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Abstract

We present a methodology for determining the
quality of textual representations through the
ability to generate images from them. Contin-
uous representations of textual input are ubiq-
uitous in modern Natural Language Process-
ing techniques either at the core of machine
learning algorithms or as the by-product at
any given layer of a neural network. While
current techniques to evaluate such represen-
tations focus on their performance on partic-
ular tasks, they don’t provide a clear under-
standing of the level of informational detail
that is stored within them, especially their abil-
ity to represent spatial information. The cen-
tral premise of this paper is that visual inspec-
tion or analysis is the most convenient method
to quickly and accurately determine informa-
tion content. Through the use of text-to-image
neural networks, we propose a new technique
to compare the quality of textual representa-
tions by visualizing their information content.
The method is illustrated on a medical dataset
where the correct representation of spatial in-
formation and shorthands are of particular im-
portance. For four different well-known tex-
tual representations, we show with a quanti-
tative analysis that some representations are
consistently able to deliver higher quality vi-
sualizations of the information content. Addi-
tionally, we show that the quantitative analy-
sis technique correlates with the judgment of a
human expert evaluator in terms of alignment.

1 Introduction

In this paper, a method is proposed to evaluate the
quality of a textual representation by conditioning
an image generation network on it.

Neural networks implicitly construct represen-
tations of a textual input by learning which fea-
tures are important for the task at hand. It is not
immediately possible however to assess the level

of detail and structure that is retained in such a rep-
resentation. Many systems often complement or
replace the input with pre-trained representations
that have the advantage of being constructed with
a larger unlabeled corpus. Depending on the task,
this practice sometimes significantly improves the
performance of the network (Turian et al., 2010).
On the one hand, this is due to the use of a larger
unlabeled corpus which reduces data sparsity and
thus improves generalization accuracy. On the
other hand, representations often contain higher-
level features that are fundamental for the task
they are trained for. A neural network in a sep-
arate task can thus rely on those features without
having to discover them all over again.

As the field of Natural Language Processing ad-
vances and machine learning models expand to
include multimodal information, the importance
of understanding the level of detail and informa-
tion that is retained in a textual representation only
grows. Obtained representations can be employed
in additional tasks (for example generation, trans-
lation, summarization, etc.) depending on their
ability to capture certain types of information. The
medical domain in particular might benefit from a
better understanding of representations as the in-
dustry moves to adopt deep learning methods in
increasingly intricate applications and researchers
attempt to extract and utilize more complex infor-
mation structures. An example is spatial informa-
tion which is an important quantity in many natu-
ral language applications, yet no explicit method-
ology exists that indicates to what extent that in-
formation is present in textual representations. In
many medical settings, a correct understanding
and representation of such information is crucial.
In thorax radiography, which is the focus of this
paper, textual captions often include detailed find-
ings which relate to specific areas in an X-Ray.
Clinical texts in general, add an extra level of com-
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plexity as they often lack syntactic structure and
employ many shorthands.

Images differ from texts in the sense that the
retained information and generalization of a rep-
resentation are immediately apparent for a human
observer. It is not surprising that the ’human per-
ceptual score’ is a frequently used metric to eval-
uate image generation systems (Borji, 2018). In
this paper we propose a novel method to assess
the quality of textual representations. By creat-
ing images from different textual representations
we show that some representations lack the nec-
essary information to lead to detailed high-quality
images. The textual representations are evaluated
both by comparing the quality of the produced im-
ages compared to the images in the test data, as
well as the alignment between images and cap-
tions. The outcome is determined both by a quali-
tative (human perceptual scores) as well as a quan-
titative (divergence scores) measure. To calculate
the divergence scores, we rely on the methodol-
ogy that estimates distance between two distribu-
tions as introduced by (Danihelka et al., 2017) and
extend it to estimate how well image and text are
aligned in the generated content.

As we show in the results, text-to-image archi-
tectures are indeed suitable to get an immediate
visual estimate of the quality of the representa-
tion and the information contained within. We
will evaluate several common textual represen-
tations that were constructed with unsupervised
learning techniques on both a relatively straight-
forward conditional GAN as well as on a more ad-
vanced StackGan (Zhang et al., 2017) which uses
several stages and a conditioning mechanism that
augments the textual representation.

The contributions of this paper are:

• The formulation of a methodology to visual-
ize and evaluate the information and quality
of different textual representations.

• The extension of a GAN evaluation measure
to evaluate alignment of output with condi-
tional information.

2 Motivation and background

To understand the motivation of this paper, it is
necessary to understand some background on the
different types of textual representations and why
better evaluation methods are necessary. As we

use text-to-image models for evaluation purposes,
we also discuss related research in that area.

2.1 Textual Representations

A textual representation is usually a vector associ-
ated with a piece of text, which may be a charac-
ter, word, sentence, paragraph or document. In its
simplest form, a representation can be a symbolic
ID, such as in a one-hot vector where each dimen-
sion represents an ID. This is essentially a discrete,
symbolic representation that is very sparse in in-
formation as by definition only one dimension is
non-zero. They are also somewhat arbitrary in the
sense that two texts that are near each other in the
code space don’t necessarily share a similar mean-
ing or syntax.

More efficient methods assign particular hand-
engineered or automatically extracted features to
a lower-dimensional vector. One feature can be
stored in exactly one dimension or it could be
shared over many. In this paper we will focus
on the latter, also referred to as distributed rep-
resentations or word embeddings, which is the
traditional method to represent sentences in re-
cent neural network related research. They are
dense, low-dimensional and real-valued (Turian
et al., 2010). Texts that contain similar concepts or
meaning for a typical task end up near each other
in such a distributed representation space which
serves as a proxy for generalized, semantic infor-
mation storage. Word embeddings can be built
with unsupervised training, for example by lever-
aging positional information of texts in a corpus;
with weakly supervised training, for example in an
adversarial setting; or with supervision of output
labels. While this paper focuses on unsupervised
and weakly supervised methods only, the methods
that are described here are applicable to supervised
representations as well.

Well-known methods of creating word embed-
dings are the word2vec algorithms, introduced by
Mikolov et al. (2013a). Word embeddings are usu-
ally constructed with neural networks that predict
the context of a word in a text document. They are
able to scale to large training corpora, thus rep-
resenting large amounts of information and fea-
tures in a relatively small amount of dimensions.
While word2vec word embeddings solely operate
on the word level, extensions have been made that
include information at the level of characters (e.g.
char-CNN-RNN (Kim et al., 2016)), or at higher
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levels such as sentences, paragraphs or documents.
(e.g. skipthought vectors (Kiros et al., 2015) or
doc2vec (Le and Mikolov, 2014)).

While these methods usually are trained on
tasks that reproduce the context of a textual com-
ponent, autoencoders (AE) are trained to recre-
ate the original text in its entirety while implic-
itly learning a compact, distributed representation
as well of the input text along the way. A re-
cent method that builds on the autoencoder ap-
proach is an Adversarially Regularized Autoen-
coder (ARAE) (Kim et al., 2017). Here, the repre-
sentation is built explicitly from an encoder that
is trained as part of an autoencoder as well as
a conventional Generative Adversarial Network
(GAN). Such representations contain semantic in-
formation about the sentence but also discrimina-
tive information that allows the adversarial net-
work to distinguish real samples from fake ones.
As a result, a smoother semantic transition is ap-
parent while traversing the representation space
when compared to an autoencoder. Spinks and
Moens (2018) have applied this technique to cre-
ate textual representations of X-Ray captions and
generate textual output with low perplexity.

The quality of distributed vectors can be as-
sessed with similarity tasks that give a rough
measure of semantic and syntactic information
(Mikolov et al., 2013a,c) but studies by Faruqui
et al. (2016) and Linzen (2016) indeed suggest that
the use of word similarity tasks for the evaluation
of word vectors is problematic and may lead to
incorrect inferences. Schnabel et al. (2015) have
evaluated embeddings with a range of methods,
both intrinsic, such as semantic and syntactic sim-
ilarity, and extrinsic, such as noun phrase chunk-
ing and sentiment classification. For the extrin-
sic tasks, they found that different representations
performed best for different tasks, suggesting that
perhaps there isn’t one optimal representation for
all tasks. Such studies suggest that better method-
ologies and more research is needed into meth-
ods that accurately assess the value of different
continuous representations. This paper addresses
this by focusing on the evaluation of the informa-
tion content of the representation rather than any
task-oriented metric. Lazaridou et al. (2015) also
worked towards a visualization method for text
representations by averaging images of the near-
est neighbors vectors after a cross-modal mapping.
Contrary to this work, their approach did not in-

clude any evaluation mechanism of the outcome
and only focused on individual words.

In this paper, we construct distributed repre-
sentations of sentences with several unsupervised
methods mentioned above. Subsequently, we pro-
pose a new methodology to evaluate the quality of
the learned word embeddings by generating im-
ages from them, thus visualizing the level of detail
and information retained in the different embed-
dings. To understand our methodology, it is use-
ful to discuss some background on text-to-image
models and, more in general, generative models.

2.2 Generative models
Recent text-to-image models rely on advances in
generative models, which are probabilistic mod-
els that estimate a distribution given a certain in-
put. Such generative systems have shown impres-
sive progress in the creation of realistic data, most
notably with Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). In the origi-
nal formulation, GANs are trained by alternately
improving a generator network, G, which aims to
create realistic samples and a discriminator net-
work, D, which tries to distinguish real samples
from generated ones. As training such an archi-
tecture tends to be unstable, several improvements
have been proposed, for example the Wasserstein
GAN (WGAN) (Arjovsky et al., 2017). In this for-
mulation the discriminator is replaced by a critic,
f , that is trained to approximate the Earth-Mover
distance (EM). The EM is an estimate of the mini-
mum amount of effort that is necessary to displace
one distribution to another (Arjovsky et al., 2017).
The loss function to train a GAN with the Wasser-
stein Distance is presented in Equation 1.

min
G
W (G) =

min
G

max
f

Ex∼Pr [f(x)]− Ex̄∼Pg [f(x̄)] (1)

where G is the generator, f is the critic, W is the
Wasserstein distance, and Pr and Pg are the real
and generated data distributions respectively. To
ensure that the approximation to the earth mover
distance is valid, the critic f should be enforced to
be 1-Lipschitz continuous. (Arjovsky et al., 2017)
achieve this by clipping the critic weights between
[−c, c], where c is typically smaller than 1.

Extensions to the GAN setup have been
proposed, such as conditional adversarial net-
works (Odena et al., 2016), and progressively



33

grown GANs (Zhang et al., 2017; Karras et al.,
2017) which have made detailed high resolu-
tion category-dependent image generation possi-
ble. During the training of conditional GANs, the
class or label is passed along to both generator
and discriminator so that the networks implicitly
learn relevant auxiliary information which leads
to more detailed outputs. Progressively grown
GANs rely on low-resolution outputs to learn out-
lines and structures of images that are refined into
smooth visual output at higher resolutions. This
approach is also the essence of cross-modal text-
to-image architectures. Zhang et al. (2017), for
example, have demonstrated how to produce real-
istic images conditioned on textual captions with
a progressive GAN network called StackGAN.

In this paper, we use the StackGAN to visual-
ize textual representations, as well as a simplified
text-to-image architecture based on a GAN. The
information and quality of the produced images al-
low us to evaluate the quality of the different tex-
tual representations. With that goal we will dis-
cuss some methods to evaluate the visual output
of such text-to-image GANs.

2.3 Evaluation measures

As we produce images from text to determine
the quality of the textual representations, accurate
evaluation measures are needed to assess the gen-
erated images. We focus on evaluation measures
for GANs as it is the only type of architecture that
is used to create images in this paper.

Besides human perceptual scores, some recent
advances have been made to assess the quality of
the distribution of the generated output of GANs.
Some of the most widely adopted measures are
the Inception Score (IS) (Salimans et al., 2016)
and the Fréchet Inception Distance (FID) (Heusel
et al., 2017). Both measures have a reasonable
correlation with image quality but also contain un-
desirable properties as explained by Borji (2018).
One large problem is that both use a third-party
network that was trained on a different dataset to
measure the quality of the generated data. It there-
fore assumes that the distribution of the dataset
used in the generation task is similar to the dataset
that the third-party network was trained on. This
assumption is often not fulfilled, particularly if
specialized medical datasets are used.

To solve these issues, Danihelka et al. (2017)
propose using divergence and distance functions

that are normally used for training a GAN. Im et al.
(2018) show that these metrics exhibit consistency
across various models and find that they better
reflect human perceptual scores than the IS and
FID. To calculate how well the generated distribu-
tion has approached the data distribution, an inde-
pendent critic is trained until convergence to dis-
tinguish between generated samples and samples
from the validation set. The WGAN loss is used
and the weights of the original generator are no
longer updated. When applied to output images,
the Wasserstein distance thus can give an estimate
of the divergence between the generated and real
images. This quantity is expressed as Wqual image

in Equation 2.

Wqual image(G,Pr,v) =

max
f1

(Ex∼Pr,v [f1(x)]− Ex̄∼Pg [f1(x̄)]) (2)

where Pr,v refers to the real distribution of the val-
idation data.

Additionally, by evaluating the model that is
trained in Equation 2 on the training and test set,
Danihelka et al. (2017) suggest a method to esti-
mate whether overfitting has occurred. Indeed, if
the model generalizes well to the unseen examples
in the testset, the expected values in Equation 3
should be roughly the same. In this equation Pr,te

and Pr,tr refer to the real distributions of the test
and training set respectively.

E[Wqual image(G,Pr,te)] =

E[Wqual image(G,Pr,tr)] (3)

While this method allows us to judge the output
quality of the images, and by extension the tex-
tual representations, in the following section we
will explain how our methodology extends this ap-
proach in order to evaluate the alignment between
image and text.

3 Method

This paper proposes a methodology that evalu-
ates the quality of textual representations by vi-
sualizing them with text-to-image models. This is
achieved in three separate stages as described in
the following subsections.

3.1 Train and create a textual representation
In this paper 4 different textual representations
are created by training on the captions of the
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Figure 1. Overview of the methodology. A textual representation is first trained and then fed as a con-
ditional input to a text-to-image model, in this figure a StackGAN. The textual representation is fed to
both the first and second stage of an image StackGAN with the goal of creating low- and high-resolution
images x̄1 and x̄2 respectively. From the representation, the augmented conditioning embedding ĉ is
formed. In a final step, the visual output is evaluated.

training set using unsupervised training methods.
As these representations are compared afterwards,
they each need to have the same, fixed dimension.

For the first 2 representations, the typical
word2vec skip-gram word embeddings are used
to build the vectors. A representation for a sen-
tence is built by respectively summing and con-
catenating the individual word embeddings for the
entire sequence. Such a comparison is interesting
as summing (or averaging) word vectors allows
to use high-dimensional word representations, yet
sacrifices word order. Concatenating on the other
hand, requires the use of low-dimensional word
embeddings as the sentence dimension is fixed, but
maintains word order and has been shown to work
well at the input of convolutional networks (Kim,
2014), such as the text-to-image models used in
this paper.

Additionally, the hidden state representation of
an autoencoder is built. The autoencoder, that con-
sists of a 1-layer LSTM encoder and a 1-layer
LSTM decoder, is trained to recreate the input text
with a cross-entropy loss at the word-level.

Finally, we also use the representation produced
by an ARAE, as in section 2.1. The ARAE con-
tains a 1-layer LSTM encoder and 1-layer LSTM
decoder. The generator and discriminator consist
of 3-layer feedforward networks.

3.2 Create images from text
From these representations, images are created
with a text-to-image model, which can be a simple

conditional GAN or a more complex StackGAN.
In the latter, a textual representation t is fed into
a fully-connected net that creates a mean µ and
a variance σ2 from which augmented conditional
representations ĉ are generated. The Kullback-
Leibler divergence (KL-loss) is used to coerce ĉ to
approach a normal distribution N (0, I). This en-
sures smoothness between different input texts and
avoids overfitting when generating images from
captions (Doersch, 2016; Larsen et al., 2015). The
conditional vector ĉ is then concatenated to a noise
vector z′, sampled from a normal distribution, and
fed to the generator.

Such a StackGAN model is trained in two
stages: at a first stage the features of real and
generated images are matched to produce low-
resolution images that lack detail. During the sec-
ond stage, the generator produces larger images,
conditioned on both the augmented conditional
vector ĉ as well as the image output of the first
stage. The training is broken up into the maxi-
mization of the loss of D and the minimization of
the loss ofG as shown in Equations 4 and 5 for the
first stage. Note that a traditional GAN formula-
tion is used in the StackGAN model.

max
D1

LD1 = Ex1∼pd [logD1(x1, t)]+

Ez∼pz ,t∼pd [log(1−D1(G1(z, ĉ), t))] (4)
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min
G1

LG1 =

Ez∼pz ,t∼pd [log(1−D1(G1(z, ĉ), t))]+

λDKL(N (µ1(t),Σ1(t))||N (0, I)) (5)

where pz and pd represent the random normal and
data distribution respectively. t is the textual rep-
resentation and λ is a regularization parameter to
balance the loss between the two terms. Subfix 1
indicates that these equations relate to stage 1.

Note that the StackGAN model is distinct from
more conventional text-to-image architectures not
only in the sense that the former progressively
constructs higher resolution images but also be-
cause of the conditioning augmentation. This
mechanism is particularly important for this exper-
iment, as it essentially augments the different tex-
tual representations. For the simple text-to-image
GAN, which we refer to as TTI-GAN, we use
a GAN architecture without separate stages that
passes the textual representation to both the gen-
erator and discriminator without modifications.

Both generator and discriminator for all text-to-
image architectures (i.e. the TTI-GAN and both
stage-I and stage-II StackGAN) consist of a series
of convolutional up- and down-sampling blocks
respectively. As the text embedding t is passed
to the discriminator it is compressed with a fully-
connected network and replicated to match the di-
mensions of the image.

3.3 Evaluate the output quality

Evaluating the output quality will let us judge the
textual representation quality. In order to do so, we
can rely on Equation 2 to calculate Wqual image.
However, we would also like to have a rough idea
of how well the conditional information is assimi-
lated in the output. We therefore extend the pre-
viously mentioned setup to calculate the diver-
gence between an additional pair of distributions.
Walign im txt in Equation 6 measures the distance
between the aligned image-text distributions by
also feeding the conditional information, in this
case the textual representations, to the critic.

Walign im txt(G,Pr,v) =

max
f2

(Ex∼Pr,v [f2(x, c)]− Ex̄∼Pg [f2(x̄, c)]) (6)

where c is conditional information that corre-
sponds to the current data sample. f2 is distinct
and independent from the critic f1 in Equation 2

but is also trained until convergence on the vali-
dation set. The intuition behind Equation 6 is that
Walign im txt is a measure of the distance between
the real and generated distributions with their con-
ditional information. Thus, Walign im txt should
be smaller for models that take the conditional in-
formation into account when creating the output.

Note that the value of Walign im txt also de-
pends on the chosen textual representation and can
therefore not be used to evaluate alignment of the
TTI-GAN model across different representations.
It can be used in the case of the StackGAN how-
ever as the representations are coerced to approach
a normal distribution with the conditioning aug-
mentation mechanism.

We would also like to get an estimate for the
amount of overfitting that occurs for each textual
representation. For this we rely on the insights of
Equation 3. In Equations 7 and 8 we suggest a
simple method to compare how much overfitting
occurs on both the quality of the images itself, as
well as on the alignment to the captions. By tak-
ing the quotient of the expected values of the eval-
uation of Wqual image and Walign im txt, we can
compare how much overfitting happened for each
entity.

Oqual image = E[Wqual image(G,Pr,te)]/

E[Wqual image(G,Pr,tr)]− 1

(7)

Oalign im txt = E[Walign im txt(G,Pr,te)]/

E[Walign im txt(G,Pr,tr)]− 1

(8)

The entire setup of the methodology is illustrated
in Figure 1 where the StackGAN architecture is
used as the text-to-image architecture.

4 Experiments

The used dataset is the chest X-Ray dataset of
the National Library of Medicine, National Insti-
tutes of Health, Bethesda, MD, USA (Demner-
Fushman et al., 2015). It contains the findings
of the frontal and lateral X-Ray for 3851 patients.
For this work only the frontal X-Rays are retained.
Random crops are performed during training for
data augmentation. As the content in the find-
ings is invariant to the order of the sentences,
up to 4 captions are created for each X-Ray by
selecting different sentences or a different sen-
tence order. Captions that contain less than 30
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Representation Wqual image σ

w2v sum 0.598 0.033
w2v concat 0.239 0.049
AE (*) 0.243 0.032
ARAE (*) 0.219 0.072

Table 1. Quantitative results of 10 runs for the
TTI-GAN visualization method for each of the
representations. A lower Wqual image implies a
better image quality. (*) For both the autoencoder
and ARAE, an outlier was removed.

words are padded to equal length, with a maxi-
mum of 30 words. All words are lowercase and
words with a frequency of less than 5 occurrences
are removed and replaced by an out-of-vocabulary
marker. While the dataset also contains diagnosis
labels for each image, they are not used in this pa-
per. The dataset is divided into training, validation
and test set with 80%, 10% and 10% of the data
respectively.

For the experiments we first create four differ-
ent textual representations on the captions of the
training set, as detailed in section 3.1. Those rep-
resentations are referred to as word2vec (sum),
word2vec (concat), autoencoder and ARAE. To
illustrate the methodology, we set the fixed di-
mension of each representation to 300, which is a
standard dimension for such embeddings, initially
used by Mikolov et al. (2013b) in their analysis of
distributed vectors. For the autoencoder and the
ARAE, training is stopped when the validation er-
ror of the reconstruction is minimal.

To generate images from the text, the TTI-
GAN and StackGAN models are used as explained
in section 3.2. The latter produces images with
higher resolution than the former approach. This
is important as a higher resolution is required to
make an accurate assessment about the alignment
of the X-Ray images to the captions. The expected
outcome is that a textual representation that main-
tains sequential information performs better than
one that does not. Additionally we expect a code
that lies on a regularized smooth space, such as
the code produced by the ARAE, to be more use-
ful than a code that does not.

Finally, we perform two types of experiments,
for which the concrete setup is as follows.

1. As GAN training can be unstable, the TTI-
GAN is trained 10 times for each represen-

Representation Wqual image Walign im txt

w2v sum 2.242 2.239
w2v concat 2.343 2.360
AE 2.360 2.344
ARAE 2.229 2.279

Table 2. Quantitative results for the trained Stage-
2 StackGAN visualization method for each of
the representations. A lower Wqual image and
Walign im txt imply a better image quality and
alignment respectively.

tation. From the evaluation of each, we ob-
tain measures for Wqual image, Oqual image

and Oalign im txt which allow us to compare
the value of the different representations. The
TTI-GAN in our setup produces images with
a resolution of 64x64 pixels.

2. For the StackGAN, we train one model for
each representation, and train an indepen-
dent critic 5 times for each model. As
GAN training can be quite unstable, this
experiment does not allow us to judge the
value of the representations from just one
run. However, we compare our estimates for
Wqual image and Walign im txt to the evalua-
tion of a trained clinician, to confirm that our
methodology correlates with human judg-
ment, both in terms of quality and alignment.
For the first stage of the StackGAN we pro-
duce 64x64 pixel images, while the second
stage outputs higher resolution 256x256 pixel
images. For this experiment, λ was set to
0.05 and c was set to 0.01.

The text-to-image architectures are each trained
during 120 epochs for each of the textual represen-
tations of the captions in the training set. The im-
age quality is then assessed on the images that are
generated from the captions of the validation and
test set. This ensures that we check whether the
learned representations can generalize well to cap-
tions that were never seen during their construc-
tion.

5 Results

In Table 1, the quality of the generated images
of the TTI-GAN model are presented for each of
the representations. Over the ten performed runs,
the TTI-GAN training collapsed once for both the
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Textual Results
Representation #C/#N #U
Ground Truth 20/1=20 4
w2v sum 15/4=3.75 6
w2v concat 12/8=1.5 5
AE 8/8=1.0 9
ARAE 11/7=1.57 7

Table 3. Qualitative assessment by clini-
cians for the produced images of the Stack-
GAN Stage-2 model. Are the caption and the
image congruent? (Congruent(C)/Not congru-
ent(N)/Unclear(U). Higher values of the propor-
tion #C/#N indicate better alignment.

ARAE and autoencoder representations. As those
runs were clear outliers originating from the col-
lapse of GAN training, they were removed from
the results in Table 1. As expected, the ARAE
results do appear to lead to the best overall im-
age quality, followed by the word2vec (concat)
and autoencoder models. The word2vec (sum)
consistently leads to worse solutions. In terms
of Oqual image, the word2vec (concat) model ex-
periences less overfitting in terms of image qual-
ity than the other representations (11.4% versus
15 − 50%), suggesting that such concatenated
word2vec representations, that maintain word or-
der, generalize well.

While the Stage-2 StackGAN results in Table
2 show that the ARAE representations achieve
the highest image quality again, they don’t en-
tirely agree with the TTI-GAN results. This can
be attributed to several causes: 1. The results
for Stage-2 StackGAN only include results for 1
trained model as we would like to compare the
metrics for such a model with the human judg-
ment scores; 2. The Stage-2 StackGAN training
produces more detailed images of higher resolu-
tion so consistent training is more difficult; 3. The
augmented conditioning adds to the original rep-
resentation, likely making the outcome for each
representation more similar. With the exception of
the autoencoder representation, the outcome of the
Stage-2 model, which relies on the outcome of the
first stage, exhibit a lot more overfitting in terms
of both Oqual image and Oalign im txt with values
that range from 126% to 498%.

In order to assess the validity of the quantitative
assessment, a trained clinician carries out a visual
assessment of the produced image samples. We

randomly pick 25 produced images of the Stack-
GAN stage-2 models for each of the textual repre-
sentations. We also selected 25 true caption-image
pairs to compare the models to. The evaluator was
asked to determine for each sample:

• Are the caption and the generated image con-
gruent or conflicting? (Congruent/ Conflict-
ing/ Unclear)

The evaluator was also asked for each image if
it was clearly not a real but generated X-Ray, but
didn’t find that to be the case for any of the images.
This reflects the fact that all Wqual image appear to
be quite similar in Table 2. Note that while our
model produces an output of 256 by 256 pixels,
a higher resolution is still desirable to make accu-
rate judgments about the content of such X-Rays.
In cases where the clinician found that additional
information would be necessary to judge whether
the alignment is correct, the clinician was able to
respond with ”unclear”. Note that this does not
mean that the quality of the image was bad.

The results are shown in Table 3. From the re-
sults, we find that indeed the word2vec summa-
tion model and the ARAE model, that obtained
the best alignment scores Walign im txt according
to our quantitative measures, also appear to be
the best aligned in the human judgment. While
the word2vec concatenation model achieved a
slightly worse Walign im txt score, the clinician
still judged its alignment to be better than the au-
toencoder model for the selected samples, perhaps
reflecting its slightly improved Wqual image over
the autoencoder model.

In Figure 1, a generated image of stage-I and
stage-II is presented along the architecture. While
the Stage-I images capture the structure and main
features of the X-Rays, there is a clear improve-
ment in quality for the stage-II images.

6 Conclusion

In this paper, we have proposed a method to de-
termine the quality of textual representations by
visualizing them with text-to-image models. Af-
ter testing our approach on four different unsuper-
vised text-to-image models, it appears that textual
representations that retain word order and lie on a
smooth representation space, lead to the best qual-
ity of image output. We proposed a method to
judge the alignment of the captions with the vi-
sual output which correlates with the judgment of
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a trained clinician. While only unsupervised rep-
resentations were used in this paper, the method-
ology can be applied to other types of textual rep-
resentations. The results in this paper constitute
a new methodology to evaluate textual represen-
tations through visualization and offer an inter-
esting path for future work. The application of
the method to more complex sentences, different
fields or topics as well as the development of al-
ternative alignment measures are interesting pos-
sibilities for such research.

Acknowledgments
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