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Abstract

Learning from sparse and delayed reward is
a central issue in reinforcement learning. In
this paper, to tackle reward sparseness prob-
lem of task oriented dialogue management,
we propose a curriculum based approach on
the number of slots of user goals. This cur-
riculum makes it possible to learn dialogue
management for sets of user goals with large
number of slots. We also propose a dialogue
policy based on progressive neural networks
whose modules with parameters are appended
with previous parameters fixed as the curricu-
lum proceeds, and this policy improves perfor-
mances over the one with single set of param-
eters.

1 Introduction

Learning in environments that give agents sparse
and delayed reward is still a central research is-
sue in reinforcement learning, while there are re-
markable successes of deep reinforcement learn-
ing methods(Mnih et al., 2016; Bellemare et al.,
2016; Ostrovski et al., 2017; Vezhnevets et al.,
2017; Riedmiller et al., 2018).

The problem on sparse and delayed reward ap-
pears in reinforcement learning for task oriented
dialogue agents. Contrary to single turn interac-
tions such as chit-chat or question answering (Ser-
ban et al., 2016; Li et al., 2016), task oriented di-
alogue agents often are required to retrieve infor-
mation from external knowledge bases and to learn
the way how the agent reasons with progression
of dialogue tasks over multiple dialog turns(Young
et al., 2013; Williams et al., 2017). This long term
process, however, makes it difficult for Markov
Decision Process to identify the part of an action
sequence that affects progress of dialogue tasks
over multiple turns. Thus, typical agents must
decide from a positive reward, which is obtained

from successful task completion, only at the last
turn.

It is inevitable for practical scalability to use
sparse reward functions, because designing com-
plicated and dense reward criteria over multiple
turns involves domain knowledge and human an-
notators to evaluate dialogue history of large size.
In particular, our aim is to train dialogue policy
agents that cannot obtain positive rewards until the
last turn.

While general and scalable frameworks of task
completion dialogue management have been pro-
posed recently, these frameworks still have had
reward sparseness problem. Li et al. (2017) pro-
posed a general neural dialogue framework which
has scalability and features to solve information
retrieval tasks (TC-Bot), which extended a previ-
ous work on information retrieval dialogue system
(called KB-Info-Bot) to access external knowl-
edge base (Dhingra et al., 2017). While they firstly
proposed a robust end-to-end modularized neural
dialogue system with separated and independently
trainable modules, which are natural language un-
derstanding, dialogue management, and natural
language generation, difficulty in reinforcement
learning with sparse rewards still remains for their
learning method with deep Q-networks (DQN).

In this paper, we propose curriculum learning
based on reward sparseness of user goals, and
agents using progressive neural networks (Rusu
et al., 2016a) to improve the curriculum learning.

Our contribution is two-fold. First, our curricu-
lum learning makes it possible to learn sets of user
goals with large number of slots for which TC-
Bot failed to learn. As the simulation epoch in-
creases, the minimum number of slots that user
goals contain increases.(See an overview in Fig-
ure 1) For example, the minimum number of slots
is two for the first 200 simulation epochs, and is
four for the next 200 ones, and agents are finally
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trained with user goals that contains at least 10
slots. In other words, the more simulation epoch
proceeds, the more sparse reward is obtained from
environments. There are two practical advantages
of this curriculum: (1) our curriculum is domain
free and (2) curriculum data preparation is easy
because our curriculum only depends on the num-
ber of slots of user goals.

Second, the proposed application of progres-
sive neural networks improves knowledge trans-
fer from models trained for easier curriculum
data to models trained for harder one. Progres-
sive neural networks have multiple columns with
weight parameters. At first a progressive neu-
ral network has single column to be trained, then
another column is appended with new parame-
ter set. All parameters of previous columns are
frozen when appended column is training, and the
appended columns can exploit information from
frozen columns. Our aim is to apply this progres-
sive freezing mechanism to exploit information of
the parameters that are trained with easier user
goals of our curriculum, when the latest appended
column is in training with harder user goals. This
progressive exploitation is expected to overcome
the difficulty in the setting that agents start rein-
forcement learning with the hardest user goals.
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Figure 1: Overview of the way how to switch user
goals.

2 Related Work

Task Oriented Dialogue One of the most pop-
ular models to learn task oriented (or goal ori-
ented) dialogue is Partially Observable Markov
Decision Process(POMDP) (Young et al., 2013;
Verena Rieser,, 2010; Gasic et al., 2013). An-
other line of research is end-to-end neural mod-
eling (Serban et al., 2016; Williams and Zweig,
2016; Liu and Lane, 2017a,b; Liu et al., 2018).
While methods based on supervised learning are

proposed in (Bordes et al., 2017; Wen et al., 2017),
they come with the uncertainty of model perfor-
mance for unknown data of interactions with hu-
mans. (Dhingra et al., 2017) proposed Reinforce-
ment Learning dialog agent for learning the way
how to access information of external knowledge
base.
Progressive Neural Networks Originally, the
notion of progressive neural networks is proposed
in the research to transfer learning across multi-
ple tasks and foreknowledge task similarity (Rusu
et al., 2016a). Comparing with the original use
of progressive neural networks, in our application,
each column is not necessary to be trained un-
til convergence, that is, our purpose is to provide
the last column supplemental information, which
is transfered from parameter weights obtained in
environments with more dense reward. An ap-
plication in robotic manipulations show, the way
to adopt models that are trained in 3D simulation
environments to real world physical environments
(Rusu et al., 2016b). Similar to the approach of
this paper, they tried to avoid designing compli-
cated reward functions for application settings in
real world.
Curriculum Learning The first proposition of
the concept of curriculum learning is in (Bengio
et al., 2009). While their curriculum data sets are
based on complexity of shapes and graduation of
colors to train image recognition models and the
vocabulary size to train language models, our pro-
posed curriculum data is based on the number of
slots of user goals to solve goal oriented dialogue
tasks and yields a kind of sub tasks that we can
regard filling one slot as a sub task of filling two
or more slots. The curriculum data set used in our
experiment was created from slot types and their
values of the movie search data set in (Li et al.,
2017). The proposed method trains progressive
neural networks to transfer knowledge across sets
of user goals, and a theoretical relationship be-
tween transfer learning and curriculum learning is
studied in (Weinshall et al., 2018).

3 Reinforcement Learning for Task
Completion Dialogue Management

Task Completion Dialogue

Task completion dialogue management contains
the following elements: user goals, task completed
status, user simulators. These elements constitute
reinforcement learning environments. More spe-
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cific descriptions are as follows.
User goals: User goals contain two kinds of in-
formation : (1) pairs of slots and the values that
users want to inform to systems as a constraint
of items to be retrieved from knowledge base and
(2) slots whose values are unknown for agents but
they want to obtain the values of these slots.
Definition of task completed status: The dia-
logues between agents and users is defined as suc-
cessful, if only if agents have proposed the slots
and values based on retrieved information from
knowledge base such that the following two condi-
tions are satisfied: (1) these slots and values satisfy
the constraints of user goals and (2) proposed slot
types are requested in user goals.
User simulators: User simulators send a dialogue
act, which provides a representation of the hidden
semantics of a user utterance. There are two kinds
of dialogue acts: (1) ones depending on slot types
act like inform or request whose example is repre-
sented as a pair (inform, movie name) and (2)
ones independent of them such as greeting or com-
pleting the task etc.

Reinforcement Learning Agents and
Environments
In here, we provide an explanation on actions of
agents and state representations and reward func-
tions which constitute Markov reward models of
task completion dialogue management.
Agents’ actions: Actions of reinforcement learn-
ing agents are dialogue acts and each dialogue act
has at most one slot. The number of actions, which
is also the dimensionality of action vectors, is the
sum of the following: the number of inform slots,
the number of request slots, and the number of ac-
tions that are independent on slot types.
State representations: State representations that
agents can observe contain multiple kinds of vec-
tors. These vectors include binary vectors repre-
senting subsets of inform slots or request slots, and
include one-hot vectors representing current turn
number. These vectors are necessary for agents
to recognize progress of dialogue tasks. The state
representation also contains information from ex-
ternal knowledge base such as lists of items in
knowledge base that satisfy the users’ requests and
the sizes of these lists. State representations at
time t also contain one-hot vectors of the agent’s
action at time t− 1.
Reward functions: A large positive reward
2Tmax is given to agents if dialogue status have

been successful, and a negative reward −2Tmax is
given for the failed status, where Tmax is the max-
imum number of dialogue turns. We note that each
of agent and user can send an utterance at most a
half of Tmax times. Additionally, for each turn,
the negative reward −1 is given to the agents.

Finally, we describe the way to update deep Q-
networks and a note on initialization of experience
replay memory (ERM). Updates of Q-networks
are performed with Bellman Equation and Mean
Squared Error(MSE). An experience replay mem-
ory stores the transitions of agents. During ini-
tial experience, to avoid the cold start problem,
agents use rule based policy, which essentially re-
quest each slot type, and stores the transitions ob-
tained by this rule based policy. Then, agents start
the training phase of deep Q-learning. Once DQN
agent’s performance on success rate overtakes rule
based policy, ERM is set to an empty list.

4 Proposed Methods

Curriculum of User Goals
In here, we describe our curriculum of user goals.
The purpose of this curriculum is to investigate
the performance of dialogue management for the
set in which only user goals with large number of
slots are contained. Four sets of user goals were
prepared. The minimum number of slots for each
user goal set is showed in Table 1.

Set inf req all
A 1 1 2
B 2 2 4
C 3 3 6
D 6 2 8

Table 1: The minimum number of slots for each
user goal set. The three labels inf, req, all respec-
tively correspond to the number of inform slots,
request slots, and all slots.

Step Range User Goal Set
1 0-199 A ∪B ∪ C ∪D
2 200-399 B ∪ C ∪D
3 400-599 C ∪D
4 600-1200 D

Table 2: Set of user goals selected in each sim-
ulation epoch range of our curriculum. The sets
A,B,C,and D are defined in Table 1

The pairs of the ranges of simulation epochs and
the corresponding set of user goals are showed in
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slot type value
inform slots city Seattle
request slots theater Unknown

Table 3: An example of easy user goals in Step 1.
Users can obtain one of many names of theaters in
Seattle.

slot type value
inform slots starttime 19:00

genre history
date August 31
actor Tom Hanks
city Seattle

request slots theater Unknown
moviename Unknown

Table 4: An example of hard user goals in Step 4.
Users can obtain a name of movie The post and a
name of theater Admiral Theater for moviename
slot and theater slot, respectively.

Table 2. We consider the difficulty of sets of user
goals as follows: the less slots a set of user goals
contains, the easier the set of user goals is. In our
curriculum, at first, a user goal is randomly sam-
pled from the union of all sets of user goals defined
in Table 1. Then, as the step proceeds to the next
one, the easiest set of user goals is removed from
the union.Thus, at last, the set D which contains
only hardest user goals is used for simulation. Ex-
amples of user goals are showed in Table 3 and
Table 4.

We note that our curriculum training method
takes into account the possibly varying order of
slots during training, because agents must fill all
slots which users have informed with an arbitrary
order in our experiments.

There are two remarks of our curriculum. First,
the longest dialog episodes with no redundant
agent’s action are yielded from the set D. That
is, the proposed training process does not concate-
nate dialogs from different sets as training goes on.
Second, each of four sets of user goals in Table 1
has a variety of types of slots, because each set of
user goals was created by choosing random pairs
of slot type and its value.

Thus, the proposed curriculum can be created
from all kinds of data sets of user goals for task
completion dialogue based on slot filling, and the
proposed training process does not depend on data

sets of user goals.
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Figure 2: Training Process via Progressive Nets:
As the curriculum step increases, new columns are
appended. Green modules represent adaptors.

Progressive Neural Dialogue Policy

In here, we describe the notion of progres-
sive neural networks and its applications to our
setting (See Figure 2 for an overview). We
define feature vectors of frozen columns as
h
(<k)
i−1 = [h

(1)
i−1;h

(2)
i−1; ...;h

(k−1)
i−1 ] of dimensional-

ity n
(<k)
i−1 , where the symbol ; denotes concate-

nating. Progressive networks have lateral connec-
tions through which we leverage prior knowledge
to previously learned features and they have their
own activation functions. Before feeding the lat-
eral activations into linear layer, we multiply them
by a trainable scalar called scaling factor, initial-
ized by a random small value to adopt for the
different scales of the different inputs. The hid-
den layer of the non-linear adapter is a projec-
tion onto an ni dimensional subspace. We denote
W

(k)
i ∈ Rni×ni−1 as the weight matrix of layer i

of column k, and denote U (k:j) ∈ Rni×ni−1 as the
lateral connections from layer i − 1 of column j,
to layer i of column k and h0 is the network input.
Thus, the output of the i-th layer of k-th column
is:

h
(k)
i = σ(W

(k)
i h

(k)
i−1 + U

(k:j)
i σ(V

(k:j)
i α

(<k)
i−1 h

(k)
i−1))

, where V (k:j)
i is the projection matrix and α(<k)

i−1

is the scaling factor, σ is ReLU function, and bias
terms are omitted. In our curriculum learning, an
agent has a deep Q-network represented as a pro-
gressive neural network, and new column is ap-
pended when the step in Table 2 is count up. In
our settings, the number of hidden layers is one,
and its size of units is 80.
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5 Experiments

Reinforcement Learning Environments and
Data Set The curriculum data of user goals for the
experiments was created from the movie search-
ing data set used in (Li et al., 2017). The same
reinforcement learning environment and user sim-
ulator in (Li et al., 2017) was used for the experi-
ments.
User Simulator In our experiments, user simula-
tors try to let dialogue agents fill slots which users
have informed. The simulators also inform values
of slots which users have requested as constraints
to retrieve values from a data base. If the sim-
ulators have a slot type which they have not in-
formed yet, they also inform its value. The simu-
lators inform the value I don’t care if agents have
requested values of a slot type which is not con-
tained in inform slots of user goals. For example,
the simulators with the user goal showed in Ta-
ble 4 send the message I don’t care, when agents
have requested the value of slot type price, be-
cause price slot type is not contained in inform
slots in Table 4.
Setup of Experiments RMSprop was used as the
optimizer. The hyper parameters of the optimizer
were set to the following values: the learning rate,
the decay rate and the momentum were, 0.001,
0.999, and 0.1, respectively. With the way simi-
lar to (Li et al., 2017), the error control model that
has two kinds of errors: slot level and intent level
was used. In the experiment, slot level and intent
level correspond to the case where the slot name
is correctly recognized but the slot value is wrong
and the case where a dialogue act itself is wrong-
fully recognized, respectively. For each simulation
epoch there are 100 episodes of dialogue between
users and agents. In each episode of dialogue, a
user can send an utterance at most a half of Tmax

times and an agent can perform in the same way.
Results The success rate (moving average with
window of size 7) of each simulation epoch is
shown in Figure 3. This figure shows that pro-
gressive neural network can make learning faster,
noting that agents were trained for the set D in
Table 1 for simulation epoch more than 600. The
simulation in which agents are trained with only
the user goal set D for all simulation epochs was
also executed. The success rates for this hardest
simulation were 0.0 for all simulation epochs and
for all of six error settings (omitted in Figure 3). In
particular, for the success rates in 3b and 3c, pro-

(a) s:0.05, i:0.0 (b) s:0.05, i:0.1

(c) s:0.10, i:0.0 (d) s:0.10, i:0.1

(e) s:0.15, i:0.0 (f) s:0.15, i:0.1

Figure 3: For slot level error ε and intent level
error δ, the caption of each figure is written as
s:ε,i:δ. Blue lines correspond to curriculum learn-
ing deep-Q-networks, and Orange lines corre-
spond to progressive neural network models.

gressive neural networks improve the performance
for all simulation epoch ranges in Table 2, while
the success rates for progressive networks drop at
switching epochs(200, 400, 600).

6 Conclusion

In this paper, we introduce a curriculum on reward
sparseness of user goals to tackle reward sparse-
ness problem in reinforcement learning for task
completion dialogue management, and this cur-
riculum makes it possible to learn via reinforce-
ment learning of dialogue management task using
user goals with large number of slots. We also pro-
pose a method based on progressive neural net-
works to improve learning performance. Experi-
ments show that progressive neural networks en-
hance the curriculum reinforcement learning.
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