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Abstract
We explore the use of residual networks for ar-
gumentation mining, with an emphasis on link
prediction. The method we propose makes no
assumptions on document or argument struc-
ture. We evaluate it on a challenging dataset
consisting of user-generated comments col-
lected from an online platform. Results show
that our model outperforms an equivalent deep
network and offers results comparable with
state-of-the-art methods that rely on domain
knowledge.

1 Introduction

Argumentation mining is a growing sub-area of ar-
tificial intelligence and computational linguistics
whose aim is to automatically extract arguments
from generic textual corpora (Lippi and Torroni,
2016a). The problem is typically broken down
into focused sub-problems such as the identifica-
tion of sentences containing argument components
like claims and premises, of the boundaries of ar-
gument components within such sentences, and
the prediction of the argumentative structure of the
document at hand.

In spite of significant results achieved in com-
ponent identification tasks, such as claim/evidence
detection (Rinott et al., 2015; Lippi and Torroni,
2015; Park and Cardie, 2014; Park et al., 2015b;
Stab and Gurevych, 2014), classification (Eckle-
Kohler et al., 2015; Niculae et al., 2017) and
boundary detection (Sardianos et al., 2015; Levy
et al., 2014; Lippi and Torroni, 2016b; Habernal
and Gurevych, 2017), comparatively less progress
has been made in the arguably more challeng-
ing argument structure prediction task (Cabrio and
Villata, 2012; Stab and Gurevych, 2014).

Again due to the challenging nature of the
general argumentation mining problem, solutions
have typically addressed a specific genre or ap-
plication domain, such as legal texts (Mochales

Palau and Moens, 2011), persuasive essays (Stab
and Gurevych, 2017), or Wikipedia articles (Levy
et al., 2014; Rinott et al., 2015) and have heav-
ily relied on domain knowledge. One particu-
lar aspect of the domain is the argument model.
While argumentation as a discipline has devel-
oped rather sophisticated argument models, such
as Toulmin’s (1958), the majority of the available
argumentation mining data sets refer to ad-hoc,
usually simpler argument models, often in an ef-
fort to obtain a reasonable inter-annotator agree-
ment. Another crucial aspect is the document
structure. For instance, in some domains, certain
argument components occupy a specific position
in the document.

Moreover, until recently, approaches have
mostly used traditional methods such as support
vector machines, logistic regression and naive
Bayes classifiers. Only in the last couple of years
the field has started to look more systematically
into neural network-based architectures, such as
long short-memory networks and convolutional
neural networks, and structured output classifiers.

The aim of this study is to investigate the appli-
cation of residual networks–a deep neural network
architecture not previously applied to this domain–
to a challenging structure prediction task, namely
link prediction. Our ambition is to define a model
that does not exploit domain-specific, highly en-
gineered features, or information on the underly-
ing argument model, and could thus be, at least
in principle, of general applicability. Our results
match those of state-of-the-art methods that rely
on domain knowledge, but use much less a-priori
information.

The next section reviews recent applications of
neural networks to argumentation mining. Sec-
tion 3 presents our model, Section 4 the bench-
mark, and Section 5 discusses results. Section 6
concludes.
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2 Related work

The application of neural network architectures
in argumentation mining is relatively recent. A
study most closely related to ours was presented
by Niculae et al. (2017) and will be described
in greater detail in Section 4. The authors pro-
pose a structured learning framework based on
factor graphs. Their approach imposes constraints
to the graph according to the underlying argu-
ment model, and it includes a joint optimiza-
tion method based on the AD3 algorithm (Mar-
tins et al., 2015), structured Support Vector Ma-
chines (Tsochantaridis et al., 2005) and Recurrent
Neural Networks (Rumelhart et al., 1986). Link
prediction and argument component classification
are performed jointly, reaching state-of-the-art re-
sults on two distinct corpora. In contrast to our
method, Niculae et al.’s heavily relies on a-priori
knowledge.

In the domain of persuasive essays, Eger et al.
(2017) consider several sub-tasks of argumenta-
tion mining, making use of various neural archi-
tectures. These include neural parsers (Dyer et al.,
2015; Kiperwasser and Goldberg, 2016), LSTMs
for joint entity and relation extraction (LSTM-
ER) (Miwa and Bansal, 2016), and Bidirectional
LSTM coupled with Conditional Random Fields
and Convolutional Neural Networks (BLCC) (Ma
and Hovy, 2016) in a multi-task learning frame-
work (Søgaard and Goldberg, 2016). Eger et al.
conclude that neural networks can outperform
feature-based techniques in argumentation mining
tasks.

Convolutional Neural Networks and LSTMs
have been used by Guggilla et al. (2016) to per-
form claim classification, whereas bidirectional
LSTMs have been exploited by Habernal and
Gurevych (2016) to assess the persuasiveness of
arguments. More recently, neural networks have
been applied to the task of topic-dependent ev-
idence detection (Shnarch et al., 2018), improv-
ing the performance on a manually labelled corpus
through the use of unsupervised data. Potash et al.
(2017) have applied Pointer Networks (Vinyals
et al., 2015) to argumentation mining.

Looking beyond argumentation mining, Lei
et al. (2018) reviews the application of several
deep learning techniques for sentiment analysis,
while Conneau et al. (2017) for the first time ap-
plies very deep residual networks to NLP-related
task and successfully performs text classification

at the character level. Small residual convolu-
tional networks have been successfully applied
by Zhang et al. (2018) to multi-label classification
on medical notes and by Huang and Wang (2017)
to distantly-supervised relation extraction, where
a knowledge base is used to generate a noisy set of
positive relations among unlabeled data.

3 Residual networks for argument
mining

Residual networks (He et al., 2016a,b) are a recent
family of deep neural networks that achieved out-
standing results in many machine learning tasks,
in particular in computer vision applications such
as medical imaging (Yu et al., 2017), computa-
tional linguistics (Bjerva et al., 2016), crowd flow
prediction (Zhang et al., 2017), and game play-
ing (Cazenave, 2018; Chesani et al., 2018).

The core idea behind residual networks, illus-
trated by Figure 1, is to create shortcuts that link
neurons belonging to distant layers, whereas stan-
dard feed-forward networks typically link neurons
belonging to subsequent layers only. This kind of
architecture usually results in a speedier training
phase, and it usually allows to train networks with
a very large number of layers. The original ar-
chitecture exploits convolutional layers, but it can
be generalized to dense (fully-connected) layers.
The motivation behind residual networks is that if
multiple non-linear layers can asymptotically ap-
proximate a complex functionH(x), they can also
asymptotically approximate its residual function
F (x) = H(x)− x. The original function is there-
fore obtained by simply adding back the residual
value: H(x) = F (x) + x.

The architecture we propose in this paper makes
use of the dense residual network model, along
with an LSTM (Hochreiter and Schmidhuber,
1997), to jointly perform link prediction and argu-
ment component classification. More specifically,
our approach works at a local level on pairs of sen-
tences, without any document-level global opti-
mization, and without imposing model constraints
induced, e.g., by domain-specific or genre-specific
hypotheses. For that reason, it lends itself to inte-
gration with more complex systems.

3.1 Model description

One of our aims is to propose a method that ab-
stracts away from a specific argument model. We
thus reason in terms of abstract entities, such as
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Figure 1: General schema of a residual network with a
single residual block with three hidden layers.

argumentative propositions and the links among
them. Such abstract entities are instantiated into
concrete categories, such as claims and premises,
supports or attacks, as soon as we apply the
method to a domain described by a specific dataset
whose annotations follow a concrete argument
model. In particular, in this work we instantiate
our model with the categories proposed by Nicu-
lae et al. (2017) for the annotation of the CDCP
corpus.

In general, a document D is a sequence of to-
kens, i.e., words and punctuation marks. An ar-
gumentative proposition a is a sequence of con-
tiguous tokens within D, which represents an ar-
gument, or part thereof. A labeling of propositions
is induced by the chosen argument model. Such a
labeling associates each proposition with the cor-
responding category of the argument component it
contains.

Given two propositions a and b belonging to the
same document, a directed relation from the for-
mer (source) to the latter (target) is represented as
a → b. Reflexive relations (a → a) are not al-
lowed.

Each relation a → b is characterized by two la-
bels: a (Boolean) link label, La→b, and a relation
label, Ra→b. The link label indicates the presence
of a link, and is therefore true if there exists a di-
rected link from a to b, and false otherwise. The
relation label instead contains information on the
nature of the link connecting a and b. In particu-
lar, it represents the direct or inverse relation be-
tween the two propositions, according to the links

that connect a to b or b to a. In other words, its
domain is composed, according to the underlying
argument model, not only by all the possible link
types (e.g., attack and support), but also by their
opposite types (e.g., attackedBy and supportedBy)
as well as by a category, none, meaning absence
of link in either direction.1

One objective is to establish the value of the link
label La→b for each possible input pair of propo-
sitions (a, b) belonging to the same document D.
Such a link prediction task can be considered as
a sub-task of argument structure prediction. An-
other objective is the classification of propositions
and relations, i.e., the prediction of labels Pa, Pb,
Ra→b. That is also jointly performed, as in (Nic-
ulae et al., 2017). Notice, however, that Niculae
et al. do not predict Ra→b relations, but only link
and proposition labels.

3.2 Embeddings and features
Since the purpose of this work is to evaluate deep
residual networks as an instrument for argumen-
tation mining, without resorting to domain- or
genre-specific information, the system relies on a
minimal set of features that do not require elabo-
rate processing.

Any input token is transformed into a 300-
dimensional embedding by exploiting the GloVe
pre-trained vocabulary (Pennington et al., 2014).
Input sequences are zero-padded to the length of
the longest sequence (153 tokens). The distance
between two propositions could also be relevant to
establishing whether two components are linked.
We thus employed the number of propositions that
separate two given propositions as an additional
feature. Following previous works in the game do-
main, where scalar values have been encoded in
binary form (Silver et al., 2016; Cazenave, 2018;
Chesani et al., 2018), we represented distance us-
ing as a 10-bit array, where the first 5 bits are
used in case that the source precedes the target,
and the last 5 bits are used in the opposite case.
In both cases, the number of consecutive “1” val-
ues encodes the value of the distance (distances
are capped by 5). For example, if the target pre-
cedes the source by two sentences, the distance is
−2, which produces encoding 0001100000; if the
source precedes the target by three sentences, the
distance is 3, with encoding 0000011100. In this

1Given the none category, label La→b could, in principle,
be induced by label Ra→b, but it is still convenient to keep
both during the optimization process.
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way, the Hamming distance between two distance
value encodings is equal to the difference between
the two distance values.

3.3 Residual Network Architecture
The network architecture is illustrated in Figure 2.
It is composed by the following macro blocks:

• two deep embedders, one for sources and
one for targets, that manipulate token embed-
dings;

• a dense encoding layer for feature dimension-
ality reduction;

• an LSTM to process the input sequences;

• a residual network;

• the final-stage classifiers.

Source and target propositions are encoded sepa-
rately by the first three blocks, then they are con-
catenated together, along with the distance, and
given as input to the residual network.

The deep embedders refine the token embed-
dings, thus creating new, more data-specific em-
beddings. Relying on deep embedders instead
of on pre-trained autoencoders, aims to achieve a
better generality, at least in principle, and avoid
excessive specialization, thus limiting overfitting.
The dimensionality reduction operated by the
dense encoding layer allows to use an LSTM with
fewer parameters, which has two positive effects:
it reduces the time needed for training, and again
it limits overfitting.

The deep embedders are residual networks
composed by a single residual block, composed by
4 pre-activated time-distributed dense layers. Ac-
cordingly, each layer applies the same transforma-
tion to each embedding, regardless of their posi-
tion inside the sentence. All the layers have 50
neurons, except the last one, which has 300 neu-
rons.

The dense encoding layer reduces the size of
the embedding sequences by applying a time-
distributed dense layer, which reduces the em-
bedding size to 50, and a time average-pooling
layer (Collobert et al., 2011), which reduces the
sequence size to 1/10 of the original. The result-
ing sequences are then given as input to a single
bidirectional LSTM, producing a representation of
the proposition of size 50. Thus, for each proposi-
tion, 153 embeddings of size 300 are transformed

first into 153 embeddings of size 50, then into 15
embeddings of size 50, and finally in a single fea-
ture of size 50.

Source and target features, computed this way,
alongside with the distance encoding, are then
concatenated together and given as input to the
residual network. The first level of the network
is a dense encoding layer with 20 neurons, while
the residual block is composed by a layer with 5
neurons and one with 20 neurons. The sums of the
results of the first and the last layers of the residual
networks are provided as input to the classifiers.

The final layers of the system are three indepen-
dent softmax classifiers used to predict the source,
the target, and the relation labels. The output of
each classifier is a probability distribution along
all the possible classes of that label. The pre-
dicted class is the one with the highest score. All
these three classifiers, which predict labels for two
different tasks, contribute simultaneously to our
learning model. The link classifier is obtained by
summing the relevant scores produced by the rela-
tion classifier.2

All the dense layers use the rectifier activa-
tion function (Glorot et al., 2011), and they ran-
domly initialize weights with He initialization (He
et al., 2015). The application of all non-linearity
functions is preceded by batch-normalization lay-
ers (Ioffe and Szegedy, 2015) and by dropout lay-
ers (Srivastava et al., 2014), with probability p =
0.1.

4 Benchmark

4.1 Dataset

We evaluated our model against the Cornell eRule-
making Corpus (CDCP) (Niculae et al., 2017).
This consists of 731 user comments from a eRule-
making website, for a total of about 4,700 proposi-
tions, all considered to be argumentative.3 The ar-
gument model adopted is the one proposed by Park
et al. (2015a), where links are constrained to form
directed graphs. Propositions are divided into 5
classes: POLICY (17%), VALUE (45%), FACT

2For instance, if our model considers attack and support
relations as the only possible links, and the relation classifier
scores are attack = 0.15, support = 0.2, attackedBy = 0.1,
supportedBy = 0.05, none = 0.5, then the link classifier
scores are: true = 0.35, false = 0.65.

3In an effort to obtain comparable results, we applied
same preprocessing steps described in (Niculae et al., 2017),
enforcing transitive closure and removing nested proposition,
even though our approach does not take into account the ar-
gumentation model, nor its properties.
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Figure 2: A block diagram of the proposed architec-
ture. The figure shows, next to each arrow, the dimen-
sionality of the data involved, so as to clarify the size
of the inputs and the outputs of each block.

(16%), TESTIMONY (21%) and REFERENCE
(1%). Links are divided between REASON (97%)
and EVIDENCE (3%). Figure 3 shows an anno-
tated document from the CDCP corpus.

Link prediction is a particularly difficult task
in the CDCP dataset, where only 3% of all the
possible proposition pairs (more than 43,000) are
linked. A preliminary analysis of the data suggests
that the number of propositions separating source
and target (distance) could be a relevant feature,
since most linked propositions are not far from
each other. Indeed, as Figure 4 shows, around 70%
of links are between adjacent propositions.

We tokenized documents using a hand-crafted
parser based on the progressive splitting of the to-
kens and search within the GloVe vocabulary. We
preferred not to use existing tools because of the
nature of the data, since the CDCP documents of-
ten do not follow proper writing conventions (such
as the blank space after the period mark), leading
in some cases to a wrong tokenization. As a result,
the number of tokens not contained in the GloVe
dictionary dramatically reduced from 384, origi-
nally obtained with the software provided by Nic-
ulae et al. (2017), to 84. Each of these tokens was
mapped into a randomly-generated embedding.

Table 1: Experimental dataset composition.

Split Train Valid. Test Total

Documents 513 68 150 731

Propositions 3,338 468 973 4,779
Values 1438 231 491 2160
Policies 585 77 153 815
Testimonies 738 84 204 1026
Facts 549 73 124 746
References 28 3 1 32

Couples 30,056 3,844 9,484 43,384
Links 923 143 272 1,338
Reasons 888 139 265 1292
Evidences 35 4 7 46

4.2 Structured Learning
The state of the art for the CDCP corpus is the
work described by the corpus authors themselves
(Niculae et al., 2017). They use a structured learn-
ing framework to jointly classify all the proposi-
tions in a document and determine which ones are
linked together. To perform the classification, the
models can rely on many factors and constraints.
The unary factors represent the model’s belief in
each possible class for each proposition or link,
without considering any other proposition or link.
For each link between two propositions, the com-
patibility factors influence link classification ac-
cording to the proposition classes, taking into ac-
count adjacency between propositions and prece-
dence between source and target. The second-
order factors influence the classification of pairs of
links that share a common proposition, by mod-
eling three local argumentation graph structures:
grandparent, sibling and co-parent. Furthermore,
constraints are introduced to enforce adherence to
the desired argumentation structure, according to
the argument model and domain characteristics.

The authors discuss experiments with 6 dif-
ferent models, which differ by complexity (the
type of factors and constraints involved) and by
how they model the factors (SVMs and RNNs).
The RNN models compute sentence embeddings,
by exploiting initialization with GloVe word vec-
tors, while the SVMs models rely on many spe-
cific features. The first-order factors rely on the
same features used by Stab and Gurevych (2017),
both for the propositions and the links. These
are, among the others, unigrams, dependency tu-
ples, token statistics, proposition statistics, propo-
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Figure 3: Argumentation structure in one of the documents of the CDCP corpus.

Figure 4: Link distribution in the CDCP dataset with
respect to distance. The distance is considered posi-
tive when the source precedes the target, negative oth-
erwise.

sition location, indicators from hand-crafted lex-
icons and handcrafted ones, shared phrases, sub-
clauses, depth of the parse tree, tense of the main
verb, modal verbs, POS, production rules, type
probability, discourse triplets (Lin et al., 2014),
and average GloVe embeddings. The higher-
order factors exploit the following features be-
tween all three propositions and between each
pair: same sentence indicators, proposition order,
Jaccard similarity, presence of any shared nouns,
and shared noun ratios. The overall feature di-
mensionality is reportedly 7000 for propositions
and 2100 for links, not counting 35 second-order
features.

5 Results

5.1 Experimental setting

We created a validation set by randomly select-
ing documents from the original training split with
10% probability. We used the remaining docu-
ments as training data and the original test split
as is. Table 1 reports the statistics related to the
three splits.

We defined the learning problem as a multi-
objective optimization problem, whose loss func-

tion is given by the weighted sum of four differ-
ent components: the categorical cross-entropy on
three labels (source and target categories, link re-
lation category) and an L2 regularization on the
network parameters. The weights of these compo-
nents were, respectively, 1, 1, 10, 10−4.

We performed mini-batch optimization using
Adam (Kingma and Ba, 2014) with parameters
b1 = 0.9 and b2 = 0.9999, and by applying pro-
portional decay of the initial learning rate α0 =
5 × 10−3. Training was early-stopped after 200
epochs with no improvements on the validation
data. We chose the numerous hyper-parameters of
the architecture and of the learning model after an
initial experimental setup phase, based on the per-
formance on the validation set for the link predic-
tion task. Results obtained in this phase confirmed
that the presence of the deep embedder block and
of the distance feature lead to better results.

We compared the results of the residual network
model against an equivalent deep network with
the same number of layers and the same hyper-
parameters, but without the shortcut that charac-
terize the residual network block. We applied two
different training procedures for both this deep
network baseline and the residual network. In par-
ticular, as the criterion for early stopping we used
once the error on link prediction and once the error
on proposition classification. In the presentation
of our results we will refer to these two models as
link-guided (LG) and proposition-guided (PG).

Following (Niculae et al., 2017), we measured
the performance of the models by computing the
F1 score for links, propositions, and the aver-
age between the two, in order to provide a sum-
mary evaluation. More specifically, for the links
we measured the F1 of the positive classes (as
the harmonic mean between precision and recall),
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whereas for the propositions we used the score
of each class and then we computed the macro-
average. We also reported the F1 score for each
direct relation class, alongside with their macro-
average.

Since each proposition is involved in many
pairs, both as a source and as a target, its classi-
fication is performed multiple times. To classify
it uniquely, we considered the average probability
score assigned to each class and we have assigned
the most probable class. That is of course not the
only option. Another possibility could be to assign
the class that results to be the most probable in
most of the cases, thus relying on a majority vote.
A further option could be to simply consider the
label with highest confidence. However, this pro-
cedure might be more sensitive to outliers, because
the misclassification of a sentence in just one pair
would lead to the misclassification of the sentence,
regardless of all the other pairs. A deeper analysis
of different techniques to address this issues is left
to future research.

5.2 Discussion and analysis

Table 2 summarizes the evaluation of baselines
and residual networks,4 also showing the best
scores obtained by the structured learning config-
urations presented in (Niculae et al., 2017).

Results highlight how the proposed approach
based on residual networks outperforms the state
of the art for what concerns link prediction. In ad-
dition, residual link-guided network training con-
sistently performs better than both deep networks
baselines in all the three tasks.

As for proposition label prediction, the results
obtained through structured approaches still main-
tain a slight advantage over residual networks.
This could be partially explained by the fact that
hyper-parameter tuning was done with the aim
to select the best model for link prediction. It
should also be considered that we perform propo-
sition classification relying on the merging of la-
bels obtained through local optimization, while
the structured learning approach exploits a global
optimization. Nonetheless, the average score of
residual networks is better than that of structured

4We report the results obtained on just one trained model.
As explained in (Reimers and Gurevych, 2017), due to the
non-deterministic behavior of the neural networks, this scores
are influenced by the random seed of the training. Evaluat-
ing the same model trained many times with different seeds,
and reporting the average scores would clearly yield a more
robust evaluation.

Figure 5: Confusion matrix for proposition prediction.
Top: baseline networks; middle: residual networks;
bottom: structured prediction by (Niculae et al., 2017).

RNNs, thus proving the generality of the ap-
proach.

We shall also remark that our approach can
achieve such results without exploiting any spe-
cific hypothesis or a-priori knowledge of the
genre or domain. This could be an added value
in contexts where arguments may be laid out
freely, without following a pre-determined argu-
ment model, yet it would be interesting to uncover
the underlying argumentation’s structure.

Results also indicate that the most common mis-
take regards the prediction of facts as values (see
Figure 5). That should come as no surprise, since
VALUE is by far the largest class in the corpus,
and it is therefore also affected by many false pos-
itives. Interestingly, baselines completely avoid to
classify any proposition as a FACT.

As far as relation label prediction is concerned,
this model apparently fails to predict the EVI-
DENCE relation. That negative result was also to
be expected, since such a class is scarcely present
in the whole dataset (less than 1%).

6 Conclusion and future work

We presented the first application of residual net-
works in the argumentation mining domain. We
proposed a model that outperforms an equivalent
deep network and competes with state-of-the-art
techniques in a challenging dataset.

Considering that the model makes use of only
one simple feature – the argumentative distance
between two proposition – a natural extension of
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Table 2: F1 scores computed on the test set. For each class, the number of instances is reported in parenthesis.
For the comparison with structured learning, the best scores obtained by any of the structured configurations are
reported.

Deep Baseline Deep Residual Structured
Metric LG PG LG PG SVM RNN

Average (Link and Proposition) 33.18 42.88 47.28 46.37 50.0 43.5

Link (272) 22.56 22.45 29.29 20.76 26.7 14.6

Proposition (973) 43.79 63.31 65.28 71.99 73.5 72.7
VALUE (491) 73.77 74.45 72.19 73.24 76.4 73.7
POLICY (153) 73.85 76.09 74.36 76.43 77.3 76.8
TESTIMONY (204) 71.36 65.98 72.86 68.63 71.7 75.8
FACT (124) 0 0 40.31 41.64 42.5 42.2
REFERENCE (1) 0 100 66.67 100 100 100

Relation (272) 11.68 11.52 15.01 10.31
REASON (265) 23.35 23.04 30.02 20.62
EVIDENCE (7) 0 0 0 0

this study would be its integration in a more struc-
tured and constrained argumentation framework.

Since in argumentation it is often the case that
single propositions cannot contain all the relevant
information to predict argument components and
relations, it could be useful to provide also the
context of argumentation as an input. Hence, an-
other interesting direction of investigation could
be the integration of the whole document text in
the model.
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