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Abstract

Sluicing resolution is the task of identifying
the antecedent to a question ellipsis. An-
tecedents are often sentential constituents, and
previous work has therefore relied on syntac-
tic parsing, together with complex linguistic
features. A recent model instead used partial
parsing as an auxiliary task in sequential neu-
ral network architectures to inject syntactic in-
formation. We explore the linguistic informa-
tion being brought to bear by such networks,
both by defining subsets of the data exhibit-
ing relevant linguistic characteristics, and by
examining the internal representations of the
network. Both perspectives provide evidence
for substantial linguistic knowledge being de-
ployed by the neural networks.

1 Introduction

Sluices are questions where material beyond the
wh-word is missing and must be retrieved from
context. Consider the following example from
Rønning et al. (2018):

(1) If [this is not practical], explain why.

Here, the antecedent is the complete sentential
constituent, this is not practical.

Anand and Hardt (2016) present a sluice res-
olution system, in which candidate antecedents
are required to be sentential constituents. Fur-
thermore, each candidate is represented by fea-
tures manually defined over syntactic dependency
structures. Anand and Hardt report an accuracy
of antecedent selection of 0.72, and a token-level
F1 score 0.72, applied to a dataset based on news
content (Anand and McCloskey, 2015). Rønning
et al. (2018) show that neural network architec-
tures with multi-task learning are able to achieve
comparable results to Anand and Hardt, without
relying on structured syntactic annotation or hand-
crafted features. On a slightly different version of

the news dataset, Rønning et al. report a token-
level F1 score of 0.70, compared to 0.67 for Anand
and Hardt’s system. Furthermore, it is far superior
to Anand and Hardt’s system at adapting from the
newswire to a dialogue dataset.

This is quite surprising as sluicing is tradition-
ally understood to be constituent-based. Two ex-
planations present themselves; first, the traditional
view might simply be wrong – that is, linguistic
structure is not actually needed for ellipsis resolu-
tion. The second, and perhaps more reasonable,
explanation is that Rønning et al.’s multi-task neu-
ral network architectures have learned to extract
and incorporate the relevant linguistic representa-
tions.

In this paper, we investigate the linguistic
knowledge learned implicitly in the experiments
in Rønning et al. (2018). We take two approaches
to this:

1. We select linguistically-defined subsets of the
data, and examine the output of different sys-
tems on these subsets; and

2. we examine activations of the networks, fo-
cusing in particular on the activations associ-
ated with the wh-word that identifies a sluice,
to assess how well the network notices, re-
members, and classifies them.

2 Systems

The two sluicing resolution systems we compare,
are: The linguistic system (AH) by Anand and
Hardt (2016) and the neural network architectures
introduced by Rønning et al. (2018).

2.1 Linguistic System (AH)

The system presented in Anand and Hardt (2016)
defines a set of linguistically motivated features
over pre-parsed input to determine the most likely
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Figure 1: Task hierarchy of the three networks
considered; the tasks are (Ant)ecedent Selec-
tion, (Chunk)ing, Sentence (Comp)ression, (CCG)
super-tagging and (POS) tagging. Plain denotes a
RNN-layer with no associated task.

antecedent among a set of candidates. The candi-
date set consist of all sentential constituents within
a predefined context window of the sluice. AH pa-
rameterizes a log-linear score akin to Denis and
Baldridge (2008) using hill-climbing. Anand and
Hardt (2016) evaluates AH by the accuracy of cho-
sen constituents, but also report token-level F1
scores. We focus on token-F1 score in this paper
to compare with the neural networks as these do
not operate with predefined constituents.

2.2 Neural Network Architectures

We examine three neural network architectures,
all defined in Rønning et al. (2018), and depicted
in Figure 1. In all three systems, the input is
a sequence of tokens without syntactic annota-
tions. All our neural networks use 50 dimensional
fixed GloVe embeddings, obtained by applying the
model in Pennington et al. (2014) on Wikipedia
and Gigaword 5. The sluice expression is not
specifically marked in the text. Instead, a copy of
the sluice expression is prefixed to the sequence.
The networks assign either a begin, inside or out-
side (BIO) label to each token and the task is to
align these with the span of the antecedent. The
three networks are:

BI: This is a single-task, two-layered long-
short-term memory (LSTM) network, with a pro-
jection layer and a softmax layer.

KSG: This is a cascading, three-layered LSTM,
as described by Klerke et al. (2016). The KSG sys-
tem is trained with the following auxiliary tasks:

Chunking: a partial parsing task, in which
we need to identify the boundaries of the
phrases in a sentence; and

Sentence compression: the task of finding
sentence parts that can be dropped without
losing coherence or important information

During an epoch, k batches of size b are sampled
from each of the three tasks such that kḃ is the
number of examples in the antecedent selection
task. We choose batches from each of the auxil-
iary tasks in the fixed order: sentence compres-
sion, chunking, antecedent selection.

RHS: This system also cascades the auxiliary
tasks. However, it uses a different set of auxil-
iary tasks than KGS, computes label embeddings
that are also passed on to subsequent layers, and
has skip connections from the embedding layer to
all layers in the network. RHS uses the auxiliary
tasks described below:

CCG super-tagging: another form of par-
tial parsing, using a more fine-grained tagset.

Chunking: same task as described for KSG.

POS tagging: determining the syntactic cat-
egory (part of speech) of a word in context.

RHS cycles through all data for each of the aux-
iliary tasks during a epoch, only layers up to and
including the layer associated with the tasks cur-
rently being optimized is active during training of
that task. Over the course of an epoch, the net-
work trains on POS, Chunk, CCG-super tagging
and, then, antecedent selection.

Table 1 gives the token-level F1 score for each
system on the dataset used in Rønning et al.
(2018). It also includes the baseline performance
of choosing a random constituent within the two
sentence window of the sluice site. This is the
same window size AH uses to determine its candi-
date set.

System Score
AH 0.67
Random 0.45
RHS 0.70
KSG 0.64
BI 0.54

Table 1: Token-F1 Score on complete test set.

3 Data Subsets

Below we introduce various linguistic dimensions
of the ellipsis resolution data, which we can use to
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study the models’ behavior on subsets of the data,
indirectly probing what linguistic distinctions they
make.

3.1 Adjacency

It is very common for the correct antecedents to be
sentential constituent immediately preceding the
ellipsis site. Call this constituent the adjacent can-
didate to the sluice. The antecedent in Example 1
is adjacent. However, adjacency is not ubiquitous.
We refer to all other candidates as non-adjacent.
Example 2 from Anand and Hardt (2016) is non-
adjacent:

(2) [S−3 Deliveries would increase as a result
of the acquisition ] , [S−2 he predicted ] ,
but [S−1 he would not say by how much ]

The sluice expression how much has S2 as the
adjacent constituent, while the correct antecedent
is the non-adjacent S3. Table 2 gives token-level
F1 scores for all systems with the dataset parti-
tioned by adjacency.

System Adjacent Non-Adjacent Difference
AH 84.8 56.5 28.3
RHS 84.7 65.5 19.2
KSG 74.5 60.6 13.9
BI 62.3 51.0 11.3

Table 2: F1 score for Adjacent vs. Non-adjacent
Sluice Antecedents

All systems score higher with adjacent candi-
dates than with non-adjacent ones, i.e., when the
true antecedent is adjacent. AH scores marginally
higher on adjacent candidates than RHS, but has
a significantly higher difference between adjacent
and non-adjacent compared to the three neural sys-
tems. Since AH has explicit constituency infor-
mation, it makes sense that it would have a high
token-level F1 score, when the antecedent is adja-
cent. For the MTL systems, RHS and KSG, ad-
jacency also makes a big difference in F1 scores,
albeit less than for AH. The smallest performance
drop is seen with BI, the single-task system.

This is somewhat comparable to the case of
subject-verb agreement studied in Linzen et al.
(2016), where it was found that an LSTM could
learn structural information necessary to identify
the subject, but that performance decreased when
the subject was not the nearest noun phrase to the
verb. In their case, the neural model had learned

a representation that was too dependent on adja-
cency information; in our case, it seems like the
neural architectures have successfully learned a
representation that makes them less dependent on
adjacency than the baseline BI system.

3.2 Punctuation/Boundary Tokens

A major difference between AH and the neural
models is that the neural models do not have ex-
plicit marking of the boundaries of candidate an-
tecedents, as AH does. The neural models may,
however, rely on specific tokens that signal these
boundaries. We hypothesize that punctuation can
play this role. Based on this, we would expect that
the neural networks do better when antecedents
are marked by punctuation, while this should mat-
ter less, if at all, to the AH system.

We define the following subsets of the data:
first, we restrict ourselves to cases where the an-
tecedent is adjacent. Then we define three subsets:

• (L) the correct antecedent has a punctuation
token on its left edge

• (R) the correct antecedent has a punctuation
token on its right edge

• (LR) the correct antecedent has a punctuation
token on both its left edge and its right edge

System LR R L
AH 85.0 84.9 85.8
RHS 85.6 85.5 80.7
KSG 75.2 74.1 71.1
BI 62.3 62.3 58.7

Table 3: F1 score for punctuation as boundary to-
ken for antecedent

The results, which are given in Table 3, partially
support our hypothesis. Focusing on LR (where
punctuation marks both edges of the adjacent an-
tecedent), we observe that RHS and KSG see im-
provements of .9 and .7 respectively, while AH is
improved only by .2. This confirms our expecta-
tion that punctuation marking would help the neu-
ral networks more than AH. However, BI is sur-
prising here, since it is not helped at all. Further-
more, the pattern is much less clear when we look
at the cases of R and L. For the R case, we see
that RHS is helped quite a bit, while AH is not;
this again supports our hypothesis. However, we
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are surprised to see that KSG is worse with R than
adjacency overall, and the pattern with L does not
at all support the hypothesis. Thus while our re-
sults are indeed suggestive that punctuation might
play an important role here, the picture seems to
be complicated by other factors.

3.3 Discontinuity

Since the sluicing antecedent is a constituent, it of-
ten consists of a continuous sequence of tokens, as
in Example 1. This is not always true, however; it
is well known that constituents are sometimes dis-
continuous, and this can in fact be observed in our
sluicing data, as in the following example (Anand
and Hardt, 2016):

(3) [S−2 A major part of the increase in cover-
age , [S−1 though Mitchell ’s aides could
not say just how much , ] would come
from a provision providing insurance for
children and pregnant women . ]

Here, the antecedent is A major part of the
increase in coverage would come from a provi-
sion providing insurance for children and preg-
nant women; the tokens constituting S1 are not
included. However, such cases of discontinuous
antecedents are rare in our data – the vast major-
ity of sluice antecedents consist of a continuous
sequence of tokens.

The AH system nearly always selects contin-
uous antecedents, since the underlying syntac-
tic parser is unable to predict discontinuous con-
stituents. The other systems are under no such
constraint; however, implicit linguistic knowledge
might be expected to result in a higher degree of
continuity, which we measure as follows:

1− |holes|
|inner-span|

where the span is the subsequence starting with
the first begin or inside tag and ending with the
last begin or inside tag; the inner-span is the span
without the boundary tags, and holes is the set of
outside tags within the span.

System Contiguity
RHS 84.5
KSG 82.0
BI 78.4

Table 4: Degree of token continuity

BI has a lower degree of token continuity than
the multi-task systems, RHS and SG. This sug-
gests that the multi-task architectures learn im-
plicit knowledge about linguistic constituency.

3.4 Matching Content
Anand and Hardt (2016) point out that, in sluic-
ing, “the wh-phrase must semantically cohere with
the main predicate of the antecedent”, which they
illustrate with example 4. Here S-3 is a more
likely antecedent than S-2 because increase is
more likely to take an implicit extent than predict.
In other words increase is a better match for how
much than predict is.

(4) . [S−3 Deliveries would increase as a re-
sult of the acquisition ] , [S−2 he predicted
] , but [S−1 he would not say by how much
]

To capture this information, Anand and Hardt
collect data on cooccurrences between wh-phrases
and main predicates, and based on this they calcu-
late a feature WHGOVNPMI, the Pointwise Mu-
tual Information (PMI) of the wh-phrase and the
main verb of each candidate. In general, the ad-
jacent candidate S2 would normally be preferred
by the AH system. But this could be overruled by
the fact that the non-adjacent candidate, S3, has a
higher value for the WHGOVNPMI feature.

We wish to explore whether the neural networks
can also take advantage of this information. While
the networks do not have access to the PMI in-
formation Anand and Hardt computed, they do
have access to embeddings for each input word,
and one might imagine that pairs with high PMI
would also tend to be closer in embedding space.
To see why we would expect that, consider that
Anand and Hardt collected statistics on overt WH-
constructions, where the WH-phrase and associ-
ated main predicate would co-occur in close prox-
imity, as in cases like how much it increased, or
why did they attack. Thus highly related such
pairs would tend to cooccur frequently within a
fairly small context window, while less related
pairs would not. The distances of word embed-
dings (such as Glove, used here), tend to reflect
such differences in cooccurence frequency.

To explore this, we examine cases where the
correct antecedent receives a comparatively high
WHGOVNPMI score, but where it is not adjacent
to the sluice (since adjacent antecedents tend to be
chosen as the default option). We define various
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thresholds for the WHGOVNPMI, and define the
subset of only those examples where the correct
antecedent receives a PMI score above that thresh-
old. These should be examples where the PMI
score provides a strong signal about the correct an-
tecedent, although the antecedent is not adjacent to
the sluice. We examine the F1 scores of the sys-
tems on these subsets. As we raise the threshold,
we would expect F1 scores to increase, if the sys-
tem is indeed making use of this information.

Figure 2 shows F1 scores as a function of PMI
score thresholds. For RHS and BI, we do observe
an increase of F1 scores as thresholds increase,
but this is not consistently the case for either AH
or KSG. It is difficult to draw any firm conclu-
sions here. While the plot does not show a consis-
tent pattern for the AH system, (Anand and Hardt,
2016) give feature ablation results that show that
the WHGOVNPMI does make a positive, although
modest, contribution. The plots here suggest that
the word embedding comparisons of the neural
networks might in fact contain more useful infor-
mation than the PMI statistics.

4 Probing the Networks

We probe the networks by examining particular
network states, posing three specific questions that
are fundamental to the sluice resolution task:

• How well does the network distinguish adja-
cent from non-adjacent antecedents?

• How well does the network notice the sluice
word?

• How well does the network remember the
sluice word, when the antecedent is encoun-
tered?

4.1 Classification of Adjacent vs.
Non-adjacent

We collect the final state activation for the network
for each instance, and divide these states into two
classes: in one class, the correct antecedent is ad-
jacent to the sluice, and in the other class it is not.
We perform logistic regression, using class bal-
ancing, with five-fold cross validation.

The MTL systems, RHS and KSG, score higher
than chance, while the single-task baseline is
a bit below chance. KSG performance signif-
icantly better than RHS; however, all networks
are close to chance. From Table 2, we saw that

System Adjacent
RHS 54.3
KSG 55.9
BI 48.0

Table 5: Accuracy of classifying adjacent an-
tecedents from non-adjacent antecedents.

all networks perform substantially worse on non-
adjacent sluices, which suggests the networks are
treating non-adjacent antecedents as if they were
adjacent.

4.2 Noticing the Sluice Word

The AH system uses input in which the sluice oc-
currence is explicitly marked. This is not the case
for the neural networks. Instead, a copy of the
sluice phrase is prefixed to the example. Ideally,
the neural network would remember this phrase
and locate its copy within the text. Then the sys-
tem would search for the antecedent in proximity
to the sluice phrase. The following example illus-
trates the representation for Example 1:

(5) why If this is not practical , explain why .

We term the first occurrence of why a prefixed
wh-word, and the second occurrence is an in-situ
wh-word. Wh-word occurrences that are neither
prefixed or in-situ, are termed other.

We collect all the activations associated with in-
situ wh-words. This is the positive class in our
classification task. Next we collect all activations
associated with wh-words occurring in the data,
when they are not sluice words. This constitutes
the negative class. We perform logistic regression,
again with class balancing. We want to see if the
network activations clearly distinguish the sluice
wh-words from other wh-words.

System Sluiced Wh-word
RHS 78.0
KSG 80.2
BI 76.6

Table 6: Accuracy of classifying wh-words in
sluiced and non-sluiced positions.

Results in Table 6 show that all three networks
are doing substantially better than chance. This
is interesting, since noticing the sluice wh-word
would seem to be a crucial first step in the sluice
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Figure 2: Minimum pointwise mutual information vs token-F1 score on those examples, only thresholds
with at least one hundred examples included in plot.

resolution task. We note further that the acti-
vations from both multi-task systems (KSG and
RHS) provide a better basis for classification than
the baseline BI. We suggest that the linguistic aux-
iliary tasks might explain this difference, since dis-
tinguishing the sluice word is facilitated by knowl-
edge of linguistic structure. It is, however, some-
what surprising that KSG performs better than
RHS on this task, since RHS does better on the
sluice resolution task, overall.

These classification results provide an indica-
tion that, in some sense, the networks are in-
deed noticing whether the wh-words appear in a
sluice or not. We suggest further that this is re-
flected quite directly in network activations. In
general, we suggest that the distance between a
word embedding and its associated activation pro-
vides a measure of how much the network no-
tices that word. Table 7 supports this idea; here,
we compare embedding and activation distances
for prefixed, in-situ and other wh-words. The re-
sults support the idea that in-situ wh-words are no-
ticed the most, as they are crucial to task of deter-
mining the antecedent. The prefix wh-word has
somewhat larger distances, while other wh-words,
which play no role is sluicing, have the highest dis-
tances. Furthermore, we note that the distances
suggest that the KSG system is “best” at noticing
the in-situ wh-word, while BI is worst. In Table

6 the accuracy of in-situ sluice word classification
follows the same ordering.

System other-wh in-situ prefix all
RHS 5.82 5.16 5.33 5.61
KSG 5.61 5.03 5.29 5.43
BI 6.32 5.31 5.61 6.11

Table 7: Average distance between embedding and
activation for same token.

4.3 Remembering Sluice Word at Antecedent

We have shown that the networks are able to dis-
tinguish adjacent from non-adjacent antecedents,
and they are also able to notice the sluice wh-word.
The next question is: Can the network draw a con-
nection between the sluice wh-word and the an-
tecedent? This is fundamental to the task of sluice
resolution – connecting the sluice occurrence with
the antecedent.

To address this question, we propose to measure
how well the sluice wh-word is “remembered” by
the network when the edge of the antecedent is
encountered. We compute the vector distance be-
tween the word embedding for the sluice wh-word
and the state associated with the token appearing
at the edge of the antecedent. We suggest that
this distance provides a metric of how much the
network remembers the wh-word, when the an-
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Forward Backward
System WH-Ant Dist. Avg. Dist. Normalized WH-Ant Dist. Avg. Dist. Normalized
RHS 6.34 10.72 0.59 6.22 11.52 0.54
KSG 5.07 9.47 0.54 5.33 11.08 0.48

BI 5.88 9.99 0.59 5.71 12.37 0.46

Table 8: Euclidean distance between the antecedent left boundary activation and avg. sluice word vector
representation. Distances compared to average Euclidean norm distance between word representations
and activations separated by the same number of tokens as the antecedent sluice pair.

tecedent is encountered. Table 8 shows the rele-
vant measurements, both for the forward and back-
ward directions of the each of the neural networks.
The column WH-Ant Dist gives the average vector
distance between the wh-word embedding and the
state vector when the antecedent is encountered.
The Avg. Dist. column gives a corresponding av-
erage over all token occurrences. Our intention is
to provide a relevant comparison to see if the wh-
word is remembered more than words are in gen-
eral. So the Avg. Dist. column has a weighted
average of the vector distances for all words, us-
ing the distribution of token distances seen for the
WH-Ant Dist values. Finally, the Normalized col-
umn is the ratio, WH-Ant Dist/Avg.Dist.

Overall, we see a strong effect of the networks
remembering the sluice word at the antecedent
site, to a much higher degree than an average word
is remembered. Furthermore, there is a difference
with directionality. Avg Dist is higher in the Back-
wards direction – in general, words are remem-
bered less when moving backwards. But WH-Ant
Dist. is lower in Backward, which makes sense,
since the system needs to keep track of the wh-
word to help identify the antecedent. There are
also modest differences among the three systems.

We would like to see how this develops over
time. Our hypothesis is that the neural networks
will remember the sluice word more at the point
where it is within the antecedent, and less when it
is outside the antecedent. We define four areas of
interest:

1. Between: tokens between the sluice and the
antecedent (Except the Right token)

2. Right: the token just to the right of the an-
tecedent

3. Ant: tokens within the antecedent

4. Left: the token just to the left of the an-
tecedent

In Figure 3, we can observe a modest effect
of the sort we hypothesized: distances are indeed
lower within the antecedent than in the other re-
gions, suggesting that the neural networks do in
fact have a stronger memory of the wh-word at that
point in the computation.

5 Conclusion

Ellipsis resolution is widely believed to require
sophisticated knowledge of linguistic structure.
Thus, it is interesting that the neural architectures
presented by Rønning et al. (2018), are able to
match and even surpass systems like that of Anand
and Hardt (2016), which rely on pre-parsed input
and linguistically engineered features. In this pa-
per, we investigated the linguistic knowledge im-
plicit in the neural models. We have done so in
two ways: (1) We have defined subsets of the data
based on adjacency, boundary tokens, discontinu-
ity, and matching content. In general, we have ob-
served that these linguistic factors clearly play a
role in the network performance, and there is fur-
ther evidence that the systems with MTL have a
higher degree of linguistic sophistication in their
performance, compared to a single task baseline
network. (2) We then examined the internal states
of the networks. Focusing on the wh-word of the
sluice, we have shown that the networks are sensi-
tive to the occurrence of the sluice wh-word. Fur-
thermore, we find some evidence that the networks
remember the wh-word more at the point where
the antecedent is encountered, compared to other
points in the computation.
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