought to identify pairs of words that
exhibit gender bias in their distributional statistics,
but are otherwise semantically equivalent. Their
methods differ in the details but use a similar frame-
work: they start with one or more seed pairs such
as {(he, she), (man, woman)} and use these to ex-
tract a ‘gender’ component of the embedding space,
which is then used to find and rank additional pairs.

Here, we replace the gendered seed pairs with
pairs of sociolinguistic variants corresponding to
the same variable, such as {(from, fae), (football,
fitba)}. In experiments on three different datasets
of mixed English dialects, we demonstrate useful
results over a range of hyperparameter settings,
with precision@100 of over 70% in some cases
using as few as five seed pairs. These results indi-
cate that the embedding space contains structured
information not only about gendered usage, but
also about other social aspects of language, and
that this information can potentially be used as part
of a sociolinguistic researcher’s toolbox.

2 Methods

Our method consists of the following steps.2

Train word embeddings We used the Skip-
gram algorithm with negative sampling (Mikolov
et al., 2013) on a large corpus of code-mixed text

2Code is available at github.com/pjshoemark/
lexvarinduction.

to obtain a unit-length embedding w for each word
in the input vocabulary V .3

Extract ‘linguistic code’ component Using
seed pairs S = {(xi,yi), i = 1 . . . n}, we com-
pute a vector c representing the component of the
embedding space that aligns with the linguistic
code dimension. Both Schmidt and Bolukbasi
et al. were able to identify gender-biased word
pairs using only a single seed pair, defining the
‘gender’ component as c = wshe − whe. How-
ever, there is no clear prototypical pair for dialect
relationships, so we average our pairs, defining
c = 1

n

∑
i xi − 1

n

∑
i yi.4 We experiment with the

number of required seed pairs in §5.

Threshold candidate pairs From the set of all
word pairs in V × V , we generate a set of can-
didate output pairs. We follow Bolukbasi et al.
(2016) and consider only pairs whose embeddings
meet a minimum cosine similarity threshold δ. We
set δ automatically using our seed pairs: for each
seed pair (xi,yi) we compute cos(xi,yi) and set
δ equal to the lower quartile of the resulting set of
cosine similarities.

Rank candidate pairs Next we use c to rank the
remaining candidate pairs such that the top-ranked
pairs are the most indicative of distinct linguis-
tic codes, but are otherwise semantically equiva-
lent. We follow Bolukbasi et al. (2016),5 setting
score(wi,wj) = cos(c,wi −wj).

Filter top-ranked pairs High dimensional em-
bedding spaces often contain ‘hub’ vectors, which
are the nearest neighbours of a disproportionate
number of other vectors (Radovanović et al., 2010).
In preliminary experiments we found that many
of our top-ranked candidate pairs included such
‘hubs’, whose high cosine similarity with the word
vectors they were paired with did not reflect gen-
uine semantic similarity. We therefore discard all
pairs containing words that appear in more than m
of the top-n ranked pairs.6

3In preliminary experiments we also tried CBOW and
FastText, but obtained better output with Skip-gram.

4Bolukbasi et al. (2016) introduced another method to com-
bine multiple seed pairs, using Principal Component Analysis.
We compared it and a variant to our very simple difference
of means method, and found little difference in their efficacy.
Details can be found in the Supplement. All results reported
in the main paper use the method defined above.

5See Supplement for comparison with an alternative scor-
ing method devised by Schmidt (2015).

6The choice of m ∈ {5, 10, 20} and n ∈ {5k, 10k, 20k}
made little difference, although we did choose the best pa-

github.com/pjshoemark/lexvarinduction
github.com/pjshoemark/lexvarinduction
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3 Datasets

We test our methods on three pairs of language
varieties: British English vs Scots/Scottish English;
British English vs General American English; and
General American English vs African American
Vernacular English (AAVE). Within each data set,
individual tweets may contain words from one or
both codes of interest, and the only words with a
known linguistic code (or which are known to have
a corresponding word in the other code) are those
in the seed pairs.

BrEng/Scottish For our first test case, we com-
bined the two datasets collected by Shoemark et al.
(2017a), consisting of complete tweet histories
from Aug-Oct 2014 by users who had posted at
least one tweet in the preceding year geotagged to
a location in Scotland, or that contained a hashtag
relating to the 2014 Scottish Independence referen-
dum. The corpus contains 9.4M tweets.

For seeds, we used the 64 pairs curated by Shoe-
mark et al. (2017b). Half are discourse markers or
open-class words (dogs, dugs), (gives, gees) and
half are closed-class words (have, hae), (one, yin).
The full list is included in the Supplement.

BrEng/GenAm For our next test case we re-
created the entire process of collecting data and
seed variables from scratch. We extracted 8.3M
tweets geotagged to locations in the USA from
a three-year archive of the public 1% sample of
Twitter (1 Jul 2013–30 Jun 2016). All tweets were
classified as English by langid.py (Lui and Baldwin,
2012), none are retweets, none contain URLs or
embedded media, and none are by users with more
than 1000 friends or followers. We combined this
data with a similarly constructed corpus of 1.7M
tweets geotagged to the UK and posted between 1
Sep 2013 and 30 Sep 2014.

To create the seed pairs, we followed Shoemark
et al. (2017b) and used the Sparse Additive Genera-
tive Model of Text (SAGE) (Eisenstein et al., 2011)
to identify the terms that were most distinctive to
UK or US tweets. However, most of these terms
turned out to represent specific dialects within each
country, rather than the standard BrEng or GenAm
dialects (we discuss this issue further below). We
therefore manually searched through the UK terms
to identify those that are standard BrEng and dif-

rameters for each language pair: m = 20, n = 20k for
BrEng/Scottish; m = 5, n = 5k for GenAm/AAVE; and
m = 10, n = 5k for BrEng/GenAm.

fer from GenAm by spelling only, and paired each
one with its GenAm spelling variant, e.g. (color,
colour), (apologize, apologise), (pajamas, pyja-
mas). This process involved looking through thou-
sands of words to identify only 27 pairs (listed in
the Supplement), which is a strong motivator for
our proposed method to more efficiently increase
the number of pairs.

GenAm/AAVE While creating the previous
dataset, we noticed that many of the terms identi-
fied by SAGE as distinctively American were actu-
ally from AAVE. To create our GenAm/AAVE seed
pairs, we manually cross-referenced the most dis-
tinctively ‘American’ terms with the AAVE phono-
logical processes described by Rickford (1999).
We then selected terms that reflected these pro-
cesses, paired with their GenAm equivalents, e.g.
(about, bou), (brother, brudda). The full list of
19 open-class and 20 closed-class seed pairs is in-
cluded in the Supplement.

4 Evaluation Procedure

We evaluate our systems using Precision@K, the
percentage of the top K ranked word pairs judged
to be valid sociolinguistic variables. We discard
any seed pairs from the output before computing
precision. Since we have no gold standard transla-
tion dictionaries for our domains of interest, each
of the top-K pairs was manually classified as either
valid or invalid by the first author.

For a pair to be judged as valid, (a) each member
must be strongly associated with one or the other
language variety, (b) they must be referentially,
functionally, and syntactically equivalent, and (c)
the two words must be ordered correctly accord-
ing to their language varieties, e.g. if the seeds
were (BrEng, GenAm) pairs, then the BrEng words
should also come first in the top-K output pairs.

Evaluation judgements were based on the au-
thor’s knowledge of the language varieties in ques-
tion; for unfamiliar terms, tweets containing the
terms were sampled and manually inspected, and
cross-referenced with urbandictionary.com and/or
existing sociolinguistic literature.

Our strict criteria exclude pairs like (dogs, dug)
which differ in their inflection, or (quid, dollar)
whose referents are distinct but are equivalent
across cultures. In many cases it was difficult to
judge whether or not a pair should be accepted,
such as when not all senses of the words were
interchangable, e.g. BrEng/GenAm (folk, folks)
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Figure 1: Precision@100 for various Skip-gram hyperparameter settings.

works for the ‘people’ sense of folk, but not the
adjectival sense: (folk music, *folks music). The
BrEng/GenAm dataset also yielded many pairs of
words that exhibit different frequencies of usage in
the two countries, but where both words are part
of both dialects, such as (massive, huge), (vile, dis-
gusting), and (horrendous, awful). We generally
marked these as incorrect, although the line be-
tween these pairs and clear-cut lexical alternations
is fuzzy. For some applications, it may be desirable
to retrieve pairs like these, in which case the preci-
sion scores we report here are very conservative.

5 Results and Discussion

We started by exploring how the output precision
is affected by the hyperparameters of the word
embedding model: the number of embedding di-
mensions, size of the context window, and mini-
mum frequency below which words are discarded.
Results (Figure 1) show that the context window
size does not make much difference and that the
best scores for each language use a minimum fre-
quency threshold of 50-100. The main variability
seems to be in the optimal number of dimensions,
which is much higher for the BrEng/Scottish data
set than for GenAm/AAVE. Although the preci-
sion varies considerably, it is over 40% for most
settings, which means a researcher would need to
manually check only a bit over twice as many pairs
as needed for a study, rather than sifting through
a much larger list of individual words and trying
to come up with the correct pairs by hand. Results
for BrEng/GenAm are worse than for the other two
datasets, for reasons which become clear when we
look at the output.

Table 1 shows the top 10 generated pairs for
each pair of language varieties, using the best hy-
perparameters for each of the datasets. The top
100 are given in the Supplement. According to
our strict evaluation criteria, many of the output
pairs for the BrEng/GenAm dataset were scored as
incorrect. However, most of them are actually sen-
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Figure 2: Precision@K from K=1 to 300 for each
language variety pair.

sible, and examples of the kinds of grey areas and
cultural analogies (e.g., (amsterdam, vegas), (bbc,
cnn)) that we discussed in §4. These types of pairs
likely predominate because BrEng and GenAm are
both standardized dialects with very little differ-
ence at the lexical level, so cultural analogies and
frequency effects are the most salient differences.

BrEng / Scottish
now / noo
what / whit
wasnt / wis
cant / canny
would / wid
doesnt / disny
cant / cannae
going / gonny
want / wanty
anyone / embdy

BrEng / GenAm
mums / moms
dunno / idk
yeh / yea
shouting / yelling
quid / dollars
learnt / learned
favour / favor
sofa / couch
advert / commercial
adverts / commercials

GenAm / AAVE
the / tha
with / wit
getting / gettin
just / jus
and / nd
making / makin
when / wen
looking / lookin
something / somethin
going / goin

Table 1: Top 10 ranked variables for each language
pair (invalid variables in italics).

To show how many pairs can be identified ef-
fectively, Figure 2 plots Precision@K as a func-
tion of K ∈ {1. . 300}. For BrEng/Scottish and
GenAm/AAVE, more than 70% of the top-100
ranked word pairs are valid. Precision drops off
fairly slowly, and is still at roughly 50% for these
two datasets even when returning 300 pairs.

To assess the contribution of the ‘linguistic code’
component, we compared the performance of our
system with a naı̈ve baseline which does not use
the ‘linguistic code’ vector c at all. Since transla-
tion equivalents such as fitba and football are likely
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Baseline Our Method
BrEng / Scottish 0.00 0.71
BrEng / GenAm 0.04 0.32
GenAm / AAVE 0.08 0.74

Table 2: Precision@100 for our method and the
baseline for each language pair.

to be very close to one another in the embedding
space, it is worth checking whether they can be
identified on that basis alone. The baseline ranks
all unordered pairs of words in the vocabulary just
by their cosine similarity, cos(wi,wj). Since this
baseline gives us no indication of which word be-
longs to which language variety, we evaluated it
only on its ability to correctly identify translation
equivalents (i.e. using criteria (a) and (b), see §4),
and gave it a free pass on assigning the variants to
the correct linguistic codes (criterion (c)). Results
are in Table 2. Despite its more lenient evaluation
criteria, the baseline performs very poorly. Perhaps
if we were starting with a pre-defined set of words
from one language variety which were known to
have equivalents in the other, then simply return-
ing their nearest neighbours might be sufficient.
However, in this more difficult setting where we
lack prior knowledge about which words belong to
our codes of interest, an additional signal clearly is
needed.

Finally, we examined how performance depends
on the particular seed pairs we used and the num-
ber of seed pairs. Using the BrEng/Scottish and
GenAm/AAVE datasets, we subsampled between
1 and 30 seed pairs from our original sets. Over
10 random samples of each size, we found sim-
ilar average performance using just 5 seed pairs
as when using the full original sets (see Figure 3).
Performance increased slightly when using only
open-class seed pairs: P@100 rose to 0.77 for Scot-
tish/BrEng and 0.75 for GenAm/AAVE (cf. 0.71
and 0.74 using all the original seed pairs). These
results indicate our method is robust to the number
and quality of seed pairs.

6 Conclusion

Overall, our results demonstrate that sociolinguistic
information is systematically encoded in the word
embedding space of code-mixed text, and that this
implicit structure can be exploited to identify so-
ciolinguistic variables along with their linguistic
code. Starting from just a few seed variables, a
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Figure 3: Mean Precision@K curves for different
sized samples from the original seed pair lists. Each
curve is averaged across 10 random samples of n
seed pairs, for n ∈ {1, 5, 10, 20, 30}.

simple heuristic method is sufficient to identify a
large number of additional candidate pairs with
precision of 70% or more. Results are somewhat
sensitive to different hyperparameter settings but
even non-optimal settings produce results that are
likely to save time for sociolinguistic researchers.
Although we have so far tested our system only
on varieties of English7, we expect it to perform
well with other pairs of language varieties which
have a lot of vocabulary overlap or are frequently
code-mixed within sentences or short documents,
including code-mixed languages as well as dialects.
This framework may also be useful for identifying
variation across genres or registers.
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jana Ivanović. 2010. Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11(Sep):2487–2531.

John R Rickford. 1999. African American vernacular
English: Features, evolution, educational implica-
tions, chapter 1. Blackwell Malden, MA.

Ben Schmidt. 2015. Rejecting the gender bi-
nary: a vector-space operation. http:
//bookworm.benschmidt.org/posts/
2015-10-30-rejecting-the-gender-binary.
html.

Tyler Schnoebelen. 2012. Do you smile with your
nose? stylistic variation in Twitter emoticons. Uni-
versity of Pennsylvania Working Papers in Linguis-
tics, 18(2):14.

Philippa Shoemark, James Kirby, and Sharon Gold-
water. 2017a. Topic and audience effects on dis-
tinctively scottish vocabulary usage in Twitter data.
In Proceedings of the Workshop on Stylistic Varia-
tion, pages 59–68. Association for Computational
Linguistics.

Philippa Shoemark, Debnil Sur, Luke Shrimpton, Iain
Murray, and Sharon Goldwater. 2017b. Aye or naw,
whit dae ye hink? Scottish independence and lin-
guistic identity on social media. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, EACL’17, pages 1239–1248. Asso-
ciation for Computational Linguistics.

Meng Zhang, Haoruo Peng, Yang Liu, Huan-Bo Luan,
and Maosong Sun. 2017. Bilingual lexicon induc-
tion from non-parallel data with minimal supervi-
sion. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAI’17, pages
3379–3385. AAAI Press.

http://bookworm.benschmidt.org/posts/2015-10-30-rejecting-the-gender-binary.html
http://bookworm.benschmidt.org/posts/2015-10-30-rejecting-the-gender-binary.html
http://bookworm.benschmidt.org/posts/2015-10-30-rejecting-the-gender-binary.html
http://bookworm.benschmidt.org/posts/2015-10-30-rejecting-the-gender-binary.html

