
Proceedings of the Second Workshop on Abusive Language Online (ALW2), pages 132–137
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

132

Cross-Domain Detection of Abusive Language Online

Vanja Mladen Karan and Jan Šnajder
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Abstract

We investigate to what extent the models
trained to detect general abusive language gen-
eralize between different datasets labeled with
different abusive language types. To this end,
we compare the cross-domain performance of
simple classification models on nine different
datasets, finding that the models fail to gen-
eralize to out-domain datasets and that hav-
ing at least some in-domain data is impor-
tant. We also show that using the frustratingly
simple domain adaptation (Daume III, 2007)
in most cases improves the results over in-
domain training, especially when used to aug-
ment a smaller dataset with a larger one.

1 Introduction

Abusive language online (Waseem et al., 2017)
is an increasing problem in modern society. Al-
though abusive language is undoubtedly not a new
phenomenon in human communication, the rise
of the internet has made it concerningly prevalent.
The main reason behind this is the cloak of rela-
tive anonymity offered when commenting online,
which lowers the inhibitions of individuals prone
to abusive language and removes some of the so-
cial mechanisms present in real life that serve to
protect potential victims. Moreover, this type of
psychological violence can occur at any time and
regardless of the physical distance between the per-
sons involved. While abusive language online can
probably never be weeded out entirely, its effect can
certainly be lessened by locating abusive posts and
removing them before they cause too much harm.
Training supervised machine learning models to
recognize abusive texts and alert human modera-
tors can make this process much more efficient.
However, retaining humans in the loop is crucial,
since blindly relying on model predictions would
in effect turn every false positive prediction into
infringement of free speech. This would defeat the

initial purpose of using machine learning models
to facilitate a free and civilized online discussions.

Detecting abusive language online is a subject
of much ongoing research in the NLP community.
Different studies have zeroed in on different types
of abusive language (e.g., aggressive language,
toxic language, hate speech) and have yielded a
number of different datasets collected from various
domains (e.g., news, Twitter, Wikipedia). However,
from a practical perspective – if one simply wishes
to build a classifier for detecting general abusive
language in a given domain – the question arises as
to which of these datasets to use for training. More
generally, the question is to what extent abusive
language detection transfers across domains, and
how much, if anything, can be gained from a sim-
ple domain adaptation technique that combines the
source and the target domain.

This paper investigates the question to what ex-
tent abusive language detection can benefit from
combining training sets and sharing information be-
tween them through domain adaptation techniques.
Our contribution is twofold. First, we compare the
cross-domain performance of simple classification
models on nine different English datasets of abu-
sive language. Second, we explore whether the
framework of frustratingly simple domain adapta-
tion (FEDA) (Daume III, 2007) can be applied to
improve classifier performance, in particular for
smaller data sets. In addition, we show how a sim-
ple post-hoc feature analysis can reveal which fea-
tures are specific to a certain domain and which are
shared between two domains. We make our code
and links to the used datasets available online.1

2 Related Work

A bewildering plethora of different types of abu-
sive language can be found online. Some of the

1http://takelab.fer.hr/alfeda

http://takelab.fer.hr/alfeda
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types dealt with in related work include but are
not limited to sexism, racism (Waseem and Hovy,
2016; Waseem, 2016), toxicity (Kolhatkar et al.,
2018), hatefulness (Gao and Huang, 2017), aggres-
sion (Kumar et al., 2018), attack (Wulczyn et al.,
2017), obscenity, threats, and insults. A typology
of abusive language detection subtasks was recently
proposed by Waseem et al. (2017).

Traditional machine learning approaches to de-
tecting abusive language include the naive Bayes
classifier (Kwok and Wang, 2013; Chen et al., 2012;
Dinakar et al., 2011), logistic regression (Waseem
and Hovy, 2016; Davidson et al., 2017; Wulczyn
et al., 2017; Burnap and Williams, 2015), and sup-
port vector machines (SVM) (Xu et al., 2012; Dad-
var et al., 2013; Schofield and Davidson, 2017).
The best performance is most often attained by
deep learning models, the most popular being con-
volutional neural networks (Gambäck and Sikdar,
2017; Potapova and Gordeev, 2016; Pavlopoulos
et al., 2017) and variants of recurrent neural net-
works (Pavlopoulos et al., 2017; Gao and Huang,
2017; Pitsilis et al., 2018; Zhang et al., 2018).
Some approaches (Badjatiya et al., 2017; Park and
Fung, 2017; Mehdad and Tetreault, 2016) also rely
on combining different types of models.

In this paper we explore combining different
datasets from different domains to improve model
performance. This idea is well established in the
machine learning community under the name of
transfer learning; we refer to (Weiss et al., 2016;
Lu et al., 2015) for overviews. The work closest
to ours is (Waseem et al., 2018), where multi-task
learning is used to build robust hate-speech detec-
tion models. Our approach is very similar, but we
consider more datasets and use a simpler, more
easily interpretable transfer learning scheme.

3 Datasets

For our study we use nine publicly available
datasets in English; Table 1 summarizes their main
characteristics. For reasons of efficiency and com-
parability, we use a fixed split on each of the
datasets into a train, development, and test por-
tions. We respected the official splits where they
were provided. As we are interested in detecting
the presence of general abusive language, rather
than in discerning among its many subtypes, we
binarize the labels on all datasets into positive (abu-
sive language) and negative (not abusive language).

2Available at https://tinyurl.com/y7qmd8lm

We do this by labeling all classes typeset in bold
in Table 1 as positive and all other classes as neg-
ative. There are two exceptions to this rule. First,
on the Kol dataset, we consider as positive those
examples for which at least one annotator gave a
rating higher than 1. Second, on the Kaggle dataset,
which uses a multilabeling scheme, we consider as
positive all instances annotated with at least one
of the six harmful labels, and as negative all in-
stances without any labels. We perform only the
very basic preprocessing by lowercasing all words
and lemmatizing them using NTLK (Loper and
Bird, 2002).

While these modifications to original datasets
make a comparison to previous work difficult, they
allow a direct comparison across the datasets and a
straightforward application of FEDA.

4 Exp. 1: Cross-Domain Performance

The goal of this experiment is to asses how well the
models trained on a particular dataset of abusive
language perform on a different dataset. The dif-
ferences in performance can be traced back to two
factors: (1) the difference in the types of abusive
language that the dataset was labeled with and (2)
the differences in dataset sizes. In this work we
observe the joint effect of both factors.

4.1 Experimental Setup
We use a linear Support Vector Machine (SVM),
which has already been successfully applied to the
task of abusive text classification (Schofield and
Davidson, 2017). The main motivation for using
an SVM, rather than more complex deep learn-
ing models, is that in this study we favor model
interpretability, even if this means sacrificing per-
formance.3 Having interpretable models makes it
easier to identify the biases that the models might
have learned from data and how domain adaptation
affects such biases. While, from a practical per-
spective, we might want to retain those biases for
the sake of improving performance, it is important
that we are aware that they exist, and thus have the
option to correct them if necessary.

For the same reason, we rely on the most sim-
ple text representation with unigram counts, which
makes it possible to directly correlate word salience
to feature weights obtained from the SVM.

3We acknowledge that there are other competitive and
yet interpretable models, such as deep neural networks with
attention mechanisms. We leave the investigation of such
models for future work.

https://tinyurl.com/y7qmd8lm
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Source Train Dev Test BR Labels

Kol (Kolhatkar et al., 2018) Newspaper 730 104 209 .627 toxicity rating: 1,2,3,4
Gao (Gao and Huang, 2017) Fox news 1069 153 306 .284 non-hateful, hateful
TRAC (Kumar et al., 2018) Twitter 11999 3001 916 .566 non-aggressive, covertly-aggressive,

openly-aggressive
Was2 (Waseem, 2016) Twitter 4836 691 1382 .153 none, racism, sexism, both
Was1 (Waseem and Hovy, 2016) Twitter 11835 1691 3381 .319 none, racism, sexism
Wul1 (Wulczyn et al., 2017) Wikipedia 69526 23160 23178 .146 non-aggressive, aggressive
Wul2 (Wulczyn et al., 2017) Wikipedia 69526 23160 23178 .134 non-attack, attack
Wul3 (Wulczyn et al., 2017) Wikipedia 95692 32128 31866 .115 non-toxic, toxic
Kaggle 2 Wikipedia 143614 15957 63978 .101 toxic, severe toxic, obscene, threat,

insult, identity hate

Table 1: Nine abusive language datasets: the source, the number of instances in the train, development, and test
set, positive instance base rate (BR), and label sets. We mapped the boldface labels to the positive label.

When an SVM model trained on dataset X is ap-
plied to dataset Y , we first train the model on train-
ing set X optimizing the hyperparameter C in the
range {2−10, ..., 26} to maximize performance on
the development set of X . We then train the SVM
with the optimal hyperparameters on the union of
training and development sets of X , and then use
the model to label the test set of Y , obtaining the
final score. We measure the performance using the
standard two-class F1 score.

4.2 Results
Results are given in Table 2. The rows correspond
to different training sets, while the columns cor-
respond to different test sets. For each test set,
the best performance is shown in bold. The di-
agonal cells correspond to the cases of in-domain
model testing. For each model X tested on each
out-domain dataset Y (off-diagonal cells), we test
the statistical significance between that model’s
in-domain and out-domain performance using a
two-tailed bootstrap resampling test at α = 0.05.

Expectedly, most models perform best on the
in-domain test sets. Exceptions are the Wikipedia-
based data sets, where the model trained on Kaggle
performs the best on all test sets. This can be at-
tributed to the an overlap that exists between these
data sets: Wul1 and Wul2 contain almost identi-
cal texts, Wul3 has 68% overlap with them and
Kaggle has 1.5% and 3% overlap with Wul1/Wul2
and Wul3, respectively. We mark in gray the cor-
responding portion of the tables, and refrain from
drawing any conclusions from this data.

Another observation is that the performance on
out-domain data sets is considerably lower. When
applying models to a different test set the perfor-
mance often drops by more than 50% of F1 score,
which indicates that the models do not generalize

well to different datasets. In cases when the size of
X is small compared to the size of Y , the training
portion of X will also be smaller than the train-
ing portion of Y , and it could be argued that the
drop in performance is simply due to the model
having less training data. However, considerable
performance drops are also observable when going
from a large X to a small Y , which suggests that
the gains from having more training instances in
X are counterbalanced by the domain differences
betweenX and Y , and the net result is a loss in per-
formance. Our experiments thus show that having
a smaller dataset for a particular domain of abusive
language is better than having a very large dataset
from a different one. In the following experiment
we explore whether a large dataset from a different
domain can still be leveraged in a different way.

5 Exp. 2: Domain Adaptation

5.1 Experimental Setup

We investigate the potential of applying domain
adaptation to augment the original domain with
the information from a different domain. To this
end, we employ the FEDA framework (Daume III,
2007), which works by copying features several
times to account for different domains, allowing
the model to learn domain-dependent weights for
each feature.

Let the dataset from the original domain be de-
noted as O and the data set from an augmentation
domain as A. We generate a joint train set as a
union of train sets of O and A by keeping three
copies of each feature: (1) a general copy, which is
unaltered for instances from both domains, (2) an
O-specific copy, which is set to 0 for all instances
not from O, and (3) an A-specific copy, which is
set to 0 for all instances not from A. In the same
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Kol Gao TRAC Was2 Was1 Wul1 Wul2 Wul3 Kaggle

Kol 0.816 0.423 0.475* 0.280* 0.479* 0.251* 0.233* 0.204* 0.178*
Gao 0.362* 0.493 0.249* 0.181* 0.399* 0.184* 0.177* 0.168* 0.139*
TRAC 0.697* 0.421 0.548 0.283* 0.484* 0.307* 0.288* 0.259* 0.225*
Was2 0.088* 0.023* 0.091* 0.680 0.174* 0.108* 0.109* 0.098* 0.094*
Was1 0.432* 0.348* 0.238* 0.421* 0.739 0.236* 0.229* 0.208* 0.186*
Wul1 0.092* 0.118* 0.316* 0.190* 0.236* 0.701 0.718 0.746 0.602*
Wul2 0.115* 0.078* 0.318* 0.248* 0.226* 0.694 0.710 0.757 0.613*
Wul3 0.139* 0.159* 0.320* 0.263* 0.316* 0.773* 0.784* 0.753 0.626*
Kaggle 0.054* 0.132* 0.296* 0.249* 0.300* 0.782* 0.800* 0.860* 0.640

Table 2: Results of cross-domain model performance. Rows are the training datasets and columns are the test
datasets. The best performance for each test set (column) is shown in bold. “*” indicates statistical significance at
significance level α = 0.05 with respect to the diagonal cell.

None Kol Gao TRAC Was2 Was1 Wul1 Wul2 Wul3 Kaggle

Kol 0.816 – 0.654* 0.775* 0.605* 0.615* 0.627* 0.651* 0.622* 0.605*
Gao 0.493 0.500 – 0.460 0.534 0.507 0.441 0.415 0.463 0.455
TRAC 0.548 0.548 0.554 – 0.567 0.568 0.575 0.573 0.557 0.565
Was2 0.680 0.703 0.661 0.730* – 0.711 0.706 0.714* 0.715* 0.724*
Was1 0.739 0.744 0.743 0.755* 0.743 – 0.749 0.747 0.749 0.752*
Wul1 0.701 0.701 0.699 0.708* 0.701 0.699 – 0.701 0.717* 0.717*
Wul2 0.710 0.709 0.709 0.719* 0.710 0.715 0.716* – 0.734* 0.736*
Wul3 0.753 0.753 0.753 0.758* 0.752 0.754 0.764* 0.763* – 0.788*
Kaggle 0.640 0.640 0.640 0.643* 0.639 0.639 0.640 0.640 0.638 –

Table 3: FEDA domain adaptation results. Rows correspond to original datasets and columns to augmentation
datasets. The best performance for each original dataset (row) is shown in bold. “*” indicates statistical significance
at significance level α = 0.05 against the “None” column, which is equivalent to the diagonal of Table 2.

way we generate joint development and test sets.
The intuition behind why this effectively leads to
domain adaptation is that it allows the underlying
machine learning model to differentiate features
(words) that are generally useful from those that are
useful in only one of the domains. Consequently, it
can better learn the similarities and differences of
the domains and how to exploit them to maximize
performance. For example, a word such as moron
is almost universally abusive in all domains and
would generalize well. On the other hand, a word
like fruit is almost always completely non-abusive
except in specific domains where it might denote a
derogatory slang for a homosexual person.

As before, the SVM is trained on the joint train-
ing set, with model selection on the joint develop-
ment set. The model is then trained using optimal
hyperparameters on the union of joint training and
joint development set and applied to the joint test
set. Note that the joint test set contains test in-
stances from both O and A. We evaluate the model
only on the test instances from O, as the goal is to
determine whether augmentation with A improves
performance on the dataset from the original do-
main O.

5.2 Results

Results are given in Table 3. Each row represents
an original domain dataset and each column an
augmentation domain dataset. The “None” column
corresponds to the results obtained using no aug-
mentation. We use two-tailed bootstrap resampling
with α = 0.05 to test the statistical significance of
each result to the one on the same original dataset
without augmentation. The main observation is
that for most datasets FEDA leads to performance
improvements, and for six out of nine datasets there
is at least one augmentation dataset which gives a
statistically significant performance improvement.
For the five smallest datasets, (Kol, Gao, TRAC,
Was1, and Was2) domain adaptation improves the
performance on four, and for two the improvements
are statistically significant. These results indicate
that domain adaptation has the potential to improve
results on smaller datasets. Augmenting Wul1,
Wul2, and Wul3 with Kaggle yields considerable
improvements, which again can be attributed to the
overlap between these datasets. An exception is
Kol, on which models do not benefit from FEDA.
The possible reasons for this might be its small size
or high base rate.
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No FEDA General Was2 TRAC

anti feminazi movement motherfucker feminazi fuck
feminazi cocksucker west idiot
feminazi front dickhead howtospotafeminist asshole
models douchebag feminazi front ass
howtospotafeminist cunt blondes bitch
prowomanchoice assholes anti feminazi movement motherfucker
raging fuckers coon cocksucker
blondemoment fuckhead killerblondes dickhead
prove feminazi asian shit
adorable coward hold douchebag

Table 4: Top 10 features by SVM weights for the Was2
data set without FEDA and with FEDA using TRAC
as the augmentation dataset and three feature variants
(General, Was2-specific, and TRAC-specific)

5.3 Feature Analysis

FEDA offers a convenient way to analyze which
features are generic and signal abusive language
in both domains, and which are specific to each.
The former features will have high merit for their
general copies, while the latter will have high merit
for domain-specific copies. In Table 4 we list the
top 10 features for the case where we observed
the highest improvement: Was2 as the original and
TRAC as the augmentation dataset. The results
show that the model does indeed learn to differen-
tiate between the sexism/racism domain of Was2
and the aggression focused domain of TRAC, while
also learning the general features useful on both
datasets.

When not using FEDA, the most indicative fea-
tures are, expectedly, focused mostly on the sex-
ism/racism aspects of the Was2 dataset. How-
ever, when introducing the augmentation domain
TRAC dataset, which focuses on aggressive/non-
aggressive texts, the features discern between dif-
ferent aspects of abusive language. Words in the
General column of Table 4 are indeed generally
abusive words and can be viewed as indicative of
the abusive class for both datasets. On the other
hand, the domain-specific features reflect the spe-
cific properties of each dataset. For the Was2
dataset these include words correlated with sexism
or racism (but not useful for aggression detection
on TRAC) such as feminazi. On the TRAC dataset
domain-specific features are words that are indica-
tive of aggression (but not of sexism/racism in the
Was2 dataset), such as shit.

6 Conclusion

We compared the performance of abusive language
classifiers across datasets from different sources
and types of abusive language. We found that

the models considered do not generalize well to
different-domain datasets, even when trained on a
much larger out-domain data. This indicates that
having in-domain data, even if not much of it, is
crucial for achieving good performance on this task.
Furthermore, the experiments have shown that frus-
tratingly simple domain adaptation (FEDA) in most
cases improves the results over in-domain training,
especially when smaller datasets are augmented
with a larger datasets from a different domain.

We found FEDA to be a useful tool to compare
the differences between various domains of abu-
sive language and believe that related techniques
might lead to new interesting insights into the phe-
nomenon of abusive language.
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