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Abstract

Multimodal search-based dialogue is a
challenging new task: It extends visu-
ally grounded question answering sys-
tems into multi-turn conversations with
access to an external database. We ad-
dress this new challenge by learning a
neural response generation system from
the recently released Multimodal Dialogue
(MMD) dataset (Saha et al., 2017). We
introduce a knowledge-grounded multi-
modal conversational model where an en-
coded knowledge base (KB) representa-
tion is appended to the decoder input. Our
model substantially outperforms strong
baselines in terms of text-based similarity
measures (over 9 BLEU points, 3 of which
are solely due to the use of additional in-
formation from the KB).

1 Introduction

Conversational agents have become ubiquitous,
with variants ranging from open-domain conversa-
tional chit-chat bots (Ram et al., 2018; Papaioan-
nou et al., 2017; Fang et al., 2017) to domain-
specific task-based dialogue systems (Singh et al.,
2000; Rieser and Lemon, 2010, 2011; Young et al.,
2013; Wen et al., 2017).

Our work builds upon the recently released
Multimodal Dialogue (MMD) dataset (Saha et al.,
2017), which contains dialogue sessions in the e-
commerce (fashion) domain. Figure 1 illustrates
an example chat session with multimodal interac-
tion between the user and the system. We focus
on the task of generating textual responses con-
ditioned on the previous conversational history.
Traditional goal-oriented dialogue systems relied
on slot-filling approach to this task, i.e. explicit
modelling of all attributes in the domain (Lemon

et al., 2006; Wang and Lemon, 2013; Young et al.,
2013). On the other hand, previous work on MMD
data used direct learning from raw texts with im-
plicit semantic representation only. This paper
attempts to combine both approaches by learn-
ing to generate replies from raw user input, while
also incorporating Knowledge Base (KB) inputs
(i.e. explicit semantics) into the generation pro-
cess. We discuss how our model is able to handle
various user intents (request types) and the impact
of incorporating the additional explicit semantic
information from the KB into particular targeted
intents. We use user intent annotation and KB
queries provided with the dataset for the purpose
of this work.

Our main contribution is the resulting fully
data-driven model for the task of conversational
multimodal dialogue generation, grounded in con-
versational text history, vision and KB inputs. We
also illustrate a method to improve context mod-
elling over multiple images and show great im-
provements over the baseline. Finally, we present
a detailed analysis of the outputs generated by our
system corresponding to different user intents.

2 Related Work

With recent progress in deep learning, there is
continued interest in the tasks involving both vi-
sion and language, such as image captioning (Xu
etal., 2015; Vinyals et al., 2015; Karpathy and Fei-
Fei, 2015), visual storytelling (Huang et al., 2016),
video description (Venugopalan et al., 2015b,a) or
dialogue grounded in visual context (Antol et al.,
2015; Das et al., 2017; Tapaswi et al., 2016).
Bordes et al. (2016) and Ghazvininejad et al.
(2017) presented knowledge-grounded neural
models; however, these are uni-modal in nature,
involve only textual interaction and do not take
into account the conversational history in a dia-
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U1  SHOPPER: Hi there

A1 AGENT: Hi, anything i can help you with today?

U2 SHOPPER: 1 am here to shop for tapered type casual trousers that my
brother would like .

U3 SHOPPER: he is 26 years of age.

A2  AGENT: Oh. Good

A3 AGENT: let me just make a quick search through my catalogue

A4 AGENT:

\ 04 J
" #L q‘ ‘u

U4  SHOPPER: Are the products in the Sth, 1st and 2nd images suited for
multicoloured pocketted?

A5  AGENT: Yes

Us SHOPPER: And for melange?

A6  AGENT: No

U6e SHOPPER: Show me more images of the 3rd product in some different
directions

A7 AGENT: Sorry i couldnt find any other orientations for this image B

U7 SHOFFER: 1 dont like the 4th image . Show me something in fit as in this "
image

Figure 1: Example chatlog depicting multi-

modal user-agent interaction in a dialogue ses-
sion from the MMD dataset. The system needs
to ground knowledge to generate responses related
to product-specific attributes. We focus on textual
response generation given a fixed-size conversa-
tional history.

logue. In contrast, our system grounds on a KB
while also conditioning on previous dialogue con-
text which is multimodal in nature, consisting of
both textual and visual communication between
the user and the system. We formulate our KB
input from a database query (triggered by the sys-
tem) similar to Sha et al. (2018), as described in
Section 3.2.

Our model belongs to the encoder-decoder
paradigm where sequence-to-sequence models
(Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015) have become the de-facto standard
for natural language generation. However, they
tend to ignore the conversational history in a di-
alogue. The Hierarchical Recurrent Encoder De-
coder (HRED) architecture (Serban et al., 2016,
2017; Lu et al., 2016) addresses this limitation by
using a context recurrent neural network (RNN),
forming a hierarchical encoder. We build upon
these HRED models and refer to them as Text-only
HREDs (T-HRED) in the following. Our model is
most similar to the Multimodal HRED (M-HRED)
of Saha et al. (2017), with context and KB exten-
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Figure 2: Schematic diagram of hierarchical en-
coder described in Section 3.1. Figure 3 depicts
full pipeline of the model using knowledge base
input. In contrast to Saha et al. (2017), we model
over multiple images in a contextual dialogue turn
by combining all ‘local’ representations of multi-
ple images to a ‘global’ image representation per
turn. We show a context of 2 turns for simplicity.

sions (see Section 3).

3 Knowledge grounded Multimodal
Conversational model

While Saha et al. (2017) propose Multimodal
HRED (M-HRED) by extending T-HRED to in-
clude visual context over images, they do not
ground their dialogue context over an external
database. Also, they limit the visual information
by ‘unrolling’” multiple images to just use the last
image of a single turn. For example in Figure 1,
Saha et al. (2017) consider only the last image of
trousers as visual context in Agent’s response A4.
In contrast, we include all the images in a single
turn using a linear layer (see Agarwal et al. (2018)
for a detailed analysis).

In addition, we devise a mechanism to ground
our textual responses on a KB; Figure 3 depicts
the full pipeline of our model. We combine tex-
tual and visual representations at the encoder level
and pass it through the HRED’s context encoder
(cf. Figure 2), which learns the backbone of the
conversation (see Section 3.1). Subsequently, we
inject knowledge from the KB at the decoder level
in each timestep (see Sections 3.2 and 3.3).

Formally, we model a dialogue as a sequence
of utterances (turns) which are considered as se-
quences of words and images:

N
Pg(tl,...t]v): Hpe(tn‘t<n) (1)
n=1

Here ¢,, represents the n-th utterance in a dialogue.
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Figure 3: The full encoder-decoder pipeline of our model. While we have early fusion of textual and
image representations (which act as input to the context encoder, see Figure 2), we employ late fusion of
the knowledge base vector at the decoder level. For simplicity, we show a context of 2 turns.

The whole model is trained using cross entropy on
next-word prediction:

N
J(0) == logP(ynlyo-.. 1) ()

n=1

In the following, we explain all the different com-
ponents of our model. We use the following nota-
tion: ffert, f5@t, fAUY, f&™ and fgec are all GRU
cells (Cho et al., 2014) and gg"¢ is a Convolutional
Neural Network (CNN) image encoder. 6 repre-
sent our model weights. wy,, ,, is the m-th word
in the n-th textual utterance. Similarly, ¢, , and
cm,n Tepresent input at each timestep in the query
and entity encoder (see Section 3.2).

3.1 Hierarchical Encoder

The encoder is formed of the following modules:

Utterance (Text) encoder: We pass each utter-
ance (previous system responses as well as current
user query) in a given context through a text en-
coder. We use bidirectional GRU (f}**") to gener-
ate the textual representation 13" (cf. Eq. (3)).
These textual representations are combined with
image representations in each turn, forming the in-
put for the context encoder.
W = o) B =0 3)
Image encoder: We first extract the ‘local’ im-
age representations for all images in a dialogue
turn (denoted by gg"“(imgy) in Eq. (4)) and con-
catenate them together.! This concatenated vector
is passed through a linear layer to form the ‘global’
image context for a single turn, denoted by A, 7.

hy"? = 1"9([g5" (imgn), . . . 95" (imgx)]) (4)

"We used the VGGnet (Simonyan and Zisserman, 2015)
CNN to obtain the local image representations. Since the
number of images in a turn is < 5, we consider zero vectors
in the absence of images.
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Context encoder: The final hidden representa-
tions from both text encoder hff”fv’}n and image

encoder h%mg are concatenated for each turn and
serve as input to the context RNN (cf. Eq. (5)). On
top of the text and image encoder, this builds a hi-
erarchical encoder modelling the dialogue history.
The final hidden state of the context RNN hS¥* acts
as the initial state of the decoder RNN defined in
Section 3.3.

hflzt — fé:a:t(hc:ct

n—1>

B BEM9]); B =0 (5)

3.2 Knowledge base (KB) input

The KB vector h* in Eq. (8) is formed by concate-
nating the h%"“"? and he" representations. While
our approach is modelled around the MMD dataset
which provides contextual KB queries and profiles
of celebrities endorsing specific products, it can
be applied to other KBs with encoded queries and
(optionally) properties of relevant entities.

< = fg " (1Y amon) (6)
i = f5 (s emn) (7
B = (BT, b (8)
R =0; h§MT =0 )

Query encoder: Each chat session contains
multiple queries to the database which retrieve the
relevant product suited to user requirements at spe-
cific turn. We replicate this query for subsequent
dialogue turns until a new query is triggered by the
system. This query acts as knowledge base for the
model at each turn. We show a sample input to the
model in Figure 4. We used unidirectional GRU
cell to encode the query input A",

Entity encoder: The input to the entity encoder

is a list of entities relevant to the query at hand
(see Figure 5). GRU cells are used to produce the
resulting h<"™. Specifically, the MMD dataset cat-
egorises products into synonym sets (synsets) and



Query:
"search_criteria": {

"name": {"driving shoes": 1.0},
"fit":{"tight": 1.0},

"brand": {"cirohuner": 1.0},
"image_type":{"front": 1.0},
"gender": {"men": 1.0},
"print": {"chain": 1.0}

}

Knowledge base input:
name driving shoes fit tight brand

cirohuner image_type front gender
men print chain

Figure 4: Sample query to the database and corre-
sponding knowledge base input vector.

1

User: what kind of trousers are
endorsed by celebrity cel_2377
Intent: celebrity

Subintent :does_celebrity_endorse_n
Celebrity: cel_237

Celebrity input: boxer briefs

2.

User: which of the celebrities
usually wear similar looking canvas
shoes as in the 2nd image

Intent: celebrity
Subintent: which_celebrity_endorses_n
Synset: canvas shoes

Celebrity input:

cel 987 cel 2 cel 316 cel_101

Figure 5: Two input scenarios for the entity en-
coder depending on the fine grained user intent.
If there is no ‘celebrity’ intent, we have an empty
string as input to the entity encoder.

provides a list of celebrities endorsing each synset
(see Section 4.1 for details).

This input is used specifically for the ‘celebrity’
intent in our model, where the user asks about
celebrities endorsing a product. For each target
prediction with celebrity intent, we first extract
the relevant celebrity profiles using basic pattern
matching over the user utterance. For each of the
celebrities in the user query, we order the corre-
sponding synsets by their probability of endorse-
ment. If no celebrity is found, we use synset infor-
mation from the query to extract celebrities which
endorse the corresponding synset.

3.3 Input feeding decoder

We use an input feeding decoder with the atten-
tion mechanism of Luong et al. (2015). We con-
catenate the KB input 2** with the decoder input
(cf. Eq. (10), where hffg h$F'). The rationale
behind this late fusion of KB representation is that
KB input remains the same for a given context and
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does not change on each turn. On the other hand,
images and textual response together form a con-
text in a dialogue turn and thus we fuse them early
at the encoder level. The decoder is trained using
cross-entropy loss defined in Eq. (2).
hcxt

dec dec (1 dec
h’n,m (h’ n—1»

= Jo n,m—1> Wn,m,

hE L) (10)

4 Experiments and Results

4.1 Dataset

Our work is based on the Multimodal Dialogue
(MMD) dataset (Saha et al., 2017), which con-
sists of 150k chat sessions.” User queries can be
complex from the perspective of multimodal task-
specific dialogue, such as “Show me more images
of the 3rd product in some different directions”.
However, it also heavily relies on the external KB
to answer product attributes related to user queries,
such as “What is the brand/material of the suit in
3rd image?” or “Show something similar to 1st
result but in a different material”. This dataset
contains raw chat logs as well as metadata infor-
mation of the corresponding products. Around
400 anonymised celebrity profiles have been in-
troduced in the system to emulate endorsement in
recommendation, such as “What kind of slippers
are endorsed by cel_1457”. For each dialogue turn,
there are manual annotations of the user intent
available. We use the intents to construct celebrity
encodings. On average, each session contains 40
dialogue turns. The system response depends on
the intent state of the user query and on average
contains 8 words and 4 images per utterance. We
created our own version of the dataset from the
raw chat logs of the dialogue session and metadata
information. As discussed in Section 3.1, this was
necessary to model the visual context over multi-
ple images. We created the KB input to our model
as described in Section 3.2 from the raw chat logs
and the metadata information.

4.2 Implementation

We used PyTorch? (Paszke et al., 2017) for our ex-
periments.* We did not use any kind of delexi-
calisation® and rely on our model to directly learn

2We used the same training-development-test split as pro-
vided by the dataset authors.

*https://pytorch.org/

*Code can be found at:
https://github.com/shubhamagarwal92/mmd

SReplacing specific values with placeholders (Henderson
etal., 2014).


https://pytorch.org/
https://github.com/shubhamagarwal92/mmd

from the conversational history and KB. All en-
coders and decoders are based on 1-layer GRU
cells (Cho et al., 2014) with 512 as the hidden state
size. We used the 4096 dimensional FC6 layer im-
age representations from VGG-19 (Simonyan and
Zisserman, 2015) provided by Saha et al. (2017).
Adam (Kingma and Ba, 2015) was chosen as the
optimizer, and we clipped gradients greater than
5. We experimented with different learning rates
and settled on the value of 0.0004. Dropout of 0.3
is applied to all the RNN cells to avoid overfitting,
and we perform early stopping by tracking the val-
idation loss (with single trial for each experiment).

4.3 Analysis and Results

We evaluate our response generation using the
BLEU (Papineni et al.,, 2002), METEOR (Lavie
and Agarwal, 2007) and ROUGE-L (Lin and Och,
2004) automatic metrics.® We reproduce the base-
line results from Saha et al. (2017) using their code
and data-generation scripts.’

Model | Cxt [ BLEU-4 METEOR ROUGE-L
Saha et al. M-HRED* | 2 0.3767 0.2847 0.6235
THRED | 2 | 04292 03269  0.6692
M-HRED 2 0.4308 0.3288 0.6700
T-HRED-attn 2 0.4331 0.3298 0.6710
M-HRED-attn 2 0.4345 0.3315 0.6712
T-HRED-attn 5 0.4442 0.3374 0.6797
M-HRED-attn 5 0.4451 0.3371 0.6799
M-HRED-kb | 2 | 04573 03436  0.6872
T-HRED-attn—-kb 2 0.4601 0.3456 0.6909
M-HRED-attn—kb 2 0.4624 0.3476 0.6917
T-HRED-attn—kb 5 0.4612 0.3461 0.6913
M-HRED-attn—kb 5 0.4634 0.3480 0.6923

Table 1: Automated evaluation based on BLEU-
4, METEOR and ROUGE-L metrics. Here, ‘M’
represents multimodality while “T” stands for text-
only model. ‘attn’ denotes use of attention and
‘kb’ signifies incorporating Knowledge Base in-
put. ‘Cxt’ represents context size for the dialogue
history.

*Saha et al. was trained on a different version of
the dataset, as discussed in Section 3.

Table 1 summarises the results for our M-
HRED model without incorporating KB informa-
tion. Attention-based models consistently outper-
form their counterparts. Adding the visual in-
puts does not lead to major improvements (M-
HRED vs. T-HRED for a given context). However,

SWe used the evaluation scripts provided by (Sharma
et al., 2017).

"https://github.com/amritasahal812/
MMD_ Code
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Intent | Model BLEU-4
show-similar-to M-HRED-attn 0.9998
M-HRED-attn—kb 1.0
sori-results M-HRED-attn 0.9188
M-HRED-attn—kb  0.9384
suited-for M-HRED-attn 0.6151
M-HRED-attn-kb  0.6216
show-orientation M-HRED-attn 0.5388
M-HRED-attn—kb  0.5854
buy M-HRED-attn 0.2665
M-HRED-attn—kb  0.3179
ask-attribute M-HRED-attn 0.4960
M-HRED-attn—kb  0.5934
celebrity M-HRED-attn 0.2671
M-HRED-attn—kb  0.2725

Table 2: BLEU scores for the entire corpus predic-
tions for specific intents with a context of 5.

grounding in KB gave a stark uplift (M-HRED-
attn—kb vs. M-HRED-attn) for a given context
size. Adding KB input boosts performance more
for a shorter context compared to longer context. It
can be conjectured that the longer context contains
some of the information that is in the KB queries
and so there is less impact of the KB input when
we include the longer context. Compare the dif-
ference for M-HRED-attn—kb vs. M-HRED-attn
for a context of 2 (3 BLEU points) vs. 5 (2 BLEU
points) in Table 1. Conversely, longer context im-
proves more the models without KB queries.

In summary, our best performing model (M-
HRED-attn—kb) outperforms the model of Saha
et al. (2017) by 9 BLEU points. We also anal-
ysed our generated outputs for different user in-
tents, as shown in Table 2. As assumed, intents
such as ‘show-similar-to’ and ‘sort-results’ are rel-
atively easy from the perspective of NLG, requir-
ing no information about the product description;
our model matches the reference almost perfectly.

We found great improvements for the ‘ask-
attribute’ intent where the KB-grounded model
could answer correctly questions related to brand
or colour and other attributes of the product, which
resulted in an increase of 10 BLEU points on test
instances with this user intent (M-HRED-attn—kb
compared to M-HRED-attn). Similarly, in the ex-
ample related to the ‘buy’ intent in Table 3, our
model is able to learn that the product bought by
the user is ‘kurta’, which probably cannot be cap-
tured by the visual features. Hence, M-HRED-
attn produces ‘jeans’ on the output. M-HRED-
attn—kb on the other hand learns this information
from the KB. We also found that our BLEU score
for the ‘show-orientation’ intent has decreased
w.r.t. to the non-KB-grounded model. A detailed


https://github.com/amritasaha1812/MMD_Code
https://github.com/amritasaha1812/MMD_Code

Intent Model Example Text
Text context: yes. | show me something similar to the 1st image but in a different material
Gold Target: the similar looking ones are
show-similar-to KB: name[casual-trousers] gender[women] brand[antigravity] synsets[casual-trousers]
M-HRED-attn Predicted: the similar looking ones are

M-HRED-attn—kb

Predicted: the similar looking ones are

sort-results

Text context: sorry i dont seem to have anything in loop but would you like in slim | sort
these by best seller ranking

Gold Target: sorry i do not have the best seller ranking information for these

KB: name[casual-trousers] gender[women] brand[antigravity] synsets[casual-trousers]

M-HRED-attn

Predicted: sorry i dont have the best seller ranking information for the rest

M-HRED-attn—kb

Predicted: sorry i do not have the best seller ranking information for these

suited-for

Text context: no. | which care might go well with this dupatta?
Gold Target: it will suit well for professional and handwash care
KB: name[dupatta] gender[women] synsets[dupatta] image-type[front] care[handwash]

M-HRED-attn

Predicted: it will suit well for gentle hand care

M-HRED-attn—kb

Predicted: it will suit well for hand wash care

show-orientation

Text context: | show me more images of the 3rd product from some different orientations
Gold Target: sorry i couldnt find any other orientations for this image
KB: name[casual-trousers] gender[women] brand[antigravity] synsets[casual-trousers]

M-HRED-attn

Predicted: image from the front, right, back and left orientations respectively

M-HRED-attn—kb

Predicted: sorry i couldnt find any other orientations for this image

buy

Text context: | i like the 4th one. i think ill buy that one
Gold Target: absolutely , thats a great kurta
KB: name [kurta] color [green] gender [men] synsets [kurta] image-type [front]

M-HRED-attn

Predicted: absolutely , i think thats a great jeans

M-HRED-attn—kb

Predicted: absolutely , i think thats a great kurta

ask-attribute

Text context: yes. | what is the brand in the 1st result?
Gold Target: the blouse in the 1st image has alfani brand
KB: name [blouse] brand [alfani] synsets [blouse] image-type [look] gender [women]

M-HRED-attn

Predicted: the brand in 1st image is topshop

M-HRED-attn—kb

Predicted: the brand in 1st image is alfani

celebrity

Text context: yes. celebrities cel_779, cel_10 and cel_513 also endorse this type of
cufflinks | and celebrity cel 603 for the 1st?

Gold Target: yes

KB Query: name/casual-trousers] gender[women] synsets[casual-trousers]

KB Entity: scarf earrings casual trousers casual shirt

M-HRED-attn

Predicted: no.

M-HRED-attn—kb

Predicted: yes.

Table 3: Examples of predictions corresponding to different user intents, showcasing the effect of ground-
ing in KB. We show textual context as well as relevant knowledge base input (and omit image context)
for brevity’s sake. While our model uses a context of 5, for simplicity, we show only 2 previous turns.

probe found that the orientations for retrieved im-
ages may not directly follow the description in the
query (KB). There are other intents for which even
KB does not help, such as those requiring user
modelling.

5 Conclusion and Future Work

This work focuses on the task of textual response
generation in multimodal task-oriented dialogue
system. We used the recently released Multimodal
Dialogue (MMD) dataset (Saha et al., 2017) for
experiments and introduced a novel conversational
model grounded in language, vision and Knowl-
edge Base (KB). Our best performing model out-
performs the baseline model (Saha et al., 2017) by
9 BLEU points, improving context modelling in
multimodal dialogue generation. Even though our
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model outputs showed a substantial improvement
(over 3 BLEU points) on incorporating KB in-
formation, integrating visual context still remains
a bottleneck, as also observed by Agrawal et al.
(2016); Qian et al. (2018). This suggests the need
for a better mechanism to encode visual context.

Since our KB-grounded model assumes user in-
tent annotation and KB queries as additional in-
puts, we plan to build a model to provide them
automatically.
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