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Introduction

The W-NUT 2018 workshop focuses on a core set of natural language processing tasks on top of
noisy user-generated text, such as that found on social media, web forums and online reviews. Recent
years have seen a significant increase of interest in these areas. The internet has democratized content
creation leading to an explosion of informal user-generated text, publicly available in electronic format,
motivating the need for NLP on noisy text to enable new data analytics applications.

The workshop received 44 long and short paper submissions this year. There are 3 invited speakers, Leon
Derczynski, Daniel Preoţiuc-Pietro, and Diyi Yang with each of their talks covering a different aspect of
NLP for user-generated text. We again have best paper award(s) sponsored by Microsoft Research this
year for which we are thankful. We would like to thank the Program Committee members who reviewed
the papers this year. We would also like to thank the workshop participants.

Wei Xu, Alan Ritter, Tim Baldwin and Afshin Rahimi
Co-Organizers
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Abstract

Sociolinguistics is often concerned with how
variants of a linguistic item (e.g., nothing vs.
nothin’) are used by different groups or in
different situations. We introduce the task
of inducing lexical variables from code-mixed
text: that is, identifying equivalence pairs such
as (football, fitba) along with their linguis-
tic code (football→British, fitba→Scottish).
We adapt a framework for identifying gender-
biased word pairs to this new task, and present
results on three different pairs of English di-
alects, using tweets as the code-mixed text.
Our system achieves precision of over 70%
for two of these three datasets, and produces
useful results even without extensive parame-
ter tuning. Our success in adapting this frame-
work from gender to language variety suggests
that it could be used to discover other types of
analogous pairs as well.

1 Introduction

Large social media corpora are increasingly used
to study variation in informal written language
(Schnoebelen, 2012; Bamman et al., 2014; Nguyen
et al., 2015; Huang et al., 2016). An outstanding
methodological challenge in this area is the bottom-
up discovery of sociolinguistic variables: linguistic
items with identifiable variants that are correlated
with social or contextual traits such as class, regis-
ter, or dialect. For example, the choice of the term
rabbit versus bunny might correlate with audience
or style, while fitba is a characteristically Scottish
variant of the more general British football.

To date, most large-scale social media studies
have studied the usage of individual variant forms
(Eisenstein, 2015; Pavalanathan and Eisenstein,
2015). Studying how a variable alternates be-
tween its variants controls better for ‘Topic Bias’
(Jørgensen et al., 2015), but identifying the rele-
vant variables/variants may not be straightforward.

For example, Shoemark et al. (2017b) used a data-
driven method to identify distinctively Scottish
terms, and then manually paired them with Stan-
dard English equivalents, a labour intensive process
that requires good familiarity with both language
varieties. Our aim is to facilitate the process of
curating sociolinguistic variables by providing re-
searchers with a ranked list of candidate variant
pairs, which they only have to accept or reject.

This task, which we term lexical variable in-
duction, can be viewed as a type of bilingual lexi-
con induction (Haghighi et al., 2008; Zhang et al.,
2017). However, while most work in that area as-
sumes that monolingual corpora are available and
labeled according to which language they belong
to, in our setting there is a single corpus contain-
ing code-mixed text, and we must identify both
translation equivalents (football, fitba) as well as
linguistic code (football→British, fitba→Scottish).
To illustrate, here are some excerpts of tweets from
the Scottish dataset analysed by Shoemark et al.,
with Standard English glosses in italics:1

1. need to come hame fae the football
need to come home from the football

2. miss the fitba
miss the football

3. awwww man a wanty go tae the fitbaw
awwww man I want to go to the football

The lexical variable induction task is challenging:
we cannot simply classify documents containing
fitba as Scottish, since the football variant may also
occur in otherwise distinctively Scottish texts, as
in (1). Moreover, if we start by knowing only a
few variables, we would like a way to learn what
other likely variables might be. Had we not known

1Note that it is hard to definitively say whether tweets
such as these are mixing English and Scots codes, or whether
they are composed entirely in a single Scottish code, which
happens to share a lot of vocabulary with Standard English.
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the (football, fitba) variable, we might not detect
that (2) was distinctively Scottish. Our proposed
system can make identifying variants quicker and
also suggest variant pairs a researcher might not
have otherwise considered, such as (football, fit-
baw) which could be learned from tweets like (3).

Our task can also be viewed as the converse of
the one addressed by Donoso and Sanchez (2017),
who proposed a method to identify geographical
regions associated with different linguistic codes,
using pre-defined lexical variables. Also comple-
mentary is the work of Kulkarni et al. (2016), who
identified words which have the same form but dif-
ferent semantics across different linguistic codes;
here, we seek to identify words which have the
same semantics but different forms.

We frame our task as a ranking problem, aim-
ing to generate a list where the best-ranked pairs
consist of words that belong to different linguistic
codes, but are otherwise semantically and syntac-
tically equivalent. Our approach is inspired by
the work of Schmidt (2015) and Bolukbasi et al.
(2016), who sought to identify pairs of words that
exhibit gender bias in their distributional statistics,
but are otherwise semantically equivalent. Their
methods differ in the details but use a similar frame-
work: they start with one or more seed pairs such
as {(he, she), (man, woman)} and use these to ex-
tract a ‘gender’ component of the embedding space,
which is then used to find and rank additional pairs.

Here, we replace the gendered seed pairs with
pairs of sociolinguistic variants corresponding to
the same variable, such as {(from, fae), (football,
fitba)}. In experiments on three different datasets
of mixed English dialects, we demonstrate useful
results over a range of hyperparameter settings,
with precision@100 of over 70% in some cases
using as few as five seed pairs. These results indi-
cate that the embedding space contains structured
information not only about gendered usage, but
also about other social aspects of language, and
that this information can potentially be used as part
of a sociolinguistic researcher’s toolbox.

2 Methods

Our method consists of the following steps.2

Train word embeddings We used the Skip-
gram algorithm with negative sampling (Mikolov
et al., 2013) on a large corpus of code-mixed text

2Code is available at github.com/pjshoemark/
lexvarinduction.

to obtain a unit-length embedding w for each word
in the input vocabulary V .3

Extract ‘linguistic code’ component Using
seed pairs S = {(xi,yi), i = 1 . . . n}, we com-
pute a vector c representing the component of the
embedding space that aligns with the linguistic
code dimension. Both Schmidt and Bolukbasi
et al. were able to identify gender-biased word
pairs using only a single seed pair, defining the
‘gender’ component as c = wshe − whe. How-
ever, there is no clear prototypical pair for dialect
relationships, so we average our pairs, defining
c = 1

n

∑
i xi − 1

n

∑
i yi.4 We experiment with the

number of required seed pairs in §5.

Threshold candidate pairs From the set of all
word pairs in V × V , we generate a set of can-
didate output pairs. We follow Bolukbasi et al.
(2016) and consider only pairs whose embeddings
meet a minimum cosine similarity threshold δ. We
set δ automatically using our seed pairs: for each
seed pair (xi,yi) we compute cos(xi,yi) and set
δ equal to the lower quartile of the resulting set of
cosine similarities.

Rank candidate pairs Next we use c to rank the
remaining candidate pairs such that the top-ranked
pairs are the most indicative of distinct linguis-
tic codes, but are otherwise semantically equiva-
lent. We follow Bolukbasi et al. (2016),5 setting
score(wi,wj) = cos(c,wi −wj).

Filter top-ranked pairs High dimensional em-
bedding spaces often contain ‘hub’ vectors, which
are the nearest neighbours of a disproportionate
number of other vectors (Radovanović et al., 2010).
In preliminary experiments we found that many
of our top-ranked candidate pairs included such
‘hubs’, whose high cosine similarity with the word
vectors they were paired with did not reflect gen-
uine semantic similarity. We therefore discard all
pairs containing words that appear in more than m
of the top-n ranked pairs.6

3In preliminary experiments we also tried CBOW and
FastText, but obtained better output with Skip-gram.

4Bolukbasi et al. (2016) introduced another method to com-
bine multiple seed pairs, using Principal Component Analysis.
We compared it and a variant to our very simple difference
of means method, and found little difference in their efficacy.
Details can be found in the Supplement. All results reported
in the main paper use the method defined above.

5See Supplement for comparison with an alternative scor-
ing method devised by Schmidt (2015).

6The choice of m ∈ {5, 10, 20} and n ∈ {5k, 10k, 20k}
made little difference, although we did choose the best pa-
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3 Datasets

We test our methods on three pairs of language
varieties: British English vs Scots/Scottish English;
British English vs General American English; and
General American English vs African American
Vernacular English (AAVE). Within each data set,
individual tweets may contain words from one or
both codes of interest, and the only words with a
known linguistic code (or which are known to have
a corresponding word in the other code) are those
in the seed pairs.

BrEng/Scottish For our first test case, we com-
bined the two datasets collected by Shoemark et al.
(2017a), consisting of complete tweet histories
from Aug-Oct 2014 by users who had posted at
least one tweet in the preceding year geotagged to
a location in Scotland, or that contained a hashtag
relating to the 2014 Scottish Independence referen-
dum. The corpus contains 9.4M tweets.

For seeds, we used the 64 pairs curated by Shoe-
mark et al. (2017b). Half are discourse markers or
open-class words (dogs, dugs), (gives, gees) and
half are closed-class words (have, hae), (one, yin).
The full list is included in the Supplement.

BrEng/GenAm For our next test case we re-
created the entire process of collecting data and
seed variables from scratch. We extracted 8.3M
tweets geotagged to locations in the USA from
a three-year archive of the public 1% sample of
Twitter (1 Jul 2013–30 Jun 2016). All tweets were
classified as English by langid.py (Lui and Baldwin,
2012), none are retweets, none contain URLs or
embedded media, and none are by users with more
than 1000 friends or followers. We combined this
data with a similarly constructed corpus of 1.7M
tweets geotagged to the UK and posted between 1
Sep 2013 and 30 Sep 2014.

To create the seed pairs, we followed Shoemark
et al. (2017b) and used the Sparse Additive Genera-
tive Model of Text (SAGE) (Eisenstein et al., 2011)
to identify the terms that were most distinctive to
UK or US tweets. However, most of these terms
turned out to represent specific dialects within each
country, rather than the standard BrEng or GenAm
dialects (we discuss this issue further below). We
therefore manually searched through the UK terms
to identify those that are standard BrEng and dif-

rameters for each language pair: m = 20, n = 20k for
BrEng/Scottish; m = 5, n = 5k for GenAm/AAVE; and
m = 10, n = 5k for BrEng/GenAm.

fer from GenAm by spelling only, and paired each
one with its GenAm spelling variant, e.g. (color,
colour), (apologize, apologise), (pajamas, pyja-
mas). This process involved looking through thou-
sands of words to identify only 27 pairs (listed in
the Supplement), which is a strong motivator for
our proposed method to more efficiently increase
the number of pairs.

GenAm/AAVE While creating the previous
dataset, we noticed that many of the terms identi-
fied by SAGE as distinctively American were actu-
ally from AAVE. To create our GenAm/AAVE seed
pairs, we manually cross-referenced the most dis-
tinctively ‘American’ terms with the AAVE phono-
logical processes described by Rickford (1999).
We then selected terms that reflected these pro-
cesses, paired with their GenAm equivalents, e.g.
(about, bou), (brother, brudda). The full list of
19 open-class and 20 closed-class seed pairs is in-
cluded in the Supplement.

4 Evaluation Procedure

We evaluate our systems using Precision@K, the
percentage of the top K ranked word pairs judged
to be valid sociolinguistic variables. We discard
any seed pairs from the output before computing
precision. Since we have no gold standard transla-
tion dictionaries for our domains of interest, each
of the top-K pairs was manually classified as either
valid or invalid by the first author.

For a pair to be judged as valid, (a) each member
must be strongly associated with one or the other
language variety, (b) they must be referentially,
functionally, and syntactically equivalent, and (c)
the two words must be ordered correctly accord-
ing to their language varieties, e.g. if the seeds
were (BrEng, GenAm) pairs, then the BrEng words
should also come first in the top-K output pairs.

Evaluation judgements were based on the au-
thor’s knowledge of the language varieties in ques-
tion; for unfamiliar terms, tweets containing the
terms were sampled and manually inspected, and
cross-referenced with urbandictionary.com and/or
existing sociolinguistic literature.

Our strict criteria exclude pairs like (dogs, dug)
which differ in their inflection, or (quid, dollar)
whose referents are distinct but are equivalent
across cultures. In many cases it was difficult to
judge whether or not a pair should be accepted,
such as when not all senses of the words were
interchangable, e.g. BrEng/GenAm (folk, folks)

3



100 500 1000
0.0

0.2

0.4

0.6

0.8
P

re
ci

si
o
n
@

1
0
0

Scottish/BrEng

100 500 1000

Dimensions

0.0

0.2

0.4

0.6

0.8
BrEng/GenAm

100 500 1000
0.0

0.2

0.4

0.6

0.8
AAVE/GenAm

Min. Freq.

50

100

500

Window

2

10

15

Figure 1: Precision@100 for various Skip-gram hyperparameter settings.

works for the ‘people’ sense of folk, but not the
adjectival sense: (folk music, *folks music). The
BrEng/GenAm dataset also yielded many pairs of
words that exhibit different frequencies of usage in
the two countries, but where both words are part
of both dialects, such as (massive, huge), (vile, dis-
gusting), and (horrendous, awful). We generally
marked these as incorrect, although the line be-
tween these pairs and clear-cut lexical alternations
is fuzzy. For some applications, it may be desirable
to retrieve pairs like these, in which case the preci-
sion scores we report here are very conservative.

5 Results and Discussion

We started by exploring how the output precision
is affected by the hyperparameters of the word
embedding model: the number of embedding di-
mensions, size of the context window, and mini-
mum frequency below which words are discarded.
Results (Figure 1) show that the context window
size does not make much difference and that the
best scores for each language use a minimum fre-
quency threshold of 50-100. The main variability
seems to be in the optimal number of dimensions,
which is much higher for the BrEng/Scottish data
set than for GenAm/AAVE. Although the preci-
sion varies considerably, it is over 40% for most
settings, which means a researcher would need to
manually check only a bit over twice as many pairs
as needed for a study, rather than sifting through
a much larger list of individual words and trying
to come up with the correct pairs by hand. Results
for BrEng/GenAm are worse than for the other two
datasets, for reasons which become clear when we
look at the output.

Table 1 shows the top 10 generated pairs for
each pair of language varieties, using the best hy-
perparameters for each of the datasets. The top
100 are given in the Supplement. According to
our strict evaluation criteria, many of the output
pairs for the BrEng/GenAm dataset were scored as
incorrect. However, most of them are actually sen-

0 100 200 300

K

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
@

K Scottish/
BrEng

AAVE/
GenAm

BrEng/
GenAm

Figure 2: Precision@K from K=1 to 300 for each
language variety pair.

sible, and examples of the kinds of grey areas and
cultural analogies (e.g., (amsterdam, vegas), (bbc,
cnn)) that we discussed in §4. These types of pairs
likely predominate because BrEng and GenAm are
both standardized dialects with very little differ-
ence at the lexical level, so cultural analogies and
frequency effects are the most salient differences.

BrEng / Scottish
now / noo
what / whit
wasnt / wis
cant / canny
would / wid
doesnt / disny
cant / cannae
going / gonny
want / wanty
anyone / embdy

BrEng / GenAm
mums / moms
dunno / idk
yeh / yea
shouting / yelling
quid / dollars
learnt / learned
favour / favor
sofa / couch
advert / commercial
adverts / commercials

GenAm / AAVE
the / tha
with / wit
getting / gettin
just / jus
and / nd
making / makin
when / wen
looking / lookin
something / somethin
going / goin

Table 1: Top 10 ranked variables for each language
pair (invalid variables in italics).

To show how many pairs can be identified ef-
fectively, Figure 2 plots Precision@K as a func-
tion of K ∈ {1. . 300}. For BrEng/Scottish and
GenAm/AAVE, more than 70% of the top-100
ranked word pairs are valid. Precision drops off
fairly slowly, and is still at roughly 50% for these
two datasets even when returning 300 pairs.

To assess the contribution of the ‘linguistic code’
component, we compared the performance of our
system with a naı̈ve baseline which does not use
the ‘linguistic code’ vector c at all. Since transla-
tion equivalents such as fitba and football are likely

4



Baseline Our Method
BrEng / Scottish 0.00 0.71
BrEng / GenAm 0.04 0.32
GenAm / AAVE 0.08 0.74

Table 2: Precision@100 for our method and the
baseline for each language pair.

to be very close to one another in the embedding
space, it is worth checking whether they can be
identified on that basis alone. The baseline ranks
all unordered pairs of words in the vocabulary just
by their cosine similarity, cos(wi,wj). Since this
baseline gives us no indication of which word be-
longs to which language variety, we evaluated it
only on its ability to correctly identify translation
equivalents (i.e. using criteria (a) and (b), see §4),
and gave it a free pass on assigning the variants to
the correct linguistic codes (criterion (c)). Results
are in Table 2. Despite its more lenient evaluation
criteria, the baseline performs very poorly. Perhaps
if we were starting with a pre-defined set of words
from one language variety which were known to
have equivalents in the other, then simply return-
ing their nearest neighbours might be sufficient.
However, in this more difficult setting where we
lack prior knowledge about which words belong to
our codes of interest, an additional signal clearly is
needed.

Finally, we examined how performance depends
on the particular seed pairs we used and the num-
ber of seed pairs. Using the BrEng/Scottish and
GenAm/AAVE datasets, we subsampled between
1 and 30 seed pairs from our original sets. Over
10 random samples of each size, we found sim-
ilar average performance using just 5 seed pairs
as when using the full original sets (see Figure 3).
Performance increased slightly when using only
open-class seed pairs: P@100 rose to 0.77 for Scot-
tish/BrEng and 0.75 for GenAm/AAVE (cf. 0.71
and 0.74 using all the original seed pairs). These
results indicate our method is robust to the number
and quality of seed pairs.

6 Conclusion

Overall, our results demonstrate that sociolinguistic
information is systematically encoded in the word
embedding space of code-mixed text, and that this
implicit structure can be exploited to identify so-
ciolinguistic variables along with their linguistic
code. Starting from just a few seed variables, a
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Figure 3: Mean Precision@K curves for different
sized samples from the original seed pair lists. Each
curve is averaged across 10 random samples of n
seed pairs, for n ∈ {1, 5, 10, 20, 30}.

simple heuristic method is sufficient to identify a
large number of additional candidate pairs with
precision of 70% or more. Results are somewhat
sensitive to different hyperparameter settings but
even non-optimal settings produce results that are
likely to save time for sociolinguistic researchers.
Although we have so far tested our system only
on varieties of English7, we expect it to perform
well with other pairs of language varieties which
have a lot of vocabulary overlap or are frequently
code-mixed within sentences or short documents,
including code-mixed languages as well as dialects.
This framework may also be useful for identifying
variation across genres or registers.
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Abstract

Automatic geolocation of microblog posts
from their text content is particularly diffi-
cult because many location-indicative terms
are rare terms, notably entity names such as
locations, people or local organisations. Their
low frequency means that key terms observed
in testing are often unseen in training, such
that standard classifiers are unable to learn
weights for them. We propose a method
for reasoning over such terms using a knowl-
edge base, through exploiting their relations
with other entities. Our technique uses a
graph embedding over the knowledge base,
which we couple with a text representation to
learn a geolocation classifier, trained end-to-
end. We show that our method improves over
purely text-based methods, which we ascribe
to more robust treatment of low-count and out-
of-vocabulary entities.

1 Introduction

Twitter has been used in diverse applications such
as disaster monitoring (Ashktorab et al., 2014;
Mizuno et al., 2016), news material gathering
(Vosecky et al., 2013; Hayashi et al., 2015), and
stock market prediction (Mittal and Goel, 2012; Si
et al., 2013). In many of these applications, geolo-
cation information plays an important role. How-
ever, less than 1% of Twitter users enable GPS-
based geotagging, so third-party service providers
require methods to automatically predict geoloca-
tion from text, profile and network information.
This has motivated many studies on estimating ge-
olocation using Twitter data (Han et al., 2014).

Approaches to Twitter geolocation can be clas-
sified into text-based and network-based meth-
ods. Text-based methods are based on the text
content of tweets (possibly in addition to textual
user metadata), while network-based methods use
relations between users, such as user mentions,

u coming to miami ? Which hotel? 

Semantic relation database

miami

miami-
heat

Bob-
Marley

United-
states

isLocatedIn

isLocatedIn

DiedIn

florida

isLocatedIn

Input tweet

Entities embedding

Vector representation for “miami” BoW features

Predict geolocation

Figure 1: Basic idea of our method.

follower–followee links, or retweets. In this pa-
per, we propose a text-based geolocation method
which takes a set of tweets from a given user as
input, performs named entity linking relative to a
static knowledge base (“KB”), and jointly embeds
the text of the tweets with concepts linked from
the tweets, to use as the basis for classifying the
location of the user. Figure 1 presents an overview
of our method. The hypothesis underlying this re-
search is that KBs contain valuable geolocation in-
formation, and that this can complement pure text-
based methods. While others have observed that
KBs have utility for geolocation tasks (Brunsting
et al., 2016; Salehi et al., 2017), this is the first
attempt to combine a large-scale KB with a text-
based method for user geolocation.

The method we use to generate concept embed-
dings from a given KB is applied to all nodes in
the KB, as part of the end-to-end training of our
model. This has the advantage that it generates
KB embeddings for all nodes in the graph associ-
ated with a given relation set, meaning that it is
applicable to a large number of concepts in the
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KB, including the large number of NEs that are
unattested in the training data. This is the pri-
mary advantage of our method over generating
text embeddings for the named entity (“NE”) to-
kens, which would only be applicable to NEs at-
tested in the training data.

Our contributions are as follows: (1) we pro-
pose a joint knowledge-based neural network
model for Twitter user geolocation, that outper-
forms conventional text-based user geolocation;
and (2) we show that our method works well even
if the accuracy of the NE recognition is low —
a common situation with Twitter, because many
posts are written colloquially, without capitaliza-
tion for proper names, and with non-standard syn-
tax (Baldwin et al., 2013, 2015).

2 Related Work

2.1 Text-based methods

Text-based geolocation methods use text features
to estimate geolocation. Unsupervised topic mod-
eling approaches (Eisenstein et al., 2010; Hong
et al., 2012; Ahmed et al., 2013) are one success-
ful approach in text-based geolocation estimation,
although they tend not to scale to larger data sets.
It is also possible to use semi-supervised learning
over gazetteers (Lieberman et al., 2010; Quercini
et al., 2010), whereby gazetted terms are identified
and used to construct a distribution over possible
locations, and clustering or similar methods are
then used to disambiguate over this distribution.
More recent data-driven approaches extend this
idea to automatically learn a gazetteer-like dictio-
nary based on semi-supervised sparse-coding (Cha
et al., 2015).

Supervised approaches tend to be based on bag-
of-words modelling of the text, in combination
with a machine learning method such as hierarchi-
cal logistic regression (Wing and Baldridge, 2014)
or a neural network with denoising autoencoder
(Liu and Inkpen, 2015). Han et al. (2012) fo-
cused on explicitly identifying “location indicative
words” using multinomial naive Bayes and logis-
tic regression classifiers combined with feature se-
lection methods, while Rahimi et al. (2015b) ex-
tended this work using multi-level regularisation
and a multi-layer perceptron architecture (Rahimi
et al., 2017b).

2.2 Network-based methods

Twitter, as a social media platform, supports a
number of different modalities for interacting with
other users, such as mentioning another user in the
body of a tweet, retweeting the message of another
user, or following another user. If we consider the
users of the platform as nodes in a graph, these
define edges in the graph, opening the way for
network-based methods to estimate geolocation.

The simplest and most common network-based
approach is label propagation (Jurgens, 2013;
Compton et al., 2014; Rahimi et al., 2015b), or re-
lated methods such as modified adsorption (Taluk-
dar and Crammer, 2009; Rahimi et al., 2015a).

Network-based methods are often combined
with text-based methods, with the simplest meth-
ods being independently trained and combined
through methods such as classifier combination,
or the integration of text-based predictions into the
network to act as priors on individual nodes (Han
et al., 2016; Rahimi et al., 2017a). More recent
work has proposed methods for jointly training
combined text- and network-based models (Miura
et al., 2017; Do et al., 2017; Rahimi et al., 2018).

Generally speaking, network-based methods are
empirically superior to text-based methods over
the same data set, but don’t scale as well to larger
data sets (Rahimi et al., 2015a).

2.3 Graph Convolutional Networks

Graph convolutional networks (“GCNs”) —
which we use for embedding the KB of named en-
tities — have been attracting attention in the re-
search community of late, as an approach to “em-
bedding” the structure of a graph, in domains rang-
ing from image recognition (Bruna et al., 2014;
Defferrard et al., 2016), to molecular footprint-
ing (Duvenaud et al., 2015) and quantum structure
learning (Gilmer et al., 2017). Relational graph
convolutional networks (“R-GCNs”: Schlichtkrull
et al. (2017)) are a simple implementation of a
graph convolutional network, where a weight ma-
trix is constructed for each channel, and combined
via a normalised sum to generate an embedding.
Kipf and Welling (2016) adapted graph convo-
lutional networks for text based on a layer-wise
propagation rule.

3 Methods

In this paper, we use the following notation to de-
scribe the methods: U is the set of users in the
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weighted sum. The text associated with a user is also embedded, and a combined representation is generated based
on average pooling with the entity embedding.

data set, E is the set of entities in the KB,R is the
set of relations in the KB, T is the set of terms in
the data set (the “vocabulary”), V is the union of
the U and T (V = U ∪ T ), and d is the size of
dimension for embedding.

Our method consists of two components: a text
encoding, and a region prediction. We describe
each component below.

3.1 Text encoding
To learn a vector representation of the text associ-
ated with a user, we use a method inspired by rela-
tional graph convolutional networks (Schlichtkrull
et al., 2017).

Our proposed method is illustrated in Figure 2.
Each channel in the encoding corresponds to a
directed relation, and these channels are used to
propagate information about the entity. For in-
stance, the channel for (bornIn, BACKWARDS)
can be used to identify all individuals born in a
given location, which could provide a useful sig-
nal, e.g., to find synonymous or overlapping re-
gions in the data set. Our text encoding method
is based on embedding the properties of each en-
tity based on its representation in the KB, and its
neighbouring entities.

Consider Tweets that user posted containing n
entity mentions {e1, e2, ..., en}, each of which is
contained in a KB, ei ∈ E. The vectormeir ∈ 1|d|

represents the entity ei based on the set of other

entities connected through directed relation r, i.e.,

meir =
∑

e′∈Nr(ei)

W
(1)
e′ , (1)

where, W (1)
e′ ∈ 1d is the embedding of entity e′

from embedding matrix W (1) ∈ R
|V |×d , and

Nr(e) is the neighbourhood function, which re-
turns all nodes e′ connected to e by directed re-
lation r.

Then, meir for all r are transformed using a
weighted sum:

vei =
∑

r∈R
air ReLU(meir)

~ai = σ(W (2) · ~ei) ,
(2)

where, ~ai ∈ 1|R| is the attention that entity ei rep-
resented by one-hot vector ~ei pays to all relations
using weight matrix W (2) ∈ R|V |×|R|, and σ and
ReLU are the sigmoid and the rectified linear unit
activation functions, respectively. Here, we obtain
entity embedding vector vei ∈ 1d for entity ei.

Since the number of entities in tweets is sparse,
we also encode, and use all the terms in the tweet
regardless of if they are entity or not. We represent
each term by:

vwj =W (1) · ~wj , (3)

where ~wj is a one-hot vector of size |V | where the
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value j equals frequency of wj in the tweet, and
W (1) is shared with entities (Equation 1).1

Overall, user representation vector u is obtained
as follows:

u =
1

n+m




n∑

i=1

vei +

m∑

j=1

vwj


 , (4)

wherem is the number of words that the user men-
tioned.

Our method has two special features: sharing
the weight matrix across all channels, and using a
weighted sum to combine vectors from each chan-
nel; these distinguish our method from R-GCN
(Schlichtkrull et al., 2017). The reason we share
the embedding matrix is that the meaning of the
entity should be the same even if the relation type
is different, so we consider that the embedding
vector should be the same irrespective of relation
type. We adopt weighted sum because even if the
meaning of the entity is the same, if the entity
is connected via different relation types, its func-
tional semantics should be customized to the par-
ticular relation type.

3.2 Region estimation
To estimate the location for a given user, we pre-
dict a region using a 1-layer feed-forward neural
network with a classification output layer as fol-
lows:

o = softmaxW (3)u , (5)

where W (3) ∈ Rclass×d is a weight matrix. The
classes represent regions in the data set, defined
using k-means clustering over the continuous lo-
cation coordinations in the training set (Rahimi
et al., 2017a). Each class is represented by the
mean latitude and longitude of users belonging to
that class, which forms the output of the model.
The model is trained using categorical cross-
entropy loss, using the Adam optimizer (Kingma
and Ba, 2014) with gradient back-propagation.

4 Experiments

4.1 Evaluation
Geolocation models are conventionally evaluated
based on the distance (in km) between the known
and predicted locations. Following Cheng et al.
(2010) and Eisenstein et al. (2010), we use three
evaluation measures:

1 We consider words as a special case of entities, having
no relations.

1. Mean: the mean of distance error (in km) for
all test users.

2. Median: the median of distance error (in km)
for all test users; this is less sensitive to large-
valued outliers than Mean.

3. Acc@161: the accuracy of geolocating a test
user within 161km (= 100 miles) of their real
location, which is an indicator of whether the
model has correctly predicted the metropoli-
tan area a user is based in.

Note that lower numbers are better for Mean and
Median, while higher is better for Acc@161.

4.2 Data set and settings
We base our experiments on GeoText (Eisenstein
et al., 2010), a Twitter data set focusing on the
contiguous states of the USA, which has been
widely used in geolocation research. The data set
contains approximately 6,500 training users, and
2,000 users each for development and test. Each
user has a latitude and longitude coordinate, which
we use for training and evaluation. We exclude @-
mentions, and filter out words used by fewer than
10 users in the training set.

We use Yago3 (Mahdisoltani et al., 2014) as our
knowledge base in all experiments. Yago3 con-
tains more than 12M relation edges, with around
4.2M unique entities and 37 relation types. We
compare three relation sets:

1. GEORELATIONS: {isLocatedIn, livesIn,
diedIn, happenedIn, wasBornIn }

2. TOP-5 RELATIONS: {isCitizenOf, hasGen-
der, isAffiliatedTo, playsFor, creates }

3. GEO+TOP-5 RELATIONS: Combined GEO-
RELATIONS and TOP-5 RELATIONS

The first of these was selected based on rela-
tions with an explicit, fine-grained location com-
ponent,2 while the second is the top-5 relations in
Yago3 based on edge count.

We use AIDA (Nguyen et al., 2014) as our
named entity recognizer and linker for Yago3.

The hyperparameters used were: a minibatch
size of 10 for our method, and full batch for R-
GCN methods mentioned in the following section;

2Granted isCitizenOf is also geospatially relevant, but re-
call that our data set comprises a single country (the USA),
so there was little expectation that it would benefit our model
in this specific experimental scenario.
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each component, text encoding and region estima-
tion, has one layer; 32 regions; L2 regularization
coefficient of 10−5; hidden layer size of 896; and
50 training iterations, with early stopping based on
development performance.

All models were learned with the Adam opti-
miser (Kingma and Ba, 2014), based on categori-
cal cross-entropy loss with channel weights Wc =
|cmax|
|c| , where |c| is the number of entities of class

type c appearing in the training data, and |cmax| is
that of the most-frequent class. Each layer is ini-
tialized using HENormal (He et al., 2015), and all
models were implemented in Chainer (Tokui et al.,
2015).

4.3 Baseline Methods
We compare our method with two baseline meth-
ods: (1) the proposed method without weighted
sum; and (2) an R-GCN baseline, over the same
sets of relations as our proposed method. Both
methods expand entities using the KB, which
helps handle low-frequency and out-of-vocabulary
(OOV) entities. Figure 3 illustrates the difference
between the proposed and two baseline methods.
The difference between these methods is only in
the text encoding part. We describe these baseline
methods in detail below.

Proposed Method without Weighted Sum
(“simple average”’): To confirm the effect of
the weighted sum in the proposed method, we use
the proposed method without weighted sum as one
of our baselines. Here, we use ar = 1

|Nr(ei)| in-
stead of air in Equation 2.

R-GCN baseline method (R-GCN): The R-
GCNs we use are based on the method of
Schlichtkrull et al. (2017). The differences are in
having a weight matrix for each channel, and us-
ing non-weighted sum.

4.4 Results
Table 1 presents the results for our method, which
we compare with three benchmark text-based user
geolocation models from the literature (Cha et al.,
2015; Rahimi et al., 2015b, 2017b). We present
results separately for the three relation sets,3 un-
der the following settings: (1) implemented within
our proposed method, (2) the proposed method

3Note that GEORELATIONS and TOP-5 RELATIONS in-
clude five relation types, while GEO+TOP-5 RELATIONS in-
cludes 10 relation types, so it is not fair between three rela-
tion sets.

(1)Proposed Method

(3)R-GCN-based baseline
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Figure 3: The difference between the proposed and
two baseline methods. The proposed method shares the
weight matrix between the different channels. The first
baseline is almost the same as the proposed method,
with the only difference being that a simple sum is used
instead of a weighted sum. The R-GCN baseline learns
a separate weight matrix for each channel.

without weighted sum; and (3) R-GCN baseline
method.

The best results are achieved with our pro-
posed method using the GEO+TOP-5 RELA-
TIONS, in terms of both Acc@161 and Me-
dian. The second-best results across these metrics
are achieved using our proposed method without
weighted sum using GEO+TOP-5 RELATIONS,
and the third-best results are for our proposed
method using GEORELATIONS. Surprisingly, R-
GCN baseline methods perform worse that the
benchmark methods in terms of Acc@161 and
Median. No method outperforms Cha et al.
(2015) in terms of Mean, suggesting that this
method produces the least high-value outlier pre-
dictions overall; we do not report Acc@161 for
this method as it was not presented in the original
paper.

4.5 Discussion

Our proposed method is able to estimate the geolo-
cation of Twitter users with higher accuracy than
pure text-based methods. One reason is that our
method is able to handle OOV entities if those en-
tities are related to training entities. Perhaps un-
surprisingly, it was the fine-grained, geolocation-
specific relation set (GEORELATIONS) that per-
formed better than general-purpose set (TOP-
5 RELATIONS), but it is important to observe
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Relation set Method Acc@161↑ Mean↓ Median↓

GEORELATIONS

Proposed method 43 780 339
without weighted sum 41 838 349
R-GCN 41 859 373

TOP-5 RELATIONS

Proposed method 41 807 354
without weighted sum 42 852 342
R-GCN 41 898 452

GEO+TOP-5 RELATIONS

Proposed method 44 821 325
without weighted sum 43 825 325
R-GCN 41 914 449
Cha et al. (2015) — 581 425
Rahimi et al. (2015b) 38 880 397
Rahimi et al. (2017b) 40 856 380

Table 1: Geolocation prediction results (“—” indicates that no result was published for the given combination of
benchmark method and evaluation metric).

Used relation Acc@161↑ Mean↓ Median↓ Number of edges in Yago3

MLP (without relations) 40 856 380 —
+isLocatedIn 43 793 321 3,074,176
+livesIn 42 836 347 71,147
+diedIn 43 844 346 257,880
+happenedIn 43 831 328 47,675
+wasBornIn 42 821 328 848,846
+isCitizenOf 42 825 347 2,141,725
+hasGender 43 824 338 1,972,842
+isAffiliatedTo 42 832 352 1,204,540
+playsFor 43 807 322 783,254
+create 41 880 358 485,392

Table 2: Effect of each relation type.

that this is despite them being more sparsely-
distributed in Yago3, and also that a more general-
purpose set of relations also resulted in higher ac-
curacy. The combination of geolocation-specific
and general-purpose set (GEO+TOP-5 RELA-
TIONS) is the best result in the table, but the im-
provement from using only GEORELATIONS is
limited. That is, even though our method works
with general-purpose relation set, it is better to
choose task-specific relations.

To confirm which relations have the greatest
utility for user geolocation, we conducted an ex-
periment based on using one relation at a time.
As detailed in Table 2, relations that are better
represented in Yago3 such as isLocatedIn and
playsFor have a greater impact on results, in part
because this supports greater generalization over
OOV entities. Having said this, the relation which

has the least edges, happenedIn, has the highest
impact on results in term of Acc@161 and the
third impact in terms of Mean and Median show-
ing that it is not just the density of a relation that is
a determinant of its impact. Surprisingly, the over-
all best result in terms of Median, which includes
using relation sets such as GEORELATIONS and
GEO+TOP-5 RELATIONS, is obtained by with is-
LocatedIn only, despite it being a single relation.
This result also shows that choosing task-specific
relations is one of the important features in our
method.

Even though the R-GCN baseline is closely
related to our method, the results were worse.
The reason for this is that it has an individual
weight matrix for each channel, which means
that it has more parameters to learn than our
proposed method. To confirm the effect of the

12



200

250

300

350

400

450

Proposed method R-GCN based method

Number of the unit of middle layer

896672448224112

Median error

Figure 4: Comparison of number of units in middle
layer, in terms of Median error.
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Figure 5: Breakdown of results according to number of
tweets per user, in terms of Median.

number of parameters, we conducted an experi-
ment comparing the Median error as we changed
the number of units in the middle layer in the
range {112, 224, 448, 672, 896} for our proposed
method and the R-GCN baseline method. As
shown in Figure 4, the Median error of the R-
GCN baseline method is almost equal when the
number of units is between 224 and 896, at a level
worse than our proposed method. This result sug-
gests that the R-GCN baseline method cannot be
improved by simply reducing the number of pa-
rameters. This is because the amount of train-
ing data is imbalanced for each channel, so some
channels do not train well over small data sets.
With larger data sets, it is likely that the R-GCN
baseline would perform better, which we leave to
future work.

We also analyzed the results across test users
with differing numbers of tweets in the data set,
as detailed in Figure 5, broken down into bins
of 20 tweets (from 40 tweets; note that the min-
imum number of tweets for a given user in the
data set is 20). “Proposed” refers to our proposed
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Figure 6: Breakdown of results according to number of
entities per user, in terms of Median error.

method using GEORELATIONS, and “BoW” refers
to the bag-of-words MLP method of Rahimi et al.
(2017b). We can see that our method is superior
for users with small numbers of tweets, indicating
that it generalizes better from sparse data. This
suggests that our method is particularly relevant
for small-data scenarios, which are prevalent on
Twitter in a real-time scenario.

Figure 6 shows the results across test users with
differing numbers of entities in the data set. Our
method can improve for all cases, even users who
do not mention any entities. This is because our
method shares the same weight matrix for entity
and word embeddings, meaning it is optimized for
both. On the other hand, the median error for users
who mention over 10 entities is high. Most of their
tweets mention sports events, and they typically
include more than two geospatially-grounded en-
tities. For example, Lakers @ Bobcats has two en-
tities — Lakers and Bobcats — both of which are
basketball teams, but their hometown is different
(Los Angeles, CA for Lakers and Charlotte, NC
for Bobcats). Therefore, users who mention many
entities are difficult to geolocate.

Tweets are written in colloquial style, making
NER difficult. For this reason, it is highly likely
that there is noise in the output of AIDA, our NE
recognizer. To investigate the tension between
precision and recall of NE recognition and linking,
we conducted an experiment using simple case-
insensitive longest string match against Yago3 as
our NE recognizer, which we would expect to
have higher recall but lower precision than AIDA.
Table 3 shows the results, based on GEORELA-
TIONS. We see that AIDA has a slight advantage
in terms of Acc@161 and Mean, but that longest
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Method Acc@161↑ Mean↓ Median↓ Entities / User

AIDA 43 780 339 1.6
Longest string match 42 827 325 87.9

Table 3: Result for different named entity recognizers.

string match is superior in terms of Median de-
spite its simplicity. Given its efficiency, and there
being no need to train the model, this potentially
has applications when porting the method to new
KBs or applying it in a real-time scenario.

5 Conclusion and Future Work

In this paper, we proposed a user geolocation pre-
diction method based on entity linking and em-
bedding a knowledge base, and confirmed the ef-
fectiveness of our method through evaluation over
the GeoText data set. Our method outperformed
conventional text-based geolocation, in terms of
Acc@161 and Median, due to its ability to gen-
eralize over OOV named entities, which was seen
particularly for users with smaller numbers of
tweets. We also showed that our method is not re-
liant on a pre-trained named entity recognizer, and
that the selection of relations has an impact on the
results of the method.

In future work, we plan to combine our method
with user mention-based network methods, and
to confirm the effectiveness of our method over
larger-sized data sets.
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Abstract

In this paper, we introduce the first geolocation
inference approach for reddit, a social media
platform where user pseudonymity has thus far
made supervised demographic inference dif-
ficult to implement and validate. In particu-
lar, we design a text-based heuristic schema to
generate ground truth location labels for red-
dit users in the absence of explicitly geotagged
data. After evaluating the accuracy of our la-
beling procedure, we train and test several ge-
olocation inference models across our reddit
data set and three benchmark Twitter geoloca-
tion data sets. Ultimately, we show that ge-
olocation models trained and applied on the
same domain substantially outperform models
attempting to transfer training data across do-
mains, even more so on reddit where platform-
specific interest-group metadata can be used to
improve inferences.

1 Introduction

The rise of social media over the past decade has
brought with it the capability to positively influ-
ence and deeply understand demographic groups
at a scale unachievable within a controlled lab
environment. For example, despite only hav-
ing access to sparse demographic metadata, social
media researchers have successfully engineered
systems to promote targeted responses to pub-
lic health issues (Yamaguchi et al., 2014; Huang
et al., 2017) and to characterize complex human
behaviors (Mellon and Prosser, 2017).

However, recent studies have demonstrated that
social media data sets often contain strong pop-
ulation biases, especially those which are filtered
down to users who have opted to share sensitive
attributes such as name, age, and location (Malik
et al., 2015; Sloan and Morgan, 2015; Lippincott
and Carrell, 2018). These existing biases are likely
to be compounded by new data privacy legislation

that will require more thorough informed consent
processes (Kho et al., 2009; European Commis-
sion, 2018).

While some social platforms have previously
approached the challenge of balancing data access
and privacy by offering users the ability to share
and explicitly control public access to sensitive at-
tributes, others have opted not to collect sensitive
attribute data altogether. The social news website
reddit is perhaps the largest platform in the lat-
ter group; as of January 2018, it was the 5th most
visited website in the United States and 6th most
visited website globally (Alexa, 2018). Unlike
real-name social media platforms such as Face-
book, reddit operates as a pseudonymous website,
with the only requirement for participation being
a screen name.

Fortunately, there has been significant progress
made using statistical models to infer user demo-
graphics based on text and other features when
self-attribution data is sparse (Han et al., 2014;
Ajao et al., 2015). On reddit in particular, Harri-
gian et al. (2016) has used self-attributed “flair”
as labels for training a text-based gender infer-
ence model. However, to the best of our knowl-
edge, user geolocation inference has not yet been
attempted on reddit, where a complete lack of
location-based features (e.g. geotags, profiles with
a location field) has made it difficult to train and
validate a supervised model.

The ability to geolocate users on reddit has
substantial implications for conversation mining
and high-level property modeling, especially since
pseudonymity tends to encourage disinhibition
(Gagnon, 2013). For instance, geolocation could
be used to segment users discussing a movie trailer
into US and international audiences to estimate a
film’s global appeal or to inform advertising strat-
egy within different global markets. Alternatively,
user geolocation may be used in conjunction with
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sentiment analysis of political discussions to pre-
dict future voting outcomes.

Moving toward these goals, we introduce a text-
based heuristic schema to generate ground truth
location labels for reddit users in the absence of
explicitly geotagged data. After evaluating the ac-
curacy of our labeling procedure, we train and test
several geolocation inference models across our
reddit data set and three benchmark Twitter ge-
olocation data sets. Ultimately, we show that ge-
olocation models trained and applied on the same
domain substantially outperform models attempt-
ing to transfer training data across domains, even
more so on reddit where platform-specific interest-
group metadata can be used to improve inferences.

2 reddit: the front page of the internet

Founded originally as a social news platform in
2005, reddit has since become one of the most
visited websites in the world, offering an expan-
sive suite of features designed to “[bridge] com-
munities and individuals with ideas, the latest dig-
ital trends, and breaking news” (reddit, 2018). Al-
though the so-called front page of the internet still
boasts an impressive amount of link-sharing, red-
dit has gradually evolved into a self-referential
community where original thoughts and new con-
tent prevail (Singer et al., 2014).

reddit is structured much like a traditional on-
line forum, where over one-hundred thousand top-
ical categories known as subreddits separate user
communities and conversation. Subreddits may
cover topics as general as humor and movies (e.g.
r/funny, r/movies) or as specific as an unusual fit-
ness goal (e.g. r/100pushups). Within each sub-
reddit, users can post thematically relevant sub-
missions in the form of an image, text blurb, or
external link. Users are then able to post com-
ments on the submission, responding to either the
content in the original submission or to comments
made by other users.

reddit users tend to feel protected by the site’s
pseudonymity and consequently eschew their of-
fline persona in favor of a more genuine online
persona (Gagnon, 2013; Shelton et al., 2015).
Thus, there is much potential in reddit as a data
source for conversation mining. Unfortunately, the
same policies which promote this favorable be-
havior currently preclude the segmentation of con-
versation based on demographic dimensions and
serve as a fundamental motivation to our research.

3 Geocoding reddit Users

Previous research on geolocation inference for so-
cial media has primarily used three Twitter data
sets for model training and validation (Eisenstein
et al., 2010; Roller et al., 2012; Han et al., 2012).
Although Twitter’s topical diversity typically sup-
ports generalization to other platforms (Mejova
and Srinivasan, 2012), it has not been tested thor-
oughly in the geolocation context or on reddit at
all.

There is substantial reason to believe that geolo-
cation models trained on Twitter data will not per-
form optimally when applied to reddit. One of the
most glaring concerns is the variation in user de-
mographics between the platforms. Namely, Twit-
ter tends to skew female while reddit tends to skew
male (Barthel et al., 2016; Smith and Anderson,
2018). Coates and Pichler (2011) have shown that
language varies between genders, which suggests
that language-model priors may vary based on so-
cial platform.

Additionally, the lack of geolocation ground
truth for reddit necessarily excludes several
promising inference models from being applied
to the platform. For example, network-based
geolocation approaches exploit the empirical re-
lationship between physical user distance and
connectedness on a social graph to propagate
known user locations to unlabeled users (Back-
strom et al., 2010). Rahimi et al. (2015) argue
that network-based approaches are generally su-
perior to content-based methods, especially when
the social graph is well-connected. However, these
models require within-domain grounding for the
propagation algorithms to be useful.

Finally, while the reddit platform lacks certain
features useful for geolocation on Twitter (e.g.
timezones, profile location fields), it possesses
its own unique assets which we hypothesize can
prove useful for user geolocation. In this paper,
we quantify the predictive value of subreddit meta-
data, leaving other features such as user flair and
the platform’s hierarchical comment structure for
future research.

3.1 Labeling Procedure

Since reddit does not offer geotagging capabilities,
nor do reddit user profiles include location fields,
we design a free-text geocoding procedure to as-
sociate reddit users with a home location. While
we focus on reddit for this paper, we believe that
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[-] snappyNZ 1 point 2 years ago

Born in Wigan. Live in New Zealand.
permalink     embed     save     give gold

[-] aznasazin11 5 points 2 years ago

Kansas City, Missouri, USA reporting in.
permalink     embed     save     give gold

[-] ziggy_zaggy 3 points 2 years ago

Glad you specified that you live on the Missouri side :)
permalink     embed     save     give gold

[-] yassjr 2 points 2 years ago

Am I the only one from Paris?
permalink     embed     save     give gold

[-] biosync 1 point 2 years ago

I went to a really nice LFC bar in Paris; I just can’t remember what it was 
called. But judging by the crowd there, you certainly aren’t the only one!
permalink     embed     save     give gold

Figure 1: Comments from one of the seed submissions.
Replies (gray background) are filtered out because they often
contain location names not representative of user location.

the following labeling method should generalize
to other pseudonymous platforms that have a ques-
tion and answer-based submission structure.

Data. We begin by querying the reddit API
for submissions with a title similar to “Where are
you from?”, “Where do you live?”, or “Where
are you living?” This query yields 3,600 English-
language submissions, from which we manually
curate a subset of 1,200 seed submissions where
we expect users to self-identify their home loca-
tion. Examples of submissions within the final set
include “Where do you support Liverpool from?”
and “How much is your rent, and where do you
live?” Examples of submissions in the original
query which were excluded from the final set in-
clude “Where are you banned from?” and “With-
out naming the location, where are you from?”

We then query comment data from the 1,200
seed submissions using the Python Reddit API
Wrapper (PRAW)1. We filter out comments which
mention “move,” “moving,” “born,” or “raised”
to ensure only current home locations are iden-
tified. We also remove comment replies, find-
ing that they often include location mentions from
a perspective of discussion as opposed to self-
identification. Representative comments from one
of the seed submissions2 are displayed in Figure
1. Ultimately, we keep 96,071 comments from
89,697 unique users.

Entity Extraction. We employ a string match-
ing approach to identify locations mentioned
within the comment text. As a gazetteer, we use
a subset of the GEONAMES data set (Wick and
Vatant, 2012) with city populations greater than
15,000. To reduce the false positive rate of loca-
tion recognition, 90 location names found within
the 5,000 most common English words from the

1https://praw.readthedocs.io/en/latest/
2www.reddit.com/r/LiverpoolFC/comments/3wmjd4/

CORPUS OF CONTEMPORARY ENGLISH (Davies,
2009) are removed from the gazetteer. After ap-
plying this filter, our gazetteer is left with 23,018
cities and their associated location hierarchies (i.e.
city, state, country).

To aid in the disambiguation of common lo-
cation names, we create a small dictionary of
57 frequently occurring abbreviations found dur-
ing a preliminary exploration of the data. This
dictionary includes abbreviations for each state
and territory of the United States, in addition to
the following: USA (United States), UK (United
Kingdom), BC (British Columbia), and OT (On-
tario). Abbreviations are only extracted if they di-
rectly follow an n-gram found within the location
gazetteer.

Each comment is tokenized into an or-
dered list using standard processing techniques—
contraction and case normalization, number and
hyperlink removal, and whitespace splitting. To
support identification of multi-token locations, we
then chunk each list into all possible n-grams for
n ∈ [1, 4]. We remove any n-gram which does not
have an exact match to a location in the gazetteer
or the abbreviation dictionary. When two or more
of the matched n-grams occur in an order of a
known location hierarchy from GEONAMES, they
are concatenated together. Any remaining n-gram
which is a substring of a larger n-gram in the list
of matches is removed.

One issue with this approach is that cities under
the population threshold, or cities missing from
our gazetteer, are ignored entirely. However, we
note that users often reference their home loca-
tion in the form City, State, Country. To improve
our labeling procedure’s recall, we devise an addi-
tional rule that captures location mentions which
match this syntactic pattern and contain at least
one of our gazetteer or abbreviation dictionary en-
tries as a substring. The inclusion of this rule ex-
pands the set of users with estimated city-level lo-
cations from 25k to 38k.

Geocoding. To associate each n-gram with a
coordinate position, we employ Google’s Geocod-
ing API, which ingests a string and returns the
most probable coordinate pair and nominal loca-
tion hierarchy information. To help disambiguate
common location names, we manually map re-
gion biases to a subset of location-related subred-
dits that house the seed submissions. We feed
these region biases into the Geocoding API as a
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Country Alexa Traffic Labeled Users
United States 58.7% 60.1% (n=39,236)

United Kingdom 7.4% 5.4% (n=3,544)

Canada 6.0% 9.4% (n=6,163)

Australia 3.1% 3.5% (n=2,344)

Germany 2.1% 1.7% (n=1,097)

Figure 2 & Table 1: The figure (left) shows the geographic distribution of labeled users. Users outside the Americas are
generally more likely to self-identify using a state-level resolution and above. The table (right) compares relative reddit traffic
estimated using the proprietary Alexa (2018) panel to the distribution within our labeled data set.

query parameter for comments which were made
in any of the mapped subreddits. Thus, a com-
ment that mentions Scarborough in r/ontario will
be properly mapped to Canada, while a comment
that mentions Scarborough in r/CasualUK, will be
mapped to England.

In the final stage of our procedure, we aggre-
gate location extractions across each user, taking
the maximum overlap within their identified lo-
cation hierarchies as the ground truth. For each
location above a city-level resolution, we use the
geodesic median (Vardi and Zhang, 2000) of la-
beled users at the given resolution and below as
the true coordinate pair.

3.2 Geographic Representation
Ultimately, we associate 65,245 users with geolo-
cation labels at varying maximum resolutions—
38,773 at a city level; 1,541 at a county level;
13,774 at a state level; and 11,157 at a country
level. The label distribution and resolution break-
down over continents can be seen in Figure 2.

While the underlying geographic distribution of
reddit users is not publicly available, Alexa (2018)
publishes an estimate of country-level activity for
the top-5 sources of reddit traffic using a propri-
etary data panel. We find that the same countries
make up the top-5 most represented nations in our
labeled data set, albeit having slightly different
proportional breakdowns (see Table 1). In particu-
lar, we note that our data set slightly over-indexes
on North American reddit users and suffers from a
low sample size for most countries outside of the
top-5.

3.3 Label Accuracy
To estimate precision of our labeling procedure
across the larger data set, we randomly sample
500 of the labeled users and the comment from

which their labeled location was extracted. For
each of the 500 comments, we hand label whether
the user’s home location was properly extracted
and, if correct, whether the location was extracted
at the appropriate resolution.

Formally, we score any extracted location
which falls within the true location hierarchy as
a correct label. For example, if the true location
is Boston, Massachusetts, but our procedure ex-
tracts Massachusetts (the state), we score the label
as correct, but at an incorrect resolution. We find
that our labeling procedure correctly extracted and
geocoded 96.6% of the location names from the
raw comments. Of these correct labels, 92.55%
were labeled at the correct resolution.

Of the false positives in our random sample, 8
were due to disambiguation errors on part of the
Google Geocoding API, 7 were due to users ref-
erencing locations that were not their actual home
location, and 2 were due to usage of a common
word not filtered out using the CORPUS OF CON-
TEMPORARY ENGLISH. Future work will look
into ways to effectively leverage more granular
subreddit-location mappings during the geocoding
procedure to aid in disambiguation. This explo-
ration may prove most helpful for ambiguous lo-
cations which are housed within the same national
region (e.g. Kansas City, MO and Kansas City,
KS).

For labels extracted within the appropriate hi-
erarchy, but at the incorrect resolution, there were
two main sources of error. First, over half of the
incorrect resolution labels were due to our system
(as designed) aggregating multiple location men-
tions within a comment up to the maximum over-
lap present. Second, several of the true cities did
not exist within the gazetteer and were not cap-
tured by our syntactic rule. More extensive named
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entity resolution systems may be useful in address-
ing the issue of missing gazetteer entries. How-
ever, correctly handling multiple location names
and location names not representative of a user’s
home location will likely require a more robust
natural language understanding system.

4 Geolocation Inference

In the remainder of the paper, we evaluate whether
our “imperfect” geolocation labels are still useful
in the context of a common task—user geoloca-
tion inference. We begin this analysis with a series
of experiments and qualitative diagnostics to un-
derstand geolocation inference performance when
training and applying models within the reddit do-
main. To quantify the effect of domain transfer,
we conclude with a comprehensive comparison
of inference performance across three benchmark
Twitter data sets and our new reddit data set.

4.1 Related Work

Accounting for variations in feature selection and
model architecture, existing geolocation inference
approaches broadly fall into the following three
categories (and their hybridizations): network-
based, content-based, and metadata-based. We re-
fer the reader to Han et al. (2014) and Ajao et al.
(2015) for a comprehensive overview of the liter-
ature, but will highlight research pertinent to this
particular study below. We ignore network-based
models because they are not relevant to our chosen
inference architecture.

Content-based. Content-based approaches, in
which geographically predictive features are ex-
tracted from user-generated multimedia and mod-
eled thereafter, remain some of the most fun-
damental to user geolocation on social media.
Drawing upon well-documented phenomena re-
garding lexicon usage and its geographical varia-
tion (Trudgill, 1974; Vaux and Golder, 2003), text-
driven models are particularly suited for applica-
tion on reddit, where written comments are the
lowest level of user behavior data accessible via
the platform’s public API.

One of the earliest contributors to user geolo-
cation inference for social media, Cheng et al.
(2010) introduced a generative model that operates
on word usage alone to infer a user’s home loca-
tion, achieving an average prediction error of 535
miles for US Twitter users. Chang et al. (2012)
extended this work by replacing frequency-based

word likelihoods with smoothed estimations using
Gaussian Mixture Models (GMM). We use this ap-
proach within our evaluation due to its ease of im-
plementation and interpretability. However, others
have substantially improved inference accuracy
using more flexible modeling architectures such as
spatial topic models (Eisenstein et al., 2010; Hu
and Ester, 2013), stacked denoising autoencoders
(Liu and Inkpen, 2015), sparse coding and dictio-
nary learning (Cha et al., 2015), and most recently,
neural networks (Rahimi et al., 2017).

Metadata-based. We define metadata as all
user behavior not explicitly expressed in multi-
media, such as text or image posts, nor directly
encoded as a social network connection. While
metadata has generally been used to improve per-
formance of content- and network-based meth-
ods, there exist some cases where metadata-based
models outperform competing approaches out-
right (Han et al., 2014; Dredze et al., 2016). With
reddit only recently introducing user profiles to the
platform and their adoption by the larger commu-
nity still an open question (Shelton et al., 2015),
we focus primarily on comment metadata.

First, we suspect that the subreddits a user posts
in, which often cover geographically localized
topics such as sports and news, will be predic-
tive of user location. While subreddits are spe-
cific to the reddit platform, they theoretically align
with group membership, which has been shown to
correlate with and predict user location in other
domains (Zheleva and Getoor, 2009; Chen et al.,
2013).

Of additional interest is temporal metadata,
which can capture longitudinal variations in cycli-
cal user activity patterns (Gao et al., 2013) or iden-
tify geographically-centered and time-dependent
events (Yamaguchi et al., 2014). In particular,
Dredze et al. (2016) and Do et al. (2017) find
self-identified timezone information to be a useful
geolocation predictor. Unfortunately, this explic-
itly encoded geographic indicator is absent from
reddit and thus motivates our work to transform
and model raw timestamp data in Section 4.2.

4.2 Location Estimation Model

Each user is represented by a concatenation of
three feature vectors: word usage ~w, subreddit
submissions ~s, and posting frequency ~τ . ~w is con-
structed by concatenating all comment text for a
user, tokenizing into uni-grams (using the same
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process in 3.1), and counting token frequencies.
~s is simply the frequency distribution of subred-
dits that a user has posted in across their comment
history.

We represent the temporal posting habits of a
user by ~τ , a 24-dimensional vector where each
index contains the comment counts for one hour
of the day. reddit comment timestamps are re-
ported in Coordinated Universal Time (UTC) and
can therefore be interpreted uniformly across users
when constructing ~τ . Moving forward, we let ~u
represent the concatenation of ~w and ~s, allowing
either modality to be turned off within the model.
However, we keep ~τ separate for notational clarity.

Model Architecture. As mentioned briefly
above, we use the generative model introduced by
Cheng et al. (2010) as the basis for our work, mod-
ifying it to enable ingestion of temporal metadata.
Formally, given a user with feature set ~u (each u
having an occurrence count ‖u‖) and posting fre-
quency ~τ , we estimate the probability of the user
being located at geographic coordinate pair c us-
ing the following model:

P (c|~u, ~τ) ∝ P (c|~τ)
∑

u∈~u
‖u‖P (c|u)P (u). (1)

To make a singular location prediction, we take the
argmax of P (c|~u, ~τ) over an arbitrarily discrete
set of coordinate pairs C.

Probability Density Estimation. As a base-
line, Cheng et al. (2010) use the count-based fre-
quency of features over cities in their training data
to estimate P (c|u). They recognize as a shortcom-
ing to this approach the issue of feature sparsity—
features with a low frequency or selective location
presence contribute a probability close to zero for
several candidate locations.

Drawing upon the relationship of geographic
query dispersion quantified by Backstrom (2008),
Chang et al. (2012) and Priedhorsky et al. (2014)
use a bivariate Gaussian Mixture Model (GMM)
to estimate P (c|u) and demonstrate a signifi-
cant performance improvement over the Cheng et
al. (2010) baseline approach. However, the au-
thors highlight as a potential caveat to their work
the sensitivity of performance to GMM hyper-
parameters, namely the number of mixture com-
ponents.

To mitigate this issue, we use a Dirichlet Pro-
cess Mixture Model (DPMM) to estimate P (c|u).
Generally, DPMM is able to better describe mix-
tures with a varying number of components by
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Figure 3: The relative posting frequencies within each lon-
gitude bin ` ∈ L. Users east of 3° are more likely to post
between the 6th and 12th hours (UTC) of the day.

constructing an infinite mixture with some com-
ponents damped to near-zero amplitude; addition-
ally, learned DPMM parameters remain relatively
stable regardless of hyper-parameter choice (At-
tias, 2000; Blei et al., 2006).

We perform a series of experiments to compare
performance between GMM and DPMM. Hold-
ing constant the hyper-parameter for number of
mixture components3, we find DPMM reduces er-
ror relative to GMM on a fixed test set by 5% to
32% depending on the type of covariance matrix
used (i.e. diagonal, spherical). Ultimately, we use
DPMM with a diagonal covariance matrix and 5
components to optimize inference performance.

Temporal Variation. A significant change to
the Chang et al. (2010) model is the addition of a
temporal adjustment term P (c|~τ), designed to re-
weight the word and subreddit posterior according
to how well a user’s posting frequency ~τ aligns
with the posting frequency distribution for users at
coordinate pair c.

To make this estimate, we begin by discretiz-
ing the longitudes of users within our training data
into a set of percentile-based bins L. Then, we fit
a Logistic Regression model to map each user’s
posting frequency vector ~τ to their associated lon-
gitude bin ` ∈ L, using cross-validation to se-
lect hyper-parameters (e.g. L2-regularization) that
maximize classification accuracy. Additionally,
we use 5-fold cross-validation to select the number
of longitude bins ‖L‖ that minimizes downstream
inference error.

To use the trained temporal feature model
within our estimator, we first estimate P (`|~τ) for
each ` ∈ L. Then we assign each c ∈ C to its
appropriate longitude bin ` and map the predicted

3For DPMM, we use a truncated distribution with a max-
imum number of mixture components equal to the chosen
number of mixture components for GMM.
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probability distribution across C. We visualize
the temporal variation across longitude bins in our
reddit data set within Figure 3.

Paralleling shifts in timezone, we note that peak
user activity occurs earlier (within the UTC nor-
malization) for users in eastern longitude bins than
users in western longitude bins. Additionally,
users in the eastern hemisphere are significantly
more likely to post between the 6th and 12th hours
(UTC) of the day.

5 Within-Domain Evaluation

We first examine geolocation inference perfor-
mance within the domain of our reddit data set.
We query all comment data for users within our
set of geolocation labels using a publicly available
corpus of reddit comments made between Decem-
ber 2005 and May 2018 (Baumgartner, 2018). For
each user, we keep a maximum of 1000 comments
posted up to one-month after they commented in
the set of submissions used for labeling; this date-
based filtering is done to mitigate the effect of
users moving after posting in the seed set of sub-
missions. Additionally, to ensure our model is not
overtly biased by toponym mentions, we remove
comments that were used as a part of the labeling
procedure.

We separate our reddit data set into two
versions—US (restricted to users from the con-
tiguous United States) and GLOBAL (no location
restrictions). We require that users within the
United States have a minimum city-level resolu-
tion, while users outside the United States have
been labeled with at least a state-level resolution.

We quantify model performance using three
standard metrics from the user geolocation liter-
ature: Average Error Distance (AED), Median Er-
ror Distance (MED), and Accuracy at 100 miles
(Acc@100). AED and MED are simply the arith-
metic mean and median of error between pre-
dicted coordinates and true coordinates, respec-
tively. Acc@100 is the percentage of users whose
predicted location is less than 100 miles from their
true location.

5.1 Results

Feature Selection. Dimensionality reduction
methods have been used to improve geolocation
inference performance while reducing computa-
tional cost (Cheng et al., 2010; Chang et al., 2012;
Han et al., 2012). Of existing approaches, the

Top Words Top Subreddits

Massachusetts, USA
allston, mbta, waltham,

saugus, brookline, masshole,

somerville, alewife, braintree

r/PokemonGoBoston, r/WorcesterMA,

r/massachusetts, r/bostonhousing

Ohio, USA
ohioan, westerville, cincinnatis,

jenis, clevelander, graeters,

cuyahoga, bgsu, cbus

r/uCinci, r/ColumbusSocial,

r/columbusclassifieds, r/Columbus

Germany
zeigen, dennoch, wenige,

zeigt, solltest, deutlich,

wollt, kriegt, stck

r/FragReddit, r/de IAmA,

r/rocketbeans, r/kreiswichs

Belgium
telenet, walloon, vlaams,

jupiler, leuven, vlaanderen,

ghent, molenbeek, azerty

r/belgium, r/brussels,

r/Vivillon, r/ecr eu

Table 2: Examples of the top features ranked using non-
localness. Toponyms and non-English tokens are often the
most indicative of location.

non-localness (NL) criteria introduced by Chang
et al. (2012) stands out as being both effective at
improving inference performance and useful as a
means to understand feature alignment. Formally,
NL is computed according to Equation 2, where
simSKL is the Symmetric Kullback-Liebler diver-
gence, S is a set of “stopword-like” features which
are expected to occur uniformly across locations,
and f is a generic feature in a larger feature set F .

NL(f) =
∑

sεS

simSKL(f, s)
count(s)∑

s′εS′ count(s′)
(2)

We apply non-localness to ~w and ~s separately to
control how many features from each modality are
kept. For ~w, we let S be a set of 130 English stop-
words taken from the Natural Language Toolkit4;
to apply non-localness to subreddit features ~s, we
assume the 30 most active subreddits5 in our data
set make up S.

We evaluateNL over a discretized set of “State,
Country, Continent” combinations, rolling up lo-
cations with less than 50 users in the training data
to the next level of the location hierarchy. While
Chang et al. (2012) finds modest performance im-
provements using GMM to estimate feature fre-
quencies in the simSKL computation, we limit
ourselves to frequency-based feature likelihoods
to reduce computational expense.

In alignment with previous research, we find
that NL produces qualitatively intuitive feature
rankings (see Table 2). Furthermore, dimension-
ality reduction of both words and subreddits using
NL significantly reduces error compared to us-
ing the full feature set for US and GLOBAL. The
most significant source of error for large feature
set sizes is noise added by “stopword-like” fea-
tures, which generally have a large ‖u‖ and effec-
tively negate the contribution of more geographi-

4http://www.nltk.org/
5Examples include r/Politics, r/AskReddit, and r/funny.
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Figure 4: The effect of temporal and subreddit metadata on
inference error. Temporal features do not affect model perfor-
mance on the US data set, but reduce error for the GLOBAL
data set; subreddit metadata improves performance on both
data sets.

cally predictive features.
Final feature set sizes are selected to minimize

AED — 40k words and 650 subreddits for US
(originally 118k words and 13k subreddits); 50k
words and 1.1k subreddits for GLOBAL (originally
120k words and 14k subreddits).

Feature Modalities. Below, we discuss how
the addition of the temporal adjustment factor
P (c|~τ) and subreddit features ~s affect model per-
formance. We carry out 5-fold cross validation,
with splits varied for US and GLOBAL, but held
constant within each data set, to evaluate the
modality effects fairly.

As seen in Figure 4, the temporal adjustment
factor does not significantly affect model perfor-
mance on the US data set, but reduces error when
included within the GLOBAL data set, where un-
derlying differences in ~τ are magnified across con-
tinents. The most significant reduction in error oc-
curs for European users, whose posting levels tend
to peak around the 10th hour (UTC) of the day.

While subreddit features reduce error within
both data sets when combined with word features,
they do not outperform word features on their
own. Rather, models trained using word features
alone achieve an AED which is 17% and 4% lower
for US and GLOBAL, respectively, than models
trained using subreddit features alone. This im-
plies that text-based models trained on other do-
mains may perform adequately on reddit, but will
likely suffer from the inability to take advantage
of subreddit metadata in a supervised manner.

6 Cross-Domain Evaluation

While within-domain experiments suggest that
reddit-specific metadata offers substantial predic-
tive value, we wish to compare the highest degree

of performance achieved within-domain to perfor-
mance achieved using models trained outside the
reddit domain. To do so, we use three benchmark
Twitter geolocation data sets—GEOTEXT (Eisen-
stein et al., 2010), TWITTER-US (Roller et al.,
2012), and TWITTER-WORLD (Han et al., 2012).

All three data sets were created by monitor-
ing Twitter’s streaming API over a discrete period
of time and caching comments for users who en-
abled geotagging features on the Twitter platform.
Due to Twitter’s terms of service, TWITTER-US
and TWITTER-WORLD must be compiled from
scratch using tweet IDs. Unfortunately, several
users within the original data sets have since either
deleted their accounts or restricted access to their
tweet history. As such, we were not able to per-
fectly recreate the original data sets. Ultimately,
our compilation of TWITTER-US contains 246k
out of the original 440k users, while TWITTER-
WORLD contains 888k out of the original 1.4M
users.

To understand the impact that domain transfer
has on geolocation inference performance, we set
up a systematic model comparison. First, we run
5-fold cross-validation within each of the Twitter
data sets using both word and timestamp features.
For the TWITTER-WORLD data set, we run two in-
dependent cross-validation procedures, evaluating
on the subset of US users alone and also on the en-
tire data set. Then, we train models for each of our
data sets using all available data and apply them
to the data sets not used for training. When evalu-
ating performance on a data set that only contains
US users, we train the corresponding model only
using US user data. All model hyper-parameters
(e.g. feature set sizes, regularization, etc.) were
chosen to optimize within-data-set performance.

6.1 Results

Experimental results are summarized in Table 3
and explored in greater detail below. The base-
line model assigns each user in the test set to the
maximum a posteriori (MAP) of a DPMM fit to
the locations of all users in the training data. As
an additional reference point, we also include re-
sults from two recent approaches for the Twitter
data sets.

Transfer Performance. In validation of our
labeling procedure, we note that models trained
on reddit data outperform within-domain baselines
for nearly all Twitter data sets. The only exception
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Test REDDIT-US REDDIT-GLOBAL GEOTEXT TWITTER-US TWITTER-WORLD (US) TWITTER-WORLD (All)

Train Acc@100 AED MED Acc@100 AED MED Acc@100 AED MED Acc@100 AED MED Acc@100 AED MED Acc@100 AED MED

Rahimi et al. (2017) (Text-based) - - - - - - 0.38 844 389 0.54 554 120 - - - 0.34 1456 415

Do et al. (2017) (Text + Network) - - - - - - 0.62 532 32 0.66 433 45 - - - 0.53 1044 118

Baseline (MAP Estimate) 0.05 894 750 0.03 2207 1221 0.33 679 424 0.07 1659 1869 0.07 1651 1869 0.04 3893 2463

REDDIT-US ~w 0.36 602 295 - - - 0.21 695 479 0.31 609 362 0.14 748 605 - - -

~w + ~τ 0.36 580 278 - - - 0.21 695 480 0.31 603 358 0.13 747 592 - - -

~w + ~τ + ~s 0.45 502 157 - - - - - - - - - - - - - - -

REDDIT-GLOBAL ~w - - - 0.24 1751 590 - - - - - - - - - 0.09 2717 1329

~w + ~τ - - - 0.25 1475 457 - - - - - - - - - 0.09 2708 1329
~w + ~τ + ~s - - - 0.36 1259 266 - - - - - - - - - - - -

GEOTEXT ~w 0.07 1210 1019 - - - 0.38 591 280 0.12 982 755 0.13 992 755 - - -

~w + ~τ 0.07 1209 1019 - - - 0.38 575 271 0.12 982 755 0.13 992 755 - - -

TWITTER-US ~w 0.36 670 326 - - - 0.34 631 301 0.40 547 225 0.24 790 583 - - -

~w + ~τ 0.36 635 294 - - - 0.33 632 304 0.40 536 220 0.24 789 582 - - -

TWITTER-WORLD (US) ~w 0.20 963 729 - - - 0.12 635 313 0.23 772 564 0.22 795 589 - - -

~w + ~τ 0.18 923 717 - - - 0.13 628 311 0.22 768 563 0.22 791 584 - - -

TWITTER-WORLD (All) ~w - - - 0.15 2737 1829 - - - - - - - - - 0.16 2716 1665

~w + ~τ - - - 0.16 1793 817 - - - - - - - - - 0.16 2610 1405

Table 3: Summary statistics for the domain-transfer experiment. The best results from our cross-validation procedure are
bolded. Models trained on reddit data (third and fourth rows) outperform the baseline for Twitter data sets in nearly all cases
(see text for caveats). Within the reddit data sets (first and second columns), models with access to platform-specific metadata
outperform all models transferred from the Twitter domain.

occurs for GEOTEXT, where less than 10% of red-
dit features are also present. Due to the lack of
feature overlap, many of the GEOTEXT, users are
assigned to the MAP of users in the reddit data
by default. While TWITTER-US and TWITTER-
WORLD also have low feature overlap with GEO-
TEXT, their MAP estimates are much closer to ma-
jority of users in GEOTEXT.

We also note that there is a significant loss in-
curred by most domain transfers. This loss is mag-
nified for models trained on Twitter data and ap-
plied to reddit data, since Twitter models critically
lack access to subreddit metadata during training.

Temporal Features. The effect of our tempo-
ral adjustment term P (c|~τ) varies between each
data set. Specifically, the temporal features sig-
nificantly improve within-domain performance for
both of our “international” data sets (TWITTER-
WORLD and REDDIT-GLOBAL), but offer no sig-
nificant gain for data sets with US users only. Ad-
ditionally, we note that temporal features signif-
icantly reduce the loss in performance incurred
by domain transfer going from TWITTER-US
to REDDIT-US and from TWITTER-WORLD to
REDDIT-GLOBAL.

Location Estimator. Based on within-domain
performance for each of the Twitter data sets, we
recognize that our inference modeling approach
is below state of the art. For example, in the
space of text-only models, Rahimi et al. (2017)
have achieved an Acc@100 of 0.34 on TWITTER-
WORLD using a multilayer perceptron and k-d tree
discretization over the label set.

The performance gap between our model and
state of the art approaches widens when consid-

ering multi-modal architectures. Notably, Do et
al. (2017) have achieved an Acc@100 of 0.62
on GEOTEXT using multi-view neural networks
that simultaneously leverage text, profile meta-
data, and social network connections. Thus, we
hypothesize that implementing models which are
more complex than our current architecture will
magnify the performance gain achieved by includ-
ing subreddit metadata alongside text-based fea-
tures.

7 Discussion and Future Work

In this paper, we introduced the first user geocod-
ing and geolocation inference approach for red-
dit, demonstrating that pseudonymity is not an ex-
haustive barrier to supervised learning. In addi-
tion to designing a labeling procedure capable of
geocoding user home locations in noisy comment
data with a precision of 0.966, we demonstrated
that reddit-specific metadata can be used to signif-
icantly improve inferences. Ultimately, we trained
a multi-modal inference model which achieves a
median error of 157 miles and 266 miles for US
and international reddit users, respectively.

Moving forward, we plan to thoroughly exam-
ine underlying biases that may exist within the
users identified by our labeling procedure. Specifi-
cally, we will build on the work of Sloan and Mor-
gan (2015) and Lippincott and Carrell (2018) to
understand differences in user activity, interests,
and conversation topicality, relative to the general
reddit population. We also plan to explore differ-
ent seed-submission sampling methods to improve
the representation of non-North American users.
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Abstract 

We describe the Enron People Assignment 

(EPA) dataset, in which tasks that are 

described in emails are associated with the 

person(s) responsible for carrying out these 

tasks. We identify tasks and the responsible 

people in the Enron email dataset. We 

define evaluation methods for this 

challenge and report scores for our model 

and naïve baselines. The resulting model 

enables a user experience operating within 

a commercial email service: given a person 

and a task, it determines if the person 

should be notified of the task. 

1 Introduction 

The initial motivation for our dataset1 is to enable 

development of a commercial email service that 

helps individuals track tasks that are assigned or 

that they have agreed to perform. To that end, tasks 

are identified automatically from email text; when 

such an email is sent or received by an individual, 

they can be notified or reminded of any resulting 

tasks should they be responsible for carrying them 

out. Thus, for the commercial email service there 

are two parts to the problem: (a) detecting tasks 

from text, and (b) associating them to specific 

individuals given a list of affiliated people. The 

Sender, To and Cc list from the email provide a 

mostly comprehensive list of individuals. The 

latter step of selecting responsible individuals is an 

example of addressee tagging, also referred to as 

addressee recognition (Traum, 2003).  

 

 

________________________ 
1http://aka.ms/epadataset 

 

For example, in Figure 1, the task is to complete 

a draft report, and the people responsible are Anna 

and Brad. However, addressee tagging is needed to 

match the “you” in the second sentence to “Anna”. 

As this example demonstrates, often more than 

one person is responsible for carrying out a task; 

the task notification must be provided to each 

responsible party who recieves the email, though 

not to others who receive the email but are not 

responsible for the task. 

There may be no explicit mention of the person 

responsible, as in Figure 2. In this example, the 

context is found not in the user-typed text, but 

rather in the email client-generated metadata. To 

complicate matters, the text may use implicit 

second party references. Consider: “Please 

complete a draft by Friday”. Here, the imperative 

“complete” has an implicit “you” that can refer to 

either singular or plural recipients. 

Finally, there exist cases in which a task intent 

is detected, but no one in the To/Cc list is 

responsible. For example: “Brad will complete the 

draft report” has a task intent, but if Brad is not in 

the list of available individuals, we should not 

erroneously assign one of the recipients. 

Assigning people to tasks identified in email:  

The EPA dataset for addressee tagging for detected task intent  
 

 

 

Revanth Rameshkumar, Peter Bailey, Abhishek Jha, Chris Quirk 

Microsoft, USA 

{reramesh, pbailey, abjha, chrisq}@microsoft.com 

 

 

 

 

 

“Hi, thanks for your work on the sales analysis 

last week. Can you and Brad complete a draft by 

Friday please. Thanks, Caira 

------ Original Message ------ 

Sent by: Anna Anna@address.com 

… 

Hi Caira, How are things?  

…” 

Figure 2. No explicit mention of person. 

“Hi Anna, thanks for your work on the sales 

analysis last week. Can you and Brad complete a 

draft by Friday please. Thanks, Caira” 

Figure 1. No explicit mention of person. 
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In the commercial email service, both the task 

and the people responsible must be identified. 

While the identification of tasks is an interesting 

problem, including it as part of the challenge 

would add an additional source of noise to require 

both the identification of a task and identification 

of the responsible person or people. Thus, in this 

dataset, we simplify the problem by providing the 

set of tasks already extracted from the emails. 

2 Dataset and Challenge Description   

The dataset consists of a set of tasks in email and 

the associated people. Within each email, a task is 

indicated by a special <mark> tag (one per HIT); 

a set of email recipients (one or more per email) is 

also provided. The subset of recipients (possibly 

empty) who are responsible for the marked task is 

also provided. Each recipient is identified by their 

email address. Sometimes recipients are email 

groups(“some_group”@enron.com); they are 

referred to implicitly by the sender of the email. 

2.1 Enron – Background Email Corpus  

The Enron email dataset (Cohen, 2015) was used 

as a source of tasks described by users in the 

context of email. In this corpus, most tasks are 

associated with professional work activities 

encountered by information workers, but the 

challenge is emblematic of more general classes of 

interaction among different groups of people.  

The individual emails were pre-processed to 

produce a standardized format, including email 

addresses of senders and recipients, subject line, 

and the textual body of the email.  

2.2 Extracted Tasks 

A subset of the emails was identified as having 

tasks: one or more people were requested by the 

email sender to carry out a specific task. Each task 

is represented in the dataset as a single sentence 

from the body of the email, using a basic sentence 

separation algorithm. As compared to other email 

datasets, Enron emails are more difficult to 

segment into sentences due to email formatting. 

We did not attempt to manually clean “noise” from 

the sentence segmentation process. The data 

reflects practical issues when processing email. 

The entire email thread is also included as 

sometimes the prior messages in the thread are 

helpful in identifying responsible individuals for 

the task. The prior thread can also contain valuable 

metadata such as the sender of the previous email. 
The definition of a task is, broadly, any user 

intent that requires some explicit subsequent action 

by one or more individuals. Examples are shown 

in Table 1.  

2.3 Identifying Responsible People 

For each task, a set of candidate people is derived 

from the Sender, To, and Cc email addresses 

associated with the email. Then, for each person, 

the challenge is to decide whether that person is 

responsible for the task that has been identified 

from the email thread, given both their name and 

email address. The task is thus reduced to a series 

of binary decisions, hence we can evaluate using 

standard binary classification metrics. 

2.4 Label Creation Process 

In the annotation application, the entire thread is 

shown with the detected task highlighted in-line. 

The only preprocessing done on the raw text was 

to replace <br/> HTML tags with newlines and 

replace tabs with spaces, for better results with our 

production HTML sentence separation algorithm. 

All recipients (with the available name and 

email address information) are shown beside the 

email along with the two options of ‘sender of 

email’ and ‘no-one’. The annotators can choose 

any combination of the ‘sender of email’ and the 

recipients; or can choose ‘no-one’ only. 

The annotators were from a managed crowd-

worker group; they were able to ask us questions, 

and we could give them feedback on their 

performance. They were first asked to read the 

guidelines and complete a qualification task with a 

passing score of 100%, after an unlimited number 

of attempts. Generally, the qualification task aims 

to disqualify crowd-sourced annotaters that are 

spamming the task or do not understand the task; 

because our annotator pool is managed, this 

qualification task also serves as a training tool. 

Task Sentence Action 

Can you please send me 

the document? 

Send [a document] 

Please handle this for John Handle [this] 

Please prepare a draft of 

the letter. 

Prepare [a draft…] 

Table 1.  Example tasks and actions 
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Once the annotators are ready to start the main 

task, each HIT (here, a single task in one email) is 

given to three annotators for three independent 

annotations. A HIT is considered universally 

agreed upon if all judges agree on all recipients. 

We validated the annotations by manually 

reviewing samples and gave feedback where we 

found judgements lacking. We also went through 

several iterations of the task and guidelines to 

incorporate new feedback, with the dataset using 

the final iteration of guidelines. Please refer to 

supplementary material for annotation instructions 

and pictures to replicate our annotation process on 

other email (or other) corpora.  

2.5 Dataset Analysis  

In this section, we provide qualitative and 

quantitative analysis of the dataset. We also 

compare the dataset being released to a similarly 

created dataset from the Avocado email corpus. We 

cannot release the Avocado version of the dataset 

due to licensing restrictions. 

We use two different agreement calculations 

since the task seems to be surprisingly subjective 

and noisy, even after multiple rounds of annotator 

training. The first is a perfect agreement metric 

where we simply calculate the number of 

universally agreed upon label for each (email, task, 

recipient) tuple (from a total of 15,649 tuples). We 

found there is a 71.07% perfect agreement rate on 

the recipient level in the dataset. 

To understand rates of inter-annotator 

agreement better, we calculated Krippendorff’s 

alpha (α), a general and robust reliability measure 

(Krippendorff, 2004). Our α value is 0.6123. When 

interpreting magnitude of agreement measures, 

Krippendorf suggests α ≥ 0.800, and the threshold 

for tentative conclusions at 0.667. However, he 

goes on to say that there is no “magic number” 

other than perhaps a perfect consensus, and the 

appropriate α must be determined through 

experimentation and empirical evidence. In this 

regard we are still determining an acceptable α for 

the production scenario. Theoretically the best α 

would be 1.0, but as we have seen, if we take only 

data with perfect consensus, we lose up to 28.93% 

of the collected data (many of which still have a 

majority consensus). In Table 2, we compare these 

results on Enron with corresponding annotations 

over the Avocado dataset (Oard, 2015).  

 As we can see, the agreement and reliability of 

the Avocado set is substantially higher. When 

asking the managed annotators if they felt there 

was any difference between the two sets, and by 

looking at the data ourselves, the biggest 

differences seem to be: 

1. Avocado has cleaner formatting. 

2. Avocado formatting is more consistent, and 

the annotators find it easier to parse. 

3. Avocado sentence separation is cleaner; due 

to simpler formatting and line breaks. 

Future work on the Enron dataset may include 

additional pre-processing to place less burden on 

the annotators. 

In addition to the agreement and reliability 

metrics, we have calculated several other statistics 

in the universally agreed annotated Enron data 

(Table 3). Similarly, for email+task combinations 

with multiple recipients, we report basic statistics 

on distribution of recipients in Table 4. 

3 Evaluation for Task  

In the production scenario, performance is 

measured by the precision and recall of task 

assignment to a recipient on the recipient list. The 

other two metrics we looked at were precision and 

recall of single recipient vs multi recipient emails, 

and the distribution of precision and recall for each 

email. The calculation of the precision and recall is 

based on the simple binary label assigned to the 

(email, task, recipient) tuple. 

# of unique emails 5998 

# of tasks 6300 

# of unique recipients in dataset 3460 

# of emails with multiple recipients 2923 

Table 3. Dataset statistics. 

Distribution of # of recipients 

assigned to task (label = 1) 
mean = 1.06 

variance = 1.36 

range = [0,6] 

Distribution of # of recipients 

not assigned to task (label = 0) 
mean = 1.50 

variance = 1.60 

range = [1,6] 

Table 4. Recipient distribution statistics. 

 Perfect Agreement α 

Avocado 84.51 % 0.7854 

Enron 71.07% 0.6123 

Table 2. Rate of perfect agreement and reliability. 
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4 Model and Performance 

4.1 Baselines 

The baselines are detailed in Table 5. We consider 

the naïve baselines of assuming every person is 

responsible for the task in the single recipient and 

multi-recipient case. We also have the baseline of 

assigning a person to the task with the mean 

probability of a recipient being responsible for the 

task. This probability is lower than 1.0 in the single 

recipient case because sometimes ‘NOBODY’ is 

responsible for the task.  

Finally, we provide the baseline of a model 

trained on the Avocado dataset (our first dataset, 

and the model in production) on the Enron dataset. 

This is an interesting result: an Avocado trained 

model and evaluated on an Avocado blind set 

yielded a P/R of 0.9/0.9. It also performs 

reasonably well on a donated sample of real user 

emails; yet performs relatively poorly on the new 

Enron dataset. All baselines are calculated on 

(email, task, recipient) tuples with total consensus.  

4.2 Experimental Model  

To train the model, we are currently using the data 

collected from the Avocado training set. We have 

trained on 3872 emails, and we took the majority 

consensus HIT (otherwise random). In the future 

we can try to incorporate annotator reliability 

metrics (Rehbein, 2017) to allow us to filter for 

more data. 

The model is trained using logistic regression 

with a set of handcrafted features (described in 

supplementary material). The best feature 

contributions come from token replacement and 

encoding out-of-sentence token information. 

5 Future work 

We plan to improve pre-processing, in hopes of 

raising the inter-annotator agreement on the Enron 

set to at least match the Avocado set. Also, the 

deictic nature of this task can be extended from 

addressee assignment to time and location 

assignment. A temporal expression and location 

tagger can be used to build the set of assignable 

entities to the extracted task, and we could contrast 

the application of explicit linguistic features or 

implicitly learned features developed from 

addressee assignment to the task of assigning time 

and location. 

6 Related Work 

Many addressee detection methods have been 

developed in dialogue-based domains, such as in 

the use of the AMI meeting corpus for addressee 

detection (Akker and Traum, 2009). The corpus is 

a set of 14 meetings in which utterances were 

captured, and “important” utterances were labeled 

with the addressee. The addressee is labeled as 

whole group or one of four individuals. The 

manual annotation effort in that effort also seems 

to exhibit an α value below 0.8.  

Purver (2006) used the ICSI and ISL meeting 

corpora to label task owner via utterance 

classification, in addition to other utterance labels. 

As we have, Purver et al. noticed that labels for 

owner and other task properties might be derived 

from context nearby the utterance containing the 

actual task. Though they report a kappa score of 

0.77, they also note that their model performed 

worst on owner classification. 

Kalia et al. attempted to detect of commitments 

from a subset of the Enron dataset (Kalia, 2013). 

This subset came from exchanges involving a 

specific user, and the focus was on the task 

extraction. There was no specific effort to label 

task owner. The inter-annotator metric was a kappa 

score of 0.83 (combined with their chat dataset). 

We speculate that using a more specific task format 

and not using context led to increased agreement. 

7 Conclusion 

We introduce the Enron People Assignment 

dataset, containing addressee assignment 

annotations, for 15,649 (email, task, recipient) 

tuples, for the noisy task of assigning the proper 

recipient to an extracted task. We analyzed the 

Single Recipient 

Prediction Strategy P R F1 

Every recipient 0.6730 1.0000 0.8045 

�̅� (0.6674) 0.6589 0.6503 0.6545 

Avocado model 0.6917 0.8927 0.7795 

Multiple Recipients 

Prediction Strategy P R F1 

Every recipient 0.4435 1.0000 0.6145 

�̅� (0.4289) 0.4448 0.4280 0.4362 

Avocado model 0.6169 0.7021 0.6567 

Table 5. Baseline performance for single and multiple 

recipients. 
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dataset, calculated reliability and agreement 

metrics, and provided baselines for people 

assignment task. Our experiments show that 

annotation and model performance vary 

significantly across datasets, and that there is 

substantial room for improvement when modeling 

people assignment in the email domain alone. Our 

broader goal in releasing this task and dataset is to 

motivate researchers to develop new methods to 

process and model noisy, yet rich, text. 
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Abstract
Run-on sentences are common grammatical
mistakes but little research has tackled this
problem to date. This work introduces two ma-
chine learning models to correct run-on sen-
tences that outperform leading methods for re-
lated tasks, punctuation restoration and whole-
sentence grammatical error correction. Due to
the limited annotated data for this error, we ex-
periment with artificially generating training
data from clean newswire text. Our findings
suggest artificial training data is viable for this
task. We discuss implications for correcting
run-ons and other types of mistakes that have
low coverage in error-annotated corpora.

1 Introduction

A run-on sentence is defined as having at least two
main or independent clauses that lack either a con-
junction to connect them or a punctuation mark to
separate them. Run-ons are problematic because
they not only make the sentence unfriendly to the
reader but potentially also to the local discourse.
Consider the example in Table 1.

In the field of grammatical error correction
(GEC), most work has typically focused on de-
terminer, preposition, verb and other errors which
non-native writers make more frequently. Run-
ons have received little to no attention even though
they are common errors for both native and non-
native speakers. Among college students in the
United States, run-on sentences are the 18th most
frequent error and the 8th most frequent error
made by students who are not native English
speakers (Leacock et al., 2014).

Correcting run-on sentences is challenging (Ka-
gan, 1980) for several reasons:

• They are sentence-level mistakes with long-
distance dependencies, whereas most other
grammatical errors are local and only need a
small window for decent accuracy.

Before correction
But the illiterate will not stay illiterate always if they
put an effort to improve and are given a chance for
good education, they can still develop into a group
of productive Singaporeans.

After correction
But the illiterate will not stay illiterate always. If
they put an effort to improve and are given a chance
for good education, they can still develop into a
group of productive Singaporeans.

Table 1: A run-on sentence before and after correction.

• There are multiple ways to fix a run-on
sentence. For example, one can a) add
sentence-ending punctuation to separate
them; b) add a conjunction (such as and)
to connect the two clauses; or c) convert an
independent clause into a dependent clause.

• They are relatively infrequent in existing, an-
notated GEC corpora and therefore existing
systems tend not to learn how to correct them.

In this paper, we analyze the task of automat-
ically correcting run-on sentences. We develop
two methods: a conditional random field model
(roCRF) and a Seq2Seq attention model (roS2S)
and show that they outperform models from the
sister tasks of punctuation restoration and whole-
sentence grammatical error correction. We also
experiment with artificially generating training ex-
amples in clean, otherwise grammatical text, and
show that models trained on this data do nearly
as well predicting artificial and naturally occurring
run-on sentences.
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2 Related Work

Early work in the field of GEC focused on correct-
ing specific error types such as preposition and ar-
ticle errors (Tetreault et al., 2010; Rozovskaya and
Roth, 2011; Dahlmeier and Ng, 2011), but did not
consider run-on sentences. The closest work to our
own is Israel et al. (2012), who used Conditional
Random Fields (CRFs) for correcting comma er-
rors (excluding comma splices, a type of run-on
sentence). Lee et al. (2014) used a similar sys-
tem based on CRFs but focused on comma splice
correction. Recently, the field has focused on the
task of whole-sentence correction, targeting all er-
rors in a sentence in one pass. Whole-sentence
correction methods borrow from advances in sta-
tistical machine translation (Madnani et al., 2012;
Felice et al., 2014; Junczys-Dowmunt and Grund-
kiewicz, 2016) and, more recently, neural machine
translation (Yuan and Briscoe, 2016; Chollampatt
and Ng, 2018; Xie et al., 2018; Junczys-Dowmunt
et al., 2018).

To date, GEC systems have been evaluated
on corpora of non-native student writing such as
NUCLE (Dahlmeier et al., 2013) and the Cam-
bridge Learner Corpus First Certificate of En-
glish (Yannakoudakis et al., 2011). The 2013 and
2014 CoNLL Shared Tasks in GEC used NUCLE
as their train and test sets (Ng et al., 2013, 2014).
There are few instances of run-on sentences an-
notated in both test sets, making it hard to assess
system performance on that error type.

A closely related task to run-on error correction
is that of punctuation restoration in the automatic
speech recognition (ASR) field. Here, a system
takes as input a speech transcription and is tasked
with inserting any type of punctuation where ap-
propriate. Most work utilizes textual features with
n-gram models (Gravano et al., 2009), CRFs (Lu
and Ng, 2010), convolutional neural networks or
recurrent neural networks (Peitz et al., 2011;
Che et al., 2016). The Punctuator (Tilk and
Alumäe, 2016) is a leading punctuation restoration
system based on a sequence-to-sequence model
(Seq2Seq) trained on long slices of text which can
span multiple sentences.

3 Model Descriptions

We treat correcting run-ons as a sequence labeling
task: given a sentence, the model reads each token
and learns whether there is a SPACE or PERIOD
following that token, as shown in Table 2. We ap-

This/S shows/S the/S rising/S of/S life/S
expectancies/P it/S is/S an/S achievement/S
and/S it/S is/S also/S a/S challenge/S ./S

Table 2: NUCLE sentence labeled to indicate what
follows each token: a space (S) or period (P).

ply two sequence models to this task, conditional
random fields (roCRF) and Seq2Seq (roS2S).

3.1 Conditional Random Fields

Our CRF model, roCRF, represents a sentence as a
sequence of spaces between tokens, labeled to in-
dicate whether a period should be inserted in that
space. Each space is represented by contextual
features (sequences of tokens, part-of-speech tags,
and capitalization flags around each space), parse
features (the highest uncommon ancestor of the
word before and after the space, and binary indi-
cators of whether the highest uncommon ancestors
are preterminals), and a flag indicating whether
the mean per-word perplexity of the text decreases
when a period is inserted at the space according to
a 5-gram language model.

3.2 Sequence to Sequence Model with
Attention Mechanism

Another approach is to treat it as a form of neural
sequence generation. In this case, the input sen-
tence is a single run-on sentence. During decoding
we pass the binary label which determines if there
is terminal punctuation following the token at the
current position. We then combine the generated
label and the input sequence to get the final output.

Our model, roS2S, is a Seq2Seq attention
model based on the neural machine translation
model (Bahdanau et al., 2015). The encoder is
a bidirectional LSTM, where a recurrent layer
processes the input sequence in both forward
and backward direction. The decoder is a uni-
directional LSTM. An attention mechanism is
used to obtain the context vector.

4 Data

Train: Although run-on sentences are common
mistakes, existing GEC corpora do not include
enough labeled run-on sentences to use as training
data. Therefore we artificially generate training
examples from a corpus of clean newswire text,
Annotated Gigaword (Napoles et al., 2012). We
randomly select paragraphs and identify candidate
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pairs of adjacent sentences, where the sentences
have between 5–50 tokens and no URLs or spe-
cial punctuation (colons, semicolons, dashes, or
ellipses). Run-on sentences are generated by re-
moving the terminal punctuation between the sen-
tence pairs and lowercasing the first word of the
second sentence (when not a proper noun). In total
we create 2.8 million run-on sentences, and ran-
domly select 1.75M other Gigaword sentences for
negative examples. We want the model to learn
more patterns of run-on errors by feeding a large
portion of positive examples while we report our
results on a test set where the ratio is closer to that
of real world. We call this data FakeGiga-Train.
An additional 28k run-ons and 218k non-run-ons
are used for validation.

Test: We evaluate on two dimensions: clean ver-
sus noisy text and real versus artificial run-ons. In
the first evaluation, we artificially generate sen-
tences from Gigaword and NUCLE following the
procedure above such that 10% of sentences are
run-ons, based on our estimates of their rate in
real-world data (similar observations can be found
in Watcharapunyawong and Usaha (2012)). We re-
fer to these test sets as FakeGiga and FakeESL re-
spectively. Please note that the actual run-on sen-
tences in NUCLE are not included in FakeESL.

The second evaluation compares performance
on artificial versus naturally occurring run-on sen-
tences, using the NUCLE and CoNLL 2013 and
2014 corpora. Errors in these corpora are an-
notated with corrected text and error types, one
of which is Srun: run-on sentences and comma
splices. Sruns occur 873 times in the NUCLE
corpus. We found that some of the Srun anno-
tations do not actually correct run-on sentences,
so we reviewed the Srun annotations to exclude
any corrections that do not address run-on sen-
tences. We also found that there are 300 out of
the 873 sentences with Srun annotations which
actually perform correction by adding a period.
Other Srun annotations correct run-ons by con-
verting independent clauses to dependent clauses,
but we only target missing periods in this initial
work. We manually edit Srun annotations so that
the only correction performed is inserting periods.
(This could be as simple as deleting the comma
in the original text of a comma splice or more in-
volved, as in rewriting a dependent clause to an
independent clause in the corrected text.) In total,
we find fewer than 500 run-on sentences. Run-

Dataset RO Non-RO Total
Train FakeGiga-Train 2.76M (61%) 1.75M (39%) 4.51M

Test

FakeGiga 28,232 (11%) 218,076 (89%) 246,308
RealESL 542 (1%) 58,987 (99%) 59,529
FakeESL 5,600 (9%) 56,350 (91%) 61,950
FakeESL-1% 560 (1%) 56,350 (99%) 56,910

Table 3: Number of run-on (RO) and non-run-on
(Non-RO) sentences in our datasets.

ning the same procedure over the CoNLL 2013
and 2014 Shared Task test sets results in 59 more
run-on sentences and 2,637 non-run-on sentences.
We discard all other error annotations and com-
bine the NUCLE train and CoNLL test sets, which
we call RealESL.

Only 1% of sentences in RealESL are run-ons,
which may not be the case in other forms of ESL
corpora. So for a fair comparison we down-sample
the run-on sentences in FakeESL to form a test set
with the same distribution as RealESL, FakeESL-
1%. Table 3 describes the size of our data sets.

5 Experiments

Metrics: We report precision, recall, and the
F0.5 score. In GEC, precision is more important
than recall, and therefore the standard metric for
evaluation is F0.5, which weights precision twice
as much as recall.

Baselines: We report results on a balanced ran-
dom baseline and state-of-the-art models from
whole-sentence GEC (NUS18) and punctuation
restoration (the Punctuator). NUS18 is the re-
leased GEC model of Chollampatt and Ng (2018),
trained on two GEC corpora, NUCLE and Lang-
8 (Mizumoto et al., 2011). We test two versions
of the Punctuator: Punctuator-EU is the released
model, trained on English Europarl v7 (Koehn,
2005), and Punctuator-RO, which we trained on
artificial clean data (FakeGiga-Train) using the au-
thors’ code.1

roCRF: We train our model with `1-
regularization and c = 10 using the CRF++
toolkit.2 Only features that occur at least 5 times
in the training set were included. Spaces are
labeled to contain missing punctuation when the
marginal probability is less than 0.70. Parameters
are tuned to F0.5 on 25k held-out sentences.

1github.com/ottokart/punctuator2
2Version 0.59, github.com/taku910/crfpp/
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Clean v. Noisy - Artificial Data Real v. Artificial - Noisy Data
FakeGiga FakeESL RealESL FakeESL-1%

P R F0.5 P R F0.5 P R F0.5 P R F0.5

Random 0.10 0.10 0.10 0.09 0.09 0.09 0.01 0.01 0.01 0.01 0.01 0.01
Punctuator-EU 0.22 0.45 0.25 0.74 0.48 0.67 0.11 0.65 0.13 0.12 0.67 0.14
Punctuator-RO 0.78 0.57 0.73 0.58 0.51 0.56 0.11 0.31 0.13 0.18 0.52 0.21
roCRF 0.89 0.49 0.76 0.83 0.24 0.55 0.34 0.27 0.32 0.32 0.24 0.30
roS2S 0.84 0.94 0.86 0.77 0.44 0.67 0.30 0.32 0.31 0.30 0.34 0.31

Table 4: Performance on clean v. noisy artificial data with 10% run-ons, and real v. artificial data with 1% run-ons.

roS2S: Both the encoder and decoder have a
single layer, 1028-dimensional hidden states, and
a vocabulary of 100k words. We limit the input
sequences to 100 words and use 300-dimensional
pre-trained GloVe word embeddings (Pennington
et al., 2014). The dropout rate is 0.5 and mini-
batches are size 128. We train using Ada-grad
with a learning rate of 0.0001 and a decay of 0.5.

6 Results and Analysis

Results are shown in Table 4. A correct judg-
ment is where a run-on sentence is detected and
a PERIOD is inserted in the right place. Across
all datasets, roCRF has the highest precision. We
speculate that roCRF consistently has the highest
precision because it is the only model to use POS
and syntactic features, which may restrict the oc-
currence of false positives by identifying longer
distance, structural dependencies. roS2S is able to
generalize better than roCRF, resulting in higher
recall with only a moderate impact on precision.
On all datasets except RealESL, roS2S consis-
tently has the highest overall F0.5 score. In gen-
eral, Punctuator has the highest recall, probably
because it is trained for a more general purpose
task and tries to predict punctuation at each possi-
ble position, resulting in lower precision than the
other models.

NUS18 predicts only a few false positives and
no true positives, so P = R = 0 and we exclude
it from the results table. Even though NUS18 is
trained on NUCLE, which RealESL encompasses,
its very poor performance is not too surprising
given the infrequency of run-ons in NUCLE.

Clean v. Noisy In the first set of experiments
(columns 2 and 3), we compare models on clean
text (FakeGiga), which has no other grammati-
cal mistakes, and noisy text (FakeESL), which
may have several other errors in each sentence.
Punctuator-EU is the only model which improves

when tested on the noisy artificial data com-
pared to the clean. It is possible that the speech
transcripts used for training Punctuator-EU more
closely resemble FakeESL, which is less formal
than FakeGiga. All other models do worse, which
could be due to overfitting FakeGiga. However,
further work is needed to determine how much of
the performance drop is due to a domain mismatch
versus the frequency of grammatical mistakes in
the data.

Real v. Artificial So far, we have only used arti-
ficially generated data for training and testing. The
second set of experiments (columns 4 and 5) de-
termines if it is easier to correct run-on sentences
that are artificially generated compared to those
that occur naturally. The Punctuators do poorly on
this data because they are too liberal, evidenced
by the high recall and very low precision. Our
models, roCRF and roS2S, outperform the Punc-
tuators and have similar performance on both the
real and artificial run-ons (RealESL and FakeESL-
1%). roCRF has significantly higher precision on
RealESL while roS2S has significantly higher re-
call and F0.5 on RealESL and FakeESL-1% (with
bootstrap resampling, p < 0.05). This supports
the use of artificially generated run-on sentences
as training data for this task.

7 Conclusions

Correcting run-on sentences is a challenging task
that has not been individually targeted in earlier
GEC models. We have developed two new mod-
els for run-on sentence correction: a syntax-aware
CRF model, roCRF, and a Seq2Seq model, roS2S.
Both of these outperform leading models for punc-
tuation restoration and grammatical error correc-
tion on this task. In particular, roS2S has very
strong performance, with F0.5 = 0.86 and F0.5 =
0.67 on run-ons generated from clean and noisy
data, respectively. roCRF has very high precision
(0.83 ≤ P ≤ 0.89) but low recall, meaning that it
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does not generalize as well as the leading system,
roS2S.

Run-on sentences have low frequency in anno-
tated GEC data, so we experimented with artifi-
cially generated training data. We chose clean
newswire text as the source for training data to en-
sure there were no unlabeled naturally occurring
run-ons in the training data. Using ungrammati-
cal text as a source of artificial data is an area of
future work. The results of this study are incon-
clusive in terms of how much harder the task is
on clean versus noisy text. However, our findings
suggest that artificial run-ons are similar to natu-
rally occurring run-ons in ungrammatical text be-
cause models trained on artificial data do just as
well predicting real run-ons as artificial ones.

In this work, we found that a leading GEC
model (Chollampatt and Ng, 2018) does not cor-
rect any run-on sentences, even though there was
an overlap between the test and training data for
that model. This supports the recent work of
Choshen and Abend (2018), who found that GEC
systems tend to ignore less frequent errors due to
reference bias. Based on our work with run-on
sentences, a common error type that is infrequent
in annotated data, we strongly encourage future
GEC work to address low-coverage errors.
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Abstract

There has been very limited work on the adap-
tation of Part-Of-Speech (POS) tagging to
learner English despite the fact that POS tag-
ging is widely used in related tasks. In this
paper, we explore how we can adapt POS tag-
ging to learner English efficiently and effec-
tively. Based on the discussion of possible
causes of POS tagging errors in learner En-
glish, we show that deep neural models are
particularly suitable for this. Considering the
previous findings and the discussion, we intro-
duce the design of our model based on bidi-
rectional Long Short-Term Memory. In ad-
dition, we describe how to adapt it to a wide
variety of native languages (potentially, hun-
dreds of them). In the evaluation section, we
empirically show that it is effective for POS
tagging in learner English, achieving an accu-
racy of 0.964, which significantly outperforms
the state-of-the-art POS-tagger. We further in-
vestigate the tagging results in detail, revealing
which part of the model design does or does
not improve the performance.

1 Introduction

Although Part-Of-Speech (POS) tagging is widely
used in Natural Language Processing (NLP), there
has been little work on its adaptation to learner
English1. It is often done by simply adding a
manually-POS-tagged learner corpus to the train-
ing data (Nagata et al., 2011; Berzak et al., 2016).
Probably only one exception is the work by Sak-
aguchi et al. (2012) who proposed to solve POS
tagging and spelling error correction simultane-
ously. However, their method also requires a POS-
annotated learner as training data. The availabil-
ity of POS-labeled learner corpora is still very
limited even after the efforts researchers (e.g.,
Dı́az-Negrillo et al. (2009); van Rooy and Schäfer

1In this paper, learner English refers to English as a for-
eign language.

(2002); Foster (2007b,a); Nagata et al. (2011);
Berzak et al. (2016)) have made. Because of
this limitation, POS taggers designed for canoni-
cal English (i.e., native English) are normally used
in related tasks including grammatical error cor-
rection (Leacock et al., 2010) and its automated
evaluation (Bryant et al., 2017), automated essay
scoring (Burstein et al., 1998), and analyses of
learner English (Aarts and Granger, 1998; Tono,
2000), to name a few.

Unfortunately, however, the discrepancy be-
tween a POS tagger and its target text often re-
sults in POS-tagging errors, which in turn leads
to performance degradation in related tasks as Na-
gata and Kawai (2011) and Bryant et al. (2017)
show. Specifically, a wide variety of characteristic
phenomena that potentially degrade POS tagging
performance appear in learner English. Section 2
shows that there exist a wide variety of potential
causes of POS-tagging errors. For the time being,
let us consider the following erroneous sentence:

(1) *Becose/NNP I/CD like/IN reading/NN ,/,
I/PRP want/VBP many/JJ Books/NNPS
./.2

where mistakenly-tagged tokens are written in
bold type3. It reveals that several POS-tagging er-
rors occur because of orthographic and grammat-
ical errors. Besides, Nagata and Whittaker (2013)
and Berzak et al. (2014) demonstrate that learner
English exhibits characteristic POS sequence pat-
terns depending on the writers’ native languages.
All these phenomena suggest that the adaptation of

2In this paper, the asterisk * denotes that the following
sentence is erroneous.

3Stanford CoreNLP 3.8.0 (Manning et al., 2014) was used
to tag the sentence. It is only natural that a POS tagger for
canonical English should make errors as in this example be-
cause they do not simply assume erroneous or unnatural in-
puts.
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POS tagging to learner English will reduce their
influence and thus contribute to achieving better
performance in the related tasks.

In view of this background, in this paper, we
explore how we can adapt POS tagging to learner
English effectively. We first discuss potential
causes of POS-tagging errors in learner English.
Based on this, we then describe how deep neu-
ral models, which have been successfully ap-
plied to sequence labeling (Huang et al., 2015;
Ma and Hovy, 2016; Plank et al., 2016), are
particularly suitable for our purpose. Consider-
ing the previous findings and our discussion on
the possible causes of POS-tagging errors, we
present the design of our model based on Long
Short-Term Memory (Hochreiter and Schmidhu-
ber, 1997) (LSTM). Our model is equipped with
a word token-based and character-based bidirec-
tional LSTMs (BLSTMs) whose inputs are respec-
tively word embeddings and character embeddings
obtained from learner corpora. In addition, we de-
scribe how to adapt it to a wide variety of native
languages (potentially, hundreds of them) through
native language vectors. In the evaluation section,
we empirically show that it is effective in adapt-
ing POS tagging to learner English, achieving an
accuracy of 0.964 on Treebank of Learner English
(TLE; (Berzak et al., 2016)), which is significantly
better than that of Turbo tagger (Martins et al.,
2013), one of the state-of-the-art POS taggers for
native English. We further investigate the tagging
results in detail, revealing why the word token-
based and character-based BLSTMs contribute to
improving the performance while native language
vectors do not.

2 Potential Causes of POS-Tagging
Errors in Learner English

In general, a major cause of POS-tagging errors
is unknown words. Here, unknown words refer to
those that have not appeared in the training data
(i.e., a POS-labeled corpus). It would often be dif-
ficult to recognize the POS label of an unknown
word (Mizumoto and Nagata, 2017).

A frequent source of unknown words in learner
English is spelling errors. They rarely (or never)
appear in well-edited texts such as newspaper arti-
cles that are normally used to train a POS tagger.
This means that they almost always become un-
known words to a POS tagger trained on canonical
English. For instance, the misspelt token Becose

in Ex. (1) in Sect. 1 is mistakenly recognized as a
proper noun. Interestingly, it causes further tag-
ging errors in the following two tokens (i.e., I/CD
like/IN). Similarly, errors in (upper/lower) cases
affect POS tagging as can be seen in Books/NNPS
in the same example. Considering this, the key to
success in POS tagging for learner English is how
to reduce the influence from these orthographic er-
rors.

Note that most POS-tagging guidelines for
learner English such as Ragheb and Dickinson
(2012), Nagata et al. (2011), and Berzak et al.
(2016) stipulate that a token with an orthographic
error should receive the POS label that is given to
the corresponding correct spelling. Accordingly, it
is preferable that POS taggers for learner English
should do the same.

Foreign words such as foreign proper names,
which is another source of unknown words, often
appear in learner English. They are sometimes not
translated into English but transliterated as in oni-
giri meaning rice ball.

Grammatical errors also affect POS tagging.
They are often classified into three types as shown
in Izumi et al. (2004): insertion, omission, and re-
placement types. All of them may cause a POS
tagging error as follows:

(2) Insertion:
You/PRP must/MD be/VB feel/JJ sad/JJ

(3) Omission:
Flower/NNP is/VBZ beautiful/JJ

(4) Replacement:
There/EX are/BP differents/NNS top-
ics/NNS

Here, erroneous tokens are underlined whereas
mistakenly-tagged tokens are written in bold type.
These examples show that grammatical errors
cause POS-tagging errors not only to the erro-
neous tokens themselves but also to their sur-
roundings. In Ex. (2), the verb be is erroneously
inserted after the word must, which causes the
POS tagging error feel/JJ. In Ex. (3), a word is
missing at the beginning (probably, The). This re-
sults in the upper case Flower and thus leads to its
POS-tagging error as a proper noun. In Ex. (4),
the word differents erroneously agrees with topics
in number and should be replaced with the correct
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form different4. Because of the pseudo plural suf-
fix in the adjective, it is mistakenly recognized as
a plural noun.

Again, most existing POS-tagging guidelines
for learner English state that a token with a gram-
matical error should primarily be tagged based
on its superficial information5. For example, ac-
cording to the guidelines Dickinson and Ragheb
(2009), Nagata et al. (2011), and Berzak et al.
(2016), the above three examples should be tagged
as:

(5) *You/PRP must/MD be/VB feel/VB sad/JJ

(6) *Flower/NN is/VBZ beautiful/JJ

(7) *There/EX are/BP differents/JJ topics/NNS

While not errors, the differences in POS distri-
bution might cause POS-tagging errors. For ex-
ample, Chodorow and Leacock (2002) report that
the word concentrate is mostly used as a noun
(as in orange juice concentrate) in newspaper ar-
ticles while as a verb (as in He concentrated) in
learner English. The differences are reflected in
the training data (native English) and the target
text (learner English). This might cause POS-
tagging errors even in correct sentences written by
learners of English.

Related to this are the differences in POS se-
quence patterns in learner English. As already
mentioned in Sect. 1, learner English exhibits
characteristic POS sequence patterns depending
on the writers’ native languages. In other words,
every group of a native language has its own POS
sequence distribution, which might affect POS
tagging just as the biased POS distributions do.
Besides, similar native languages show similar
POS patterns in English writing (Nagata and Whit-
taker, 2013; Berzak et al., 2014). This implies that
the adaptation of POS tagging to the writers’ na-
tive languages will likely contribute to extra im-
provement in tagging performance.

4It is known that this kind of error occurs in the writing of
learners whose native language has the adjective-noun agree-
ment (e.g., Spanish) (Swan and Smith, 2001).

5POS labels based on distributional information can also
be included by using the multiple layer scheme (Dı́az-
Negrillo et al., 2009; Dickinson and Ragheb, 2009; Nagata
et al., 2011; Berzak et al., 2016). It depends on the user which
layer to use. In either case, the presented model (and also
most existing ones) can be trained with the given tagset.

3 POS-Tagging Model for Learner
English

3.1 Whole Architecture

Figure 1 shows the architecture of our POS-
tagging model. Its input is the information about
each word in the sentence in question and the
writer’s native language. It is transformed into
vectors by the embedding layer. The resulting vec-
tors are passed on to the BLSTM layer. Each
LSTM block corresponds to each word vector.
This enables the entire model to consider all sur-
rounding words together with the target word to
determine its POS label, which is effective in POS-
tagging in general as shown in (Huang et al., 2015;
Ma and Hovy, 2016). The outputs of the BLSTM
layer are fed into the softmax layer to predict their
corresponding POS labels6.

The embedding layer is equipped with three
modules (network layers) to handle linguistic phe-
nomena particular to learner English. They are
shown in the lower part of Fig. 1. The first and sec-
ond ones encode the information from the word to-
ken itself and its characters, respectively; they will
be referred to as word token-based and character-
based modules, respectively. The third one is
for the adaptation to the writer’s native language,
which will be referred to as the native language-
based module.

The outputs of the three modules are put to-
gether as the input of the upstream BLSTM layer.
Simply, all three vectors from the three modules
are concatenated to form a vector. The resulting
vector corresponds to a word in the target sentence
in question. The concatenation of word and char-
acter embedding vectors represents the word by
means of its word token and characters. Then, its
concatenation to the native language embedding
vector maps it onto another vector space that con-
siders native languages. In other words, the re-
sulting vectors represent native language specific
words. They are in turn propagated through the
BLSTM layer, which realizes the native language
specific POS tagging.

6One could apply BLSTM-CRF as in (Huang et al., 2015)
to this task. However, Huang et al. (2015) show that BLSTM
performs equally to or even better than BLSTM-CRF in POS
tagging. Considering this, we select BLSTM, which is sim-
pler and thus faster to train.
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Figure 1: Structure of POS-Tagging Model: NLV
stands for native language vector.

3.2 Word Token-based Module

The word token-based module consists of a word-
embedding layer. Namely, it takes as input a word
ID and returns its corresponding word-embedding
vector; note that all words are converted into low-
ercase in order to reduce the vocabulary size.
In this representation, (syntactically and seman-
tically) similar words tend to have similar vec-
tors. This property of word embeddings is par-
ticularly important to cope with unknown words
including orthographic errors found in learner En-
glish. Alikaniotis et al. (2016) show that word
embeddings place misspelt words and their cor-
rect spelling closer in the vector space; Figure 2
exemplifies this situation for the words because
and being and their misspellings. As in this ex-
ample, misspelt words can be treated as similar
words through word embeddings. Consequently,
they will likely be recognized to have the same
POS label as the correct word does even when they
do not appear in the training data.

Here, it should be emphasized that the word-
embedding layer (or precisely, its weights) can
be pre-trained without POS-labeled corpora. Be-
cause it simply requires an unlabeled corpus, even
learner English corpora, which are now widely
available7, can be used to obtain word embed-
dings. Furthermore, the target learner texts them-
selves can also be used for the same purpose. This
is especially beneficial for applications such as
automated essay scoring for language proficiency
tests or learner English analyses where a set of
texts are available at a time and one can take some
time to process them. Doing so, words that do not
normally appear in native English such as ortho-
graphic errors and foreign proper names are natu-

7It is POS-labeled learner corpora that are still rare.
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Figure 2: Words Mapped onto a Vector Space.

rally reflected in the POS-tagging model.

3.3 Character-based Module
The character-based module, which comprises a
character-embedding layer and a BLSTM layer as
shown in Fig. 3, augments the word token-based
module. Although the latter is crucial for handling
linguistic phenomena particular to learner English
as just explained, it becomes less effective against
low-frequency words; it is often difficult to obtain
reliable word embeddings for them.

To overcome this, in the character-based mod-
ule, each character in the word in question is
passed on to the character-embedding layer and
then to the BLSTM layer. With this module, any
word can be encoded into a vector unless it in-
cludes unseen characters, which is normally not
the case. Similar characters should receive similar
character embedding vectors from the character-
embedding layer. Likewise, words that have simi-
lar spellings are expected to receive similar vectors
from the BLSTM layer. Thus, the resulting vectors
are expected to absorb the influence from deletion
(e.g., Becuse), insertion (e.g., Beccause), substi-
tution (e.g., Becouse), and transposition (e.g., Be-
cuase). Because of this property, low-frequency
or even unseen orthographic errors will likely be
recognized by the character-based module.

Note that the character-embedding layer can
also be pre-trained with unlabeled native and
learner English corpora. Also note that un-
like the word embedding layer, all characters are
NOT converted into lower case in the character-
embedding layer in order to capture the differ-
ences in upper/lower cases.

3.4 Native Language-based Module
The final component is the native language-based
module. Native languages can also be encoded
into vectors by an embedding layer. Namely, a
native language-embedding layer takes as input
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Figure 3: Character-based Module.

a native language ID and returns its correspond-
ing native language embedding vector. Just as
in word and character embeddings, similar na-
tive languages are expected to have similar vec-
tors. Accordingly, even if there is no training data
for a certain native language (say, Spanish), the
POS-tagging model can benefit from other train-
ing data whose native language is similar to it
(say, French or Italian). Fortunately, pre-trained
language vectors are already available in other
NLP tasks as in (Östling and Tiedemann, 2017;
Malaviya et al., 2017). For example, Malaviya
et al. (2017) propose a method for learning lan-
guage vectors through word token-based neural
machine translation (many source languages to
English). Their resulting vectors covering over
1,000 languages are available on the web. We
use these language vectors in the native language-
based module. All weights in the native language-
embedding layer are fixed during the training, and
they are transformed by a linear layer to adjust
their values so that they become informative for
POS-tagging.

4 POS-Labeled Learner Corpora

A POS-labeled learner corpus is required to train
and test the presented model. We use the follow-
ing two learner corpora as our target: Treebank of
Learner English (TLE; (Berzak et al., 2016)) and
Konan-JIEM learner corpus (KJ; (Nagata et al.,
2011)). Their statistics are shown in Table 1.

TLE is a learner corpus annotated with Univer-
sal POS, Penn Treebank POS, and dependency. It
also contains information about the writers’ native
language which ranges over 10 languages (Chi-
nese, French, German, Italian, Japanese, Korean,
Portuguese, Spanish, Russian, and Turkish). It is
already split into training, development, and test
sets for evaluation. Besides, Berzak et al. (2016)
report on accuracy of the Turbo tagger (Martins

et al., 2013), which is one of the state-of-the-art
POS taggers. All these properties are beneficial to
POS-tagging evaluation. For consistency with the
other learner corpus, only Penn Treebank POS is
considered in this paper.

KJ is annotated with phrase structures (Nagata
and Sakaguchi, 2016), which is based on the Penn
Treebank POS and bracketing guidelines (San-
torini, 1990; Bies et al., 1995). It consists of com-
plete essays (whereas TLE only contains sampled
sentences). The writers are Japanese learners of
English. It provides both superficial and distri-
butional POS tags8 Its advantage is that spelling
errors are manually annotated with their correct
forms. This allows us to investigate how well
POS-tagging models overcome the influence from
spelling errors.

5 Performance Evaluation

5.1 Evaluation Settings

The presented model was first tested on KJ to in-
vestigate how well it performs on learner English
without a POS-labeled learner corpus (and there-
fore without the native language-based module).
It was trained on sections 00–18 of Penn Treebank
Wall Street Journal (WSJ9). Its hyperparameters,
including the number of learning epochs, were de-
termined using the development set of TLE10. The
following native and learner corpora were used to
obtain word and character embeddings: English
Web Treebank (EWT11), an in-house English text-
book corpus, International Corpus of Learner En-
glish (ICLE; (Granger et al., 2009)), ETS Corpus
of Non-Native Written English (ETS12), Nagoya

8Two POS labels are sometimes given to a word in learner
English, depending on its superficial information (word form)
and distributional information (surrounding words surround-
ing). For example, in I went swimming in the see, the word
see can be interpreted as a verb from its form and also as a
noun from its context. The former and latter are referred to
as superficial and distributional POS tags, respectively.

9Marcus, Mitchell, et al. Treebank-3. Linguistic Data
Consortium, 1999.

10The maximum number of epochs was set to 20 and the
one that maximized the performance on the development set
was chosen. The other hyperparameters were determined as
follows: The dimensions of word and character embeddings:
200 and 50. The native language module consisted of an em-
bedding layer of dimension 512 and a linear layer of dimen-
sion 200. The dropout rate for BLSTM was 0.5; Adam was
used for optimization (step size: 0.01, the first and second
moment: 0.9 and 0.999, respectively).

11Bies, Ann, et al. English Web Treebank. Linguistic Data
Consortium, 2012.

12https://catalog.ldc.upenn.edu/
LDC2014T06
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Corpus # sentences # tokens
TLE train 4,124 78,541
TLE development 500 9,549
TLE test 500 9,591
KJ 3,260 30,517

Table 1: Statistics on Target Learner Corpora.

Interlanguage Corpus of English (NICE13), Lang-
8 corpus of Learner English14. The Word2vec
software15 was used to produce word and charac-
ter embeddings. The hyperparameters were deter-
mined by using the TLE development set as fol-
lows: The dimensions of word and character em-
beddings were 200 and 50, respectively; the win-
dow size was set to five in both cases; the other hy-
perparameters were set as shown in the footnote.
Performance was measured by accuracy.

For comparison, a Conditional Random
Field (Lafferty et al., 2001) (CRF)-based method
was implemented using the same training and
development sets. The features are: superficial,
lemma, prefix, and suffix of tokens and presence
of specific characters (numbers, uppercase, and
symbols) with a window size of five tokens to
the left and right of the token in question. The
first-order Markov model features were used to
encode inter-label dependencies.

The presented model was then tested on TLE
with the same evaluation settings as in Berzak
et al. (2016) which reports on the performance
of the Turbo Tagger. It was trained on the data
consisting of the training portions of TLE and
EWT. Its hyperparameters, including the number
of learning epochs, were determined using the de-
velopment set of TLE. Word and character embed-
dings were obtained from the same corpora above.
The resulting model was tested on the test portion
of TLE.

5.2 Results

Table 2 shows POS-tagging accuracy of our model
and the CRF-based method on KJ both for superfi-
cial and distributional POS. It includes the results
where all spelling errors were fully corrected to
investigate the influence from spelling errors. It

13http://sgr.gsid.nagoya-u.ac.jp/
wordpress/?page_id=695

14http://cl.naist.jp/nldata/lang-8/
15https://github.com/dav/word2vec. The op-

tions are: -negative 25 -sample 1e-4 -iter 15 -cbow 1 -min-
count 5

reveals that the presented model without the infor-
mation about correct spellings outperforms even
the CRF-based method fully exploiting the infor-
mation; the differences between our model with
original spellings and the CRF-based method with
correct spellings are statistically significant both
in surface (at the 99% confidence level) and dis-
tributional POS accuracy (at the 95% confidence
level) (test for difference in population portion).
This shows that the presented model successfully
absorbs the influence from spelling errors and also
other linguistic phenomena particular to learner
English.

Table 3 shows the results on TLE including ac-
curacy of the Turbo Tagger, which is cited from
the work (Berzak et al., 2016). It shows that
the presented model outperforms the Turbo Tag-
ger; the difference is statistically significant at the
99% confidence level (test for difference in pop-
ulation proportion). Note that the Turbo Tagger
was trained on the same POS-labeled native and
learner corpus as in the presented model. Never-
theless it does not perform as well as the presented
models.

Contrary to our expectation, the presented mod-
els with and without the native language-based
module perform almost equally well. In other
words, the adaptation to native languages by
means of the native language-based module is not
more effective than the simple addition of the
learner data to the training data.

The evaluation results are summarized as fol-
lows: The presented model performs successfully
on learner data even without a POS-labeled learner
corpus. It seems to absorb the influence from
spelling errors and other learner language-specific
phenomena. By contrast, the direct adaptation to
learner English through native language vectors is
not effective. The next section will explore the rea-
sons for these observations.

6 Discussion

To investigate where the presented model im-
proved accuracy even without a POS-labeled
learner corpus, we compared the POS-tagging re-
sults of the three methods (the presented model
and two CRF-based methods).

Almost immediately, we found that spelling er-
rors were one of the major reasons, as expected.
Examples include famouse, exsample, thier, wach-
ing, and exiting, to name a few. All these appeared
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Superficial POS accuracy Distributional POS accuracy
Model Original spelling Correct spelling Original spelling Correct spelling
Our model 0.948 0.949 0.945 0.948
CRF 0.940 0.942 0.939 0.941

Table 2: Accuracy on KJ: All models are trained on sections 00-18 of WSJ.

Model Accuracy
W/ annotated learner corpus (training data: EWT TLE train)
Our model (with native language module) 0.964
Our model (without native language module) 0.963
Turbo Tagger (Berzak et al., 2016) (with annotated learner corpus) 0.958
W/o annotated learner corpus (training data: EWT)
Our model 0.951
Turbo Tagger (Berzak et al., 2016) 0.943

Table 3: Accuracy on TLE Test Set.

in the unlabeled learner corpora and their word
embeddings were available.

Looking into spelling errors revealed that there
were cases where their word embeddings were not
available. They often showed more severe spelling
formations (in terms of edit distance and/or the
probability of character replacements) and thus
tend to be less frequent; note that words whose
frequencies were less than the threshold (five in
the evaluation) in the training data were excluded
from word embeddings. For instance, ranchi (cor-
rectly, lunch/NN), dilicuse (delicious/JJ), and beu-
tifure (beautifull/JJ) appeared less than five times
in the training data and thus no word embeddings
were available for them. Nevertheless, the pre-
sented model successfully predicted their POS la-
bels. Quantitatively, the performance difference
between the presented model with and without the
character-based module is an accuracy of 1.0%. In
contrast, because their affix gave less or zero infor-
mation about their POS labels (or even wrong in-
formation in some cases), the CRF-based method
failed with them16. These observations show that
the character-based module is effective in analyz-
ing misspelt words.

These analyses confirm that pre-training of
word token-based and character-based modules is
crucial to achieve better performance. With pre-
training, the presented model can gain an accu-
racy of 0.3% to 0.6% depending on the training
conditions. When a POS-annotated learner corpus

16At the same time, its overall performance decreases by
1% without information about the affix.

is not available for training, the gain is relatively
large. Even when it is available, their pre-training
augment the presented model to some extent.

Our models were also robust against the influ-
ence from the differences in POS distributions be-
tween learner and native English. For example,
the majority (82%) of the word like appeared as
a preposition in the native corpus (WSJ) whereas
only 5% were as a preposition and 94% were as a
verb in KJ. The difference in the POS distribution
often caused failures in the CRF-based method. To
be precise, it only achieved an accuracy of 0.635
for the 304 instances of like in KJ. In contrast, the
presented model achieved a much better accuracy
of 0.927 for them, which suggests that the use as
a verb was reflected in its word embedding vector
by pre-training. We observed a similar tendency
for the word fight as a verb and a noun.

To our surprise, the word token-based and
character-based modules absorbed the influence
from grammatical errors to some extent. In partic-
ular, they contributed to successfully predict POS
labels for sentences containing missing determin-
ers, especially at the beginning (as in Ex.(3) in
Sect. 2). If the determiner at sentence beginning is
missing, the following word begins with an upper-
case letter as in The flower is · · · → *Flower is · · ·.
In native English the word flower is normally used
as a countable noun and thus rarely appears with
a bare form (without determiner and in singular
form), which makes the usage (i.e., Flower) un-
known to methods trained on native English data.
Accordingly, the CRF-based method tends to mis-
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takenly interpret countable nouns appearing at the
beginning of a sentence as proper nouns. In con-
trast, such bare forms often appear in learner En-
glish because of frequent missing determiner er-
rors as in *Flower is · · ·. Also, in learner English,
a sentence sometimes begins with a lowercase let-
ter as in *a flower is · · · or words other than proper
nouns begin with an uppercase letter in the mid-
dle as in *A Flower is · · ·. These erroneous oc-
currences of uppercase and lowercase letters are
reflected in the character-based modules, which
make the entire model less sensitive to the upper-
case/lowercase difference. Besides, the fact that
countable nouns often appear in learner English
with no determiner and in singular form, which is
observed superficially as uncountable, is reflected
in the word embeddings. The resulting word em-
beddings tend to treat countable nouns as more
like uncountable nouns. Consequently, they tend
to interpret a singular countable noun with no de-
terminer at sentence beginning as a common noun;
note that uncountable singular nouns can appear
with no determiner as in Water is abundant even in
canonical English. Similar cases such as *Moun-
tain is beautiful. and *Town has liblary. are often
found in the evaluation data.

The effect on word order errors was also ob-
servable. The presented model successfully POS-
tagged sentences containing word order errors as
in *My hobby is abroad/RB travel and *I very/RB
enjoyed. Part of the reason is that the model
abstractly encodes information about word se-
quences through the main BLSTM; it is expected
that this property of the presented model makes it
robust against unusual word order to some extent.
In contrast, completely different features are given
to a sequence of two words and its reversal in the
CRF-based method, which makes it more sensitive
to word order.

Finally, let us discuss the native language-based
module. Unlike the other two modules, it has little
or no effect on POS tagging for learner English.

To reconfirm this, we conducted an additional
experiment where we held out the data of one na-
tive language in TLE at a time, trained the pre-
sented model on the rest of the data (together with
the native data), and tested it on the held-out data
(i.e., leave-one-native-language-out cross valida-
tion). The results reconfirmed that the native-
language module had almost no effect. To be
precise, the presented model with and without

the native language module achieved an accuracy
of 0.966 and 0.965, respectively; if the native
language-based module had been really effective
and had been able to exploit training data of sim-
ilar native languages, the performance difference
would have been larger in this setting.

Possible reasons for this are: (i) the size of train-
ing and/or test data is not large enough to show
its effectiveness; (ii) phenomena common to all
or most native languages are dominant (in other
words, phenomena specific to a certain group of
native languages are infrequent); (iii) even the pre-
sented model without the native-language mod-
ule automatically and abstractly recognizes the
writer’s native language in the course of POS tag-
ging (for example, by some of the units in the main
BLSTM). Further investigation is required to de-
termine which explanation is correct.

7 Conclusions

In this paper, we have explored the adaptation of
POS tagging to learner English. First, we dis-
cussed possible causes of POS-tagging failures.
Then, we proposed a POS-tagging model consist-
ing of BLSTMs based on word, character, and
native language embeddings. We showed that it
achieved an accuracy of 0.948 and 0.964 on KJ
and TLE, respectively, which significantly outper-
formed methods for comparison. Finally, we em-
pirically showed where and why the word token-
based and character-based modules were effective
in POS tagging for learner English.

For future work, we will investigate why the
native language-based module does not perform
well, which is contrary to our expectation. We
will also investigate how we can effectively adapt
POS-tagging models to native languages.
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C.Ñ. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proc. of 18th International Confer-
ence on Machine Learning, pages 282–289.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated Grammatical
Error Detection for Language Learners. Morgan &
Claypool, San Rafael.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proc. of 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

Chaitanya Malaviya, Graham Neubig, and Patrick Lit-
tell. 2017. Learning language representations for ty-
pology prediction. In Proc. of 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2529–2535.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proc. of 52nd Associ-
ation for Computational Linguistics (ACL) System
Demonstrations, pages 55–60.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the Turbo: Fast third-order non-
projective Turbo parsers. In Proc. of 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 617–622.

Tomoya Mizumoto and Ryo Nagata. 2017. Analyz-
ing the impact of spelling errors on POS-tagging and
chunking in learner English. In Proc. of 4th Work-
shop on Natural Language Processing Techniques
for Educational Applications, pages 54–58.

Ryo Nagata and Atsuo Kawai. 2011. Exploiting learn-
ers’ tendencies for detecting English determiner er-
rors. In Lecture Notes in Computer Science, volume
6882/2011, pages 144–153.

Ryo Nagata and Keisuke Sakaguchi. 2016. Phrase
structure annotation and parsing for learner English.
In Proc. of 54th Annual Meeting of the Association
for Computational Linguistics, pages 1837–1847.

Ryo Nagata and Edward Whittaker. 2013. Recon-
structing an Indo-European family tree from non-
native English texts. In Proc. of 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1137–1147.

47



Ryo Nagata, Edward Whittaker, and Vera Shein-
man. 2011. Creating a manually error-tagged and
shallow-parsed learner corpus. In Proc. of 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1210–1219.
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Abstract

Building tools for code-mixed data is rapidly
gaining popularity in the NLP research com-
munity as such data is exponentially rising on
social media. Working with code-mixed data
contains several challenges, especially due to
grammatical inconsistencies and spelling vari-
ations in addition to all the previous known
challenges for social media scenarios. In this
article, we present a novel architecture focus-
ing on normalizing phonetic typing variations,
which is commonly seen in code-mixed data.
One of the main features of our architecture is
that in addition to normalizing, it can also be
utilized for back-transliteration and word iden-
tification in some cases. Our model achieved
an accuracy of 90.27% on the test data.

1 Introduction

With rising popularity of social media, the amount
of data is rising exponentially. If mined, this data
can proof to be useful for various purposes. In
countries where the number of bilinguals are high,
we see that users tend to switch back and forth be-
tween multiple languages, a phenomenon known
as code-mixing or code-switching. An interest-
ing case is switching between languages which
share different native scripts. On such occasions,
one of the two languages is typed in it’s phoneti-
cally transliterated form in order to use a common
script. Though there are some standard transliter-
ation rules, for example ITRANS 1, ISO 2, but it
is extremely difficult and un-realistic for people to
follow them while typing. This indeed is the case
as we see that identical words are being transliter-
ated differently by different people based on their
own phonetic judgment influenced by dialects, lo-
cation, or sometimes even based on the informal-
ity or casualness of the situation. Thus, for cre-

1https://en.wikipedia.org/wiki/ITRANS
2https://en.wikipedia.org/wiki/ISO 15919

ating systems for code-mixed data, post language
tagging, normalization of transliterated text is ex-
tremely important in order to identify the word
and understand it’s semantics. This would help
a lot in systems like opinion mining, and is actu-
ally necessary for tasks like summarization, trans-
lation, etc. A normalizing module will also be of
immense help while making word embeddings for
code-mixed data.

In this paper, we present an architecture for
automatic normalization of phonetically translit-
erated words to their standard forms. The lan-
guage pair we have worked on is Bengali-English
(Bn-En), where both are typed in Roman script,
thus the Bengali words are in their transliterated
form. The canonical or normalized form we have
considered is the Indian Languages Translitera-
tion (ITRANS) form of the respective Bengali
word. Bengali is an Indo-Aryan language of In-
dia where 8.10% 3 of the total population are 1st

language speakers and is also the official language
of Bangladesh. The native script of Bengali is the
Eastern Nagari Script 4. Our architecture utilizes
fully char based sequence to sequence learning in
addition to Levenshtein distance to give the final
normalized form or as close to it as possible. Some
additional advantages of our system is that at an
intermediate stage, the back-transliterated form of
the word can be fetched (i.e. word identifica-
tion), which will be very useful in several cases
as original tools (i.e. tools using native script) can
be utilized, for example emotion lexicons. Some
other important contributions of our research are
the new lexicons that have been prepared (dis-
cussed in Sec 3) which can be used for building
various other tools for studying Bengali-English
code-mixed data.

3https://en.wikipedia.org/wiki/Languages of India
4https://www.omniglot.com/writing/bengali.htm
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2 Related Work

Normalization of text has been studied quite a
lot (Sproat et al., 1999), especially as it acts as
a pre-processing step for several text process-
ing systems. Using Conditional Random Fields
(CRF), Zhu et al. (2007) performed text normal-
ization on informal emails. Dutta et al. (2015)
created a system based on noisy channel model
for text normalization which handles wordplay,
contracted words and phonetic variations in code-
mixed background. An unsupervised framework
was presented by Sridhar (2015) for normaliz-
ing domain-specific and informal noisy texts using
distributed representation of words. The soundex
algorithm was used in (Sitaram et al., 2015) and
(Sitaram and Black, 2016) for spelling correc-
tion of transliterated words and normalization in
a speech to text scenario of code-mixed data re-
spectively. Sharma et al. (2016) build a normal-
ization system using noisy channel framework and
SILPA spell checker in order to build a shallow
parser. Sproat and Jaitly (2016) build a system
combining two models, where one essentially is a
seq2seq model which checks the possible normal-
izations and the other is a language model which
considers context information. Jaitly and Sproat
(2017) used a seq2seq model with attention trained
at sentence level followed by error pruning us-
ing finite-state filters to build a normalization sys-
tem, mainly targeted for text to speech purposes.
A similar flow was adopted by Zare and Rohatgi
(2017) as well where seq2seq was used for nor-
malization and a window of size 20 was consid-
ered for context. Singh et al. (2018) exploited the
fact that words and their variations share similar
context in large noisy text corpora to build their
normalizing model, using skip gram and cluster-
ing techniques. To the best of our knowledge,
the system architecture proposed by us hasn’t been
tried before, especially for code-mixed data.

3 Data Sets

On a whole, three data sets or lexicons were cre-
ated. The first data set was a parallel lexicon (PL)
where the 1st column had phonetically transliter-
ated Bn words in Roman taken from code-mixed
data prepared in Mandal et al. (2018b). The 2nd

column consisted of the standard Roman translit-
erations (ITRANS) of the respective words. To get
this, we first manually back-transliterated PLcol 1
to the original word in Eastern Nagari script, and

then converted it into standardized ITRANS for-
mat. The final size of the PL was 6000. The
second lexicon we created was a transliteration
dictionary (BN TRANS) where the first column
had Bengali words in Eastern Nagari script taken
from samsad 5, while the second column had the
standard transliterations (ITRANS). The number
of entries in the dictionary was 21850. For test-
ing, we took the data used in Mandal and Das
(2018), language tagged it using the system de-
scribed in Mandal et al. (2018a), and then col-
lected Bn tagged tokens. Post manual checking
and discarding of misclassified tokens, the size
of the list was 905. Finally, each of the words
were tagged with their ITRANS using the same
approach used for making PL. For PLcol 1 and test
data, some initial rule based normalization tech-
niques were used. If the input string contains a
digit, it was replaced by the respective phone (e.g.
ek for 1, dui for 2, etc), and if there are n consecu-
tive identical characters where n > 2 (elongation),
it was trimmed down to 2 consecutive characters
(e.g. baaaad will become baad), as no word in
it’s standard form has more than two consecutive
identical characters.

4 Proposed Method

Our method is a two step modular approach com-
prising of two degrees of normalization. The first
normalization module does an initial normaliza-
tion and tries to convert the input string closest to
the standard transliteration. The second normal-
ization module takes the output from the first mod-
ule and tries to match with the standard translitera-
tions present in the dictionary (BN TRANS). The
candidate with the closest match is returned as the
final normalized string.

5 First Normalization Module

The purpose of this module is to phonetically nor-
malize the word as close to the standard transliter-
ation as possible, to make the work of the match-
ing module easier. To achieve this, our idea was
to train a sequence to sequence model where the
input sequences are user transliterated words and
the target sequences are the respective ITRANS
transliterations. We had specifically chosen this
architecture as it has performed amazingly well in
complex sequence mapping tasks like neural ma-
chine translation and summarization.

5http://dsal.uchicago.edu/dictionaries/biswas-bengali/
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5.1 Seq2Seq Model

The sequence to sequence model (Sutskever et al.,
2014) is a relatively new idea for sequence learn-
ing using neural networks. It has been especially
popular since it achieved state of the art results in
machine translation task. Essentially, the model
takes as input a sequence X = {x1, x2, ..., xn}
and tries to generate another sequence Y = {y1,
y2, ..., ym}, where xi and yi are the input and
target symbols respectively. The architecture of
seq2seq model comprises of two parts, the en-
coder and decoder. As the input and target vec-
tors were quite small (words), attention (Vaswani
et al., 2017) mechanism was not incorporated.

5.1.1 Encoder
Encoder essentially takes a variable length se-
quence as input and encodes it into a fixed length
vector, which is supposed to summarize it’s mean-
ing taking into context as well. A recurrent neural
network (RNN) cell is used to achieve this. The
directional encoder reads the sequence from one
end to the other (left to right in our case).

~ht = ~f enc(Ex(xt),~ht-1)

Here, Ex is the input embedding lookup table (dic-
tionary), ~f enc are the transfer function for the re-
current unit e.g. Vanilla, LSTM or GRU. A con-
tiguous sequence of encodings C = {h1, h2, ..., hn}
is constructed which is then passed on to the de-
coder.

5.1.2 Decoder
Decoder takes input context vector C from the en-
coder, and computes the hidden state at time t as,

st = fdec(Ey(yt-1), st-1, ct)

Subsequently, a parametric function outk returns
the conditional probability using the next target
symbol being k. Here, the concept of teacher forc-
ing is utilized, the strategy of feeding output of the
model from a prior time-step as input.

p(yt = k | y < t,X) =
1

Z
exp(outk(Ey(yt − 1), st, ct))

Z is the normalizing constant

∑
jexp(outj(Ey(yt − 1), st, ct))

5.2 Training

The model is trained by minimizing the negative
log-likelihood. For training, we used the fully
character based seq2seq model (Lee et al., 2016)
with stacked LSTM cells. The input units were
user typed phonetic transliterations (PLcol 1) while
the target units were respective standard transliter-
ations (PLcol 2). Thus, the model learns to map
user transliterations to standard transliterations,
effectively learning to normalize phonetic varia-
tions. The lookup table Ex we used for character
encoding was a dictionary where the keys were the
26 English alphabets and the values were the re-
spective index. Encodings at character level were
then padded to the length of the maximum existing
word in the dataset, which was 14, and was con-
verted to one-hot encodings prior to feeding the to
the seq2seq model. We created our seq2seq model
using the Keras (Chollet et al., 2015) library. The
batch size was set to 64, and number of epochs
was set to 100. The size of the latent dimension
was kept at 128. Optimizer we chose was rm-
sprop, learning rate set at 0.001, loss was categor-
ical crossentropy and transfer function used was
softmax. Accuracy and loss graphs during train-
ing with respect to epochs are shown in Fig 1.

Figure 1: Training accuracy and loss.

As we can see from Fig 1, the accuracy reached
at the end of training was not too high (around
41.2%) and the slope became asymptotic. This
is quite understandable as the amount of training
data was relatively quite low for the task, and the
phonetic variations were quite high. On running
this module on our testing data, an accuracy of
51.04% was achieved. It should be noted that even
a single character predicted wrongly by the soft-
max function reduces the accuracy.
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6 Second Normalization Module

This module basically comprises of the string
matching algorithm. For this, we have used
Levenshtein distance (LD) (Levenshtein, 1966),
which is a string metric for measuring difference
between two sequences. It does so by calculating
the minimum number of insertions, deletions and
substitutions required for converting one sequence
to the other. Here, the output from the previous
module is compared with all the standard ITRANS
entries present in BN TRANS and the string with
the least Levenshtein distance is given as out-
put, which is the final normalized form. If there
are ties, the instance which has higher matches
traversing from left to right is given more prior-
ity. Also, observing the errors from first normal-
izer, we noticed that in a lot of cases, the char-
acter pairs {a,o} and {b,v} are used interchange-
ably quite often (language specific phonological
features), both in phonetic transliterations alone,
as well as when compared with ITRANS. Thus,
along with the standard approach, we tried a mod-
ified version as well where the cost of the above
mentioned character pairs are same, i.e. they are
treated as identical characters. This was simply
done by assigning special symbols to those pairs,
and replacing them in the input parameters. For
example, post replacement, distance(chalo, chala)
will become distance(ch$l$, ch$l$ ).

7 Evaluation

Our system was evaluated in two ways, one at
word level and another at task level.

7.1 Word Level

Here, the basic idea was compare the normalized
words with the respective standard transliterations.
For this, the testing data discussed in Sec 3 was
used. For comparison purposes, three other se-
tups other than our proposed model (setup 4) were
tested, all of which are described in Table 1.

Model 1st Norm LD Acc
setup 1 no standard 58.78
setup 2 no modified 61.10
setup 3 yes standard 89.72
setup 4 yes modified 90.27

Table 1: Comparison of different setups.

From Table 1, we can see that the jump in accu-

racy from setup 1 to setup 3 is quite significant
(by 30.94%). This proves that instead of sim-
ple distance comparison with lexicon entries, a
prior seq2seq normalization can have great impact
on the performance. Additionally, we can also
see that when modified input is given to the Lev-
enshtein distance (LD), the accuracies achieved
are slightly better. On analyzing the errors, we
found out that majority (92%) of them is due to
the fact that the standard from was not present in
BN TRANS, i.e. was out of vocabulary. These
words were mostly slangs, expressions, or two
words joined into a single one. The other 8%
was due to the first module casuing substantial
deviation from normal form. For deeper analy-
sis, we collected the ITRANS of errors due out of
vocab, and on comparison with the first normal-
izations, the mean LD was calculated to be 1.89,
which is suggesting that if they were present in
BN TRANS, the normalizer would have given the
correct output.

7.2 Task Level
For task level evaluation, we decided to go with
sentiment analysis using the exact setup and data
described in Mandal et al. (2018b), on Bengali-
English code-mixed data. All the training and test-
ing data were normalized using our system along
with the lexicons that are mentioned. Finally, the
same steps were followed and the different metrics
were calculated. The comparison of the systems
prior (noisy) and post normalization (normalized)
is shown in Table 2.

Model Acc Prec Rec F1
noisy 80.97 81.03 80.97 81.20

normalized 82.47 82.52 82.47 82.61

Table 2: Prior and post normalization results.

We can see an improvement in the accuracy (by
1.5%). On further investigation, we saw that the
unigram, bigram and trigram matches with the bag
of n-grams and testing data increased by 1.6%,
0.4% and 0.1% respectively. The accuracy can
be improved further more if back-transliteration is
done and Bengali sentiment lexicons are used but
that is beyond the scope of this paper.

8 Discussion

Though our proposed model achieved high accu-
racy, some drawbacks are there. Firstly is the re-
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quirement for the parallel corpus (PL) for training
a seq2seq model, as manual checking and back-
transliteration is quite tedious. Speed of process-
ing in terms of words/second is not very high due
to the fact that both seq2seq and Levenshthein dis-
tance calculation is computationally heavy, plus
the O(n) search time. For string matching, sim-
pler and faster methods can be tested and search
area reduction algorithms (e.g. specifying search
domains depending on starting character) can be
tried to improve the processing speed. A lexical
checker can be added as well prior to seq2seq to
see if the word is already in it’s transliterated form.

9 Conclusion & Future Work

In this article, we have presented a novel archi-
tecture for normalization of transliterated words
in code-mixed scenario. We have employed the
seq2seq model with LSTM cells for initial normal-
ization followed by evaluating Levenshthein dis-
tance to retrieve the standard transliteration from a
lexicon. Our approach got an accuracy of 90.27%
on testing data, and improved the accuracy of a
pre-existing sentiment analysis system by 1.5%.
In future, we would like to collect more translit-
erated words and increase the data size in order to
improve both PL and BN TRANS. Also, combin-
ing this module with a context capturing system
and expanding to other Indic languages will be one
of the goals as well.
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Abstract

We suggest a new language-independent ar-
chitecture of robust word vectors (RoVe). It is
designed to alleviate the issue of typos, which
are common in almost any user-generated
content, and hinder automatic text process-
ing. Our model is morphologically motivated,
which allows it to deal with unseen word forms
in morphologically rich languages. We present
the results on a number of Natural Language
Processing (NLP) tasks and languages for the
variety of related architectures and show that
proposed architecture is typo-proof.

1 Introduction

The rapid growth in the usage of mobile electronic
devices has increased the number of user input text
issues such as typos. This happens because typing
on a small screen and in transport (or while walk-
ing) is difficult, and people accidentally hit the
wrong keys more often than when using a standard
keyboard. Spell-checking systems widely used in
web services can handle this issue, but they can
also make mistakes.

Meanwhile, any text processing system is now
impossible to imagine without word embeddings
— vectors encode semantic and syntactic prop-
erties of individual words (Arora et al., 2016).
However, to use these word vectors the user in-
put should be clean (i.e. free of misspellings), be-
cause a word vector model trained on clean data
will not have misspelled versions of words. There
are examples of models trained on noisy data (Li
et al., 2017), but this approach does not fully solve
the problem, because typos are unpredictable and
a corpus cannot contain all possible incorrectly
spelled versions of a word. Instead, we suggest
that we should make algorithms for word vector
modelling robust to noise.

We suggest a new architecture RoVe (Robust

Vectors).1 The main feature of this model is
open vocabulary. It encodes words as sequences
of symbols. This enables the model to produce
embeddings for out-of-vocabulary (OOV) words.
The idea as such is not new, many other models
use character-level embeddings (Ling et al., 2015)
or encode the most common ngrams to assem-
ble unknown words from them (Bojanowski et al.,
2016). However, unlike analogous models, RoVe
is specifically targeted at typos — it is invariant
to swaps of symbols in a word. This property is
ensured by the fact that each word is encoded as
a bag of characters. At the same time, word pre-
fixes and suffixes are encoded separately, which
enables RoVe to produce meaningful embeddings
for unseen word forms in morphologically rich
languages. Notably, this is done without explicit
morphological analysis.

Another feature of RoVe is context dependency
— in order to generate an embedding for a word
one should encode its context. The motivation for
such architecture is the following. Our intuition
is that when processing an OOV word our model
should produce an embedding similar to that of
some similar word from the training data. This
behaviour is suitable for typos as well as unseen
forms of known words. In the latter case we want
a word to get an embedding similar to the embed-
ding of its initial form. This process reminds lem-
matisation (reduction of a word to its initial form).
Lemmatisation is context-dependent since it often
needs to resolve homonymy based on word’s con-
text. By making RoVe model context-dependent
we enable it to do such implicit lemmatisation.

We compare RoVe with common word vector
tools: word2vec (Mikolov et al., 2013) and fast-
text (Bojanowski et al., 2016). We test the mod-
els on three tasks: paraphrase detection, identifi-

1An open-source implementation is available, hidden for
anonymity.
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cation of textual entailment, and sentiment anal-
ysis, and three languages with different linguistic
properties: English, Russian, and Turkish.

The paper is organised as follows. In section 2
we review the previous work. Section 3 contains
the description of model’s architecture. In section
4 we describe the experimental setup, and report
the results in section 5. Section 6 concludes and
outlines the future work.

2 Related work

Out-of-vocabulary (OOV) words are a major prob-
lem for word embedding models. The com-
monly used word2vec model does not have any
means of dealing with them. OOVs can be rare
terms, unseen forms of known words, or simply
typos. These types of OOVs need different ap-
proaches. The majority of research concentrated
on unknown terms and generation of word forms,
and very few targeted typos.

Ling et al. (2015) produce an open-vocabulary
word embedding model — word vectors are com-
puted with an RNN over character embeddings.
The authors claim that their model implicitly
learns morphology, which makes it suitable for
morphologically rich languages. However, it is
not robust against typos. Another approach is to
train a model that approximates original embed-
dings and encode unseen words to the same vector
space. Pinter et al. (2017) approximate pre-trained
word embeddings with a character-level model.
Astudillo et al. (2015) project pre-trained embed-
dings to a lower space — this allows them to
train meaningful embeddings for new words from
scarce data. However, initial word embeddings
needed for these approaches cannot be trained on
noisy data.

To tackle noisy training data Nguyen et al.
(2016) train a neural network that filters word em-
bedding. To do that authors take pre-trained word
embedding model and learn matrix transformation
which denoise it. It makes them more robust to
statistical artefacts in training data. Unfortunately,
this does not solve the problem of typos in test data
(i.e. the model still has a closed vocabulary).

There are examples of embeddings targeted at
unseen word forms. Vylomova et al. (2016) train
sub-word embeddings which are combined into a
word embedding via a recurrent (RNN) or convo-
lutional (CNN) neural network. The atomic units
here are characters or morphemes. Morphemes

give better results in translation task, in particular
for morphologically rich languages. This method
yields embeddings of high quality, but it requires
training of a model for morphological analysis.

Some other models are targeted at encoding
rare words. fasttext model (Bojanowski et al.,
2016) produces embeddings for the most common
ngrams of variable lengths, and an unknown word
can be encoded as a combination of its ngrams.
This is beneficial for encoding of compound words
which are very common in German and occasion-
ally occur in English. However, such a model is
not well suited for handling typos.

Unseen words are usually represented with sub-
word units (morphemes or characters). This idea
has been extensively used in research on word vec-
tor models. It does not only give a possibility
to encode OOV words, but has also been shown
to improve the quality of embeddings. Zhang
et al. (2015) were first to show that character-
level embeddings trained with a CNN can store
the information about semantic and grammati-
cal features of words. They tested these embed-
dings on multiple downstream tasks. Saxe and
Berlin (2017) use character-level CNNs for intru-
sion detection, and Wehrmann et al. (2017) build
a language-independent sentiment analysis model
using character-level embeddings, which would be
impossible with word-level representations.

Unlike these works, we do not train charac-
ter embeddings or models for combining them —
these are defined deterministically. This spares us
the problem of too long character-level sequences
which are difficult to encode with RNNs or CNNs.
We bring the meaning to these embeddings by
making them context-dependent.

It was recently suggested that word context mat-
ters not only in general (i.e. word contexts define
its meaning), but also in every case of word us-
age. This resulted in emergence of word vector
models which produced word embeddings with re-
spect to words’ local context. There are numerous
evidences that contextualising pre-trained embed-
dings improves them (Kiela et al., 2018) and raises
quality of downstream tasks, e.g. Machine Trans-
lation (McCann et al., 2017) or question answering
(Peters et al., 2018).

3 Model architecture

RoVe combines context dependency and open vo-
cabulary, which allows generating meaningful em-
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Figure 1: RoVe model: generation of embedding for
the word argument.

beddings for OOV words. These two features are
supported by the two parts of the model (see fig.1).

3.1 Encoding of context

RoVe model produces context-dependent word
representations. It means that it does not gener-
ate a fixed vector for a word, and needs to produce
it from scratch for every occurrence of the word.
This structure marginally increases the text pro-
cessing time, but yields more accurate representa-
tions context-informed. The model is conceptually
similar to encoder used to create representation of
a sentence by reading all its words. Such encoders
are used in Machine Translation (McCann et al.,
2017), question answering (Seo et al., 2016) and
many other tasks.

In order to generate a representation of a word,
we need to encode it together with its context. For
every word of a context we first produce its input
embedding (described in section 3.2). This em-
bedding is then passed to the encoder (top part of
figure 1) which processes all words of the context.
The encoder should be a neural network which can
process a string of words and keep the informa-
tion on their contexts. The most obvious choices
are an RNN or a CNN. However, a different type
of network can be used. After having processed
the whole context we get embedding for the tar-
get word by passing a hidden state correspond-
ing to the needed word through a fully-connected

layer. Therefore, we can generate embeddings for
all words in a context simultaneously.

3.2 Handling of misspelled words

Another important part of the model is transforma-
tion of an input word into a fixed-size vector (in-
put embedding). The transformation is shown in
the bottom part of figure 1. This is a determinis-
tic procedure, it is uniquely defined for a word and
does not need training. It is executed as follows.

First, we represent every character of a word
as a one-hot vector (alphabet-sized vector of ze-
ros with a single 1 in the position i where i is the
index of the character). Then, we generate three
vectors: beginning (B), middle (M), and end (E)
vectors. M vector is a sum of one-hot vectors of
all characters of a word. B is a concatenation of
one-hot vectors for nb first characters of a word.
Likewise, E component is a concatenation one-hot
vectors of ne last characters of a word. nb and ne

are hyperparameters which can vary for different
datasets. We form the input embedding by con-
catenating B, M, and E vectors. Therefore, its
length is (nb+ne+1)×|A|, where A is the alpha-
bet of a language. This input embedding is further
processed by the neural network described above.
The generation of input vector is shown in fig.2.

We further refer to this three-part representation
as BME. It was inspired by work by Sakaguchi
et al. (2016) where the first and the last symbols of
a word are encoded separately as they carry more
meaning than the other characters. However, the
motivation for our BME representation stems from
division of words into morphemes. We encode nb

first symbols and ne last symbols of a word in
a fixed order (as opposed to the rest of the word
which is saved as a bag of letters) because we as-
sume that it can be an affix that carries a particular
meaning (e.g. an English prefix un with a mean-
ing of reversed action or absence) or grammatical
information (e.g. suffix ed which indicates past
participle of a verb). Thus, keeping it can make
the resulting embedding more informative.

The M part of input embedding discards the or-
der of letters in a word. This feature guarantees
the robustness of embeddings against swaps of let-
ters within a word, which is one of the most com-
mon typos. Compare information and infroma-
tion which will have identical embeddings in our
model, whereas word2vec and many other models
will not be able to provide any representation for
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Figure 2: Generation of input embedding for the word previous. Left: generation of character-level one-hot vectors,
right: generation of BME representation.

the latter word.
In addition to that, BME representation is not

bounded by any vocabulary and is able to provide
an embedding for any word, including words with
typos. Moreover, if a misspelled word is reason-
ably close to its original version, its embedding
will also be close to that of the original word.
This feature is ensured by character-level gener-
ation of input embedding — close input represen-
tations will yield close vectors. Therefore, even
a misspelled word is likely to be interpreted cor-
rectly. Use of our model alleviates the need for
spelling correction, because a word does not need
to be spelled correctly to be successfully inter-
preted. Unlike other models which support typos,
RoVe can handle noise in both training and infer-
ence data.

3.3 Training

RoVe model is trained with negative sampling pro-
cedure suggested by Smith and Eisner (2005). We
use it as described by Mikolov et al. (2013). This
method serves to train vector representations of
words. The fundamental property of word vectors
is small distance between vectors of words with
close meanings and/or grammatical features. In
order to enforce this similarity, it was suggested
that training objective should be twofold. In ad-
dition to pushing vectors of similar words close
to each other we should increase the distance be-
tween vectors of unrelated words. This objective
corresponds to a two-piece loss function shown in
equation 1. Here, w is the target word, vi are pos-
itive examples from context (C) and vj are nega-
tive examples (Neg) randomly sampled from data.
Function s(·, ·) is a similarity score for two vec-
tors which should be an increasing function. For
our experiments we use cosine similarity because
it is computationally simple and does not contain

any parameters.
The first part of the loss rewards close vectors of

similar words and the second part penalises close
vector of unrelated words. Words from a win-
dow around a particular word are considered to be
similar to it, since they have a common context.
Unrelated words are sampled randomly from data,
hence the name of the procedure.

L =
∑

vi∈C
es(w,vi) +

∑

vj∈Neg

e−s(w,vj) (1)

Our model is trained using this objective. The
conversion of words into input embeddings is a
deterministic procedure, so during training we up-
date only parameters of a neural network which
generates the context-dependent embeddings and
fully-connected layers that precede and follow it.

4 Experimental setup

We check the performance of word vectors gener-
ated with RoVe on three tasks:
• paraphrase detection,
• sentiment analysis,
• identification of text entailment.
For all tasks we train simple baseline models.

This is done deliberately to make sure that the per-
formance is largely defined by the quality of vec-
tors that we use. For all the tasks we compare
word vectors generated by different modifications
of RoVe with vectors produced by word2vec and
fasttext models.

We conduct the experiments on datasets for
three languages: English (analytical language),
Russian (synthetic fusional), and Turkish (syn-
thetic agglutinative). Affixes have different struc-
tures and purposes in these types of languages, and
in our experiments we show that our BME rep-
resentation is effective for all of them. We did

57



not tune nb and ne parameters (lengths of B and
E segments of BME). In all our experiments we
set them to 3, following the fact that the average
length of affixes in Russian is 2.54 (Polikarpov,
2007). However, they are not guaranteed to be op-
timal for English and Turkish.

4.1 Baseline systems

We compare the performance of RoVe vectors
with vectors generated by two most commonly
used models — word2vec and fasttext. We use
the following word2vec models:
• English — pre-trained Google News word

vectors,2

• Russian — pre-trained word vectors
RusVectores (Kutuzov and Andreev, 2015).
• Turkish — we trained a model on “42 bin

haber” corpus (Yildirim et al., 2003).
We stem Turkish texts with SnowBall stem-

mer (F. Porter, 2001) and lemmatise Russian texts
Mystem tool3 (Segalovich, 2003). This is done in
order to reduce the sparsity of text and interpret
rare word forms. In English this problem is not as
severe, because it has less developed morphology.

As fasttext baselines we use official pre-trained
fasttext models.4 We also try an extended version
of fasttext baseline for Russian and English —
fasttext + spell-checker. For the downstream tasks
we checke texts with a publicly available spell-
checker5 prior to extracting word vectors. Since
spell-checking is one of the common ways of re-
ducing the effect of typos, we wanted to compare
its performance with RoVe.

4.2 Infusion of noise

In order to demonstrate robustness of RoVe
against typos we artificially introduce noise to our
datasets. We model:
• random insertion of a letter,
• random deletion of a letter.
For each input word we randomly insert or

delete a letter with a given probability. Both types
of noise are introduced at the same time. We
test models with the different levels of noise from

2https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing

3https://tech.yandex.ru/mystem/
4English: https://fasttext.cc/docs/

en/english-vectors.html, Russian and
Turkish: https://fasttext.cc/docs/en/
crawl-vectors.html

5https://tech.yandex.ru/speller/

0% (no noise) to 30%. According to Cucerzan
and Brill (2004), the real level of noise in user-
generated texts is 10-15%. We add noise only
to the data for downstream tasks, RoVe and
word2vec models are trained on clean data.

4.3 Encoder parameters

The model as described in section 3 is highly con-
figurable. The main decision to be made when
experimenting with the model is the architecture
of the encoder. We experiment with RNNs and
CNNs. We conduct experiments with the follow-
ing RNN architectures:
• Long Short-Term Memory (LSTM) unit

(Hochreiter and Schmidhuber, 1997) — a
unit that mitigates problem of vanishing and
exploding gradients that is common when
processing of long sequences with RNNs.
We use two RNN layers with LSTM cells.
• bidirectional LSTM (Schuster and K. Pali-

wal, 1997) — two RNNs with LSTM units
where one RNN reads a sequence from be-
ginning to end and another one backward.
• stacked LSTM (Graves et al., 2013) — an

RNN with multiple layers of LSTM cells. It
allows to combine the forward and backward
layer outputs and use them as an input to the
next layer. We experiment with two bidirec-
tional RNN layers with stacked LSTM cells.
• Simple Recurrent Unit (SRU) (Lei and

Zhang, 2017) — LSMT-like architecture
which is faster due to parallelisation.
• bidirectional SRU — bidirectional RNN

with SRU cells.
We also try the following convolutional archi-

tectures:
• CNN-1d — unidimensional Convolutional

Neural Network as in (Kalchbrenner et al.,
2014). This model uses 3 convolution layers
with kernel sizes 3, 5 and 3, respectively.
• ConvLSTM — a combination of CNN and

recurrent approaches. We first apply CNN-
1d model and then produce vectors as in the
biSRU model from a lookup table.

The sizes of hidden layers for RNNs as well as
the sizes of fully-connected layers of the model are
set to 256 in all experiments.

4.4 RoVe models

We train our RoVe models on the following
datasets:
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• English — Reuters dataset (Lewis et al.,
2004),
• Russian — Russian National Corpus (Andr-

jushchenko, 1989),
• Turkish — “42 bin haber” corpus.
All RoVe models are trained on original cor-

pora without adding noise or any other prepro-
cessing. The RoVe model for Turkish is trained
on the same corpora as the one we used to train
word2vec baseline, which makes them directly
comparable. For English and Russian we compare
RoVe models with third-party word2vec models
trained on larger datasets. We also tried training
our word2vec models on training data used for
RoVe training. However, these models were of
lower quality than pre-trained word2vec, so we do
not report results for them.

5 Results

5.1 Paraphrase detection

The task of paraphrase detection is formulated as
follows. Given a pair of phrases, we need to pre-
dict if they have the same meaning. We com-
pute cosine similarity between vectors for phrases.
High similarity is interpreted as a paraphrase.
Phrase vectors are computed as an average of vec-
tors of words in a phrase. For word2vec we discard
OOV words as it cannot generate embedding for
them. We measure the performance of models on
this task with ROC AUC metric (Fawcett, 2006)
which defines the proportions of true positive an-
swers in system’s outputs with varying threshold.

We run experiments on three datasets:
• English — Microsoft Research Paraphrase

Corpus (Dolan et al., 2004) consists of 5,800
sentence pairs extracted from news sources
on the web and manually labelled for pres-
ence/absence of semantic equivalence.
• Russian — Russian Paraphrase Corpus

(Pronoza et al., 2016) consists of news head-
ings from different news agencies. It con-
tains around 6,000 pairs of phrases labelled
in terms of ternary scale: “-1” — not para-
phrase, “0” — weak paraphrase, and “1” —
strong paraphrase. We use only “-1” & “1”
classes for consistency with other datasets.
There are 4,470 such pairs.
• Turkish — Turkish Paraphrase Corpus

(Demir et al., 2012) contains 846 pairs of sen-
tences from news texts manually labelled for
semantic equivalence.

The results of this task are outlined in table 1.
Due to limited space we do not report results for
all noise levels and list only figures for 0%, 10%
and 20% noise. We also omit the results from most
of RoVe variants that never beat the baselines. We
refer readers to the supplementary material for the
full results of these and other experiments.

As we can see, none of the systems are typo-
proof — their quality falls as we add noise. How-
ever, this decrease is much sharper for baseline
models, which means that RoVe is less sensitive to
typos. Figure 3 shows that while all models show
the same result on clean data, RoVe outperforms
the baselines as the level of noise goes up. Of all
RoVe variants, bidirectional SRU gives the best re-
sult, marginally outperforming SRU.

Figure 3: Comparison of RoVe model with word2vec
and fasttext on texts with growing amount of noise
(paraphrase detection task for English).

Interestingly, the use of spell-checker does
not guarantee the improvement: fasttext+spell-
checker model does not always outperform vanilla
fasttext, and its score is unstable. This might
be explained by the fact that spell-checker makes
mistakes itself, for example, it can occasionally
change a correct word into a wrong one.

5.2 Sentiment analysis

The task of sentiment analysis consists in deter-
mining the emotion of a text (positive or negative).
For this task we use word vectors from different
models as features for Naive Bayes classifier. The
evaluation is performed with ROC AUC metric.
We experiment with two datasets:
• English — Stanford Sentiment Treebank

(Socher et al., 2013). In this corpus objects
are labelled with three classes: positive, neg-
ative and neutral, we use only the two former.
• Russian — Russian Twitter Sentiment Cor-

pus (Loukachevitch and Rubtsova, 2015). It
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English Russian Turkish
noise (%) 0 10 20 0 10 20 0 10 20
BASELINES
word2vec 0.715 0.573 0.564 0.800 0.546 0.535 0.647 0.586 0.534
fasttext 0.720 0.594 0.587 0.813 0.645 0.574 0.632 0.595 0.514
fasttext + spell-checker 0.720 0.598 0.585 0.813 0.693 0.453 – – –
RoVe
stackedLSTM 0.672 0.637 0.606 0.723 0.703 0.674 0.601 0.584 0.536
SRU 0.707 0.681 0.641 0.823 0.716 0.601 0.647 0.602 0.568
biSRU 0.715 0.687 0.644 0.841 0.741 0.641 0.718 0.641 0.587

Table 1: Results of the paraphrase detection task in terms of ROC AUC.

Sentiment analysis Textual entailment
English Russian English

noise (%) 0 10 20 0 10 20 0 10 20
BASELINES
word2vec 0.649 0.611 0.554 0.649 0.576 0.524 0.624 0.593 0.574
fasttext 0.662 0.615 0.524 0.703 0.625 0.524 0.642 0.563 0.517
fasttext + spell-checker 0.645 0.573 0.521 0.703 0.699 0.541 0.642 0.498 0.481
RoVe
stackedLSTM 0.621 0.593 0.586 0.690 0.632 0.584 0.617 0.590 0.516
SRU 0.627 0.590 0.568 0.712 0.680 0.598 0.627 0.590 0.568
biSRU 0.656 0.621 0.598 0.721 0.699 0.621 0.651 0.621 0.598

Table 2: Results of the sentiment analysis and textual entailment tasks in terms of ROC AUC.

consists of 114,911 positive and 111,923 neg-
ative records. Since tweets are noisy, we do
not add noise to this dataset and use it as is.

The results for this task (see table 2) confirm the
ones reported in the previous section: the biSRU
model outperforms others, and the performance of
word2vec is markedly affected by noise. On the
other hand, RoVe is more resistant to it.

5.3 Identification of text entailment

This task is devoted to the identification of log-
ical entailment or contradiction between the two
sentences. We experiment with Stanford Natu-
ral Language Inference corpus (R. Bowman et al.,
2015) labelled with three classes: contradiction,
entailment and no relation. We do not use no re-
lation in order to reduce the task to binary classi-
fication. The setup is similar to the one for para-
phrase detection task — we define the presence
of entailment by cosine similarity between phrase
vectors, which are averaged vectors of words in a
phrase. Pairs of phrases with high similarity score
are assigned entailment class and the ones with
low score are assigned contradiction class. The
quality metric is ROC AUC.

The results for this task are listed in the right
part of table 2. They fully agree with those of the
other tasks: RoVe with biSRU cells outperforms
the baselines and the gap between them gets larger
as more noise is added. Note also that here spell-

checker deteriorates the performance of fasttext.

5.4 Types of noise

All the results reported above were tested on
datasets with two types of noise (insertion and
deletion of letters) applied simultaneously. Our
model is by definition invariant to letter swaps, so
we did not include this type of noise to the exper-
iments. However, a swap does not change an em-
bedding of a word only when this swap happens
outside B and E segments of a word, otherwise the
embedding changes as B and E keep the order of
letters. Therefore, we compare the effect of ran-
dom letter swaps.

We compare four types of noise:
• only insertion of letters,
• only deletion,
• insertion and deletion (original setup),
• only letter swaps.
Analogously to noise infusion procedure for in-

sertion and deletion, we swap two adjacent charac-
ters in a word with probabilities from 0% to 30%.

It turned out that the effect of swap is lan-
guage and dataset dependent. It deteriorates the
scores stronger for texts with shorter words, be-
cause there swaps often occur in B and E segments
of words. In our experiments on paraphrase and
textual entailment tasks all four types of noise pro-
duced the same effect on English datasets, where
the average length of words is 4 to 4.7 symbols.
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On the other hand, Russian and Turkish datasets
(average word length is 5.7 symbols) are more re-
sistant to letter swaps than to other noise types.

However, this holds only for tasks where the re-
sult was computed as cosine similarity between
vectors, i.e. where vectors fully define the per-
formance. In sentiment analysis task where we
trained a Naive Bayes classifier all types of noise
had the same effect on the final quality for both
English and Russian.

5.5 OOV handling vs context encoding

Our model has two orthogonal features: handling
of OOV words and context dependency of embed-
dings. To see how much each of them contributes
to the final quality we tested them separately.

Only context dependency We discard BME
representation of a word and consider it as a bag
of letters (i.e. we encode it only with the M seg-
ment). Thus, the model still has open vocabulary,
but is less expressive. Figure 4 shows the perfor-
mance of models with and without BME encoding
on paraphrase detection task for English. We see
that BME representation does not make the model
more robust to typos — for both settings scores
reduce to a similar extent as more noise is added.
However, BME increases the quality of vectors for
any level of noise. Therefore, prefixes and suffixes
contain much information that should not be dis-
carded. Results for other languages and tasks ex-
pose the same trend.

Figure 4: RoVe model with and without BME repre-
sentation (paraphrase detection task for English).

Only BME encoding In this setup we discard
context dependency of word vectors. We replace
the encoder with a projection layer which con-
verted BME representation of a word to a 300-
dimensional vector.

Figure 5 shows the performance of this model
on paraphrase task for English. The quality is
close to random (a random classifier has ROC
AUC of 0.5). Moreover, it is not consistent with
the amount of noise — unlike our previous results,
the quality does not decrease monotonically while
noise increases. This is obvious since the encoder
is the only trainable part of the model, thus, it is
the part mostly responsible for the quality of word
vectors. In addition we should mention that we
have tested our model on additional noise type for
this task – the permutation. This noise type hasn’t
been used for the other experiments, since robust-
ness to this noise type was shown in (Sakaguchi
et al., 2016).

Figure 5: RoVe without context information (para-
phrase detection task for English).

6 Conclusions and future work

We presented RoVe — a novel model for training
word embeddings which is robust to typos. Un-
like other approaches, this method does not have
any explicit vocabulary. Embedding of a word is
formed of embeddings of its characters, so RoVe
can generate an embedding for any string. This al-
leviates the influence of misspellings, words with
omitted or extra symbols have an embedding close
to the one of their correct versions.

We tested RoVe with different encoders and dis-
covered that SRU (Simple Recurrent Unit) cell is
better suited for it. Bidirectional SRU performs
best on all tasks. Our experiments showed that
our model is more robust to typos than word2vec
and fasttext models commonly used for training of
word embedding. Their quality falls dramatically
as we add even small amount of noise.

We have an intuition that RoVe can produce
meaningful embeddings for unseen terms and un-
seen word forms in morphologically rich lan-
guages. However, we did not test this. In our fu-
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ture work we will look into possibilities of using
RoVe in these tasks. This will require tuning of
lengths of prefixes and suffixes. We would like to
test language-dependent and data-driven tuning.

Another direction of future work is to train
RoVe model jointly with a downstream task, e.g.
Machine Translation.
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Abstract

We perform automatic paraphrase detection on
subtitle data from the Opusparcus corpus com-
prising six European languages: German, En-
glish, Finnish, French, Russian, and Swedish.
We train two types of supervised sentence
embedding models: a word-averaging (WA)
model and a gated recurrent averaging net-
work (GRAN) model. We find out that GRAN
outperforms WA and is more robust to noisy
training data. Better results are obtained with
more and noisier data than less and cleaner
data. Additionally, we experiment on other
datasets, without reaching the same level of
performance, because of domain mismatch be-
tween training and test data.

1 Introduction

This paper studies automatic paraphrase detection
on subtitle data for six European languages. Para-
phrases are a set of phrases or full sentences in
the same language that mean approximately the
same thing. Automatically finding out when two
phrases mean the same thing is interesting from
both a theoretical and practical perspective. Theo-
retically, within the field of distributional, compo-
sitional semantics, there is currently a significant
amount of interest in models and representations
that capture the meaning of not just single words,
but sequences of words. There are also practical
implementations, such as providing multiple alter-
native correct translations when evaluating the ac-
curacy of machine translation systems.

To our knowledge, the present work is the first
published study of automatic paraphrase detection
based on data from Opusparcus, a recently pub-
lished paraphrase corpus (Creutz, 2018)1. Opus-
parcus consists of sentential paraphrases, that is,
pairs of full sentences that convey approximately

1Opusparcus is available for download at: http://
urn.fi/urn:nbn:fi:lb-201804191

the same meaning. Opusparcus provides data
for six European languages: German, English,
Finnish, French, Russian, and Swedish. The data
sets have been extracted from OpenSubtitles2016
(Lison and Tiedemann, 2016), which is a collec-
tion of translated movie and TV subtitles.2

In addition to Opusparcus, experiments are per-
formed on other well known paraphrase resources:
(1) PPDB, the Paraphrase Database (Ganitke-
vitch et al., 2013; Ganitkevitch and Callison-
Burch, 2014; Pavlick et al., 2015), (2) MSRPC,
the Microsoft Research Paraphrase Corpus (Quirk
et al., 2004; Dolan et al., 2004; Dolan and Brock-
ett, 2005), (3) SICK (Marelli et al., 2014), and
(4) STS14 (Agirre et al., 2014).

We are interested in movie and TV subtitles be-
cause of their conversational nature. This makes
subtitle data ideal for exploring dialogue phenom-
ena and properties of everyday, colloquial lan-
guage (Paetzold and Specia, 2016; van der Wees
et al., 2016; Lison et al., 2018). We would also like
to stress the importance of working on other lan-
guages beside English. Unfortunately, many lan-
guage resources contain English data only, such as
MSRPC and SICK. In other datasets, the quality
of the English data surpasses that of the other lan-
guages to a considerable extent, as in the mutilin-
gual version of PPDB (Ganitkevitch and Callison-
Burch, 2014).

Although our subtitle data is very interesting
data, it is also noisy data, in several respects. Since
the subtitles are user-contributed data, there are
misspellings both due to human mistake and due
to errors in optical character recognition (OCR).
OCR errors emerge when textual subtitle files are

2OpenSubtitles2016 is extracted from www.
opensubtitles.org. OpenSubtitles2016 is in it-
self a subset of the larger OPUS collection (“... the open
parallel corpus”): opus.lingfil.uu.se, and provides
a large number of sentence-aligned parallel corpora in 65
languages.
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produced by “ripping” (scanning) the subtitle text
from DVDs using various tools. Furthermore,
movies are sometimes not tagged with the cor-
rect language, they are encoded in various charac-
ter encodings, and they come in various formats.
(Tiedemann, 2007, 2008, 2016)

A different type of errors emerge because of
misalignments and issues with sentence segmen-
tation. Opusparcus has been constructed by find-
ing pairs of sentences in one language that have
a common translation in at least one other lan-
guage. For example, English “Have a seat.” is
potentially a paraphrase of “Sit down.” because
both can be translated to French “Asseyez-vous.”
(Creutz, 2018) To figure out that “Have a seat.”
is a translation of “Asseyez-vous.”, English and
French subtitles for the same movie can be used.
English and French text that occur at the same time
in the movie are assumed to be translations of each
other. However, there are many complications in-
volved: Subtitles are not necessarily shown as en-
tire sentences, but as snippets of text that fit on
the screen. There are numerous partial overlaps
when comparing the contents of subtitle screens
across different languages, and the reconstruction
of proper sentences may be difficult. There may
also be timing differences, because of different
subtitle speeds and different time offsets for start-
ing the subtitles. (Tiedemann, 2007, 2008) Fur-
thermore, Lison et al. (2018) argue that “[subti-
tles] should better be viewed as boiled down tran-
scriptions of the same conversations across several
languages. Subtitles will inevitably differ in how
they ‘compress’ the conversations, notably due
to structural divergences between languages, cul-
tural differences and disparities in subtitling tra-
ditions/conventions. As a consequence, sentence
alignments extracted from subtitles often have a
higher degree of insertions and deletions com-
pared to alignments derived from other sources.”

We tackle the paraphrase detection task using
a sentence embedding approach. We experiment
with sentence encoding models that take as input a
single sentence and produce a vector representing
the semantics of the sentence. While models that
rely on sentence pairs as input are able to use ad-
ditional information, such as attention between the
sentences, the sentence embedding approach has
its advantages: Embeddings can be calculated also
when no sentence pair is available, and large num-
bers of embeddings can be precalculated, which

allows for fast comparisons in huge datasets.
Sentence representation learning has been a

topic of growing interest recently. Much of this
work has been done in the context of general-
purpose sentence embeddings using unsupervised
approaches inspired by work on word embeddings
(Hill et al., 2016; Kiros et al., 2015) as well as ap-
proaches relying on supervised training objectives
(Conneau et al., 2017a; Subramanian et al., 2018).
While the paraphrase detection task is potentially
useful for learning general purpose embeddings,
we are mainly interested in paraphrastic sentence
embeddings for paraphrase detection and semantic
similarity tasks.

Closest to the present work is that of Wieting
and Gimpel (2017), who study sentence represen-
tation learning using multiple encoding architec-
tures and two different sources of training data. It
was found that certain models benefit significantly
from using full sentences (SimpWiki) instead of
short phrases (PPDB) as training data. However,
the SimpWiki data set is relatively small, and this
leaves open the question how much the approaches
could benefit from very large corpora of senten-
tial paraphrases. It is also unclear how well the
approaches generalize to languages other than En-
glish.

The current paper takes a step forward in that
experiments are performed on five other languages
in addition to English. We also study the effects of
noise in the training data sets.

2 Data

Opusparcus (Creutz, 2018) contains so-called
training, development and test sets for each of the
six languages it covers. The training sets, which
consist of millions of sentence pairs, have been
created automatically and are orders of magnitude
larger than the development and test sets, which
have been annotated manually and consist of a
few thousands of sentence pairs. The development
and test sets have different purposes, but otherwise
they have identical properties: the development
sets can be used for optimization and extensive ex-
perimentation, whereas the test sets should only be
used in final evaluations.

The development and test sets are “clean” (in
principle), since they have been checked by hu-
man annotators. The annotators were shown pairs
of sentences, and they needed to decide whether
the two sentences were paraphrases (that is, meant
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the same thing), on a four-grade scale: dark
green (good), light green (mostly good), yellow
(mostly bad), or red (bad). Two different anno-
tators checked the same sentence pairs and if the
annotators were in full agreement or if they chose
different but adjacent categories, the sentence pair
was included in the data set. Otherwise the sen-
tence pair was discarded.

There was an additional choice for the an-
notators to explicitly discard bad data. Data
was to be discarded, if there were spelling mis-
takes, bad grammar, bad sentence segmentation,
or the language of the sentences was wrong. The
highest “trash rate” of around 11 % occurred for
the French data, apparently because of numerous
grammatical mistakes in French spelling, which is
known to be tricky. The lowest “trash rate” of
below 3 % occurred for Finnish, a language with
highly regular orthography. Interestingly, English
was second best after Finnish, with less than 4 %
discarded sentence pairs. Although English or-
thography is not straightforward, there are few dia-
critics that can go wrong (such as accents on vow-
els), and English benefits from the largest amounts
of data and the best preprocessing tools. Table 1
displays a breakdown of the error types in the En-
glish and Finnish annotated data.

Type English Finnish
Not grammatical 64 (54%) 35 (36%)

OCR error 13 (11%) 22 (23%)

Wrong language 28 (24%) 12 (13%)

Actually correct 14 (12%) 27 (28%)

Total 119 (100%) 96 (100%)

Table 1: The numbers and proportions of different er-
ror types in the data discarded by the annotators. Note
that some of the sentence pairs that have been discarded
are actually correct and have been mistakenly removed
by the annotators.

The Opusparcus training sets need to be much
larger than the development and test sets in or-
der to be useful. However, size comes at the ex-
pense of quality, and the training sets have not
been checked manually. The training sets are as-
sumed to contain noise to the same extent as the
development and test sets. On one hand, when it
comes to spelling and OCR errors, this may not
be too bad, as a paraphrase detection model that
is robust to noise is a good thing. On the other
hand, when we train a supervised paraphrase de-

tection model, we would like to know which of
the sentence pairs in the training data are actual
paraphrases and which ones are not. Since the
training data has not been manually annotated, we
cannot be sure. Instead we need to rely on the au-
tomatic ranking presented by Creutz (2018) that is
supposed to place the sentence pairs that are most
likely to be true paraphrases first in the training
set and the sentence pairs that are least likely to be
paraphrases last.

In the current paper, we investigate whether it
is more beneficial to use less and cleaner training
data or more and noisier training data. We also
compare different models in terms of their robust-
ness to noise.

In addition to the Opusparcus data, we use other
data sources. In Section 4.3 we experiment with
a model trained on PPDB, a large collection of
noisy, automatically extracted and ranked para-
phrase candidates. PPDB has been successfully
used in paraphrase models before (Wieting et al.,
2015, 2016; Wieting and Gimpel, 2017), so we are
interested in comparing the performance of mod-
els trained on Opusparcus and those trained on
PPDB.

We also evaluate our models on MSRPC, a
well-known paraphrase corpus. While Opuspar-
cus contains mostly short sentences of conversa-
tional nature, and PPDB contains mostly short
phrases and sentence fragments, the MSRPC data
comes from the news domain. MSRPC was cre-
ated by automatically extracting potential para-
phrase candidates, which were then checked by
human annotators.

Lastly, two semantic textual similarity data sets,
SICK and STS14 are used for evaluation in a trans-
fer learning setting. SICK contains sentence pairs
from image captions and video descriptions an-
notated for relatedness with scores in the [0, 5]
range. It consists of about 10,000 English sen-
tences which are descriptive in nature. STS14
comprises five different subsets, ranging over mul-
tiple genres, also with human-annotated scores
within [0, 5].

3 Embedding models

We use supervised training to produce sentence
embedding models, which can be used to deter-
mine how similar sentences are semantically and
thus if they are likely to be paraphrases.
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3.1 Models
In our models, there is a sequence of words
(or subword units) to be embedded: s =
(w1, w2, ..., wn). The embedding of a sequence s
is g(s), where g is the embedding function.

The word embedding matrix is W ∈ Rd×|V |,
where d is the dimensionality of the embeddings
and |V | is the size of the vocabulary. Wwi is used
to denote the embedding for the token wi.

We use a simple word averaging (WA) model as
a baseline. In this model the phrase is embedded
by averaging the embeddings of its tokens:

g(s) =
1

n

n∑

i=1

Wwi

Despite its simplicity, the WA model has been
shown to achieve good results in a wide range of
semantic textual similarity tasks. (Wieting et al.,
2016)

Our second model is a variant of the gated re-
current averaging network (GRAN) introduced by
Wieting and Gimpel (2017). GRAN extends the
WA model with a recurrent neural network, which
is used to compute gates for each word embed-
ding before averaging. We use a gated recurrent
unit (GRU) network (Cho et al., 2014). The hid-
den states (h1, ..., hn) are computed using the fol-
lowing equations:

rt = σ(WrW
wt + Urht−1)

zt = σ(WzW
wt + Uzht−1)

h̃t = zt ◦ f(WhWwt + Uh(rt ◦ ht−1) + bh)

ht = (1− zt) ◦ ht−1 + h̃t

Here Wr, Wz , Wh, Ur, Uz , and Uh are the weight
matrices, bh is a bias vector, σ is the sigmoid func-
tion, and ◦ denotes the element-wise product of
two vectors.

At each time step t we compute a gate for the
word embedding and elementwise-multiply the
gate with the word embedding to acquire the new
word vector at:

gt = σ(WxW
wt +Whht + b)

at =Wwt ◦ gt
Here Wx and Wh are weight matrices. The final
sentence embedding is computed by averaging the
word vectors:

g(s) =
1

n

n∑

i=1

ai

3.2 Training
Our training data consists of pairs of sequences
(s1, s2) and associated labels y ∈ {0, 1} indi-
cating whether the sequences are paraphrases or
not. Because the Opusparcus data contains ranked
paraphrase candidates and not labeled pairs, we
take the following approach to sampling the data:
The desired number of paraphrase pairs (positive
examples) are taken from the beginning of the data
sets. That is, the highest ranking pairs, which are
the most likely to be proper paraphrases accord-
ing to Creutz (2018), are labeled as paraphrases,
although not all of them are true paraphrases. The
non-paraphrase pairs (negative examples) are cre-
ated by randomly pairing sentences from the train-
ing data. It is possible that a positive example is
created this way by accident, but we assume the
likelihood of this to be low enough for it not to
have noticeable effect on performance. We sam-
ple an equal number of positive and negative pairs
in all experiments. In the rest of this paper, when
mentioning training set sizes, we indicate the num-
ber of (assumed) positive pairs sampled from the
data. There is always an equal amount of (as-
sumed) negative pairs.

During training we optimize the following
margin-based loss function:

L(θ) = y(max(0,m− d(g(s1), g(s2)))2
+ (1− y)d(g(s1), g(s2))

Here m is the margin parameter, d(g(s1), g(s2))
is the cosine distance between the embedded se-
quences, and g is the embedding function. The
loss function penalizes negative pairs with a co-
sine distance smaller than the margin (first term)
and encourages positive pairs to be close to each
other (second term).

We use the Adam optimizer (Kinga and Ba,
2015) with a learning rate of 0.001 and a batch
size of 128 samples in all experiments. Variational
dropout (Gal and Ghahramani, 2016) is used for
regularization in the GRAN model. The hyper-
parameters were tuned in preliminary experiments
for development set accuracy and, with the excep-
tion of keep probability in dropout, kept constant
in all experiments.

The embedding matrix W is initialized to a uni-
form distribution over [−0.01, 0.01]. In our exper-
iments we found that initializing with pre-trained
embeddings did not improve the paraphrase de-
tection results. The layer weights in the GRU
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network are initialized using Xavier initialization
(Glorot and Bengio, 2010), and we use the leaky
ReLU activation function.

4 Experiments

Our initial experiment addresses the effects of un-
supervised morphological segmentation on the re-
sults of the paraphrase detection task.

Next, we tackle our main question on the trade-
off between the amount of noise in the training
data and the data size. In particular, we try to
see if an optimal amount of noise can be found,
and whether the different models have different
demands in this respect.

Finally, we evaluate the English-language mod-
els on out-of-domain semantic similarity and para-
phrase detection tasks.

All evaluations on the Opusparcus are con-
ducted in the following manner: Each sentence
in the sentence pair is embedded using the sen-
tence encoding model. The resulting vectors are
concatenated and passed on to a multi-layer per-
ceptron classifier with a single hidden layer of 200
units. The classifier is trained on the development
set, and the final results are reported on the unseen
test set in terms of classification accuracy.

4.1 Segmentation

We work on six different European languages,
some of which are morphologically rich (that is,
the number of possible word forms in the language
is high). In the case of languages like Finnish
and Russian, the vocabularies without any kind of
morphological preprocessing can grow very large
even with small amounts of data.

In our approach we train Morfessor Baseline
(Creutz and Lagus, 2002; Virpioja et al., 2013),
an unsupervised morphological segmentation al-
gorithm, on the whole Opusparcus training data
available. Segmentation approaches that result in
fixed-size vocabularies, such as byte-pair encod-
ing (BPE) (Sennrich et al., 2016), have been gain-
ing popularity in some natural language process-
ing tasks. We decided to use Morfessor instead,
which also appeared to outperform BPE in pre-
liminary experiments. However, we will not fo-
cus on segmentation quality, but use segmentation
simply as a preprocessing step to improve down-
stream performance.

The results are shown in the WA-M and WA
columns of Table 2. The differences in perfor-

AP WA-M WA GRAN
de 74.3 77.0 82.3 83.2
en 72.8 87.4 86.4 89.2
fi 61.0 74.7 80.3 80.1
fr 68.6 74.0 76.7 76.8
ru 65.4 61.4 70.9 69.7
sv 54.8 78.1 84.1 83.2

Table 2: Classification accuracies on the Opusparcus
test sets for models trained on 1 million positive sen-
tence pairs. AP (all paraphrases) is the majority base-
line, which is the accuracy obtained if all sentence pairs
in the test data are labeled as paraphrases. Consis-
tent improvement is obtained by the WA model without
segmentation (WA-M: “WA without Morfessor”) and
further by the WA model with segmentation. Whether
the GRAN model outperforms WA is hard to tell from
these figures, but this is further analyzed in Section 4.2.

mance between the WA models with segmenta-
tion (called just WA) and without segmentation
(called WA-M) clearly indicate that this is a nec-
essary preprocessing step when working on lan-
guages with complex morphology. The effect of
segmentation for the GRAN model (not shown) is
similar, with the exception of English also improv-
ing by a few points instead of worsening. Based on
these results we will use Morfessor as a prepro-
cessing step in all of the remaining experiments.

4.2 Data selection
We next investigate the effects of data set size and
the amount of noise in the data on model perfor-
mance. We are interested in finding an appropriate
amount of training data to be used in training the
paraphrase detection models, as well as evaluating
the robustness of different models against noise in
the data.

For each language, data sets containing approx-
imately 80%, 70%, or 60% clean paraphrase pairs
are created. These percentages are the proportions
of assumed positive training examples; the nega-
tive examples are created using the approach out-
lined in Section 3.2.

Estimates of the quality of the training sets exist
for all languages in Opusparcus.3 The quality es-
timates were used to approximate the numbers of
phrase pairs corresponding to the noise levels. Be-
cause the data sets for different languages are not

3The figures used to approximate the data set sizes can
be found in the presentation slides (slides 12-13) at https:
//helda.helsinki.fi//bitstream/handle/
10138/237338/creutz2018lrec_slides.pdf
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equal in size, the number of phrase pairs at a cer-
tain noise level differs from language to language.
The different data set sizes for all noise levels and
languages are shown in Table 3.

Table 3 shows the results for the GRAN model.
The results indicate that the GRAN model is rather
robust to noise in the data. For five out of six lan-
guages, the best results are achieved using either
the 70% or 60% data sets. That is, even when up to
40% of the positive examples in the training data
are incorrectly labeled, the model is able to main-
tain or improve its performance.

The results for the WA model are very different.
The last row of Table 3 shows the accuracies of the
WA model at different levels of noise for English.
The model’s performance decreases significantly
as the number of noisy pairs increases, and the re-
sults are similar for the other languages as well.
We hypothesize these differences to be due to dif-
ferences in model complexity. The GRAN model
incorporates a sequence model and contains more
parameters than the simpler WA model.

4.2.1 Further analysis of differences between
models

Some qualitative differences between the WA and
GRAN models are illustrated in Tables 4 and 5 as
well as Figure 1. Table 4 shows which ten sen-
tences in the English development set are clos-
est to one target sentence “okay, you don’t get it,
man.” according to the two models. The compar-
ison is performed by computing the cosine simi-
larity between the sentence embedding vectors. A
similar example is shown for German in Table 5:
“Kann gut sein.” (in English: “That may be.”)4

The result suggests that the WA (word averag-
ing) models produce “bag of synonyms”. Sen-
tences are considered similar if they contain the
same words or similar words. This, however,
makes the WA model perform weakly when a
sentence should not be interpreted literally word
by word. German “Kann gut sein.” is unlikely
to literally mean “Can be good.”; yet sentences
with that meaning are at the top of the WA rank-
ing. By contrast, the GRAN model comes up with
very different top candidates, sentences express-
ing modality, such as: “Possibly”, “Yes, he might”,
“You’re probably right”, “As naturally as possi-
ble”, and “I think so”.

4Further examples of similar sentences can be found in
the supplemental material.

Figure 1 provides some additional information
on the English sentence “okay, you don’t get it,
man.”. Distributions of the cosine similarities of a
much larger number of sentences have been plot-
ted (10 million sentences from English OpenSub-
titles). In the plots, similar sentences are on the
right and dissimilar sentences on the left. In the
case of the GRAN model we see a huge mass of
dissimilar sentences smoothing out in a tail of sim-
ilar sentences. In the case of the WA model, there
is clearly a second, smaller bump to the right. It
turns out that the “bump” mainly contains negated
sentences, that is, sentences that contain synonyms
of “don’t”. A second look at Table 4 validates
this observation: the common trait of the sen-
tences ranked at the top by WA is that they con-
tain “don’t” or “not”. Thus, according to WA,
the main criterion for a sentence to be similar to
“okay, you don’t get it, man.” is that the sen-
tence needs to contain negation. Again, the GRAN
model stresses other, more relevant aspects, in this
case, whether the sentence refers to not knowing
or not understanding.

4.3 PPDB as training data

We also train the GRAN model on PPDB data.
Wieting and Gimpel (2017) found that models
trained on PPDB achieve good results on a wide
range of semantic textual similarity tasks, thus,
good performance could be expected on the Opus-
parcus test sets.

For English we use the PPDB 2.0 release, for
languages other than English we use the 1.0 re-
lease, as the 2.0 is not available for those lan-
guages. The phrasal paraphrase packs are used
for all languages. We pick the number of para-
phrase pairs in such a way that the training data
contains as close to an equal number of tokens as
the Opusparcus training data with 1 million pos-
itive examples. This ensures that the amount of
training data is as similar as possible in both set-
tings. The training setup is otherwise identical to
that outlined above.

The results are shown in Table 6. There is a sig-
nificant drop in performance when moving from
in-domain training data (Opusparcus) to out-of-
domain training data (PPDB). One possible expla-
nation for this is that the majority of the phrase
pairs in the PPDB dataset contain sentence frag-
ments rather than full sentences.
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1M 80% 70% 60%
de 83.2 (90%) 86.7 (4) 85.3 (6) 85.6 (12)
en 89.2 (97%) 90.2 (5) 92.1 (20) 90.9 (34)
fi 80.1 (83%) 81.4 (2.5) 82.5 (3.5) 81.5 (9)
fr 76.8 (95%) 76.2 (5) 77.1 (13) 77.9 (22)
ru 69.7 (85%) 60.3 (2) 70.3 (5) 66.8 (15)
sv 83.2 (85%) 71.7 (1.2) 73.0 (1.8) 82.1 (5)

en (WA) 86.4 (97%) 79.5 (5) 77.9 (20) 77.2 (34)

Table 3: Results on Opusparcus for GRAN (all languages) and WA (English only). The first six rows show the
accuracies of the GRAN model at different estimated levels of correctly labeled positive training pairs: 80%, 70%,
and 60%. In each entry in the table, the first number is the classification accuracy and the number in brackets is
the number of assumed positive training pairs in millions. For comparison, the 1M column to the left repeats the
values from Table 2, in which the size of the training set was the same for each language, regardless of noise levels;
the estimated proportion of truly positive pairs in these setups are shown within brackets. The last row of the Table
shows the performance of the WA model for English.

Figure 1: Distributions of similarity scores between the target sentence “okay, you don’t get it, man.” and 10 mil-
lion English sentences from OpenSubtitles. Cosine similarity between sentence embedding vectors are used. A
sentence that is very close to the target sentence has a cosine similarity close to 1, whereas a very dissimilar sen-
tence has a value close to -1. (Some of the similarity values are below -1 because of rounding errors in Faiss:
https://github.com/facebookresearch/faiss/issues/297.) Section 4.2.1 discusses differences in the
distributions between the GRAN and WA models.

4.4 Transfer learning

We also evaluate our English models on other data
sets. Because we are primarily interested in para-
phrastic sentence embeddings, we choose to eval-
uate our models on the MSRPC paraphrase cor-
pus, as well as two semantic textual similarity
tasks, SICK-R and STS14. The data represent a
range of genres, and hence offer a view of the po-
tential of Opusparcus for out-of-domain use and
transfer learning. Because of the similarities be-
tween paraphrase detection and the semantic tex-
tual similarity tasks, we believe the two tasks to be
mutually supportive.

We present results for the WA model as well as
the best GRAN model from Section 4.2. The eval-

uations are conducted using the SentEval toolkit
(Conneau and Kiela, 2018). To obtain comparable
results, we use the recommended default configu-
ration for the SentEval parameters. The results are
shown in Table 7.

We first note that our models fall short of
the state-of-the-art results by a rather large mar-
gin. We hypothesize the discrepancy between the
performance on MSRPC of our models and the
BiLSTM-Max model of Conneau et al. (2017b)
to be due to differences in the genre of training
data. The conversational language of subtitles is
vastly different from the news domain of MSRPC.
Although the NLI data used by Conneau et al.
(2017b) is derived from an image-captioning task
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okay , you don ’t get it , man .
you don ’t understand . 0.98

no , you don ’t understand . 0.98

you can ’t know that . 0.92

G you do not really know . 0.90

R no , i don ’t think you understand 0.88

A you know , nobody has to know . 0.86

N you don ’t got it . 0.82

no one will ever know . 0.82

and no one will know . 0.81

we don ’t know yet . 0.81

you don ’t got it . 0.91

don ’t go over . 0.91

do not beat yourself up about that . 0.90

please don ’t . 0.89

W well ... not everything . 0.89

A not all of it . 0.88

you don ’t have to . 0.87

no , you don ’t understand . 0.87

one it ’s not up to you . 0.86

okay , that ’s not necessary . 0.84

Table 4: The ten most similar sentences to “okay, you
don’t get it, man.” in the Opusparcus English develop-
ment set, based on sentence embeddings produced by
the GRAN and WA models, respectively. Cosine simi-
larities are shown along with the sentences. (The anno-
tated “correct” paraphrase is “you don’t understand.”)

and thus does not represent the news domain, it
is at least closer to MSRPC in terms of the vo-
cabulary and sentence structure. Most interesting
is the difference between our WA model and the
Paragram-phrase model of Wieting et al. (2016).
These are essentially the same model, but trained
on two different data sets. While the performance
on SICK-R is comparable, our model significantly
underperforms on STS14. Overall the results in-
dicate that our models tend to overfit the domain
of the Opusparcus data and consequently do not
perform as well on out-of-domain data.

5 Discussion and Conclusion

Our results show that even a large amount of noise
in training data is not always detrimental to model
performance. This is a promising result, as auto-
matically collected, large but noisy data sets are
often easier to come by than clean, manually col-
lected or annotated data sets. Our results can also
guide model selection when noise in training data
is a consideration.

Kann gut sein .
Möglicherweise . 0.93

Ja , könnte er . 0.92

Hast wohl Recht . 0.92

G So natürlich wie möglich . 0.91

R Ihr habt natürlich recht . 0.91

A Sie haben recht , natürlich . 0.88

N Ich denke , doch . 0.88

Ja , ich denke schon . 0.87

Wahrscheinlich schon . 0.87

Ich bin mir sicher . 0.87

Das ist doch gut . 0.83

Na , das ist gut . 0.81

Ist in Ordnung . 0.81

Dir geht es gut . 0.81

W Ihnen geht es gut . 0.81

A Sie ist in Ordnung . 0.81

Ich kann es fühlen . 0.80

Es ist alles gut . 0.79

Mir geht ’s gut . 0.79

Sie is okay . 0.79

Table 5: The ten most similar sentences to “Kann
gut sein.” in the Opusparcus German development set,
based on sentence embeddings produced by the GRAN
and WA models, respectively. The annotated “correct”
paraphrase is here “Wahrscheinlich schon.” (“Probably
yes”).

In future work we would like to explore how
to most effectively leverage possibly noisy para-
phrase data in learning general-purpose sentence
embeddings for a wide range of transfer tasks. In-
vestigating training procedures and encoding ar-
chitectures that allow for robust models with the
capability for generalization is a topic for future
research.

GRAN
de 78.1
en 83.4
fi 70.4
fr 74.8
ru 67.7
sv 76.4

Table 6: Results on Opusparcus test sets for models
trained on PPDB.
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MSRPC SICK-R STS14
GRAN 69.5/80.6 .717 .40/.44
WA 67.1/79.1 .710 .54/.53
BiLSTM-Max 76.2/83.1 .884 .70/.67
Paragram-phrase - .716 .71/-
FastSent 72.2/80.3 - .63/.64

Table 7: Transfer learning results on MSRPC, SICK-R
and STS14. GRAN and WA denote our models. We
also show results for a selection of models from the
transfer learning literature. We use the evaluation mea-
sures that are customarily used in connection with these
data sets. For MSRPC, the accuracy (left) and F1-score
(right) are reported. For SICK-R we report Pearson’s
r, and for STS14 Pearson’s r (left) and Spearman’s rho
(right). For all these measures a higher value indicates
a better result.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th international workshop on semantic evaluation
(SemEval 2014), pages 81–91.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation, pages 103–111. Association for
Computational Linguistics.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017a. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680. Associ-
ation for Computational Linguistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017b. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680. Associ-
ation for Computational Linguistics.

Mathias Creutz. 2018. Open Subtitles Paraphrase Cor-
pus for Six Languages. In Proceedings of the 11th
International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA).

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the
ACL workshop on Morphological and Phonological
Learning (SIGPHON), pages 21–30, Philadelphia,
PA, USA.

Bill Dolan and Chris Brockett. 2005. Automatically
constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on
Paraphrasing (IWP2005). Asia Federation of Natu-
ral Language Processing.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the 20th International Conference on
Computational Linguistics, COLING ’04, Geneva,
Switzerland. Association for Computational Lin-
guistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theo-
retically grounded application of dropout in recur-
rent neural networks. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems
29, pages 1019–1027. Curran Associates, Inc.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In The 9th edition
of the Language Resources and Evaluation Confer-
ence, Reykjavik, Iceland. European Language Re-
sources Association.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT, pages
758–764, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 249–256.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1367–1377. Associ-
ation for Computational Linguistics.

Diererik P. Kinga and Jimmy Lei Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28, pages 3294–3302.
Curran Associates, Inc.

72



Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016), Portorož, Slovenia.

Pierre Lison, Jörg Tiedemann, and Milen Kouylekov.
2018. OpenSubtitles2018: Statistical Rescoring of
Sentence Alignments in Large, Noisy Parallel Cor-
pora. In Proceedings of the 11th International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, Roberto Zamparelli,
et al. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In Pro-
ceedings of the 9th International Conference on
Language Resources and Evaluation (LREC 2014),
Reykjavik, Iceland.

Gustavo Henrique Paetzold and Lucia Specia. 2016.
Collecting and exploring everyday language for pre-
dicting psycholinguistic properties of words. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 669–1679, Osaka, Japan.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Short Pa-
pers), pages 425–430, Beijing, China. Association
for Computational Linguistics.

Chris Quirk, Chris Brockett, and William B. Dolan.
2004. Monolingual machine translation for para-
phrase generation. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP2004), pages 142–149, Barcelona,
Spain.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J. Pal. 2018. Learning gen-
eral purpose distributed sentence representations via
large scale multi-task learning. In International
Conference on Learning Representations.

Jörg Tiedemann. 2007. Building a multilingual paral-
lel subtitle corpus. In Proceedings of the 17th Con-
ference on Computational Linguistics in the Nether-
lands (CLIN 17), Leuven, Belgium.

Jörg Tiedemann. 2008. Synchronizing translated
movie subtitles. In Proceedings of the 6th Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2008), Marrakech, Morocco.

Jörg Tiedemann. 2016. Finding alternative translations
in a large corpus of movie subtitles. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
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Abstract
This work aims to detect specific attributes of
a place (e.g., if it has a romantic atmosphere,
or if it offers outdoor seating) from its user
reviews via distant supervision: without di-
rect annotation of the review text, we use the
crowdsourced attribute labels of the place as
labels of the review text. We then use review-
level attention to pay more attention to those
reviews related to the attributes. The exper-
imental results show that our attention-based
model predicts attributes for places from re-
views with over 98% accuracy. The attention
weights assigned to each review provide ex-
planation of capturing relevant reviews.

1 Introduction

In selecting a product to buy, a restaurant to visit,
or a hotel to stay at, people may rely on user re-
views but may also filter their choices based on
particular attributes (e.g., the availability of an out-
door seating area or the lack of a kid-friendly at-
mosphere). In limited quantities, these attributes
may be collected by hand, but this may be too
costly to do on a large scale. So inevitably there
will be products for which we have lots of reviews
but no attributes. Can these attributes be inferred
automatically from the reviews?
We answer this question affirmatively, using
restaurant reviews and attributes as our case study.
Starting from a large set of reviews and detailed at-
tributes for some of the same restaurants, we train
a system to predict the attributes for restaurants for
which this information is not available. This is an
information extraction task and, as we will show,
can be trained through a form of distant supervi-
sion.
In our case study, we detect both objective and
subjective attributes for restaurants. For objec-
tive attributes, we extract detailed facts such as

∗This work has been done during the internship at Google.

“has outdoor seating”. These are fine-
grained factual attributes, and differ from enti-
ties (e.g., people or locations), which are the
focus of entity extraction, a related informa-
tion extraction task. For subjective attributes,
we are detecting fine-grained opinions such as
“feels romantic”. These are either positive
or negative sentiments and not the overall polarity
(or rating) in existing sentiment analysis tasks. To
the best of our knowledge, we are the first to per-
form such attribute detection from text.
We propose to address the problem above in a sim-
ple distant supervision manner by incorporating an
additional data source: We use crowdsourcing to
obtain annotation of attributes on places indepen-
dently, which is much easier to obtain than annota-
tion on the review text. Although the review text of
a place does not necessarily indicate the attribute
of the place, we hypothesize they are highly cor-
related and we use the labels on places to be the
labels on the review text (Section 2).
As a result, we have a number of reviews for each
attribute and place without knowing which review
indicates the attribute. We propose to use a review-
level attention mechanism to assign high weights
to those related reviews. Our experiments show
that our simple alignment of the two data sources
is effective and the attributes are substantially pre-
dictable from the review text. Our best model ob-
tains 98.05% accuracy.

2 Attribute Detection

2.1 Data Sources

Our distant supervision approach takes advantage
of two independently created sources of informa-
tion regarding the restaurants. The first source
consists of user reviews written in natural lan-
guage form with no specific guidance. The sec-
ond source consists of the labels of predefined at-
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tributes collected through explicit prompts (a form
of crowdsourcing). For instance, a user who has
visited the restaurant Per Se in New York City
may be prompted: “Did Per Se offer outdoor seat-
ing?”. The user can answer the question by se-
lecting one of “Yes”, “No,” or “Not sure”. Due to
limited answers to these questions, some restau-
rants can have both multiple reviews and crowd-
sourced attribute labels, while many others have
only reviews—with no attributes information.
Since attribute labels are crowdsourced, they can
be noisy or have disagreement, especially on sub-
jective attributes. In other words, a particular at-
tribute may receive “Yes” and “No” answers from
different users for the same restaurant. We con-
firm attributes as Yes or No for a place based on an
agreement model that blends the votes and other
structured data from the place (e.g., cuisines, lo-
cation). When the model predicts—with 95%
confidence—that at least 2/3 of the voters would
respond Yes, the model confirms the attribute as
Yes. We use the same logic for confirming No.
In this work, we remove the instances where the
agreement model is uncertain (i.e., confidence is
less than 95%). We use this confident set as
ground truth for training and evaluation of our at-
tribute detection model.

2.2 Model Setup

Our goal is to train a model on the restaurants with
both reviews and attribute labels and use the model
to predict attributes for those with only reviews.
The input of the model is the reviews of restaurants
and the attributes, while the output of the model
is Yes/No labels for each attribute. We next de-
scribe the basic setup of our neural models, which
include an input layer, an encoder, and a decoder.

Input Layer: The input layer consists of word
embedding and attribute embedding. The input
layer of the review text is similar to other text clas-
sification tasks (e.g., Kim 2014). Each token is
converted to a word embedding of dimension dw.
The size of the embedding table is |V | ∗dw, where
|V | is the vocabulary size. For each instance, we
look up its attribute embedding Ai from an at-
tribute embedding table. The values of attribute
embedding are randomly initialized and trained
using backpropagation. The size of the embedding
table is |A| ∗ dA, where |A| is the the number of
attributes and dA is the embedding dimension.

Encoder: The encoder reads the word embed-
ding and extracts the feature representation φ(x)
for the bag of reviews, where x is the word tokens
of all the reviews. We use a Recurrent Neural Net
(RNN) with word-level attention to encode the text
of one review. We use GRU (Cho et al., 2014) as
the RNN cell. In a single bag, we assume that at
least one review will refer to the attribute, while
most of the reviews will be unrelated to the at-
tribute. Thus, we use review-level attention on top
of the RNN to capture the importance of different
reviews. The model will learn high weights for
reviews that refer to the attributes and assign al-
most zero weight to those that are unrelated. This
model is similar to the hierarchical attention net-
work (Yang et al., 2016) with two levels of atten-
tion.

Given a list of tokens from review text x, we
generate a list of word embeddings wij from the
input layer, where i is the index of a review and j
is the index of a token in a review. The encoder is
defined as the following:

hij = GRU(wij , hij−1), (1)

vij = tanh(Wvhij + bv), (2)

αij =
exp(v>ijvk)∑
t exp(v

>
itvk)

, (3)

ri =
∑

j

αijhij , (4)

ui = tanh(Wuri + bu), (5)

αi =
exp(u>i uk)∑
j exp(u

>
j uk)

, (6)

φ(x) =
∑

i

αiri, (7)

where Wv,Wu, bv, bu are the weights for the
word-level and review-level context vector projec-
tions vij and ui, respectively. vk and uk are the
weights of the word-level and review-level con-
text vectors according to the attribute k. ri is the
review embedding computed as the weighted av-
erage of hij according to the importance of the
word (αij) to the attribute k in the review. φ(x)
is the weighted average of ri according to the im-
portance of the review (αi) to the attribute k. We
refer to this feature representation φ(x) as a place
embedding, since it encodes all the reviews of a
place. φ(x) will in turn be concatenated with an
attribute embedding Ai and passed to the decoder.
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Decoder: The decoder consists of one hidden
layer (h1) with output label y:

h2 = concat(φ(x), Ai), (8)

h1 = relu(W2h2 + b2), (9)

y =W1h1 + b1, (10)

where W1,W2, b1, b2 are the parameters for the
fully connected layers.

3 Experiments

3.1 Dataset

For our case study, we use restaurants and reviews
from Google Maps. We constraint the geographic
scope of the restaurants to USA and the language
of the reviews to English. We can easily extend
our dataset to include other categories of places.
The crowdsourcing of attribute labels is imple-
mented as a user contribution feature from Google
Maps. Those labels include both subjective at-
tributes (e.g., “feels quiet”) and objective
attributes (e.g., “offering alcohol”). We
choose restaurants with at least 100 reviews to col-
lect enough review text to train the model. In prac-
tice, if a place has insufficient reviews, we may not
be able to predict attributes based on reviews. Our
dataset contains 17k+ of restaurants and 100+ at-
tributes. Each instance consists of one restaurant,
one attribute and 100+ reviews. We use 80% of
instances for training, 10% for development and
10% for test. We split instances based on restau-
rants to keep all review text of a single restaurant
together and thus avoid overlap between training
and evaluation.

3.2 Model Configurations

We use grid search to tune the hyper-parameters.
We use 10000 words for the vocabulary size, 100
for the maximum review length (reviews may con-
tain multiple sentences), and 100 for the number
of reviews. We use 100 dimensions for both word
embedding and attribute embedding. We use 256
filters with window sizes [2,3,4,5] for CNN and
128 states for RNN. We use one hidden layer with
128 units for the decoder. We train the model with
the Adam optimizer (Kingma and Ba, 2014) and
use cross entropy as the loss function. Our learn-
ing rate is set to 0.001 and our batch size is set to
32.

3.3 Predictability from Review Text
Since the model is doing binary prediction (i.e.,
the model predicts Yes or No for an attribute), we
use accuracy as our quality metric. It evaluates
the label prediction of an attribute-restaurant pair
(one instance). Since we do not have labels of all
attributes for every restaurant, we do not report ac-
curacy by restaurant.

We compare against multiple baselines to show
the effectiveness of our model choice.

• Majority: it predicts the most frequent label
for an attribute. This is equivalent to using
attribute embedding alone to train the model
without reviews.

• BoW: it uses the average of the word embed-
dings as the review embedding, and then uses
the average of review embedding as the place
embedding.

• CNN: it uses CNN to extract the feature rep-
resentation from the word embedding as the
review embedding.

• CNN + RATT: it uses review-level atten-
tion (RATT) to construct the place embed-
ding from the review embedding instead of
taking average.

• RNN: it uses RNN to extract the feature rep-
resentation from the word embedding. The
difference from our proposed model is that it
does not use the review-level attention.

The input and decoder are the same for these
models. The Majority baseline obtains 90.82%
accuracy, which indicates the label bias in the
dataset. The label bias is intrinsic for some at-
tributes, and possibly increases after uncertain in-
stances are removed from the dataset by the agree-
ment model. More sophisticated models can per-
form much better with better sentence understand-
ing ability (see Table 1). We observe continu-
ous improvement with more capable encoders of
sentence. Moreover, attention-based aggregation
for reviews further improves the accuracy for both
CNN and RNN models.

As shown, our RNN+RATT model performs the
best, yielding 98.05% accuracy. This indicates
that review text can highly predict the presence
or not of an attribute. It is also very impressive
that such high accuracy is obtained via distant su-
pervision (i.e., without direct annotation on text).
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Model Accuracy
Majority 90.82
BOW 96.48
CNN 97.17
CNN+RATT 97.37
RNN 97.84
RNN+RATT 98.05

Table 1: Model accuracy.

Model A1 A2 A3

Majority 66.00 51.00 71.09
BoW 82.58 74.77 87.39
CNN 86.32 78.60 91.55
CNN+RATT 88.39 85.05 91.43
RNN 95.35 82.75 93.88
RNN+RATT 96.65 85.81 94.25

Table 2: Accuracy for some ambiguous attributes. A1:
usually a wait, A2: has outdoor seating, A3: serves late
night food.

This confirms our hypothesis that the review text
should contain the knowledge of attributes and is
probably effective to predict attributes.

In the dataset, there is a substantial fraction of
the attributes that are nearly always either positive
or negative across places. As an example, con-
sider that most restaurants can accept “pay by
credit card” and are rarely “cash only”
These attributes are relatively easy to predict,
which causes the overall accuracy to be high.
There are also attributes that are harder for simple
models to predict. For those attributes, the sophis-
ticated models works significantly better than the
baselines (Table 2). We also observe improvement
by adding the review-level attention. This verifies
our hypothesis that giving more weights to rele-
vant reviews could help since we align labels to a
bag of reviews of a place without knowing which
review indicates the attribute.

We next show some examples to explain how
the review-level attention works. (Table 3). It of-
ten captures the important one out of all the re-
views in a place (e.g. the first three examples),
but sometimes fails because of the misleading key-
word (e.g. “2 hr” in the fourth example). There
are also cases where reviews may not tell anything
about the attribute (e.g. the fifth example), which
is hard to avoid when we use labels not directly
annotated from text. Fortunately, this does not of-

ten occur in the dataset. The sixth example in-
dicates the case where the attended review does
show related information about the attribute, but
not enough to conclude. The model might have
combined several reviews to draw the conclusion
in this case.

4 Related Work

The idea of distant supervision has been proposed
and used widely in Relation Extraction (Mintz
et al., 2009; Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012), where the source
of labels is an external knowledge base. The la-
bel assignment is done via aligning entities from
knowledge base to text. In alignment, relation
extraction has the problem that not every entity
pair expresses the semantic relation stored in the
knowledge base. We can view our crowdsourced
attribute labels as a knowledge base of places
and their attributes. The label alignment in our
case is much simpler, since both attributes and re-
views are associated with the place. The review
text, on the other hand, may or may not express
the attribute acquired from crowdsourcing. Re-
cently (Lin et al., 2016) used neural methods to
achieve state-of-the-art for distantly supervised re-
lation extraction. We thus focus on neural methods
in our modeling.

The attribute detection task is also similar to
the aspect-based sentiment analysis task (Pontiki
et al., 2016), but contains both subjective and ob-
jective aspects. We take a completely different ap-
proach in this paper to tackle the problem by using
distant supervision and create significantly larger
amount of the training data. It might be an inter-
esting direction to use this distant supervision way
to create more training data for the aspect-based
sentiment analysis.

5 Conclusion and Future Work

We attempt to detect specific attributes of places
using two sources of data: the review text of places
and their crowdsourced attribute labels. We create
training data from the two sources in a form of dis-
tant supervision. We use a review-level attention
mechanism to pay attention to reviews related to
the attribute. From the experimental results, we
find that the review text is highly predictive of the
attributes despite the lack of shared guidance dur-
ing generation of two sources of data. Our method
requires no direct annotation on text, which will
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Attribute L P A Review Text Notes
usually a wait Y Y 0.08 ... Just be prepared to wait or otherwise

get lucky and find a seat at the bar ! ...
Missed by BoW

has outdoor seating Y Y 0.17 If you want to eat in front plan on waiting
after signing up to the list on busy morn-
ings , but the back patio is just as nice ...

Missed by BoW

requires cash only N Y 0.11 ... Remember they are Cash Only ! Wrong label
usually a wait N Y 0.06 Got there after 2 hr drive and found the

owners on vacation and the place closed
...

Irrelevant

pay by credit card Y Y 0.25 Food and service is great Tanisha is a awe-
some sever

No related review

usually a wait Y Y 0.09 ...Never a long wait for to go orders... Tricky

Table 3: Attributes along with true label (L), prediction (P), review-level attention weight (A), and review text.

make attribute detection more feasible in practice.
In creating the crowdsourced labels, we use an

agreement model to select most agreed labels for
attributes. It will be interesting future work to ex-
tend this to raw user votes. We will have a more re-
alistic dataset, especially for subjective attributes
where users may have conflict opinions.
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Abstract

We develop a grammatical error correction
(GEC) system for German using a small gold
GEC corpus augmented with edits extracted
from Wikipedia revision history. We extend
the automatic error annotation tool ERRANT
(Bryant et al., 2017) for German and use it
to analyze both gold GEC corrections and
Wikipedia edits (Grundkiewicz and Junczys-
Dowmunt, 2014) in order to select as addi-
tional training data Wikipedia edits contain-
ing grammatical corrections similar to those
in the gold corpus. Using a multilayer convo-
lutional encoder-decoder neural network GEC
approach (Chollampatt and Ng, 2018), we
evaluate the contribution of Wikipedia edits
and find that carefully selected Wikipedia edits
increase performance by over 5%.

1 Introduction and Previous Work

In the past decade, there has been a great deal of
research on grammatical error correction for En-
glish including a series of shared tasks, Helping
Our Own in 2011 and 2012 (Dale and Kilgarriff,
2011; Dale et al., 2012) and the CoNLL 2013 and
2014 shared tasks (Ng et al., 2013, 2014), which
have contributed to the development of larger En-
glish GEC corpora. On the basis of these resources
along with advances in machine translation, the
current state-of-the-art English GEC systems use
ensembles of neural MT models (Chollampatt and
Ng, 2018) and hybrid systems with both statis-
tical and neural MT models (Grundkiewicz and
Junczys-Dowmunt, 2018).

In addition to using gold GEC corpora, which
are typically fairly small in the context of MT-
based approaches, research in GEC has taken
a number of alternate data sources into con-
sideration such as artificially generated errors
(e.g., Wagner et al., 2007; Foster and Ander-
sen, 2009; Yuan and Felice, 2013), crowd-sourced

corrections (e.g., Mizumoto et al., 2012), or er-
rors from native language resources (e.g., Cahill
et al., 2013; Grundkiewicz and Junczys-Dowmunt,
2014). For English, Grundkiewicz and Junczys-
Dowmunt (2014) extracted pairs of edited sen-
tences from the Wikipedia revision history and fil-
tered them based on a profile of gold GEC data
in order to extend the training data for a statistical
MT GEC system and found that the addition of
filtered edits improved the system’s F0.5 score by
~2%. For languages with more limited resources,
native language resources such as Wikipedia offer
an easily accessible source of additional data.

Using a similar approach that extends existing
gold GEC data with Wikipedia edits, we develop a
neural machine translation grammatical error cor-
rection system for a new language, in this instance
German, for which there are only small gold GEC
corpora but plentiful native language resources.

2 Data and Resources

The following sections describe the data and re-
sources used in our experiments on GEC for Ger-
man. We create a new GEC corpus for German
along with the models needed for the neural GEC
approach presented in Chollampatt and Ng (2018).
Throughout this paper we will refer to the source
sentence as the original and the target sentence as
the correction.

2.1 Gold GEC Corpus
As we are not aware of any standard corpora for
German GEC, we create a new grammatical error
correction corpus from two German learner cor-
pora that have been manually annotated follow-
ing similar guidelines. In the Falko project, an-
notation guidelines were developed for minimal
target hypotheses, minimal corrections that trans-
form an original sentence into a grammatical cor-
rection, and these guidelines were applied to ad-
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Corpus # Sent Err/S Err/Tok

Falko
Train 11038 2.90 0.15
Dev 1307 2.87 0.16
Test 1237 3.00 0.16

MERLIN
Train 9199 2.63 0.20
Dev 1196 2.65 0.20
Test 1100 2.54 0.21

Total 24077 2.77 0.18

Table 1: Falko-MERLIN German GEC Corpus

vanced German learner essays (Reznicek et al.,
2012). The MERLIN project (Boyd et al., 2014)
adapted the Falko guidelines and annotated learner
texts from a wide range of proficiency levels.1

We extract pairs of original sentences and cor-
rections from all annotated sentence spans in
FalkoEssayL2 v2.42 (248 texts), FalkoEssayWhig
v2.02 (196 texts), and MERLIN v1.13 (1,033
texts) to create the new Falko-MERLIN GEC Cor-
pus, which contains 24,077 sentence pairs. The
corpus is divided into train (80%), dev (10%), and
test (10%) sets, keeping all sentences from a single
learner text within the same partition.

An overview of the Falko-MERLIN GEC Cor-
pus is shown in Table 1 with the number of errors
per sentence and errors per token as analyzed by
ERRANT for German (see section 3.1). On aver-
age, the Falko corpus (advanced learners) contains
longer sentences with fewer errors per token while
the MERLIN corpus (all proficiency levels) con-
tains shorter sentences with more errors per token.
A more detailed ERRANT-based analysis is pre-
sented in Figure 2 in section 3.2.

2.2 Wikipedia
In our experiments, we use German Wikipedia
dumps of articles and revision history from June 1,
2018. Wikipedia edits are extracted from the revi-
sion history using Wiki Edits (Grundkiewicz and
Junczys-Dowmunt, 2014) with a maximum sen-
tence length of 60 tokens, since 99% of the Falko
and MERLIN sentences are shorter than 60 to-
kens. For training the subword embeddings, plain
text is extracted from the German Wikipedia arti-
cles using WikiExtractor.4

1We also considered including German data from Lang-8,
however it seemed to be far too noisy.

2https://www.linguistik.hu-berlin.
de/de/institut/professuren/
korpuslinguistik/forschung/falko/zugang

3https://www.merlin-platform.eu
4https://github.com/attardi/

wikiextractor

2.3 BPE Model and Subword Embeddings

We learn a byte pair encoding (BPE) (Sennrich
et al., 2016) with 30K symbols using the correc-
tions from the Falko-MERLIN training data plus
the complete plain Wikipedia article text. As sug-
gested by Chollampatt and Ng (2018), we encode
the Wikipedia article text using the BPE model
and learn fastText embeddings (Bojanowski et al.,
2017) with 500 dimensions.

2.4 Language Model

For reranking, we train a language model on
the first one billion lines (~12 billion tokens) of
the deduplicated German Common Crawl corpus
(Buck et al., 2014).

3 Method

We extend the Falko-MERLIN GEC training data
with sentence-level Wikipedia edits that include
similar types of corrections. In order to automat-
ically analyze German GEC data, we extend ER-
RANT from English to German (section 3.1) and
use its analyses to select suitable Wikipedia edits
(section 3.2).

3.1 ERRANT

ERRANT, the ERRor ANnotation Tool (Felice
et al., 2016; Bryant et al., 2017), analyzes pairs
of English sentences from a GEC corpus to iden-
tify the types of corrections performed. The to-
kens in a pair of sentences are aligned using
Damerau-Levenshtein edit distance with a custom
substitution cost that includes linguistic informa-
tion — lemmas, POS, and characters — to pro-
mote alignments between related word forms. Af-
ter the individual tokens are aligned, neighbor-
ing edits are evaluated to determine whether two
or more edits should be merged into one longer
edit, such as merging wide → widespread fol-
lowed by spread → ∅ into a single edit wide
spread→ widespread.

To assign an error type to a correction, ER-
RANT uses a rule-based approach that considers
information about the POS tags, lemmas, stems,
and dependency parses. To extend ERRANT for
German, we adapted and simplified the English
error types, relying on UD POS tags instead of
language-specific tags as much as possible. Our
top-level German ERRANT error types are shown
with examples in Table 2. For substitution errors,
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Error Type Example
POS (15) dem→ den (DET:FORM)
MORPH solid→ solide
ORTH Große→ große
SPELL wächseln→ wechseln
ORDER zu gehen→ gehen zu
CONTR ’s→ ∅
OTHER hochem→ einem hohen

Table 2: German ERRANT Error Types

each POS error type has an additional FORM sub-
type if the tokens have the same lemma.

The POS tag types include 14 UD POS types
plus the German-specific STTS tag TRUNC. The
MORPH tag captures errors for related word
forms with different POS tags, ORTH is for cap-
italization and whitespace errors, SPELL errors
have an original token that is not in a large word
list with >50% overlapping characters compared
to the corrected token, ORDER errors cover adja-
cent reordered tokens, and CONTR errors involve
the contraction ’s (‘it’). All remaining errors are
classified as OTHER.

In ERRANT for English, all linguistic anno-
tation is performed with spaCy.5 We preserve
as much of the spaCy pipeline as possible us-
ing spaCy’s German models, however the lem-
matizer is not sufficient and is replaced with the
TreeTagger lemmatizer.6 All our experiments are
performed with spaCy 2.0.11 and spaCy’s de-
fault German model. The word list for detecting
spelling errors comes from Hunspell igerman98-
201612077 and the mapping of STTS to UD tags
from TuebaUDConverter (Çöltekin et al., 2017).

An example of a German ERRANT analysis is
shown in Figure 1. The first token is analyzed as
an adjective substitution error where both adjec-
tives have the same lemma (S:ADJ:FORM), the
inflected deverbal adjective bestandenen ‘passed’
is inserted before Prüfung ‘exam’ (I:ADJ), and
the past participle bestanden ‘passed’ is deleted
at the end of the sentence (D:VERB). Note that
ERRANT does not analyze Prüfung bestanden→
bestandenen Prüfung as a word order error be-
cause the reordered word forms are not identical.
In cases like these and ones with longer distance
movement, which is a frequent type of correction

5https://spacy.io
6http://www.cis.uni-muenchen.de/

˜schmid/tools/TreeTagger/
7https://www.j3e.de/ispell/igerman98/

dict/

in non-native German texts, ERRANT has no way
to indicate that these two word forms are related
or that this pair of edits is coupled.

3.2 Filtering Edits with ERRANT

Even though the Wiki Edits algorithm (Grund-
kiewicz and Junczys-Dowmunt, 2014) extracts
only sentence pairs with small differences, many
edits relate to content rather than grammatical er-
rors, such as inserting a person’s middle name or
updating a date. In order to identify the most rele-
vant Wikipedia edits for GEC, we analyze the gold
GEC corpus and Wikipedia edits with ERRANT
and then filter the Wikipedia edits based on a pro-
file of the gold GEC data.

First, sentences with ERRANT error types that
indicate content or punctuation edits are dis-
carded: 1) sentences with only punctuation, proper
noun, and/or OTHER error types, 2) sentences
with edits modifying only numbers or non-Latin
characters, and 3) sentences with OTHER edits
longer than two tokens. Second, the ERRANT
profile of the gold corpus is used to select edits
that: 1) include an original token edited in the gold
corpus, 2) include the same list of error types as a
sentence in the gold corpus, 3) include the same
set of error types as a sentence in the gold corpus
for 2+ error types, or 4) for sets of Gold and Wiki
error types have a Jaccard similarity coefficient to
a gold sentence greater than 0.5:

J(Gold,Wiki) =
|Gold ∩Wiki|
|Gold ∪Wiki|

After ERRANT-based filtering, approximately
one third of the sentences extracted with Wiki Ed-
its remain.

The distribution of selected ERRANT error
types for the Falko and MERLIN gold GEC cor-
pora vs. the unfiltered and filtered Wikipedia edit
corpora are shown in Figure 2 in order to pro-
vide an overview of the similarities and differ-
ences between the data. As intended, filtering
Wikipedia edits as described above decreases the
number of potentially content-related PNOUN and
OTHER edits while increasing the proportion of
other types of edits. Both in the unfiltered and
filtered Wikipedia edits corpora, the overall fre-
quency of errors remains lower than in the Falko-
MERLIN GEC corpus: 1.7 vs. 2.8 errors per sen-
tence and 0.08 vs. 0.18 errors per token.
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Original Herzliche Glückwunsch zur Prüfung bestanden .
Correction Herzlichen Glückwunsch zur bestandenen Prüfung .
ERRANT S:ADJ:FORM I:ADJ D:VERB

heartfelt congratulation to the passed exam .

‘Congratulations on passing your exam.’

Figure 1: Example German ERRANT Analysis
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Figure 2: Distribution of Selected ERRANT Error Types

Training Data Unfiltered Wiki Edits Filtered Wiki Edits
P R F0.5 P R F0.5

Falko-MERLIN (19K) 45.38 25.42 39.22 45.38 25.42 39.22
+ 100K Wiki Edits 53.91 22.44 42.10 54.59 22.25 42.30
+ 250K Wiki Edits 57.57 21.80 43.35 57.30 23.04 44.17
+ 500K Wiki Edits 58.55 20.33 42.55 58.74 22.37 44.33
+ 1M Wiki Edits 57.86 21.72 43.41 60.19 21.75 44.47
+ 1M Wiki Edits + EO 41.43 28.74 38.07 39.95 29.03 37.15
+ 1M Wiki Edits + LM 44.72 28.39 40.11 51.81 29.26 44.89
+ 1M Wiki Edits + LMNorm 48.65 28.69 42.71 51.99 29.73 45.22
1M Wiki Edits Only 31.12 5.33 15.82 30.13 5.42 15.75
1M Wiki Edits Only + EO 19.66 11.40 17.17 20.26 12.18 17.89
1M Wiki Edits Only + LM 26.34 12.59 21.62 29.12 13.95 23.92
1M Wiki Edits Only + LMNorm 25.21 12.38 20.88 29.96 13.95 24.37

Table 3: Results for MLConv GEC on Falko-Merlin Test Set (M2)

4 Results and Discussion

We evaluate the effect of extending the Falko-
MERLIN GEC Corpus with Wikipedia edits for
a German GEC system using the multilayer con-
volutional encoder-decoder neural network ap-
proach from Chollampatt and Ng (2018), using
the same parameters as for English.8 We train
a single model for each condition and evaluate
on the Falko-MERLIN test set using M2 scorer
(Dahlmeier and Ng, 2012).9

8https://github.com/nusnlp/
mlconvgec2018

9https://github.com/nusnlp/m2scorer/
archive/version3.2.tar.gz

The results, presented in Table 3, show that the
addition of both unfiltered and filtered Wikipedia
edits to the Falko-MERLIN GEC training data
lead to improvements in performance, however
larger numbers of unfiltered edits (>250K) do not
consistently lead to improvements, similar to the
results for English in Grundkiewicz and Junczys-
Dowmunt (2014). However for filtered edits, in-
creasing the number of additional edits from 100K
to 1M continues to lead to improvements, with an
overall improvement of 5.2 F0.5 for 1M edits over
the baseline without additional reranking.

In contrast to the results for English in Chollam-
patt and Ng (2018), edit operation (EO) rerank-
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ing decreases scores in conditions with gold GEC
training data in our experiments and reranking
with a web-scale language model (LM) does not
consistently increase scores, although both rerank-
ing methods lead to increases in recall. The
best result of 45.22 F0.5 is obtained with Falko-
MERLIN + 1M Filtered Wiki Edits with language
model reranking that normalizes scores by the
length of the sentence.

An analysis of the performance on Falko vs.
MERLIN shows stronger results for MERLIN,
with 44.19 vs. 46.52 F0.5 for Falko-MERLIN +
1M Filtered Wiki Edits + LMNorm. We expected
the advanced Falko essays to benefit from being
more similar to Wikipedia than MERLIN, how-
ever MERLIN may simply contain more spelling
and inflection errors that are easy to correct given
a small amount of context.

In order to explore the possibility of develop-
ing GEC systems for languages with fewer re-
sources, we trained models solely on Wikipedia
edits, which leads to a huge drop in performance
(45.22 vs. 24.37 F0.5). However, the genre differ-
ences may be too large to draw solid conclusions
and this approach may benefit from further work
on Wikipedia edit selection, such as using a lan-
guage model to exclude some Wikipedia edits that
introduce (rather than correct) grammatical errors.

5 Future Work

The combined basis of ERRANT and Wiki Ed-
its make it possible to explore MT-based GEC
approaches for languages with limited gold GEC
resources. The current German ERRANT error
analysis approach can be easily generalized to rely
on a pure UD analysis, which would make it possi-
ble to apply ERRANT to any language with a UD
parser and a lemmatizer. Similarly, the process of
filtering Wikipedia edits could use alternate meth-
ods in place of a gold reference corpus, such as
a list of targeted token or error types, to generate
GEC training data for any language with resources
similar to a Wikipedia revision history.

For the current German GEC system, a de-
tailed error analysis for the output could iden-
tify the types of errors where Wikipedia ed-
its make a significant contribution and other ar-
eas where additional data could be incorporated,
potentially through artificial error generation or
crowd-sourcing.

6 Conclusion

We provide initial results for grammatical error
correction for German using data from the Falko
and MERLIN corpora augmented with Wikipedia
edits that have been filtered using a new German
extension of the automatic error annotation tool
ERRANT (Bryant et al., 2017). Wikipedia ed-
its are extracted using Wiki Edits (Grundkiewicz
and Junczys-Dowmunt, 2014), profiled with ER-
RANT, and filtered with reference to the gold GEC
data. We evaluate our method using the multi-
layer convolutional encoder-decoder neural net-
work GEC approach from Chollampatt and Ng
(2018) and find that augmenting a small gold
German GEC corpus with one million filtered
Wikipedia edits improves the performance from
39.22 to 44.47 F0.5 and additional language model
reranking increases performance to 45.22. The
data and source code for this paper are available
at: https://github.com/adrianeboyd/
boyd-wnut2018/
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Abstract
Despite the long history of named-entity
recognition (NER) task in the natural language
processing community, previous work rarely
studied the task on conversational texts. Such
texts are challenging because they contain a
lot of word variations which increase the num-
ber of out-of-vocabulary (OOV) words. The
high number of OOV words poses a difficulty
for word-based neural models. Meanwhile,
there is plenty of evidence to the effectiveness
of character-based neural models in mitigat-
ing this OOV problem. We report an empirical
evaluation of neural sequence labeling models
with character embedding to tackle NER task
in Indonesian conversational texts. Our exper-
iments show that (1) character models outper-
form word embedding-only models by up to 4
F1 points, (2) character models perform better
in OOV cases with an improvement of as high
as 15 F1 points, and (3) character models are
robust against a very high OOV rate.

1 Introduction

Critical to a conversational agent is the ability
to recognize named entities. For example, in
a flight booking application, to book a ticket,
the agent needs information about the passenger’s
name, origin, and destination. While named-entity
recognition (NER) task has a long-standing his-
tory in the natural language processing commu-
nity, most of the studies have been focused on
recognizing entities in well-formed data, such as
news articles or biomedical texts. Hence, lit-
tle is known about the suitability of the available
named-entity recognizers for conversational texts.
In this work, we tried to shed some light on this
direction by evaluating neural sequence labeling
models on NER task in Indonesian conversational
texts.

Unlike standard NLP corpora, conversational
texts are typically noisy and informal. For exam-

ple, in Indonesian, the word aku (“I”) can be writ-
ten as: aq, akuw, akuh, q. People also tend to use
non-standard words to represent named entities.
This creative use of language results in numerous
word variations which may increase the number
out-of-vocabulary (OOV) words (Baldwin et al.,
2013).

The most common approach to handle the OOV
problem is by representing each OOV word with
a single vector representation (embedding). How-
ever, this treatment is not optimal because it ig-
nores the fact that words can share similar mor-
phemes which can be exploited to estimate the
OOV word embedding better. Meanwhile, word
representation models based on subword units,
such as characters or word segments, have been
shown to perform well in many NLP tasks such
as POS tagging (dos Santos and Zadrozny, 2014;
Ling et al., 2015), language modeling (Ling et al.,
2015; Kim et al., 2016; Vania and Lopez, 2017),
machine translation (Vylomova et al., 2016; Lee
et al., 2016; Sennrich et al., 2016), dependency
parsing (Ballesteros et al., 2015), and sequence
labeling (Rei et al., 2016; Lample et al., 2016).
These representations are effective because they
can represent OOV words better by leveraging the
orthographic similarity among words.

As for Indonesian NER, the earliest work was
done by Budi et al. (2005) which relied on a rule-
based approach. More recent research mainly used
machine learning methods such as conditional ran-
dom fields (CRF) (Luthfi et al., 2014; Leonandya
et al., 2015; Taufik et al., 2016) and support vec-
tor machines (Suwarningsih et al., 2014; Aryoyu-
danta et al., 2016). The most commonly used
datasets are news articles (Budi et al., 2005),
Wikipedia/DBPedia articles (Luthfi et al., 2014;
Leonandya et al., 2015; Aryoyudanta et al., 2016),
medical texts (Suwarningsih et al., 2014), and
Twitter data (Taufik et al., 2016). To the best of
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our knowledge, there has been no work that used
neural networks for Indonesian NER nor NER for
Indonesian conversational texts.

In this paper, we report the ability of a neural
network-based approach for Indonesian NER in
conversational data. We employed the neural se-
quence labeling model of (Rei et al., 2016) and ex-
perimented with two word representation models:
word-level and character-level. We evaluated all
models on relatively large, manually annotated In-
donesian conversational texts. We aim to address
the following questions:

1) How do the character models perform com-
pared to word embedding-only models on
NER in Indonesian conversational texts?

2) How much can we gain in terms of perfor-
mance from using the character models on
OOV cases?

3) How robust (in terms of performance) are the
character models on different levels of OOV
rates?

Our experiments show that (1) the character
models perform really well compared to word
embedding-only with an improvement up to 4 F1

points, (2) we can gain as high as 15 F1 points on
OOV cases by employing character models, and
(3) the character models are highly robust against
OOV rate as there is no noticeable performance
degradation even when the OOV rate approaches
100%.

2 Methodology

We used our own manually annotated datasets
collected from users using our chatbot service.
There are two datasets: SMALL-TALK and TASK-
ORIENTED. SMALL-TALK contains 16K conver-
sational messages from our users having small
talk with our chatbot, Jemma.1 TASK-ORIENTED

contains 72K task-oriented imperative messages
such as flight booking, food delivery, and so forth
obtained from YesBoss service.2 Thus, TASK-
ORIENTED usually has longer texts and more pre-
cise entities (e.g., locations) compared to SMALL-
TALK. Table 1 shows some example sentences for
each dataset. A total of 13 human annotators an-
notated the two datasets. Unfortunately, we can-
not publish the datasets because of proprietary rea-
sons.

SMALL-TALK has 6 entities: DATETIME,
1Available at LINE messaging as @jemma.
2YesBoss is our hybrid virtual assistant service.

EMAIL, GENDER, LOCATION, PERSON,
and PHONE. TASK-ORIENTED has 4 entities:
EMAIL, LOC, PER, and PHONE. The two
datasets have different entity inventory because
the two chatbot purposes are different. In SMALL-
TALK, we care about personal information such
as date of birth, email, or gender to offer person-
alized content. In TASK-ORIENTED, the tasks
usually can be performed by providing minimal
personal information. Therefore, some of the
entities are not necessary. Table 2 and 3 report
some examples of each entity and the number of
entities in both datasets respectively. The datasets
are tagged using BIO tagging scheme and split
into training, development, and testing set. The
complete dataset statistics, along with the OOV
rate for each split, are shown in Table 4. We
define OOV rate as the percentage of word types
that do not occur in the training set. As seen in
the table, the OOV rate is quite high, especially
for SMALL-TALK with more than 50% OOV rate.

As baselines, we used a simple model which
memorizes the word-tag assignments on the train-
ing data (Nadeau and Sekine, 2007) and a feature-
based CRF (Lafferty et al., 2001), as it is a com-
mon model for Indonesian NER. We used almost
identical features as Taufik et al. (2016) since they
experimented on the Twitter dataset which we re-
garded as the most similar to our conversational
texts among other previous work on Indonesian
NER. Some features that we did not employ were
POS tags, lookup list, and non-standard word list
as we did not have POS tags in our data nor ac-
cess to the lists Taufik et al. (2016) used. For the
CRF model, we used an implementation provided
by Okazaki (2007)3.

Neural architectures for sequence labeling are
pretty similar. They usually employ a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
with CRF as the output layer, and a CNN (Ma
and Hovy, 2016) or LSTM (Lample et al., 2016;
Rei et al., 2016) composes the character embed-
dings. Also, we do not try to achieve state-of-the-
art results but only are interested whether neural
sequence labeling models with character embed-
ding can handle the OOV problem well. There-
fore, for the neural models, we just picked the im-
plementation provided in (Rei et al., 2016).4

In their implementation, all the LSTMs have

3http://www.chokkan.org/software/crfsuite/
4https://github.com/marekrei/sequence-labeler
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Dataset Example

SMALL-TALK

sama2 sumatera barat, tapi gue di Pariaman bkn Payakumbuh
“also in west sumatera, but I am in pariaman not payakumbuh”
rere jem rere, bukan riri. Riri itu siapa deeeh
“(it’s) rere jem rere, not riri. who’s riri?”

TASK-ORIENTED

Bioskop di lippo mall jogja brapa bos?
“how much does the movies at lippo mall jogja cost?”
Tolong cariin nomor telepon martabak pecenongan kelapa gading, sama tutup jam brp
“please find me the phone number for martabak pecenongan kelapa gading, and what time it closes”

Table 1: Example texts from each dataset. SMALL-TALK contains small talk conversations, while TASK-
ORIENTED contains task-oriented imperative texts such as flight booking or food delivery. English translations
are enclosed in quotes.

Entity Example

DATETIME 17 agustus 1999, 15februari2001, 180900
EMAIL dianu#####@yahoo.co.id, b.s#####@gmail.com
GENDER pria, laki, wanita, cewek
LOCATION/LOC salatiga, Perumahan Griya Mawar Sembada Indah
PERSON/PER Yusan Darmaga, Natsumi Aida, valentino rossi
PHONE 085599837###, 0819.90.837.###

Table 2: Some examples of each entity. Some parts are
replaced with ### for privacy reasons.

only one layer. Dropout (Srivastava et al., 2014) is
used as the regularizer but only applied to the final
word embedding as opposed to the LSTM outputs
as proposed by Zaremba et al. (2015). The loss
function contains not only the log likelihood of
the training data and the similarity score but also
a language modeling loss, which is not mentioned
in (Rei et al., 2016) but discussed in the subse-
quent work (Rei, 2017). Thus, their implementa-
tion essentially does multi-task learning with se-
quence labeling as the primary task and language
modeling as the auxiliary task.

We used an almost identical setting to Rei et al.
(2016): words are lowercased, but characters are
not, digits are replaced with zeros, singleton words
in the training set are converted into unknown
tokens, word and character embedding sizes are
300 and 50 respectively. The character embed-
dings were initialized randomly and learned dur-
ing training. LSTMs are set to have 200 hidden
units, the pre-output layer has an output size of
50, CRF layer is used as the output layer, and
early stopping is used with a patience of 7. Some
differences are: we did not use any pretrained
word embedding, and we used Adam optimiza-
tion (Kingma and Ba, 2014) with a learning rate
of 0.001 and batch size of 16 to reduce GPU
memory usage. We decided not to use any pre-
trained word embedding because to the best of
our knowledge, there is no off-the-shelf Indone-

sian pretrained word embedding that is trained on
conversational data. The ones available are usu-
ally trained on Wikipedia articles (fastText)
and we believe it has a very small size of shared
vocabulary with conversational texts. We tuned
the dropout rate on the development set via grid
search, trying multiples of 0.1. We evaluated all
of our models using CoNLL evaluation: micro-
averaged F1 score based on exact span matching.

3 Results and discussion

3.1 Performance

Table 5 shows the overall F1 score on the test set of
each dataset. We see that the neural network mod-
els beat both baseline models significantly. We
also see that the character models consistently out-
perform the word embedding-only model, where
the improvement can be as high as 4 points on
SMALL-TALK. An interesting observation is how
the improvement is much larger in SMALL-TALK

than TASK-ORIENTED. We speculate that this is
due to the higher OOV rate SMALL-TALK has, as
can be seen in Table 4.

To understand the character model better, we
draw the confusion matrix of the word embedding-
only and the concatenation model for each dataset
in Figure 1. We chose only the concatenation
model because both character models are better
than the word embedding-only, so we just picked
the simplest one.

SMALL-TALK. Both word embedding-only
and concatenation model seem to hallucinate
PERSON and LOCATION often. This observa-
tion is indicated by the high false positive rate
of those entities, where 56% of non-entities are
recognized as PERSON, and about 30% of non-
entities are recognized as LOCATION. Both mod-
els appear to confuse PHONE as DATETIME as
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SMALL-TALK TASK-ORIENTED

DATETIME EMAIL GENDER LOCATION PERSON PHONE EMAIL LOC PER PHONE

90 35 390 4352 3958 83 1707 55614 40624 3186

Table 3: Number of entities in both datasets.
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Figure 1: Confusion matrices of the word embedding-only and concatenation model on the test set of each dataset.
Top row: SMALL-TALK dataset. Bottom row: TASK-ORIENTED dataset. Left column: word embedding-only
model. Right column: concatenation model.

marked by 11% and 17% misclassification rate of
the models respectively.

The two models also have some differences.
The word embedding-only model has higher false
negative than the concatenation model. DATE-
TIME has the highest false negative, where the
word embedding-only model incorrectly classified
30% of true entities as non-entity. Turning to the
concatenation model, we see how the false nega-
tive decreases for almost all entities. DATETIME
has the most significant drop of 20% (down from
30% to 10%), followed by PERSON, PHONE,
LOCATION, and GENDER.

TASK-ORIENTED. The confusion matrices of
the two models are strikingly similar. The models
seem to have a hard time dealing with LOC be-

cause it often hallucinates the existence of LOC
(as indicated by the high false positive rate) and
misses genuine LOC entities (as shown by the high
false negative rate). Upon closer look, we found
that the two models actually can recognize LOC
well, but sometimes they partition it into its parts
while the gold annotation treats the entity as a sin-
gle unit. Table 6 shows an example of such case. A
long location like Kantor PKPK lt. 3 is partitioned
by the models into Kantor PKPK (office name)
and lt. 3 (floor number). The models also parti-
tion Jl Airlangga no. 4-6 Sby into Jl Airlangga no.
4-6 (street and building number) and Sby (abbre-
viated city name). We think that this partitioning
behavior is reasonable because each part is indeed
a location.
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SMALL-TALK TASK-ORIENTED

L
mean 3.63 14.84
median 3.00 12.00
std 2.68 11.50

N
train 10 044 51 120
dev 3 228 14 354
test 3 120 7 097

O
dev 57.59 41.39
test 57.79 32.17

Table 4: Sentence length (L), number of sentences (N ),
and OOV rate (O) in each dataset. Sentence length is
measured by the number of words. OOV rate is the pro-
portion of word types that do not occur in the training
split.

Model SMALL-TALK TASK-ORIENTED

MEMO 38.03 46.35
CRF 75.50 73.25

WORD 80.96 79.35
CONCAT 84.73 80.22
ATTN 84.97 79.71

Table 5: F1 scores on the test set of each dataset. The
scores are computed as in CoNLL evaluation. MEMO:
memorization baseline. CRF: CRF baseline. WORD,
CONCAT, ATTN: Rei et al.’s word embedding-only,
concatenation, and attention model respectively.

There is also some amount of false positive
on PER, signaling that the models sometimes
falsely recognize a non-entity as a person’s name.
The similarity of the two confusion matrices ap-
pears to demonstrate that character embedding
only provides a small improvement on the TASK-
ORIENTED dataset.

3.2 Performance on OOV entities

Next, we want to understand better how much
gain we can get from character models on OOV
cases. To answer this question, we ignored en-
tities that do not have any OOV word on the
test set and re-evaluated the word embedding-
only and concatenation models. Table 7 shows
the re-evaluated overall and per-entity F1 score
on the test set of each dataset. We see how the
concatenation model consistently outperforms the
word embedding-only model for almost all enti-
ties on both datasets. On SMALL-TALK dataset,
the overall F1 score gap is as high as 15 points.
It is also remarkable that the concatenation model
manages to achieve 40 F1 points for GENDER
on SMALL-TALK while the word embedding-only
cannot even recognize any GENDER. Therefore,

token vocab gold word concat

Kantor kantor B-LOC B-LOC B-LOC
PKPK UNK I-LOC I-LOC I-LOC
lt lt I-LOC B-LOC B-LOC
. . I-LOC I-LOC I-LOC
3 0 I-LOC I-LOC I-LOC
, , O O O
Gedung gedung B-LOC B-LOC B-LOC
Fak UNK I-LOC I-LOC I-LOC
. . I-LOC O I-LOC
Psikologi psikologi I-LOC B-LOC I-LOC
UNAIR unair I-LOC I-LOC I-LOC
Kampus kampus I-LOC B-LOC B-LOC
B b I-LOC I-LOC B-LOC
. . O O O
Jl jl B-LOC B-LOC B-LOC
Airlangga airlangga I-LOC I-LOC I-LOC
no no I-LOC I-LOC I-LOC
. . I-LOC I-LOC I-LOC
4-6 UNK I-LOC I-LOC I-LOC
Sby sby I-LOC B-LOC B-LOC

Table 6: An example displaying how the word
embedding-only (word) and concatenation (concat)
models can partition a long location entity into its parts.

in general, this result corroborates our hypothesis
that the character model is indeed better at dealing
with the OOV problem.

3.3 Impact of OOV rate to model
performance

To better understand to what extent the character
models can mitigate OOV problem, we evaluated
the performance of the models on different OOV
rates. We experimented by varying the OOV rate
on each dataset and plot the result in Figure 2.
Varying the OOV rate can be achieved by chang-
ing the minimum frequency threshold for a word
to be included in the vocabulary. Words that oc-
cur fewer than this threshold in the training set are
converted into the special token for OOV words.
Thus, increasing this threshold means increasing
the OOV rate and vice versa.

From Figure 2, we see that across all datasets,
the models which employ character embedding,
either by concatenation or attention, consistently
outperform the word embedding-only model at al-
most every threshold level. The performance gap
is even more pronounced when the OOV rate is
high. Going from left to right, as the OOV rate
increases, the character models performance does
not seem to degrade much. Remarkably, this is
true even when OOV rate is as high as 90%, even
approaching 100%, whereas the word embedding-
only model already has a significant drop in per-
formance when the OOV rate is just around 70%.
This finding confirms that character embedding is
useful to mitigate the OOV problem and robust
against different OOV rates. We also observe that
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Entity word concat

DATETIME 50.00 87.50
EMAIL 100.00 88.89
GENDER *0.00 40.00
LOCATION 51.38 63.18
PERSON 68.36 80.14
PHONE 0.00 40.00

Overall 46.14 61.75

Entity word concat

EMAIL 95.06 96.59
LOC 54.49 54.74
PER 73.22 82.55
PHONE *0.00 0.00

Overall 50.05 54.54

Table 7: F1 scores of word embedding-only (word) and concatenation (concat) model on the test set of SMALL-
TALK (left) and TASK-ORIENTED (right) but only for entities containing at least one OOV word. Entries marked
with an asterisk (*) indicate that the model does not recognize any entity at all.
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Figure 2: F1 scores on the test set of each dataset with varying threshold. Words occurring fewer than this threshold
in the training set are converted into the special token for OOV words. OOV rate increases as threshold does (from
left to right). WORD, CONCAT, and ATTN refers to the word embedding-only, concatenation, and attention model
respectively.

there seems no perceptible difference between the
concatenation and attention model.

4 Conclusion and future work

We reported an empirical evaluation of neural se-
quence labeling models by Rei et al. (2016) on
NER in Indonesian conversational texts. The neu-
ral models, even without character embedding,
outperform the CRF baseline, which is a typical
model for Indonesian NER. The models employ-
ing character embedding have an improvement up
to 4 F1 points compared to the word embedding-
only counterpart. We demonstrated that by using
character embedding, we could gain improvement
as high as 15 F1 points on entities having OOV
words. Further experiments on different OOV
rates show that the character models are highly ro-

bust against OOV words, as the performance does
not seem to degrade even when the OOV rate ap-
proaches 100%.

While the character model by Rei et al. (2016)
has produced good results, it is still quite slow
because of the LSTM used for composing char-
acter embeddings. Recent work on sequence la-
beling by Reimers and Gurevych (2017) showed
that replacing LSTM with CNN for composition
has no significant performance drop but is faster
because unlike LSTM, CNN computation can be
parallelized. Using character trigrams as subword
units can also be an avenue for future research, as
their effectiveness has been shown by Vania and
Lopez (2017). Entities like PHONE and EMAIL
have quite clear patterns so it might be better to
employ a regex-based classifier to recognize such

90



entities and let the neural network models tag only
person and location names.
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Indra Budi, Stéphane Bressan, Gatot Wahyudi,
Zainal A. Hasibuan, and Bobby A. A. Nazief. 2005.
Named Entity Recognition for the Indonesian Lan-
guage: Combining Contextual, Morphological and
Part-of-Speech Features into a Knowledge Engi-
neering Approach. In Discovery Science, pages 57–
69, Berlin, Heidelberg. Springer Berlin Heidelberg.

Cı́cero Nogueira dos Santos and Bianca Zadrozny.
2014. Learning character-level representations for
part-of-speech tagging. In Proceedings of the 31st
International Conference on Machine Learning, vol-
ume 32 of Proceedings of Machine Learning Re-
search, pages 1818–1826, Beijing, China. PMLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the 2016 Conference on
Artificial Intelligence (AAAI).

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, ICML ’01, pages 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2016. Fully character-level neural machine trans-
lation without explicit segmentation. arXiv preprint
arXiv:1610.03017.

R. A. Leonandya, B. Distiawan, and N. H. Praptono.
2015. A Semi-supervised Algorithm for Indonesian
Named Entity Recognition. In 2015 3rd Interna-
tional Symposium on Computational and Business
Intelligence (ISCBI), pages 45–50.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fernandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520–1530, Lisbon, Portu-
gal. Association for Computational Linguistics.

A. Luthfi, B. Distiawan, and R. Manurung. 2014.
Building an Indonesian named entity recognizer us-
ing Wikipedia and DBPedia. In 2014 International
Conference on Asian Language Processing (IALP),
pages 19–22.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. pages 1064–1074. Association for Computa-
tional Linguistics.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

Naoaki Okazaki. 2007. CRFsuite: A fast implementa-
tion of Conditional Random Fields (CRFs).

Marek Rei. 2017. Semi-supervised Multitask Learn-
ing for Sequence Labeling. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 2121–2130, Vancouver, Canada. Association
for Computational Linguistics.

91



Marek Rei, Gamal K. O. Crichton, and Sampo Pyysalo.
2016. Attending to characters in neural sequence la-
beling models. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 309–318, Os-
aka, Japan.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Per-
formance study of lstm-networks for sequence
tagging. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 338–348, Copenhagen, Denmark.
Association for Computational Linguistics. Full ex-
periments report: https://public.ukp.informatik.tu-
darmstadt.de/reimers/Optimal Hyperparameters for Deep LSTM-
Networks.pdf.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

W. Suwarningsih, I. Supriana, and A. Purwarianti.
2014. ImNER Indonesian medical named entity
recognition. In 2014 2nd International Confer-
ence on Technology, Informatics, Management, En-
gineering Environment, pages 184–188.

N. Taufik, A. F. Wicaksono, and M. Adriani. 2016.
Named entity recognition on Indonesian microblog
messages. In 2016 International Conference on
Asian Language Processing (IALP), pages 358–361.

Clara Vania and Adam Lopez. 2017. From Characters
to Words to in Between: Do We Capture Morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2016–2027, Vancouver,
Canada. Association for Computational Linguistics.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and
Gholamreza Haffari. 2016. Word representa-
tion models for morphologically rich languages
in neural machine translation. arXiv preprint
arXiv:1606.04217.

Wojciech Zaremba, Ilya Sutskever, and Oriols Vinyals.
2015. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

92



Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text, pages 93–103
Brussels, Belgium, Nov 1, 2018. c©2018 Association for Computational Linguistics

Orthogonal Matching Pursuit for Text Classification

Konstantinos Skianis1, Nikolaos Tziortziotis1, Michalis Vazirgiannis1,2
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Abstract

In text classification, the problem of overfitting
arises due to the high dimensionality, mak-
ing regularization essential. Although clas-
sic regularizers provide sparsity, they fail to
return highly accurate models. On the con-
trary, state-of-the-art group-lasso regularizers
provide better results at the expense of low
sparsity. In this paper, we apply a greedy
variable selection algorithm, called Orthogo-
nal Matching Pursuit, for the text classification
task. We also extend standard group OMP by
introducing overlapping Group OMP to han-
dle overlapping groups of features. Empirical
analysis verifies that both OMP and overlap-
ping GOMP constitute powerful regularizers,
able to produce effective and very sparse mod-
els. Code and data are available online1.

1 Introduction

The overall high dimensionality of textual data
is of major importance in text classification (also
known as text categorization), opinion mining,
noisy text normalization and other NLP tasks.
Since in most cases a high number of words oc-
curs, one can easily fall in the case of overfit-
ting. Regularization remains a key element for
addressing overfitting in tasks like text classifica-
tion, domain adaptation and neural machine trans-
lation (Chen and Rosenfeld, 2000; Lu et al., 2016;
Barone et al., 2017). Along with better generaliza-
tion capabilities, a proper scheme of regularization
can also introduce sparsity. Recently, a number of
text regularization techniques have been proposed
in the context of deep learning (Qian et al., 2016;
Ma et al., 2017; Zhang et al., 2017).

Apart from `1, `2 and elastic net, a very pop-
ular method for regularizing text classification is
group lasso. Yogatama and Smith (2014b) intro-
duced a group lasso variant to utilize groups of

1github.com/y3nk0/OMP-for-Text-Classification

Best feature (word):
j(k) = argmaxj /∈I

∣∣∣X>j r(k−1)
∣∣∣

Update active set:
I = I ∪ {j(k)}

r(0) = y
I = {}

j(k)

Logistic
regression
on active
features

Budget:
|I| ≥ K

Compute residual r(k):
r(k) = 1

1+exp{−Xθ(k)} − 1{y}

Final solution: θ(k)

I

No

k += 1 θ(k)

r(k)

Yes

Figure 1: OMP pipeline where X ∈ RN×d is the de-
sign matrix, y ∈ RN is the response vector, K is our
budget and I the set of active features.

words for logistic models. Occasionally though,
these groupings are either not available or hard to
be extracted. Moreover, no ground truth groups of
words exist to validate their quality. Furthermore,
group lasso can also fail to create sparse models.
Lastly, there has been little work in overlapping
group regularization for text, since words can ap-
pear in different groups, following the intuition
that they can share multiple contexts or topics.

In this work, we apply two greedy vari-
able selection techniques to the text classification
task, Orthogonal Matching Pursuit (OMP) and
overlapping group Orthogonal Matching Pursuit
(GOMP). In the case of GOMP, we build upon
work of Lozano et al. (2011), where the authors
propose the GOMP algorithm for Logistic Re-
gression for selecting relevant groups of features.
More specifically, standard GOMP is based on the
assumption that a number of disjoint groups of
features are available. Nevertheless, in most cases,
these groups are not disjoint. To overcome this
problem we extend GOMP to handle overlapping
groups of features. We empirically show that both
OMP and overlapping GOMP provide highly ac-
curate models, while producing very sparse mod-
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els compared to group lasso variants. Figure 1 il-
lustrates schematically the pipeline of OMP.

Our contribution can be summarized in the fol-
lowing novel aspects: (1) apply OMP to text clas-
sification; (2) introduce overlapping GOMP, mov-
ing from disjoint to overlapping groups; (3) ana-
lyze their efficiency in accuracy and sparsity, com-
pared to group lasso variants and state-of-the-art
deep learning models.

The rest of the paper is organized as follows.
Section 2 presents the background about the clas-
sification task, and Section 3 gives an overview of
the related work. Section 4 formally introduces
the proposed OMP and overlapping GOMP algo-
rithms for the text classification problem. Experi-
mental results are presented in Section 5. We con-
clude the paper in Section 6 by discussing possible
future directions.

2 Background & Notation

In this section, we set the theoretical and practical
background, needed to tackle text classification.

2.1 Loss minimization

In the binary classification problem, the objective
is to assign an instance vector x ∈ Rd, which rep-
resents a document in our setting, to a binary re-
sponse y ∈ {−1, 1}. In text classification, d repre-
sents the size of our dictionary concatenated with
an additional bias term.

We begin by transforming the classification
problem into a loss minization problem. For that
purpose, a loss function should be defined that
quantifies the loss between the prediction of a clas-
sifier and the true class label, yi, associated with a
specific document (instance), xi.

Logistic regression models the class conditional
probability, as:

P (Y = y|x) = 1

1 + exp{−y(θ>x)} , (1)

where vector θ contains the unknown model’s pa-
rameters, and the hyperplane θ>x = 0 is the de-
cision boundary of the classifier that separates the
two classes. Given a training set of i.i.d. data point
{(xi, yi)}Ni=1, we find the optimal model’s param-
eters, θ∗, by minimizing the negative log likeli-
hood:

θ∗ = argmin
θ

N∑

i=1

L(xi,θ, yi), (2)

where L(xi,θ, yi) = log[1 + exp{−yi(θ>xi)}]
is the loss function of our model. It should be also
noticed that other loss functions can be used such
as hinge loss, square loss, etc.. For linear classi-
fiers such as Linear Least Square Fit, Logistic Re-
gression and linear Support Vector Machines, in
the case of binary predictions the L(x,θ, y) is re-
spectively [1 − y(θ>x)]2 (squared loss), log[1 +
exp{−y(θ>x)} (log loss) and [1 − y(θ>x)]+
(hinge loss).

2.2 Regularization
By only minimizing the empirical risk, a model
can be led to severe overfitting in the case where
the number of the features (dictionary) is much
higher than the number of the instances (docu-
ments) in training set. In practice, it yields models
with poor generalization capabilities (i.e., lower
performances on the test set) that fit the noise con-
tained in the training dataset instead of learning
the underlying pattern we are trying to capture.
Additionally, if two hypothesis lead to similar low
empirical risks, one should select the “simpler”
model for better generalization capabilities.

Interpretation The concept of regularization
encompasses all these ideas. It can be interpreted
as taking into account the model complexity by
discouraging feature weights from reaching large
values; incorporating prior knowledge to help the
learning by making prior assumptions on the fea-
ture weights and their distribution; and helping
compensate ill-posed conditions.

Expected risk Regularization takes the form of
additional constraints to the minimization prob-
lem, i. e., a budget on the feature weights, which
are often relaxed into a penalty term Ω(θ) con-
trolled via a Lagrange multiplier λ (see Boyd and
Vandenberghe (2004) for more details about the
theory behind convex optimization). Therefore,
the overall expected risk (Vapnik, 1991) can be
expressed as the weighted sum of two compo-
nents: the empirical risk and a penalty term, called
“Loss+Penalty” (Hastie et al., 2009). In this way,
the optimal set of feature weights θ∗ is found as:

θ∗ = argmin
θ

N∑

i=1

L(xi,θ, yi) + λΩ(θ) (3)

where the free parameter λ ≥ 0 governs the im-
portance of the penalty term compared with the
loss term.
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3 Related Work

In this section, we review particularly relevant
prior work on regularization for text classifica-
tion and more specifically methods based on group
lasso.

In many applications of statistics and machine
learning, the number of exploratory variables may
be very large, while only a small subset may truly
be relevant in explaining the response to be mod-
elled. In certain cases, the dimensionality of the
predictor space may also exceed the number of ex-
amples. Then the only way to avoid overfitting is
via some form of capacity control over the fam-
ily of dependencies being explored. Estimation of
sparse models that are supported on a small set
of input variables is thus highly desirable, with
the additional benefit of leading to parsimonious
models, which can be used not only for predic-
tive purposes but also to understand the effects (or
lack thereof) of the candidate predictors on the re-
sponse.

More specifically, regularization in text scenar-
ios is essential as it can lead to removing unneces-
sary words along with their weights. For example,
in text classification, we may only care for a small
subset of the vocabulary that is important during
the learning process, by penalizing independently
or in grouped way noisy and irrelevant words.

With noiseness we refer to user-generated
words that may increase the dimensionality and
complexity of a problem, while having a clear de-
creasing effect in performance.

Another example task is text normalization,
where we want to transform lexical variants of
words to their canonical forms. Text normaliza-
tion can be seen as a machine learning problem
(Ikeda et al., 2016) and thus regularization tech-
niques can be applied.

Next we present standard regularization meth-
ods, which prove to be effective for classification
tasks. We also use them later as baselines for our
experiments.

`1, `2 regularization Two of the most used reg-
ularization schemes are `1-regularization, called
Lasso (Tibshirani, 1996) or basis pursuit in sig-
nal processing (Chen et al., 2001), and `2-
regularization, called ridge (Hoerl and Kennard,
1970) or Tikhonov (Tikhonov and Arsenin, 1977),
which involve adding a penalty term (`1 and `2
norms of the parameter vector, respectively) to the

error function:

Ωlasso(θ) =
d∑

i=1

|θi| = ‖θ‖1, (4)

Ωrigde(θ) =
d∑

i=1

θ2i = ‖θ‖22. (5)

Elastic net A linear combination of the `1 and
`2 penalties has been also introduced by Zou and
Hastie (2005), called elastic net. Although `1 and
elastic net can be very effective in terms of spar-
sity, the accuracy achieved by these regularizers
can be low. On the contrary, `2 can deliver suf-
ficient accuracy at the cost of zero sparsity. The
need for new methods that outperform the afore-
mentioned approaches in both accuracy and spar-
sity is evident.

Group structured regularization In many
problems a predefined grouping structure exists
within the explanatory variables, and it is nat-
ural to incorporate the prior knowledge so that
the support of the model should be a union over
some subset of these variable groups. Group struc-
tured regularization has been proposed to address
the problem of overfitting, given we are provided
with groups of features. Group lasso is a special
case of group regularization proposed by Yuan and
Lin (2006), to avoid large `2 norms for groups of
weights, given we are provided with groups of fea-
tures. The main idea is to penalize together fea-
tures that may share some properties.

Group structured regularization or variable
group selection problem is a well-studied problem,
based on minimizing a loss function penalized by
a regularization term designed to encourage spar-
sity at the variable group level. Specifically, a
number of variants of the `1-regularized lasso al-
gorithm (Tibshirani, 1996) have been proposed for
the variable group selection problem, and their
properties have been extensively studied recently.
First, for linear regression, Yuan and Lin (2006)
proposed the group lasso algorithm as an exten-
sion of lasso, which minimizes the squared error
penalized by the sum of `2-norms of the group
variable coefficients across groups. Here the use
of `2-norm within the groups and `1-norm across
the groups encourages sparsity at the group level.

In addition, group lasso has been extended to
logistic regression for binary classification, by re-
placing the squared error with the logistic error
(Kim et al., 2006; Meier et al., 2008), and several
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Figure 2: A graphical representation of different group
lasso architectures. Grey boxes depict active features.

extensions thereof have been proposed (Roth and
Fischer, 2008).

Later, sparse group lasso and overlapping group
lasso were introduced (Obozinski et al., 2011) to
additionally penalize features inside the groups,
while the latter can be used when groups include
features that can be shared between them.

In Figure 2, we illustrate the selection of fea-
tures by the most used group lasso regularizers.
In group lasso, a group of features is selected
and all its features are used. Next, in the sparse
group lasso case, groups of features are selected
again but not all the features belonging to them
are used. In the overlapping group lasso, groups
can share features between them. Finally, we may
have sparse group lasso with overlaps.

Linguistic structured regularizers As men-
tioned previously, words that appear together in
the same context, share topics or even have a sim-
ilar meaning, may form groups that capture se-
mantic or syntactic prior information. Hence we
can feed these groups to group lasso. Yogatama
and Smith (2014a) used the Alternating Direction
Method of Multipliers algorithm (ADMM) (Boyd
et al., 2011) for group lasso, an algorithm that
solves convex optimization problems by breaking
them into smaller pieces. In this work, groups ex-
tracted by Latent Dirichlet Allocation (LDA) and
sentences were used for structured regularization.
Next, Skianis et al. (2016) extended their work
by utilizing topics extracted by Latent Semantic
Indexing (LSI) (Deerwester et al., 1990), com-
munities in Graph-of-Word (GoW) (Rousseau and
Vazirgiannis, 2013) and clusters in the word2vec
(w2v) (Mikolov et al., 2013) space. They also per-

formed a computational analysis in terms of the
number and size of groups and how it can affect
learning times.

While current state-of-the-art methods either fo-
cus on finding the most meaningful groups of fea-
tures or how to further “optimize” the group lasso
approach, the attempts carry as well the disadvan-
tages of group lasso architectures. In some cases,
we may not be able to extract “good” groups of
words. As presented in the next section, we want
to explore new ways of regularization on groups,
diverging from group lasso, that can give high ac-
curacy with high sparsity.

4 OMP for Text Classification

The vanilla Matching Pursuit (MP) algorithm
(Mallat and Zhang, 1993) has its origin in signal
processing where it is mainly used in the com-
pressed sensing task. Actually, it approximates the
original “signal” iteratively improving the current
solution by minimizing the norm of the residual
(approximation error). It can also be considered
as a forward greedy algorithm for feature selection
(dictionary learning problem), that at each itera-
tion uses the correlation between the residual and
the candidate features to (greedily) decide which
feature to add next. The correlation between the
residual and the candidate features is considered to
be the length of the orthogonal projection. Then, it
subtracts off the correlated part from the residual
and performs the same procedure on the updated
residual. The algorithm terminates when the resid-
ual is lower than a predefined threshold. The final
solution is obtained by combining the selected fea-
tures weighted by their respective correlation val-
ues, which are calculated at each iteration.

Orthogonal Matching Pursuit (Pati et al., 1993)
is one of the most famous extensions of the match-
ing pursuit algorithm. Similar to MP, OMP can
be used for the dictionary learning task where it
constitutes a competitive alternative to lasso algo-
rithm. The way it differs from the standard MP is
that at every step, all the coefficients extracted so
far are updated, by computing the orthogonal pro-
jection of the data onto the set of features selected
so far. In this way, the newly derived residual is or-
thogonal to not only the immediately selected fea-
ture at the current iteration, but also to all the fea-
tures that have already been selected. Therefore,
OMP never selects the same feature twice. Tropp
(2004) provided a theoretical analysis of OMP,
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Algorithm 1 Logistic-OMP
Input: X = [x1, ...,xN ]> ∈ RN×d, y ∈ {−1, 1}N , K

(budget), ε (precision), λ (regularization factor).
Initialize: I = ∅, r(0) = y, k = 1
1: while |I| ≤ K do
2: j(k) = argmaxj /∈I

∣∣∣X>j r(k−1)
∣∣∣

3: if |X>
j(k)r

(k−1)| ≤ ε then
4: break
5: end if
6: I = I ∪ {j(k)}
7: θ(k) = argminθ

∑N
i=1 L(xi,θ, yi) + λ‖θ‖22

s.t. supp(θ) ⊆ I
8: r(k) = 1

1+exp{−Xθ(k)} − 1{y}
9: k += 1

10: end while
11: return θ(k), I

which has been generalized by Zhang (2009) on
the stochastic noise case.

In the following part, we explain the main steps
of the logistic OMP algorithm in detail. Given
a training set, we define X = [x1, ...,xN ]> ∈
RN×d to be the (dictionary) matrix of features
(or variables) vectors, with each column Xj to
represent a feature, fj ∈ RN . Let also y =
[y1, . . . , yN ]> denote the response vector. For any
set of indices I, let XI denote a subset of features
from X , such that feature fj is included in XI if
j ∈ I. Thus,XI = {fj , j ∈ I}, with the columns
fj to be arranged in ascending order.

OMP starts by setting the residual equal to the
response vector, r(0) = y, assuming that the set
of indices I (contains the indices of the active fea-
tures) is initially empty. At each iteration k, OMP
activates the feature that has the maximum corre-
lation with the residual r(k−1) (calculated in the
previous step):

j(k) = argmax
j /∈I

∣∣∣X>j r(k−1)
∣∣∣ . (6)

Then, we incorporate the index j(k) to the set I,
i. e., I = I ∪ {j(k)}. Afterwards, we apply the or-
dinary logistic regression by considering only the
active features. More specifically, we get the op-
timal coefficients by minimizing the negative log
likelihood along with an `2 penalty term:

θ(k) = argmin
θ

N∑

i=1

L(xi,θ, yi) + λ‖θ‖22,

s.t. supp(θ) ⊆ I (7)

where supp(θ) = {j : θj 6= 0}. Roughly speak-
ing, the values of the coefficients correspond to in-
active features (indices) forced to be equal to zero.

Algorithm 2 Logistic Overlapping GOMP
Input: X = [x1, ...,xN ]> ∈ RN×d, y ∈ {−1, 1}N ,
{G1, . . . , GJ} (group structure), K (budget), ε (preci-
sion), λ (regularization factor).

Initialize: I = ∅, r(0) = y, k = 1
1: while |I| ≤ K do

2: j(k) = argmaxj
1
|Gj |

∥∥∥X>Gj
r(k−1)

∥∥∥
2

2

3: if
∥∥∥X>G

j(k)
r(k−1)

∥∥∥
2

2
≤ ε then

4: break
5: end if
6: I = I ∪ {Gj(k)}
7: for i = 1 to J do
8: Gi = Gi \Gj(k)

9: end for
10: θ(k) = argminθ

∑N
i=1 L(xi,θ, yi) + λ‖θ‖22

s.t. supp(θ) ⊆ I
11: r(k) = 1

1+exp{−Xθ(k)} − 1{y}
12: k += 1
13: end while
14: return θ(k), I

Finally, we calculate the updated residual:

r(k) =
1

1 + exp{−Xθ(k)} − 1{y}, (8)

where 1{y} , 1{yi ∈ {1},∀i ∈ {1, . . . , n}} in-
dicates if instance xi belongs to class 1 or not.
We repeat the process until the residual becomes
smaller than a predefined threshold, ε ≥ 0, or a
desired number of active features, K (budget), has
been selected. Through our empirical analysis we
set ε = 0, examining only the number of active
features. An overview of logistic-OMP is given in
Alg. 1. A detailed analysis of the algorithm’s com-
plexity is provided by Tropp and Gilbert (2007).

4.1 Overlapping Group OMP

The Group OMP (GOMP) algorithm was origi-
nally introduced by Swirszcz et al. (2009) for lin-
ear regression models, and extended by Lozano
et al. (2011) in order to select groups of variables
in logistic regression models. Following the no-
tion of group lasso, GOMP utilizes prior knowl-
edge about groups of features in order to penalize
large weights in a collective way. Given that we
have words sharing some properties, we can lever-
age these grouping for regularization purposes.

Similar to Lozano et al. (2011), let us assume
that a natural grouping structure exists within the
variables consisting of J groups XG1 , . . . , XGJ

,
whereGi ⊂ {1, . . . , d}, andXGi ∈ RN×|Gi|. The
standard GOMP algorithm also assumes that the
groups are disjoint, Gi ∩ Gj = ∅ for i 6= j. We
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will remove this assumption later on, by propos-
ing the overlapping GOMP algorithm that is able
to handle overlapping groups of features. GOMP
operates in the same way with OMP but instead of
selecting a single feature, it selects a group of fea-
tures with the maximum correlation between them
and the residual:

j(k) = argmax
j

∥∥∥X>Gj
r(k−1)

∥∥∥
2

2
. (9)

In the case where the groups are not orthonormal-
ized (i. e., X>Gj

XGj = IGj , where IGj is the iden-

tity matrix of size R|Gj |×|Gj |), we select the best
group based on the next criterion:

j(k) = argmax
j

∣∣∣∣
(
r(k−1)

)>
XGj (X

>
Gj
XGj )

−1X>Gj
r(k−1)

∣∣∣∣ .
(10)

During our empirical analysis, we have no-
ticed that the aforementioned criteria benefit large
groups. This becomes apparent especially in the
case where the size of the groups is not balanced.
In this way, groups with a large number of “irrele-
vant” features are highly probable to be added. For
instance, it is more probable to add a group that
consists of 2 good features and 100 bad features,
instead of a group that contains only 2 good fea-
tures. To deal with situations like this one, we con-
sider the average correlation between the group’s
features and the residual:

j(k) = argmax
j

1

|Gj |
∥∥∥X>Gj

r(k−1)
∥∥∥
2

2
. (11)

Overlapping GOMP extends the standard
GOMP in the case where the groups of indices are
overlapping, i. e., Gi ∩ Gj 6= ∅ for i 6= j. The
main difference with GOMP is that each time a
group becomes active, we remove its indices from
each inactive group: Gi = Gi \ Gj(k) , ∀i ∈
{1, . . . , J}. In this way, the theoretical properties
of GOMP hold also in the case of the overlapping
GOMP algorithm. A sketch of the overlapping
GOMP is shown in Alg. 2.

5 Experiments

Next, we present the data, setup and results of our
empirical analysis on the text classification task.

5.1 Datasets
Topic categorization. From the 20 News-
groups2 dataset, we examine four classification

2qwone.com/∼jason/20Newsgroups/

Dataset Train Dev Test Voc

20
N

G

science 949 238 790 25787
sports 957 240 796 21938

religion 863 216 717 18822
comp. 934 234 777 16282

Se
nt

im
en

t

vote 1175 257 860 19813
movie 1600 200 200 43800
books 1440 360 200 21545
dvd 1440 360 200 21086

electr. 1440 360 200 10961
kitch. 1440 360 200 9248

Table 1: Descriptive statistics of the datasets.

tasks. We end up with binary classification
problems, where we classify a document ac-
cording to two related categories: i) comp.sys:
ibm.pc.hardware vs. mac.hardware; ii) rec.sport:
baseball vs. hockey; iii) sci: med vs. space and iv)
religion: alt.atheism vs. soc.religion.christian.

Sentiment analysis. The sentiment analysis
datasets we examined include movie reviews
(Pang and Lee, 2004; Zaidan and Eisner, 2008)3,
floor speeches by U.S. Congressmen deciding
“yea”/“nay” votes on the bill under discussion
(Thomas et al., 2006)3 and product reviews from
Amazon (Blitzer et al., 2007)4.

Table 1 summarizes statistics about the afore-
mentioned datasets used in our experiments. We
choose small datasets intentionally, like Yogatama
and Smith (2014b), so that we can observe the reg-
ularization effect clearly.

5.2 Experimental setup

In our setup, as features we use unigram frequency
concatenated with an additional bias term. We
reproduce standard regularizers like lasso, ridge,
elastic and state-of-the-art structured regularizers
like sentence, LDA, GoW and w2v groups (Skia-
nis et al., 2016) as baselines and compare them
with the proposed OMP and GOMP. We used
pre-trained Google vectors introduced by Mikolov
et al. (2013) and apply k-means clustering (Lloyd,
1982) algorithm with maximum 2000 clusters. For
each word belonging to a cluster, we also keep the
top 5 nearest words so that we introduce overlap-
ping groups.

For the learning part we used Matlab and specif-
ically code provided by Schmidt et al. (2007). If
no pre-defined split exists, we separate the training

3cs.cornell.edu/∼ainur/data.html
4cs.jhu.edu/∼mdredze/datasets/sentiment/
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Dataset no reg lasso ridge elastic OMP
Group lasso regularizers

GOMP
LDA LSI sen GoW w2v

20
N

G
science 0.946 0.916 0.954 0.954 0.964* 0.968 0.968* 0.942 0.967* 0.968* 0.953*

sports 0.908 0.907 0.925 0.920 0.949* 0.959 0.964* 0.966 0.959* 0.946* 0.951*

religion 0.894 0.876 0.895 0.890 0.902* 0.918 0.907* 0.934 0.911* 0.916* 0.902*

computer 0.846 0.843 0.869 0.856 0.876* 0.891 0.885* 0.904 0.885* 0.911* 0.902*

Se
nt

im
en

t

vote 0.606 0.643 0.616 0.622 0.684* 0.658 0.653 0.656 0.640 0.651 0.687*

movie 0.865 0.860 0.870 0.875 0.860* 0.900 0.895 0.895 0.895 0.890 0.850
books 0.750 0.770 0.760 0.780 0.800 0.790 0.795 0.785 0.790 0.800 0.805*

dvd 0.765 0.735 0.770 0.760 0.785 0.800 0.805* 0.785 0.795* 0.795* 0.820*

electr. 0.790 0.800 0.800 0.825 0.830 0.800 0.815 0.805 0.820 0.815 0.800
kitch. 0.760 0.800 0.775 0.800 0.825 0.845 0.860* 0.855 0.840 0.855* 0.830

Table 2: Accuracy on the test sets. Bold font marks the best performance for a dataset, while * indicates statistical
significance at p < 0.05 using micro sign test against lasso. For GOMP, we use w2v clusters and add all unigram
features as individual groups.

Dataset no reg lasso ridge elastic OMP Group lasso regularizers GOMPLDA LSI sen GoW w2v

20
N

G

science 100 1 100 63 2.7 19 20 86 19 21 5.8
sports 100 1 100 5 1.8 60 11 6.4 55 44 7.7

religion 100 1.1 100 3 1.5 94 31 99 10 85 1.5
computer 100 1.6 100 7 0.6 40 35 77 38 18 4.9

Se
nt

im
en

t

vote 100 0.1 100 8 5 15 16 13 97 13 1.5
movie 100 1.3 100 59 0.9 72 81 55 90 62 2.3
books 100 3.3 100 14 4.6 41 74 72 90 99 8.3
dvd 100 2 100 28 2.8 64 8 8 58 64 9

electr. 100 4 100 6 6.3 10 8 43 8 9 12
kitch. 100 4.5 100 79 4.3 73 44 27 75 46 6.5

Table 3: Model sizes (percentages of non-zero features in the resulting models). Bold for best, blue for best group.

science lasso orbit, space, contribute, funding, landing
OMP space, orbit, moon, planets, scientifically

Table 4: Largest positive weights in lasso and OMP for
the science subset of 20NG.

set in a stratified manner by 80% for training and
20% for validation.

All the hyperparameters are tuned on the devel-
opment dataset, using accuracy for evaluation. For
lasso and ridge regularization, we choose λ from
{10−2, 10−1, 1, 10, 102}. For elastic net, we per-
form grid search on the same set of values as ridge
and lasso experiments for λrid and λlas. For group
lasso, OMP and GOMP regularizers, we perform
grid search on the same set of parameters as ridge
and lasso experiments. In the case we get the same
accuracy on the development data, the model with
the highest sparsity is selected. In GOMP we con-
sidered all individual features as separate groups
of size one, along with the w2v groups. Last but
not least, in both OMP and GOMP the maximum
number of features, K(budget), is set to 2000.

5.3 Results

Table 2 reports the results of our experiments on
the aforementioned datasets. The empirical results
reveal the advantages of using OMP or GOMP
for regularization in the text categorization task.
The OMP regularizer performs systematically bet-
ter than the baseline ones. More specifically, OMP
outperforms the lasso, ridge and elastic net reg-
ularizers in all datasets, as regards to the accu-
racy. At the same time, the performance of OMP
is quite close or even better to that of structured
regularizers. Actually, in the case of electronics
data, the model produced by OMP is the one with
the highest accuracy. On the other hand, the pro-
posed overlapping GOMP regularizer outperforms
all the other regularizers in 3 out of 10 datasets.

Another important observation is how GOMP
performs with different types of groups. GOMP
only requires some “good” groups along with sin-
gle features in order to achieve good accuracy.
Smaller groups provided by LDA, LSI and w2v
clusters provide a good solution and also fast com-
putation, while others (GoW communities) can
produce similar results with slower learning times.
This phenomenon can be attributed to the different
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Dataset CNN FastText Best OMP Best
(20eps) (100eps) or GOMP Lasso

20
N

G

science 0.935 0.958 0.964 0.968
sports 0.924 0.935 0.951 0.966

religion 0.934 0.898 0.902 0.934
computer 0.885 0.867 0.902 0.911

Se
nt

im
en

t

vote 0.651 0.643 0.687 0.658
movie 0.780 0.875 0.860 0.900
books 0.742 0.787 0.805 0.800
dvd 0.732 0.757 0.820 0.805

electr. 0.760 0.800 0.830 0.820
kitch. 0.805 0.845 0.830 0.860

Table 5: Comparison in test accuracy with state-of-
the-art classifiers: CNN (Kim, 2014), FastText (Joulin
et al., 2017) with no pre-trained vectors. The proposed
OMP and GOMP algorithms produce the highest accu-
rate model in 4 out of 10 datasets.

structure of groups. While LDA and LSI have a
large number of groups with small number of fea-
tures in them (1000 groups, 10 words per group),
w2v clusters and GoW communities consist of
smaller number of groups with larger number of
words belonging to each group. Nevertheless, we
have reached to the conclusion that the selection of
groups is not crucial for the general performance
of the proposed GOMP algorithm.

Table 3 shows the sparsity sizes of all the reg-
ularizers we tested. As it becomes apparent, both
OMP and GOMP yield super-sparse models, with
good generalization capabilities. More specif-
ically, OMP produces sparse spaces similar to
lasso, while GOMP keeps a significantly lower
number of features compared to the other struc-
tured regularizers. In group regularization, GOMP
achieves both best accuracy and sparsity in two
datasets (vote & books), while group lasso only
in one (sports).

In Table 4 we demonstrate the ability of OMP
to produce more discriminative features compared
to lasso by showing the largest weights and their
respective term.

Finally, in Table 5 we compare state-of-the-
art group lasso classifiers with deep learning ar-
chitectures (Kim, 2014) with Dropout (Srivastava
et al., 2014) for regularization and FastText (Joulin
et al., 2017). We show that group lasso regulariz-
ers with simple logistic models remain very effec-
tive. Nevertheless, adding pre-trained vectors in
the deep learning techniques and performing pa-
rameter tuning would definitely increase their per-
formance against our models, but with a signifi-
cant cost in time complexity.

5.4 Sparsity vs Accuracy

Figure 3 visualizes the accuracy vs. sparsity for
all datasets and all classifiers. We do that in order
to identify the best models, by both metrics. The
desirable is for classifiers to belong in the top right
corner, offering high accuracy and high sparsity at
the same time. We observe that OMP and GOMP
tend to belong in the right parts of the plot, having
very high sparsity, often comparable to the aggres-
sive lasso, even when they do not achieve the best
accuracies.

5.5 Number of active features (atoms)

In both OMP and GOMP algorithms, the maxi-
mum desired number of active features (K, bud-
get) was used as stopping criterion. For instance,
by setting K = 1000, the proposed methods re-
turn the learned values that correspond to the first
{100, 200, . . . , 1000} features, respectively. Thus,
we exploit the feedforward feature selection struc-
tures of OMP and GOMP.

Figure 4 presents the number of active features
versus accuracy in the development subsets of the
20NG dataset. It can be easily observed that af-
ter selecting 1000 active atoms, the accuracy sta-
bilizes or even drops (overfitting problem). For
instance, the best number of active features are: i)
science: 700, ii) sports: 1100, iii) religion: 400
and iv) computer: 1500. The reason for select-
ing K = 2000 as the number of features to exam-
ine was to provide a sufficient number for OMP
to reach a good accuracy while providing a super-
sparse solution comparable to lasso.

5.6 Time complexity

Although certain types of group lasso regulariz-
ers perform well, they require a notable amount of
time in the learning process.

OMP offers fast learning time, given the hyper-
parameter values and the number of atoms. For
example, on the computer subset of the 20NG
dataset, learning models with the best hyperpa-
rameter value(s) for lasso, ridge, and elastic net
took 7, 1.4, and 0.8 seconds, respectively, on a 4-
core 3.00GHz CPU. On the other hand, OMP re-
quires only 4 seconds for training, making it even
faster than lasso, while providing a sparser model.

GOMP can have very slow learning time when
adding the features as groups individually. This
is due to the large number of groups that GOMP
needs to explore in order to extract the most “con-

100



0 20 40 60 80 100
Sparsity (%)

91

92

93

94

95

96

97

98
A
cc
u
ra
cy
 (
%
)

l1

l2 elastic

LSI,LDA

sen

w2v,GoW
OMP

GOMP

science

0 20 40 60 80 100
Sparsity (%)

90

91

92

93

94

95

96

97

98

A
cc
u
ra
cy
 (
%
)

l1

l2
elastic

LDA LSI
sen

GoW

w2v
OMP

GOMP

sports

0 20 40 60 80 100
Sparsity (%)

87

88

89

90

91

92

93

94

A
cc
u
ra
cy
 (
%
)

l1

l2

elastic

LDA

LSI

sen

GoW
w2v

OMP,GOMP

religion

0 20 40 60 80 100
Sparsity (%)

83
84
85
86
87
88
89
90
91
92

A
cc
u
ra
cy
 (
%
)

l1

l2

elastic

LDA

LSI

sen

GoW

w2v

OMP

GOMP

computer

0 20 40 60 80 100
Sparsity (%)

61
62
63
64
65
66
67
68
69
70

A
cc
u
ra
cy
 (
%
)

l1

l2
elastic

LDA

LSI
sen

GoW
w2v

OMP

GOMP

vote

0 20 40 60 80 100
Sparsity (%)

84

85

86

87

88

89

90

91

A
cc
u
ra
cy
 (
%
)

l2
elastic

LDA

LSI
senGoW

w2v

l1,OMP

GOMP

movie

0 20 40 60 80 100
Sparsity (%)

75

76

77

78

79

80

81

A
cc
u
ra
cy
 (
%
)

l1

l2

elastic

LDA
LSI

sen
GoW

w2v OMP
GOMP

books

0 20 40 60 80 100
Sparsity (%)

72

74

76

78

80

82

84

A
cc
u
ra
cy
 (
%
)

l1

l2
elastic

LDA LSI

sen
GoWw2v

OMP

GOMP

dvd

0 20 40 60 80 100
Sparsity (%)

79.5

80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

A
cc
u
ra
cy
 (
%
)

l1l2

elastic

LDA

sen

GoW

LSI,w2v

OMP

GOMP

electr.

0 20 40 60 80 100
Sparsity (%)

76

78

80

82

84

86

88

A
cc
u
ra
cy
 (
%
)

l1

l2

elastic

LDA

LSI sen

GoW

w2v

OMP

GOMP

kitch.

Figure 3: Accuracy vs sparsity on the test sets. Regularizers close to the top right corner are preferred.
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Figure 4: Accuracy vs. number of active
atoms/features for OMP on 20NG data.

tributing” ones. If we consider GOMP without
the individual features as groups, then the learn-
ing process becomes faster, with a clear decreasing
effect on accuracy. In general, groups need to be
well structured for GOMP to manage to surpass
OMP and other state-of-the-art group lasso regu-
larizers.

The advantages of the proposed methods are:
(1) OMP requires no prior structural knowledge,
(2) producing more discriminative features and (3)
fast with relatively small number of dimensions.

Moreover, our implementation compared to the
one of Lozano et al. (2011), provides the advan-
tage of storing the weights and not having to re-
compute the whole matrices from scratch.

In the drawbacks of the methods: (1) OMP
and GOMP are greedy algorithms, thus GOMP
gets slow when we add the features as individual
groups and (2) groups need to be “good”.

6 Conclusion & Future Work

In this work, we introduced OMP and GOMP al-
gorithms on the text classification task. An exten-
sion of the standard GOMP algorithm was also
proposed, which is able to handle overlapping
groups. The main advantages of both OMP and
GOMP compared to other regularization schemes
are their simplicity (greedy feedforward feature
selection) and ability to produce accurate models
with good generalization capabilities. We have
shown that the proposed classifiers outperform
standard baselines, as well as state-of-art struc-
tured regularizers in various datasets. Similar to
Mosci et al. (2010); Yen et al. (2017); Xie et al.
(2017), our empirical analysis validates that regu-
larization remains a highly important topic, espe-
cially for deep learning models (Roth et al., 2017).

As mentioned previously, groups are not always
specified in advance or hard to extract. Especially
in environments involving text. To address this
problem, we plan to extend our work by learning
automatically the groups with Simultaneous Or-
thogonal Matching Pursuit (Szlam et al., 2012).
Another interesting future direction would be to
additionally penalize features inside the groups,
similarly to sparse group lasso. Moreover, it
would be highly interesting to examine the theo-
retical properties of overlapping GOMP. Finally,
as shown in recent work by Roth et al. (2017), reg-
ularization remains an open topic for deep learning
models.
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Abstract

Industry datasets used for text classification
are rarely created for that purpose. In most
cases, the data and target predictions are a by-
product of accumulated historical data, typi-
cally fraught with noise, present in both the
text-based document, as well as in the targeted
labels. In this work, we address the question
of how well performance metrics computed on
noisy, historical data reflect the performance
on the intended future machine learning model
input. The results demonstrate the utility of
dirty training datasets used to build prediction
models for cleaner (and different) prediction
inputs.

1 Introduction
In many benchmark text classification datasets
gold-standard labels are available without addi-
tional annotation effort (e.g. a star rating for a
product review, editorial keywords associated with
a news article, etc.). Large, manually annotated
datasets for text classification are less common,
especially in industry settings. The cost and com-
plexity of a large-scale industry labeling project
(with specialized and/or confidential text) could be
prohibitive.

As a result, industry data used for supervised
Machine Learning (ML) was rarely created for
that purpose. Instead, labels are often derived from
secondary sources. For example, text labels may
be derived from associated medical billing or diag-
nosis codes, from an outcome of a litigation, from
a monetary value associated with a case, etc. In
most cases, the data and labels are a by-product
of accumulated historical data. As such, noise is
intrinsically present in the data for a variety of in-
cidental reasons, interacting over a long period of
time.

In the case of text-based data for document clas-
sification, noise could be present in both the text-

based document, as well as in the targeted labels.
There are numerous reasons that could explain

the presence of text document noise. For example,
industry data based on scanned documents accu-
mulated over time is a common challenge. In some
cases, the original image could be lost or unavail-
able and one is left with the result of OCR engines
with varying quality, that could also have changed
over time. As various IT personnel handle the data
over the years, unaware of its future use, data can
be truncated or purged per storage/retention poli-
cies. Similarly, character-encoding data transfor-
mation bugs and inconsistencies are a common oc-
currence. In addition, the text data that contains
the information needed for correct labelling could
be interspersed with irrelevant text snippets, such
as system generated messages or human entered
notes used for different purposes.

The reasons for the noise in the targeted labels
are also abundant. In cases where the labels are
created via human data entry / coding, the rea-
sons could be as mundane as human error or inex-
perience. In large organizations, department per-
sonnel training and management could differ and
varying workflows can result in inconsistent la-
beling. Labeling practices could also evolve over
time both at the organization, department, or in-
dividual employee levels. Labeling could also be
affected by external business reasons. For exam-
ple, the coding scheme for medical billing codes
could have evolved from ICD-9 coding to ICD-
10 coding. The billing coding rules themselves
could have changed for a variety of accounting and
financial reasons, unrelated to the content of the
corresponding textual data. Updates in data entry
applications could result in a different set of drop-
down or checkbox options, and, as a result, cod-
ing/labeling could change because of coincidental
software updates.

In industry settings, the job of the data scientist
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often involves exploring, understanding, and uti-
lizing historical datasets for the purposes building
prediction models to consume current, and pre-
sumably cleaner, document inputs. In such set-
tings, the disparity between the training data and
the data used for predictions poses a challenge.
Evaluations of various ML approaches should in-
volve performance metrics using not necessarily
the available historical training data, but different
document inputs. In practice, however, data sci-
entists often ignore the fact that the training data
differs substantially from the data the ML model
will take as input. Algorithm selections, tuning,
and performance metrics are often computed on
historical data only.

In this work, we attempt to address the ques-
tion of how well performance metrics computed
on noisy, historical data reflect the performance on
the intended future ML model input.

2 Related Work
In general, the research problem addressed by this
work is typically not a concern for strictly aca-
demic research relying on benchmark document
classification datasets. As a result, relatively few
studies address the problem.

Agarwal et al. (2007) study the effects of dif-
ferent types of noise on text classification perfor-
mance. They simulate spelling errors and noise in-
troduced through Automatic Speech Recognition
(ASR) systems, and observe the performance of
Naive Bayes and Support Vector Machines (SVM)
classifiers. Agarwal et al. note that, to their sur-
prise, even at 40% noise, there is little or no drop
in accuracy. However, they do not report results
on experiments in which the training data is dirty
and the test data is clean.

Roy and Subramaniam (2006) describe the gen-
eration of domain models for call centers from
noisy transcriptions. They note that successful
models can be built with noisy ASR transcriptions
with high word error rates (40%).

Venkata et al. (2009) survey the different types
of text noise and techniques to handle noisy text.
Similarly to Agarwal et al., they also focus on
spelling errors, and on errors due to statistical ma-
chine translation.

Lopresti (2009) studies the effects of OCR er-
rors on NLP tasks, such as tokenization, POS tag-
ging, and summarization. Similarly, Taghva et
al. (2000) evaluate the effect of OCR errors on text
categorization. They show that OCR errors have

minimum effect on a Naive Bayes classifier.
All of the above studies focus on text level

noise. In contrast, Frenay and Verleyse (2014)
present a survey of classification in the presence
of label noise. A number of additional studies
focus on techniques improving classifier perfor-
mance in the presence of label noise by either de-
veloping noise-robust algorithms or by introduc-
ing pre-processing label cleansing techniques. For
example, Hajiabadi et al. (2017) describe a neu-
ral network extended with ensemble loss func-
tion for text classification with label noise. Song
et al. (2015) describe a refinement technique for
noisy or missing text labels. Similarly, Nicholson
et al. (2015) describe and compare label noise cor-
rection methods.

More recently, Rolnick et al. (2017) investigate
the behavior of deep neural networks on image
training sets with massively noisy labels, and dis-
cover that successful learning is possible even with
an essentially arbitrary amount of label noise.

3 Method
To address the question of how well performance
metrics computed on dirty, historical data reflect
the performance on the intended future ML model
input, we evaluated various state-of-the-art doc-
ument classification algorithms on several docu-
ment classification datasets, in which noise was
gradually and artificially introduced.

3.1 Types of Noise

As previously discussed, noise is typically present
in historical text-classification training data both
within the document texts and within the docu-
ment labels. To achieve a better understanding
of the various types of noise, we evaluated the
data present in available to us, historical, industry
datasets. With the help of Subject Matter Experts
(SMEs), we were able to identify several common
types of noise, shown in Table 1. In each case,
the SME provided a plausible business explana-
tion that justifies the presence of the various types
of noise.

We then mimicked the described in Table 1
types of historical data noise in a controlled set-
ting. We gradually introduced noise by randomly
flipping a subset of the labels (replicating items 2
and 4 from Table 1), replicated a portion of the
documents and assigned to them conflicting labels
(item 1), truncated the text of some documents
(items 3 and 4), and interspersed document with ir-
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1. Occasionally, documents are replicated and an
identical document could be assigned conflicting labels.
For example, a single document could describe several
entities, such as multiple participants in a car accident
with document labels derived from their associated
medical billing codes.
2. The difference between a subset of the document
labels could vary. Some labels could be close to
interchangeable because of various business reasons,
while others are clearly separated. For some labels,
label assignment can be clear-cut and objective, while
for others, human labelers are left to make a subjective
choice.
3. Some documents were truncated as an artifact of the
export process.
4. The information needed to assign correctly a label is
missing from the text document, and instead the human
labeler consulted a different source.
5. There is a large amount of document text irrelevant
to the labeling task at hand, an artifact of the business
workflow and/or export process.

Table 1: Common types of industry noise.

relevant text, taken from a different domain (items
4 and 5). All types of noise were introduced grad-
ually and simultaneously, starting from no noise to
100% noise.

3.2 Datasets and Document Classification
Algorithms

We focused on several document classification
datasets varying in size, in number of training ex-
amples, in document length and document con-
tent/structure, as well as in the number of label
categories. We utilized two common benchmark
document classification datasets, and built a third
artificial dataset utilizing 5 independent document
datasets. Table 2 summarizes the datasets used in
our experiments.

The 20 Newsgroups dataset is a collection of ap-
proximately 20,000 newsgroup documents (forum
messages), partitioned across 20 different news-
groups.

The 2016 Yelp reviews dataset consists of more
than 1 million user reviews accompanied with 1 to
5-star business rating (used as document labels).
The dataset consists of all available Yelp user re-
views dated 2016.

Both of the above dataset are relatively clean.
However, they both rely on user-entered labels.
This inevitably leads to some level of noise. For
example, in some cases, the content of the user re-
view might not necessarily reflect the user-entered
business rating. Similarly, in the case of 20 News-
groups, a user could send a message to a user
group that doesn’t necessarily reflect the best mes-

sage category.
To measure accurately the effects of noise on

various algorithm performance, we also created
an artificially clean dataset (referred to as Syn-
thetic). To create the dataset we utilized 5 dif-
ferent document collections. They include the 20
Newsgroups and a portion of the Yelp reviews
dated 2016, described above. We also included
the Reuters-21578 collection, a dataset consisting
of over 21,000 Reuters news articles from 1987;
a Farm Advertisements dataset (Mesterharm and
Pazzani, 2011) consisting of over 4,000 website
text advertisements on various farm animal re-
lated topics; a dataset of text abstracts describing
National Science Foundation awards for basic re-
search (Lichman, 2013). The label for each docu-
ment correspond to the source dataset, i.e. the la-
bels are newsgroup message, review, news article,
website ad, v.s. grant abstract. It is trivial for a hu-
man annotator to distinguish between the different
document categories, and, at the same time, the
classification decision involves some understand-
ing of the document text and structure.

In addition, one of our noise-introducing tech-
niques involves interspersing documents with ir-
relevant text. To introduce irrelevant text snip-
pets in the 20 Newsgroups dataset we utilized texts
from the Yelp Reviews dataset and vice versa. To
introduce noice in our synthetic dataset we utilized
a dataset containing legal cases from the Federal
Court of Australia (Galgani et al., 2012).

While a thorough comparison of supervised
document classification algorithms and architec-
tures is beyond the scope of this work, we exper-
imented with a small number of commonly used
in practice document classification algorithms:
bag-of-words SVM (Cortes and Vapnik, 1995), a
word-level convolutional neural network (CNN)
(Collobert et al., 2011; Kim, 2014), and fast-
Text (Joulin et al., 2016).

3.3 Experiments

We set aside 30% of the available data from all
three datasets as clean test sets. These test sets
represents the intended prediction input of the ML
model. The rest 70% of the data was used for
training. Noise was gradually introduced into
the training sets, which represents dirty, historical
training data input that differs from the intended
prediction input.

At each step, the different types of noise (Table
1) were introduced, both within the document text
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Name Num. of Num. of Median Size Description
Documents Labels in Tokens

20 Newsgroups 18,828 20 221 Messages from Newsgroups on 20 different topics.
2016 Yelp Reviews 1,033,124 5 82 Yelp reviews dated 2016. The reviews are multi-lingual,

mostly in English.
Synthetic 115,438 5 175 A synthetically created datasets from 5 different document

collections. Labels correspond to the source collection.

Table 2: Summary of the datasets.

Figure 1: Word-level CNN, fastText, and bag-of-words SVM performance on the 3 datasets. The y axis
shows the model accuracy, as noise is introduced into the training data (x axis). The orange line shows
performance on the clean dataset. The blue line shows cross-validation performance measured on the
dirty training dataset.

Algorithm Dataset Slope 0.5 Slope 0.25 Clean set Clean set
perf perf
gain 0.5 gain 0.25

CNN 20Newsgr -0.62 -0.27 26.15 14.71
fastText 20Newsgr -0.23 0.00 35.12 14.41
SVM 20Newsgr -0.28 -0.09 43.09 16.30
CNN Yelp2016 -0.06 -0.04 17.25 11.44
fastText Yelp2016 -0.14 -0.06 13.31 10.16
SVM Yelp2016 -0.17 -0.08 12.95 10.97
CNN Synth -0.01 0.00 24.71 7.79
fastText Synthetic -0.09 -0.02 31.88 7.75
SVM Synth -0.35 -0.06 27.20 9.55

Table 3: Summary of the clean test dataset performance (orange line in Figure 1). The 3d and 4th
columns show the slope of the performance degradation at noise levels 0.5 and 0.25. The fifth and sixth
columns show the percentage gain of the performance on the clean test set compared to the dirty training
dataset as noise levels 0.5 and 0.25.

and within the document labels: 1) a fraction of
the training data texts was truncated by a fraction

of the length of the text; 2) a fraction of the train-
ing data texts was interspersed with irrelevant text;
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3) for a fraction of the categories and a fraction
of the texts within each category labels were ran-
domly flipped; 4) for a fraction of the categories,
a fraction of the texts were replicated and their la-
bels randomly flipped. For example, at 50% levels
of noise, 50% of the documents were truncated by
50% of the length of the text; 50% of the docu-
ments were interspersed with 50% irrelevant text;
for 50% of the set of the set of labels 50% of the
document labels were randomly flipped; for 50%
of the set of labels, 50% of the documents were
replicated and their labels were randomly flipped.
The algorithm performance on the noisy training
set was measured via cross-validation.

In all cases, training was performed without pa-
rameter tuning targeting the training dataset (clean
or dirty versions). In all cases, text normaliza-
tion involved only converting the text to lower
case. The SVM classifiers were built using uni-
gram bag-of-words, limiting the vocabulary to to-
kens that appear more than 5 times and in less
than 50% of all documents. For the two smaller
dataset (20 Newsgroups and Synthetic) we uti-
lized Wikipedia pre-trained word embeddings of
size 100 for both the word-level CNN and fast-
Text classifiers. For the large Yelp Review dataset
pre-trained embeddings were not used. fastText
was run using the default training parameters. We
experimented with two different word-level CNN
architectures both producing comparable results1.

4 Results and Discussion
Figure 1 illustrates the performance of the algo-
rithms on the three datasets. In all cases, the text-
classification algorithms demonstrate resilience to
noise. The clean dataset performance (orange line)
consistently outperforms cross-validation results
on the dirty training dataset (blue line)2.

Figure 1 shows performance as noise is intro-
duced into the dataset from 0 to 100%. In prac-
tice, however, dirty historical data used for super-
vised ML, contains lower levels of noise (other-
wise the dataset would be practically unusable).
To compare performance of various algorithms in

1Word embeddings of size 100; the sequence length equal
the 90th percentile of the training texts; a convolutional layer
with 100 filters and window size 8; global max pooling; 0 or
1 dense layers of size 100 and dropout rate of 0.5; ReLU ac-
tivation; a final dense layer equal to the number of document
categories with Softmax activation.

2We also experimented with different word-level CNN
depths on the Yelp 2016 dataset. A deeper architecture (1
additional fully connected dense layer) appears to be slightly
more resilient to noise.

this more realistic setting, we measured the slope
of the clean dataset accuracy as noise is intro-
duced from 0 to 0.5, and from 0 to 0.25 (Table
3). Slope values closer to 0 indicates small per-
formance degradation, while larger negative val-
ues correspond to greater performance degrada-
tion. Results vary across datasets and algorithms,
however, in all cases, the slope of the degradation
of performance on a clean test set is small, indi-
cating that all algorithms are able to successfully
ignore noise signals at various degrees. The word-
level CNN classifier appears to be particularly re-
silient to relatively small amounts of noise and is
the top performer for the 2 larger datasets (Yelp
2016 and Synthetic).

Table 3 also shows the relative performance
gain of results on the clean test set compared to
results on the dirty training datasets at noise lev-
els 0.5 and 0.25. Results measured on the clean
set outperform results measured on the dirty train-
ing dataset by an average of 25% at noise level 0.5
and an average of 11% at 0.25 noise levels. For the
large dataset (Yelp 2016), word-level CNN results
show the most significant performance gain.

In addition, results on the artificially clean
dataset (Synthetic), demonstrate that practically
all the algorithms are almost completely resilient
to noise up to 0.5 noise levels.

5 Conclusion

We have shown that text-classification datasets,
based on noisy historical data can be success-
fully used to create high quality prediction mod-
els. We analyzed and described types of noise
commonly present in historical industry datasets.
We simulated simultaneously both text noise and
label noise and observed that, across all exper-
iments, the accuracy on a clean dataset signifi-
cantly outperforms the accuracy measured on the
dirty training sets via cross validation. This sug-
gest that traditional accuracy measures on dirty
training datasets are typically over-pessimistic.
Most remarkably, relatively high noise levels prac-
tically have little or no effect on model perfor-
mance when measured on a clean test set. It could
also be extrapolated that artificially created text-
classification datasets, e.g. datasets created using
a set of imperfect rules or heuristics, could be used
to create higher quality prediction models.
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Abstract

Code-switching (usage of different languages
within a single conversation context in an al-
ternative manner) is a highly increasing phe-
nomenon in social media and colloquial us-
age which poses different challenges for natu-
ral language processing. This paper introduces
the first study for the detection of Turkish-
English code-switching and also a small test
data collected from social media in order to
smooth the way for further studies. The pro-
posed system using character level n-grams
and conditional random fields (CRFs) obtains
95.6% micro-averaged F1-score on the intro-
duced test data set.

1 Introduction

Code-switching is a common linguistic phe-
nomenon generally attributed to bilingual commu-
nities but also highly observed among white collar
employees. It is also treated as related to higher
education in some regions of the world (e.g. due to
foreign language usage at higher education). Al-
though the social motivation of code-switching us-
age has been still under investigation and there ex-
ist different reactions to it (Hughes et al., 2006;
Myers-Scotton, 1995), the challenges caused by
its increasing usage in social media are not neg-
ligible for natural language processing studies fo-
cusing on this domain.

Social media usage has increased tremendously,
bringing with it several problems. Analysis and in-
formation retrieval from social media sources are
difficult, due to usage of a noncanonical language
(Han and Baldwin, 2011; Melero et al., 2015). The
noisy character of social media texts often require
text normalization, in order to prepare social me-
dia texts for data analysis. Eryiğit and Torunoğlu-
Selamet (2017) is the first study which introduces
a social media text normalization approach for
Turkish. In this study, similar to Han and Baldwin

(2011) their candidate word (solution) generation
stage comes after an initial ill-formed word detec-
tion stage where they use a Turkish morphologi-
cal analyzer as the language validator. Although
this approach works quite well for Turkish posts,
it is obvious that it would encounter difficulties in
case of code-switching where the language valida-
tor would detect every foreign word as ill-formed
and the normalizer would try to propose a candi-
date correction for each of these. A similar situ-
ation may be observed at the behavior of spelling
checkers within text editors. These also detect the
foreign words (purposely written) as out of vocab-
ulary and insist on proposing a candidate correc-
tion which makes the detection of actual spelling
errors difficult for the users.

In recent years, the use of code-switching be-
tween Turkish and English has also become very
frequent specifically in daily life conversations
and social media posts of white collars and youth
population. Ex. (1) introduces such an example
which is not unusual to see.

(1)�Original code-switched version�
Serverlarımızın update işlemleri için bu do-

maindeki expert arayışımız devam etmektedir.
�Turkish version and literal translation�
Sunucularımızın (of our servers) güncelleme

(update) işlemleri (process) için (for), bu (this)
alandaki (on domain) uzman (expert) arayışımız
(search) devam etmektedir (continues).
�English version�
For the update processes of our servers, we keep

on searching an expert on this domain.

To the best of our knowledge, this is the first
study working on automatic detection of code-
switching between Turkish and English. We in-
troduce a small test data set composed of 391 so-
cial media posts each consisting of code-switched
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sentences and their word-by-word manual annota-
tion stating either the word is Turkish or English.
The paper presents our first results on this data set
which is quite promising with a 95.6% micro av-
erage F1-score. Our proposed system uses condi-
tional random fields using character n-grams and
word look-up features from monolingual corpora.

2 Related Work

Code-switching is a spoken and written phe-
nomenon. Hence, its investigation by linguists had
started long before the Internet era, dating to 1950s
(Solorio et al., 2014). However, code-switching
researches concerning Natural Language Process-
ing has started more recently, with the work of
Joshi (1982), where a “formal model for intra-
sentential code-switching” is introduced.

Analysis of code-switched data requires an an-
notated, multilingual corpus. Although collec-
tion of code-switched social media data is not an
easy task, there has been worthy contributions.
A Turkish-Dutch corpus (Nguyen and Doğruöz,
2013), a Bengali-English-Hindi corpus (Barman
et al., 2014), Modern Standard Arabic - Dialec-
tal Arabic, Mandarin - English, Nepali-English,
and Spanish-English corpora for the First and
Second Workshops on Computational Approaches
to Code-switching (Solorio et al., 2014; Molina
et al., 2016), a Turkish-German corpus (Özlem
Çetinoğlu, 2016), a Swahili-English corpus (Pier-
gallini et al., 2016) and an Arabic-Moroccan Dar-
ija corpus (Samih and Maier, 2016) were intro-
duced. Social media sources are preferred, due
to the fact that social media users are not aware
that their data are being analyzed and thus gener-
ate text in a more natural manner (Çetinoğlu et al.,
2016). To our knowledge, a Turkish-English code-
switching social media corpus has not yet been in-
troduced.

Word-level language identification of code-
switched data has proved to be a popular re-
search area with the ascent of social media. Das
and Gambäck (2013) applied language detection
to Facebook messages in mixed English-Bengali
and English-Hindi. Chittaranjan et al. (2014) car-
ried out the task of language detection for code-
switching feeding character n-grams to CRF, with
addition to lexical, contextual and other special
character features, and reached 95% labeling ac-
curacy. Nguyen and Doğruöz (2013) identified
Dutch-Turkish words using character n-grams and

dictionary lookup as CRF features along with con-
textual features, reaching 98% accuracy, and intro-
ducing new methods to measure corpus complex-
ity. These researches mostly depend on monolin-
gual training data (Solorio et al., 2014). As op-
posed to monolingual training data, Lignos and
Marcus (2013) used code-switched data for lan-
guage modeling where they use a Spanish data
set containing 11% of English code-switched data.
However, the usage of code-switched data for
training is problematic, since its size is generally
low, and may be insufficient for training (Mahar-
jan et al., 2015).

Shared tasks on code-switching (Solorio et al.,
2014; Molina et al., 2016) contributed greatly to
the research area. First Workshop on Computa-
tional Approaches to Code-switching (FWCAC)
showed that, when typological similarities are
high between the two languages (Modern Stan-
dard Arabic-Dialectal Arabic (MSA-DA) for in-
stance), and they share a big amount of lexical
items, language identification task becomes con-
siderably difficult (Solorio et al., 2014). It is easier
to define languages when the two are not closely
related (Nepali-English for instance).

3 Language Identification Models

This section presents our word-level identification
models tested on Turkish-English language pair.

3.1 Character N-gram Language Modeling

Our first model “Ch.n-gram” uses SRI Language
Modeling Toolkit (SRILM) for character n-gram
modeling, with Witten-Bell smoothing (Stolcke,
2002). Unigrams, bigrams and trigrams (n=1,2,3)
are extracted from Turkish and English training
corpora (ETD, TNC and TTC to be introduced in
§4).

In order to observe how corpora with different
sources (formal or social media) affect language
modeling and word-level language identification
on social media texts, TNC and TTC are paired
with the ETD, and the model perplexities are cal-
culated against the code-switched corpus (CSC).
Language labels are decided upon the comparison
of English and Turkish model perplexities for each
token in the test set.

3.2 Conditional Random Fields (CRF)

Conditional Random Fields (CRF) perform effec-
tively in the sequence labeling problem for many
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NLP tasks, such as Part-of-Speech (POS) tagging,
information extraction and named entity recogni-
tion (Lafferty et al., 2001). CRF method was em-
ployed by Chittaranjan et al. (2014) for word-level
language detection, using character n-gram prob-
abilities among others as a CRF feature, reaching
80% - 95% accuracy in different language pairs.
In this research we also experiment with CRF
for word-level language identification, where lan-
guage tagging is considered as a sequence labeling
problem of labeling a word either with English or
Turkish language tags.

Our first CRF model “CRF†” uses lexicon
lookup (LEX), character n-gram language model
(LM) features and the combination of these for the
current and neighboring tokens (provided as fea-
ture templates to the used CRF tool (Kudo, 2005)).
LEX features are two boolean features stating the
presence of the current token in the English (ETD)
or Turkish dictionary (TNC or TTC). LM feature
is a single two-valued (T or E) feature stating the
label assigned by our previous (Ch.n-gram) model
introduced in §3.1.

Turkish is an agglutinative language. Turkish
proper nouns are capitalized and an apostrophe
is inserted between the noun and any following
inflectional suffix. It is frequently observed that
code-switching people apply the same approach
while using foreign words in their writings. Ex.
(2) provides such an example usage:

(2) action’lar�code-switched version�
eylemler�Turkish version�
actions�English version�
In such circumstances, it is hard for our

character-level and lexicon look-up models to as-
sign a correct tag where an intra-word code-
switching occurs and the apostrophe sign may be
a good clue for detecting these kinds of usages.
In order to reflect this know-how to our machine
learning model, we added new features (APOS) to
our last model “CRFφ” (in addition to previous
ones). APOS features are as follows: a boolean
feature stating whether the token contains an apos-
trophe (’) sign or not, a feature stating the lan-
guage tag (E or T) assigned by ch.n-gram model to
the word sub-part appearing before the apostrophe
sign (this feature is assigned an ‘O’ (other) tag if
the previous boolean feature is 0) and a final fea-
ture which is similar to the previous one but this
time stating whether this sub-part appears in one

of the language dictionaries (E/T/O).

4 Data

Our character-level n-gram models were trained
on monolingual Turkish and English corpora re-
trieved from different sources. We also collected
and annotated a Turkish-English code-switched
test data-set and used it both for testing of our n-
gram models and training (via cross-validation) of
our sequence labeling model.

The monolingual English training data (ETD)
was acquired from the Leipzig Corpora Collec-
tion (Goldhahn et al., 2012), containing English
text from news resources, incorporating a formal
language, with 10M English tokens. For the Turk-
ish training data, two different corpora were used.
The first corpus was artificially created using the
word frequency list of the Turkish National Cor-
pus (TNC) Demo Version (Aksan et al., 2012).
TNC mostly consists of formally written Turkish
words. Second Turkish corpus (TTC) (6M tokens)
was extracted using the Twitter API aiming to ob-
tain a representation of the non-canonical user-
generated context.

For the code-switched test corpus (CSC), 391
posts all of which containing Turkish-English
code-switching were collected from Twitter posts
and Ekşi Sözlük website1. The data was cross-
annotated by two human annotators. A baseline
assigning the label “Turkish” to all tokens in this
dataset would obtain a 72.6% accuracy score and a
42.1% macro-average F1-measure. Corpus statis-
tics and characteristics are provided in Table 1.2

5 Experiments and Discussions

We evaluate our token-level language identifica-
tion models using precision, recall and F1 mea-
sures calculated separately for both language
classes (Turkish and English). We also provide
micro3 and macro averaged F1 measures for each
model.

Table 2 provides two baselines: the first row
“base T” (introduced in §4) provides the scores of

1an online Turkish forum, containing informal, user-
generated information

2All punctuations (except for “ ‘ ” and “-”), smileys and
numbers were removed from the corpora using regular ex-
pressions (regex) and all characters were lowercased.

3 Since the accuracy scores in this classification scenario
are most of the time the same (except for baseline model
scores provided in §4) with micro-averaged F1 measures, we
do not provide them separately in Table 2.
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English
tokens

Turkish
tokens

Total
tokens

Language
Type

Use

TNC - 10,943,259 10,943,259 Formal Training of Turkish language model
TTC - 5,940,290 5,940,290 Informal Training of Turkish language model
ETD 10,799,547 - 10,799,547 Formal Training of English language model
CSC 1488 3942 5430 Informal Testing & Training of sequence models

Table 1: Corpus Characteristics

System LM/ Turkish English Avg. F1

Dict. P R F1 P R F1 Micro Macro
base T - 72.6% 100.0% 84.1% 0.0% 0.0% 0.0% 61.1% 42.1%

base LL ETD-TNC 91.4% 98.7% 94.9% 95.5% 75.5% 84.4% 92.0% 89.6%
Ch.n-gram ETD-TNC 98.1% 88.4% 93.0% 75.6% 95.5% 84.4% 90.6% 88.7%
Ch.n-gram ETD-TTC 95.9% 94.1% 95.0% 85.1% 89.4% 87.2% 92.9% 91.1%

CRF† ETD-TNC 96.3% 97.2% 96.7% 91.9% 89.6% 90.6% 95.0% 93.7%
CRF† ETD-TTC 96.3% 96.9% 96.6% 91.2% 90.3% 90.7% 95.0% 93.6%
CRFφ ETD-TNC 97.2% 96.8% 97.0% 91.7% 92.2% 91.9% 95.6% 94.5%
CRFφ ETD-TTC 96.8% 96.6% 96.7% 91.5% 90.9% 91.1% 95.1% 93.9%

Table 2: Token-level language identification results.
LM/Dict. refers to the data used as dictionaries and training data for n-gram language models.

the baseline model which assigns the label “Turk-
ish” to all tokens and the second row provides the
results of a rule-based lexicon lookup (base LL)
which assigns the language label for each word by
searching it in TNC and ETD used as Turkish and
English dictionaries. If a word occurs in both or
none of these dictionaries, it is tagged as Turkish
by default.

We observe from the results that the character-
level n-gram models trained on a formal data
set (TNC) fall behind our second baseline (with
88.7% macro avg. F1) whereas the one trained on
social media data (TTC) performs better (91.1%).
It can also be observed that the performances of
character n-gram language models turned out to be
considerably high, aided by the fact that Turkish
and English are morphologically distant languages
and contain differing alphabetical characters such
as “ş,ğ,ü,ö,ç,ı”in Turkish and “q,w,x” in English.

CRF models’ performances are calculated via
10 fold cross-validation over code-switched cor-
pus (CSC). One may see from the table that all
of our CRF models perform higher than our base-
lines and character n-gram models. The best per-
formances (95.6% micro and 94.5% macro avg.
F1) are obtained with CRFφ trained with LEX +
LM + APOS features. Contrary to the above find-
ings with character level n-gram models, we see

that CRFφ performs better when TNC is used for
character-level n-gram training and look-up. The
use of TTC (monolingual Turkish data collected
from social media) was revealing better results in
Ch.n-gram models and similar results in CRF†.
This may be attributed to the fact that our hy-
pothesis regarding the use of apostrophes in code-
switching of Turkish reveals a good point and the
validation of the word sub-part before the apostro-
phe sign (from a formally written corpus - TNC)
brings out a better modeling.

6 Conclusion

In this paper, we presented the first results
on code-switching detection between Turkish-
English languages. With the motivation of social
media analysis, we introduced the first data set
which consists 391 posts with 5430 tokens (hav-
ing ∼30% English words) collected from social
media posts4. Our first trials with conditional ran-
dom fields revealed promising results with 95.6%
micro-average and 94.5 macro-average F1 scores.
We see that there is still room for improvement
for future studies in order to increase the rela-
tively low F1 (91.9%) scores on English. As fu-
ture works, we aim to increase the corpus size

4The code-switched corpus is available via
http://tools.nlp.itu.edu.tr/Datasets (Eryiğit, 2014)
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and to test with different sequence models such as
LSTMs.
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Gülşen Eryiğit. 2014. ITU Turkish NLP web service.
In Proceedings of the Demonstrations at the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL), Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the

Leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC 2012).

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 368–378.
Association for Computational Linguistics.

Claire E Hughes, Elizabeth S Shaunessy, Alejandro R
Brice, Mary Anne Ratliff, and Patricia Alvarez
McHatton. 2006. Code switching among bilingual
and limited English proficient students: Possible in-
dicators of giftedness. Journal for the Education of
the Gifted, 30(1):7–28.

Aravind K. Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Proceedings of
the 9th Conference on Computational Linguistics -
Volume 1, COLING ’82, pages 145–150, Czechoslo-
vakia. Academia Praha.

Taku Kudo. 2005. Crf++: Yet another crf toolkit.
http://crfpp. sourceforge. net/.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 282–
289. Morgan Kaufmann, San Francisco, CA.

Constantine Lignos and Mitch Marcus. 2013. Toward
web-scale analysis of codeswitching. In 87th An-
nual Meeting of the Linguistic Society of America.

Suraj Maharjan, Elizabeth Blair, Steven Bethard, and
Thamar Solorio. 2015. Developing language-tagged
corpora for code-switching tweets. In Proceedings
of LAW IX - The 9th Linguistic Annotation Work-
shop, pages 72–84, Denver, Colorado.

Maite Melero, Marta.R. Costa-Jussà, P. Lambert, and
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Abstract
An accurate language identification tool is an
absolute necessity for building complex NLP
systems to be used on code-mixed data. Lot of
work has been recently done on the same, but
there’s still room for improvement. Inspired
from the recent advancements in neural net-
work architectures for computer vision tasks,
we have implemented multichannel neural net-
works combining CNN and LSTM for word
level language identification of code-mixed
data. Combining this with a Bi-LSTM-CRF
context capture module, accuracies of 93.28%
and 93.32% is achieved on our two testing sets.

1 Introduction

With the rise of social media, the amount of mine-
able data is rising rapidly. Countries where bilin-
gualism is popular, we see users often switch back
and forth between two languages while typing,
a phenomenon known as code-mixing or code-
switching. For analyzing such data, language tag-
ging acts as a preliminary step and its accuracy
and performance can impact the system results to
a great extent. Though a lot of work has been done
recently targeting this task, the problem of lan-
guage tagging in code-mixed scenario is still far
from being solved. Code-mixing scenarios where
one of the languages have been typed in its translit-
erated from possesses even more challenges, espe-
cially due to inconsistent phonetic typing. On such
type of data, context capture is extremely hard as
well. Proper context capture can help in solving
problems like ambiguity, that is word forms which
are common to both the languages, but for which,
the correct tag can be easily understood by know-
ing the context. An additional issue is a lack of
available code-mixed data. Since most of the tasks
require supervised models, the bottleneck of data
crisis affects the performance quite a lot, mostly
due to the problem of over-fitting.

In this article, we present a novel architecture,
which captures information at both word level
and context level to output the final tag. For
word level, we have used a multichannel neural
network (MNN) inspired from the recent works
of computer vision. Such networks have also
shown promising results in NLP tasks like sen-
tence classification (Kim, 2014). For context cap-
ture, we used Bi-LSTM-CRF. The context module
was tested more rigorously as in quite a few of the
previous work, this information has been sidelined
or ignored. We have experimented on Bengali-
English (Bn-En) and Hindi-English (Hi-En) code-
mixed data. Hindi and Bengali are the two most
popular languages in India. Since none of them
have Roman as their native script, both are writ-
ten in their phonetically transliterated from when
code-mixed with English.

2 Related Work

In the recent past, a lot of work has been done
in the field of code-mixing data, especially lan-
guage tagging. King and Abney (2013) used
weakly semi-supervised methods for building a
world level language identifier. Linear chain CRFs
with context information limited to bigrams was
employed by Nguyen and Doğruöz (2013). Lo-
gistic regression along with a module which gives
code-switching probability was used by Vyas et al.
(2014). Multiple features like word context, dic-
tionary, n-gram, edit distance were used by Das
and Gambäck (2014). Jhamtani et al. (2014) com-
bined two classifiers into an ensemble model for
Hindi-English code-mixed LID. The first classifier
used modified edit distance, word frequency and
character n-grams as features. The second classi-
fier used the output of the first classifier for the cur-
rent word, along with language tag and POS tag of
neighboring to give the final tag. Piergallini et al.
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(2016) made a word level model taking char n-
grams and capitalization as feature. Rijhwani et al.
(2017) presented a generalized language tagger for
arbitrary large set of languages which is fully un-
supervised. Choudhury et al. (2017) used a model
which concatenated word embeddings and charac-
ter embeddings to predict the target language tag.
Mandal et al. (2018a) used character embeddings
along with phonetic embeddings to build an en-
semble model for language tagging.

3 Data Sets

We wanted to test our approach on two different
language pairs, which were Bengali-English (Bn-
En) and Hindi-English (Hi-En). For Bn-En, we
used the data prepared in Mandal et al. (2018b)
and for Hi-En, we used the data prepared in Patra
et al. (2018). The number of instances of each type
we selected for our experiments was 6000. The
data distribution for each type is shown in Table 1.

Train Dev Test

Bn
3000

27245/6189
22.4

1000
9144/2836

21.4

2000
17967/4624

22.5

Hi
3000

26384/5630
18.8

1000
8675/2485

18.7

2000
16114/4286

18.2

Table 1: Data distribution.

Here, the first value represents the number of in-
stances taken, the second line represents the to-
tal number of indic tokens / unique number of in-
dic tokens, and the third line represents the mean
code-mixing index (Das and Gambäck, 2014).

4 Architecture Overview

Our system is comprised of two supervised mod-
ules. The first one is a multichannel neural net-
work trained at word level, while the second one
is a simple bidirectional LSTM-CRF trained at in-
stance level. The second module takes the input
from the first module along with some other fea-
tures to output the final tag. Individual modules
are described in detail below.

Figure 1: Architecture overview.

5 Word - Multichannel Neural Network

Inspired from the recent deep neural architectures
developed for image classification tasks, espe-
cially the Inception architecture (Szegedy et al.,
2015), we decided to use a very similar concept for
learning language at word level. This is because
the architecture allows the network to capture rep-
resentations of different types, which can be really
helpful for NLP tasks like these as well. The net-
work we developed has 4 channels, the first three
enters into a Convolution 1D (Conv1D) network
(LeCun et al., 1999), while the fourth one enters
into a Long Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997). The com-
plete architecture is showed in Fig 2.

Figure 2: Multichannel architecture for word level
tagging.

Character embeddings of length 15 is fed into all
the 4 channels. The first 3 Conv 1D cells are used
to capture n-gram representations. All the three
Conv 1D cells are followed by Dropout (rate 0.2)
and Max Pooling cells. Adding these cells help in
controlling overfitting and learning invariances, as
well as reduce computation cost. Activation func-
tion for all the three Conv 1D nets was relu. The
fourth channel goes to an LSTM stack with two
computational layers of sizes 15, and 25 orderly.
For all the four channels, the final outputs are flat-
tened and concatenated. This concatenated vector
is then passed on to two dense layers of sizes 15
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(activation relu) and 1 (activation sigmoid). For
the two models created, Bn-En and Hi-En, target
labels were 0 for the Bn/Hi and 1 for En. For im-
plementing the multichannel neural network for
word level classification, we used the Keras API
(Chollet et al., 2015).

5.1 Training

Word distribution for training is described in Ta-
ble 1. All indic tagged tokens were used in-
stead of just unique ones of respective languages.
The whole model was compiled using loss as
binary cross-entropy, optimization function used
was adam (Kingma and Ba, 2014) and metric for
training was accuracy. The batch size was set to
64, and number of epochs was set to 30. Other pa-
rameters were kept at default. The training accu-
racy and loss graphs for both Bn and Hi are shown
below. As the MNN model produces a sigmoid
output, to convert the model into a classifier, we
decided to use a threshold based technique iden-
tical to the one used in Mandal et al. (2018a) for
tuning character and phonetic models. For this the
development data was used, threshold for Bn was
calculated to be θ ≤ 0.95, while threshold for Hi
was calculated to be θ ≤ 0.89. Using these, the ac-
curacies on the development data was 93.6% and
92.87% for Bn and Hi respectively.

6 Context - Bi-LSTM-CRF

The purpose of this module is to learn representa-
tion at instance level, i.e. capture context. For this,
we decided to use bidirectional LSTM network
with CRF layer (Bi-LSTM-CRF) (Huang et al.,
2015) as it has given state of the art results for se-
quence tagging in the recent past. For converting
the instances into embeddings, two features were
used namely, sigmoid output from MNN (fe1),
character embedding (fe2) of size 30. The final
feature vector is created by concatenating these
two, fe = (fe1, fe2). The model essentially learns
code-switching chances or probability taking into
consideration character embeddings and sigmoid
scores of language tag. We used the open sourced
neural sequence labeling toolkit, NCRF++ (Yang
and Zhang, 2018) for building the model.

6.1 Training

Instance distribution for training is described in
Table 1. The targets here were the actual language
labels (0 for the Bn/Hi and 1 for En). The hyper-

parameters which we set mostly follow Yang et al.
(2018) and Ma and Hovy (2016). Both the mod-
els (Bn-En & Hi-En) had identical parameters. L2
regularization λ was set at 1e-8. Learning rate
η was set to 0.015. Batch size was kept at 16
and number of epochs was set to 210. Mini-batch
stochastic gradient descent (SGD) with decaying
learning rate (0.05) was used to update the param-
eters. All the other parameters were kept at default
values. This setting was finalized post multiple ex-
periments on the development data. Final accu-
racy scores on the development data was 93.91%
and 93.11% for Bn and Hi respectively.

7 Evaluation

For comparison purposes, we decided to use the
character encoding architecture described in Man-
dal et al. (2018a) (stacked LSTMs of sizes 15, 35,
25, 1) with identical hyper-parameters for both Bn
and Hi. Training data distribution while creating
the baseline models were in accordance with Ta-
ble 1. The thresholds for the baseline models cal-
culated on the development data was found to be
θ ≤ 0.91 and θ ≤ 0.90 for Bn and Hi respectively.
The results (in %) for each of the language pairs
are shown below.

Acc Prec Rec F1
baseline 88.32 89.64 87.72 88.67
word model 92.87 94.33 91.84 93.06
context model 93.28 94.33 92.68 93.49

Table 2: Evaluation on Bn.

From Table 2 we can see that the jump in accu-
racy from baseline to the word model is quite sig-
nificant (4.55%). From word to context model,
though not much, but still an improvement is seen
(0.41%).

Acc Prec Rec F1
baseline 88.28 88.57 88.01 88.28
word model 92.65 93.54 91.77 92.64
context model 93.32 93.62 93.03 93.32

Table 3: Evaluation on Hi.

In Table 3, again a similar pattern can be seen, i.e.
a significant improvement (4.37%) from baseline
to word model. Using the context model, accuracy
increases by 0.67%. In both the Tables, we see that
precision has been much higher than recall.
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8 Analysis & Discussion

The confusion matrices of the language tagging
models are shown in Table 4 and Table 5 for Bn
and Hi respectively. Predicted class is denoted by
Italics, while Roman shows the True classes.

Confusion Matrices
1 Bn En 2 Bn En

Bn 16502 1465 Bn 16652 1315
En 991 15521 En 1000 15512

Table 4: Confusion matrices for Bn.

From Table 4 (1 - word model, 2 - context model),
we can see that the correctly predicted En tokens
has not varied much, but in case of Bn, the change
is quite substantial, and the accuracy improve-
ment from word to context model is contributed
by this. Upon analyzing the tokens which were
correctly classified by context model, but misclas-
sified by word model, we see that most of them are
rarely used Bn words, e.g. shaaotali (tribal), lut-
pat (looted), golap (rose), etc, or words with close
phonetic similarity with an En word(s) or with
long substrings which belong to the En vocabu-
lary, e.g. chata (umbrella), botol (bottle), gramin
(rural), etc. For some instances, we do see that am-
biguous words have been correctly tagged by the
context model unlike the word model, where the
same language tag is given.

E.g 1. Amar\bn shob\bn rokom\bn er\bn e\bn
fruit\en like\en aam\bn, jam\bn, kathal\bn
bhalo\bn lage\bn. (Trans. I like all kinds of fruits
like aam, jam, kathal.)

E.g 2. Sath\bn shokale\bn eto\bn jam\en
eriye\bn office\en jawa\bn is\en a\en big\en
headache\en amar\bn boyeshe\bn. (Trans. Early
morning commuting through traffic for office is a
big headache at my age.)

In the first example, the word ”jam” is a Bengali
word meaning rose apple (a type of tropical fruit),
while in the second example, the word ”jam” is
an English word referring to traffic jam i.e. traffic
congestion. Thus, we can see that despite having
same spellings, the word has been classified to dif-
ferent languages, and that too correctly. This case
was observed in 47 instances, while for 1 instance,
it tagged the ambiguous word incorrectly. Thus we
see that when carefully trained on standard well
annotated data, the positive impact is much higher
than negative.

In Table 5 (3 - word model, 4 - context model) we
can see substantial improvement in prediction of
En tokens as well by the context model, though
primary reason for accuracy improvement is due
to better prediction of Hi tokens.

Confusion Matrices
3 Hi En 4 Hi En
Hi 14788 1326 Hi 14992 1122
En 1034 14968 En 1021 14981

Table 5: Confusion matrices for Hi.

Here again, on analyzing the correct predictions
by the context model but misclassified by the word
model, we see a similar pattern of rarely used Hi
words, e.g. pasina (sweat), gubare (balloon), or
Hi words which have phonetic similarities with En
words, e.g. tabla (a musical instrument), jangal
(jungle), pajama (pyjama), etc. In the last two
cases, we can see that the words are actually bor-
rowed words. Some ambiguous words were cor-
rectly tagged here as well.

E.g 3. First\en let\en me\en check\en fir\hi
age\hi tu\hi deklena\hi. (Trans. First let me
check then later you takeover.)

E.g 4. Anjan\hi woman\en se\hi age\en
puchna\hi is\en wrong\en. (Trans. Asking age
from an unknown woman is wrong.)

In the first example, ”age” is a Hindi word mean-
ing ahead, while in the next instance, ”age” is an
English word meaning time that a person has lived.
Here, correct prediction for ambiguous words was
seen in 39 instances while there was no wrong pre-
dictions.

9 Conclusion & Future Work

In this article, we have presented a novel archi-
tecture for language tagging of code-mixed data
which captures context information. Our system
achieved an accuracy of 93.28% on Bn data and
93.32% on Hi data. The multichannel neural net-
work alone got quite impressive scores of 92.87%
and 92.65% on Bn and Hi data respectively. In
future, we would like to incorporate borrowed
(Hoffer (2002), Haspelmath (2009)) tag and col-
lect even more code-mixed data for building bet-
ter models. We would also like to experiment with
variants of the architecture shown in Fig 1 on other
NLP tasks like text classification, named entity
recognition, etc.
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Yoshua Bengio. 1999. Object recognition with
gradient-based learning. In Shape, contour and
grouping in computer vision, pages 319–345.
Springer.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Soumil Mandal, Sourya Dipta Das, and Dipankar Das.
2018a. Language identification of bengali-english
code-mixed data using character & phonetic based
lstm models. arXiv preprint arXiv:1803.03859.

Soumil Mandal, Sainik Kumar Mahata, and Dipankar
Das. 2018b. Preparing bengali-english code-mixed
corpus for sentiment analysis of indian languages.
arXiv preprint arXiv:1803.04000.

Dong Nguyen and A Seza Doğruöz. 2013. Word level
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Abstract

In this paper we investigate the task of
modeling how long it would take a student
to respond to a tutor question during a tu-
toring dialogue. Solving such a task has
applications in educational settings such
as intelligent tutoring systems, as well
as in platforms that help busy human tu-
tors to keep students engaged. Knowing
how long it would normally take a stu-
dent to respond to different types of ques-
tions could help tutors optimize their own
time while answering multiple dialogues
concurrently, as well as deciding when to
prompt a student again. We study this
problem using data from a service that of-
fers tutor support for math, chemistry and
physics through an instant messaging plat-
form. We create a dataset of 240K ques-
tions. We explore several strong baselines
for this task and compare them with hu-
man performance.

1 Introduction

One-on-one tutoring is often considered the gold-
standard of educational interventions. Past work
suggests that this form of personalized instruction
can increase student performance by two standard
deviation units (Bloom, 1984). Chatbots, intelli-
gent tutoring systems (ITS), and remote tutoring
are often seen as a way of providing this form
of personalized instruction at an economical scale
(VanLehn, 2011). However, their key limitation is
that they are unable to identify when students have
disengaged or are struggling with a task.

Figure 1: Diagram of our binary task definition.
The classifier receives the tutor question text and
dialogue contextual features such as the text and
timing of previous dialogue turns, the duration
and number of words in the question, the entrain-
ment and sentiment between dialogue participants,
among others.

Tutors and ITS need to calibrate how frequently
and often they message their students. Prompt-
ing students too frequently could result in students
feeling frustrated and disrupted, while prompting
too slowly could result in students becoming dis-
engaged or simply not learning as fast they could
have with more prompting. This task is further
complicated by the fact that interactions between
students and a digital platform involve tasks of
varying complexity and duration (such as perform-
ing a calculation, explaining a definition, or an-
swering yes or no).

We propose predicting response latency of a tu-
tor’s question, as an indirect measure of a student’s
engagement (Beck, 2005) and question complex-
ity (Strombergsson et al., 2013).
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The domain that we work with is tutoring ses-
sion transcripts from an on-demand tutoring com-
pany, in which students take photos of their math,
chemistry, and physics problems with their mobile
or tablet devices. These images are then sent to
a tutor in a remote location. Tutors and students
then communicate back and forth over text mes-
sages until the student is able to solve the problem.

Specifically, the task that we focus on is: given
a question from the tutor, predict whether it can
be responded immediately or it is a question that
requires more thought (see Figure 1). We formu-
late this task as a binary classification problem
(short/long) whose inputs are the tutor’s question
and several dialogue contextual features. In this
paper we make the following contributions:

• We define the task of modeling student re-
sponse latency in order to make one-on-one
tutoring dialogue more efficient.

• We have partnered with an Educational Tech-
nology company called Yup to produce one
of the largest educational dialogue corpora to
date. This initial dataset including over 18K
tutoring sessions spanning 7K hours of text-
based dialogue, including over 240K ques-
tions from tutors.

• We explore several strong classifiers for this
task1 whose performance is statistically sig-
nificant better than expert human perfor-
mance.

2 Related Work

Response time has been used as an indicator
of student engagement (Beck, 2005) and perfor-
mance (Xiong et al., 2011). These studies find that
question response time is correlated with student’s
performance and engagement, and thus being able
to predict a student’s response latency is a use-
ful measure for ITS. However, the task of predict-
ing student response time to open-ended questions
from tutors has not been addressed before. There
is significant work in related topics such as re-
sponse time analysis, dialogue automatic process-
ing, sentiment analysis and education. Our prob-
lem lies within the intersection of these fields, so
now we analyze a cross-section of past work and
propose how their approaches, findings and analy-
ses might be applicable to our situation.

1The source code is available at https://tinyurl.
com/ybe65ctu.

To start with, Graesser and Person (1994) finds
that analyzing question text is beneficial when as-
sessing response characteristics, and this forms the
basis for our bag-of-words baseline model. More-
over, Strombergsson et al. (2013) argue that the
timing of past responses in a dialogue is corre-
lated with the timing of future responses. Based on
this study we propose our second baseline model
trained only on how long it took students to re-
spond to the previous turns in the dialogue.

Given these two baselines we investigate the
following hypotheses, motivated by prior work
from the different areas we mentioned:

H.1 One of the most interesting and counter-
intuitive results in (Avrahami et al., 2008)
is that the longer the message, the faster
it was responded to. This is somewhat at
odds with (Graesser and Person, 1994) which
suggests that short questions elicit short re-
sponses. We plan to test the influence of
question word count on predicting response
time in our dataset.

H.2 We hypothesize that using as a feature the tu-
tor’s turn duration, which is the number of
seconds elapsed between when the tutor first
started talking and the tutor’s question, will
increase model performance (Strombergsson
et al., 2013).

H.3 Moreover, (Avrahami et al., 2008) found
that responsiveness to previous messages was
highly correlated to the responsiveness of the
current message, and therefore, considering
messages prior to a question could prove use-
ful when predicting response latency. We hy-
pothesize that the content and the timing of
dialogue turns that precede the question will
increase the F1 score of our model.

H.4 Brennan (1996) observes that while lexical
variability is high in natural language, it is
relatively low within a single conversation.
When two people talk about the same topic,
they tend to coordinate the words they use.
This phenomenon is known as lexical en-
trainment. Thomason et al. (2013) show that
prosodic entrainment has a positive effect on
tutor-student dialogue rhythm and success.
Nenkova et al. (2008) found that high fre-
quency word entrainment in dialogue is cor-
related with engagement and task success.
We test whether high frequency word entrain-
ment has a significant impact on response
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time prediction.
H.5 Previous work suggests that using sentiment

information can help determine the level of
engagement in MOOC forums (Wen et al.,
2014). Wen et al. mine the sentiment polarity
of the words used in forum posts in order to
monitor students’ trending opinions towards
a course. They observe a correlation between
sentiment ratio measured based on daily fo-
rum posts and number of students who drop
out the course each day. Inspired by this work
we hypothesize that the sentiment polarity of
the words used in the tutor question might
correlate with the student response time.

H.6 Finally, following previous work (Sutskever
et al., 2014) we hypothesize that using se-
quential information (captured through a sim-
ple RNN) will improve the performance of
response time prediction.

In Section 4 we explain how we design different
experiments in order to test these hypotheses. But
first, in the next section we describe our dataset.

3 Data

The dataset we are using consists of more than
7,000 hours of tutorial dialogues between students
and tutors through an app-based tutoring platform.
In total, there are 18,235 tutorial sessions in our
dataset. These sessions are between 6,595 unique
students and 117 tutors discussing mathematics,
physics, and chemistry problems. A session has
61 turns in average, its median length is 34 turns.

TUTOR : I will be your instructor for this ses-
sion. How far have you gotten in solving
the problem? short (15 sec.)

STUDENT : I know b and d are rught
TUTOR : How do you know that? :) Can you

show me your work? Can you show me
your work? long (67 sec.)

STUDENT : Because graphed it and the y in-
tercept was 01. Also it can’t be a y in-
tercept if it’s not 0.

Figure 2: Sample Tutorial Dialogue. Student re-
sponse times follow each tutor question.

Figure 2 is an excerpt of a tutoring session. It
includes examples of two tutor questions and stu-
dent responses, as well as the corresponding re-
sponse time labels. Note that successive utterances

have been concatenated in order to unify speak-
ers that split their points into several lines (some-
times even breaking up an utterance into two or
more lines) and those that include several utter-
ances into the same turn. In this way we model the
dialogue as a turn-based interaction such that two
successive turns correspond to different speakers.
Observe that in the second turn, the tutor utters
three questions in one turn. The first question is
open ended, the second question is a yes/no ques-
tion and then he repeats the second question iden-
tically. In this case, when there is more than one
question in the same turn, we use the timestamp
of the first question. The rationale is that at that
time the student could have started to formulate an
answer. The follow up questions in this turn are re-
finements or repetitions to the first one motivated
by the delay in the response.

The example dialogue in the figure also includes
some typos and grammatical errors which illus-
trate the quality of the data. One of the features
and key takeaways the reader should note is that
there is a great deal of repetition in the types of
questions that tutors ask. In particular, we identi-
fied a large number of duplicate questions that ask
if a student is still engaged and understands a tu-
tor’s previous statement.

The raw data is preprocessed by:

• Sorting rows by session ID and timestamp.
• Removing incomplete rows.
• De-duplicating consecutive rows.
• Normalizing URLs in utterances.
• Tokenizing utterances using spaCy (Honni-

bal and Johnson, 2015).

As part of the project to model response time to
tutor questions, we must first be able to distinguish
them from other forms of conversation in tutorial
dialogues. Past research suggests that humans can
identify questions with high reliability (Graesser
and Person, 1994). Given the size of our dataset,
hand-coding the entire dataset seemed infeasible.
As a proxy, we choose to identify tutor questions
as any utterance which included a “?” character
at the end of a sentence. This is done for three
reasons. First, even if a third-party would con-
test whether or not a sentence is a question, a “?”
symbol denotes a revealed preference on behalf of
the speaker that anticipates a response. Second,
even if a tutor accidentally mistypes the “?” sym-
bol, a student may interpret it as a prompt to re-
spond. Lastly, questions and elicitations may have
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Figure 3: Response Time Histogram

very similar sentence structures but the “?” has a
pedagogically distinct interpretation. Consider the
statements “3 × 5 = 15” versus “3 × 5 = 15?”
The former is an assertion of the fact and the latter
is a form of assessment.

After extracting these candidate questions, we
concatenate any surrounding tutor utterances,
maintaining the original timestamp of the tutor
question. That way if a tutor provides additional
context before or after the question, it will be seen
as part of the question.

Utilizing this rule, we identify a total of 242,495
questions. We then split sessions into train, dev,
and test sets such that the train set comprises ap-
proximately 70% of all questions, the dev set com-
prises 15%, and the test set comprises 15% of
questions, with the number of sessions split anal-
ogously. Figure 3 shows a histogram of student
response times. The vast majority of responses oc-
cur within one minute.

The distribution of questions and response times
appear to follow an approximate power law distri-
bution (Figure 4). The associated R2, proportion
of variance explained, is 0.95, suggesting that this
would be a reasonable approximating distribution.

4 Methodology

In this section, we first describe our approach to
formulating the task as a classification problem,
and the evaluation methodology that we adopt for
measuring performance. Then we delve into the
set-up for our experiments. Finally, we describe
how we collect human performance for the task.

4.1 Classification Methodology
As we already mentioned, given a question from
the tutor, our task is to predict whether the stu-

Figure 4: Log-Log Response Time Plots

dent can respond it right away or she will proba-
bly require more time. We cast this task into a bi-
nary (short/long) classification task whose inputs
are the tutor’s question and several dialogue con-
textual features. Response times are divided in-
tro “short” (20 seconds or less), and “long” (more
than 20 seconds). We use this threshold as it is
the median response latency in our dataset. Using
these thresholds, the classes are roughly divided in
a 49/51 split (short/long).

We use weighted macro F1 scores as our evalu-
ation metric, train on the training set and tune our
model parameters based on dev set results.

We propose three simple baselines for the task.
We assess the performance of a random guess-
ing baseline (guesses based on prior class distri-
butions) and use this as a lower bound.

As an alternative baseline we use the counts of
previous response time labels within session and
train classifiers on this three-dimensional feature
space. We implement two simple classifiers for
our baseline using logistic regression and SVM
(linear kernel) from scikit-learn (Pedregosa
et al., 2011), along with weighted loss functions
to account for class imbalance in the dataset. This
baseline uses only temporal features, no textual
features from the question or the context are used.

For our third baseline, we use only textual fea-
tures from the tutor questions with a simple uni-
gram bag-of-words model for feature representa-
tion, no temporal features are included. We use
the same classifiers as above.

We implement these baselines knowing that
they are too simple to capture the full complexity
of this task. For example, questions such as “Are
you still with me?” occur multiple times across the
entire dataset, with highly varied response times
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that depend on the context and state of the con-
versation. From our train set, approximately 12%
of questions are duplicates and repeated questions
frequently have different response times. As we
argue in sections 5 and 6, it is necessary to look
further into the context combining textual, tempo-
ral, as well as other types of information.

Below we describe how we enrich our best
baseline with further features motivated by the hy-
potheses introduced in Section 2.

4.2 Experimentation

Our approach in testing the above hypotheses
posed in Section 2 is setting forth experimental
augmentations to the baselines introduced above,
and evaluating the weighted F1 scores across all
classes in order to assess performance. In other
words, we add a feature as a time and evaluate
the F1 score, as reported in Table 1. In this sec-
tion, each experiment corresponds to the hypothe-
sis with the same number.

For most of our experiments (excluding the
RNN), we use both logistic regression and SVM
on a bag-of-words model concatenated with re-
spective additional feature(s) (e.g. question word
length, question duration, etc.). For all experi-
ments, we conduct a randomized hyper-parameter
search for each model and pick the model that per-
forms the best on the dev set.

Experiment 1: Question Word Count

Keeping in line with our first hypothesis, we add
question word count as a feature along with the de-
fault bag-of-words features, to test if this improves
the model performance.

Experiment 2: Question Duration

We add the temporal duration of each question as
a feature within our feature space, and use this to
test our second hypothesis.

Experiment 3: Previous Dialogue Turns

Modeling a dialogue as a turn-based interaction
between the ‘student’ and the ‘platform’, we con-
duct two independent experiments enriching the
question text feature space using a turn context
window. The first experiment considers only
the text of the previous turns, using a bag-of-
words model per previous turn (distinguishing
those turns that come from the tutor and those
that come from the student). This is a simple

model with only unigrams used in the bag-of-
words model, we will explore more complex mod-
els in future work. The second experiment consid-
ers only the time in between turns (i.e. the ca-
dence of the dialogue) in addition to the question
text. For each of these experiments, we try differ-
ent window sizes between 1 and 5, and pick the
ones that performed the best.

Experiment 4: Word Entrainment
For word entrainment, we use the top 25/50/100
most frequent tokens across the corpus, as well
as a set of predefined function words. The most
frequent tokens may include punctuation symbols
as well as function words. Previous work has
found that successful dialogue partners align on
exactly such tokens (Nenkova et al., 2008; Thoma-
son et al., 2013). We calculate the occurrence
of each of the relevant words (for the tutor and
the student) over the 10 turns of dialogue prior
to the given question, and compare the distribu-
tions for the tutor and the student. To compare
distributions, we use cosine similarity (which is an
intuitive measure of vector similarity) as well as
Jensen-Shannon divergence, which has been used
in prior work for comparing similarity in the tex-
tual domain (Goldberg et al., 2016).

Experiment 5: Sentiment
To determine question sentiment, we use the senti-
ment tagger from Stanford CoreNLP on the ques-
tion text(Manning et al., 2014). This produces a 5-
class sentiment score, ranging from very negative
to very positive. For multi-sentence questions, we
use the average sentence sentiment.

Experiment 6: Recurrent Neural Networks
Following previous work (Sutskever et al., 2014),
we believe that using sequential information rather
than a bag-of-words model would help improve
performance. To test this, we train the simple
recurrent neural network (RNN) depicted in Fig-
ure 5. As can be seen in the figure, a standard ar-
chitecture was used with no attention mechanism
and there is room for improvement.

The words from the tutor question are tok-
enized using a vocabulary of size 40, 000, padded
to length 128 (99.9th percentile), embedded in
a 300-dimensional vector initialized with pre-
trained fastText vectors (Joulin et al., 2017) and
then fed it into an LSTM with hidden dimension
200. The encoded question is then fed into a
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Figure 5: Diagram of Simple RNN on Question-
Only Dataset.

densely-connected layer with a sigmoid activation
function.

We train this model for a maximum of 20
epochs, optimizing the cross-entropy loss. We
keep the model that performs best on the dev set.
We achieve the best results after 5 epochs. We use
Keras (Chollet et al., 2015) to run our deep learn-
ing experiments.

4.3 Human Ratings

Since this is a novel task, we additionally conduct
an experiment that measures human performance
on this task. This helps contextualize the perfor-
mance of our models, and understand the relative
ease/difficulty of this task for trained human ex-
perts. We assign three human raters to classify tu-
tor questions. All raters are familiar with the tutor-
ing platform and have been teachers in a classroom
environment for several years. We ask the raters to
evaluate under two setups. The first setup provides
the question, the five turns of the dialogue previous
to the question as well as all the turns times. The
second context provides only the tutor’s question
as well as the student’s response. The rationale for
including the student’s response is to understand
how much this task depends on a feature that is not
available in real-time (at the moment of predicting
the response latency, the response is not available
yet).

We give each rater 136 instances of 5-turn win-
dow questions including times (corresponding to
the setup Q+T+L+D+X reported in Table 1) and
150 questions with their answers (Q+A in Ta-
ble 1). Human agreement on this task is low, giv-
ing evidence that this is a difficult task for hu-
mans. In the Q+T+L+D+X experiment, Cohen’s
Kappa is only 0.14. In the question and answer

model, Cohen’s Kappa is substantially higher with
a Kappa of 0.25. Human raters seem to be over-
whelmed by too much contextual information, in
particular in the Q+T+L+D+X setup. It is hard for
people to pick up on the full range of predictive
cues, some of which involve subtle behavioral pat-
terns as we argue in the Section 6. Another pos-
sibility is that tutors used an availability heuris-
tic in their prediction, low agreement may reflect
the fact that tutors’ predictions may be overly bi-
ased by their recent tutoring sessions (Kahneman
and Tversky, 1973). Humans are not good at esti-
mating time and unable to generalize beyond their
own experience, computers can outperform them
as we argue in the next section.

5 Results

We report best F1 scores on the dev and test sets in
Table 1. We organized the table in 4 parts. In this
section we first give an overview of the results de-
scribing the rationale for their presentation in four
parts, then we describe the results with respect to
the hypotheses posed.

5.1 Overview and rationale

The first part of the table includes three simple
baselines: a random prediction, an SVM trained
using only the count of the labels of the previous
questions in the dialogue, and an SVM trained us-
ing only the unigrams of the question text.

The second part describes our exploration of
the feature space motivated by our hypotheses us-
ing SVM and logistic regression. See the table
caption for an explanation of the acronyms used
in the table. All tests that compares automatic
models are paired t-tests because they are on the
same datasets. All tests that compare human vs
model are unpaired t-tests because the human eval-
uation was performed on a random subset of the
dataset. The difference between the best perform-
ing model in this part (in boldface in the table) and
the best baseline is statistically significant (.60 vs
.62, paired t-test, p=0.05). Also the difference be-
tween the best model and the best human perfor-
mance using these features is statistically signifi-
cant (.62 vs .55, unpaired t-test, p=0.05).

In the third part, we add the question answer
(A) as a single feature over the best performing
baseline. Again the difference with the ques-

2Window size of 5 gave the best results.
3Window size of 5 gave the best results.
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Model
F1

Dev Test
Baselines
Random Classifier 0.50 0.50
Prev. Response Label Counts 0.58 0.57
Question Text (Q) 0.60 0.60
Feature exploration with SVM/LR
Q + Question Length (L) 0.61 0.61
Q + Question Duration (D) 0.61 0.61
Q + Prev. Turns Texts2 (X) 0.61 0.60
Q + Prev. Turns Times3 (T) 0.62 0.61
Q + Word Entrainment (E) 0.60 0.60
Q + Question Sentiment (S) 0.60 0.60
Q+T+L+D+X 0.63 0.62
Human 1 with Q+T+L+D+X – 0.50
Human 2 with Q+T+L+D+X – 0.43
Human 3 with Q+T+L+D+X – 0.55
Answer addition with SVM/LR
Q + Answer (A) 0.67 0.67
Human 1 with Q+A – 0.53
Human 2 with Q+A – 0.63
Human 3 with Q+A – 0.62
Baseline Neural Model
RNN with Question Text (Q) 0.62 0.62

Table 1: Results comparing simple baselines, fea-
ture exploration using Logistic Regression/SVM,
human performance, and a baseline using an RNN.
L: Question length in number of words. D: Ques-
tion duration in seconds (a question may span
more than one turn). X: The text of the dialogue
turns preceding the question. T: The timestamp
of the dialogue turns preceding the question. E:
Word entrainment between tutor and student. S:
Sentiment analysis on the question.

tion only baseline is statistically significant (.60
vs .67). Furthermore, the difference with the
Q+T+L+D+X is statistically significant (.62 vs
.67), showing that the answer is useful for this
task as argued in the error analysis. As in the ear-
lier part, the difference between this model and the
best human performance (for these features) is sta-
tistically significant (.63 vs .67).

In the fourth part, we include the results with
RNN and compare it with the best baseline which
uses the same features: the question text baseline.
Also here the difference between the two is statis-
tically significant (.60 vs .62).

We find that for both SVM and logistic regres-

sion classifiers the best performance is obtained
with L2 penalties. For the SVM, squared hinge
loss is found to work better than hinge loss. We
find no significant difference in performance be-
tween SVM and logistic regression on this dataset.

5.2 Hypotheses analysis

Below we analyze what these results mean for our
hypotheses.

Experiment 1: Question Word Count
Adding question length as a feature improves per-
formance, validating H.1. Furthermore, longer
questions (which usually involve a lot of technical
information in the form of formulae/equations, or
are an aggregation of repeated questions) tend to
result in higher response times. This is contrary to
results seen in (Avrahami et al., 2008), but in line
with those seen in (Beck, 2005). These results po-
tentially indicate behavioral differences between
the two domains - instant messaging (Avrahami
et al., 2008), and tutorial dialogue in virtual envi-
ronments (Beck, 2005); the latter also being the
domain of our current work.

Experiment 2: Question Duration
We notice similar trends while analyzing ques-
tion duration as a feature. Using question du-
ration along with bag-of-words features helped
boost model performance, verifying H.2. Intu-
itively, this feature seems to be an indicative mea-
sure of question complexity, and longer duration
questions result in higher response times.

Experiment 3: Previous Dialogue Turns
H.3 is a mixed bag. We start off by adding dif-
ferent spans of previous dialogue turn text. This
helps improve performance on the dev set but does
not add anything over the baseline when evaluated
on the test set, suggesting that these features do
not generalize well across conversations. On the
contrary, adding previous dialogue times helps im-
prove model performance in both the dev and test
sets. In both settings, we find the best results while
using 5 turns of previous dialogue.

Experiment 4: Word Entrainment
Word entrainment seems to have no effect on
model performance. There are no significant dif-
ferences based on the set of words used to measure
entrainment (function words or 25/50/100 most
frequent words), as well as the metric of lexical
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distance (Jensen-Shannon divergence/cosine simi-
larity). Therefore, we cannot confirm the validity
of H.4 in our setting.

Experiment 5: Sentiment
A similar narrative is observed with sentiment
(H.5). We note that sentiment analysis is less ac-
curate when sentences get longer, and this might
be one of the causes for the relative ineffectiveness
of sentiment as a feature. Another possible inter-
pretation is that this text is not aligned well with
traditional definitions of sentiment. Many terms
in mathematics are neutral but are classified with
negative sentiment on a high valence. In future
work we plan to explore the use of sentiment anal-
ysis on student generated text rather than on tutor
questions.

Experiment 6: Recurrent Neural Networks
The results of using deep learning models (RNN)
are promising (H.6). The RNN achieves a perfor-
mance which is statistically significant better than
the baseline with the same feature: only the ques-
tion text. A probable reason is that the baseline
uses unigrams, hence it loses the order among the
words of the question while the RNN model might
benefit from this information. It must be noted that
we have not performed extensive hyperparame-
ter tuning, performance might be further improved
with more hyperparameter tuning.

6 Analysis

In spite of the fact that the results presented in the
previous section are above human performance,
we believe that the automatic performance for this
task can outperform humans even more. Therefore
we perform a detailed qualitative error analysis in
this section.

We focus this section on error analysis of
one of the best performing models which
does not include information about the answer:
Q+T+L+D+X. We do not include the answer in
this analysis in order to understand why this fea-
ture alone makes a significant difference. Also, the
answer information would not be available to the
model in an application trying to predict student
response latency in real time.

There are two kinds of errors for our task. One
kind corresponds to the case in which the model
overestimates how long it will take the student to
respond, and the other to cases in which the model
underestimates the latency of the response. We

perform a manual error analysis over both types
of errors, we describe our findings below.

6.1 Overestimation errors

First, we find that the model overestimates the re-
sponse time to tutor questions that exhibit some
positive politeness strategy (Brown and Levinson,
1987). In many of the overestimated instances
analyzed the tutor uses lexical in-group markers.
These can include altering the forms of address
and using in-group language. For instance, the
use of “we" instead of “you", as in the example
below, is a kind of in-group marker. Other kinds
of in-group language include the use of dialects,
jargon or slang, and linguistic contractions. The
following is an example of a linguistic contrac-
tion, an inclusive pronoun and a smiley, all signs
of positive politeness. The label predicted by the
model for this example is long and the actual la-
tency is short: “I’ll show you how we can find the
other angle of this square :). Is this diagram from
your textbook?”. Also, the following positive po-
liteness strategies are found in overestimated in-
stances. A speaker may seek to avoid disagree-
ment by employing a token of agreement or appre-
ciation, or a confirmation question such as in the
example “Awesome! We can use a number line to
solve the problem. Was that clear?.”

Second, the model also overestimates the re-
sponse time to tutor questions that include some
negative politeness strategy. Whereas positive po-
liteness enhances the hearer’s positive self-image
via social appreciation, negative politeness ad-
dresses the hearer’s need for freedom from impo-
sition. A useful strategy here is the use of hedges.
A hedge is a softening of a statement, induced
by employing less-than-certain phrasing such as
would, might, or should as illustrated in the exam-
ple below. Further efforts to avoid encroaching on
the hearer’s sense of freedom include imperson-
alizing the speaker and hearer. Common strate-
gies here include using passive and circumstantial
voices as in the following example “It would be
best to clarify that the math operation that should
be applied to solve this problem is addition. Does
that make sense?.”

Third, the model overestimates also when the
student turn following the tutor question is not ac-
tually a response but a positive acknowledgement
(e.g., “Ok, let me see”) or a clarification request
(e.g., “the variable is the value?”).
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6.2 Underestimation errors
First, we find that the model frequently underes-
timates the time required for the student response,
i.e. the answer is slower than predicted when there
is some sort of face threatening act (Brown and
Levinson, 1987) that the tutor or student is do-
ing, either by disagreeing (for instance, with the
words no, nope, not really) or by some inappropri-
ate behavior. For example: “Question: Do these
questions belong to a graded test or quiz?" An-
swer: “it a quiz, just making sure I’m on the right
path." Consistently, face preserving words such as
“sorry" are also sometimes present in questions
form the tutor that take longer to respond than pre-
dicted.

Second, the model also underestimates the re-
sponse latency of questions that the student avoids
answering such as “Um I’m not sure” and “Can u
just help me pls I’m in a rush” and “Just give me
the answer.”

Third, indirect speech acts such as “Do you spot
one more solution that does not lie in the domain?”
which syntactically require a yes/no answer but
pragmatically implicate a request for action, are
also underestimated.

Finally, there are also whole sessions where the
model underestimates the response time for every
question. This may be an indicator than some stu-
dents are just slower to respond.

In conclusion, the feature space could be
improved modeling different politeness strate-
gies (Danescu et al., 2013; Benotti and Black-
burn, 2016), including features about whether the
most probable response for this kind of question
is an answer, an acknowledgement or a clarifica-
tion request (Benotti and Blackburn, 2017; Rao
and Daume, 2018) as well as features about in-
direct speech acts and implicatures (Benotti and
Traum, 2009; Jeong et al., 2009). These three
areas are challenging aspects of natural language
understanding and interaction modeling but there
is encouraging work being done in each of them
which we plan to take as starting points to pursue
this interesting task further.

7 Conclusion & Future Work

To summarize, this experimental paper comprises
several tasks. First, we introduce a new dataset of
tutorial dialogue in a mobile tutoring environment
with automatically annotated tutor questions and
student responses. Secondly, we formally define

the task of predicting student response times to tu-
tor questions. Knowing whether a student can re-
spond a given question immediately or it normally
requires more thought, would help tutors optimize
their own time as well as prompt the student at the
right moment. Thirdly, we develop a set of models
and explore our hypotheses related to hand-built
feature functions and model classes by making ex-
perimental augmentations to the baselines. Lastly,
we evaluate the performance of trained human ex-
perts on the same problem. We conclude that this
is a difficult task, even for human beings; while
these models are able to outperform humans, fur-
ther research is required.

We plan to experiment with situational meta-
data such as tutor and student identity and gen-
der, subject of study and nature of payment system
(free trial, pay per minute, pay per month usage).
A promising direction for further work is model-
ing the politeness strategies as well as the other
features mentioned in our error analysis. We be-
lieve that this enriched feature space can result in a
model that outperforms human experts even more.
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Abstract

In this paper, we provide a lexical compara-
tive analysis of the vocabulary used by cus-
tomers and agents in an Enterprise Resource
Planning (ERP) environment and a potential
solution to clean the data and extract relevant
content for NLP. As a result, we demonstrate
that the actual vocabulary for the language that
prevails in the ERP conversations is highly di-
vergent from the standardized dictionary and
further different from general language usage
as extracted from the Common Crawl cor-
pus. Moreover, in specific business commu-
nication circumstances, where it is expected
to observe a high usage of standardized lan-
guage, code switching and non-standard ex-
pression are predominant, emphasizing once
more the discrepancy between the day-to-day
use of language and the standardized one.

1 Introduction

It is often the case for companies that make use of
a customer relationship management software, to
collect large amounts of noisy data from the inter-
actions of their customers with human agents. The
customer-agent communication can have a wide
range of channels from speech, live chat, email
or some other application-level protocol that is
wrapped over SMTP. If such data is stored in a
structured manner, companies can use it to opti-
mize procedures, retrieve information quickly, and
decrease redundancy which overall can prove ben-
eficial for their customers and maybe, more impor-
tant, for the well-being of their employees work-
ing as agents, who can use technology to ease their
day-to-day job. In our paper, we work with email
exchanges that have been previously stored as raw
text or html dumps into a database and attempt
bring up some possible issues in dealing with this
kind of data lexically, from an NLP perspective,

but also to forward a solution for cleaning and ex-
tracting useful content from raw text. Given the
large amounts of unstructured data that is being
collected as email exchanges, we believe that our
proposed method can be a viable solution for con-
tent extraction and cleanup as a preprocessing step
for indexing and search, near-duplicate detection,
accurate classification by categories, user intent
extraction or automatic reply generation.

We carry our analysis for Romanian (ISO 639-
1 ro) - a Romance language spoken by almost
24 million people, but with a relatively limited
number of NLP resources. The purpose of our
approach is twofold - to provide a comparative
analysis between how words are used in question-
answer interactions between customers and call
center agents (at the corpus level) and language as
it is standardized in an official dictionary, and to
provide a possible solution to extract meaningful
content that can be used in natural language pro-
cessing pipelines. Last, but not least, our hope is to
increase the amount of digital resources available
for Romanian by releasing parts of our data.

2 Data

While acknowledging the limits of a dictionary,
we consider it as a model of standardized words,
and for this we make use of every morphologi-
cal form defined in the Romanian Explicative Dic-
tionary DEX1 - an electronic resource containing
both user generated content and words normed
by the Romanian Academy. We extract from the
database a total of over 1.3 million words includ-
ing all the morphological inflected forms. It is im-
portant to note here, the user generated content
is being curated by volunteers and that not every
word appearing in the dictionary goes through an

1https://dexonline.ro
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official normative process for the language. In
consequence, this resource may contain various
region-specific word forms, low frequency or old
terms and other technical neologisms.

While a dictionary can provide the list of words,
it certainly lacks context and the way language
is used in a large written corpus. One of the
largest corpora of Romanian texts consists of news
articles extracted from Common Crawl2, it con-
sists of texts on various topics and genres, and re-
cently it has been considered (Bojar et al., 2016)
a reliable resource for training a generic language
model for modern standard Romanian, as part of
the News task, Workshop of Machine Translation
2016. This corpus contains 54 million words, it
covers general content not related to a specific
topic, and since it has been scraped from pub-
lic websites, it is reasonable to assume it con-
tains standard official Romanian text, grammati-
cally and lexically correct.

The question-answer corpus consists of inter-
actions saved from an Enterprise Resource Plan-
ning (ERP) environment within a private Roma-
nian company. All data has been anonymized be-
fore usage and personally identifiable information
has been removed. The topics are highly business-
specific, covering processes such as sales, hu-
man resources, inventory, marketing, and finance.
The data consists of interactions in the form of
tasks, requests, or questions (Q) and activities, re-
sponses, or answers (A).

One question may have multiple answers and
the documents may contain email headers, footers,
disclaimers or even automatic messages. To alle-
viate the effect of noise on our analysis, we have
implemented heuristics to remove automatic mes-
sages, signatures, disclaimers and headers from
emails.

questions answers
# tokens 7,297,400 11,370,417
# types 4,425,651 4,439,299

type / token ratio 0.6065 0.3904
total tokens 18,667,817

Table 1: Question answering corpus size

The statistics regarding the size of the corpus
are rendered in Table 1, we observe that the num-
ber of types (unique words) is quite similar for
both questions and answers, however the total
number of words used in the responses is a mag-

2http://commoncrawl.org

Questions Answers Common Crawl
Vocabulary size 21,914 25,493 148,980

Dict diacr. overlap 41.75 40.65 42.22
Dict no diacr. overlap 55.51 52.96 60.87

Answers overlap 67.87 - 10.59
Answers diff English 4.83 - 7.28

Questions overlap - 58.34 8.96
Questions diff English - 20.95 8.04

C. Crawl overlap 60.9 61.86 -
C. Crawl diff English 7.13 13.17 -

Table 2: Comparison of overlapping dictionaries

nitude larger than the one corresponding to ques-
tions. Considering that type to token ratio is a
reasonable indicator for lexical richness (Read,
2000), then customers use a rich vocabulary to
describe their problems, with a considerable high
probability for new words to appear in the received
queries, while agents show a more standardized,
smaller vocabulary to formulate their replies.

3 Quantitative Lexical Analysis

We carry a comparison at the lexical level, in par-
ticular by looking at the size and variety of the vo-
cabulary with respect to a standard Romanian dic-
tionary. We extract word2vec embeddings 3 using
CBOW with negative sampling (Mikolov et al.,
2013; Řehůřek and Sojka, 2010) for three cor-
pora: Common Crawl, the corpus of Questions,
and the one containing Answers. The models are
trained to prune out words with frequency smaller
than 5, shrinking the vocabulary to ensure that
the words included have good vectorial represen-
tations. From those vocabularies, we discard num-
bers, punctuation and other elements that are not
contiguous sequences of characters.

We then proceed to use the vocabulary from the
trained models and compare against the entire dic-
tionary Romanian of inflected forms. For the later,
we build two versions - one which contains diacrit-
ics and a second one which contains words both
with and without diacritics.

For each vocabulary at hand we perform two
simple measurements:

1. overlap - the percentage of overlap between
one vocabulary and another

2. diff English - the percentage of differences
between one vocabulary and another, that
are part of an English WordNet synset (Fell-
baum, 1998)

3The resources are released at https://github.
com/senisioi/ro_resources
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These basic measurements should give an indi-
cator on how much of the vocabulary used in our
ERP data is covered by the generic resources avail-
able for Romanian, and how important domain
adaptation is for being able to correctly process
the texts.

Table 2 contains the values for these measure-
ments in a pair-wise fashion between each vocabu-
lary - dictionary with and without diacritics, ques-
tions and answers vocabulary, and Common Crawl
model vocabulary. We also compare the vocabu-
laries extracted from our corpora with the dictio-
nary having diacritics removed, as it is often the
case to write informal Romanian with no diacrit-
ics. The second and third rows show an increase in
overlapping percentage, regardless of the vocabu-
lary, when the diacritics are ignored, which indi-
cates that even official news articles contain non-
standard words and or omissions of diacritics. It is,
therefore, expected that a highly technical domain
such as business-finance to have an even smaller
overlap with the standard dictionary.

Somewhat surprising is the fact that a big major-
ity of words from the Common Crawl vocabulary
(approx. 39%) is not available in the full dictio-
nary, and at a closer look we observe that 11.01%
of words are also part of the English WordNet
synsets (Fellbaum, 1998).

Furthermore, both the lexicons used in ques-
tions and answers present little overlap with Com-
mon Crawl, and in accordance with the lexical
richness evidenced in Table 1, we observe that
the vocabulary specific to answers overlaps better
with the one for questions than vice-versa. In addi-
tion, over 20% of the words used in questions that
do not appear in the answers are part of an English
WordNet synset.

While the language of questions and answers is
used in a business environment, one expecting it to
be more formal and closer to the standard, the con-
trary appears to be true - to improve the speed of
communication, people prefer to code switch be-
tween Romanian and English, not to use diacritics
at all or to insert abbreviations and foreign words
adapted to the Romanian morphology (e.g., loga,
loghez, verb, used as in English to log or to log in
most similar to dictionary verbs to connect and to
authenticate).

A few examples of queries from the models
are rendered in Table 4, showing that the domain-
specific models learn good representations for ab-

questions answers
function words 17.22 16.47

pronouns 5.11 4.78
sentences 14.81 11.29

token length 4.91 5.27

Table 3: Average number of features / question or an-
swer

breviations of specific terms (e.g., exemplu (exam-
ple) - ex, factura (invoice) - fact, fc) being more
robust to noise and free-form lexical variations in
language.

At last, in Table 3, we count the average number
of content independent features (function words,
pronouns, number of sentences and average to-
ken length) that appear in both questions and an-
swers. These features can provide information re-
garding the style of a text (Chung and Pennebaker,
2007), being extensively used in previous research
for authorship attribution or literary style identifi-
cation (Mosteller and Wallace, 1963; Koppel et al.,
2009). Here we observe a stylistic difference be-
tween how questions and answers are formulated,
questions being longer and more complex, which
can also be a reason behind the smaller average
length of the tokens, as Menzerath-Altmann law
(Altmann and Schwibbe, 1989) states - the in-
crease of a linguistic construct determines a de-
crease of its constituents.

4 Content Extraction

The lexical analysis in the previous section
strongly suggests that our question-answering cor-
pus contains a high vocabulary richness that is
non-standard and divergent from the generic re-
source available for Romanian. Therefore, any
type of text processing from classification, re-
trieval, or tagging is error prone and can provide
misleading results. An important step, is there-
fore, to detect and extract the relevant content that
best explains the customer’s intent, which can be
further used for classification or automatic reply
generation.

Having very few resources at disposal, we pro-
ceeded to build our own dataset for intent extrac-
tion and annotated approximately 2000 requests,
having in total 200,000 words. For each docu-
ment at hand, we remove the sentences that did
not contain relevant content and created aligned
document-to-document pairs consisting of the full
document to the left and the relevant content to
the right. More exactly, the annotations are being
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word Q/A model score C. Crawl model score

pentru (for)
pt 0.85 pt 0.61
Pentr 0.74 nevoie (need) 0.49
ptr 0.64 special 0.49

ex (for example)

exemplu (example) 0.77 676 0.78
Ex 0.65 pixuletz (pen) 0.78
Exemplu 0.65 dreaming 0.78
adica (which means) 0.6 thd 0.78

banca (bank):

registru (register) 0.79 autoritatea (authority) 0.79
numerar (cash) 0.78 lege (law) 0.78
casa (cash desk) 0.73 nationala (national) 0.78
plati (payments) 0.73 reforma (reform) 0.77

factura (invoice)

facture 0.84 lunara (monthly) 0.85
comanda (order) 0.77 pompa (pump) 0.85
fact 0.76 ridicare (pulling) 0.83
fct 0.76 descarcare (offloading) 0.83
fc 0.72 inchidere (closing) 0.82

Table 4: Samples of most similar words from Q/A word embeddings compared to Common Crawl. English
translation is provided between parentheses.

made at the line level, each line from the origi-
nal document is being marked for removal or to be
kept. The removed lines include footer and header
information from email exchanges, multiple email
replies, tables dumped into text, tags, error mes-
sages, auto-replies, and sentences that did not have
any connection to the problems stated in that re-
quest. We removed these categories and consid-
ered them irrelevant content. After this process,
the pruned corpus shrunk to 73,000 words, aligned
at the document and line level. We also decided to
keep the email phrases, which are customary when
starting and closing an email, as part of the con-
tent in order to later build heuristics around those
to differentiate between multiple replies.

Based on the annotations we’ve made, the sim-
plest approach to clean the corpus would be to cre-
ate a binary classifier that can identify if a sentence
or a group of sentences are to be removed or not.

Method F1 Accuracy
tf-idf classifier 0.746 0.890
emb classifier 0.714 0.873

tf-idf context proba 0.775 0.897
emb context proba 0.738 0.878

combined 0.774 0.893

Table 5: Cross-validation scores for different corpus
cleanup methods.

This does not take into consideration the context
or the surrounding sentences. We train a simple lo-
gistic regression classifier with regularization con-
stant of 1, l2 penalty with liblinear solver (Fan
et al., 2008; Pedregosa et al., 2011) on the tf-idf
representations of each sentence. If a sentence has
been removed by the annotator, it’s a negative ex-
ample, else it’s a positive one. We compute the

tf-idf for all tokens with diacritics removed from a
sentence, including punctuation marks, numbers,
function words, content words, and word bigrams.
We carry a 5-fold cross-validation at the document
level so that we don’t shuffle the initial order of the
sentences, obtaining an average cross-validation
accuracy score of 0.89, and an average F1 score
of 0.74. Given the type of data at disposal, we
were surprised to see such a good result, however,
a closer look at the errors showed that the classifier
was too rigid and biased towards the training data.
When applied onto the entire corpus for cleanup,
we could observe the removal of sentences and
lines that should have been preserved. The source
of this problem relies in the classifier not being
aware of the context and surrounding sentences,
and the tf-idf features being too dependent on the
local training data to generalize well across the en-
tire collection of texts that cover a wider diversity
of topics than our annotations.

To overcome this overfitting problem we intro-
duce two more variables: sentence probability in
context and word embeddings. The first is used
to reward sentences that have a small probability
of being content by themselves, but have a high
cumulative probability in the context of neighbor-
ing sentences. We establish a probability thresh-
old (0.22) by grid search during cross validation.
As for word embeddings, we used the previously
trained models to create sentence representations
from the word embeddings centroid of a sentence.
We ignore function words and punctuation marks,
and the words not present in the pretrained em-
bedding model are set by default to vectors of ze-
ros. Solely with this rudimentary sentence repre-
sentations, we obtain a cross-validation classifica-
tion accuracy of 0.87 and an average F1 of 0.71,
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slightly lower than the tf-idf representations. Table
5 contains the evaluation scores obtained during
cross-validation. By combining the predictions of
tf-idf models with the ones using embeddings, we
obtain little improvements given the CV scores
on the annotated dataset, however on the general
dataset we observed a less restrictive behavior of
the model that was able to preserve more easily
out-of-domain content. Human evaluation is cur-
rently under way to asses the content quality of the
selected sentences on subsamples from the larger
dataset.

5 Conclusion

We provide a lexical comparative analysis of the
language used in Q-A and Common Crawl cor-
pora to the officially standardized one which is
found in the dictionary. As a result of this study,
we demonstrate that the actual use of language
that prevails in the Q-A and Common Crawl cor-
pora has a rather small overlap with the dictio-
nary version (at most 60%). Moreover, in specific
business communication circumstances, where the
overlapping rate is expected to have increased val-
ues, code switching and non-standard expression
are predominant, emphasizing once more the dis-
crepancy between the day-to-day finacialized used
language and the standardized one. In addition,
we experiment with an approach to clean up the
corpus based on a hybrid feature set consisting
of word embeddings and tf-idf, to extract rele-
vant content for further processing. Having few
resources at disposal for Romanian, we believe it
is mandatory to release parts of our data for repro-
ducibility and future use.
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Abstract

Community question answering (cQA) forums
provide a rich source of data for facilitat-
ing non-factoid question answering over many
technical domains. Given this, there is consid-
erable interest in answer retrieval from these
kinds of forums. However this is a difficult
task as the structure of these forums is very
rich, and both metadata and text features are
important for successful retrieval. While there
has recently been a lot of work on solving this
problem using deep learning models applied to
question/answer text, this work has not looked
at how to make use of the rich metadata avail-
able in cQA forums. We propose an attention-
based model which achieves state-of-the-art
results for text-based answer selection alone,
and by making use of complementary meta-
data, achieves a substantially higher result over
two reference datasets novel to this work.

1 Introduction

Community question answering (“cQA”) forums
such as Stack Overflow have become a sta-
ple source of information for technical searches
on the web. However, often a given query will
match against multiple questions each with multi-
ple answers. This complicates technical informa-
tion retrieval, as any kind of search or question-
answering engine must decide how to rank these
answers. Therefore, it would be beneficial to be
able to automatically determine which questions
in a cQA forum are most relevant to a given query
question, and which answers to these questions
best answer the query question.

One of the challenges in addressing this prob-
lem is that cQA threads tend to have a very rich
and specific kind of structure and associated meta-
data. The basic structure of cQA threads is as fol-
lows: each thread has a unique question (usually
editable by the posting user) and any number of

answers to that question (each of which is usually
editable by the posting user); comments can be
posted by any user on any question or answer, e.g.
to clarify details, challenge statements made in the
post, or reflect the edit history of the post (on the
part of the post author); and there is some mech-
anism for selecting the “preferred” answer, on the
part of the user posting the original question, the
forum community, or both. There is also often rich
metadata associated with each question (e.g. num-
ber of views or community-assigned tags), each
answer (e.g. creation and edit timestamps), along
with every user who has participated in the thread
— both explicit (e.g. badges or their reputation
level) and implicit (e.g. activity data from other
threads they have participated in, types of ques-
tions they have posted, or the types of answers they
posted which were accepted).

Our research is aimed at improving the ability
to automatically identify the best answer within
a thread for a given question, as an initial step
towards cross-thread answer ranking/selection. In
this work we use Stack Overflow as our source
of cQA threads. More concretely, given a Stack
Overflow cQA thread with at least four answers,
we attempt to automatically determine which of
the answers was chosen by the user posting the
original question as the “preferred answer”.

A secondary goal of our research is learning
how to leverage both the question/answer text in
cQA threads, along with the associated metadata.
We show how to create effective representations
of both the thread text and the metadata, and we
investigate the relative strength of each as well as
their complementarity for preferred answer selec-
tion. By leveraging this metadata and using an at-
tentional model for constructing question/answer
pair representations, we are able to obtain greatly
improved results over an existing state-of-the-art
method for answer retrieval.
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The contributions of our research are as follows:

• we develop two novel benchmark datasets for
cQA answer ranking/selection;

• we adapt a deep learning method proposed
for near-duplicate/paraphrase detection, and
achieve state-of-the-art results for text-based
answer selection; and

• we demonstrate that metadata is critical in
identifying preferred answers, but at the same
time text-based representations complement
metadata to achieve the best overall results
for the task.

The data and code used in this research will be
made available on acceptance.

2 Related work

The work that is most closely related to ours is
Bogdanova and Foster (2016) and Koreeda et al.
(2017). In this first case, Le and Mikolov’s para-
graph2vec was used to convert question–answer
pairs into fixed-size vectors in a word-embedding
vector space, which were then fed into a simple
feed-forward neural network. In the second case,
a decompositional attentional model is applied to
the SemEval question–comment re-ranking task,
and achieved respectable results for text alone.
We improve on the standalone results for these
two methods through better training and hyperpa-
rameter optimisation. We additionally extend both
methods by incorporating metadata features in the
training of the neural model, instead of extract-
ing neural features for use in a non-deep learning
model, as is commonly done in re-ranking tasks
(Koreeda et al., 2017).

In addition to this, there is a variety of other re-
cent work on deep learning methods for answer
ranking or best answer selection. For instance,
Wang et al. (2010) used a network based on re-
stricted Bolzmann machines (Hinton, 2002), us-
ing binary vectors of the most frequent words in
the training data as input. This model was trained
by trying to reconstruct question vectors from an-
swer vectors, then at test time question vectors
were compared against answer vectors to deter-
mine their relevance.

Elsewhere, Zhou et al. (2016) used Denois-
ing Auto-Encoders (Vincent et al., 2008) to learn
how to map both questions and answers to low-
dimensional representations, which were then

compared using cosine similarity. The resulting
score was used as a feature in a learn-to-rank
setup, together with a set of hand-crafted features
including metadata, which did not have a positive
effect on the results.

In another approach, Bao and Wu (2016)
mapped questions and answers to multiple lower
dimensional layers of variable size. They then
used a 3-way tensor transformation to combine the
layers and produce one output layer.

Nassif et al. (2016) used stacked bidirectional
LSTMs with a multilayer perceptron on top, with
the addition of a number of extra features includ-
ing a small number of metadata features, to clas-
sify and re-rank answers. Although the model per-
formed well, it was no better than a far simpler
classification model using only features based on
text (Belinkov et al., 2015).

Compared to these past deep learning ap-
proaches for answer retrieval, our work differs in
that we include metadata features directly within
our deep learning model. We include a large num-
ber of such features and show, contrary to the re-
sults of previous research, that they can greatly im-
prove classification performance.

In addition to deep learning methods for answer
retrieval, there is plenty of research on answer
selection using more traditional methods. Much
of this work involves using topic models to in-
fer question and answer representations in topic
space, and retrieving based on these representa-
tions (Vasiljevic et al., 2016; Zolaktaf et al., 2011;
Chahuara et al., 2016). However, the general find-
ing is that this kind of method is insufficient to
capture the level of detail needed to determine if
an answer is truly relevant (Vasiljevic et al., 2016).
They therefore tend to rely on complementary ap-
proaches such as using translation-based language
models (Xue et al., 2008), or using category in-
formation. Given this, we do not experiment with
these kinds of approaches.

There is also some work on improving an-
swer retrieval by directly modelling answer qual-
ity (Jeon et al., 2006; Omari et al., 2016; Zhang
et al., 2014). User-level information has proven to
be very useful for this (Agichtein et al., 2008; Bu-
rel et al., 2012; Shah, 2015), which helps motivate
our use of metadata.

Finally, an alternative strategy for answer selec-
tion is analogical reasoning or collective classifi-
cation, which has been investigated by Tu et al.
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(2009), Wang et al. (2009) and Joty et al. (2016).
In this kind of approach, questions and their an-
swers are viewed as nodes in a graph connected
by semantic links, which can be either positive or
negative depending on the quality of the answer
and its relevance to the question. However, we
leave incorporating such graph-based approaches
to future work.

3 Dataset

We developed two datasets based on Stack Over-
flow question–answer threads, along with a back-
ground corpus for pre-training models.1 The eval-
uation datasets were created by sampling from
threads with at least four answers, where one of
those answers had been selected as “best” by the
question asker.2 The process for constructing our
dataset was modelled on the 10,000 “how” ques-
tion corpus (Jansen et al., 2014), similar to Bog-
danova and Foster (2016).

The two evaluation datasets, which we denote
as “SMALL” and “LARGE”, contain 10K and 70K
questions, respectively, each with a predefined
50/25/25 split between train, val, and test
questions. On average, there are approximately six
answers per question.

In addition to the sampled sub-sets, we also
used the full Stack Overflow dump (containing
a full month of questions and answers) for pre-
training; we will refer to this dataset as “FULL”.
This full dataset consists of approximately 300K
questions and 1M answers. In all cases, we to-
kenised the text using Stanford CoreNLP (Man-
ning et al., 2014).

Stack Overflow contains rich metadata, in-
cluding user-level information and question- and
answer-specific data. We leverage this metadata in
our model, as detailed in Section 4.2. Summary
statistics of SMALL, LARGE and FULL are pre-
sented in Table 1.

In addition to the Stack Overflow dataset, we
also experiment with an additional complementary
dataset: the SEMEVAL 2017 Task 3A Question-
Comment reranking dataset (Nakov et al., 2017).

1All the data was drawn from a dump dated 9/2009, which
has a month of Stack Overflow question and answers.

2Note that in Stack Overflow, the community can sepa-
rately vote for answers, with no guarantee that the top-voted
answer is the preferred answer selected by the question asker.
In this research — consistent with Bogdanova and Foster
(2016) — we do not directly train on the vote data, but it
could certainly be used to fully rank answers.

Model SMALL LARGE FULL

Questions 10,000 70,000 314,731
Answers 64,671 457,634 1,059,253
Comments 70,878 493,020 1,289,176
Words 9,154,812 64,560,178 174,055,024
Vocab size 218,683 962,506 2,428,744

Table 1: Details of the three Stack Overflow datasets.

We include this dataset to establish the competi-
tiveness of our proposed text processing networks
(noting that the data contains very little metadata
to be able to evaluate our metadata-based model).
We used the 2016 test set as validation, the 2017
test set as test. Note that there are 3 classes in
SEMEVAL: Good, PotentiallyUseful, and
Bad, but we collapse PotentiallyUseful
and Bad into a single class, following most com-
petition entries.

4 Methodology

We treat the answer ranking problem as a classi-
fication problem, where given a question/answer
pair, the model tries to predict how likely the an-
swer is to be the preferred answer to the question.
So for a given question, the answers are ranked by
descending probability.

We explore three methods, which vary based on
how they construct a question/answer pair embed-
ding. Respectively these variations leverage: (1)
only the question and answer text; (2) only the
metadata about the question, answer and users; or
(3) both text and metadata.

In all cases, given a vector embedding of a
question/answer pair (based on a text embedding
and/or metadata embedding), we feed the vector
into a feed-forward network,H , which outputs the
probability that the answer is the preferred answer
to the given question. The networkH consists of a
series of dense layers with relu activations, and
a final softmax layer. The model is trained using
SGD with standard categorical cross-entropy loss,
and implemented using TensorFlow.3

4.1 Text Only
We experiment with two methods for constructing
our text embeddings: an attentional approach, and
a benchmark approach using a simple paragraph
vector representation.

3https://www.tensorflow.org/
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4.1.1 Decompositional Attentional Model
Parikh et al. (2016) proposed a decompositional
attentional model for identifying near-duplicate
questions. It is based on a bag-of-words model,
and has been shown to perform well over the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015; Tomar et al., 2017).

We adapt their architecture for our task, running
it on question/answer pairs instead of entailment
pairs. Note that, in our case, the best answer is
in no way expected to be a near-duplicate of the
question, and rather, the attention mechanism over
word embeddings is used to bridge the “lexical
gap” between questions and answers (Shtok et al.,
2012), as well as to automatically determine the
sorts of answer words that are likely to align with
particular question words. Henceforth we refer to
our adapted model as “decatt”.

The model works as follows: first it attends
words mutually between the question and answer
pair. Then, for each word in the question (respec-
tively answer), it computes a weighted sum of
the word embeddings in the answer (respectively
question) to generate a soft-alignment vector. The
embedding and alignment vector of each word
are then combined together (by concatenation and
feed-forward neural network) to form a token-
specific representation for each word. Finally, sep-
arate question/answer vectors are constructed by
summing over their respective token representa-
tions, and these are concatenated to form the final
question/answer pair vector.

Formally, let the input question and answer be
a = (a1, ..., ala) and b = (b1, ..., blb) with lengths
la and lb, respectively. ai, bj ∈ Rd are word em-
beddings of dimensionality d. These embeddings
are not updated during training, following Parikh
et al. (2016).

We first align each question (answer) word with
other answer (question) words. Let F be a feed-
forward network with relu activations. We de-
fine the unnormalised attention weights as follows:
ei,j := F (ai)

ᵀF (bj).
We then perform softmax over the attention

weights and compute the weighted sum:

βi :=

lb∑

j=1

exp(ei,j)∑lb
k=1 exp(ei,k)

bj

αj :=

la∑

i=1

exp(ei,j)∑la
k=1 exp(ek,j)

ai

Let G be a feed-forward network with relu
activations. We define the representation for each
word as follows:

v1,i := G([ai;βi]); v2,j := G([bj ;αj ])

for i = 1, ..., la, j = 1, ..., lb, and where [·; ·] de-
notes vector concatenation. Lastly, we aggregate
the vectors in the question and answer by summing
them:

v1 =

la∑

i=1

v1,i; v2 =

lb∑

j=1

v2,i

Finally, we concatenate both vectors, vtext =
[v1;v2]. This text vector is used as the input in
the classification network H .

4.1.2 Paragraph Vectors
Our second approach uses the method of Bog-
danova and Foster (2016), who achieved state-of-
the-art performance on the Yahoo! Answers cor-
pus of Jansen et al. (2014). The method, which we
will refer to as “doc2vec”, works by indepen-
dently constructing vector representations of both
the question and answer texts, using paragraph
vectors (Le and Mikolov, 2014; Lau and Bald-
win, 2016) in the same vector space. The training
is unsupervised, only requiring an unlabelled pre-
training corpus to learn the vectors.

The doc2vec method is an extension of
word2vec (Mikolov et al., 2013) for learn-
ing document embeddings. The document embed-
dings are generated along with word embeddings
in the same vector space. word2vec learns word
embeddings that can separate the words appear-
ing in contexts of the target word from randomly
sampled words, while doc2vec learns document
embeddings that can separate the words appearing
in the document from randomly sampled words.

Given the doc2vec question and answer vec-
tors, we concatenate them to construct the text
vector, vtext, which is used as the input to H . Note
that in this model vtext is kept fixed after pre-
training (unlike in decatt where errors are prop-
agated all the way back to the vtext vectors).

4.2 Metadata Only
In order to leverage the metadata in the Stack
Overflow dataset, we extract a set of features to
form a fixed-length vector as input to our model.
Given the wide difference in scale of these fea-
tures, all feature values are linearly scaled to the
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range [0, 1]. We denote this vector as vmeta, and in
the metadata-only case this is used as the input to
the classification network H .

The raw metadata is as follows: firstly, for each
question and answer we used the number of times
the post had been viewed, the creation date of the
post, the last activity date on the post, and a list
of comments on the post, including the user ID
for each comment. Secondly, for each question we
used the top n tags for the question (based on the
number of community votes), where n is a tunable
hyperparameter. Finally, for each user we used the
account creation date, number of up/down votes,
reputation score, and list of badges obtained by the
user.4

From these raw metadata fields we constructed
sets of question-specific, answer-specific, and
user-specific features, which are summarised in
Table 2. All date features were converted to inte-
gers using seconds since Unix epoch, and all bi-
nary features were converted to zero or one. In ad-
dition, the tag-based features were converted to a
probability distribution based on simple MLE.5

One concern with this model is that concate-
nating all features together could lead to feature
groups with lots of features dominating groups
with fewer features (for example the BasicQ and
BasicA features could be overshadowed by the
QTags and UTags features). In order to control
for this, we only used the top n tags for the QTags
and UTags feature groups.

A further possible concern is that, in a real-
world scenario, not all of this metadata would be
available at classification time (e.g. some of it is
generated quite a bit after the questions and an-
swers are posted). In practice, all of the Ques-
tion and User features are available at the time
of question creation, and it is only really the An-
swer features where ambiguity comes in. With the
comments, for example, the norm is that com-
ments lead to the refinement (via post-editing) of
the answer, and the vast majority of comments
in our dataset were posted soon after the orig-
inal answer. Thus, while it is certainly possible
for comments to appear after the answer has been
finalised, any biasing effect here is minor. The
only feature which has potentially changed signifi-

4In total there were 86 badges in the dataset that users
could obtain.

5For instance if a question has 4 tags, then the QTags
feature group for that question has value 0.25 for the 4 tags
present, and 0 for the other dimensions.

cantly from the time of answer posting is the num-
ber of answer views, although as we will observe
empirically, the utility of this feature is slight.

4.3 Combining Text and Metadata

To combine textual and metadata features, we con-
catenate [vtext;vmeta] as the input question/answer
pair embedding for the classification network H .

We define the prediction ŷ := H([vtext,vmeta]),
where ŷ ∈ RC in the case of C = 2 classes (i.e.
“best” or not).

Now given training instance n, for the predic-
tion ŷ(n)c and true binary labels y(n) ∈ {0, 1}C , the
training objective is the categorical cross-entropy
loss L = 1

N

∑N
n=1

∑C
c=1 y

(n)
c log ŷ

(n)
c .

5 Experiments

To train our models, we used the Adam Optimiser
(Kingma and Ba, 2014). For decatt, we used
dropout over F,G,H after every dense layer. For
the doc2vec MLP, we included batch normali-
sation before, and dropout after, each dense layer.
For testing, we picked the best model according to
the validation results after the end of each epoch.

The parameters for decatt were initialised
with a Gaussian distribution of mean 0 and vari-
ance 0.01, and for the doc2vec MLP we used
Glorot normal initialization. For Stack Overflow,
the parameters for Word embeddings were pre-
trained using GloVe (Pennington et al., 2014)
with the FULL data (by combining all questions
and answers in the sequence they appeared) for
50 epochs. Word embeddings were set to 150 di-
mensions. The co-occurrence weighting function’s
maximum value xmax was kept at the default of
10. For SEMEVAL, we used pretrained Common
Crawl cased embeddings with 840G tokens and
300 dimensions (Pennington et al., 2014).

To train the decatt model for Stack Overflow
we split the data into 3 partitions based on the size
of the question/answer text, with separate parti-
tions where the total length of the question/answer
text was: (1) ≤ 500 words; (2) > 500 and ≤ 2000
words; and (3) > 2000 words. We used a different
batch size for each partition (32, 8, and 4 respec-
tively).6 Examples were shuffled within each par-
tition after every epoch. For SEMEVAL we did not

6This was to avoid running into memory issues when
training with a large batch size on very long question and
answer pairs.
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Type Name Size Description

Question
BasicQ 3

Number of times question has been viewed (×1), creation date of
question (×1), and date of most recent activity on question (×1).

QTags n Probability distribution over top-n tags for question (×n).

Answer
BasicA 3

Number of times answer has been viewed (×1), creation date of
answer (×1), and date of most recent activity on answer (×1).

Comments
10

Number of comments on question and answer (×2), whether
asker/answerer commented on question/answer (×4), number of
sequential comments between asker and answerer across both
question and answer (×1), average sentiment of comments on
answer using Manning et al. (2014), both including and ignoring
neutral sentences (×2), and whether there was at least one
comment on answer (×1).

User
BasicU 8

Creation date of user account (×1), number of up/down votes
received by user (×2), reputation value (×1), number questions
asked/answered (×2), number of questions answered that were
chosen as best (×1), number of comments made (×1).

Badges 86 Whether user has each badge or not (×86).

UTags 2n

Probability distribution over top-n tags across all questions
answered by user (×n), and the same distribution restricted to
questions answered by the user where their answer was chosen
as best (×n).

Table 2: Summary of the metadata features used to improve question answering performance. These features are
separated into feature groups, which in turn are separated into group types based on whether the values are specific
to a given question, to a question’s answer, or to a user.

use partitions, and instead used a batch size of 32,
since training was fast enough.

For doc2vec pre-training, we used the FULL

corpus, with train, val and test doc-
uments excluded.7 We used the dbow ver-
sion of doc2vec, and included an additional
word2vec step to learn the word embeddings si-
multaneously.8

Note that for SEMEVAL, we experiment with

7The text was additionally preprocessed by lowercas-
ing. doc2vec training and inference was done using the
gensim (Řehůřek and Sojka, 2010) implementation.

8Based on Lau and Baldwin (2016), our hyperparameter
configuration of doc2vec for training was as follows: vector
size = 200; negative samples = 5; window size = 3; mini-
mum word frequency = 5; frequent word sampling threshold
=1 · 10−5; starting learning rate (αstart) = 0.05; minimum
learning rate (αmin) = 0.0001; and number of epochs = 20.
For inferring vectors in our train, val and test sets we
used: αstart = 0.01; αmin = 0.0001; and number of epochs
= 500.

using only the text features to better understand
the competitiveness of these text-processing net-
works decatt and doc2vec.

We tuned hyperparameters for all methods
based on validation performance using the SigOpt
Bayesian optimisation service. Optimal hyperpa-
rameter configurations are detailed in Table 3.

For additional comparison, we implemented the
following baselines (some taken from Jansen et al.
(2014), plus some additional baselines of our
own), including: (1) random, which ranks the
answers randomly; (2) first-answer, which
ranks the answers in chronological order; (3)
highest-rep, which ranks the answers by de-
creasing reputation; (4) longest-doc, which
ranks the answers by decreasing length; and (5)
tf-idf, which ranks the answers by the cosine
of the tf-idf9 vector representations between the

9Generated based on the training partition.
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Model Dataset Hyperparameter

F G H Tags Dropout LR

decatt + metadata
SMALL 188, 127 110, 110 282, 32 0 0.68 2.5 · 10−6

LARGE 500, 179 221, 221 533, 523 24 0.49 6.4 · 10−5

doc2vec + metadata
SMALL N/A N/A 1000, 92, 194 0 0.90 2 · 10−3

LARGE N/A N/A 1000, 212, 968 25 0.77 6 · 10−4

metadata
SMALL N/A N/A 50, 50 0 0.65 3 · 10−3

LARGE N/A N/A 555, 600 24 0.65 8 · 10−3

decatt
SMALL 188, 127 110, 110 145, 500 N/A 0.68 1.7 · 10−4

LARGE 500, 179 221, 221 53, 44 N/A 0.37 3.1 · 10−5

SEMEVAL 200, 200 200, 200 200, 200 N/A 0.5 5 · 10−4

doc2vec
SMALL N/A N/A 791, 737, 414 N/A 0.56 6 · 10−5

LARGE N/A N/A 1000, 558, 725 N/A 0.56 3 · 10−5

Table 3: Hyperparameter settings used for each model and corpora. “LR” = learning rate; “N/A” indicates that the
hyperparameter is not relevant for the given model. All models were trained for 40 epochs.

Model SMALL LARGE SEMEVAL

decatt + metadata .432 .527 N/A

doc2vec + metadata .429 .513 N/A

metadata .403 .463 N/A

decatt .346 .363 .865
doc2vec .343 .353 .740

random .185 .185 .618
first-answer .234 .243 .726
tf-idf .245 .246 .647
highest-rep .271 .268 N/A

longest-doc .318 .337 .720

semeval-best N/A N/A .884

Table 4: Results for doc2vec, metadata and
decatt models on both Stack Overflow datasets
(P@1) and SEMEVAL (MAP).

question and answer.

5.1 Results
For a given question, we are interested both in
how accurately our model ranks the answers, and
whether it classifies the best answer correctly.
However, for simplicity we simply look at the
performance of the model in correctly predicting
the best answer. Following Bogdanova and Foster
(2016), we measure this using P@1. In all cases
this is calculated on the test set of questions,
using the gold-standard “best answer” labels from
the Stack Overflow corpus, as decided by the ques-
tion asker. For SEMEVAL we use MAP to compare
with other published results. The results are pre-
sented in Table 4. To investigate the relative im-

Model SMALL LARGE

All features .403 .496

−BasicQ .399 (−.004) .495 (−.001)
−QTags .403 (−.000) .442 (−.054)

−BasicA .400 (−.003) .497 (+.001)
−Comments .303 (−.100) .410 (−.086)

−BasicU .394 (−.009) .485 (−.011)
−Badges .408 (+.005) .499 (+.003)
−UTags .403 (−.000) .433 (−.063)

Table 5: Feature ablation results for the metadata
model, based on fixed hyperparameter settings (P@1).

portance of the different metadata feature groups,
we additionally provide feature ablation results in
Table 5 for the Stack Overflow dataset.

We can make several observations from these
results. Firstly, we can see that performance in-
creases when we increase the dataset size (from
SMALL to LARGE), showing that our models scale
well with more data. For the text-only models,
decatt outperforms doc2vec consistently over
both datasets. In addition, metadata achieves
much higher results than the text-only models,
which shows the importance of utilising the rich
metadata data available for cQA retrieval. The
best model, decatt + metadata, is the hy-
brid model that combines both sources of infor-
mation and substantially improves performance
compared to metadata. From the SEMEVAL

results, we can see that our best text model
(decatt) is competitive with the state-of-the-art
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Question Best answer Incorrect answer

Q1: ... What I’d love to hear is
what you specifically use at
your company ... 1. How do
users report bugs/feature re-
quests to you? What soft-
ware do you use to keep
track of them? 2. How
do bugs/feature requests get
turned into “work”? ...

A1,1: For my (small) company:
We design the UI first. ...
As we move towards an ac-
ceptable UI, we then write a
paper spec for the workflow
logic of the application ...

A1,2: To give a better answer, my
company’s policy is to use
XP as much as possible and
to follow the principles and
practices as outlined in the
Agile manifesto. ...

Q2: I am trying to pass a pointer
rgb that is initialized with
memset to 0 and then
looped through to place a
32 bit integer only in the
bounds ...

A2,1: I went through and ba-
sically sorted out all the
warts, and explained why.
A lot of it amounts to
the fact that if your com-
piler spits out warnings,
you have to listen to them.
...

A2,2: This actually has a number
of bugs, but your first is-
sue is assigning the pixel
value to the array ... You
don’t need to reset j to
0 ... Also, you’re misusing
sizeof() ...

Table 6: Example questions and answers that were misclassified by one of decatt or metadata.

model (semeval-best), which also incorpo-
rates a number of handcrafted metadata features
to achieve a score of 88.4%.

To better understand the attention learnt by
decatt, we plotted the attention weights for a
number of question–answer pairs in Figure 1. In
general, technical words that appear relevant to
the question and answer have a high weight. Over-
all, we find that decatt does not appear to cap-
ture word pairs which correspond to each other,
as important question words are given strong at-
tention consistently for most answer words. We do
find a few exceptions with strong mutual attention,
e.g. roughly 10-20+ connections and multiple con-
current sockets have strong mutual attention. This
may explain the small difference in performance
between the doc2vec and decatt models.

In terms of our feature ablation results, all fea-
ture types contribute to an increase in perfor-
mance. The increases are greater in LARGE, sug-
gesting that the model is better able to utilize
the information given more data. The BasicQ,
BasicA features, which include dates and view
counts, do not appear to be of much use. Niether
does Badges, which appears to hurt the model
slightly. The other features give substantial gains,
especially in LARGE. The Comments feature is
strongest, but since it includes information based
on the comments of the question asker, it may
not be as relevant for the ultimate goal of cross-
question answer retrieval.

Comparing decatt and metadata model,
we found that overall, both models perform well,
and even when a model does not predict the ac-

cepted answer it often gives a highly-voted an-
swer. We found that the metadata model tends
to favour answers which have multiple comments
involving the asker, and especially answers from
high-reputation users. For example, in answerA1,2

to question Q1 in Table 6, there were a total of
8 comments to the answer (and no comments to
any of the other answers), biasing metadata to
prefer it. In practice, however, those comments
were uniformly negative on the part of a num-
ber of prominent community members, which the
model has failed to capture. This makes sense
given the results in Table 5. However, it does not
appear to understand comments where the asker
is discussing why the answer fails to address his
question, for example I can’t choose one Polygon
class because each library operates only in its own
implementation. While we include sentiment fea-
tures in our metadata features, this alone might
not be sufficient, since the disussion may revolve
around facts and require more detailed modelling
of the discourse structure of comments. Note that
here, decatt correctly selectedA1,1, on the basis
of its content.

As an example of a misclassification by
decatt, answer A2,2 is preferred over (best-
answer) A2,1 in response to question Q2 in Ta-
ble 6, but is actually a more comprehensive answer
which deals with more issues in the original code
and receives an equal number of community votes
from the community to A2,2. However, A2,1 was
posted first and receives a comment of gratitude
from the question asker, meaning that metadata
is able to correctly classify it as best answer.
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Figure 1: Attention weights for a question–answer pair, e, normalized to [0, 1]. Due to the long length of question
and answers we only plot weights above some threshold.

5.2 Future Work

There are multiple avenues for future research
based on our work. Our model’s use of attention
in the Stack Overflow dataset appears to be very
limited, so a model which can make full use of
attention could be a good direction of investiga-
tion. Another approach would be to extend our
model to incorporate the entire list of answers
and comments, possibly using graph-based ap-
proaches, instead of relying on individual ques-
tion/answer pairs and manually engineered com-
ment features. Ultimately, we would like to ex-
tend our methodology for cross-question answer
retrieval, rather than just answer retrieval from a
single question, given the goal of utilising the data
in cQA forums to facilitate general-purpose non-
factoid question answering

6 Conclusions

In this paper we built a state-of-the-art model for
cQA answer retrieval model based on a deep-
learning framework. Unlike recent work on this
problem we successfully utilised metadata to sub-
stantially boost performance. In addition, we adapt
an attentional component in our model, which im-
proves results over the simple paragraph vector-
based approach used in our benchmark, which was
previously the state-of-the-art model. It is our hope
that this work facilitates future research on utilis-
ing cQA data for non-factoid question answering.
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Abstract

We propose a new word embedding method
called word-like character n-gram embed-
ding, which learns distributed representations
of words by embedding word-like character n-
grams. Our method is an extension of recently
proposed segmentation-free word embedding,
which directly embeds frequent character n-
grams from a raw corpus. However, its n-gram
vocabulary tends to contain too many non-
word n-grams. We solved this problem by in-
troducing an idea of expected word frequency.
Compared to the previously proposed meth-
ods, our method can embed more words, along
with the words that are not included in a given
basic word dictionary. Since our method does
not rely on word segmentation with rich word
dictionaries, it is especially effective when the
text in the corpus is in unsegmented language
and contains many neologisms and informal
words (e.g., Chinese SNS dataset). Our ex-
perimental results on Sina Weibo (a Chinese
microblog service) and Twitter show that the
proposed method can embed more words and
improve the performance of downstream tasks.

1 Introduction

Most existing word embedding methods re-
quire word segmentation as a preprocessing
step (Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2017). The raw corpus is first
converted into a sequence of words, and word
co-occurrence in the segmented corpus is used to
compute word vectors. This conventional method
is referred to as Segmented character N -gram Em-
bedding (SNE) for making a distinction clear in
the argument below. Word segmentation is almost
obvious for segmented languages (e.g., English),
whose words are delimited by spaces. On the other
hand, when dealing with unsegmented languages
(e.g., Chinese and Japanese), whose word bound-
aries are not obviously indicated, word segmenta-

Table 1: Top-10 2-grams in Sina Weibo and 4-grams in
Japanese Twitter (Experiment 1). Words are indicated
by boldface and space characters are marked by .

FNE WNE (Proposed)
Chinese Japanese Chinese Japanese

1 ][ wwww 自己 フォロー
2 。␣ ！！！！ 。␣ ありがと
3 ！␣ ありがと ][ wwww
4 .. りがとう 一个 ！！！！
5 ]␣ ございま 微博 めっちゃ
6 。。 うござい 什么 んだけど
7 ，我 とうござ 可以 うござい
8 ！！ ざいます 没有 line
9 ␣我 がとうご 吗？ 2018
10 了， ください 哈哈 じゃない

tion tools are used to determine word boundaries
in the raw corpus. However, these segmenters re-
quire rich dictionaries for accurate segmentation,
which are expensive to prepare and not always
available. Furthermore, when we deal with noisy
texts (e.g., SNS data), which contain a lot of neolo-
gisms and informal words, using a word segmenter
with a poor word dictionary results in significant
segmentation errors, leading to degradation of the
quality of learned word embeddings.

To avoid the difficulty, segmentation-free word
embedding has been proposed (Oshikiri, 2017).
It does not require word segmentation as a pre-
processing step. Instead, it examines frequencies
of all possible character n-grams in a given cor-
pus to build up frequent n-gram lattice. Subse-
quently, it composes distributed representations of
n-grams by feeding their co-occurrence informa-
tion to existing word embedding models. In this
method, which we refer to as Frequent character
N -gram Embedding (FNE), the top-K most fre-
quent character n-grams are selected as n-gram
vocabulary for embedding. Although FNE does
not require any word dictionaries, the n-gram vo-
cabulary tends to include a vast amount of non-
words. For example, only 1.5% of the n-gram vo-
cabulary is estimated as words at K = 2M in Ex-
periment 1 (See Precision of FNE in Fig. 2b).
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Pi

Corpus 海 鮮 料 理 美 味 い ！ (  ﾟ ∀  ﾟ )
SNE seafood dish delicious ！

FNE

delicious ！ (emoticon)
seafood dish delicious i (kana)
sea ingredient reason tasty taste

WNE

seafood dishes delicious ！ (emoticon)
seafood dish delicious i (kana)
sea ingredient reason tasty taste

0.04         0.69         0.05         0.93        0.05         0.89          0.85         0.85  0.38    0.06     0.06   0.34

Figure 1: A Japanese tweet with manual segmentation.
The output of a standard Japanese word segmenter4 is
shown in SNE. The n-grams included in the vocab-
ularies of each method are shown in FNE and WNE
(K=2×106). Words are black and non-words are gray.

Since the vocabulary size K is limited, we
would like to reduce the number of non-words in
the vocabulary in order to embed more words. To
this end, we propose another segmentation-free
word embedding method, called Word-like char-
acter N -gram Embedding (WNE). While FNE
only considers n-gram frequencies for construct-
ing the n-gram vocabulary, WNE considers how
likely each n-gram is a “word”. Specifically, we
introduce the idea of expected word frequency
(ewf ) in a stochastically segmented corpus (Mori
and Takuma, 2004), and the top-K n-grams with
the highest ewf are selected as n-gram vocabulary
for embedding. In WNE, ewf estimates the fre-
quency of each n-gram appearing as a word in the
corpus, while the raw frequency of the n-gram is
used in FNE. As seen in Table 1 and Fig. 1, WNE
tends to include more dictionary words than FNE.

WNE incorporates the advantage of dictionary-
based SNE into FNE. In the calculation of ewf, we
use a probabilistic predictor of word boundary. We
do not expect the predictor is very accurate—If it
is good, SNE is preferred in the first place. A naive
predictor is sufficient for giving low ewf score to
the vast majority of non-words so that words, in-
cluding neologisms, are easier to enter the vocab-
ulary. Although our idea seems somewhat simple,
our experiments show that WNE significantly im-
proves word coverage while achieving better per-
formances on downstream tasks.

2 Related work

The lack of word boundary information in unseg-
mented languages, such as Chinese and Japanese,
raises the need for an additional step of word seg-
mentation, which requires rich word dictionaries

to deal with corpora consisting of a lot of ne-
ologisms. However, in many cases, such dic-
tionaries are costly to obtain or to maintain up-
to-date. Though recent studies have employed
character-based methods to deal with large size
vocabulary for NLP tasks ranging from machine
translation (Costa-jussà and Fonollosa, 2016; Lu-
ong and Manning, 2016) to part-of-speech tag-
ging (Dos Santos and Zadrozny, 2014), they still
require a segmentation step. Some other studies
employed character-level or n-gram embedding
without word segmentation (Schütze, 2017; Dhin-
gra et al., 2016), but most cases are task-specific
and do not set their goal as obtaining word vec-
tors. As for word embedding tasks, subword (or n-
gram) embedding techniques have been proposed
to deal with morphologically rich languages (Bo-
janowski et al., 2017) or to obtain fast and sim-
ple architectures for word and sentence represen-
tations (Wieting et al., 2016), but these methods
do not consider a situation where word bound-
aries are missing. To obtain word vectors with-
out word segmentation, Oshikiri (2017) proposed
a new pipeline of word embedding which is effec-
tive for unsegmented languages.

3 Frequent n-gram embedding

A new pipeline of word embedding for unseg-
mented languages, referred to as FNE in this pa-
per, has been proposed recently in Oshikiri (2017).
First, the frequencies of all character n-grams in a
raw corpus are counted for selecting the K-most
frequent n-grams as the n-gram vocabulary in
FNE. This way of determining n-gram vocabulary
can also be found in Wieting et al. (2016). Then
frequent n-gram lattice is constructed by enumer-
ating all possible segmentations with the n-grams
in the vocabulary, allowing partial overlapping of
n-grams in the lattice. For example, assuming that
there is a string “短い学術論文” (short academic
paper) in a corpus, and if短い (short),学術 (aca-
demic),論文 (paper) and学術論文 (academic pa-
per) are included in the n-gram vocabulary, then
word and context pairs are (短い,学術), (短い,学
術論文) and (学術,論文). Co-occurrence frequen-
cies over the frequent n-gram lattice are fed into
the word embedding model to obtain vectors of n-
grams in the vocabulary. Consequently, FNE suc-
ceeds to learn embeddings for many words while
avoiding the negative impact of the erroneous seg-
mentations.
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Although FNE is effective for unsegmented lan-
guages, it tends to embed too many non-words.
This is undesirable since the number of embed-
ding targets is limited due to the time and memory
constraints, and the non-words in the vocabulary
could degrade the quality of the word embeddings.

4 Word-like n-gram embedding

To reduce the number of non-words in the n-gram
vocabulary of FNE, we change the selection cri-
terion of n-grams. In FNE, the selection criterion
of a given n-gram is its frequency in the corpus.
In our proposal WNE, we replace the frequency
with the expected word frequency (ewf ). ewf is the
expected frequency of a character n-gram appear-
ing as a word over the corpus by taking account
of context information. For instance, given an in-
put string “美容院でカラーリングする” (Do hair
coloring at a beauty shop), FNE simply counts the
occurrence frequency ofリング (ring) and ignores
the fact that it breaks the meaning ofカラーリン
グ (coloring), whereas ewf suppresses the count-
ing ofリング by evaluating how likely theリング
appeared as a word in the context. ewf is called as
stochastic frequency in Mori and Takuma (2004).

4.1 Expected word frequency
Mori and Takuma (2004) considered the stochas-
tically segmented corpus with probabilistic word
boundaries. Let x1x2 · · ·xN be a raw corpus of
N characters, and Zi be the indicator variable
for the word boundary between two characters xi

and xi+1; Zi = 1 when the boundary exists and
Zi = 0 otherwise. The word boundary probability
is denoted by P (Zi = 1) = Pi and P (Zi = 0) =
1 − Pi, where Pi is calculated from the context as
discussed in Section 4.2.

Here we explain ewf for a character n-gram w
by assuming that the sequence of word boundary
probabilities PN

0 = (P0, P1, · · · , PN ) is already at
hand. Let us consider an appearance of the speci-
fied n-gram w in the corpus as xixi+1 · · ·xj = w
with length n = j − i + 1. The set of all
such appearances is denoted as I(w) = {(i, j) |
xixi+1 · · ·xj = w}. By considering a naive inde-
pendence model, the probability of xixi+1 · · ·xj

being a word is P (i, j) = Pi−1Pj
∏j−1

k=i (1 − Pk),
and ewf is simply the sum of P (i, j) over the
whole corpus

ewf(w) =
∑

(i,j)∈I(w)

P (i, j),

while the raw frequency of w is expressed as

freq(w) =
∑

(i,j)∈I(w)

1.

4.2 Probabilistic predictor of word boundary
In this paper, a logistic regression is used for
estimating word boundary probability. For ex-
planatory variables, we employ the association
strength (Sproat and Shih, 1990) of character n-
grams; similar statistics of word n-grams are used
in Mikolov et al. (2013) to detect phrases. The
association strength of a pair of two character n-
grams a, b is defined as

A(a, b) = log

(
freq(ab)

N

)
−log

(
freq(a)freq(b)

N2

)
.

For a specified window size s, all the combina-
tions of a ∈ {xi, xi−1xi, . . . , xi−s+1 · · ·xi} and
b ∈ {xi+1, xi+1xi+2, . . . , xi+1 · · ·xi+s} are con-
sidered for estimating Pi.

5 Experiments

We evaluate the three methods: SNE, FNE and
WNE. We use 100MB of SNS data, Sina Weibo1

for Chinese and Twitter2 for Japanese and Korean,
as training corpora. Although Korean has spac-
ing, the word boundaries are not obviously deter-
mined by space. The implementation of the pro-
posed method is available on GitHub3.

5.1 Comparison word embedding models
The three methods are combined with Skip-gram
model with Negative Sampling (SGNS) (Mikolov
et al., 2013), where the dimension of word embed-
dings is 200 and the number of epochs is 20. The
initial learning rate γ and the number of negative
samples nneg are grid searched over (γ, nneg) ∈
{0.01, 0.025}×{5, 10}. The context window size
h is grid searched over h ∈ {1, 5, 10} in SNE, and
h = 1 is used for FNE and WNE.
SGNS-SNE (baseline): The standard word seg-
menters4 are used to obtain segmented corpora.
SGNS-FNE (baseline): SGNS is extended to al-
low frequent n-gram lattice in Oshikiri (2017). In

1We used 100MB of Leiden Weibo Corpus (van Esch,
2012) from the head.

2We collected Japanese and Korean tweets using the Twit-
ter Streaming API.

3https://github.com/kdrl/WNE
4MeCab with IPADIC is used for Japanese, jieba with

jieba/dict.txt.small are used for Chinese, and MeCab-ko with
mecab-ko-dic is used for Korean.
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Figure 2: Precision-Recall curves for Japanese in two
sets of dictionaries (Experiment 1). The maximum K
of SNE (KSNE) is indicated by star.

this model, the n-gram vocabulary is constructed
with the K-most frequent n-grams and the embed-
dings of n-grams are computed by utilizing its co-
occurrence information over the frequent n-gram
lattice.
SGNS-WNE (Proposed model): We modified
SGNS-FNE by replacing the n-gram frequency
with ewf. To estimate word boundary probabili-
ties, the logistic regression of window size s = 8
is trained with randomly sampled 1% of the corpus
segmented by the same basic word segmenters4

used in SNE. Again, we do not expect here the
probabilistic predictor of word boundary is very
accurate. A naive predictor is sufficient for giving
low ewf score to the vast majority of non-words.

5.2 Experiment 1: Selection criteria of
embedding targets

We examine the number of words and non-words
in the n-gram vocabulary. The n-gram vocabular-
ies of size K are prepared by the three methods.
For evaluating the vocabularies, we prepared three
types of dictionaries for each language, namely,
basic, rich5 and noun. basic is the standard dic-
tionary for the word segmenters, and rich is a
larger dictionary including neologisms. noun is
a word set consists of all noun words in Wiki-
data (Vrandečić and Krötzsch, 2014).

Each n-gram in a vocabulary is marked as

5For Japanese, Chinese, and Korean, respectively, basic
dictionaries are IPADIC, jieba/dict.txt.small, mecab-ko-dic,
and rich dictionaries are NEologd, jieba/dict.txt.big, NIADic

Table 2: Classification accuracies [%] (Experiment 2)

Model Lang. Recalla Accuni
b Accint

c

SGNS-SNE 18.07 61.31 81.19
SGNS-FNE Chinese 11.36 35.61 86.44
SGNS-WNE 20.68 73.64 87.23
SGNS-SNE 0.78 44.50 79.56
SGNS-FNE Japanese 0.81 39.06 80.50
SGNS-WNE 1.70 69.76 81.70
SGNS-SNE 7.36 62.51 77.35
SGNS-FNE Korean 4.21 43.87 84.30
SGNS-WNE 9.38 74.50 84.32

a Dictionary = rich, b Union of the three vocabularies,
c Intersection of the three vocabularies.

“word” if it is included in a specified dictionary.
We then compute Precision as the ratio of marked
words in the vocabulary and Recall as the ratio of
marked words in the dictionary. Precision-Recall
curve is drawn by changing K from 1 to 1 × 107.

5.3 Experiment 2: Noun category prediction

We performed the noun category prediction task
with the learned word vectors. Most of the set-
tings are the same as Oshikiri (2017). Noun words
and their categories are extracted from Wikidata
with the predetermined category set6. The word
set is split into train (60%) and test (40%) sets.
The hyperparameters are tuned with 5-folds CV
on the train set, and the performance is measured
on the test set. This is repeated 10 times for ran-
dom splits, and the mean accuracies are reported.
C-SVM classifiers are trained to predict categories
from the word vectors, where unseen words are
skipped in training and treated as errors in testing.
We performed a grid search over (C, classifier) ∈
{0.5, 1, 5, 10, 50} × {1-vs.-1, 1-vs.-all} of linear
SVM. The vocabulary size is set to K = 2 × 106

for FNE and WNE, while K = KSNE is fixed
at the maximum value, i.e., the number of unique
segmented n-grams for SNE.

5.4 Result

The results of experiments are shown in Fig. 2 and
Table 2. PR-curves for Chinese and Korean are
similar to Japanese and omitted here. As expected,
SNE has the highest Precision. WNE improves
Precision of FNE greatly by reducing non-words
in the vocabulary. On the other hand, WNE has the
highest Recall (the coverage of dictionary words)
for large K, followed by FNE. Since SNE cannot
increase K beyond KSNE, its Recall is limited.

6{human, fictional character, manga, movie, girl group,
television drama, year, company, occupation, color, country}
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Looking at the classification accuracies com-
puted for the intersection of the vocabularies of
SNE, FNE and WNE, they are relatively similar,
while looking at those for the union of the vo-
cabularies, WNE is the highest. This indicates
that the quality of the word vectors is similar in
the three methods, but the high coverage of WNE
contributes to the performance improvement of the
downstream task compared to SNE and FNE.

6 Conclusion

We proposed WNE, which trains embeddings for
word-like character n-grams instead of segmented
n-grams. Compared to the other methods, the
proposed method can embed more words, along
with the words that are not included in the given
word dictionary. Our experimental results show
that WNE can learn high-quality representations
of many words, including neologisms, informal
words and even text emoticons. This improvement
is highly effective in real-world situations, such as
dealing with large-scale SNS data. The other word
embedding models, such as FastText (Bojanowski
et al., 2017) and GloVe (Pennington et al., 2014),
can also be extended with WNE.
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Abstract

We developed a system that automatically ex-
tracts “Event-describing Tweets” which in-
clude incidents or accidents information for
creating news reports. Event-describing
Tweets can be classified into “Reported-
event Tweets” and “New-information Tweets.”
Reported-event Tweets cite news agencies
or user generated content sites, and New-
information Tweets are other Event-describing
Tweets. A system is needed to classify them
so that creators of factual TV programs can
use them in their productions. Proposing this
Tweet classification task is one of the contri-
butions of this paper, because no prior papers
have used the same task even though program
creators and other events information collec-
tors have to do it to extract required informa-
tion from social networking sites. To clas-
sify Tweets in this task, this paper proposes a
method to input and concatenate character and
word sequences in Japanese Tweets by using
convolutional neural networks. This proposed
method is another contribution of this paper.
For comparison, character or word input meth-
ods and other neural networks are also used.
Results show that a system using the proposed
method and architectures can classify Tweets
with an F1 score of 88 %.

1 Introduction

Many companies including news agencies have
increasingly been extracting news information
from postings on Social Networking Sites (SNSs)
such as Twitter and Facebook and using it for
various purposes (Neubig et al., 2011; Iso et al.,
2016). However, choosing important information
for news reports from Twitter is very tough, be-
cause Twitter contains a vast amount of posts.
For this reason, many researchers have stud-
ied how to extract important posts for each
purpose (Papadopoulos et al., 2014; Litvak et al.,

2016; Zhou et al., 2016; Vakulenko et al., 2017).
A system using Neural Networks (NNs) has been
developed by using models that are trained by ex-
tracting Tweets in factual TV program produc-
tion, and these systems extract “Event-describing
Tweets (EVENT)” which include incidents or ac-
cidents information for news reports from a large
amount of Tweets (Miyazaki et al., 2017). How-
ever, there are many Tweets, so there can be many
extracted Tweets which include EVENT for news
reports about any event. Hence, people have diffi-
culty monitoring all EVENT. In addition, EVENT

are used differently in different types of programs.
For these purposes, it is better to display only
Tweets suitable to the program contents.

For example, program creators who want to ob-
tain primary reports of an event posted by Twitter
users do not require Tweets put out by news agen-
cies and User Generated Content (UGC) sites or
Tweets that quote or cite them. The part of new
information of these Tweets is able to be gotten
by crawling each site, so no longer these Tweets
do not include new events information for pro-
gram creators. We call these Tweets “I: Reported-
event Tweets (REPORTED)” and others “II: New-
information Tweets (NEW).” Both types of Tweets
are requested for different reasons. Only types of
Tweets suitable to creators’ purpose need to be
displayed, but extracting EVENT and classifying
them are essentially different processes.

For these reasons, this paper uses a two-stage
processing system that separates EVENT from a
large amount of Tweets by using an existing sys-
tem and classifies them into REPORTED and NEW

by using text-based machine learning methods in
real-time (Section 4). Our proposed method inputs
both character and word sequences (Section 5.2).
Both proposed and conventional methods use sev-
eral NN architectures including Recurrent NNs
(RNNs) and Convolutional NNs (CNNs) (Sec-
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tion 5). Evaluation results show that the proposed
method outperformed the conventional methods in
all NN architectures (Section 6).

This paper makes two contributions. One is
proposing a new task for classifying extracted
EVENT into two classes: REPORTED and NEW.
TV program creators need to do this task for pro-
gram production automatically and do it first to
track reports about an event. However, there have
been no prior studies about this task. The other is
proposing a new method for NN architectures that
inputs entire character sequences and entire word
sequences in parallel and concatenates them in the
intermediate layer and evaluating its performance.
This method can utilize the advantages of charac-
ter sequences (i.e., there are fewer unknown char-
acters than unknown words and it does not need
morphological analyzers even when in Japanese
which is very difficult to divide words especially
for noisy texts) and word sequences (i.e., words
are more effective than characters for the task).
The method can be used for any other tasks that
need to both character and word sequences.

2 Related Work

There are many related works such as related tasks
that use Twitter datasets or classify texts and re-
lated methods that have NNs architectures using
both characters and words in Natural Language
Processing (NLP).

Related tasks include topic detection on Twit-
ter task (Papadopoulos et al., 2014; Litvak et al.,
2016; Zhou et al., 2016; Vakulenko et al., 2017),
binary classification of Tweets (Rosenthal et al.,
2017), classification of news related or po-
litical stance Tweets (Ghelani et al., 2017;
Johnson and Goldwasser, 2016; Volkova et al.,
2017), classification of news related arti-
cles (Ribeiro et al., 2017), and other classifica-
tions in NLP. Binary classification of texts and
classification of news related texts and articles
are most closely related to this task. However,
none of these studies focused on classifying
extracted EVENT into REPORTED or NEW. Since
no classification method meets the requirements
of this paper (i.e., extraction of REPORTED to
obtain primary reports and extraction of NEW to
collect opinions about reported events or gather
follow-up Tweets), no prior research on the same
task exists.

For related methods, in NLP using ma-

All Tweets 

Ⅰ: REPORTED Ⅱ: NEW

non-EVENT EVENT

Ⅰ-①: with explicit sources Ⅰ-②: without explicit sources

Extraction

Classification 

Figure 1: Overview of our Tweets classification.

chine learning, there is one NLP config-
uration that uses a word sequence as in-
put and characters as supplemental informa-
tion (Ma and Hovy, 2016; Grönroos et al., 2017;
Heyman et al., 2017; Lin et al., 2017) and another
that switches between the character NN and the
word NN (Vijayaraghavan et al., 2016). However,
the character sequence is one semantic vector set
for the entire sequence. There is one NLP con-
figuration that uses gated recurrent units for a
word sequence and for CNN output of a charac-
ter sequence(Liang et al., 2017). However, it does
not purely combine characters and words in paral-
lel and takes time to process because it includes re-
current architectures and is not for noisy texts. No
method combining the output of an entire purely
character sequence and an entire purely word se-
quence in parallel with a CNN for noisy texts has
been studied and evaluated to the best of the au-
thors’ knowledge.

3 Task Description

The purpose of our system is classification of
Tweets for different types of programs. Fig-
ure 1 shows the overview of our Tweets clas-
sification. Extracting EVENT is not a novel
task (Miyazaki et al., 2017), so the proposed task
in this paper is classifying EVENT into REPORTED

and NEW.

3.1 Classification of REPORTED and NEW

REPORTED are less numerous than NEW. This
is because NEW include information about events
relevant to few people and that are low priority for
many news agencies such as local events as well
as events no news agencies know about. Tweet-
classification system needs to extract all events in-
formation, and the program creators need to judge
the priority. Conversely, when Tweets are put out
that many people want to cite and opine about,
REPORTED quoting these Tweets will increase,
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I- 1⃝ REPORTED with explicit sources EVENT that are tweeted from or quote news agencies, UGC sites,
e.g. or others and include explicit sources
“Small plane crash. Four people dead on impact. — XXX news I wonder if the plane broke down from the nose.”
I- 2⃝ REPORTED without explicit sources EVENT that are tweeted from or quote news agencies, UGC sites,
e.g. or others and do not include explicit sources
“Small plane crash. Four people dead on impact. I wonder if the plane broke down from the nose.”
II NEW Any other EVENT

Table 1: Types of EVENT (example is manually translated by author).

and NEW will be hard to monitor and gather in
real-time. Similarly, creators who want to collect
opinions about reported events or gather follow-up
Tweets will not need NEW, which are the major-
ity of EVENT. Therefore, depending on the cre-
ator’s intention, either NEW or REPORTED should
be displayed in real-time. For these reasons, a
classification task is needed.

3.2 Two Types of REPORTED

There are two types of REPORTED. One is RE-
PORTED with explicit sources (I- 1⃝), which cite
news agencies, UGC sites, or other information
dissemination agencies, so Tweet-classification
systems are expected to easily detect these Tweets
by keyword filtering using source names. The
other is REPORTED without explicit sources (I-

2⃝), which do not cite explicit sources because
Twitter users can remove source names. They
have a distinctive stylistic character (in Japanese,
they often contain sentence ending with a noun
or noun phrase and often include date, time, etc.)
and can be detected manually. However Tweet-
classification systems cannot detect them by sim-
ple methods including keyword filtering using
source names.

Table 1 shows three types of training data (de-
scribed in Section 6.1) manually classified by hu-
mans. Both I- 1⃝ and I- 2⃝ are REPORTED, and this
system only classifies Tweets into two classes: I:
REPORTED and II: NEW. This is because I- 1⃝ and
I- 2⃝ seem to be used the same way. However, ex-
tracting I- 2⃝ is expected to be harder than extract-
ing I- 1⃝, because sources are grounds for decid-
ing whether a Tweet quotes a source or not. For
only evaluating the characteristic difference (Sec-
tion 6), I are classified into I- 1⃝ and I- 2⃝.

4 Configuration of Our System

The structure of our system for classifying EVENT

about reported events is shown in Figure 2. Inputs
of this system are 10 % of all randomly sampled
Tweets in Japanese. The extraction process ex-

Randomly sampled
Tweets in Japanese
(Avg. of 8M / day)

non-EVENT
(Avg. of 8M / day)

EVENT

Ⅰ: REPORTED
(Avg. of 2K / day)

Ⅱ: NEW
(Avg. of 8K / day)

(Avg. of 10K / day)
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Figure 2: Structure of our system for classifying
EVENT about reported events.

tracts EVENT and removes non-Event-describing
Tweets (non-EVENT). The EVENT for news re-
ports are then input in the classification process,
which classifies them into REPORTED and NEW.

The extraction process needs to separate the
0.1% of EVENT from the 99.9% of non-EVENT.
Because there are so many non-EVENT, the ex-
traction process needs extensive training. To ex-
tract EVENT and classify them into REPORTED

and NEW in one process, the system is trained for
classification by using Tweets required for train-
ing with a large amount of non-EVENT unrelated
to classification. Moreover, when systems are ex-
tended to classify other types of Tweets or relearn
how to classify EVENT about reported events,
they need extensive training for Tweet extraction
and classification. However, it is not realistic to
do such retraining every time classification is ad-
justed in accordance with a program creator’s re-
quest. For these reasons, this paper uses a two-
stage processing system that includes an extrac-
tion process and a classification process.

4.1 Extraction Process

The extraction process uses an existing
method (Miyazaki et al., 2017). Figure 3 shows
the structure of the extraction process. Tweets are
converted into one-hot vector for each character,
entered into a Feed-forward NN (FFNN), a
Bi-directional Long Short-Term Memory (Bi-
LSTM) with an attention mechanism, and 2-layer
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Figure 3: Structure of extraction process.

FFNN, and classified as important (EVENT) or
unimportant (non-EVENT). Dimensions of each
intermediate layer are set to 200.

In this paper, a model that is trained by su-
pervised training using 19,962 Tweets manually
extracted in TV program production for positive
samples and 1,524,155 randomly sampled Tweets
for negative samples is used. The model which has
a 74.4 % F1 score is used. Whether the priority is
precision or recall can be changed by varying the
threshold of the output depending on the purpose1.

4.2 Classification Process

The classification process classifies EVENT into
REPORTED and NEW by several classification
methods using three types of manually classified
training data as shown in Table 1. For reasons al-
ready mentioned in Section 3.2, this process clas-
sified EVENT into REPORTED and NEW.

Input in the classification process is limited to
EVENT extracted from the extraction process, so
the classification process needs much less train-
ing data than the extraction processes. There is
a trade-off between the hardware burden caused
by the volume of training data, structures of NNs
and the improvement of classification accuracy by
advanced processing. However, the classification
process does not need extensive training and so
can use computationally heavy methods within the
range where the test phase is performed in real-
time. In this paper, the accuracy and leaning speed
of these methods are evaluated in experiments.

5 Classification Methods using NNs

For methods to classify REPORTED and NEW, sev-
eral inputs including the proposed method and
several NN architectures are used. In machine

1The extraction process is neither the purpose nor the con-
tribution of this paper. This existing method was used only
for convenience. The performance evaluation of this paper
is for the classification process. When EVENT extracted by
any methods are input, the methods are expected to perform
approximately the same for the classification process.
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Figure 4: Overview structure using each character se-
quences or word sequences.

learning using sentences, an input sequence is gen-
erally divided into characters or words, vectorized,
serialized, and used. The contributions of the both
words and characters are evaluated by these three
methods.

5.1 Conventional Character Input NN /
Word Input NN

Figure 4 shows an overview of a structure using ei-
ther character sequences or word sequences. First,
sentences are input to a sequential process NN and
output as hNN ∈ Rm, where m is the intermediate
size. Second, hNN is inputed to the intermediate
layer FFNN ( W int. ∈ Rm×m, bint. ∈ Rm) and
output as hint. ∈ Rm. Finally, hint. is input to the
output layer FFNN (W out ∈ R2×m, bout ∈ R2)
and the Softmax function and output as binary of
classification results. At the training phase, loss is
calculated by the cross entropy function between
output of the Softmax function and one-hot vec-
tor of a correct answer. At the test or use phase,
output is calculated by an argmax function of the
Softmax function output. A series of processes is
obtained as follows,

hint. = a(W int.hNN + bint.) (1)

output = softmax(hout)

= softmax(W outhint. + bout), (2)

where a(·) is an activation function and we use
a Rectified Linear Unit (ReLU) (Clevert et al.,
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2015). For converting sentences into char-
acter sequences, sentences are separated into
individual characters. For converting sen-
tences into word sequences, sentences are sepa-
rated using the Japanese morphological analyzer
MeCab (Kudo et al., 2004) with the customized
system dictionary mecab-ipadic-NEologd (Sato,
2015).

5.1.1 FFNN for Sequential Process
Figure 5 shows the structure of character or word
sequences input only using the FFNN. A BOW
(Bag of Words / characters) vector xBOW ∈ RN

is input to the input layer FFNN (W in ∈ Rm×N ,
bin ∈ Rm) and output as hin ∈ Rm, where N is
the number of input layer dimensions, so FFNN
architectures do not include sequential architec-
tures. A series of processes is obtained as follows,

hFFNN = hin = a(W inxBOW + bin). (3)

Then, hFFNN is fed to Equation (1) as hNN.

5.1.2 LSTM for Sequential Process
Figure 6 shows the structure of character
or word sequences input using a LSTM
for the intermediate layer. One-hot vec-
tor {xt} =

{
x0 ∈ RN ,x1 ∈ RN , · · ·

}

is input to the input layer FFNN (W in,
bin) one by one, and output sequences are
{hin

t } =
{
hin

0 ∈ Rm,hin
1 ∈ Rm, · · ·

}
. After

that, the output sequences are input to the
intermediate layer LSTM using an attention
mechanism (Bahdanau et al., 2014) one by one,
and the output vector is hLSTM ∈ Rm. In
accordance with LSTM mechanisms, all series of
input are used for training. A series of processes
is obtained as follows,

hin
t = a(W inxt + bin) (t ∈ [0, n)) (4)

zt = tanh(W zhin
t +Rzhinc.

t−1 + bz) (5)

it = σ(W ihin
t +Rihinc.

t−1 + bi)

f t = σ(W fhin
t +Rfhinc.

t−1 + bf)

ct = it ⊗ zt + f t ⊗ ct−1

ot = σ(W ohin
t +Rohinc.

t−1 + bo)

hinc.
t = ot ⊗ tanh(ct)

αt =
exp

(
hinc.

l−1 · hinc.
t

)

Σl−1
j=t exp

(
hinc.

j · hinc.
t

)

hLSTM = a
(
ol−1 + a

(
Σl−1

j=0αjh
inc.
j

))
,

where n is the maximum number of input se-
quences and W ∗ ∈ Rm×m, R∗ ∈ Rm×m, and
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Figure 5: Structure of FFNN using each character se-
quence or word sequence.

b∗ ∈ Rm in Equations (5) are LSTM parameters
(∗ is each layer name and z is the tanh layer, i
the input layer, f the forget layer, and o the out-
put layer). Then, hLSTM is fed to Equation (1) as
hNN.

5.1.3 CNN for Sequential Process
Figure 7 shows the structure of character or word
sequences input using a CNN for the intermedi-
ate layer. When using word input, this process
is same as (Zhang and Wallace, 2017). First, one-
hot vector {xt} is input to the input layer FFNN
(W in, bin) one by one, and output sequences are
{hin

t } the same for the LSTM. After that, the out-
put sequences are input to the intermediate con-
volutional layer (each W p

j ∈ Rm×m,bp ∈ Rm)
using l kinds of filters (filter index is p = [0, l),
each filter size is k, and the index in each fil-
ter is j = [0, k)) with zero padding and input to
max-pooling in each filter. Output is l kinds of
vectors {hpool,p ∈ Rm}, which are all input to
the intermediate layer FFNN (WCNN ∈ Rm×lm,
bCNN ∈ Rm). In accordance with the CNN archi-
tectures, a part of a time series relies on k. A series
of processes is obtained as follows,

hin
t = a(W inxt + bin) (t ∈ [0, n)) (6)

hConv.,p
t = a

(
Σk−1

j=0

(
W p

jh
in
t+j + bp

))
(7)

(
p ∈ [0, l),hin

q = Om (q ≧ n)
)

hpool,p = max
t

{
hConv.,p

t

}
(8)

hCNN = a(WCNN
[
hpool,0; · · · ;hpool,l−1

]

+bCNN). (9)

Then, hCNN is fed to Equation (2) as hint..

5.2 Proposed Concat Input NN (iii)
This paper proposes a method to input character
and word sequences and to concatenate them at
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Figure 7: Structure of CNN using each character sequence or word sequence.

the intermediate layer. In Section 5.1, all archi-
tectures use only a character or word sequence.
However, character sequences have the advantages
of there being fewer characters than words and of
expressing the input sentence without using high-
dimensional input layers. Moreover, in the case of
using a written language that does not have spaces
between words such as Japanese, morphological
analyzers are needed to divide words. Tweets are
noisy, so they are very difficult to morphologically
analyze accurately. Thus, performance from char-
acter sequences does not depend on morpholog-
ical analyzer performance, which is another big
advantage. However, sentences are written by us-
ing word sequences, and characters are involved
in many words that cover a large number of mean-
ings. In contrast, one word has a limited number
of meanings and plays a bigger role in each sen-
tence. For these reasons, the proposed method is
expected to exploit the advantages of both charac-
ters and words.

Figure 8 shows the structure of character and
word sequences input and concatenated at the in-
termediate layer. Each sequential process NN is
described in Section 5.1.1-5.1.3 and surrounded
by broken-line boxes in Figures. 5-7 for charac-
ter sequences and word sequences independently.
Output of the each sequential process is hNN. Af-
ter that, character and word sequences are concate-
nated, and the subsequent process is the same as
that in Section 5.1. A series of processes is ob-
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Figure 8: Overview of structure inputting both charac-
ter and word sequences.

tained as follows,

hint. = a
(
W int.

[
hNN

char;h
NN
word

]
+ bint.

)
(10)

where the intermediate layer FFNN is (W int. ∈
Rm×2m, bint. ∈ Rm). Then, hint. is fed to Equa-
tion (2).

6 Experimental Evaluation

The performances of classification methods are
evaluated in an experimental evaluation. For
comparison, baseline methods are used that use
keyword filtering or Support Vector Machines
(SVMs) (Vapnik and Lerner, 1963), which are
well known to having high classification perfor-
mance (Wang and Manning, 2012). In this paper,
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I- 1⃝ I- 2⃝ II Total Date
Train. 4,273 5,027 35,370 44,670 Jun., 2017
Test 844 1,184 7,972 10,000 Jul., 2017

Table 2: No. of each Tweets.

594 sources of REPORTED from training data are
used for the keyword filtering baseline and Lin-
earSVC modules of scikit-learn (Pedregosa et al.,
2011) are used for the SVM baseline. Thus, data
include REPORTED of various sources. In addi-
tion, the Word2Vec vector for the SVM baseline
is the average of each 200–dimension word vector
that is made with a Wikipedia dump corpus by us-
ing Word2Vec skip-gram modules (Mikolov et al.,
2013).

6.1 Experimental Conditions

For both training data and test data, EVENT for
news reports extracted by the extraction process in
Section 4.1 are used. Training data is all 44,670
Tweets obtained in the extraction process on June
6th, 8th, 10th, and 12th, 2017. Test data is 10,000
randomly sampled Tweets obtained in the extrac-
tion process output Tweets on July 6th, 8th, 10th,
and 12th, 2017. Output data is annotated into three
categories I- 1⃝: REPORTED with explicit sources,
I- 2⃝: REPORTED without explicit sources, and II:
NEW by an annotator person. Table 2 shows the
amount of each type of annotated data. Table 3
shows the configuration of experimental parame-
ters.

6.2 Experimental Results

Table 4 shows precision, recall, and F1 score for
each method with input as character, word, or
character and word. Table 5 shows recall perfor-
mance of using REPORTED to evaluate the perfor-
mance with and without explicit sources. False
negatives are judged for only REPORTED and can-
not be divided into REPORTED with and without
explicit sources, thus precision and F1 score can-
not be used in this evaluation. Table 6 shows the
time required to learn each NN. Finally, Figure 9
shows the F1 score of SVM baseline methods and
CNN architectures trained by each number of ran-
dom sampled training data.

From Table 4, the keyword baseline method has
94.1% precision and 34.0% recall. From Table 5,
its recall is 73.5 % lower when using only I- 2⃝
than when using only I- 1⃝ (3.4 % vs. 76.9 %).

All NN architectures outperform all baseline

methods. Although word input using FFNN,
which has the lowest F1 score of the NN archi-
tectures, has the same precision as the SVM word
input baseline method, which has highest F1 score
of the baseline methods, it has higher recall (76.7
% vs. 75.7 %) and F1 score (84.2 % vs. 83.6 %).
Its recall is 22.5 % lower when using only I- 2⃝
than when using only I- 1⃝ (67.3 % vs. 89.8 %).

In each NN architecture, the F1 score for char-
acter input is 0.3–2.0% higher than for word in-
put. When both characters and words are input,
LSTM has the highest F1 score, 0.5-2.2% higher
than those of other NNs. When the conventional
method is used, the highest F1 score so far is 86.7
% for LSTM architecture using character input.
For this LSTM recall is 15.8 % higher when us-
ing only I- 1⃝ than when using only I- 2⃝ (94.6 %
vs. 78.8 %).

The proposed concat input method has a higher
F1 score than character input for each NN ar-
chitecture. Especially, F1 scores for the LSTM
and CNN architectures improved from 86.7 % and
86.2 % to 88.2%. With the proposed concat input
method, the difference between recall for CNNs
with and without explicit sources is only 18.5 %
(95% vs. 76.5%), whereas it is 22.1% and 23.8%
with character and word input NNs. In addition,
the training time of the CNN architecture is almost
1/3 that of the LSTM architecture, as shown in Ta-
ble 6.

From Figure 9, baseline SVM methods have
higher F1 scores than CNN architectures when
they are trained by using fewer than 10,000 train-
ing data. However, CNN architectures have higher
F1 scores than SVM methods when they are
trained by using more than 25,000 training data.
The architecture using the proposed method has
a lower F1 score than other architectures when
trained by using fewer than 13,000 training data
but has the highest F1 score when trained by using
more than 20,000 training data.

6.3 Experimental Result Discussion

For the keyword baseline method, since Tweets
with the same source used as training data can be
detected for I- 1⃝ in test data, there are few false
detections and overall precision is relatively high.
However, the keyword baseline method can barely
detect Tweets for I- 2⃝. In contrast, all other meth-
ods can obtain recall rates of at least 67 % for I-

2⃝. This result indicates machine learning meth-
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Deep learning framework Chainer (Tokui et al., 2015)
Gradient descent algorithm Adam (Kingma and Ba, 2014)
No. of iterations 5
Dim. of each int. layer 200
Mini batch size 100
Dropout (Srivastava et al., 2014) ratio 0.5 (except for the conv. layer and the pooling layer)
Each CNN filter size 2, 2, 3, 3, 4, 4 (for CNN (Zhang and Wallace, 2017))
Initial values of NNs random
Unknown elements (character and word) Elements that appear fewer than 10 times in training data
Classification I: REPORTED and II: NEW (described in Section 4.2)
Evaluating measures The macro average of 20 trials precision, recall, and F1 score

Table 3: Configuration of experimental parameters.

Input NN arch. Pre. Rec. F1
FFNN 92.1 79.3 85.2

Char. input LSTM 86.6 85.4 86.7
CNN 94.3 79.9 86.2
FFNN 93.3 76.7 84.2

Word input LSTM 90.3 83.0 86.4
CNN 93.8 76.9 84.2
FFNN 93.2 79.6 85.8

Concat input LSTM 91.3 85.5 88.2
(Proposed) CNN 93.0 84.2 88.2

Baseline (Keyword) 94.1 34.0 50.0
Baseline (SVM Char. input) 90.1 76.9 83.0
Baseline (SVM Word input) 93.3 75.7 83.6
Baseline (SVM Word2Vec input) 85.8 80.6 83.1

Table 4: Macro average performance of proposed clas-
sification methods (%).

ods are effective for the Tweet classification task
in this paper. Moreover, all NN architectures have
higher F1 score than SVM methods. This result
indicates NN architectures are more effective than
SVM methods for the task, especially when they
have enough training data.

The CNN or LSTM architectures have higher
F1 scores than the FFNN architecture for almost
all kinds of input. From this fact, incorporating
time series into the learning structure contributes
to classifying REPORTED and NEW. CNN archi-
tectures have a higher precision but a lower re-
call than LSTM architectures. Especially for I-

2⃝, which is expected to present a higher degree
of difficulty than I- 1⃝, CNN architectures using
character or word input have 67.0 –70.7% recall
whereas LSTM architectures have 75.6–78.8 %
recall. These results are due to the difference in
structure: a CNN uses time series only within the
filter size, whereas an LSTM uses the time series
of the entire sequence.

In all NN architectures, the proposed concat in-
put method has the best F1 score, followed by
character input and word input. It is considered
that the advantage of the character sequences de-

Input NN arch. I- 1⃝ I- 2⃝ I
FFNN 92.0 70.3 79.3

Char. input LSTM 94.6 78.8 85.4
CNN 92.8 70.7 79.9
FFNN 89.8 67.3 76.7

Word input LSTM 93.5 75.6 83.0
CNN 90.8 67.0 76.9
FFNN 92.0 70.8 79.6

Concat input LSTM 95.3 78.5 85.5
(Proposed) CNN 95.0 76.5 84.2

Baseline (Keyword) 76.9 3.4 34.0
Baseline (SVM Char. input) 89.3 68.1 76.9
Baseline (SVM Word input) 87.9 67.1 75.7
Baseline (SVM Word2Vec input) 88.5 74.9 80.6

Table 5: Macro average recall performance for types of
each test data (%).

hhhhhhhhhhhhInput
NN arch. FFNN LSTM CNN

Char. input 60 675 86
Word input 40 615 284
Concat input (Proposed) 110 1,200 440

Table 6: Training time of NNs (seconds).

scribed in Section 5.2 exceeds the advantage of
the word sequences, and in the proposed concat
input method, both elements are automatically se-
lected, so NN architectures are trained more ef-
fectively. The CNN architecture was particularly
improved, with its recall increasing to 84.2 % for
all reported Tweets (I) and to 76.5 % for I- 2⃝, only
slightly lower than the recall for the LSTM archi-
tecture. As a result, when the proposed concat
input method is used, though the CNN architec-
ture requires only 37 minutes at 5 epochs, it has
almost the same F1 score as the LSTM architec-
ture because the concat input method utilizes the
advantages of character sequences (i.e., there are
fewer unknown characters than unknown words),
and word sequences (i.e., words are more effective
than characters for the task).

Considering real-world use, training data can be
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Figure 9: Macro average F1 score for each training data
size reduced by all samples.

gathered on the basis of feedback from the TV pro-
gram production, so training each time the kind
of classification changes is also assumed. Under
these conditions, a short training time is highly
convenient and is a big advantage. From this re-
sult, a CNN using the proposed method has the
best balance of speed and accuracy, so it is the
most suitable for our system.

CNN architectures trained by using a few train-
ing data (less than 10,000) have lower F1 scores
than SVM methods, seems to be caused by CNN
architectures having many training parameters.
Specifically, the CNN architecture using the pro-
posed method has the lowest F1 score when it has
the most training parameters. However, it has the
highest F1 score when it is trained by using a lot of
training data. When collecting at least 10,000 and
ideally more than 30,000 training data, NN archi-
tectures are effective for the classification task in
this paper.

7 Conclusion

We developed a system to classify extracted
“Event-describing Tweets” for news reports into
“Reported-event Tweets” to obtain reports after
a primary report or collect opinions and “New-
information Tweets” to obtain primary reports and
for tracking reports of the same event. A con-
volutional neural network could classify Tweets
with an F1 score of 88 % by using our pro-
posed method, which inputs character and word
sequences, concatenates them in the intermediate
layer, and outputs them within 37 minutes train-
ing time. However, systems using the proposed
method also incorrectly extracted Tweets includ-

ing opinions about news or reports after the pri-
mary report without citations. In the future, on
the basis of the output of the system using the
proposed method, we will consider extending the
method to the systems collecting Tweets that men-
tion the same topic, which are used in event detec-
tion tasks. This will make it easier for TV program
creators to acquire the information they want. The
proposed task is important for our systems, so
we increase the reliability of datasets by using
more annotators. Moreover, we will consider us-
ing other tasks for evaluating proposed methods.
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Abstract

One way to test a person’s knowledge of a do-
main is to ask them to define domain-specific
terms. Here, we investigate the task of au-
tomatically generating definitions of technical
terms by reading text from the technical do-
main. Specifically, we learn definitions of soft-
ware entities from a large corpus built from
the user forum Stack Overflow. To model def-
initions, we train a language model and incor-
porate additional domain-specific information
like word co-occurrence, and ontological cate-
gory information. Our approach improves pre-
vious baselines by 2 BLEU points for the def-
inition generation task. Our experiments also
show the additional challenges associated with
the task and the short-comings of language-
model based architectures for definition gen-
eration.

1 Introduction

Dictionary definitions have been previously used
in various Natural Language Processing (NLP)
pipelines like knowledge base population (Dolan
et al., 1993), relationship extraction, and extract-
ing semantic information (Chodorow et al., 1985).
Creating dictionaries in a new domain is time con-
suming, often requiring hand curation by domain
experts with significant expertise. Developing sys-
tems to automatically learn and generate defini-
tions of words can lead to greater time-efficiency
(Muresan and Klavans, 2002). Additionally, it
helps accelerate resource-building efforts for any
new domain.

In this paper, we study the task of generating
definitions of domain-specific entities. In partic-
ular, our goal is to generate definitions for tech-
nical terms with the freely available Stack Over-
flow1 (SO) as our primary corpus. Stack Overflow
is a technical question-and-answer forum aimed

1https://stackoverflow.com

Figure 1: Screenshot from Stack Overflow showing
questions and corresponding tags in blue boxes

at supporting programmers in various aspects of
computer science. Each question is tagged with
associated entities or “tags”, and the top answers
are ranked based on user upvotes (de Souza et al.,
2014). Figure 1 shows a screenshot from the fo-
rum of a question and the entities tagged with the
question. Our work explores the challenge of gen-
erating definitions of entities in SO using the back-
ground data of question-answer pairs and their as-
sociated tags.

Our base definition generation model is adapted
from Noraset et al. (2017), a Recurrent Neural
Network (RNN) language model to learn to gen-
erate definitions for common English words us-
ing embeddings trained on Google News Cor-
pus. Over this base model, we leverage the
distributed word information via the embeddings
trained on domain specific Stack Overflow corpus.
We improve this model to additionally incorporate
domain-specific information such as co-occurring
entities and domain ontology in the definition gen-
eration process. Our model also uses an additional
loss function to reconstruct the entity word rep-
resentation from the generated sequence. Our best
model can generate definitions in software domain
with a BLEU score of 10.91, improving upon the
baseline by 2 points.

In summary, our contributions are as follows,
1. We propose a new dataset of entities in the
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software domain and their corresponding defini-
tions, for the definition generation task.

2. We provide ways to incorporate domain-
specific knowledge such as co-occurring entities
and ontology information into a language model
trained for the definition generation task.

3. We study the effectiveness of the model us-
ing the BLEU (Papineni et al., 2002) metric and
present the results and discussion about our re-
sults.

Section 4 of this paper presents the dataset. Sec-
tion 5 discusses the model in detail. In Section 6
and 7 we present the experimental details and re-
sults of our experiments. Section 8 provides an
analysis and discussion of the results and the gen-
erated definitions.

2 Related Work

Definition modeling: The closest work related
to ours is Noraset et al. (2017) who learn to gen-
erate definitions for general English words using a
RNN language model initialized with pre-trained
word embeddings. We adapt the method proposed
by them and use it in a domain-specific construct.
We aim to learn definitions of entities in the soft-
ware domain. Hill et al. (2015) learn to produce
distributed embeddings for words using their dic-
tionary definitions as a means to bridge the gap
between lexical and phrase semantics. Similarly,
Tissier et al. (2017) use lexical definitions to aug-
ment the Word2Vec algorithm by adding an objec-
tive of reconstructing the words in the definition.
In contrast, we focus solely on generating the def-
initions of entities. We add an objective of recon-
structing the embedding of the word from the gen-
erated sequence. Also, all the above work focus on
lexical definitions of general English words, while
we focus on closed domain software terms. Dhin-
gra et al. (2017) present a dataset of cloze-style
queries constructed from definitions of software
entities on Stack Overflow. In contrast to their
work, we focus on generating the entire definition
of entities.

RNN Language Models : We use RNN
based language models, conditioned on the term
to be defined and its ontological category, to gen-
erate definitions. Such neural language mod-
els have been shown to successfully work for
image-captioning tasks (Karpathy and Fei-Fei,
2015; Kiros et al., 2014), concept to text gener-
ation (Lebret et al., 2016; Mei et al., 2015), ma-

chine translation (Luong et al., 2014; Bahdanau
et al., 2014) and conversations and dialog systems
(Shang et al., 2015; Wen et al., 2015).

Reconstruction Loss Framework : We also
build an explicit loss framework to reconstruct the
term by reducing the cosine distance between the
embedding of the term and the embedding of the
reconstructed term. We adapt this approach from
Hill et al. (2015) who apply it to learn word rep-
resentations using dictionaries. Inan et al. (2016)
propose a loss framework for language modeling
to minimize the distribution distance between the
prediction distribution and the true data distribu-
tion. Though we use a different loss framework,
we use a similar type of parameter tying in our
implementation.

3 Definitions

Dictionary definitions represent a large source of
our knowledge of meaning of words (Amsler,
1980). Definitions are composed of a ‘genus’
phrase and a ‘differentia’ phrase (Amsler, 1980).
The ‘genus’ phrase identifies the general category
of the defined word. This helps derive an ‘Is A’
relationship between the general category and the
word being defined. The ‘differentia’ phrase dis-
tinguishes this instance of the general category
from other instances. Definitions can have further
set of differentia to imply more granular explana-
tion. For example, Merriam-Webster 2 defines the
word ‘house’ as ‘a building that serves as living
quarters for one or a few families’. Here the phrase
‘a building’ is the genus that denotes that a house
is a building. The phrases ‘that serves as living
quarters’ and ‘for one or a few families’ are dif-
ferentia phrases which help identify house from
other buildings. Our model of definitions adapts
this interpretation. From a modeling perspective,
we hypothesize that using language models would
learn the template structure of definitions, and in-
corporating entity-entity co-occurrence as well as
ontological category information would help us fill
the specific differentia and genus concepts to the
template structure.

4 Dataset

In SO, users can associate a question with a ‘tag’,
such as ‘Java’ or ‘machine learning’, to help other
users find and answer it. These tags are nearly al-
ways names of domain specific entities. Each tag

2https://www.merriam-webster.com/dictionary/house
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Software Tag Definition Category

hmac in cryptography hmac hash-based message au-
thentication code is a specific construction
for calculating a message authentication code
mac involving a cryptographic hash-function in
combination with a secret-key

authentication

persistence persistence in computer programming refers to
the capability of saving data outside the appli-
cation memory .

database

ndjango ndjango is a port of the popular django
template-engine to .net .

framework

intellisense intellisense is microsoft s implementation of
automatic code-completion best known for its
use in the microsoft visual-studio integrated
development-environment .

compiler

Table 1: Sample definitions from the dataset

train val test

# samples 22334 1240 1240
# avg definition length 16.54 16.53 16.69

Table 2: Dataset Statistics

has a definition on SO. For the definitions, we cre-
ated a dataset of 25K software entities (tags from
SO) and their definitions on SO. The data collec-
tion and pre-processing for the task is similar to
cloze-style software questions collected in Dhin-
gra et al. (2017). The definitions dataset was built
from the definitional “excerpt” entry for each tag
(entity) on Stack Overflow. For example, the ex-
cerpt for the “java” tag is, “Java is a general pur-
pose object-oriented programming language de-
signed to be used in conjunction with the Java Vir-
tual Machine (JVM).” The dataset statistics can be
seen in Table 2. This dataset is used for train-
ing our definition generation models. Examples
of definitions in the dataset are shown in Table 1.

We use a background corpus of top 50 threads 3

tagged with every entity on Stack Overflow (Dhin-
gra et al., 2017) and attempt to learn definitions of
entities from this data. We use this background
corpus for training word embeddings and to give
us tag co-occurrences. In SO, a particular ques-
tion can have multiple tags associated with it,
which we call ‘co-occurring tags’. We extracted
the top 50 question posts for each tag, along with
any answer-post responses and metadata (tags, au-

3A question along with the answers provided by other
users is collectively called a thread. The threads are ranked
in terms of votes from the community.

thorship, comments) using Scrapy 4. From each
thread, we used all text that is not marked as code
and segmented them into sentences. Each sen-
tence is truncated to 2048 characters, lower-cased
and tokenized using a custom tokenizer compati-
ble with special characters in software terms (e.g.
.net, c++). The background corpus for our task
consists of 27 million sentences.

5 Model

5.1 Definition generation as language
modeling

We model the task of generating definitions as
a language modeling task. The architecture of
the model is shown in Figure 2. We model
the problem of generating a definition D =
w1, w2...wT given the entity w∗, where the prob-
ability of generating a token p(wt) is given by
P (wt|w1..wt−1, w∗) and the probability of gener-
ating the entire definition is given by:

P (D|w∗) =
T∏

t=1

P (wt|w1..wt−1, w∗)

We model this using LSTM language models
(Mikolov et al., 2010; Hochreiter and Schmidhu-
ber, 1997). An LSTM unit is composed of three
multiplicative gates which control the proportions
of information to forget and to pass on to the next
time step. During training, the input to the LSTM
are the word embeddings of the gold definition se-
quence. At test time, the input is the embedding of
the input entity and previously generated words.

4https://scrapy.py
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Figure 2: Model Architecture

We outline the functions in our model below :

x′t = E[wt]

ht = LSTM(x′t, ht−1)

PLM (wt|w1...wt−1, w∗) = sm(Wk ∗ ht) (1)

where E is an embedding matrix, initialized
with pre-trained embeddings and Wk is a weight
matrix. sm is the softmax function.

Adapting the baselines from Noraset et al.
(2017), we explore two variants of providing the
model with the input entity :

Seed Model: The input entity is given as the
first input token to the RNN as a seed. The loss
of predicting the start token, < sos >, given the
word is not taken into account.

Concat Model: Along with being given as a
seed to the model, the input entity is concatenated
with the input token of the RNN at every timestep.
We use these as baselines for our approach as well.

5.2 Incorporating Entity-Entity
Co-occurrence

We propose an extended model to incorporate
entity-entity association information from the tags
to generate the final definition. We define a co-
occurrence based probability measure for every

entity, we as :

PEE(we|w∗) =
{

c(we,w∗)
c(w∗) + ε, if we is an entity

ε, otherwise

where c is count function and we is defined as
any software entity which is not the entity being
defined. c(we, w

∗) is the count of sentences for
which entities we and w∗ were tagged together.
This probability is smoothed for non-entity words
with an ε value. We use ε = 0.0001 for all cases.
To incorporate this probability into our model, we
interpolate it with the language model probability
defined in Equation 1 as follows :

P (wt|w1..wt−1, w∗) = λt ∗ PEE(wt|w∗)
+(1− λt) ∗ PLM (wt|w1..wt−1, w∗)

where λt is a learned parameter, given as follows :

zt = tanh(Wp ∗ ht−1 +Wq ∗ E(w∗) + b)

λt = σ(Wr ∗ zt)

where Wp, Wq, Wr, b are learn-able parameters.
The λt parameter learns to switch between the
contextual language model probability when gen-
erating tokens forming the structure of the defini-
tion and the entity-entity probability when gener-
ating tokens which are themselves entities.
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5.3 Modeling Ontological Category
Information

We use a pre-defined set of 86 categories which are
the ontological categories for the software domain
proposed as part of the GNAT 5 project. For each
category, we compute a distributed representation
vector by taking the mean of every dimension of
the constituent tokens in the category name. We
term this the average category embedding. We
map every entity to its closest category in embed-
ding space using cosine distance. Examples of cat-
egory mappings to the terms are shown in Table 1.

We explore two ways of using the average cate-
gory embedding :
1) Adding the category embedding vector (ACE)
to the word vector of the entity to extract a new
vector which we hope is closer to words defin-
ing the entity. This is inspired from the idea of
additive compositionality of vectors as shown in
(Mikolov et al., 2013b).

x′1 = E[w∗] + E′[c(w∗)]

2) Concatenating the category embedding vec-
tor (CCE) with the input embeddings at every
timestep of the LSTM.

x′t = E[wt];E
′[c(w∗)]

where E is the word embedding matrix, E′ is the
category embedding matrix and c(x) is a function
that maps every entity to its corresponding onto-
logical category.

5.4 Loss Augmentation

To enforce the model to condition on the entity and
generate definitions, we propose to augment the
standard cross entropy loss with a loss framework
that focuses on reconstructing the entity from the
generated sequence. This additionally constrains
the model to generate tokens close to the tokens
in the definition. We introduce a second LSTM
model which reverse encodes the output text se-
quence of the forward mode and projects the en-
coded sequence into an embedding space of the
same dimension as the term being defined.

h′t = LSTM(y′1....y
′
T ) (2)

e∗wr
=Wb ∗ h′t

5http://curtis.ml.cmu.edu/gnat/software/

where y′1...y′T is the generated definition sequence
and Wb is a weight matrix.

We add an additional objective to the model
to minimize the cosine distance between the pro-
jected vector and the embedding of the input term:

losscosine(w
∗, e∗wr

) = 1− cos(E(w∗), e∗wr
)

where, w∗ is the input term, and e∗wr
is the recon-

structed term vector.
The resulting network can be trained end-to-

end to minimize the cross entropy loss between
the output and target sequence L(y, y′) in addi-
tion to the reconstruction loss between the input
and reconstructed input vector L(w∗, e∗wr

). Since
the decode step is a greedy decode step, gradi-
ents cannot propagate through it. To solve this, we
share the parameters between the two LSTM net-
works and forward and reconstruction linear layers
(Chisholm et al., 2017). To generate definitions at
test time, the backward network does not need to
be evaluated.

6 Experimental Setup

To train the model, we use the 25k definitions
dataset built as described in Section 4. We split
the data randomly into 90:5:5 train, test and val-
idation sets as shown in Table 2. The words be-
ing defined are mutually exclusive across the three
sets, and thus our experiments evaluate how well
the models generalize to new words.

All of the models utilize the same set of fixed
word embeddings from two different corpora. The
first set of vectors are trained entirely on the Stack
Overflow background corpus and the other set are
pre-trained open domain word embeddings7. Both
these embeddings are concatenated and we use
this as the representation for each word. For the
embeddings trained on Stack Overflow corpus, we
use the Word2Vec (Mikolov et al., 2013a) imple-
mentation of Gensim8 toolkit. In the corpus, we
prepend to every sentence in a question-answer
pair, every tag it is associated with. We further
eliminated stopwords from the corpus and set a
larger context window size of 10.

For the model, we use a 2 layer LSTM with 500
hidden unit size for both the forward and recon-
struction layers of the models. The size of the em-

6Our implementation of baselines from (Noraset et al.,
2017) using greedy decode approach

7https://code.google.com/archive/p/word2vec/
8https://radimrehurek.com/gensim/models/word2vec.html
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Model BLEU

Seed + SO Emb* 8.90
Seed + SO Emb + Eng Emb** 9.01
Concat Model 9.44

Concat Model + Entity-Entity Model 9.28
Concat Model + Category Model (CCE) 10.19
Concat Model + Category Model (ACE) 10.86
Concat Model + Category Model (ACE) + Cosine Loss Model 10.91

Table 3: Experimental results for our different models. *SO Emb = Embeddings learned on Stack Overflow. **Eng
Emb = Embeddings learned on general open domain English dataset

Model BLEU

Seed (Noraset et al., 2017) 26.69
Concat (Noraset et al., 2017) 28.44

Seed (English words) 6 32.79
Concat (English words) 36.37

Table 4: Experimental results of our baselines on com-
mon English words dataset (Noraset et al., 2017)

bedding layer is set to 300 dimension. For train-
ing, we minimize the cross-entropy and recon-
struction loss using Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 0.001 and gradi-
ent clip of 5. We evaluate the task using BLEU
(Papineni et al., 2002).

7 Results

The results for the different models are summa-
rized in Table 4. The first section are results of
the baselines as reported by Noraset et al. (2017).
The second section shows results of our imple-
mentation of the baselines on common English
word definitions dataset. We report BLEU scores
on definitions generated using a greedy approach.
The remaining two sections are results from our
proposed models on software entity definitions
dataset.

In comparison, on the software entity defini-
tions dataset, the same baselines do not gener-
ate any reasonable definitions, giving low BLEU
scores. This demonstrates that using a language-
model with embeddings trained on general pur-
pose large-scale, domain-specific corpora is inad-
equate when the definitions are longer and more
domain-specific.

The Seed model, instantiated with both the
Stack Overflow embeddings as well as the open
domain Google News English embeddings, shows
better performance than the model that only uses
Stack Overflow embeddings. For all further mod-

els, we adopt the concatenated Stack Overflow
embeddings and open domain English embed-
dings. We see from the table, that the Concat
Model performs better than the Seed Model. We
choose the best model among Seed and Concat
and perform additional experiments to evaluate the
additional proposed changes to the model.

Surprisingly, adding the entity-entity relation-
ships to the Concat Model does not provide any
gains. Although, providing the category informa-
tion from the ontology by adding it to the input
word vector (ACE) provides us a higher BLEU
score of 10.86.

Further, adding the reconstruction loss objec-
tive to the ACE model provides us small addi-
tional gains and achieves a 10.91 BLEU score. Al-
though we see incremental improvements on the
task, overall our results show that language models
are inadequate to model definitions, as empirically
shown by the low overall BLEU scores.

8 Discussion

Noraset et al. (2017) showed that RNN language
models can be used to learn to generate definitions
for common English words. On adapting their
techniques for closed domain software entities, we
find that the language models generate definitions
which follow the template of definitions, but have
incorrect terms in the genus and differentia com-
ponents.

Table 5 shows some reference definitions and
definitions generated from our best model. In the
generated definition of “virtual-pc”, we observe
that the model generates a definition which has
a distinguishable genus and differentia, but the
genus is not the right ontological category for the
entity. The differentia is incorrect as well. Simi-
larly in the definition of “esper”, we observe that
the model generates ‘open source software’ as the
genus, while the reference genus is ‘open source
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Entity Reference Generated
windows-server-2000 microsoft windows-2000 server

is an operating-system for use on
server computers.

microsoft s UNK is a free open-
source content-management-
system ..

esper UNK is a lightweight open-
source library for cep complex-
event-processing and esp event
stream processing applications.

UNK is a open-source software
for the java programming lan-
guage.

virtual-pc virtual-pc is a virtualization pro-
gram that simulates a hardware
environment using software.

the UNK is a commercial
operating-system for the win-
dows operating-system.

Table 5: Reference and generated sentences

library’ which shows that the model is able to
learn the right genus for the entity but generates
an incorrect differentia component. We see that
the reference differentia is quite long with many
non-entity tokens which would be hard to model.
This explains our results of obtaining lower BLEU
scores using the entity-entity co-occurrence mod-
els as most differentia terms consist of many non-
entity tokens. We also observed that the genus
and differentia components for technical defini-
tions have longer and very specific phrases com-
pared to common English words. These phrases
also tend to be very sparse in the vocabulary, mak-
ing the task even more challenging.

The general English definitions dataset pre-
sented by Noraset et al. (2017) has 20K most com-
mon English words and their definitions. The En-
glish words for which the definitions are gener-
ated, also tend to appear in the corpus very fre-
quently, thereby having better distributed repre-
sentations. We presume that the higher BLEU
scores for common English words are reflective
of that. In contrast, entities in closed domains are
much less frequent in background corpora increas-
ing the difficulty of the task. Also, the average
definition length in common English words defini-
tion corpus is 6.6 while the average length of def-
initions for software entities is 16.54, which adds
additional complexity in generating these defini-
tions. We hypothesize that due to low expressive-
ness of word representations of entities in compar-
isons to common English words, language mod-
els are unable to learn relations between entities
and their genus and differentia components. The
addition of the ontological category information
alleviates the problem by a small margin, but is
still insufficient for the model to learn to generate

close-to-perfect definitions.

Through our observations, we find that RNN
language models initialized with distributed word
representations of entities is inadequate to gener-
ate definitions from scratch. We envision that fu-
ture models should be able to learn better associa-
tions between entities and its genus and differentia
phrases. Also, the model should ensure it has ad-
equate long term memory to generate definitions
that are longer in length.

9 Conclusion and Future Work

In this paper, we present our initial work in the
task of definition generation for software enti-
ties or terms. We introduced different approaches
for the task, where we explore ways of incorpo-
rating ontology information and entity-entity co-
occurrence relationships. We also present the re-
sults and analysis for the same. Given the com-
plexity of the task, we achieve around 2 BLEU im-
provements over baselines. We demonstrate that
the current models are inadequate to automatically
learn to generate complex definitions for entities.

As an immediate next step, we would like to ap-
proach the task from an encoder-decoder perspec-
tive by collecting external data about the word be-
ing defined and using it to guide the generation
process. Our hypothesis is that providing exter-
nal information about an entity and it’s usage in
various contexts, would help us better identify the
genus and differentia for the entity. Currently, we
give only the immediate parent category as an in-
put from the ontology, we would also like to ex-
plore how to leverage on the entire ontology struc-
ture for definition generation.
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Abstract

A common need of NLP applications is to ex-
tract structured data from text corpora in order
to perform analytics or trigger an appropriate
action. The ontology defining the structure is
typically application dependent and in many
cases it is not known a priori. We describe the
FRAMEIT System that provides a workflow for
(1) quickly discovering an ontology to model
a text corpus and (2) learning an SRL model
that extracts the instances of the ontology from
sentences in the corpus. FRAMEIT exploits
data that is obtained in the ontology discov-
ery phase as weak supervision data to boot-
strap the SRL model and then enables the user
to refine the model with active learning. We
present empirical results and qualitative anal-
ysis of the performance of FRAMEIT on three
corpora of noisy user-generated text.

1 Introduction
A common task of natural language processing is
to map text into structured data. The ontology of
the structured data is application dependent and
often represented as a set of frames with slots.
Once the data is in structured form, several opera-
tions are enabled, such as performing fine-grained
querying and analytics on a text corpus, or trig-
gering responses to user utterances based on their
semantics in conversational interfaces.

Existing work on mapping text to structured
representations falls into two main categories: se-
mantic role labeling (SRL) and event extraction.
Research on role labeling maps text into frames of
existing ontologies such as FrameNet (Baker et al.,
1998) and PropBank (Palmer et al., 2005). How-
ever, these linguistic frame systems were designed
to capture aspects of language but not specific se-
mantics of applications. Research on event ex-
traction tries to assemble information about events

Input 
corpora

FrameIt

Application 
frames

Labeled 
training
dataFrameNet

PropBank

WordNet

ReVerb

Exploratory 
operators

Training 
of SRLs

SRLs for 
application 
frames

(a) (b)

Figure 1: FRAMEIT supports the end-to-end extraction pro-
cess beginning from discovery of application frames in a text
corpus to training extractors for those frames. In contrast,
previous research considers only part (b) in the figure where
the frames are known and given in advance.

or sequences of events from multiple sentences in
a document (e.g., Ahn (2006); Ji and Grishman
(2008); Li et al. (2013), to name a few). In both
bodies of work, much of the work concerns de-
veloping machine learning models for existing on-
tologies and collections of training data (He et al.,
2017; Feng et al., 2016).

In this paper we consider an extraction setting in
which the user is given a corpus of user-generated
text and her goal is to discover application specific
frames that will capture most of the content of the
text and then train extractors for those frames. Ex-
amples of such corpora include customer reviews,
free text responses to survey questions, and short
personal journal entries. We describe FRAMEIT,
an extraction system to support the entire process
from ontology discovery to SRL training. As de-
picted in Figure 1, FRAMEIT differs from previous
extraction work in that (1) the frames we seek do
not exist in previous ontologies, and (2) the frames
are not known to the user in advance.

As an example, a user of FRAMEIT may browse
a corpus of descriptions of happy moments (Asai
et al., 2018) with the goal of recognizing com-
monly occurring moments and developing extrac-
tors for these happy moments. These extractors,
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in turn, can support a smart journal that responds
intelligently or asks a useful follow-up question
when such moments are entered. Upon browsing,
the user notes that having meals with loved ones
is a common happy experience. The user would
then define a MEAL frame with attributes PAR-
TICIPANTS, MEAL, and LOCATION, and then she
would train a SRL (semantic role labeler) to recog-
nize sentences that can be mapped into this frame.
Upon further browsing, the user may conclude that
many moments also mention which food was con-
sumed during the meal, and decide to add another
slot to the frame. To exemplify, Table 1 contrasts
a frame defined in FRAMEIT with the frames trig-
gered by FrameNet, PropBank and Reverb.

The contributions of this paper are: We de-
scribe the FRAMEIT System (Section 3) and how
it seamlessly facilitates the exploration of the cor-
pus, identifying and defining frames, and finally
training the SRL models using a combination of
weak supervision and active learning. We then
evaluate FRAMEIT from two perspectives (Sec-
tion 4). First, we show a result of independent
interest, which is that there is a significant gap
between application frames and linguistic frames
of FrameNet, therefore justifying the design of
FRAMEIT. Second, we demonstrate the effec-
tiveness of FRAMEIT in defining frames for three
datasets. We show that with modest effort we can
create frames that cover over 70% of the sentences
in two datasets and 60% on a third and achieve F1
scores near .70 on all three.

2 Related work
Work on information extraction attempts to find
instances of certain predicates (e.g., CEO or
MARRIEDTO), or in the case of open information
extraction systems, the goal is to extract instances
of any predicate. However, with the exception of
recent work on extracting complex relations from
text (Ernst et al., 2018), information extraction has
focused on extracting binary relations. FRAMEIT

is also similar in spirit to Ratner et al. (2017),
in that it is a system for quickly creating annota-
tions for a dataset. However, rather than on mod-
eling labeling function interactions, FRAMEIT is
more focused on the domain where the structure
is not known a priori. The frames we extract with
FRAMEIT also target more complex structures that
can be viewed as sets of triplets.

The SRL component in FRAMEIT is reminis-
cent of systems for recognizing one of several in-

tents from a user’s utterance and extracting the
slot values of these intents (Liu and Lane, 2016;
Mesnil et al., 2015; Adel et al., 2016) (TAC KBP
focuses on the latter (Roth et al., 2013; Angeli
et al., 2014; Malon et al., 2012)). These slot-filling
systems tend to be in very restricted domains in
which the domain and the slots are known in ad-
vance. Their main goal is to extract enough values
from the utterance in order to query an underly-
ing database. In contrast, in FRAMEIT we do not
know the frames in advance and an utterance may
even be relevant to several frames.

There has been quite a bit of work on seman-
tic role labeling. Unlike SRLs that map text to
logical forms (Wang et al., 2015; Herzig and Be-
rant, 2018) or focus primarily on specific linguis-
tic structures such as predicates (He et al., 2017),
FRAMEIT’s SRL (like Collobert et al. (2011);
Gangemi et al. (2017)) trains a neural semantic
parser directly from labeled text data and maps the
output to application frames that are defined by the
user. Gangemi et al. (2017), like many other SRLs,
is not domain-specific. Furthermore, FRAMEIT’s
SRL can be extended to leverage features of other
SRLs such as extracted sets of named entities and
locations. FRAMEIT’s SRL falls into the “shallow
semantic analysis” category mentioned by Abend
and Rappoport (2017). It maps sentences to frame
structures. In terms of Frame formalisms, our
frames are consistent with the notion of semantic
frames defined by Fillmore et al. (1982). However,
instead of requiring the structure to be defined be-
fore the mapping is learned, FRAMEIT defines the
structure simultaneously while learning the map-
ping.

3 The FRAMEIT System
This section describes the main features of
FRAMEIT and the workflow it supports.

Problem definition: Given a text corpus, the goal
of FRAMEIT is to enable a user to discover and
define a set of frames that capture the contents of
the text corpus and to train a SRL for each frame.

A frame is a representation of structured data.
Formally, a frame is defined by its name and a
set of slots (a.k.a. attributes). Slots capture spans
of the text. Some attributes of a frame may have
multiple values (e.g., participants in a meal). An
instance of a frame may have missing values for
some slots in case they are not mentioned in the
text or could not be extracted reliably.

FRAMEIT is designed for the scenario in which
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Sentence: I bought my mother a expensive phone for
her birthday.

FrameIt Frame : Gifts
Gift: phone, Giver: I,
Receiver: my mother, Occasion: birthday

FrameNet Frame: Commerce buy
Buyer: I, Goods: my mother, text: bought

FrameNet Frame: Contacting
text: phone

FrameNet Frame: Expensiveness
Goods: phone, text: expensive

FrameNet Frame: Kinship
Alter: mother, Ego: my, text: mother

FrameNet Frame: Source of getting
text: birthday

PropBank Frame: bought
A0: I, A1: a expensive phone, A2: my mother
AM-TMP: for her birthday, V: bought

ReVerb Relation: buy
arg1: I, rel: buy , arg2: my mother

Table 1: Frames from FrameIt, FrameNet, PropBank and
ReVerb for one happy moment from HAPPYDB.

Listening to a podcast I love made me happy today.
My daughter offered to make dinner with me.
My son showed me a picture he drew!
A couple days ago I went to get ice cream, and I was
happy because I haven’t had ice cream in a long time.

Table 2: Examples of happy moments from HappyDB.

the user may be knowledgeable about the domain
of the corpus but not about its content. For exam-
ple, the corpus may be a set of reviews of a prod-
uct, but the user will not know which aspects of the
product will be mentioned. Therefore, as shown in
Figure 1(a), FRAMEIT’s exploration support will
help the user decide which frames are worth defin-
ing and what their slots should be. The goal of
using FRAMEIT is not necessarily to capture the
entire corpus with frames, as some of the contents
may appear too infrequently to justify the effort or
may be too difficult to extract or simply not suffi-
ciently important. Note that the frames defined in
FRAMEIT are designed for a particular application
(in the same way a database schema is designed),
and are different than frames in systems such as
FrameNet or PropBank that are based on linguis-
tic constructs. Section 4.1 goes into the details of
comparing these two kinds of frames.

Running example: We use the HAPPYDB cor-
pus (Asai et al., 2018) throughout the paper to il-
lustrate the motivation for FRAMEIT and its con-
cepts (see Table 2). HAPPYDB is a data set of
100K replies to the question: describe something
that made you happy in the last 24 hours (or 3
months) collected from Mechanical Turk. Sup-
pose we wish to build an application in which

users record their significant experiences. If we
could extract the essence of each experience into a
structured representation, such an application can
provide the user several benefits such as: (1) a
dashboard that enables them to reflect on their ex-
periences, (2) a relevant follow up question when
they record an experience, or (3) provide specific
advice, such as an activity that is similar to one
that made them happy in the past.

Most happy experiences tend to fall into recog-
nizable categories (Lyubomirsky, 2008). The goal
of applying FRAMEIT to HAPPYDB is to discover
these categories of activities, and to train extrac-
tors that recognize them in the multitude of lin-
guistic variations in which they are expressed in
the corpus and beyond.

System workflow: Working with FRAMEIT in-
volves two phases that can be repeated: exploring
the corpus to identify frames that capture the data
to be extracted (Figure 1(a)), and training the SRL
for the defined frames (Figure 1(b)). At any given
point, the user may decide to resume exploration
for a new frame, to refine an existing frame, or to
improve the performance of the SRL by providing
it better training data.

FRAMEIT is developed in Python and currently
supports the workflow in the Jupyter notebook en-
vironment. We now describe the two phases. In
our discussion we refer to the items of the corpus
as sentences.

3.1 Exploring the corpus
FRAMEIT helps a user systematically explore a
corpus, effectively discovering and defining a set
of frames while simultaneously building training
datasets for these frames. To motivate FRAMEIT’s
exploration features, it is important to mention the
variety of goals it tries to support. These steps are
common in ontology building. There are many
parallels between these basic steps and those de-
scribed in Noy et al. (2001).
(1) Discovery: find common patterns in the data
that should be captured with frames and decide
which slots these frames should have. For exam-
ple, in HAPPYDB we might find that dining with
loved ones is a common activity frequently men-
tioned in the corpus.
(2) Determining frame granularity: for exam-
ple, instead of a frame modeling having meals
with family members, we may consider a frame
modeling having any social interaction with fam-
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ily, or a more specific frame such as having a hol-
iday meal with family.
(3) Detecting common para-phrasings: explor-
ing the corpus will ultimately result in creating
training examples for the SRL, and therefore we
should capture common para-phrasings of the con-
cept that the frame is supposed to capture. For
example, some sentences may mention having a
meal, but others might phrase it as making a meal,
or cooking a meal. Seeing different para-phrases
also informs the decision about frame granularity.
(4) Creating slot dictionaries: The FRAMEIT

SRL uses dictionaries of values for slots (e.g.,
names of meals, relatives). These dictionaries
need not be perfect but it is important to bootstrap
them with a good set of seeds.

Exploration features: FRAMEIT supports the
discovery goal with three simple operations: (1)
find a random sentence in the corpus, (2) find all
the sentences that include a particular keyword
or lemma (or set of keywords/lemmas), and (3)
find the most commonly occurring structures (e.g.,
lemmas, or hypernyms, or linguistic frames) in a
set of sentences.

For (3), ranking features of a set of sentences by
raw counts often returns many generic features (ie.
the frame and hypernym equivalent of stopwords).
Instead, we sort the common structures by the rank
score defined in Equation 1 to weigh each struc-
ture by its specificity to a set of sentences. Here,
x denotes a structure and c(x) and C(x) are the
counts of the structure in a subset of sentences and
in the corpus, respectively. N and n are the num-
ber of sentences in the corpus and in the subset,
respectively.

rank score =
c(x)2

n
∗ N

C(x)
(1)

The next two features support the goals of gran-
ularity and para-phrasing:
Nearby sentences: find the n-nearest sentences
to a given sentence. This feature finds small vari-
ations on a given sentence and could expose the
need for additional slots in the frame definition
or additional instances of slot values. FRAMEIT

computes sentence similarity using the cosine sim-
ilarity of the sentence embeddings of each sen-
tence. Different sentence embeddings can be used,
but FRAMEIT uses the mean of the word embed-
dings as the default.
Map to existing frame systems: Here FRAMEIT

leverages other semantic tools to find different

phrases that map to the same semantic category.
For example, finding all the FrameNet or Prop-
Bank frames evoked by a given sentence, or the
frames that are frequently evoked by a set of sen-
tences.

FRAMEIT supports the dictionary creation goal
using WordNet (Fellbaum, 1998). Specifically,
given a word, FRAMEIT can find all the words in
the corpus that are WordNet-siblings (or cousins,
etc.) of the word. For example, “dinner”,
“lunch” and “breakfast” all share the hypernym
“meal”. This set can be expanded by including
all other terms in the corpus for which “meal” is
a hypernym, including infrequent terms such as
“potluck”, “luncheon” and “seder”.

Example 3.1 A user can easily discover that
“dinner” is mentioned often in HAPPYDB by
looking at the most frequent lemmas in the cor-
pus. Looking at the sentences most similar to
those containing “dinner”, the user finds that din-
ing experiences are often described with a set of
attributes including the specific food, an adjec-
tive (e.g., delicious), when the meal took place and
other participants.

The user can also explore the most common
FrameNet frames in the set of happy moments
containing dinner. For example, we find the
“food” FrameNet frame gets evoked on all food
names and the social event frame gets triggered
on gatherings such as dinner and parties. The
latter FrameNet frame may suggest additional
slots (e.g., occasion) to the definition of the din-
ing frame. Furthermore, one can also exploit
FrameNet frames to determine the set of sentences
that are relevant as training data. For example,
all sentences that evoked the food or social event
frame may be included as part of the training data
for the dining frame.

To support interactive exploration FRAMEIT

pre-processes the corpus by creating an index on
the words and lemmas in the corpus. Addition-
ally, FRAMEIT runs Sempahor (Das et al., 2014)
to trigger the frames in FrameNet and runs an SRL
described by He et al. (2017) to map each sentence
to PropBank frames.

3.1.1 Defining Frames
After exploration, the user specifies a frame by
defining its name and slots. For example, the user
can create a frame named MEALS and add slots
for PARTICIPANT, MEAL and FOOD. The ranges
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of the slots can be defined by appropriate dictio-
naries (e.g., a list of meals). Alternatively, we can
attach a recognizer, such as an off-the-shelf pre-
trained text extractor, for the range of an attribute.

In addition to typing of slots, the user can spec-
ify a hierarchy on frames and on slot domains and
enjoy the benefits of inheritance. For example, the
user can specify that MEALSWITHFAMILY is a
subclass of MEALS and that slot MEAL has a su-
perset of the values of the slot HOLIDAYMEAL.

3.2 Training the SRL

The end goal of using FRAMEIT is to define an on-
tology and obtain an SRL model that can map text
to those defined frames. While the user is explor-
ing the corpus, they are simultaneously generating
a training dataset for their SRL. FRAMEIT sup-
ports a two-phase approach to training the SRL.
In the first phase, the user provides a set of pos-
sibly noisy training data as weak supervision to
bootstrap the model. The training data is created
as a natural side effect of exploring the corpus. In
the second phase, FRAMEIT uses active learning
to improve the SRL model.

3.2.1 Bootstrapping with weak supervision
Weak supervision refers to a setting where a model
is trained using “noisy” labels or labels from a dif-
ferent context (Mintz et al., 2009; Wu and Weld,
2010; Fader et al., 2011; Sa et al., 2016; Ratner
et al., 2016, 2017; Craven et al., 1999; Androut-
sopoulos and Malakasiotis, 2010). In FRAMEIT,
the “different context” is external data and auto-
matic annotations provided by ontologies such as
FrameNet and WordNet. Specifically, as the user
explores the corpus, she uses the FRAMEIT opera-
tors to explore sets of sentences that describe con-
cepts that should be classified under a particular
frame. These sets can then readily be used as seed
sets for training.

As a natural byproduct of the exploration, these
sets of sentences contain different linguistic ex-
pressions of the data that should be captured by
the frame. In our example, the user can create a
set of sentences that have a “meal” term, have trig-
gered the FrameNet “Food” frame and that men-
tion a person. This set will be the set of examples
for the MEALS frame. After being given positive
training examples, FRAMEIT automatically sam-
ples the corpus for negative training data and splits
the training data into a training and validation set
to monitor overfitting.

Each frame has a binary classifier, which is im-
plemented with a 3-layer convolutional neural net-
work followed by two fully connected layers, sim-
ilar to the one described by Kim (2014). The input
is a dense matrix Dk×n where k is the number of
words in the sentence and n is the size of the word
embeddings. All convolutional filters match the
word embedding dimension. At inference time, a
sentence is input into the binary classifier of each
frame in parallel.

Once a sentence has been classified to contain
a given frame, we run a binary classifier for each
slot of the frame. As noted earlier, the user may
provide a dictionary or a recognizer for a slot, and
may constrain a slot to be a certain part of speech.

We distinguish between two types of models for
frame slots. The first type of model is context in-
dependent. The slot FOOD of the MEALS frame is
context independent, and therefore we use a linear
regression model that predicts if a word is a food
or not. Interestingly, this simple method for word
set expansion works surprisingly well. The second
kind is context dependent, which means that the
meaning of the word is dependent on the context
of the sentence. For example, whether a person is
the one providing a gift or receiving a gift is de-
pendent on the context of the sentence. For these
slots we embed the entire sentence using the same
architecture as we used for the frame classifier and
then concatenate the sentence embedding with the
word embedding of the candidate slot value. Fi-
nally, we apply a fully connected layer and output
the binary prediction. Empirically, we found that
simple models with correct regularization are suf-
ficient for the task of extracting most sentences in
a corpus that express a well defined frame, which
we show in Section 4.2 (SRL performance).

3.2.2 Model refinement with Active learning
FRAMEIT provides an active learning interface to
help the user debug the SRL model.

After distant supervision rules have been ap-
plied to generate a seed set and an initial SRL
model has been trained, the user has access to the
noisy labels created by the rules and the initial
SRL labels on the entire corpus. The model can
be improved by improving the training data, for
which there are two simple strategies: (1) adding
more data to the training set, (2) fixing incorrect
labels in the seed set. For (1) the seed set can be
expanded by including previously unlabeled ex-
amples that have high confidence positive labels
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from the initial SRL model. For (2), we can use
the confidence of the SRL model on training data
to find examples that may be false positives or
false negatives. In both cases, we have the user
label the sampled examples before updating the
training data. Another common technique in ac-
tive learning is uncertainty sampling (Lewis and
Gale, 1994). This strategy can be used in addition
to the ones above to find and label challenging ex-
amples and potentially improve the SRL model on
examples that are at the boundary.

The choice of strategy and number of labeled
examples is a parameter set by the user. Select-
ing one strategy and labeling k examples is one
iteration of active learning. The output of each it-
eration is a new training dataset with labels, which
augments the previous dataset according to the la-
bels provided by the user and which can be used to
retrain the SRL. Additionally, the user may choose
to update rules used to create the training data. For
example, a common error in the parser that we no-
ticed is that indirect objects are labeled as direct
objects. During the first iteration of active learn-
ing of the BOUGHT-OBJECT attribute of the BUY-
ING frame, we noticed many positive examples of
person names. By updating our rules to filter out
people entities, we were able to quickly increase
the precision of the model in only one iteration.

4 Experiments
Here, we show that application frames are qualita-
tively different from linguistically inspired frames
thereby justifying the fact that FRAMEIT extracts
them directly from data. We also experimentally
evaluate the different components of FRAMEIT.

4.1 Application vs. linguistic frames
We establish that the gap between existing frame
systems, such as FrameNet, PropBank, and Verb-
Net and FRAMEIT can be quite large as the for-
mer are meant to capture linguistic concepts while
FRAMEIT is meant to capture application spe-
cific concepts. For space considerations, we fo-
cus on the problem of classifying a sentence into a
FRAMEIT frame and not on extracting attributes.
We empirically show that the gap exists by show-
ing (1) that any set of sentences will map to a
huge number of unique linguistic frames, many
of which are not relevant for an application, (2)
naively using the most common linguistic frames
in a set of example sentences may be good for high
coverage but leads to lower precision and (3) in

Meal Promotion Buying
Frame Examples 11860 1677 3019

Frames triggered in other systems
FrameNet 595 378 474

FrameNet (Attr) 1957 1092 1397
PropBank 1646 512 750

ReVerb 2709 537 951
Per Sentence Stats Average

FrameNet 5.48 5.36 5.76
FrameNet (Attr) 12.10 12.05 13.45

PropBank 1.9 2.9 2.15
ReVerb 1.12 1.14 1.25

Table 3: The first row shows the number of sentences in
HAPPYDB extracted by FRAMEIT for three frames. The sec-
ond set of rows shows the number of frames in other systems
that are triggered by these sets of sentences. The last section
shows the average number of frames triggered per sentence.

some cases, FrameNet frames are not even useful
as features in a fully supervised classification task.

We consider the sets of sentences in HAPPYDB
that FRAMEIT classified into the MEALS, PRO-
MOTIONS and BUYING frames1. We denote these
sets of sentences by S1, S2, and S3 respectively.
Table 3 shows that S1, S2, and S3 triggered 595,
378, and 474 unique frames in FrameNet, respec-
tively, and the numbers for PropBank and Re-
verb are even higher. The mappings are produced
by the SRLs provided by (Das et al., 2014; He
et al., 2017; Fader et al., 2011) respectively. Fur-
thermore, they populated 10135, 1446, 2536 at-
tributes in these frames, respectively. These num-
bers suggest that even though the sets of sentences
of a particular FRAMEIT frame refer to the same
general concept, they tend to map to many di-
verse FrameNet frames. Hence, trying to define
a FRAMEIT frame in terms of other frames would
be tedious at best, even ignoring the need to be an
expert on the contents of other frame systems.

It could, of course, be the case that most of
the FrameNet frames are unimportant. Perhaps
a FRAMEIT frame can be expressed as the dis-
junction of a small number of FrameNet frames.
Specifically, for each k, 1 ≤ k ≤ 15, we con-
sidered the set Fi,k of most frequently triggered
frames in Si, and we computed the set of sen-
tences in HAPPYDB that would trigger any frame
in Fi,k, which we denote by Hi,k. Figure 2 shows
the precision and recall of Hi,k w.r.t. Si for the
MEAL frame. Even though very high recall can
be achieved, the precision quickly decreases be-
cause FrameNet frames are often very general.

1We obtain similar results for other frames although we
do not show them here.
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The same results were obtained for the other two
frames and for a broader set of propositional for-
mulas over FrameNet frames (including conjunc-
tions and negation), but we omit the details for
space considerations.

We also ask if the combination of a sentence’s
FrameNet frames (as opposed to words) is suffi-
cient to identify that it belongs to a FrameIt frame.
We test this hypothesis with a Logistic Regression
model developed as follows. We consider the sets
S1, S2 and S3 as the ground truth for the frames
mentioned above. While they are noisy, Table 6
shows that the model used to generate these sets
has reasonably high accuracy on a held out test
set. We represent each sentence by a binary vec-
tor, where each index maps to a FrameNet frame,
labeled as 1 if the frame is annotated on that sen-
tence. To limit the number of features used, we
only use those that appear in the ground truth pos-
itive examples (the FrameNet row in Table 3). We
fit a Logistic Regression model to the ground truth
data and an equal number of random samples from
the rest of the corpus. The goal of the classifier is
to predict the FRAMEIT frame from this represen-
tation. The F1 scores for each model are 0.722
for MEALS, 0.813 for BUYING and only 0.235 for
PROMOTION. As expected, FRAMEIT frames can
be modeled with FrameNet frames to the extent
that FrameNet contains relevant frames. In the
case of BUYING, it is nearly a one-to-one map-
ping. However, since PROMOTION is not repre-
sented unambiguously by any FrameNet frame, no
combination of FrameNet frames will sufficiently
represent this FRAMEIT frame.

The purpose of these explorations is to demon-
strate some of the challenges of finding good
frame representations and demonstrating that re-
lying solely on linguistic frames may not be suffi-
cient for some applications. In summary, we show
that with linguistic frames, we can either achieve
high recall but low precision or high precision or
low recall. It is tedious to use linguistic frames to
express FRAMEIT frames and they are also not a
good feature for representing FRAMEIT frames in
general.

4.2 Evaluating FRAMEIT components

We first show that FRAMEIT is a useful tool to
capture the salient aspects of different corpora.
We then show the performance of the SRL of
FRAMEIT and the additional improvements ob-
tained with active learning.

Figure 2: Disjunctions of FrameNet frames for expressing
the “Meal” frame.

We evaluate FRAMEIT on three datasets: (1)
HappyDB (Asai et al., 2018), described ear-
lier. (2) TripAdvisor hotel reviews (Wang et al.,
2011). We subsample the dataset down to 78K re-
views of hotels on the TripAdvisor website. We do
not use the associated ratings provided but do note
that they are a hint to what are some common as-
pects of the data (room, location, service, etc). (3)
ANES 2008 presidential election survey (DeBell
et al., 2010). A survey that concluded with a free
form response from which we extracted 2K sen-
tences of responses.

FRAMEIT is evaluated on 3 datasets, all com-
posed of short user-generated texts. FRAMEIT is
designed to work on short texts, where there are
no long term dependencies or overarching themes
or concepts. The 3 datasets vary in their domains
and the extent to which sentences in the corpora
map well to linguistic frames.
Corpus coverage Next, we show that with a mod-
est amount of work, the FRAMEIT workflow en-
ables us to capture the parts of the corpora that can
be extracted into meaningful frames. We define
the coverage of a set of frames as the percentage
of sentences in the corpus that trigger at least one
frame. Note that coverage is not recall because
there is no ground truth of frames for each sen-
tence. We report this metric as an estimate of how
complete our ontology is with respect to the cor-
pus. For each dataset, we create frames until we
can no longer define a new meaningful application
frame that would cover at least 1% of the unframed
sentences in the corpus. To find new frames, we
consider the most common FrameNet and Prop-
bank frames and Reverb extractions among the un-
framed sentences to see if there are any good can-
didates for FRAMEIT frames.

Our results are shown in Table 4. For HAP-
PYDB and ANES2008 we reach around 70% cov-
erage while TripAdvisor we only get to 62% cov-
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HappyDB TripAdvisor ANES2008
# frames 19 13 12
Coverage 70% 62% 71%

F1 0.766 0.796 .742
Prec./Rec. 0.72/0.82 0.76/0.84 0.65/0.86

Table 4: Percentage of sentences covered by frames on the
three datasets. Each created frame covers at least 1% of the
corpus. F1 score is computed on a hold out set of 100 exam-
ples. The scores are averaged over all the frames defined.

erage because we split multi-sentence reviews into
single sentences, leaving some sentences mean-
ingless without context. We also report F1 scores
for the SRL on a holdout set of 100 sentences
that are manually labeled based on the created
frames. The precision measures the percentage of
sentences that trigger the correct frame and the re-
call is the percentage of examples of each frame
that are correctly classified by the SRL. All met-
rics are averaged over all frames weighted by how
often the frame appears. For example, if one sen-
tences is labeled with 3 frames but our SRL emits
2 frames, one of which is incorrect, this will result
in a precision of .5 and recall of .33.
SRL performance This section evaluates
FRAMEIT’s SRL. For the purpose of evaluation,
we manually labeled 100 examples for each frame
(half positive and half negative), omit these exam-
ples from the training data and use those examples
as the test set. Note that these 100 examples are
not the same as those used in for Corpus coverage
above. We choose eight frames and six attributes
for which to create ground truth labeled data for
evaluation. In this section, we present F1 scores to
demonstrate empirically that FRAMEIT can learn
a high accuracy model that does not overfit the la-
beled data. Generally, the performance of the SRL
is highly dependent on the quality of weak super-
vision rules. All the frames evaluated in this sec-
tion use simple rules similar to those in Table 5.

The left side of Table 6 reports the F1 scores for
identifying the correct frame and the right reports
the results for extracting the attributes. We note
that frames vary quite a bit in their scope. For

Frame Rules
Meals induces FrameNet frame “Food” OR contains a

word with the hypernym “meal”
Promo-
tion

(contains lemma “promotion” OR “promote”)
OR ((contains lemma “raise” OR “bonus”)
AND (mentions “job” OR “work” OR “boss”))

Buying contains the lemma “buy”

Table 5: The weak supervision rules used to find high preci-
sion examples for each FRAMEIT frame.

example, the MEALS frame represents any sen-
tence of a person having any kind of meal, which
is very broad. Alternatively, the SEEING SOME-
ONE frame is constrained to seeing or spending
time with another person as opposed to a movie
or event. Furthermore, some frames are closer
to linguistic frames (e.g., BUYING is similar to
a FrameNet frame but also includes purchase and
get). Conversely, Exercise is an application frame
that includes all activities that might be classified
as exercise including going to a gym, running,
playing basketball, working out, and has no coun-
terpart in FrameNet.

For the attributes, recall that FRAMEIT pro-
vides two types models for attributes; (1) logistic
regression on word sets that is context indepen-
dent and (2) neural networks including sentence
context. The context-based models can represent
more complex attributes than the logistic regres-
sion model but is more likely to overfit the training
data. For example, the MEALS attribute is perfect
on the test data because there is a small set of meal
terms while the BUYING-OBJECT attribute must
correctly extract object that may not be the direct
object of the verb, such as “we saw a house we
loved so we bought it”.
Human-in-the-loop Effort FRAMEIT is not an
automatic or end-to-end system and therefore a
human user plays a critical role. It is challenging
to quantify human effort for the ontology discov-
ery task but we can provide some simple statistics
about how much time and code was required to
collect our results. A total of 44 frames were cre-
ated. Most rules used to collect the initial distant
supervision set were similar to those in Table 5.
Rules are discovered by looking at the most com-
mon or most salient hypernyms and frames for a
small seed set of examples. FRAMEIT indexes the
corpus and all hypernyms and frames so generat-
ing these lists is instantaneous and it takes on the

Frame F1 Attribute Acc.
Seeing someone 0.76 Foods 0.93

Going to a location 0.79 People 0.85
Exercising 0.87 Meals 1.00

Watching something 0.93 Buying-Object* 0.87
Promotion 1.00 Buying-Buyer* 0.94

Meals 1.00 Buying-Receiver* 0.84
Buying something 1.00

Winning 0.99

Table 6: F1 scores on the test set for sentence level frames
and attributes. Attributes with an asterisk are trained with the
context and using a neural network. Others are with logistic
regression.
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Figure 3: Model improvement with active learning. Im-
provement of F1 on 100 sentence hold out set for NOWORK,
EXERCISE and attributes of the BUYING frame: BOUGHTO-
BJECT, BUYER, RECEIVER.

order of minutes of exploration to discover a suf-
ficient set of rules for a single FRAMEIT frame.
Roughly 2000 lines of code were written to dis-
cover and train the 19 frames for HAPPYDB. As
shown in Figure 3, at most 5 iterations of active
learning are done on each frame. Each iteration
takes about a minute of labeling and a few min-
utes of reviewing new labels and updating rules.
The total ranges from 10-30 minutes per frame,
where all of the time is spent on simple tasks that
don’t require expertise in linguistics or machine
learning.
Active Learning We evaluated the active learning
component on five models whose initial SRL re-
sults were relatively low. In each iteration, the user
labels 10 examples (as described in Section 3.2.2).
After each iteration the user is allowed to update
a rule, such as creating a dictionary of negative or
positive words. The F1 scores are evaluated on a
100 sentence holdout set.

The graph in Figure 3 shows improvements in
F1 scores, ranging from 24% - 46% decrease in
F1 error. Improvements come primarily from two
types of corrections; (1) finding errors in the rules
and (2) generalizing from rules based on entities.
For example, a common mistake with the “Buy-
ing - object” attribute was that the weak super-
vision used the direct object of the “buy” verb,
but this was often incorrectly parsed as the per-
son for whom the gift was bought. Active learn-
ing helps quickly find a list of terms describing
people for whom things are often bought (SOs,
children, friends, etc) to fix the weak supervision
rules. We observed that the model was also able to
generalize beyond the rigged rules. For examples,
the model extracts “controller” from the sentence
“I fixed my Xbox one controller on my own so I

didn’t have to buy a new one” even though it is
not the direct object of the “buy” verb. Lastly, we
also observe the context dependent attribute mod-
els learn common patterns in text. The “Buying
- object” attribute is only trained on “buying” re-
lated sentences, but when applied to any other sen-
tences, it consistently extracts direct objects, de-
spite having no access to POS tags or dependency
parse tree tags in the input and having never seen
some entities in the training data.

5 Conclusion and Future Work
We described the FRAMEIT system that provides
an end-to-end workflow beginning from the explo-
ration of a text corpus to training SRL models that
map natural language text into application spe-
cific frames. In addition to empirically evaluating
FRAMEIT, we showed that application frames are
qualitatively different from linguistically inspired
frames.

One of the major directions for future work is
for FRAMEIT to support the exploration process
further by taking a more active role in suggest-
ing possible frames and different frame granular-
ity that the user should consider. In particular,
in building FRAMEIT we have discovered 2 pri-
mary challenges that limit the quality of the final
ontology and SRL model. (1) Given a small set
of sentences from a corpus, can a system auto-
matically find other sentences that belong to the
same frame but increase the diversity of the set
without changing the meaning? For example, ex-
panding a set of sentences about “dinner” to in-
clude “lunch” and “breakfast” but not other activ-
ities that can be “had” or “gotten”. (2) Given a
large set of sentences, can a system automatically
discover all the aspects of an activity and correctly
group related terms? For example, given sentences
about “meals” can we automatically discover that
it can be “bought” or “cooked” and “delicious” or
“gross”. Future FRAMEIT work will focus more
on offloading these responsibilities from the user
and moving towards more model-based generation
of structure.
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Snorkel: Rapid training data creation with weak su-

pervision. Proceedings of the VLDB Endowment,
11(3):269–282.

Benjamin Roth, Tassilo Barth, Michael Wiegand, Mit-
tul Singh, , and Dietrich Klakow. 2013. Effec-
tive slot filling based on shallow distant supervi-
sion methods. In the Sixth Text Analysis Conference
(TAC 2013).

Christopher De Sa, Alex Ratner, Christopher Ré, Jaeho
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Abstract

Many social media classification tasks ana-
lyze the content of a message, but do not con-
sider the context of the message. For ex-
ample, in tweet stance classification – where
a tweet is categorized according to a view-
point it espouses – the expressed viewpoint
depends on latent beliefs held by the user.
In this paper we investigate whether incor-
porating knowledge about the author can im-
prove tweet stance classification. Further-
more, since author information and embed-
dings are often unavailable for labeled training
examples, we propose a semi-supervised pre-
training method to predict user embeddings.
Although the neural stance classifiers we learn
are often outperformed by a baseline SVM, au-
thor embedding pre-training yields improve-
ments over a non-pre-trained neural network
on four out of five domains in the SemEval
2016 6A tweet stance classification task. In a
tweet gun control stance classification dataset,
improvements from pre-training are only ap-
parent when training data is limited.

1 Introduction

Social media analyses often rely on a tweet classi-
fication step to produce structured data for analy-
sis, including tasks such as sentiment (Jiang et al.,
2011) and stance (Mohammad et al., 2016) clas-
sification. Common approaches feed the text of
each message to a classifier which predicts a la-
bel based on the content of the tweet. However,
many of these tasks benefit from knowledge about
the context of the message, especially since short
messages can be difficult to understand (Aramaki
et al., 2011; Collier and Doan, 2011; Kwok and
Wang, 2013). One of the best sources of context
is the message author herself. Consider the task of
stance classification, where a system must identify
the stance towards a topic expressed in a tweet.
Having access to the latent beliefs of the tweet’s

author would provide a strong prior as to their ex-
pressed stance, e.g. general political leanings pro-
vide a prior for their statement on a divisive polit-
ical issue. Therefore, we propose providing user
level information to classification systems to im-
prove classification accuracy.

One of the challenges with accessing this type
of information on social media users, and Twitter
users in particular, is that it is not provided by the
platform. While political leanings may be helpful,
they are not directly contained in metadata or user
provided information. Furthermore, it is unclear
which categories of information will best inform
each classification task. While information about
the user may be helpful in general, what informa-
tion is relevant to each task may be unknown.

We propose to represent users based on their on-
line activity as low-dimensional embeddings, and
provide these embeddings to the classifier as con-
text for a tweet. Since a deployed classifier will
likely encounter many new users for which we do
not have embeddings, we use the user embeddings
as a mechanism for pre-training the classification
model. By pre-training the model to be predic-
tive of user information, the classifier can better
generalize to new tweets. This pre-training can be
performed on a separate, unlabeled set of tweets
and user embeddings, creating flexibility in which
tasks can be improved by using this method. Ad-
ditionally, we find that this training scheme is most
beneficial in low-data settings, further reducing
the resource requirement for training new classi-
fiers. Although semi-supervised approaches to so-
cial media stance classification are not new, they
have only been performed at the message-level –
predicting held-out hashtags from a tweet for ex-
ample (Zarrella and Marsh, 2016). Our approach
leverages additional user information that may not
be contained in a single message.

We evaluate our approach on two stance clas-
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sification datasets: 1) the SemEval 2016 task of
stance classification (Mohammad et al., 2016) and
2) a new gun related Twitter data set that con-
tains messages about gun control and gun rights.
On both datasets, we compare the benefit of pre-
training a neural stance classifier to predict user
embeddings derived from different types of online
user activity: recent user messages, their friend
network, and a multiview embedding of both of
these views.

2 Stance Classification

The popularity of sentiment classification is mo-
tivated in part by the utility of understanding the
opinions expressed by a large population (Pang
et al., 2008). Sentiment analysis of movie reviews
(Pang et al., 2002) can produce overall ratings for
a film; analysis of product reviews allow for better
recommendations (Blitzer et al., 2007); analysis of
opinions on important issues can serve as a form
of public opinion polling (Tumasjan et al., 2010;
Bermingham and Smeaton, 2011).

Although similar to sentiment classification,
stance classification concerns the identification of
an author’s position with respect to a given tar-
get (Anand et al., 2011; Murakami and Raymond,
2010). This is related to the task of targeted sen-
timent classification, in which both the sentiment
and its target must be identified (Somasundaran
and Wiebe, 2009). In the case of stance classifi-
cation, we are given a fixed target, e.g. a political
issue, and seek to measure opinion of a piece of
text towards that issue. While stance classification
can be expressed as a complex set of opinions and
attitudes (Rosenthal et al., 2017), we confine our-
selves to the task of binary stance classification,
in which we seek to determine if a single message
expresses support for or opposition to the given
target (or neither). This definition was used in the
SemEval 2016 stance classification task (Moham-
mad et al., 2016).

In stance classification, the system seeks to
identify the position held by the author of the mes-
sage. While most work in this area infers the au-
thor’s position based only on the given message,
other information about the author may be avail-
able to aid in message analysis. Consider a user
who frequently expresses liberal positions on a
range of political topics. Even without observing
any messages from the user about a specific liberal
political candidate, we can reasonably infer that

the author would support the candidate. There-
fore, when given a message from this author with
the target being that specific candidate, our model
should have a strong prior to predict a positive la-
bel.

This type of information is readily available on
social media platforms where we can observe mul-
tiple behaviors from a user, such as sharing, liking
or promoting content, as well as the social net-
work around the user. This contextual informa-
tion is most needed in a social media setting. Un-
like long form text, common in sentiment analy-
sis of articles or reviews, analysis of social media
messages necessitates understanding short, infor-
mal text. Context becomes even more important
in a setting that is challenging for NLP algorithms
in general.

How can we best make use of contextual in-
formation about the author? Several challenges
present themselves:

What contextual information is valuable to so-
cial media stance classifiers? We may have pre-
vious messages from the user, social network in-
formation, and a variety of other types of online
behaviors. How can we best summarize a wide ar-
ray of user behavior in an online platform into a
single, concise representation?

We answer this question by exploring several
representations of context encoded as a user em-
bedding: a low-dimensional representation of the
user that can be used as features by the classifica-
tion system. We include a multiview user embed-
ding method that is designed to summarize multi-
ple types of user information into a single vector
(Benton et al., 2016).

How can we best use contextual information
about the author in the learning process? Ideally,
we would be provided a learned user representa-
tion along with every message we were asked to
classify. This is unrealistic. Learning user repre-
sentations requires data to be collected for each
user and computation time to process that data.
Neither of these are available in many production
settings, where millions of messages are streamed
on a given topic. It is impractical to insist that ad-
ditional information be collected for each user and
new representations inferred, for each tweets that
the classifier must label.

Instead, we consider how user context can be
used in a semi-supervised setting. We augment
neural models with a pre-training step that up-
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dates model weights according to an auxiliary ob-
jective function based on available user represen-
tations. This pre-training step initializes the hid-
den layer weights of the stance classification neu-
ral network, so that the final resulting model im-
proves even when observing only a single message
at classification time.

Finally, while our focus is stance classification,
this approach is applicable to a variety of docu-
ment classification tasks in which author informa-
tion can provide important insights in solving the
classification problem.

3 Models

The stance classification tasks we consider focus
on tweets: short snippets of informal text. We rely
on recurrent neural networks as a base classifica-
tion model, as they have been effective classifiers
for this type of data (Tang et al., 2015; Vosoughi
et al., 2016; Limsopatham and Collier, 2016; Yang
et al., 2017; Augenstein et al., 2016).

Our base classification model is a gated recur-
rent unit (GRU) recurrent neural network classi-
fier (Cho et al., 2014). The GRU consumes the
input text as a sequence of tokens and produces a
sequence of final hidden state activations. Input
layer word embeddings are initialized with GloVe
embeddings pre-trained on Twitter text (Penning-
ton et al., 2014). The update equations for the
gated recurrent unit at position i in a sentence are:

zi = σg(Wzxi + Uzhi−1 + bz)

ri = σg(Wrxi + Urhi−1 + br)

ni = σh(Whxi + Uh(ri ◦ hi−1) + bh)

hi = zi ◦ hi−1 + (1− zi)ni

where σg and σh are elementwise sigmoid and
hyperbolic tangent activation functions respec-
tively. W∗ and U∗ are weight matrices acting over
input embeddings and previous hidden states, and
b∗ are bias weights. zi is the update gate (a soft
mask over the previous hidden state activations),
ri is the reset gate (soft mask selecting which val-
ues to preserve from the previous hidden state), ni
is the new gate, and hi are the hidden state activa-
tions computed for position i.

Models predict stance based on a convex combi-
nation of these hidden layer activations, where the
combination weights are determined by a global
dot-product attention using the final hidden state

as the query vector (Luong et al., 2015). The equa-
tion for determining attention on the ith position
for a sentence of length n is:

ai =
exp(hTi hn)∑n
j=1 exp(h

T
j hn)

where hj is the final hidden layer activations at
position j, and ai is the attention placed on the hid-
den layer at position i. For bi-directional models,
the hidden layer states are the concatenation of ac-
tivations from the forward and backward pass. A
final softmax output layer predicts the stance class
labels based on a convex combination of hidden
states.

For this baseline model, the RNN is fit directly
to the training set, without any pre-training, i.e.
training maximizes the likelihood of class labels
given the input tweet.

We now consider an enhancement to our base
model that incorporates user embeddings.

RNN Classifier with User Embedding Pre-
training We augment the base RNN classifier
with an additional final (output) layer to predict
an auxiliary user embedding for the tweet author.
The objective function used for training this out-
put layer depends on the type of user embedding
(described below). A single epoch is made over
the pre-training set before fitting to train.

In this case, the RNN must predict informa-
tion about the tweet author in the form of an d-
dimensional user embedding based on the input
tweet text. If certain dimensions of the user em-
bedding correlate with different stances towards
the given topic, the RNN will learn representations
of the input that predict these dimensions, thereby
encouraging the RNN to build representations in-
formative for determining stance.

The primary advantage of this pre-training set-
ting is that it decouples the stance classification
annotated training set from a set of user embed-
dings. It is not always possible to have a dataset
with stance labeled tweets as well as user embed-
dings for each tweet’s author (as is the case for our
datasets). Instead, this setting allows us to utilize a
stance annotated corpus, and separately create rep-
resentations for a disjoint set of pre-training users,
even without knowing the identity of the authors
of the annotated stance tweets. This is different
than work presented by Amir et al. (2016) to im-
prove sarcasm detection, since we are not provid-
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ing user embeddings as features to directly pre-
dict stance. Instead, predicting user embeddings
constitutes an auxiliary task which helps pre-train
model weights, and therefore are not expected at
prediction time.

Figure 1 depicts a 2-layer bi-directional version
of this model applied to a climate-related tweet.

3.1 User Embedding Models

We explore several methods for creating user em-
beddings. These methods capture both informa-
tion from previous tweets by the user as well as
social network features.

Keyphrases In some settings, we may have a set
of important keyphrases that we believe to be cor-
related with the stance we are trying to predict.
Knowing which phrases are most commonly used
by an author may indicate the likely stance of that
author to the given issue. We consider how an
author has used keyphrases in previous tweets by
computing a distribution over keyphrase mentions
and treat this distribution as their user representa-
tion.

Author Text When a pre-specified list of
keyphrases is unknown, we include all words in
the user representation. Rather than construct a
high dimensional embedding – one dimension for
each type in the vocabulary – we reduce the di-
mensionality by using principal component analy-
sis (PCA). We compute a TF-IDF-weighted user-
word matrix based on tweets from the author (la-
tent semantic analysis) (Deerwester et al., 1990).
We use the 30,000 most frequent token types after
stopword removal.

Social Network On social media platforms,
people friend other users who share common be-
liefs (Bakshy et al., 2015). These beliefs may
extend to the target issue in stance classification.
Therefore, a friend relationship can inform our pri-
ors about the stance held by a user. We construct
an embedding based on the social network by cre-
ating an adjacency matrix of the 100,000 most fre-
quent Twitter friends in our dataset (users whom
the ego user follows). We construct a PCA em-
bedding of the local friend network of the author.

Multiview Representations Finally, we con-
sider an embedding that combines both the content
of the user’s messages as well as the social net-
work. We perform a canonical correlation analysis

(CCA) of the text and friend network PCA embed-
ding described above, and take the mean projec-
tion of both views as a user’s embedding. Previous
work suggests that this embedding is predictive of
future author hashtag usage, a proxy for topic en-
gagement (Benton et al., 2016).

We use a mean squared error loss to pre-train
the RNN on these embeddings since they are all
real-valued vectors. When pre-training on a user’s
keyphrase distribution, we instead use a final soft-
max layer and minimize cross-entropy loss.

For embeddings that rely on content from the
author, we collected the most recent 200 tweets
posted by these users using the Twitter REST
API1 (if the user posted fewer than 200 public
tweets, then we collected all of their tweets). We
constructed the social network by collecting the
friends of users as well2. We collected user tweets
and networks between May 5 and May 11, 2018.

We considered user embedding widths between
10 and 100 dimensions, but selected dimensional-
ity 50 based on an initial grid search to maximize
cross validation (CV) performance for the author
text PCA embedding.

3.2 Baseline Models

We compare our approach against two baseline
models.

As part of the SemEval 2016 task 6 stance
classification in tweets task, Zarrella and Marsh
(2016) submitted an RNN-LSTM classifier that
used an auxiliary task of predicting the hashtag
distribution within a tweet to pre-train their model.
There are a few key differences between our pro-
posed method and this work. Their approach
is restricted to predicting message-level features
(presence of hashtag), whereas we consider pre-
dicting user-level features, a more general form
of context. Additionally, their method predicts
a task-specific set of hashtags, whereas user fea-
tures/embeddings offer more flexibility, because
they are not as strongly tied to a specific task.
However, we select this as a baseline for compari-
son because of how they utilize hashtags within a
tweet for pre-training.

We evaluate a similar approach by identifying
the 200 most frequent hashtags in the SemEval-
hashtag pre-training set (dataset described below).

1https://api.twitter.com/1.1/statuses/
user_timeline.json

2https://api.twitter.com/1.1/friends/
list.json
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Figure 1: Diagram of a 2-layer bi-directional GRU model acting over an example Climate change is a real concern
tweet. Included in green is both the stance classification target which all models are trained to predict, as well as
the User embedding vector target which is used for pre-training a subset of models. Backward pass hidden state
activations are denoted by bi and forward pass activations by fi. Predictions are made from a convex combination
of second-hidden-layer activations (in red), where the attention query vector is determined by the final hidden
states (forward and backward activations concatenated). All weights are shared between pre-training and trainining
except for Wstance and Wembedding.

After removing non-topic hashtags (e.g. #aww,
#pic), we were left with 189 unique hashtags,
with 32,792 tweets containing at least one of
these hashtags. Example hashtags include: #athe-
ist, #fracking, #nuclear, #parisattacks, and #usa.
Pre-training was implemented by using a 189-
dimensional softmax output layer to predict held-
out hashtags. RNNs were trained by cross-entropy
loss where the target distribution placed a weight
of 1 on the most frequent hashtag, with all other
hashtags having weight of 0. This is the identi-
cal training protocol used in Zarrella and Marsh
(2016). We call this model RNN-MSG-HASHTAG.

Our second baseline is a linear support vec-
tor machine that uses word and character n-gram
features ( SVM ). This was the best performing
method on average in the 2016 SemEval Task 6
shared task (Mohammad et al., 2016). We swept
over the slack variable penalty coefficient to max-

imize macro-averaged F1-score on held-out CV
folds.

4 Data

4.1 Stance Classification Datasets

We consider two different tweet stance classifica-
tion datasets, which provide six domains of En-
glish language Twitter data in total.

SemEval 2016 Task 6A (Tweet Stance Classi-
fication) This is a collection of 2,814 training
and 1,249 test set tweets that are about one of
five politically-charged targets: Atheism, the Fem-
inist Movement, Climate Change is a Real Con-
cern, Legalization of Abortion, or Hillary Clinton.
Given the text of a tweet and a target, models must
classify the tweet as either FAVOR or AGAINST, or
NEITHER if the tweet does not express support or
opposition to the target topic. Participants strug-
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gled with this shared task, as it was especially dif-
ficult due to imbalanced class sizes, small train-
ing sets, short examples, and tweets where the tar-
get was not explicitly mentioned. See Mohammad
et al. (2016) for a thorough description of this data.
We report model performance on the provided test
set for each topic and perform four-fold CV on the
training set for model selection3.

Guns Our second stance dataset is a collection
of tweets related to guns. Tweets were collected
from the Twitter keyword streaming API starting
in December 2012 and throughout 20134. The col-
lection includes all tweets containing guns-related
keyphrases, subject to rate limits. We labeled
tweets based on their stance towards gun control:
FAVOR was supportive of gun control, AGAINST

was supportive of gun rights. We automatically
identified the stance to create labels based on com-
monly occurring hashtags that were clearly associ-
ated with one of these positions (see Table 4.1 for
a list of keywords and hashtags). Tweets which
contained hashtags from both sets or contained
no stance-bearing hashtags were excluded from
our data. We constructed stratified samples from
26,608 labeled tweets in total. Of these, we sam-
pled 50, 100, 500, and 1,000 examples from each
class, five times, to construct five small, balanced
training sets. We then divided the remaining ex-
amples equally between development and test sets
in each case. Model performance for each num-
ber of examples was macro-averaged over the five
training sets. The hashtags used to assign class la-
bels were removed from the training examples as
a preprocessing step.

We constructed this dataset for two reasons.
First, it allows us to compare model performance
as a function of training set size. Second, we are
able to pre-train on user embeddings for the same
set of users that are annotated with stance. The
SemEval-released dataset does not provide status
or user IDs from which we could use to collect and
build user embeddings.

4.2 User Embedding Datasets
We considered two unlabeled datasets as a source
for constructing user embeddings for model pre-
training. Due to data limitations, we were unable

3CV folds were not released with these data. Since our
folds are different than other submissions to the shared task,
there are likely differences in model selection.

4https://stream.twitter.com/1.1/
statuses/filter.json

Set Name Keyphrases/Hashtags
About Guns
(General)

gun, guns, second amend-
ment, 2nd amendment, firearm,
firearms

Control #gunsense, #gunsensepatriot,
#votegunsense, #guncon-
trolnow, #momsdemandaction,
#momsdemand, #demandaplan,
#nowaynra, #gunskillpeople,
#gunviolence, #endgunviolence

Rights #gunrights, #protect2a,
#molonlabe, #molon-
lab, #noguncontrol, #pro-
gun,#nogunregistry, #vote-
gunrights, #firearmrights,
#gungrab, #gunfriendly

Table 1: Keyphrases used to identify gun-related tweets
along with hashtag sets used to label a tweet as support-
ing gun Control or gun Rights.

to create all of our embedding models for all avail-
able datasets. We describe below which embed-
dings were created for which datasets.

SemEval 2016 Related Users The SemEval
stance classification dataset does not contain tweet
IDs or user IDs, so we are unable to determine au-
thors for these messages. Instead, we sought to
create a collection of users whose tweets and on-
line behavior would be relevant to the five topics
discussed in the SemEval corpus.

We selected query hashtags used in the shared
task (Mohammad et al., 2016) and searched for
tweets that included these hashtags in a large
sample of the Twitter 1% streaming API sam-
ple from 20155. This ensured that tweets
were related to one of the targets in the stance
evaluation task, and were from authors dis-
cussing these topics in a similar time pe-
riod. The hashtags we searched for were:
#nomorereligions, #godswill, #atheism, #glob-
alwarmingisahoax, #climatechange, #ineedfemi-
nismbecaus, #feminismisawful, #feminism, #go-
hillary, #whyiamnovotingforhillary, #hillary2016,
#prochoice, #praytoendabortion, and #planned-
parenthood. We queried the Twitter API to pull the
200 most recent tweets and local friend networks
for these specific tweet authors. We omitted tweets
made by deleted and banned users as well as those
who had fewer than 50 tweets total returned by
the API. In total, we obtained 79,367 tweets for
49,361 unique users, and pulled network informa-
tion for 38,337 of these users.

5https://stream.twitter.com/1.1/
statuses/sample.json
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For this set of users, we constructed the Au-
thor Text embedding (PCA representation of a
TF-IDF-weighted bag of words from the user) as
well as the Social Network embedding (PCA rep-
resentation of the friend adjacency matrix). For
users with missing social network information, we
replaced their network embedding with the mean
embedding over all other users. This preprocess-
ing was applied before learning Multiview (CCA)
embeddings for all users.

General User Tweets Is it necessary for our pre-
training set to be topically-related to the stance
task we are trying to improve, or can we consider
a generic set of users? To answer this question
we created a pre-training set of randomly sampled
users, not specifically related to any of our stance
classification topics. If these embeddings prove
useful, it provides an attractive method whereby
stance classifiers are pre-trained to predict gen-
eral user embeddings not specifically related to the
stance classification topic.

We considered the collection of Twitter users
that were described in Benton et al. (2016) to learn
general user embeddings. These users were sam-
pled uniformly at random from the Twitter 1%
stream in April 2015. We collected their past
tweets from January 2015 to March 2015 and col-
lected their friend network exactly as was done in
the SemEval 2016-related user data.

We construct the Author Text and Social Net-
work embeddings, as well as the Multiview
(mean CCA) embeddings. Note that unlike Ben-
ton et al. (2016), we did not consider a generalized
CCA model of all subsets of views so as to narrow
the model search space. Author Text embeddings
were constructed from tweets made in January and
February 2015.

To utilize user embeddings for model pre-
training, we randomly selected three tweets from
each user that occurred in March 2015, so as to
be disjoint from the tweets used to build the Au-
thor Text embeddings. We pre-trained the model
by providing these tweets as input and trained the
model to predict the accompanying embedding. In
total, we constructed a set of 152,751 input tweets
posted by 61,959 unique users.

Guns User Tweets We also kept 49,023 unla-
beled guns tweets for pre-training on the guns
stance task, using the distribution over general
keyphrases that an author posted across the pre-

training set as the user embedding. We pre-trained
on the (Author Text) embedding of these tweets,
along with a friend network embedding (network
data collected identically to above pre-training
datasets).

5 Model Training

We preprocessed all tweets by lowercasing and to-
kenizing with a Twitter-specific tokenizer (Gim-
pel et al., 2011)6. We replaced usernames with
<user> and URLs with <url>.

For training on the SemEval dataset, we se-
lected models based on four-fold cross valida-
tion macro-averaged F1-score for FAVOR and
AGAINST classes (the official evaluation metric
for this task). For the guns dataset we select mod-
els based on average development set F1-score.
For SemEval, each classifier is trained indepen-
dently for each target. Reported test F1-score is
averaged across each model fit on CV folds.

All neural networks were trained by minibatch
gradient descent with ADAM (Kingma and Ba,
2015) with base step size 0.005, β1 = 0.99, and
β2 = 0.999, with minibatch size of 16 examples,
and the weight updates were clipped to have an `2-
norm of 1.0. Models were trained for a minimum
of 5 epochs with early stopping after 3 epochs if
held-out loss did not improve. The per-example
loss was weighted by the inverse class frequency
of the example label7.

The neural model architecture was selected by
performing a grid search over hidden layer width
({25, 50, 100, 250, 500, 1000}), dropout rate ({0,
0.1, 0.25, 0.5}), word embedding width ({25, 50,
100, 200}), number of layers ({1, 2, 3}), and
RNN directionality (forward or bi-directional).
Architecture was selected to maximize cross-fold
macro-averaged F1 on the “Feminist Movement”
topic with the GRU classifier without pre-training.
We performed a separate grid search of architec-
tures for the with-pre-training models.

6 Results and Discussion

6.1 SemEval 2016 Task 6A

Table 2 contains the test performance for each tar-
get in the SemEval 2016 stance classification task.

6https://github.com/myleott/
ark-twokenize-py

7This improved performance for tasks with imbalanced
class labels.
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Model Target
Ath Cli Fem Hil Abo Avg

SVM 61.2 41.4 57.7 52.0 59.1 54.3
RNN 54.0O 39.6 48.5O 53.5 58.6 50.8

RNN-MSG-HASHTAG 53.4 41.0 48.4O 48.0 55.8 49.3
RNN-HSET 58.2 44.5 51.2 50.9 60.2 53.0

RNN-TEXT-HSET 58.2 44.5 51.2 50.9 60.2 53.0
RNN-NET-HSET 42.7 38.8 48.2 42.0 45.0 43.3
RNN-MV-HSET 60.1 40.5 49.9 52.5 56.5 51.9
RNN-GENSET 56.7 41.9 54.4♦♠ 51.7 56.5 52.2

RNN-TEXT-GENSET 56.7 38.2 54.4♦♠ 51.7 56.5 51.5
RNN-NET-GENSET 54.6 41.4 47.8 50.5 50.6 49.0
RNN-MV-GENSET 57.3 41.9 52.1 50.4 54.4 51.2

Table 2: Positive/negative class macro-averaged F1 model test performance at SemEval 2016 Task 6A. The final
column is macro-averaged F1 across all domains. ♦ means model performance is significantly better than a non-
pre-trained RNN, O is worse than SVM, and ♠ is better than tweet-level hashtag prediction pre-training (RNN-
MSG-HASHTAG).

Statistically significant difference between mod-
els was determined by a bootstrap test of 1,000
samples with 250 examples each (p = 0.05). *-
GENSET corresponds to networks pretrained on
general set user embeddings, and *-HSET corre-
sponds to networks pretrained on user embeddings
from the hashtag-filtered set. The type of pre-
training user embedding is noted by *-TEXT-*
(user text), *-NET-* (friend network), or *-MV-
* (multiview CCA). The RNN-HSET and RNN-
GENSET rows correspond to selecting the best-
performing user embedding based on CV F1 inde-
pendently for each target. RNN denotes the GRU
model without pre-training.

Models with pre-training outperform the non-
pre-trained RNN in four out of five targets. Pre-
trained models always beat the baseline of tweet-
level hashtag distribution pre-training (RNN-
MSG-HASHTAG) for all targets. While topic spe-
cific user embeddings (HSET) improve over no-
pre-training in four out of five cases, the generic
user embeddings (GENSET) improve in three out
of five cases. Even embeddings for users who
don’t necessarily discuss the topic of interest can
have value in regularizing model weights.

In terms of embedding type, embeddings built
on the author text tended to perform best, but re-
sults are not clear due to small test set size.

The linear SVM baseline with word and char-
acter n-gram features outperforms neural models
in two out of five tasks, and performs the best on

average. This agrees with the submissions to the
SemEval 2016 6A stance classification task, where
the baseline SVM model outperformed all submis-
sions on average – several of which were neural
models.

6.2 Guns

Model # Train Examples
100 200 1000 2000

SVM 79.2 81.1 85.9 87.4
RNN 72.2O 79.0 84.0 85.3

RNN-KEY-GUNSET 73.1O 76.7 83.6 85.6
RNN-TEXT-GUNSET 72.2O 79.0 84.0 85.3
RNN-TEXT-GENSET 71.7O 76.6 83.6 85.3
RNN-NET-GENSET 73.1O 77.2 83.3 85.4
RNN-MV-GENSET 75.0 79.1 83.9 85.4

Table 3: Model test accuracy at predicting gun stance.
RNNs were pre-trained on either the guns-related pre-
training set (GUNSET) or the general user pre-training
set (GENSET). The best-performing neural model is
bolded. O indicates that the model performs signifi-
cantly worse than the SVM baseline.

We sought to understand how the amount of
training data influenced the efficacy of model pre-
training in the guns dataset. Table 3 shows the ac-
curacy of different models with varying amounts
of training data. As the amount of training data
increases, so does model accuracy. Additionally,
we tend to see larger increases from pre-training
with less training data overall. It is unclear which
user embedding or pre-training set is most effec-
tive. Although the multiview embedding is most
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Model # Train Examples
100 200 1000 2000

TWEET 79.2 81.1 85.9 87.4
TEXT 72.1O 74.1O 76.5O 76.6O

KEY 52.2O 50.8O 51.0O 51.8O

TWEET+TEXT 79.2♣ 81.1♣ 86.0♣ 87.6♣

TWEET+KEY 79.2♣ 81.1♣ 85.9♣ 87.4♣

Table 4: Test accuracy of an SVM at predicting gun
control stance based on guns-related keyphrase distri-
bution (KEY), user’s Author Text embedding (TEXT),
and word and character n-gram features (TWEET). O

means a model is significantly worse than TWEET and
♣ means the feature set is significantly better than
TEXT.

effective at improving the neural classifier, the dif-
ference is not statistically significant.

As with SemEval, the SVM always outperforms
neural models, though the improvement is only
statistically significant in the smallest data set-
ting. Although we are unable to beat an SVM, the
improvements we observe in RNN performance
after user embedding pre-training are promising.
Neural model architectures offer more flexibil-
ity than SVMs, particularly linear-kernel, and we
only consider a single model class (recurrent net-
works with GRU hidden unit). Further architec-
ture exploration is necessary, and user embedding
pre-training will hopefully play a role in training
state-of-the-art stance classification models.

We sought to understand how much stance-
relevant information was contained in the user em-
beddings. The guns data allowes us to investi-
gate this, since the users who had stance anno-
tations and those who had embeddings overlap.
We trained an SVM to predict gun stance but in-
stead of providing the tweet, we either provided
the tweet, one of the embeddings, or both together.
Higher prediction accuracy indicates that the input
is more helpful in predicting stance.

Table 4 shows test accuracy for this task across
different amounts of training data. Unsurprisingly,
the tweet content is more informative at predicting
stance than the user embedding. However, the em-
beddings did quite well, with the “Author Text”
embedding – coming close to the tweet in some
cases. Providing both features had no effect or
only a marginal improvement over the text alone.

7 Conclusion

We have presented a method for incorporating user
information into a stance classification model for

improving accuracy on test data, even when no
user embeddings are available during prediction
time. We rely on a pre-training method that can
flexibly utilize embeddings directly correspond-
ing to the annotated stance classification dataset,
are distantly related, or have no relation to the
topic. We observe improvements on most of the
SemEval 2016 domains, with mixed results on a
new guns stance dataset – we only see benefit with
fewer than 1,000 training examples.

Future work will explore more effective ways in
which we can represent users, and utilize the in-
formation within the classification model. We are
interested in neural models that are more robust to
variation in the input examples such as convolu-
tional neural networks.

Despite having data for six stance classification
targets, the datasets are still small and limited. We
plan to evaluating our pre-training technique on
the stance classification tasks presented in Hasan
and Ng (2013) and related message-level classifi-
cation tasks such as rumor identification (Wang,
2017).

Augenstein et al. (2016) present a stance clas-
sification model that can be applied to unseen tar-
gets, conditioning stance prediction on an encod-
ing of the target description. Although the exper-
iments we run here only consider models trained
independently for each target, user embedding
pre-training is not restricted to this scenario. We
will also investigate whether user embedding pre-
training benefits models that are trained on many
targets jointly and those designed for unseen tar-
gets.
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Abstract

Projecting linguistic annotations through word
alignments is one of the most prevalent ap-
proaches to cross-lingual transfer learning.
Conventional wisdom suggests that annotation
projection “just works” regardless of the task
at hand. We carefully consider multi-source
projection for named entity recognition. Our
experiment with 17 languages shows that to
detect named entities in true low-resource lan-
guages, annotation projection may not be the
right way to move forward. On a more posi-
tive note, we also uncover the conditions that
do favor named entity projection from multiple
sources. We argue these are infeasible under
noisy low-resource constraints.

1 Motivation

Annotation projection plays a crucial role in cross-
lingual NLP. For instance, the state of the art ap-
proaches to low-resource part-of-speech tagging
(Das and Petrov, 2011; Täckström et al., 2013)
and dependency parsing (Ma and Xia, 2014; Ra-
sooli and Collins, 2015) all make use of paral-
lel corpora under the source-target language di-
chotomy in some way or another. Beyond syntac-
tic tasks, aligned corpora facilitate cross-lingual
transfer through multilingual embeddings (Ruder
et al., 2017) across diverse tasks.

What about named entity recognition (NER)?
This sequence labeling task with ample source lan-
guages appears like an easy target for projection.
However, as recently argued by Mayhew et al.
(2017), the issue is more complex:

“For NER, the received wisdom is that
parallel projection methods work very
well, although there is no consensus
on the necessary size of the parallel
corpus. Most approaches require mil-
lions of sentences, with a few exceptions

which require thousands. Accordingly,
the drawback to this approach is the dif-
ficulty of finding any parallel data, let
alone millions of sentences. Religious
texts (such as the Bible and the Koran)
exist in a large number of languages, but
the domain is too far removed from typ-
ical target domains (such as newswire)
to be useful. As a simple example, the
Bible contains almost no entities tagged
as organization.”

Our paper is a thorough empirical assessment of
the quoted conjecture for named entity (NE) tag-
ging in true low-resource languages. In specific,
we ask the following questions:
– Are there conditions under which the projection

of named entity labels from multiple sources
yields feasible NE taggers?

– If yes, do these conditions scale down to real
low-resource languages?

To answer these questions, we conduct an exten-
sive study of annotation projection from multiple
sources for low-resource NER. It includes 17 di-
verse languages with heterogeneous datasets, and
2 massive parallel corpora. In terms of cross-
lingual breadth, ours is one of the largest NER ex-
periments to date,1 and the only one that focuses
on standalone annotation projection. We uncover
that the specific conditions that do make NER pro-
jection work are not trivially met at a feasibly large
scale by true low-resource languages.

2 Multilingual projection

We project NE labels from multiple sources into
multiple targets through sentence and word align-

1Cross-lingual NER is typically tested on 4-10 languages,
predominantly the four CoNLL shared task languages (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003):
Dutch, English, German, and Spanish. We discuss some re-
cent notable exceptions as related work.
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Figure 1: An illustration of named entity projection from two source sentences (Danish, English) to
one target (Croatian). In this example, the voting of entity labels is weighted by tagger confidence and
alignment probability. The outside label (O) is omitted for simplicity.

Algorithm 1: Multi-source label projection
Data: Multilingual sentence graph

G = (Vs ∪ Vt, A); sequential labels L;
source label distributions p(l|vs)

Result: A labeling of target words vt ∈ Vt

1 BALLOT ← empty voting table
2 LABELING ← empty label-to-vertex mapping
3 for vt ∈ Vt do
4 for l ∈ L do
5 BALLOT(l|vt)←

∑
vs∈Vs

p(l|vs) · a(vs, vt)

6 LABELING(vt) = argmax
l

BALLOT(l|vt)
7 return BALLOT, LABELING

ments. Our projection requires source NE taggers
and parallel corpora that are ideally large in both
breadth (across many languages) and depth (num-
ber of parallel sentences). Evidently, we require
that i) the source language texts in the corpus are
tagged for named entities, and that ii) the paral-
lel corpora are aligned. Both conditions are typi-
cally met under some noise: by applying source-
language NE taggers, and unsupervised sentence
and word aligners, respectively.

We view a parallel corpus as a large collection
of multilingual sentences. A multilingual sentence
is a graph G = (V,A) comprising a target sen-
tence t and n source sentences. The vertice sets
V = V0 ∪ · · · ∪ Vn represent words in sen-
tences, where the words vt ∈ V0 belong to the
target sentence V0 = Vt, while all other words
vs ∈ Vi belong to their respective source sentences
Vi, i ∈ {1, ..., n}. The graph is bipartite between

source vertices Vs = V \ Vt and target vertices Vt,
where the edges are word alignments with aligner
confidences a(vs, vt) ∈ (0, 1) as weights. Each
source token vs is associated with a label distribu-
tion p(l|vs) that comes from a respective source-
language tagger and indicates its confidence over
labels l ∈ L. Here, the labels L are NE tags, but
elsewhere they could instantiate other sequence la-
beling such as POS or shallow parses.

Under these assumptions, we implement projec-
tion as weighted voting of source contributions to
target words, such that for each target word vt we
collect votes into a ballot:

BALLOT(l|vt) =
∑

vs∈Vs

p(l|vs) · a(vs, vt).

Here, each source token vs gets to cast a vote for
the future label of vt. Each vote is weighted by its
own tagger confidence and reliability of its align-
ment to target token vt: p(l|vs) · a(vs, vt). The
individual votes are then summed and the tags for
the target tokens are elected. We can train a NE
tagger directly from BALLOT provided some nor-
malization to (0, 1), or we can decode a single ma-
jority tag for each target word:

LABELING(vt) = argmax
l

BALLOT(l|vt).

The process is further detailed as Algorithm 1 and
also depicted in Figure 1 for two source vertice
sets Vi and Vj , and one target set Vt. This sim-
ple procedure was proven to be markedly robust
and effective in massively multilingual transfer of
POS taggers especially for truly low-resource lan-
guages by Agić et al. (2015; 2016).
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CoNLL 2002 (Tjong Kim Sang, 2002) es nl news
CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) en de news
OntoNotes 5.0 (Weischedel et al., 2011) en ar news
NER FIRE 2013 (Rao and Devi, 2013) ta hi wiki
ANERCorp (Benajiba et al., 2007) ar news
BSNLP 2017 (Piskorski et al., 2017) cs hu pl sk sl news
Estonian NER (Tkachenko et al., 2013) et news
Europeana NER (Neudecker, 2016) fr news
I-CAB (Magnini et al., 2006) it news
HAREM (Santos et al., 2006) pt –
Stockholm Internet Corpus (Östling, 2013) sv blogs

Table 1: The NER datasets in our exepriment. We
indicate the languages2 and domains they cover.

We take into account a set of additional design
choices in multi-source NER projection beyond
what the algorithm itself encodes.

Sentence selection. We compare two ways to
sample the target sentences for training: at ran-
dom vs. through word-alignment coverage rank-
ing. A target word covered if it has an incoming
alignment edge from at least one source word. We
mark the target sentences by percentage of cov-
ered words from each source, and rank them by
mean coverage across sources. We then select the
top k ranked sentences to train a tagger. We opti-
mize this parameter for maximum NER scores on
development data.

Language similarity. Some source languages
arguably help some targets more than others. We
model this relation through language similarity
between source and target WALS feature vec-
tors (Dryer and Haspelmath, 2013): vs and vt. We
implement language similarity as inverse normal-
ized Hamming distance between the two vectors:
1− dh(vs,vt). Only the non-null fields are taken
into account. Similarity is contrasted to random
selection in our experiment.

Tagger performance. Some source NE taggers
perform better than the others monolingually. We
thus consider the option to weigh the source con-
tributions not just by language similarity but also
through their monolingual NER accuracy, so that
the contributions by more accurate source taggers
are selected more often.

3 Experiment setup

Sources and targets. Table 1 shows the NER-
annotated datasets we used. These datasets ad-
here to various differing standards of NE encod-
ing. In a non-trivial effort, we semi-automatically
normalize the data into 3-class CoNLL IO encod-
ing (Tjong Kim Sang and De Meulder, 2003), as

the common denominator for the widely heteroge-
neous datasets. We thus detect names of locations
(LOC), organizations (ORG), and persons (PER).
Languages with more than 5k monolingual train-
ing sentences serve as sources and development
languages for parameter tuning, while the remain-
der pose as low-resource targets; see Table 2. For
languages that have multiple datasets, we concate-
nate the data. We end up with typologically di-
verse sets of sources and targets. We use the pre-
defined train-dev-test splits if available; if not, we
split the data at 70-10-20%.

Parallel text. We contrast two sources of par-
allel data: Europarl (Koehn, 2005) and Watch-
tower (Agić et al., 2016). The former covers
only 21 resource-rich languages but with 400k-2M
parallel sentences for each language pair, while
the latter currently spans over 300 languages,
but with only 10-100k sentences per pair. Eu-
roparl comes with near-perfect sentence align-
ment and tokenization, and we align its words us-
ing IBM2 (Dyer et al., 2013). For Watchtower
we inherit the original noisy preprocessing: sim-
ple whitespace tokenization, automatic sentence
alignment, and IBM1 word alignments by Agić
et al. (2016) as they show that IBM1 in particu-
lar helps debias for low-resource languages.

Tagger. We implement a bi-LSTM NE tagger in-
spired by Lample et al. (2016) and Plank et al.
(2016). We tune it on English development data
at two bi-LSTM layers (d = 300), a final dense
layer (d = 4), 10 training epochs with SGD, and
regular and recurrent dropout at p = 0.5. We
use pretrained fastText embeddings (Bojanowski
et al., 2017). Currently fastText supports 294 lan-
guages and is superior to random initialization in
our tagger. Other than through fastText, we don’t
make explicit use of sub-word embeddings. Our
monolingual F1 score on English is 86.35 under
the more standard IOB2 encoding. We do not aim
to produce a state-of-the-art model, but to con-
trast the scores for various annotation projection
parameters. We use our tagger both to annotate the
source sides of parallel corpora, and to train pro-
jected target language NER models. All reported
NE tagging results are means over 4 runs.

4 Results

Europarl sweet spots. With Europarl we show
that the combination of monolingual F1 source
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(a) Source language ordering (b) Optimal # of sources

(c) Parallel sentence sampling (d) Weights in label voting

Figure 2: Projection tuning on Europarl: a) Order-
ing the sources by their monolingual F1 scores ×
WALS similarity works best; b) At n = 3 sources
the average rank of F1 scores across development
languages is lowest, which indicates that n = 3
is the optimal number of sources in Europarl pro-
jection; c) Parallel sentences are best selected by
mean word alignment coverage, in contrast to tag-
ger confidence or random sampling; d) Weighted
voting for LABELING performs best when weights
are word alignment weights× tagger confidences.
Results under (b), (c), and (d) all use the best
source ordering approach from (a). For random
sampling under (a), the sources were randomly se-
lected 5 times for each n.

scores and WALS similarities is the optimal source
language ordering. The respective optimal num-
ber of sources is n = 3 for Europarl. We show
that the best way to sample parallel sentences is
through mean word alignment coverage, where we
find k = 70000 to roughly be the optimal num-
ber of target sentences. Of the different weighting
schemes in voting, we select the product of word
alignment probability and NER tagger confidence
as best. We visualize these experiments in Fig-
ure 2. Table 2 shows stable performance on Eu-
roparl across the languages, with mean F1 at 60.7
for n = 3 and only +1.53 higher for nmax which
is in fact lower than 3.

Moving to Watchtower. Table 2 shows that
the performance plunges across languages when
Watchtower religious text replaces Europarl, with
a mean F1 of 16.3. There, the gap between n = 3
and mean nmax = 4.82 is much larger: Watch-

Europarl Watchtower

Sources sup. F n=3
1 F nmax

1 nmax F n=3
1 F nmax

1 nmax

Arabic 78.21 – – – 05.50 09.84 5
Dutch 82.26 63.37 63.79 3 12.80 22.02 6

English 91.03 59.96 60.13 2 18.23 21.83 6
Estonian 85.77 63.20 63.82 3 13.14 21.63 7

French 67.98 50.10 50.10 4 10.24 14.12 2
German 80.82 61.44 62.81 2 06.26 09.62 6

Hindi 67.15 – – – 00.00 00.00 1
Hungarian 94.13 58.84 61.11 5 39.85 39.85 4

Italian 80.63 64.71 65.20 3 18.30 25.94 6
Spanish 82.91 63.26 65.67 3 21.02 31.36 7

Targets
Czech – 63.38 69.90 1 20.52 21.98 7
Polish – 71.00 71.86 3 32.42 32.42 4

Portuguese – 59.38 59.38 4 20.99 29.59 7
Slovak – 64.98 64.98 4 – –

Slovene – 66.63 67.86 1 30.14 35.11 6
Swedish – 39.48 44.54 1 02.38 13.02 5

Tamil – – – – 09.04 09.64 3

Means 81.09 60.70 62.23 2.29 16.30 21.12 4.82

Table 2: F1 scores for NER tagging in the exper-
iment languages, shown separately for Europarl
and Watchtower, also for fixed number of source
languages n = 3 and optimal nmax. Full supervi-
sion scores are reported for the source languages.
All scores are given for 3-class IO encoding.

tower needs more sources, and even then the ben-
efits are low, as the +4.82 increase gets us to an
infeasible mean F1 of 21.12. In target sentence
selection we find k = 20000 to be roughly opti-
mal for Watchtower, but we also observe very lit-
tle change in F1 when moving to its full size of
around 120 thousand target sentences.

To put the Watchtower results into perspective,
we implement another simple baseline. Namely,
we train a new monolingual English NER system,
but instead of using monolingual fastText embed-
dings, we create simple cross-lingual embeddings
following Søgaard et al. (2015) over Europarl for
Dutch, German, and Spanish. In effect, the change
to cross-lingual embeddings yields a multilingual
tagger for these four languages. The respective F1

scores of this tagger are low (27-28%), but they
still surpass Watchtower projection.

5 Discussion

We further depict the breakdown of Watchtower
projection in two figures. Figure 3 shows pre-
cision, recall, and F1 learning curves for the
best projection setup on both parallel corpora.
For Europarl, adding more sources always in-
creases recall at the cost of precision: new weaker

2ISO 639-1 language codes were used: https://www.
iso.org/iso-639-language-codes.html.
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sources increase the noise, but also improve cover-
age. For Watchtower, precision slightly increases
with more sources, but the recall stays very low
throughout, at around 5-12%. The distribution of
labels in the source sides of the two parallel cor-
pora (see Figure 4) clarifies the learning curves is-
sue of Watchtower. Namely, for both corpora the
optimal word alignment coverage cutoff for select-
ing target sentences is around 80% covered words
(best k = 70000 for Europarl, while k = 20000
for Watchtower). However, these cutoffs result
in Europarl projections with nearly two orders of
magnitude more named entities than in Watch-
tower (LOC: 65 times more, ORG: 60, PER: 15),
and with different distributions.

To summarize, our results show that there exists
a setup in which standalone annotation projection
from multiple sources does work for cross-lingual
NER. Europarl is an instance of such setup, with
its large data volume per language, high-quality
preprocessing, and domain rich in named entities.
Arguably, there are no parallel corpora of such vol-
ume and quality that cover a multitude of true low-
resource languages, and we have to do with more
limited resources such as Watchtower. In turn, our
experiment shows that in such setup standalone
projection yields infeasible NE taggers, while it
still may yield workable POS taggers or depen-
dency parsers (cf. Agić et al. 2016).

Alternatives. In search for feasible alternatives,
we conducted a proof-of-concept replication of the
work by Mayhew et al. (2017), who rely on “cheap
translation” of training data from multiple sources
using bilingual lexicons. The replication involved
only one language, Dutch, and we limited the time
investment in the effort. We used three translation
sources: German, English, and Spanish. Together
with instance selection through alignment cover-
age, we reach a top F1 score of 69.35 (with 3-class
IO encoding), which surpasses even our best Eu-
roparl projection for Dutch by 4.56 points.

6 Related work

There is ample work in cross-lingual NER that ex-
ploits cross-lingual representations, comparable or
parallel corpora together with entity dictionaries,
translation, and the like (Täckström et al., 2012;
Kim et al., 2012; Wang et al., 2013; Nothman
et al., 2013; Tsai et al., 2016; Ni and Florian, 2016;
Ni et al., 2017). We highlight a set of contribu-
tions that boast a larger cross-linguistic breadth.

(a) Europarl (b) Watchtower

Figure 3: Cross-lingual NER learning curves for
precision, recall, and F1 in relation to the number
n of source languages in projection. Means for all
experiment languages.

(a) Absolute (b) Relative

Figure 4: Absolute and relative counts for NE la-
bels in Europarl and Watchtower for overlapping
source languages.

Al-Rfou et al. (2015) work with 40 languages
where NE annotations are derived from Wikipedia
and Freebase, while they use a mix of human-
annotated and machine-translated data for evalu-
ation. Similarly, Pan et al. (2017) build and eval-
uate Wikipedia-based models for 282 languages;
out of those, 20 are evaluated for NE linking and
9 for NER on human annotations that are not
from Wikipedia. Cotterell and Duh (2017) jointly
predict NE for high- and low-resource languages
with a character-level neural CRF model. Their
evaluation involves 15 diverse languages across 5
language families. The DARPA LORELEI pro-
gram (Christianson et al., 2018) features chal-
lenges in low-resource NER development for “sur-
prise” languages under time constraints.

7 Conclusions

Our work addresses an important gap in cross-
lingual NER research. In an experiment with 17
languages, we show that while standalone multi-
source annotation projection for NER can work
when resources are rich in both quality and quan-
tity, it is infeasible at a larger scale due to parallel
corpora constraints. For NER in true low-resource
languages, our results suggest it is better to choose
an alternative approach.
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Željko Agić, Anders Johannsen, Barbara Plank,
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Abstract

Typical relation extraction models are trained
on a single corpus annotated with a pre-defined
relation schema. An individual corpus is often
small, and the models may often be biased or
overfitted to the corpus. We hypothesize that
we can learn a better representation by com-
bining multiple relation datasets. We attempt
to use a shared encoder to learn the unified fea-
ture representation and to augment it with reg-
ularization by adversarial training. The addi-
tional corpora feeding the encoder can help to
learn a better feature representation layer even
though the relation schemas are different. We
use ACE05 and ERE datasets as our case study
for experiments. The multi-task model obtains
significant improvement on both datasets.

1 Introduction

Relations represent specific semantic relationships
between two entities. For example, there is
Physical.Located relationship between Smith and
Brazil in the sentence: Smith went to a con-
ference in Brazil. Relation extraction is a cru-
cial task for many applications such as knowl-
edge base population. Several relation schemas
and annotated corpora have been developed such
as the Automatic Content Extraction (ACE), and
the Entities, Relations and Events (ERE) anno-
tation (Song et al., 2015). These schemas share
some similarity, but differ in details. A rela-
tion type may exist in one schema but not in an-
other. An example might be annotated as dif-
ferent types in different datasets. For example,
Part-whole.Geographical relations in ACE05 are
annotated as Physcial.Located relations in ERE.
Most of these corpora are relatively small. Models
trained on a single corpus may be biased or over-
fitted towards the corpus.

Despite the difference in relation schemas, we
hypothesize that we can learn a more general rep-

resentation with a unified encoder. Such a repre-
sentation could have better out-of-domain or low-
resource performance. We develop a multi-task
model to learn a representation of relations in a
shared relation encoder. We use separate decoders
to allow different relation schemas. The shared en-
coder accesses more data, learning less overfitted
representation. We then regularize the representa-
tion with adversarial training in order to further en-
force the sharing between different datasets. In our
experiments, we take ACE05 1 and ERE 2 datasets
as a case study. Experimental results show that
the model achieves higher performance on both
datasets.

2 Related Work

Relation extraction is typically reduced to a classi-
fication problem. A supervised machine learning
model is designed and trained on a single dataset
to predict the relation type of pairs of entities. Tra-
ditional methods rely on linguistic or semantic fea-
tures (Zhou et al., 2005; Jing and Zhai, 2007), or
kernels based on syntax or sequences (Bunescu
and Mooney, 2005a,b; Plank and Moschitti, 2013)
to represent sentences of relations. More re-
cently, deep neural nets start to show promising
results. Most rely on convolutional neural nets
(Zeng et al., 2014, 2015; Nguyen and Grishman,
2015, 2016; Fu et al., 2017) or recurrent neural
nets (Zhang et al., 2015; Zhou et al., 2016; Miwa
and Bansal, 2016) to learn the representation of
relations. Our supervised base model will be sim-
ilar to (Zhou et al., 2016). Our initial experiments
did not use syntactic features (Nguyen and Grish-
man, 2016; Fu et al., 2017) that require additional
parsers.

1https://catalog.ldc.upenn.edu/LDC2006T06
2We use 6 LDC releases combined: LDC2015E29,

LDC2015E68, LDC2015E78, LDC2015R26, LDC2016E31,
LDC2016E73
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In order to further improve the representation
learning for relation extraction, Min et al. (2017)
tried to transfer knowledge through bilingual rep-
resentation. They used their multi-task model to
train on the bilingual ACE05 datasets and obtained
improvement when there is less training available
(10%-50%). Our experiments will show our multi-
task model can make significant improvement on
the full training set.

In terms of the regularization to the represen-
tation, Duong et al. (2015) used l2 regularization
between the parameters of the same part of two
models in multi-task learning. Their method is a
kind of soft-parameter sharing, which does not in-
volve sharing any part of the model directly. Fu
et al. (2017) applied domain adversarial networks
(Ganin and Lempitsky, 2015) to relation extrac-
tion and obtained improvement on out-of-domain
evaluation. Inspired by the adversarial training,
we attempt to use it as a regularization tool in our
multi-task model and find some improvement.

3 Supervised Neural Relation Extraction
Model

The supervised neural model on a single dataset
was introduced by Zeng et al. (2014) and fol-
lowed by many others (Nguyen and Grishman,
2015; Zhou et al., 2016; Miwa and Bansal, 2016;
Nguyen and Grishman, 2016; Fu et al., 2017). We
use a similar model as our base model. It takes
word tokens, position of arguments and their en-
tity types as input. Some work (Nguyen and Gr-
ishman, 2016; Fu et al., 2017) used extra syntax
features as input. However, the parsers that pro-
duce syntax features could have errors and vary
depending on the domain of text. The syntax fea-
tures learned could also be too specific for a single
dataset. Thus, we focus on learning representation
from scratch, but also compare the models with
extra features later in the experiments. The en-
coder is a bidirectional RNN with attention and
the decoder is one hidden fully connected layer
followed by a softmax output layer.

In the input layer, we convert word tokens
into word embeddings with pretrained word2vec
(Mikolov et al., 2013). For each token, we con-
vert the distance to the two arguments of the ex-
ample to two position embeddings. We also con-
vert the entity types of the arguments to entity em-
beddings. The setup of word embedding and po-
sition embedding was introduced by Zeng et al.

(2014). The entity embedding (Nguyen and Gr-
ishman, 2016; Fu et al., 2017) is included for argu-
ments that are entities rather than common nouns.
At the end, each token is converted to an embed-
ding wi as the concatenation of these three types
of embeddings, where i ∈ [0, T ), T is the length
of the sentence.

A wide range of encoders have been proposed
for relation extraction. Most of them fall into cat-
egories of CNN (Zeng et al., 2014), RNN (Zhou
et al., 2016) and TreeRNN (Miwa and Bansal,
2016). In this work, we follow Zhou et al. (2016)
to use Bidirectional RNN with attention (BiRNN),
which works well on both of the datasets we are
going to evaluate on. BiRNN reads embeddings
of the words from both directions in the sentence.
It summarizes the contextual information at each
state. The attention mechanism aggregates all the
states of the sentence by paying more attention to
informative words. Given input wi from the input
layer, the encoder is defined as the following:

−→
hi =

−−−→
GRU(wi, hi−1), (1)

←−
hi =

←−−−
GRU(wi, hi−1), (2)

hi = concatenate(
−→
hi ,
←−
hi) (3)

vi = tanh(Wvhi + bv), (4)

αi =
exp(v>i vw)∑
t exp(v

>
t vw))

, (5)

φ(x) =
∑

i

αihi. (6)

We use GRU (Cho et al., 2014) as the RNN cell.
Wv and bv are the weights for the projection vi. vw
is the word context vector, which works as a query
of selecting important words. The importance of
the word is computed as the similarity between vi
and vw. The importance weight is then normal-
ized through a softmax function. Then we obtain
the high level summarization φ(x) for the relation
example.

The decoder uses this high level representa-
tion as features for relation classification. It usu-
ally contains one hidden layer (Zeng et al., 2014;
Nguyen and Grishman, 2016; Fu et al., 2017) and
a softmax output layer. We use the same structure
which can be formalized as the following:

h = ReLU(Whφ(x) + bh), (7)

p = softmax(Woh+ bo), (8)

where Wh and bh are the weights for the hidden
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Figure 1: Multi-task model with regularization

layer, Wo and bo are the weights for the output
layer. We use cross-entropy as the training loss.

4 Learning Unified Representation

While the data for one relation task may be small,
noisy and biased, we can learn a better represen-
tation combining multiple relation tasks. We at-
tempt to use multi-task learning to learn a unified
representation across different relation tasks. The
method is simple and straightforward. We use the
same encoder to learn the unified feature repre-
sentation for both relation tasks, and then we train
classifiers for each task on top of this representa-
tion. We then apply regularization on this repre-
sentation by adversarial training.

4.1 Multi-task Learning
Given example x1 from relation schema 1 and x2
from relation schema 2, we use the same encoder
to obtain representation φ(x1) and φ(x2) respec-
tively. Then we build separate decoders for them
using the same structure (7) (8). To train them at
the same time, we put examples from both tasks in
the same batch. The ratio of the examples are con-
trolled so that the the model reads both datasets
once every epoch. We use linear interpolation to
combine the loss from them.

L = (1− λ)L1 + λL2, (9)

where λ is used to control the attention to each
task. The model may learn the two tasks at differ-
ent speed. During optimization, one task can be
seen as the main task, while the other can be seen
as the auxiliary task. The benefit of joint learning
to the main task may vary depending on how much
attention the model pays to the auxiliary task.

4.2 Regularization by Adversarial Training
Being optimized simultaneously by different de-
coders, the model could still learn very different

representation for similar examples coming from
different tasks. We want to prevent this and to
further push the model to learn similar representa-
tion for similar examples even if they come from
different tasks. We attempt to regularize the rep-
resentation using adversarial training between the
two tasks.

Given the representation φ(x1) and φ(x2)
learned from the two tasks, we build a classifier to
predict which task the examples come from (11).
We add a gradient reversal layer (Ganin and Lem-
pitsky, 2015) at the input of this classifier (10) to
implement the adversarial training.

φ(x) = GRL(φ(x)), (10)

p = softmax(Wφ(x) + b). (11)

While the classifier learns to distinguish the
sources of the input representation, the input rep-
resentation is learned in the opposite direction to
confuse the classifier thanks to GRL. Thus, the
input representation (φ(x1) and φ(x2)) will be
pushed to be close to each other. The gradient re-
versal layer (GRL) is defined as the identity func-
tion for forward propagation (12) and reversed
gradient for back propagation (13).

GRL(x) = x, (12)
dGRL(x)

dx
= −I. (13)

We also use the cross-entropy loss for this ad-
versarial training, and combine the loss Ladv with
the two relation tasks.

L = (1− λ)L1 + λL2 + βLadv, (14)

where we can use β to control how close the rep-
resentations are between the two relation tasks.

5 Experiments

5.1 Datasets

To apply the multi-task learning, we need at least
two datasets. We pick ACE05 and ERE for
our case study. The ACE05 dataset provides a
cross-domain evaluation setting . It contains 6
domains: broadcast conversation (bc), broadcast
news (bn), telephone conversation (cts), newswire
(nw), usenet (un) and weblogs (wl). Previous
work (Gormley et al., 2015; Nguyen and Grish-
man, 2016; Fu et al., 2017) used newswire as train-
ing set (bn & nw), half of bc as the development
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Training Data 100% 50%
ACE05 ERE ACE05 ERE

Method bc wl cts avg test bc wl cts avg test
Supervised 61.44 52.40 52.38 55.40 55.78 56.03 47.81 48.65 50.83 53.60
Pretraining 60.21 53.34 56.10 56.55 56.39 55.39 49.17 52.91 52.49 54.66
Multi-task 61.67 55.03 56.47 57.72 57.29 57.39 51.44 54.28 54.37 55.72
+ Regularization 62.24 55.30 56.27 57.94 57.75 57.73 52.30 54.63 54.89 55.91

Table 1: Multi-task Learning and Regularization.

set, and the other half of bc, cts and wl as the
test sets. We followed their split of documents
and their split of the relation types for asymmet-
ric relations. The ERE dataset has a similar rela-
tion schema to ACE05, but is different in some an-
notation guidelines (Aguilar et al., 2014). It also
has more data than ACE05, which we expect to
be helpful in the multi-task learning. It contains
documents from newswire and discussion forums.
We did not find an existing split of this dataset, so
we randomly split the documents into train (80%),
dev (10%) and test (10%).

5.2 Model Configurations

We use word embedding pre-trained on newswire
with 300 dimensions from word2vec (Mikolov
et al., 2013). We fix the word embeddings dur-
ing the training. We follow Nguyen and Grishman
(2016) to set the position and entity type embed-
ding size to be 50. We use 150 dimensions for the
GRU state, 100 dimensions for the word context
vector and use 300 dimensions for the hidden layer
in the decoders. We train the model using Adam
(Kingma and Ba, 2014) optimizer with learning
rate 0.001. We tune λ linearly from 0 to 1, and
β logarithmically from 5 · 10−1 to 10−4 For all
scores, we run experiments 10 times and take the
average.

5.3 Augmentation between ACE05 and ERE

Training separately on the two corpora (row “Su-
pervised” in Table 1), we obtain results on ACE05
comparable to previous work (Gormley et al.,
2015) with substantially fewer features. With syn-
tactic features as (Nguyen and Grishman, 2016; Fu
et al., 2017) did, it could be further improved. In
this paper, however, we want to focus on represen-
tation learning from scratch first. Our experiments
focus on whether we can improve the representa-
tion with more sources of data.

A common way to do so is pre-training. As a

baseline, we pre-train the encoder of the super-
vised model on ERE and then fine-tune on ACE05,
and vice versa (row “Pretraining” in Table 1). We
observe improvement on both fine-tuned datasets.
This shows the similarity between the encoders of
the two datasets. However, if we fix the encoder
trained from one dataset, and only train the de-
coder on the other dataset, we will actually obtain
a much worse model. This indicates that neither
dataset contains enough data to learn a universal
feature representation layer for classification. This
leaves the possibility to further improve the repre-
sentation by learning a better encoder.

We then attempt to learn a multi-task model us-
ing a shared encoder. We use 14K words as the vo-
cabulary from ACE05 and 20K from ERE. There
are about 8K words shared by the two datasets
(same for both pretrained and multi-task models).
By multi-task learning, we expect the model to
conceive the embeddings for words better and con-
struct more general representation. Experiments
determined that the multi-task learning works best
at λ = 0.8 for both ACE05 and ERE datasets (Ta-
ble 1). It obtains improvement on both the out-of-
domain evaluation on ACE and in-domain evalua-
tion on ERE. It works especially well on weblogs
(wl) and telephone conversation (cts) domains on
ACE, which possibly benefits from the discussion
forum data from ERE.

On the other hand, we use the adversarial train-
ing between the two datasets to further enforce the
representation to be close to each other. There
is strong dependency between the schemas of
these two datasets. Two examples from different
datasets could have the same semantics in terms
of relation type. We try to force the representa-
tion of these examples to be similar. With appro-
priate amount of this regularization (β = 0.001),
the model can be further improved (Table 1). The
amount of improvement is modest compared to
sharing the encoder. This may show that the
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Training Data 100% 50%
Method bc wl cts avg bc wl cts avg
(Nguyen and Grishman, 2016) 63.07 56.47 53.65 57.73 - - - -
Supervised 61.82 55.68 55.15 57.55 56.81 50.49 50.10 52.47
Multi-task 63.59 56.11 56.78 58.83 58.24 52.90 53.09 54.37

Table 2: Multi-task Learning with extra features on ACE05.

multi-task model can already balance representa-
tion with enough labels on both sides. We also
artificially remove half of the training data of each
dataset to see the performance in a relatively low-
resource setting (row “Training Data” Table 1).
We observe larger improvement with both multi-
task learning and regularization. Because of the
decrease of the training data, the best λ is 0.9
for ACE05 and 0.7 for ERE. We also use slightly
stronger regularization (β = 0.01).

5.4 More Features on ACE05

Since ACE05 has been studied for a long time, nu-
merous features have been found to be effective
on this dataset. (Nguyen and Grishman, 2016) in-
corporated some of those features into the neural
net and beat the state-of-art on the dataset. Al-
though representation learning from scratch could
be more general across multiple datasets, we com-
pare the effect of multi-task learning with extra
features on this specific dataset.

We add chunk embedding and on dep path em-
bedding (Nguyen and Grishman, 2016). Similar to
entity type embedding, chunk embedding is cre-
ated according to each token‘s chunk type, we set
the embedding size to 50. On dep path embed-
ding is a vector indicating whether the token is on
the dependency path between the two entities. In
the multi-task model, the shared encoder is a bidi-
rectional RNN (BiRNN) without attention (Equa-
tion (1-3)). These two embeddings will be con-
catenated to the output of the BiRNN to obtain the
new hi and then passed to Equation (4).

As the results (Table 2), our supervised baseline
is slightly worse than the previous state-of-the-art
neural model with extra features, but the multi-
task learning can consistently help. The improve-
ment is more obvious with 50% training data. It is
also worth to note that with 50% training data, the
extra features improve the supervised base model,
but not the multi-task learning model. It shows the
effectiveness of the multi-task model when there
is less training data.

6 Conclusion and Future Work

We attempt to learn unified representation for re-
lations by multi-task learning between ACE05 and
ERE datasets. We use a shared encoder to learn the
unified feature representation and then apply reg-
ularization by adversarial training. The improve-
ment on both datasets shows the promising future
of learning representation for relations in this uni-
fied way. This will require less training data for
new relation schemas. It will be interesting future
work to further explore the multi-task learning be-
tween different datasets, especially to capture the
dependency between different schemas in the de-
coder.
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Abstract

While recurrent neural networks (RNNs)
are widely used for text classification, they
demonstrate poor performance and slow
convergence when trained on long sequences.
When text is modeled as characters instead of
words, the longer sequences make RNNs a
poor choice. Convolutional neural networks
(CNNs), although somewhat less ubiquitous
than RNNs, have an internal structure more
appropriate for long-distance character
dependencies. To better understand how
CNNs and RNNs differ in handling long
sequences, we use them for text classification
tasks in several character-level social media
datasets. The CNN models vastly outperform
the RNN models in our experiments,
suggesting that CNNs are superior to RNNs at
learning to classify character-level data.

1 Text Classification with Sequences

Deep learning has transformed text classification
tasks by providing models that can fully account
for word order, whereas previous methods
required simplifications such as treating
documents as a “bag of words.” Recurrent
neural networks (RNNs) are attractive for their
ability to handle variable-length sequences and
have contributed huge improvements to machine
translation (Bahdanau et al., 2015; Cho et al.,
2014) and semantic modeling (Tai et al., 2015;
Socher et al., 2013), among many other areas.

Despite this widespread success, RNNs often
perform poorly on long sequences – common in
document classification – in which the model must
learn representations than span many timesteps.
If two informative tokens are far apart in a
document, a training gradient must maintain
information about one such token while being
backpropagated through the sequence of per-token
learned representations. Formulations like Long

Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) use gating mechanisms
designed to prevent such long-distance gradients
from vanishing (Hochreiter et al., 2001; Bengio
et al., 1994) by allowing constant error flow
through the network; yet empirical results find that
LSTMs fail to learn long-range dependencies.1

Convolutional Neural Networks (CNNs) differ
from RNNs in their internal structure, which
may make them more promising for modeling
long sequences. Whereas RNNs construct a
chain of one hidden state for every input token,
convolutional models can connect input tokens
with paths sublinear in the input sequence’s
length. CNNs have succeeded at text classification
(Kim, 2014; Zhang et al., 2015) and language
modeling (Kim et al., 2016). ByteNet, introduced
by Kalchbrenner et al. (2016), used dilated
convolutions to capture long-range dependencies
in character-level machine translation and achieve
fast training times. Despite these promising
results, prior work has not highlighted specific
tasks or domains in which CNNs are expected to
outperform RNNs.

We consider the task of classifying social media
posts; such user-generated text data contains
many unique words through misspellings, lexical
variation, and slang. Because a word-level
approach requires either an immense vocabulary
or a large proportion of out-of-vocabulary tokens
(Luong et al., 2014), we model the text one
character at a time. This choice allows models to
generalize across misspellings (“hello” vs. “helo”)
or phonetic or emphasized spelling (“hellloo”).
The downside of character-level data is the
dramatic increase in sequence length, which forces
the model to learn longer dependencies. In several
character-level datasets containing informal text,

1See Section 3.3 of Jozefowicz et al. (2016) and Section
4 of Sundermeyer et al. (2012) for two such results.
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Dataset Number
Instances

Number
Labels

Char
Vocab

Max
Length

SST 9.6k 2 97 160
SemEval ’17 62k 3 106 144

Yelp 120k 5 168 768
LID utf-8 43k 43 1365 128
LID Bytes 43k 43 198 288

Table 1: The datasets used for character based
sequence classification evaluations.

we show CNNs vastly outperform RNNs while
training several times faster.

2 Data

We consider the task of sequence classification, a
form of document classification where a sequence
model is used to produce a single label for a piece
of text. Following work that has demonstrated
the advantage of character based sequence models
for informal text (Vosoughi et al., 2016), we
treat the text as a sequence of characters. We
consider datasets formed from Twitter posts or
single sentences, since these are lengthy enough to
force the model to learn long-range dependencies,
yet short enough to train our RNN models quickly
enough on a single GPU. We set a maximum
length (divisible by 16) for each dataset, so as
to make the longest sequences more manageable
while maintaining most of the variability in
lengths. We truncate sequences longer than the
maximum length and pad shorter sequences with
a unique token. Table 1 summarizes our datasets.

SST Movie Reviews: The Stanford Sentiment
Treebank (SST) dataset (Socher et al., 2013)
contains 9.6k sentences extracted from a corpus
of rottentomatoes.com movie reviews,
labeled for sentiment by crowdsourced annotators.
We use the binary-classification version of the
dataset, discarding the 3-star neutral reviews. We
look only at entire sentences, and do not use
any of the shorter-phrase annotations or parse tree
data from the treebank. We use the published
splits from the dataset’s authors. The vocabulary
size is 96 characters. The average and median
sequence lengths were 100 and 103 characters. We
truncated all sequences at 160 characters, roughly
the 90th percentile of all lengths.

SemEval 2017: The task of Twitter sentiment
tagging from SemEval 2017 (Task 4, Subtask A)
provides 62k English tweets labeled for positive,
neutral, or negative sentiment (Rosenthal et al.,

2017). The training data is a compilation of
all previous SemEval datasets. We use the 4k
tweets from the 2013 competition’s test data
as our development set. We use the provided
train and test splits: 46k training and 12k test
examples. We preprocess by converting URLs and
‘@-mentions’ into special tokens. The training
data has a vocabulary of 106 characters. The
average and median sequence lengths were 103
and 110 characters. We truncated all sequences
at 144 characters, roughly the 95th percentile.

Yelp Reviews: The 2015 Yelp Dataset
Challenge2 provides a dataset of 4.7M reviews of
restaurants and businesses which contain text and
a one- to five-star rating. We randomly sample
120k reviews from the dataset and use 100k for
training, and 10k each for development and test
sets. We limit the character vocabulary to the
168 characters that appear at least 10 times. The
average and median sequence lengths were 613
and 437 characters. We truncated all sequences at
768 characters, roughly the 75th percentile.

Twitter LID: Twitter provides a multilingual
dataset3 for language identification (LID) of
tweets (Bergsma et al., 2012). We used the
recall-focused dataset but were only able to
download a subset of the original tweets and so
limited our experiments to the 43 languages for
which we could download at least 1000 tweets.
We preprocessed this dataset in two ways: using
the utf-8 encoding and using the raw byte strings.
For the utf-8 data, we limit the vocabulary to the
1365 characters that appear at least 10 times. The
average and median sequence lengths were 69 and
64 characters. We truncated utf-8 sequences at 128
characters, roughly the 95 percentile of lengths.
For the raw bytes data, we use the entire 198
character vocabulary. The average and median
sequence lengths were 118 and 102 characters.
We truncated byte sequences at 288 characters,
roughly the 95th percentile.

3 Models

We consider several recurrent and convolutional
models for character based sequence classification
tasks. For each model, we feed the learned
representation through two 256-dimensional

2https://www.yelp.com/dataset/challenge
3https://blog.twitter.com/2015/evaluating-language

-identification-performance
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fully-connected layers to produce an output
distribution over labels.

3.1 Recurrent Neural Networks

We consider both Long Short-Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU) networks
(Chung et al., 2014), two variants of RNNs
that use gating to mitigate vanishing gradients.
In contrast to LSTMs, GRUs do not have an
output gate and thus have fewer parameters.
For both types of RNNs, we experimented
with unidirectional and bidirectional models, and
stacking up to a depth of three layers, with hidden
dimensions between 128 to 512. This gives us
model sizes from 250k to 14M parameters.

Attention mechanisms, which learn a weighted
average of the hidden states, have become popular
for sequence-to-sequence tasks (Bahdanau et al.,
2015). However, in our classification setting
attention means a weighted average across hidden
dimension. As a simpler attention baseline we use
max-pooling to reduce across the time dimension.

3.2 Convolutional Neural Networks

Recent interest in CNNs for NLP has resulted
in new model architectures. We explore several
of these in our comparison. Additionally,
initial experiments with average-pooling, and
other techniques to reduce convolutional outputs
across the time dimension, found that global
max-pooling worked best for all CNNs.

CNN-A We consider an extremely simple CNN
model which is just a stack of convolutional layers.
The model can be implemented in a few lines
of Tensorflow code. For hyperparameters, we
considered filter widths of 1, 2, and 3, with either
128 or 256 filters per convolution, and model
depths from 1 to 4 layers, with and without
layer normalization, and with and without relu
activations. Following (Yu and Koltun, 2015),
we double the convolutional dilation at each
subsequent layer. This gives us model sizes
ranging from 20k to 800k parameters.

CNN-B This is a popular CNN model
introduced by Kim (2014). At each layer of
the network, the model concatenates the outputs
of multiple convolutions with different filter
widths. Although this has been more widely
used in text classification tasks, it is still quite a
simple model to implement. We considered one-

and two-layer models, with local max-pooling
between the layers. The minimum filter width was
two and the maximum was either three or five.
We used either 128 or 256 filters per layer. This
gives us model sizes ranging from 100k to 1.8M
parameters.

ByteNet Kalchbrenner et al. (2016) introduced
a convolutional model for character-level machine
translation, using dilated convolutions (Yu
and Koltun, 2015) and residual multiplicative
blocks (Kalchbrenner et al., 2017). This is a
much more complicated convolutional model.
Their experiments demonstrate state-of-the-art
performance on character-level language
modeling with a Wikipedia dataset. We vary
the number of multiplicative blocks from two to
three and the number of dilated convolutions per
block from three to five. We used a filter width of
two and either 128 or 256 filters per convolution.
This gives us model sizes ranging from 200k to
6M parameters.

3.3 N-gram Baseline

As an alternative to our neural sequence models,
we also compare against character n-gram models
which do not take token order into account. We
train these with the sklearn SGDClassifier
using logistic loss and L2 regularization
(Pedregosa et al., 2011). We train models on
character 3-, 4-, and 5-grams, and consider
regularization parameters in the range from
0.0005 and 5. We pick the n-gram size and
regularization parameter on the dev set before
evaluating on the test set.

3.4 Model Training

We use cross-entropy loss as our training objective
for every model. Initial experiments led us to
fix the learning rate at 1e−4 and to use the
Adam optimizer (Kingma and Ba, 2014) with beta
parameters of 0.85 and 0.997. We embedded
character inputs before feeding them into the
CNN or RNN models, learning 512-dimensional
embeddings for the LID utf-8 dataset and
64-dimensional embeddings for all other datasets.

We trained each model for 200 epochs, with
early stopping based on a search for a stable
plateau in held-out dev accuracy. Specifically,
for each three-epoch window we calculate the
minimum dev accuracy in that window. Our
results in Table 2 report the test accuracy from the
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Dataset SST SemEval ’17 Yelp LID utf-8 LID Bytes
N-grams 79.8 59.5 64.6 88.5 90.6

RNN (GRU) 57.9 49.0 60.1 52.1 28.1
CNN-A 72.3 57.5 64.8 72.1 73.2
CNN-B 78.6 59.2 65.3 85.1 85.0
ByteNet 66.4 53.7 63.1 85.6 84.6

Past work 83.1a 66.4b ≈67.6c ≈92d ≈92d

Table 2: Test accuracy for each model architecture, with comparisons to n-gram models and past work. The best
RNN or CNN result is bolded. Past work: aBarnes et al. (2017) compares several models, achieving the best
result with a word-level LSTM. bYin et al. (2017) achieved the shared task’s highest accuracy using a recurrent
CNN (Lei et al., 2016) with an ensemble of word embeddings. cApproximate comparison; we did not compare on
the same splits. Tang et al. (2015) compares several models and found that a word-level Gated RNN performed
best. dApproximate comparison. Jaech et al. (2016) and Blodgett et al. (2017) report F1 scores of 91.2 and 92.8,
respectively, using an LSTM + CNN model.

middle epoch of the best three-epoch dev-accuracy
window.

Using the SemEval 2017 dataset we conducted
a grid search over the hyperparameter settings
listed above. For each RNN and CNN
architecture, we find the best hyperparameter
setting based on dev set accuracy. We then
perform a second grid search over dropout rates
from 0 to 0.4 in increments of 0.1. This resulted
in a total of 150 dev-set experiments: 45%
considering two recurrent architectures and the
remainder split between the three convolutional
architectures. We perform one test evaluation on
each dataset with the best hyperparameters of each
architecture.

4 Results

Table 2 shows our results for each model
architecture on each dataset. For the RNN
baseline, we include the GRU results, which
outperformed the LSTM in every experiment.
Even though we considered more hyperparameter
settings for the RNN models than for any of the
CNN architectures, and despite allowing for larger
RNN models, each convolutional architecture
significantly4 outperformed the recurrent model.
This supports the argument that CNN models are
more naturally suited than RNNs to handle the
lengthy sequences found in character datasets.

Our models do not achieve state-of-the-art
results, in part because we restrict ourselves
to character-level models and did not use any
of the domain-specific approaches common in

4 Using a two-proportion z-test, the worst CNN model is
better than the RNN with p < .0001.

evaluations such as SemEval (Rosenthal et al.,
2017). The past results we include in Table
2 all outperform our best sequence models.
However, many of those results depend upon
domain-specific optimizations which are mostly
independent of the underlying sequence model.

The simpler n-gram models outperform our
best sequence model on four of the five datasets
and are quite close to the best results reported
by past work. As character n-grams (especially
with n=5) are a close approximation to words,
this emphasizes the value of explicit word-level
features. Bag-of-words or “bag of character
ngrams” models naturally model the presence of
a specific word, whereas a character sequence
model must learn to pick that word out from its
surrounding characters. In our sentiment datasets,
it may be that specific words are very indicative
of the sequence labels, which could in part explain
the good performance of the n-gram models. This
suggests that models which combine word and
character features together may be particularly
well-suited to our domain of informal social media
texts (Joulin et al., 2017; Luong and Manning,
2016).

Our work has focused exclusively on the
domain of social media character sequences, but
the need to learn long-distance dependencies is
not exclusive to this domain. Modeling large
documents, while traditionally done at the word
level, can involve very long sequences. The
tradeoffs we explore between CNNs and RNNs
may reappear in such domains.

The two LID datasets demonstrate a clear
trade-off between sequence length and vocabulary
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size. When considering the data as raw bytes,
the sequences are nearly twice as long but have
a much smaller vocabulary size. While the CNN
models easily handle these byte sequences, the
RNN model performs terribly. This may be
because the convolutional filters are able to more
easily group nearby bytes to learn the character
mappings those bytes represent, or simply due to
the increased length.

A further practical benefit of the convolutional
models is their speed. Across all test datasets, an
average training epoch for the CNN-A architecture
was 10-20 times faster than that of the RNN
architecture. On the SST dataset with a sequence
length of 160, this difference was roughly 15
seconds per epoch; on the Yelp dataset with a
sequence length of 768, this difference was nearly
30 minutes per epoch.

5 Limitations and Future Work

We have presented an empirical comparison of
RNN and CNN model architectures for character
sequence classification. Our results indicate that in
this domain, convolutional models perform better
and train faster. Our experimental results do not,
however, give us much insight into which aspects
of CNN models contribute to higher classification
accuracy. Further experiments could help quantify
the benefit of dilated convolutions or of wide
filter widths, and understand the variations in
performance between our CNN architectures.

Our empirical comparison is also limited in
focus to informal social media texts. We did
not consider any sequences that are either very
short (a few words) or are very long (entire
documents). We don’t know whether our decision
to focus on sequences with lengths between
144 and 768 tokens is partially responsible for
the trends we report. Aside from our LID
experiments, we only consider English-language
data with limited character sets and explicit word
segmentation. Additional experiments could also
explore whether the performance gap between
RNNs and CNNs persists in larger datasets with
millions of examples.
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Abstract

In a recipe sharing service, users publish
recipe instructions in the form of a series of
steps. However, some of the “steps” are not
actually part of the cooking process. Specif-
ically, advertisements of recipes themselves
(e.g., “introduced on TV”) and comments
(e.g., “Thanks for many messages”) may often
be included in the step section of the recipe,
like the recipe author’s communication tool.
However, such fake steps can cause problems
when using recipe search indexing or when be-
ing spoken by devices such as smart speakers.

As presented in this talk, we have constructed
a discriminator that distinguishes between
such a fake step and the step actually used for
cooking. This project includes, but is not lim-
ited to, the creation of annotation data by clas-
sifying and analyzing recipe steps and the con-
struction of identification models. Our models
use only text information to identify the step.
In our test, machine learning models achieved
higher accuracy than rule-based methods that
use manually chosen clue words.
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Abstract 

Transcribing handwritten documents to 
create fully searchable texts is an essential part 
of the archival process. Traditional text 
recognition methods, such as optical character 
recognition (OCR), do not work on handwritten 
documents due to their frequent noisiness and 
OCR’s need for individually segmented letters. 
Crowdsourcing and improved machine models 
are two modern methods for transcribing 
handwritten documents. 

Transcription projects on Zooniverse, a 
platform for crowdsourced research, generally 
involve three steps: 1) Volunteers identify lines 
of text; 2) Volunteers type out the text associated 
with a marked line; 3) Researchers combine raw 
transcription data to generate a consensus. This 
works well, but projects generally require 10-15 
volunteer transcriptions per document to ensure 
accuracy and coverage, which can be time-
consuming. Modern machine models for 
handwritten text recognition use neural networks 
to transcribe full lines of unsegmented text. 
These models have high accuracy on standard 
datasets (Sánchez et al., 2014), but do not 
generalize well (Messina and Louradour, 2015; 
Moysset et al., 2014). While modern techniques 
substantially improve our ability to collect data, 
humans are limited in speed and computers are 
limited in accuracy. Therefore, by combining 
human and machine classifiers we obtain the 
most efficient transcription system. 

We created a deep neural network and 
pre-trained it on two publicly available datasets: 
the IAM Handwriting Database and the Bentham 
Collection at University College, London. This 
pre-trained model served as a baseline from 
which we could further train the model on new 
data. Using data collected from the 
crowdsourcing project “Anti-Slavery 
Manuscripts at the Boston Public Library,” we 
re-trained the model in a pseudo-online fashion. 

Specifically, we took existing data, but supplied 
it to the model in small batches, in the same 
order it was collected. To test the model’s 
predictive accuracy, we predicted each new line 
of text from a batch of data before training the 
model on that data. 

After training on 90,000 lines of text, the 
model had an error rate of 12% on previously 
unseen data. This is slightly higher than other 
studies (Sánchez et al., 2014; Sánchez et al., 
2015; Sánchez et al., 2016) which generally 
worked with cleaner, more curated data, 
potentially explaining the difference. This error 
rate also exceeds the 2.5% error rate achieved by 
volunteers when compared to experts. 
Nonetheless, the model performed identically to 
human performance in many cases, which can be 
used to improve transcription speed, if not 
accuracy. 

We plan to incorporate this model into 
the human transcription process by showing the 
predicted transcriptions to volunteers as they 
transcribe. Much of the infrastructure already 
exists within Zooniverse due to the work on 
collaborative transcription done within the Anti-
Slavery Manuscripts project. By showing 
volunteers the machine prediction, there are 
many opportunities for improving efficiency. If 
the computer prediction is correct, the volunteer 
can agree with it without retyping the whole line. 
If the volunteer does not agree, they can either 
correct it, or completely redo the transcription, 
ensuring high accuracy. This process will also 
improve model performance by allowing us to 
focus model training on more difficult text.1 

                                                           
1 Portions of this work are derived from Daniel Hanson’s 
University of Minnesota (UMN) Data Science Master’s 
thesis. This work was funded in part by the UMN Digital 
Arts, Sciences, & Humanities (DASH) program, UMN 
College of Science & Engineering, and NSF-IIS 1619177. 
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