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ETH Zürich, Switzerland

octavian.ganea@inf.ethz.ch

Anna Potapenko
National Research University

Higher School of Economics, Russia∗

anna.a.potapenko@gmail.com

Thomas Hofmann
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Abstract

Previous research on word embeddings has
shown that sparse representations, which can
be either learned on top of existing dense
embeddings or obtained through model con-
straints during training time, have the bene-
fit of increased interpretability properties: to
some degree, each dimension can be under-
stood by a human and associated with a rec-
ognizable feature in the data. In this paper, we
transfer this idea to sentence embeddings and
explore several approaches to obtain a sparse
representation. We further introduce a novel,
quantitative and automated evaluation metric
for sentence embedding interpretability, based
on topic coherence methods. We observe an
increase in interpretability compared to dense
models, on a dataset of movie dialogs and on
the scene descriptions from the MS COCO
dataset.

1 Introduction

In the word embeddings literature, it has previ-
ously been of interest to find interpretable repre-
sentations: individual dimensions should capture
a distinct semantic meaning, such that humans are
able to understand why a word is encoded in a par-
ticular vector. With a cognitive plausibility argu-
ment from Murphy et al. (2012), the interpretabil-
ity can be linked to sparse representations: they
argue that the representation should model a wide
range of features in the data and that every sample
should be characterized by the presence of a small
number of key features. Arora et al. (2016) use
this idea to recover and disentangle the different
meanings of polysemous words.

The above-named approaches, as well as those
by Subramanian et al. (2017); Faruqui et al.
(2015), recover an interpretable sparse represen-
tation in a separate, post-processing step on top of
∗Work done during an internship at ETH Zürich.

the uninterpretable, dense embeddings of the orig-
inal model (often word2vec or GloVe). This is
commonly done using sparse coding or a down-
stream model. Additionally to understanding
a model’s intermediate representation, there has
been work on constructing models that inherently
use a sparse embedded representation by learning
it during the training process (Sun et al., 2016;
Chen et al., 2017). This is motivated by the
idea that the model should include the prior that
each word is a sparse combination of disentan-
gled features from the very beginning. In contrast,
when computing dense embeddings first, it is less
likely that this representation will be easily disen-
tanglable in the post-processing step.

Goh (2016) argues that sparse representations
can be used to explain image and sentence embed-
dings as well. To be precise, the author focuses on
encoder-decoder neural networks and uses sparse
coding to recover interpretable features in the la-
tent spaces of a variational autoencoder (Kingma
and Welling, 2013) and an image captioning sys-
tem based on (Vinyals et al., 2015).

In this paper, we aim to use sparse meth-
ods to disentangle sentence embeddings’ dimen-
sions. We focus on a simple sentence autoencoder
model, and apply both a sparse-coding-based post-
processing technique, as well as model constraints
during training time, to obtain sparse vector rep-
resentations of sentences. We aim to increase the
understanding of the latent space, which helps us
gain insight into how the inference and learning
process works by identifying the patterns in the
data that the model learns to recognize and encode
in this representation.

To compare our different approaches, as well as
measure the improvement compared to the base-
line of a dense autoencoder model, we introduce
a novel, quantitative and automated metric of the
mentioned interpretability properties. It is based
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on the notion of topic coherence and further devel-
ops it for the case of sentences. We observe that
the new measure reflects our manual judgment on
the interpretability of the embeddings. Addition-
ally, we track reconstruction quality and perfor-
mance in downstream tasks, showing that sparse
approaches can obtain a remarkable increase in in-
terpretability at a moderate cost in quality.

2 Models

Our models are based on a standard re-
current neural network autoencoder following
the Sequence-to-Sequence architecture (seq2seq;
Sutskever et al., 2014). This architecture is based
on the encoder-decoder scheme, where an encoder
network maps the input to a dense, embedded rep-
resentation z, and a decoder net reconstructs the
input from z. In Section 3, we give a more de-
tailed description of our experimental setup.

2.1 Enforcing Sparsity by Post-Processing
Dense Embeddings

Consider a dataset x1, . . . , xN of N sentences.
We train a dense autoencoder net with a hidden
state size D′ = 500 to convergence, and compute
Z = [z1, . . . , zN ]T ∈ RN×D′ , the vector repre-
sentations of the data arranged as the rows of a
matrix. We follow the approaches by Arora et al.
(2016); Goh (2016) and compute a sparse repre-
sentation of size D = 2000 on top of Z, where all
but k values have to be zero. We do this by solving
the following sparse dictionary learning problem:

E,U = arg min
E,U
||EU− Z||2F ,

s.t. ||ei||0 ≤ k, ||uj ||2 = 1, ∀i, j,
(1)

whereby we obtain E = [e1, . . . , eN ]T ∈ RN×D,
a set of new, sparse vector representations, and
U = [u1, . . . ,uD]T ∈ RD×D′ , a dictionary of
atoms found in Z. We solve this problem with the
k-SVD algorithm (Aharon et al., 2006, we use an
open source implementation called pyksvd1).

The intuition behind this sparse coding ap-
proach is as follows. The atoms U are intended
to represent a wide range of the 2000 most im-
portant features that explain the data in the dense
latent space of the model. By solving this prob-
lem we decompose the intermediate representation
zi of a sample xi into a linear combination ei of

1https://github.com/hoytak/pyksvd

atoms. By constraining ei to a fixed and low spar-
sity level k we aim to disentangle this represen-
tation and therefore increase interpretability. We
refer to this representation as the k-SVD model.

2.2 Enforcing Sparsity during Embedding
Learning

The k-SVD model proposed in the previous sec-
tion obtains sparse representations through solving
two independent problems: finding a fixed-size
vector representation for sentences with a neural
model and, in a separate step, mapping it to an
interpretable, sparse representation. As we men-
tion in the introduction, we conjecture that inter-
pretability can be further increased with an end-to-
end approach. In this section, we introduce mod-
ifications to the model architecture that will force
the neural nets to encode and understand sparse
representations of the data during training time.

We propose an additional layer that is inserted
between the encoder and decoder net. We map the
vector representation z to a vector e of the same
size in a sparsity transformation. The only re-
quirements for this mapping are that the output
e is sparse and differentiable (or that we can de-
fine a custom gradient) to allow backpropagation
through it. We then feed e through the decoder net
instead of z and train the whole net end-to-end. In
the rest of this section, we propose two mappings
for such a sparsity transformation.

k-Sparse.

For this model, we draw inspiration from the
k-Sparse Autoencoder by Makhzani and Frey
(2013). We again introduce a hyperparameter k
and define e by keeping the k largest activations
in z, the support set, and setting all other units to
zero. We backpropagate only through the support
set. This is a simple way of enforcing a hard spec-
ification for the sparsity level as an integral part of
the model.

Sparsemax.

The k-Sparse approach has the drawback of re-
quiring a fixed sparsity level for all samples. To
allow for a variable, per-sample sparsity level, we
use the Sparsemax layer, introduced by Martins
and Astudillo (2016). Sparsemax is an alternative
to Softmax—however, unlike Softmax, it is able to
return sparse probability distributions. It is defined

https://github.com/hoytak/pyksvd
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as:

Sparsemax(z) = arg min
p∈∆D−1

||z− p||22, (2)

where D is the dimensionality of z and ∆D−1

is the (D − 1)-dimensional simplex = {p ∈
RD |1Tp = 1,p ≥ 0}.

Similar to Softmax, Sparsemax supports a tem-
perature mechanism, where a hyperparameter τ
trades off the “confidence” in the output prob-
ability of the largest input unit. To be pre-
cise, as τ approaches 0, the probability distri-
bution Sparsemax

(
z
τ

)
approaches the distribution

peaked on the maximum components of z. Addi-
tionally to Softmax, Sparsemax has the property
that this output distribution becomes increasingly
sparse.

Putting this together, we introduce a hyperpa-
rameter τ and define a sparsity transformation by
defining e = Sparsemax

(
z
τ

)
.

3 Experiments

3.1 Training Details
In our experiments, we use a vocabulary size
of 20,000, with the symbolic words <person>,
<unk>, and <eos> for names and out-of-
vocabulary (OOV) words in the dataset, and the
end-of-sentence marker, respectively. We convert
words to 100-dimensional word embeddings by
looking them up in a trainable matrix V (note
that, in general, this matrix is not sparse—sparsity
is only imposed on the latent space of the sen-
tences2).

Our encoder and decoder nets are recurrent neu-
ral networks that use a single GRU (Cho et al.,
2014) layer. They have the same hidden dimen-
sionality but share no parameters. We obtain the
model predictions as the Softmax of a learned,
affine transformation to 20,000-dimensional space
at every time step of the decoder net. We minimize
the mean cross-entropy loss over all timesteps. We
use a batch size of 64 and the Adam optimization
algorithm.

3.2 Data
We train our models on the Cornell Movie-Dialogs
Corpus and MS Common Objects in Context
datasets (respectively Danescu-Niculescu-Mizil
and Lee, 2011; Lin et al., 2014).

2On a side note, sparsity can be imposed on the word em-
beddings by adding an L1-regularizer to V (Sun et al., 2016;
Chen et al., 2017).

The Movie-Dialogs Corpus is a collection of
movie lines, therefore it contains a wide variety
of different utterences and allows us to explore
general-purpose sentence embeddings. We pre-
process this data by splitting the movie lines into
separate sentences, thereby obtaining more than
500,000 samples. This dataset has no predefined
split; we define a validation and test set by setting
aside 50,000 samples each.

The MS COCO dataset contains images show-
ing scenes with objects in numerous configura-
tions. Every image contains 5 human-annotated
variations of a caption that describe the scene. In
our experiments, we use only these captions and
refer to this as the COCO Captions data. They
total over 600,000 samples and allow us to ex-
plore sentence embeddings of a more narrow lan-
guage: since they merely describe objects and
scenes, they tend to follow the same, simple sen-
tence structure. The dataset comes with a prede-
fined training/validation split.

For tokenizing and splitting movie lines into
sentences we use the NLP library SpaCy3. All our
models are implemented in TensorFlow (Abadi
et al., 2015).

4 A Quantitative and Automated
Evaluation Metric

The most common quantitative interpretability
measure for embeddings (in particular word em-
beddings) is the intrusion test, first introduced in
(Chang et al., 2009). This test involves generat-
ing 5-tuples of samples, where according to the
embeddings model four are related and one stands
out. The better human judges identify the intruder,
the more interpretable the model is considered.

This evaluation method has the drawback of re-
quiring human attention, thereby it is expensive
and slow to evaluate. For our evaluation, we in-
troduce an automated interpretability test, based
on topic coherence, that does not require human
attention. We describe our method in this section.

A topic model defines a set of topics in a cor-
pus of documents and allows us to find the top n
most likely words that belong to each topic. Topic
coherence is an automated evaluation method of
the interpretability of topic models, which has
been shown to correlate well with human as-
sessments (Newman et al., 2010; Mimno et al.,
2011). Given a symmetric similarity measure of

3https://spacy.io

https://spacy.io
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original a room with blue walls and a white sink and door .
reconstruction a room with blue walls and a white sink and windows .
original two cars parked on the sidewalk on the street
reconstruction two buses parked on the curb on the street
original two women waiting at a bench next to a street .
reconstruction two women sit at a park next to a street .
original a car that seems to be parked illegally behind a legally parked car
reconstruction a car that seems to be parked close to a police officer and talking
original a bathroom sink and various personal hygiene items .
reconstruction a bathroom sink and various other hygiene items .
original this is an open box containing four cucumbers .
reconstruction this is an open box makes delicious doughnuts .

Table 1: Typical sentence reconstruction errors by the k-Sparse, k = 15 model, trained on the COCO
Captions data.

two words (e.g. pointwise mutual information),
the coherence of a topic is defined as the mean
pairwise similarity of all pairs of words. The total
topic coherence of the model is the mean coher-
ence over all topics.

We devise an evaluation scheme based on topic
coherence. Instead of looking at words in topics,
we consider the highest-ranked sentences in the di-
mensions of our embeddings and replace the word
similarity measure with a sentence similarity mea-
sure. Let x(p)

d be the sample that has rank p in the
order given by the d-th dimension in the embed-
ding. For a similarity measure sim∗, the coher-
ence of a single dimension d is defined as:

coh∗(d) =
2

n · (n− 1)

n−1∑
p=1

n∑
q=p+1

sim∗(x
(p)
d , x

(q)
d ).

(3)
The coherence of the model is defined as the mean
coherence over all dimensions:

coh∗(1, . . . , D) =
1

D

∑
d

coh∗(d). (4)

In addition, to determine how much the coherence
deteriorates when looking beyond the top ranks,
we consider all non-zero samples of a dimen-
sion and we evaluate Equation 3 on n sentences
sampled at random and without replacement from
{xi | ei,d 6= 0} instead of x(1)

d , . . . , x
(n)
d .

We compute this on the validation set of our
data. We strip all stop words from all sentences.
We consider n = 10 sentences per dimension, un-
less a dimension has a non-zero value for less than
n samples, in which case we compute Equation 3
on all pairs of sentences. In the following, we de-
fine three choices for a sentence similarity mea-
sure sim∗.

Jaccard Similarity. We regard the sentences as
sets of words and compute the Jaccard similarity:

simJ(xi, xj) =
|xi ∩ xj |
|xi ∪ xj |

. (5)

BoW Similarity. We consider the Bag-of-Words
(BoW) vectors bi,bj of the two sentences, i.e. the
vectors with the number of occurrences of each
vocabulary word in xi, xj , respectively. The simi-
larity is defined as the cosine of the angle between
these vectors:

simBoW(xi, xj) =
bT
i bj

||bi||2 ||bj ||2
. (6)

WMD Similarity. The Jaccard and BoW simi-
larity measures have a drawback in that they do
not take semantic relatedness of different words
into account. The Word Mover’s Distance (WMD;
Kusner et al., 2015) remedies this problem: the au-
thors define a document distance measure that re-
lies on the word2vec latent space to make a better
assessment of the semantic distance of sentences,
based on the distance of the words they consist of.
We use the negative WMD to obtain a similarity
measure:

simWMD(xi, xj) = −WMD(xi, xj). (7)

5 Results

5.1 Reconstruction Quality
We start off by looking at the amount of informa-
tion lost by our models due to sparsity constraints.

In general, we observe that as the sparsity level
is decreased, the reconstructions start to dete-
riorate. At low values of k, our sparse mod-
els often fail to restore the exact meaning or
phrasing, but still generate sentences with cor-
rect grammar and related topics. For example,
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ei,d1 xi
1.00 a person laying on a couch with a laying on him
1.00 a cat laying on top of a suitcase laying on the floor .
1.00 a man laying on top of a sandy beach laying next to a surfboard .
1.00 a person laying on a couch with a cat laying in their arms, covering part of

the face .
1.00 a woman is laying on a couch with a boy laying his head on her belly, and a

cat between her legs .
1.00 some cats laying on a dock with their chins laying over the end
1.00 a man laying in bed with a gray cat laying on top of him .
1.00 a number of cows laying in a lot near cars
1.00 a number of items laying on a surface near one another
1.00 two cows laying out together underneath a tree .

(a) This dimension clearly corresponds to sentences that describe a configuration of an object laying on another, whether that
be people on the couch or items on a surface. Coherence score: cohWMD(d1) = −2.32.

ei,d2 xi
0.94 a motorcycle parked outside the doors of a building
0.94 a blue motorcycle parked outside of a building .
0.94 traffic lights on the road showing the street
0.93 food in a bowl sitting on a table
0.92 a yellow train in an outside train station .
0.92 a motorcycle sits on a sidewalk near a building
0.92 a car that is outside in the dirt .
0.92 a red truck parked outside in the snow .
0.91 a boy sitting on a bench at the park
0.91 a black motorcycle is parked on a sidewalk

(b) This dimension seems to capture, with some false positives, different kinds of motor vehicles (motorcycle, train,
car, truck) that are parked (sit, sitting, is outside) somewhere. Coherence score: cohWMD(d2) = −2.83.

ei,d3 xi
0.79 herd of goats in grassy area with herder .
0.64 herd of five zebras grazing in a field
0.63 people are sitting in lounge chairs on the beach .
0.63 a close up of many large kites near the ground
0.63 cows lounge in a field with a mountain backdrop .
0.62 close up of the flower extending from a banana tree stalk
0.61 a group of object on top of a muddy river .
0.61 many plants and umbrellas on the side of the street .
0.58 a close up view of sheets that are on a bed
0.58 room with cramped quarters holding dining table set and extra chairs .

(c) It is not clear which features this dimension captures. Coherence score: cohWMD(d3) = −3.12.

Table 2: Examples of selected dimensions d1, d2, d3 of our k-Sparse, k = 15 model, trained on the
COCO Captions data. We show the 10 highest-ranked samples xi and the coherence cohWMD(d) of each
dimension d. We give more examples of high-coherence dimensions in the appendix, in Table 5.

they turn “waiting at a bench” into “sit
at a park”, “sidewalk” into “curb”, “two
cars” into “two buses”, and similar. The k-
SVD model generally does this less than the other
models but in some cases it fails as well. See ex-
amples of typical reconstruction errors by our k-
Sparse, k = 15 model in Table 1.

5.2 Highest-Ranked Samples

We examine the top samples in the dimensions
of our embedding models and observe that sparse
models often group sentences s.t. they have a com-
mon syntactic element or talk about a common
concept. For example, in our k-Sparse, k = 15

model trained on the COCO Captions dataset,
we identify dimensions that represent sentences
about objects in water, people holding things,
horse (and occasionally bicycle) riders,
sentences starting with common prefixes such as
there is a [...], etc. We give examples in
Table 2 and in the appendix in Table 5. For some
dimensions, this pattern is not only recognizable in
the top ranks but for all samples xi with ei,d 6= 0.

We are able to find such patterns in all sparse
models, but the lower the sparsity level, the more
apparent these patterns become. k-SVD based
models exhibit these properties to a lesser extent.
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Embeddings model Jaccard BoW WMD
COCO Captions 0.05 0.10 −3.12
Movie-Dialogs 0.08 0.16 −2.06

(a) Mean similarity of random sentences

Top 10 samples Random 10 samples
Embeddings model Jaccard BoW WMD Jaccard BoW WMD
dense, 500 dim. AE 0.08 0.14 −3.00 0.06 0.10 −3.12
k-SVD, k = 100 0.07 0.12 −3.08 0.06 0.10 −3.11
k-SVD, k = 50 0.08 0.13 −3.03 0.06 0.11 −3.10
k-SVD, k = 20 0.11 0.18 −2.88 0.06 0.11 −3.08
k-SVD, k = 15 0.11 0.19 −2.86 0.07 0.12 −3.06
k-Sparse, k = 100 0.08 0.14 −3.02 0.06 0.11 −3.09
k-Sparse, k = 50 0.09 0.15 −2.96 0.07 0.12 −3.06
k-Sparse, k = 20 0.11 0.17 −2.85 0.08 0.14 −3.00
k-Sparse, k = 15 0.11 0.18 −2.86 0.08 0.14 −3.01
Sparsemax, τ = 50 0.04 0.07 −3.25 0.03 0.06 −3.27
Sparsemax, τ = 20 0.04 0.06 −3.29 0.03 0.05 −3.35
Sparsemax, τ = 10 0.04 0.07 −3.25 0.03 0.06 −3.31

(b) COCO Captions dataset

Top 10 samples Random 10 samples
Embeddings model Jaccard BoW WMD Jaccard BoW WMD
dense, 500 dim. AE 0.20 0.31 −1.85 0.09 0.16 −2.02
k-SVD, k = 100 0.17 0.24 −1.99 0.09 0.16 −2.01
k-SVD, k = 50 0.17 0.24 −2.01 0.10 0.16 −2.01
k-SVD, k = 20 0.20 0.28 −1.91 0.11 0.18 −2.01
k-SVD, k = 15 0.20 0.29 −1.88 0.12 0.19 −1.98
k-Sparse, k = 100 0.16 0.25 −2.01 0.10 0.18 −2.08
k-Sparse, k = 50 0.16 0.25 −1.95 0.11 0.19 −2.05
k-Sparse, k = 20 0.19 0.30 −1.82 0.13 0.22 −1.99
k-Sparse, k = 15 0.22 0.33 −1.76 0.14 0.23 −1.98
Sparsemax, τ = 50 0.12 0.19 −2.13 0.12 0.19 −2.02
Sparsemax, τ = 20 0.13 0.21 −2.02 0.16 0.23 −1.89
Sparsemax, τ = 10 0.15 0.22 −2.01 0.15 0.22 −1.96

(c) Movie-Dialogs dataset

Table 3: Interpretability of our models, as measured by our topic-coherence-based metric in Equation 4.
We evaluate this equation using three different notions of sentence similarity sim∗. In Equation 3, we
consider 10 random non-zero samples in addition to the 10 highest-ranked samples.

5.3 Quantitative Evaluation

In Table 2 we additionally report the coherence
cohWMD(d) of the presented dimensions d (see
Equations 3, 7). We observe that this score cor-
relates with our empirical assessment of the in-
terpretability of the dimension. For example, we
observe on the COCO dataset that, while unre-
lated groups of sentences usually have a coher-
ence score of < −3, sentences with common
or semantically related subjects and objects have
higher coherence scores (usually between −2.8
and −2.2). Groups of sentences with very close
semantic meaning or large common prefixes have
coherence scores around −2 or higher.

We report the topic coherence of our models
(Equation 4) in Table 3. As rough reference val-
ues for the metrics, we include the mean similar-

ity of pairs of random sentences from the dataset
(estimated on 500 randomly sampled pairs), and
the topic coherence of a 500-dimensional dense
autoencoder model.

In accordance with our empirical observations,
we see an increase in interpretability in the sparse
models. For example, on the COCO Captions
data, a random pair of sentences has a WMD-
based similarity of -3.12, and the WMD-based co-
herence score of a dense autoencoder model is -3.
With the additional sparse coding step on top of
that, we can increase the coherence to -2.86.

5.4 Downstream Tasks

Additionally to the interpretability properties of
sparse sentence embeddings, it is of interest
whether sparsity decreases their usefulness in
downstream tasks. To evaluate this, we use the



206

Embeddings model CR MR SUBJ MPQA SST2 SST5 TREC SICK-E SICK-R STS14 MRPC
dense, 500 dim. AE 65.99 59.37 76.24 73.01 60.63 28.96 77.60 75.50 0.61 0.42 67.25
k-SVD, k = 100 60.48 54.63 69.61 70.73 59.58 25.07 68.20 56.36 0.34 0.18 59.65
k-SVD, k = 50 62.54 55.01 70.47 70.70 57.66 25.84 69.80 58.09 0.34 0.17 60.58
k-SVD, k = 20 62.41 55.53 70.60 71.16 58.76 25.20 70.40 60.26 0.33 0.17 59.94
k-SVD, k = 15 62.91 55.48 70.63 71.25 57.33 23.89 70.20 59.71 0.33 0.16 61.04
k-Sparse, k = 100 65.22 56.09 76.47 72.04 58.98 27.69 72.80 70.33 0.56 0.37 66.72
k-Sparse, k = 50 64.64 57.13 74.74 71.51 59.86 27.42 73.80 71.36 0.55 0.32 66.38
k-Sparse, k = 20 64.53 55.98 73.00 71.65 58.43 26.24 75.60 68.20 0.50 0.25 67.48
k-Sparse, k = 15 67.63 58.24 75.52 71.87 62.16 30.14 76.80 72.50 0.55 0.23 65.45
Sparsemax, τ = 50 64.58 54.60 66.33 69.13 55.46 27.69 65.80 64.28 0.53 0.19 67.88
Sparsemax, τ = 20 63.58 54.58 66.45 70.21 52.94 26.92 64.20 63.95 0.49 0.19 66.90
Sparsemax, τ = 10 63.44 54.60 63.07 69.29 54.53 26.92 61.40 63.02 0.48 0.17 66.49

Table 4: Evaluation of the embeddings from Movie-Dialogs models on various downstream tasks. The
values measure classification accuracy or spearman correlation with human-labeled ground truth (see
Section 5.4); larger values are better.

SentEval framework (Conneau and Kiela, 2018),
which learns downstream models on top of the
provided sentence embeddings to solve a variety
of transfer tasks.

We report the accuracy on the standard classifi-
cation problems the framework provides, namely
binary sentiment of movie reviews (MR), movie
lines (SST2) and product reviews (CR), five-
class sentiment of movie lines (SST5), subjec-
tivity/objectivity (SUBJ), binary opinion polar-
ity (MPQA), and six-class question type (TREC)
classification. To look at semantic entail-
ment/similarity of pairs of sentences, we re-
port Spearman correlation with human-labelled
ground truth on the five-class semantic relatedness
(STS14, SICK-R), and three-class semantic entail-
ment (SICK-E) tasks, and accuracy on the binary
paraphrase detection (MRPC) task.

We configure the framework to use Logistic Re-
gression for downstream models. More details on
the tasks and evaluation methods can be found in
the SentEval paper. We evaluate these tasks on the
Movie-Dialogs models only, because COCO is un-
suited for general-purpose sentence embeddings.

We show the results of this evaluation in Ta-
ble 4. We again observe that sparse representa-
tions perform, in many cases, worse than their
dense equivalent, therefore, trading quality for in-
terpretability4. However, this does not occur on all

4On a side note, we address the noticeable fact that the
transfer tasks are solved with low accuracy in general. For
numbers comparable to the state of the art literature, more
powerful sentence embedding models (such as self-attentive
networks, InferSent, SkipThought etc., see Conneau et al.,
2017; Kiros et al., 2015) with a higher latent dimensionality,
more layers, and a larger and more diverse dataset are re-
quired. Further, SentEval provides slower but more powerful
MLP downstream models instead of Logistic Regression.

tasks: for example, SST2 and SST5 clearly benefit
from a sparse representation.

5.5 Discussion
The results of our quantitative evaluation method
confirm the tendencies we observed in our empir-
ical evaluation. It appears that embedding dimen-
sions generated by sparse models are coherent to a
higher extent—in particular, the lower the sparsity
level, the more apparent topics can be found in the
embedding dimensions.

The price of good interpretability is a higher re-
construction error. As we impose more sparsity in
the representation, the model is forced to “cut cor-
ners” and single slots in the embedding are desig-
nated broader collections of traits in the data. This
results in more coherent topics, however, the nar-
row information bandwidth reduces the decoder
net’s ability to reconstruct the exact sentence. The
fact that sparse representations carry less informa-
tion may also explain the lower utility in some
of the downstream tasks. Other tasks (e.g. sen-
timent classification) can be solved with greater
accuracy, which suggests that a sparse and inter-
pretable representation discovers more useful fea-
tures for a simple downstream model like Logistic
Regression.

As we force a model to deal with a sparse rep-
resentation already during the training phase, find-
ing sensible atoms gets incorporated into the en-
coding and decoding mechanism. We found that,
in comparison to extracting this information from
a dense model’s intermediate representation, this
results in an observable and measurable boost in
interpretability. We can explain this by the fact
that this architecture makes it part of the model’s
task to find a sparse and accurate representation
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of the data, whereas in a post-processing approach
the model focuses on reconstruction only.

On the other side of the coin, this modification
interferes with the training process. To be more
precise, the model follows a more complex objec-
tive, and the sparse layer is limited in the amount
of information that can be forward and backpropa-
gated through it at a time—hence we observe con-
vergence at a higher loss value and bigger recon-
struction errors.

We note that our Sparsemax-based approach
does not perform particularly well in our evalua-
tion, although in some cases it outperforms other
approaches when we consider samples beyond the
10 highest-ranked. This can be explained by the
fact that the sparsity level is not fixed, and that
due to the Sparsemax layer, the embeddings ei are
valid probability distributions. A high value ei,d
does, therefore, not necessarily indicate a strong
presence of feature d in sample i, but also a lack
of other features. On the other hand, Sparsemax
is better at determining feature presence/absence
in general, due to not being constrained to find an
exact number of features.

6 Related Work

As aforesaid, there has been work in the NLP liter-
ature on the interpretability of word embeddings.
Murphy et al. (2012) suggest that sparse embed-
dings can be linked to a disentangled, and thus in-
terpretable, representations. This idea is also ap-
plied in (Arora et al., 2016; Faruqui et al., 2015;
Subramanian et al., 2017), commonly by solving a
sparse dictionary learning problem on top of dense
embeddings. In the papers (Sun et al., 2016; Chen
et al., 2017; Luo et al., 2015), the authors learn
sparse word embeddings during the training phase.
Goh (2016) applies above-named approaches to
image embeddings, and the intermediate represen-
tation of an image captioning model.

Makhzani and Frey (2013) define the k-Sparse
autoencoder. They use a k-Sparse layer in a
shallow autoencoder trained on the MNIST and
NORB datasets, focusing on unsupervised feature
learning, improvement in classification accuracy,
and a fast alternative to sparse coding. Martins
and Astudillo (2016) develop Sparsemax as an al-
ternative to the Softmax layer that is able to output
exactly zero probabilities, their work is focused on
classification problems and attention mechanisms.

Interpretability metrics are usually of inter-

est for word embeddings, where the predom-
inant evaluation method is the word intrusion
test (Chang et al., 2009). Our interpretability met-
ric is based on topic coherence (Newman et al.,
2010), a comparison of different variants of this
method can be found in (Röder et al., 2015).

7 Conclusion

Being able to understand the intermediate repre-
sentation of a neural net increases our model un-
derstanding. In this paper we have taken a step
towards this goal by introducing several sparse
methods for a sentence autoencoder, inspired by
previous work on word embeddings. The evalua-
tion of our proposed models supports our hypoth-
esis that sparse methods benefit the interpretabil-
ity of the embedding. It is intuitive that a vector
restricted to many zero values inevitably carries
less information, and indeed we have found that
this increase in interpretability comes at a cost in
reconstruction quality and, in some cases, utility
in downstream tasks. It is, however, possible to
strike a balance and achieve good interpretability
without a large penalty.

We have devised a novel, automated method
of quantifying said interpretability, based on topic
coherence. In our experiments, we observe that
this evaluation corresponds to our manual assess-
ment of interpretability. It is fully automated, and
therefore cheap and fast to run. It can easily be ex-
tended by using different sentence similarity met-
rics or other topic coherence variants.

An interpretable sentence representation has
further applications beyond model understanding:
for example, it allows us to develop a sentence
similarity measure, that can justify why two sen-
tences are similar. It can also help us under-
stand downstream models on top of sentence em-
beddings. For example, consider the case of a
linear classification model: we can inspect the
largest positive and negative weights and under-
stand which features in a source sentence influence
the model’s decision.

For future work, it suggests itself to apply spar-
sity constraints to more sophisticated sentence
embedding models such as SkipThought or In-
ferSent (respectively Kiros et al., 2015; Conneau
et al., 2017). Our methods can also be used to con-
struct sparse encoder-decoder models for further
tasks, such as image captioning, machine transla-
tion, or recommender systems.
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ei,d4 xi
0.98 a black cat drinking water out of a water faucet .
0.98 the boats are outside on the water sailing .
0.98 several cows drinking water from a water receptacle .
0.98 a boat speeds down open water spraying water behind it .
0.98 two elephants drink water out of a body of water
0.98 a large body of water covered with boats .
0.98 a person stands on water skis in the water .
0.98 a woman is on the water on water skis .
0.98 small boats on water with setting sun behind distant hills .
0.98 a power boat on a body of water with a large water spray behind .

(a) cohWMD(d4) = −2.21

ei,d5 xi
0.99 white vase holding holding an assortment of flowers
0.99 a man holding holding a tennis racquet on a tennis court .
0.99 a man holding holding a giant remote control .
0.99 two bears holding each other outside the surroundings .
0.99 snowboarder holding a pink board being hugged by man in costume .
0.99 baby holding a teething toy in his hand
0.99 a countertop holding a <unk> bowl across from a shelf holding stemware .
0.99 a bird holding a fish in it’s mouth .
0.99 a oven holding two trays of food baking .
0.99 two glasses holding red wine sit on a piece of paper on a wooden surface .

(b) cohWMD(d5) = −2.77

ei,d6 xi
0.97 person riding their skateboard on the street with the cars .
0.94 person riding a skateboard while pushing a stroller
0.94 person riding a horse while the sun sets
0.93 person riding a horse while another horse stands in a field .
0.92 person riding a bicycle while walking two dogs .
0.92 person riding a four wheeler on a beach towards a bridge .
0.91 person riding an elephant as it crosses through a river .
0.91 person riding a horse along shore of a body of water .
0.91 a person riding their bike down a path to a gate with a stop sign .
0.91 person riding down snowy hill on a pair of skis

(c) cohWMD(d6) = −2.21

ei,d7 xi
0.99 there is a brown box on the toilet
0.99 there is a blender with a green mixture in it
0.99 there is a brown bear walking through the woods alone
0.99 there is a clock that is above the building doors
0.99 there is a clock inside of a curvy blue sculpture .
0.99 there is a truck that has something mounted on the top
0.99 there is a boy playing with a tie
0.99 there is a person playing a nintendo wii
0.99 there is a boy playing baseball at the base ball field
0.99 there is a clock on the wall between the two arches .

(d) cohWMD(d7) = −3.47. Note that this dimension has low coherence because the common feature it brings out (there is
a) consists of stop words, which are not considered in our metrics.

ei,d8 xi
1.00 a person is surfing on a shallow wave .
1.00 a person is surfing on a medium sized wave .
1.00 a person is surfing in a on a wave
1.00 a person is surfing on a wave in the ocean .
1.00 a person is surfing a huge wave while staying upright .
1.00 a person is surfing on the waves of an empty ocean .
1.00 a person is surfing on a board at the beach
1.00 a person is surfing in a wave pool .
1.00 a person is surfing on a wave at the beach
1.00 a person is surfing a wave on a surfboard .

(e) cohWMD(d8) = −1.47

Table 5: Highest-ranked samples in a selection of dimensions of our k-Sparse, k = 15 model, trained on
the COCO Captions data, along with the coherence of the dimension.


