
Proceedings of the Second Workshop on Abusive Language Online (ALW2), pages 93–100
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

93

Determining Code Words in Euphemistic Hate Speech Using Word
Embedding Networks

Rijul Magu
Department of Computer Science

University of Rochester
Rochester, New York

rmagu2@cs.rochester.edu

Jiebo Luo
Department of Computer Science

University of Rochester
Rochester, New York

jluo@cs.rochester.edu

Abstract

While analysis of online explicit abusive lan-
guage detection has lately seen an ever-
increasing focus, implicit abuse detection re-
mains a largely unexplored space. We carry
out a study on a subcategory of implicit
hate: euphemistic hate speech. We propose
a method to assist in identifying unknown
euphemisms (or code words) given a set of
hateful tweets containing a known code word.
Our approach leverages word embeddings and
network analysis (through centrality measures
and community detection) in a manner that can
be generalized to identify euphemisms across
contexts- not just hate speech.

1 Introduction

Euphemisms, as an instrument to mask intent,
have long been used throughout history. For ex-
ample, a rich lexicon of drug slang has developed
over time, with entire communities subscribing to
benign sounding words that allude to names of
drugs, intake practices or other stakeholders (such
as dealers). In these instances, the primary mo-
tive is often to get a message across while evading
detection from authorities. The main obstacle in
these cases is the inability to identify code words
without gaining access to an explicit mapping be-
tween the words and their latent meanings. Often,
these words are already embedded in such com-
mon parlance that they cannot be spotted without
placing the correct context.

Notably, in late 2016, a number of users across
social media platforms and internet forums (par-
ticularly 4chan) began a movement called ‘Oper-
ation Google’, a direct retaliation to Google an-
nouncing the creation of tools for the automated
moderation of toxic content. Essentially, the idea
was to create code words for communities within
the context of hate speech, so that they would

not be detected by such systems. The move-
ment branched out to a number of social media
platforms, and in particular Twitter (Magu et al.,
2017). The complete list of all code words is pre-
sented in Table 1.

Recent work has begun to emerge on studying
this instance of euphemistic hate speech. How-
ever, they deal largely with the impact of code
words in hate speech. Our work instead focuses
on moving towards automating the discovery of
code words. The objective is to significantly de-
crease, or even eliminate the need for human ef-
fort required in manually evaluating what words
could be euphemisms. That said, the solutions
and processes we describe go beyond finding use
within the hate speech context. While some parts
of the preprocessing stages do benefit from being
aware about hate speech associated issues, the fun-
damental approach is general enough to be applied
to assist in extracting code words in any context
that may be found in natural language.

Additionally, our technique, revolving around
studying the structures of the word co-occurrence
networks that emerge from instances of coded
hate speech, also lies within a predominantly un-
explored space. We find that the centralities of
word nodes within such networks indirectly pro-
vide crucial hints about the context within which
they arise.

2 Abusive Language

The past few years have witnessed an increased fo-
cus on abusive language (particularly hate speech)
detection, with a variety of different approaches
and applications to a diverse set of contexts. These
have ranged from classification of hateful tweets
using bag-of-words models and typed dependen-
cies (Burnap and Williams, 2015), to using se-
mantic structure of sentences to the study of tar-

94

Code Word Actual Word
Google Black
Yahoo Mexican
Skype Jew
Bing Chinese

Skittle Muslim
Butterfly Gay

Fishbucket Lesbian
Durden Transsexual

Car Salesman Liberal
A leppo Conservative

Pepe Alt-Right

Table 1: Some common code words.

gets of hate (Silva et al., 2016). Others have
used related methods to study phenomena closely
associated to hate speech such as cyberbullying
(Raisi and Huang, 2017) and offensive language
in general. From an application perspective, Magu
et al. (2018) create models to predict the extent of
hateful content in the comments section of news
sources, using article titles and body information
as input, indicating a relationship between the en-
tities. Davidson et al. (2017), a recent work on
hate speech detection, notes the difference be-
tween hate speech and offensive language.

Notably, Waseem et al. (2017) provide a typol-
ogy of abusive language, categorizing abusive lan-
guage across two dimensions: 1) target of abuse
and 2) degree of abuse being explicit. In terms
of target, they distinguish directed hate (hatred to-
wards an individual. Example: ‘Go kill yourself’)
and generalized hate (hatred towards a recognized
group. Example: ‘So an 11 year old n***er girl
killed herself over my tweets? thats another
n***er off the streets!!’). With regard to this, a
number of studies have been carried out that mea-
sure and study this effect, particularly within the
context of social media. For instance, ElSherief
et al. (2018) deal with analyzing the characteristics
of hate speech instigators and targets on Twitter.

For the second dimension, the authors differen-
tiate between explicit (containing ‘language that
which is unambiguous in its potential to be abu-
sive’. Examples could be language containing
racial slurs) and implicit (containing ‘language
that does not immediately imply or denote abuse’.
Example: ‘Gas the skypes’ (Magu et al., 2017))
hate. The authors discuss the role of context which
is needed to correctly identify hate. As such,

they touch upon a fundamental mode of expres-
sion that displays implicit hate: euphemistic hate
speech. Euphemistic hate speech stands separate
from other forms of implicit hate speech (namely
micro-aggressions) because in truth, they are often
direct toxic attacks as opposed to veiled or con-
text dependent ones. They are implicit because
they make use of clever word substitutions in lan-
guage to avoid detection. Even a classifier trained
on a hate speech dataset containing instances of
code words, can fail to identify hateful content if
new code words (either intentionally or otherwise)
start being used by the community. Indeed, cur-
rently, the only available option to recognize such
instances manually, which is often inefficient and
burdensome. Therefore, this motivates the explo-
ration of more automated methods to detect eu-
phemisms within the hateful context.

2.1 Euphemistic Hate Speech
To clearly define the problem of euphemistic hate
speech, we start by looking at the general defi-
nition of hate speech as given by Davidson et al.
(2017). They define hate speech as:

”language that is used to expresses ha-
tred towards a targeted group or is in-
tended to be derogatory, to humiliate, or
to insult the members of the group.”

In this sense, we note that euphemistic offen-
sive language also qualifies as hate speech because
it targets communities based on race, religion and
sexual orientation. As a result, hate speech that re-
lies on intentional word substitutions to evade de-
tection can be considered to be euphemistic hate
speech.

As discussed earlier, one of the most promi-
nent uses of euphemistic hate speech came as a
result of Operation Google, ever since the move-
ment started in 2016. For instance Hine et al.
(2016) studied the usage patterns and behavior of
a community on 4chan (where the movement first
started) and Twitter. Finally, Magu et al. (2017)
analyzed euphemistic hate speech on Twitter, cre-
ating a tool to automate the process of segregat-
ing tweets containing code words (eg. ‘gas the
skypes’) from those containing code words, but
benign in nature (eg. ‘I like to make skype calls’).

3 Dataset

We collected approximately 200,000 English
tweets containing the code words using the Twit-

95

ter Streaming API. The time range was crucial
for us as we wanted to study the use of code
words as they first propped up. Therefore, our ex-
tracted tweets were concentrated between Septem-
ber 2016 (when the code first gained prominence)
up until November 2016 slightly after the election
season in the United States of America. Next, we
needed to select a single code word that could be
used as a starting seed word for our analysis. Ef-
fectively, the aim was to retrieve other code words
knowing only one code word beforehand. We
chose the code word ‘Skypes’ (used in place of
‘Jews’) and manually extracted 850 random tweets
that used it in a hateful context (for example say-
ing ‘Gas the Skypes’ but not ‘I like to Skype call
him everyday’). From this point on, all of our anal-
ysis is carried out on this dataset of hate tweets
containing the word ‘Skype’. Note that the set of
tweets can and do contain other code words also
(example: ‘If welfare state is a given it must go to-
wards our own who needs. No Skypes, googles, or
yahoos’). As a proof of concept, we showcase the
entire process starting with ‘skypes’ but this can
be extended to other starting code words as well.
While we recognize the value of a comprehensive
study of the methodology across the entire spec-
trum of combinations (retrieving all other codes
given any randomly selected initial word), it went
beyond the exploratory nature of our work.

Importantly, as an artifact of the time range of
the data (late 2016), we do not expect there to be
any previously unidentified code words (or at least
not ones used extensively by the community dur-
ing that time) within the dataset. Therefore, to val-
idate the working of our methodology, from this
point on, we instead assume we have no knowl-
edge of the existence of any other code word be-
side ‘skype’. Indeed, our method does not in-
corporate or exploit any hints it may derive from
knowing any of the other code words beforehand.

4 Baseline

To asses how well our method performed, we
needed to establish a baseline method. Currently,
the simplest way to identify code words in natu-
ral language would be to manually sift through a
series of tweets of users belonging to known hate
communities. Clearly, this is an arduous and inef-
fective process. A reasonable approach is to rank
all the words in the corpus (on the basis of some
metric) so that higher ranked words have a greater

Code Word Rank
Google 10
Yahoo 67
Bing 195

Skittle 23
Butterfly 459

Fishbucket 998
Durden 471

Car Salesman 232
A leppo 667

Pepe 137

Table 2: Baseline ranks of code words.

chance of being code words than those lower on
the list. For a small time frame like ours and with-
out any prior information (note there might not be
any qualifying indicator for a specific word to be a
code word), a good bet would be to use word fre-
quency as the metric. This is based on the idea that
rarely used words would be unlikely candidates
for code words. This method forms our baseline.
As a result, the base ranks of our code words were
the ranks of the words on this baseline list. Thus,
we can quantify the performance of the method
we develop by comparing evaluating the rank im-
provement of code words against their base ranks.
Baseline ranks can be found in Table1.

5 Preprocessing

We made use of a set of strong assumptions about
hate code usage in natural language to inform our
data processing decisions (visualized through Fig-
ure 1). It is worth considering that while these as-
sumptions help immensely in narrowing the space
of possibilities, they are general enough to be ap-
plied to any scenario involving coded speech. Ad-
ditionally, it is important to note that the number-
ing of these assumptions does not indicate a se-
quential order of processing (in terms of trimming
down words). This is because some of these steps
benefit from having the entire, unaltered tweet
available to them. Pruning is carried out after de-
terminations are made for each word through all
of the assumption steps. Thes assumptions are as
follows:

• A1: The code words are nouns.

• A2: They are not words normally considered
negative.

96

• A3: They are not either extremely generic nor
are they very specific

Figure 1: Flow chart depicting the pre-processing
steps.

It is safe to assume that the words would be
nouns, in the context they are written within
tweets. It is to be noted that all code words are
used in place of references to real communities,
which in turn are necessarily nouns. As a result,
although the references themselves are replaced,
the syntactic structures of the tweets remain in-
tact. Hence, the code words, like the communities
themselves would be detected as nouns by syntac-
tic parsing. Therefore we use part-of-speech tag-
ging to extract the set of all nouns from the entire
list of words tokens.

Next, we lemmatize these tokens to bring them
to their base form. This is of critical impor-
tance because we would like to construct a net-
work at some point, and without standardization,
we would be left with multiple duplicate nodes
and unclear results. Additionally, carrying out
lemmatization at this stage considerably reduces
the space of possibilities early on, allowing for
faster computation during later stages.

We move onto our next assumption A2, namely
1code words are not words normally considered
negative’. Using words that are already negative
(for example, ‘terrorist’, ‘vermin’ etc) defeats the
purpose of using code words to begin with, asides
from immensely confusing readers. For instance,
consider replacing ‘Jews’ with ’terrorists’ in the
sentence ‘Kill the Jews’. In the new sentence, ‘Kill
the terrorists’, even if ‘terrorists’ had been adopted
as a code word, it would become impossible for
the author to convey whether they meant killing of
Jews or actually terrorists. Hence, we attempt to
remove all negative words at this stage. We do this
by importing the list of negative words assembled
by Hu and Liu (2004) and removing words from
our lemmatized set that match those in this list.

The third assumption A3 (‘They are not either
extremely specific nor are they very generic’) is
checked for next. Clearly, like in the previous
case, it is very confusing if the code words are too
broad. For instance, in each of the following cases
‘These people are disgusting’, ‘These men are dis-
gusting’, ‘Something is disgusting’, the potential
code words ‘people’, ‘men’ and ‘something’ have
alternate meanings that fit well within the context,
but are too generic to be used as code words. As
a result, we discard all such instances. Similarly,
sample ‘This Hillary is stupid!’ in place of ‘This
Jew is stupid’. It is hard to decipher whether the
author refers to a particular individual (‘Hillary’
the name) or the target community (‘Hillary’ as
a euphemism for Jew). In these cases, the words
are too specific to be useful as code words. There-
fore, we use a mix of named entity recognition and
manual pruning to remove these tokens.

Next, it is imperative to also exclude words that
are directly related to the known code word. For
example, we need to remove instances like ‘Jew’,
‘Gas’, ‘Holocaust’ etc when using the dataset for
skypes because these already exist within the con-
text of anti-semitic hate speech and cannot be used
as code words by definition. Yet they may affect
our analysis because of their expectedly high com-
mon usage. This is the only part of the filtering
process that requires some basic domain knowl-
edge of the problem.

As a final step, we discard the word skypes it-
self, since it occurs in every single tweet and pro-
vides no additional information.

6 Detecting Euphemistic Hate Speech

The main idea behind how our system works, is
that code words are an abnormality within the con-
text defined by hateful users. Words like ‘google’,
‘skype’, ‘yahoo’ etc are not expected to occur reg-
ularly in tweets aiming to attack groups. For ex-
ample, the occurrence of ‘skypes’ and ‘googles’
is an aberration with respect to the surrounding
words within the following:

”fucking googles and skypes kill em all”

6.1 News Data Word Embeddings
As a result, we can exploit this effect by repre-
senting all of our word tokens by their word em-
beddings that have been pre-trained on a regu-
lar, not necessarily hateful context, and evaluat-
ing how dissimilar they are with respect to each

97

other. For our purpose we use word2vec (Mikolov
et al., 2013) embeddings trained on a Google news
dataset (built on google news articles with over a
100 million words) and find the pairwise cosine
distances for all words. Essentially, we can ex-
pect the code words to be further apart than other
words which belong to the hate speech context. A
subgraph, with a few representative nodes can be
seen in Figure 2.

Figure 2: A subgraph of the network composed of some
sample nodes. The red nodes are code words whereas
the yellow nodes are non-code words. The diagram
is for representation only and these labels are not pro-
vided beforehand.

The primary limitation to this approach is that
some of the code words do not have representa-
tions within this pre-trained model and might be
missed entirely. These words are ‘leppos’, ‘fish-
buckets’ and ‘durdens’.

6.2 Hate Network
Since 1) the pairwise relationships between words
are now quantified and 2) that these relation-
ships cannot be assumed to be independent of
each other, an intuitive way to study this struc-
ture would be to model it as a network (seen in
Figure 3). The degree distribution is graphically
represented in Figure 4. Specifically, we created
a network where each node represented a partic-
ular word, and the edges denoted the cosine dis-
tance between their respective word embeddings.
In addition, we decided to leverage the fact that a
sizable number of words did not co-occur together
in tweets, thus providing us with additional infor-
mation about context. As a result, we pruned all
edges where the connected words did not ever oc-
cur together in any tweet. Some characteristics of
the graph such as number of edges and average de-

gree are given in Table 3.

Figure 3: The hate word network. Note that the nodes
are colored by the connected component they belong
to. Those belonging to components insignificant in size
are colored grey. The giant component is colored or-
ange. Also, the size of the nodes corresponds to the
degree. The largest node in the center is ‘Google’.

Figure 4: The degree distribution (in black) and log-
binned degree distribution (in red) of the network.

The network displays characteristics typical of a
complex network. For instance,the network shows
the small world effect (Watts and Strogatz, 1998).
We evaluated the value of the cluster coefficient
(C) and mean shortest path length (L) for the net-
work (as can be seen in Table 3) and then found
the average of those metrics (Cr and Lr) across an
ensemble of 100 random graphs with the same de-
gree distribution. This allowed us to calculate the
value of the small-world coefficient (σ), which is
found using equation 1. The value was noted to

98

Metric Value
Number of nodes 1129
Number of edges 2188
Average Degree 3.88

Clustering coefficient 0.76
Mean shortest path length 4.53

Table 3: Hate network properties. Clustering coeffi-
cient and mean shortest path length are for giant com-
ponent.

be 20.46 which is much greater than the required
threshold of 1, for a graph to be expected to show
the small world effect.

σ =
C/Cr

L/Lr
(1)

6.3 Word Ranks

As noted by Magu et al. (2017), the code words
tend to extensively co-occur with each other.
There are a number of possible explanations for
this effect. First, as people warm up to a new
code, they are incentivized to use as many dif-
ferent words as possible so that the code gains
traction amongst their followers. Using too few
code words within tweets (at the very beginning
of adoption) could lead to those words being over-
looked, or be treated as mistakes. Second, the alt-
right (the primary users of the code) tend to dis-
play blanket hate towards a number of different
communities across spectrum of race, religion and
sexuality. Therefore, their tweets often simultane-
ously target a number of different groups, a pattern
which in turn is replicated in their code word us-
age.

In this circumstance, we decided to use eigen-
vector centralities (Bonacich, 1972a,b) words as
our ranking metric. Intuitively, this was an ap-
propriate choice. Eigenvector centrality estimat-
ing techniques attribute higher centrality values to
nodes that are connected to other important nodes.
This was very relevant to our context since we
know that the existence of certain words (which
are hard to pre-determine) within hate speech have
an effect on whether surrounding words could be
code words or not. The ranks of code words are
shown in Table 4. As we can see all codewords
(barring those without word embeddings) sub-
stantially move up the ranking order, when com-
pared to the baseline model (with a mean jump of

Code Word EC IoB
Google 1 9
Yahoo 3 64
Bing 22 173

Skittle 2 21
Butterfly 215 244

Fishbucket - -
Durden - -

Car Salesman 4 228
A leppo - -

Pepe 30 107

Table 4: Centrality rank of code words in comparison
to baseline. EC: Eigenvector Centrality Rank. IoB: Im-
provement over Baseline. Note that the centrality val-
ues and improvements for some words is absent since
they did not have a word-embedding within the pre-
trained model. As a result, they were removed at an
earlier stage.

134 positions). Interestingly, the improvement for
‘butterfly’ was not as dramatic (in terms of its final
rank) likely because it might have occurred with
words considerably different than those connected
to the other code words.

6.4 Candidate Cluster

There is one major issue with the above discussed
approach: manually moving down a ranked list to
discover code words can be cumbersome. Addi-
tionally, there is no bound or limit till which we
can expect to cover all or most code words. There-
fore, perhaps a more useful technique could be
to suggest a group or cluster of candidate words
which have a high chance of being code words.
Community detection analysis on the network is
hence a viable approach.

First, since the graph is disconnected, we fo-
cus on the largest component (or the giant compo-
nent) of the graph to further carry out our analyses
(visualization in Figure 3). Since we know that
the code words are likely to be closely connected
to each other, we expect to find cliques (sets of
completely connected subgraphs) within the net-
work. Therefore, we applied the clique percola-
tion method (Palla et al., 2005) on our graph to
achieve overlapping communities of words. Es-
sentially, the clique percolation method works by
constructing communities from k-cliques (where
k is a natural number). A community is obtained
by finding the maximal union of k-cliques that are
within reach from each other through a sequence

99

Figure 5: Finding the optimal community. This is a
high level visualization of the approach used to deter-
mine a set of candidate nodes using community detec-
tion analysis.

of adjacent k-cliques. Here, adjacent k-cliques are
those cliques which have k-1 nodes in common.
Since we do not know the optimal value of k, we
carried out separate analyses for each value of k
starting from k=4 to k=8, which is the largest pos-
sible value such that no (k+1) cliques exist in the
graph. Judging by the extremely high clustering
coefficient of the graph, there are an immensely
large number of triangles in the graph. As a result,
the algorithm is non-trivially affected because es-
sentially, all or most nodes are grouped together
into a single community. This is why values of k
less than 4 were not considered.

Next, we needed to find the optimal commu-
nity out of all the possible communities we have
achieved for each value of k. A common ap-
proach is to simply select the largest community,
which implies the community with the most num-
ber of nodes (largest length). This approach as-
sumes each node to have the same weight (of value
1). However, since we know that eigenvector cen-
tralities serve as a useful indicator to finding the
code words, we can weigh each node instead by its
eigenvector centrality. As a result, in place of sim-
ply finding the community with the highest length,
we summed over the eigenvector centralities of all
nodes in every community and returned the one
with the highest value. The resulting community
was: [‘blind’, ‘skittle’, ‘google’, ‘don’, ‘commie’,

‘car’, ‘salesman’, ‘youtube’, ‘yahoo’, ‘bings’].
Figure 5 depicts a high level representation of the
process.

The cluster is extremely tight- consisting of
only 10 members. Yet, it contains all the code
words that are present within the word2vec pre-
trained model except ‘pepe’ and ‘butterfly’ with
only a few outliers. While some of these are likely
noise, the occurrence of terms like ‘commie’ is ex-
plainable.The left is frequently targeted by the alt-
right, the most common users of the euphemisms.
Therefore, these users seem to often group ‘com-
mies’ (or communists) together with the other tar-
get communities (which have euphemisms) within
their tweets. This is why they form part of the
clique that was uncovered through our analysis.
For example:

”In theory, I agree, but with a congress
filled with skypes , yahoos, googles, and
commies, @realDonaldTrump won’t
get anything done”

Thus, other than providing us with a set of
strong candidates for euphemisms, this approach
also reveals useful information about the posting
patterns of this community of hateful users.

7 Limitations

There are some limitations that we would like to
work on in the future. The major drawback is that
we need one starting seed code word to find others.
We would like to be able to identify code words in
a manner in which we require no prior informa-
tion about any code words, even at the cost of ro-
bustness. Second, it would be useful if we could
iteratively improve our performance. For exam-
ple, if we are able to identify a second code word
using our technique, the suggestions for the next
candidates should adapt appropriately to generate
better results. Finally, we wish to achieve the word
embeddings on larger, varied datasets so that when
they are used to find cosine distances, some impor-
tant words are not automatically missed out on.

8 Conclusions

We discussed the problem of euphemistic hate
speech and how we could transform the challenge
of finding unknown code words into a network sci-
ence problem. We presented insights that can be
derived during the preprocessing stage (such as the
code words being nouns and neither too generic

100

nor too specific). Finally, we showed how by using
cosine distances between word embeddings could
be coupled with analyzing the structure of the re-
sulting network to achieve likely candidates for
code words.

Our approach can be used to detect code words
not only within the context of hate speech, but any-
where else where a community may feel the need
to use euphemisms within natural language.

References
Phillip Bonacich. 1972a. Factoring and weighting ap-

proaches to status scores and clique identification.
Journal of mathematical sociology, 2(1):113–120.

Phillip Bonacich. 1972b. Technique for analyzing
overlapping memberships. Sociological methodol-
ogy, 4:176–185.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

Mai ElSherief, Shirin Nilizadeh, Dana Nguyen, Gio-
vanni Vigna, and Elizabeth Belding. 2018. Peer to
peer hate: Hate speech instigators and their targets.
arXiv preprint arXiv:1804.04649.

Gabriel Emile Hine, Jeremiah Onaolapo, Emiliano
De Cristofaro, Nicolas Kourtellis, Ilias Leontiadis,
Riginos Samaras, Gianluca Stringhini, and Jeremy
Blackburn. 2016. A longitudinal measurement
study of 4chan’s politically incorrect forum and its
effect on the web. arXiv preprint arXiv:1610.03452.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Rijul Magu, Nabil Hossain, and Henry Kautz. 2018.
Analyzing uncivil speech provocation and implicit
topics in online political news. arXiv preprint
arXiv:1807.10882.

Rijul Magu, Kshitij Joshi, and Jiebo Luo. 2017. De-
tecting the hate code on social media. In Proceed-
ings of the eleventh International AAAI Conference
on Web and Social Media, page 608.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Gergely Palla, Imre Derényi, Illés Farkas, and Tamás
Vicsek. 2005. Uncovering the overlapping commu-
nity structure of complex networks in nature and so-
ciety. Nature, 435(7043):814.

Elaheh Raisi and Bert Huang. 2017. Cyberbullying de-
tection with weakly supervised machine learning. In
Proceedings of the IEEE/ACM International Confer-
ence on Social Networks Analysis and Mining.

Leandro Silva, Mainack Mondal, Denzil Correa,
Fabrı́cio Benevenuto, and Ingmar Weber. 2016. An-
alyzing the targets of hate in online social media.
arXiv preprint arXiv:1603.07709.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding abuse:
A typology of abusive language detection subtasks.
arXiv preprint arXiv:1705.09899.

Duncan J Watts and Steven H Strogatz. 1998. Col-
lective dynamics of small-worldnetworks. nature,
393(6684):440.

