
EMNLP 2018

Second Workshop on Abusive Language Online

Proceedings of the Workshop, co-located with EMNLP 2018

October 31, 2018
Brussels, Belgium



Sponsors

Primary Sponsor

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

ii



c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-68-1

iii



Introduction

Interaction amongst users on social networking platforms can enable constructive and insightful
conversations and civic participation; however, on many sites that encourage user interaction, verbal
abuse has become commonplace. Abusive behavior such as cyberbullying, hate speech, and scapegoating
can poison the social climates within online communities. The last few years have seen a surge in such
abusive online behavior, leaving governments, social media platforms, and individuals struggling to deal
with the consequences.

As a field that works directly with computational analysis of language, the NLP community is uniquely
positioned to address the difficult problem of abusive language online; encouraging collaborative and
innovate work in this area is the goal of this workshop. The first year of the workshop saw 14 papers
presented in a day-long program including interdisciplinary panels and active discussion. In this second
edition, we have aimed to build on the success of the first year, maintaining a focus on computationally
detecting abusive language and encouraging interdisciplinary work. Reflecting the growing research
focus on this topic, the number of submissions received more than doubled from 22 in last year’s edition
of the workshop to 48 this year.

The workshop will be broken into four sessions throughout the day. In the first session, we are
delighted to have two invited speakers from beyond the NLP community joining us to share their unique
perspectives and expertise:

Mikki Kendall
The Gamification of Hate

Mikki Kendall has written for The Washington Post, Boston Globe, Time, Ebony, Essence,
and other online and print markets. Born and raised in Chicago, her books Hood Feminism
and Amazons, Abolitionists, and Activists: A Graphic History of Women’s Fight For their
Rights will be published by Penguin Random House in 2019. Having experienced online
harassment, she has worked on projects related to abusive online cultures for nearly a decade.

Maryant Fernández Pérez
The Damaging Effect of Privatised Law Enforcement in Tackling Illegal Content

Maryant Fernández Pérez is a Senior Policy Advisor at European Digital Rights (EDRi) and
a lawyer admitted to the Madrid Bar association. She leads EDRi’s work on surveillance and
law enforcement, freedom of expression and intermediary liability, net neutrality, digital
trade, transparency, internet governance and international engagement. Maryant is the
author of several publications and has been a speaker at multiple conferences in Europe
and around the world.

In the second session, a panel of experts both from within and outside of the NLP community will debate
and frame the major issues facing the computational analysis of abusive language online, particularly
as relevant to the morning’s talks. This panel will be followed by a period for a discussion amongst all
attendees.

The third session will be used for sharing the research results archived in these proceedings, presented as
posters to encourage discussion. Finally, in the fourth session, the panelists, speakers, and participants
will return to give feedback on what they’ve seen and heard, leading into a synthesizing discussion
amongst all attendees facilitated by workshop organizer Jacqueline Wernimont. With this format we
aim to open a space for synergies between the talks, panels, and discussions throughout the day and
encourage interdisciplinary approaches to future work in the field.
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The submissions to be presented at the workshop represent a compelling diversity of methods, topics, and
approaches to the difficult problem of abusive language online, including embedding-based, adversarial,
and neural models; the creation of new datasets from diverse sources such as WhatsApp and white
supremacist forums; in-depth error analysis and classification interpretability analysis; and studies of
languages beyond English such as Slovene, Croatian, and code-mixed Hindi and English. The workshop
received 48 paper submissions, of which 21 were accepted, for an acceptance rate of 43%.

In organizing this workshop we collaborated with StackOverflow to curate a dataset of moderated
comments, proposed as an unshared task. This dataset was ultimately utilized by one of the accepted
papers and will hopefully encourage more work moving forward in close collaboration with industry
partners. We have also reached an agreement with the journal First Monday to publish a special issue
resulting from the joint proceedings of this workshop and the previous edition, wherein a subset of the
papers will be nominated and the authors given an opportunity to expand them into full journal articles.

In closing, we wish to extend our sincere gratitude to our sponsors for their generous financial
contributions and our reviewers for their time and expertise, without which this workshop would not
have been possible.

- Zeerak, Jacque, Vinod, Darja, Ruihong, and Rob
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Abstract

The advent of social media in recent years has
fed into some highly undesirable phenomena
such as proliferation of offensive language,
hate speech, sexist remarks, etc. on the Inter-
net. In light of this, there have been several
efforts to automate the detection and modera-
tion of such abusive content. However, delib-
erate obfuscation of words by users to evade
detection poses a serious challenge to the ef-
fectiveness of these efforts. The current state
of the art approaches to abusive language de-
tection, based on recurrent neural networks, do
not explicitly address this problem and resort
to a generic OOV (out of vocabulary) embed-
ding for unseen words. However, in using a
single embedding for all unseen words we lose
the ability to distinguish between obfuscated
and non-obfuscated or rare words. In this pa-
per, we address this problem by designing a
model that can compose embeddings for un-
seen words. We experimentally demonstrate
that our approach significantly advances the
current state of the art in abuse detection on
datasets from two different domains, namely
Twitter and Wikipedia talk page.

1 Introduction

Pew Research Center has recently uncovered sev-
eral disturbing trends in communications on the
Internet. As per their report (Duggan, 2014), 40%
of adult Internet users have personally experienced
harassment online, and 60% have witnessed the
use of offensive names and expletives. Expect-
edly, the majority (66%) of those who have per-
sonally faced harassment have had their most re-
cent incident occur on a social networking website
or app. While most of these websites and apps pro-
vide ways of flagging offensive and hateful con-
tent, only 8.8% of the victims have actually con-
sidered using such provisions.

Two conclusions can be drawn from these statis-
tics: (i) abuse (a term we use henceforth to collec-
tively refer to toxic language, hate speech, etc.) is
prevalent in social media, and (ii) passive and/or
manual techniques for curbing its propagation
(such as flagging) are neither effective nor easily
scalable (Pavlopoulos et al., 2017). Consequently,
the efforts to automate the detection and modera-
tion of such content have been gaining popularity
(Waseem and Hovy, 2016; Wulczyn et al., 2017).

In their work, Nobata et al. (2016) describe the
task of achieving effective automation as an inher-
ently difficult one due to several ingrained com-
plexities; a prominent one they highlight is the
deliberate structural obfuscation of words (for ex-
ample, fcukk, w0m3n, banislam, etc.) by users to
evade detection. Simple spelling correction tech-
niques and edit-distance procedures fail to provide
information about such obfuscations because: (i)
words may be excessively fudged (e.g., a55h0le,
n1gg3r) or concatenated (e.g., stupidbitch, femi-
nismishate), and (ii) they fail to take into account
the fact that some character sequences like musl
and wom are more frequent and more indicative of
abuse than others (Waseem and Hovy, 2016).

Nobata et al. (2016) go on to show that sim-
ple character n-gram features prove to be highly
promising for supervised classification approaches
to abuse detection due to their robustness to
spelling variations; however, they do not address
obfuscations explicitly. Waseem and Hovy (2016)
and Wulczyn et al. (2017) also use character n-
grams to attain impressive results on their respec-
tive datasets. That said, the current state of the
art methods do not exploit character-level infor-
mation, but instead utilize recurrent neural net-
work (RNN) models operating on word embed-
dings alone (Pavlopoulos et al., 2017; Badjatiya
et al., 2017). Since the problem of deliberately
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noisy input is not explicitly accounted for, these
approaches resort to the use of a generic OOV

(out of vocabulary) embedding for words not seen
in the training phase. However, in using a sin-
gle embedding for all unseen words, such ap-
proaches lose the ability to distinguish obfuscated
words from non-obfuscated or rare ones. Recently,
Mishra et al. (2018) and Qian et al. (2018),
working with the same Twitter dataset as we do,
reported that many of the misclassifications by
their RNN-based methods happen due to inten-
tional misspellings and/or rare words.

Our contributions are two-fold: first, we exper-
imentally demonstrate that character n-gram fea-
tures are complementary to the current state of the
art RNN approaches to abusive language detection
and can strengthen their performance. We then ex-
plicitly address the problem of deliberately noisy
input by constructing a model that operates at the
character level and learns to predict embeddings
for unseen words. We show that the integration of
this model with the character-enhanced RNN meth-
ods further advances the state of the art in abuse
detection on three datasets from two different do-
mains, namely Twitter and Wikipedia talk page.
To the best of our knowledge, this is the first work
to use character-based word composition models
for abuse detection.

2 Related Work

Yin et al. (2009) were among the first ones to ap-
ply supervised learning to the task of abuse detec-
tion. They worked with a linear support vector ma-
chine trained on local (e.g., n-grams), contextual
(e.g., similarity of a post to its neighboring posts),
and sentiment-based (e.g., presence of expletives)
features to recognize posts involving harassment.

Djuric et al. (2015) worked with comments
taken from the Yahoo Finance portal and demon-
strated that distributional representations of com-
ments learned using the paragraph2vec frame-
work (Le and Mikolov, 2014) can outperform sim-
pler bag-of-words BOW features under supervised
classification settings for hate speech detection.
Nobata et al. (2016) improved upon the results of
Djuric et al. by training their classifier on an amal-
gamation of features derived from four different
categories: linguistic (e.g., count of insult words),
syntactic (e.g. part-of-speech POS tags), distribu-
tional semantic (e.g., word and comment embed-
dings) and n-gram based (e.g., word bi-grams).

They noted that while the best results were ob-
tained with all features combined, character n-
grams had the highest impact on performance.

Waseem and Hovy (2016) utilized a logistic
regression (LR) classifier to distinguish amongst
racist, sexist, and clean tweets in a dataset of ap-
proximately 16k of them. They found that char-
acter n-grams coupled with gender information of
users formed the optimal feature set for the task.
On the other hand, geographic and word-length
distribution features provided little to no improve-
ment. Experimenting with the same dataset, Bad-
jatiya et al. (2017) improved on their results by
training a gradient-boosted decision tree (GBDT)
classifier on averaged word embeddings learnt us-
ing a long short-term memory (LSTM) models ini-
tialized with random embeddings. Mishra et al.
(2018) went on to incorporate community-based
profiling features of users in their classification
methods, which led to the state of the art perfor-
mance on this dataset.

Waseem (2016) studied the influence of anno-
tators’ knowledge on the task of hate speech de-
tection. For this, they sampled 7k tweets from
the same corpus as Waseem and Hovy (2016) and
recruited expert and amateur annotators to anno-
tate the tweets as racism, sexism, both or neither.
Combining this dataset with that of Waseem and
Hovy (2016), Park et al. (2017) evaluated the ef-
ficacy of a 2-step classification process: they first
used an LR classifier to separate abusive and non-
abusive tweets, and then used another LR classifier
to distinguish between the racist and sexist ones.
They showed that this setup had comparable per-
formance to a 1-step classification approach based
on convolutional neural networks (CNNs) operat-
ing on word and character embeddings.

Wulczyn et al. (2017) created three different
datasets of comments collected from the English
Wikipedia Talk page: one was annotated for per-
sonal attacks, another for toxicity, and the third
for aggression. They achieved their best results
with a multi-layered perceptron classifier trained
on character n-gram features. Working with the
personal attack and toxicity datasets, Pavlopoulos
et al. (2017) outperformed the methods of Wul-
czyn et al. by having a gated recurrent unit (GRU)
to model the comments as dense low-dimensional
representations, followed by an LR layer to clas-
sify the comments based on those representations.

Davidson et al. (2017) produced a dataset of
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about 25k racist, offensive or clean tweets. They
evaluated several multi-class classifiers with the
aim of discerning clean tweets from racist and of-
fensive tweets, while simultaneously being able to
distinguish between the racist and offensive ones.
Their best model was an LR classifier trained using
TF–IDF and POS n-gram features coupled with fea-
tures like count of hash tags and number of words.

3 Datasets

Following the proceedings of the 1st Workshop on
Abusive Language Online (Waseem et al., 2017),
we use three datasets from two different domains.

3.1 Twitter

Waseem and Hovy (2016) prepared a dataset of
16, 914 tweets from a corpus of approximately
136k tweets retrieved over a period of two months.
They bootstrapped their collection process with a
search for commonly used slurs and expletives re-
lated to religious, sexual, gender and ethnic mi-
norities. After having manually annotated 16, 914
of the tweets as racism, sexism or neither, they
asked an expert to review their annotations in order
to mitigate against any biases. The inter-annotator
agreement was reported at κ = 0.84, with further
insight that 85% of all the disagreements occurred
in the sexism class alone.

The authors released the dataset as a list of
16, 907 tweet IDs and their corresponding anno-
tations. We could only retrieve 16, 202 of the
tweets with python’s Tweepy library since some
of them have been deleted or their visibility has
been limited. Of the ones retrieved, 1,939 (12%)
are racism, 3,148 (19.4%) are sexism, and the re-
maining 11,115 (68.6%) are neither; the origi-
nal dataset has a similar distribution, i.e., 11.7%
racism, 20.0% sexism, and 68.3% neither.

3.2 Wikipedia talk page

Wulczyn et al. (2017) extracted approximately
63M talk page comments from a public dump
of the full history of English Wikipedia released
in January 2016. From this corpus, they ran-
domly sampled comments to form three datasets
on personal attack, toxicity and aggression, and
engaged workers from CrowdFlower to annotate
them. Noting that the datasets were highly skewed
towards the non-abusive classes, the authors over-
sampled comments from banned users to attain a
more uniform distribution.

In this work, we utilize the toxicity and per-
sonal attack datasets, henceforth referred to as W-
TOX and W-ATT respectively. Each comment in
both of these datasets was annotated by at least 10
workers. We use the majority annotation of each
comment to resolve its gold label: if a comment
is deemed toxic (alternatively, attacking) by more
than half of the annotators, we label it as abusive;
otherwise, as non-abusive. 13,590 (11.7%) of the
115,864 comments in W-ATT and 15,362 (9.6%)
of the 159,686 comments in W-TOX are abusive.
Wikipedia comments, with an average length of
25 tokens, are considerably longer than the tweets
which have an average length of 8.

4 Methods

We experiment with ten different methods, eight
of which have an RNN operating on word embed-
dings. Six of these eight also include character n-
gram features, and four further integrate our word
composition model. The remaining two comprise
an RNN that works directly on character inputs.

Hidden-state (HS). As our first baseline, we adopt
the “RNN” method of Pavlopoulos et al. (2017)
since it produces state of the art results on the
Wikipedia datasets. Given a text formed of a se-
quence w1, . . . , wn of words (represented by d-
dimensional word embeddings), the method uti-
lizes a 1-layer GRU to encode the words into hid-
den states h1, . . . , hn. This is followed by an LR

layer that classifies the text based on the last hid-
den state hn. We modify the authors’ original ar-
chitecture in two minor ways: we extend the 1-
layer GRU to a 2-layer GRU and use softmax as the
activation in the LR layer instead of sigmoid.1

Following Pavlopoulos et al., we initialize the
word embeddings to GLoVe vectors (Pennington
et al., 2014). In all our methods, words not present
in the GLoVe set are randomly initialized in the
range ±0.05, indicating the lack of semantic in-
formation. By not mapping these words to a single
random embedding, we mitigate against the errors
that may arise due to their conflation (Madhyastha
et al., 2015). A special OOV (out of vocabulary)
token is also initialized in the same range. All the
embeddings are updated during training, allowing
for some of the randomly-initialized ones to get

1We also experimented with 1-layer GRU/LSTM and 1/2-
layer bi-directional GRUs/LSTMs but the performance only
worsened or showed no gains; using sigmoid instead of soft-
max did not have any noteworthy effects on the results either.
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task-tuned (Kim, 2014); the ones that do not get
tuned lie closely clustered around the OOV token
to which unseen words in the test set are mapped.
Word-sum (WS). The “LSTM+GLoVe+GBDT”
method of Badjatiya et al. (2017) constitutes
our second baseline. The authors first employ
an LSTM to task-tune GLoVe-initialized word em-
beddings by propagating error back from an LR

layer. They then train a gradient-boosted decision
tree (GBDT) classifier to classify texts based on
the average of the constituent word embeddings.2

We make two minor modifications to the original
method: we utilize a 2-layer GRU3 instead of the
LSTM to tune the embeddings, and we train the
GBDT classifier on the L2-normalized sum of the
embeddings instead of their average.4

Hidden-state + char n-grams (HS + CNG). Here
we extend the hidden-state baseline: we train
the 2-layer GRU architecture as before, but now
concatenate its last hidden state hn with L2-
normalized character n-gram counts to train a
GBDT classifier.
Augmented hidden-state + char n-grams
(AUGMENTED HS + CNG). In the above methods,
unseen words in the test set are simply mapped
to the OOV token since we do not have a way
of obtaining any semantic information about
them. However, this is undesirable since racial
slurs and expletives are often deliberately fudged
by users to prevent detection. In using a single
embedding for all unseen words, we lose the
ability to distinguish such obfuscations from other
non-obfuscated or rare words. Taking inspiration
from the effectiveness of character-level features
in abuse detection, we address this issue by having
a character-based word composition model that
can compose embeddings for unseen words in the
test set (Pinter et al., 2017). We then augment the
hidden-state + char n-grams method with it.

2In their work, the authors report that initializing embed-
dings randomly rather than with GLoVe yields state of the art
performance on the Twitter dataset that we are using. How-
ever, we found the opposite when performing 10-fold strat-
ified cross-validation (CV). A possible explanation of this
lies in the authors’ decision to not use stratification, which
for such a highly imbalanced dataset can lead to unexpected
outcomes (Forman and Scholz, 2010). Furthermore, the au-
thors train their LSTM on the entire dataset including the test
part without any early stopping criterion; this facilitates over-
fitting of the randomly-initialized embeddings.

3The deeper 2-layer GRU slightly improves performance.
4L2-normalized sum ensures uniformity of range across

the feature set in all our methods; GBDT, being a tree based
model, is not affected by the choice of monotonic function.

Specifically, our model (Figure 1b) comprises
a 2-layer bi-directional LSTM, followed by a hid-
den layer with tanh non-linearity and an output
layer at the end. The model takes as input a se-
quence c1, . . . , ck of characters, represented as
one-hot vectors, from a fixed vocabulary (i.e., low-
ercase English alphabet and digits) and outputs a
d-dimensional embedding for the word ‘c1 . . . ck’.
Bi-directionality of the LSTM allows for the se-
mantics of both the prefix and the suffix (last hid-
den forward and backward state) of the input word
to be captured, which are then combined to form
the hidden state for the input word. The model
is trained by minimizing the mean squared er-
ror (MSE) between the embeddings that it pro-
duces and the task-tuned embeddings of words in
the training set. This ensures that newly com-
posed embeddings are endowed with characteris-
tics from both the GLoVe space as well as the task-
tuning process. While approaches like that of Bo-
janowski et al. (2017) can also compose embed-
dings for unseen words, they cannot endow the
newly composed embeddings with characteristics
from the task-tuning process; this may constitute a
significant drawback (Kim, 2014).

During the training of our character-based word
composition model, to emphasize frequent words,
we feed a word as many times as it appears in the
training corpus. We note that a 1-layer CNN with
global max-pooling in place of the 2-layer LSTM

provides comparable performance while requiring
significantly less time to train. This is expected
since words are not very long sequences, and the
filters of the CNN are able to capture the different
character n-grams within them.

Context hidden-state + char n-grams
(CONTEXT HS + CNG). In the augmented
hidden-state + char n-grams method, the word
composition model infers semantics of unseen
words solely on the basis of the characters in them.
However, for many words, semantic inference
and sense disambiguation require context, i.e.,
knowledge of character sequences in the vicinity.
An example is the word cnt that has different
meanings in the sentences “I cnt undrstand this!”
and “You feminist cnt!”, i.e., cannot in the former
and the sexist slur cunt in the latter. Yet another
example is an obfuscation like ‘’You mot otherf uc
ker! where the expletive motherfucker cannot be
properly inferred from any fragment without the
knowledge of surrounding character sequences.
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(a) (b)

Figure 1: Context-aware approach to word composition. The figure on the left shows how the encoder
extracts context-aware representations of characters in the phrase “cat sat on” from their one-hot repre-
sentations. The dotted lines denote the space character t which demarcates word boundaries. Semantics
of an unseen word, e.g., sat, can then be inferred by our word composition model shown on the right.

To address this, we develop context-aware
representations for characters as inputs to our
character-based word composition model instead
of one-hot representations.5 We introduce an en-
coder architecture to produce the context-aware
representations. Specifically, given a text formed
of a sequence w1, . . . , wn of words, the encoder
takes as input one-hot representations of the char-
acters c1, . . . , ck within the concatenated sequence
‘w1t . . . twn’, where t denotes the space charac-
ter. This input is passed through a bi-directional
LSTM that produces hidden states h1, . . . , hk, one
for every character. Each hidden state, referred to
as context-aware character representation, is the
average of its designated forward and backward
states; hence, it captures both the preceding as
well as the following contexts of the character
it corresponds to. Figure 1 illustrates how the
context-aware representations are extracted and
used for inference by our character-based word
composition model. The model is trained in the
same manner as done in the augmented hidden-
state + char n-grams method, i.e., by minimiz-
ing the MSE between the embeddings that it pro-
duces and the task-tuned embeddings of words in
the training set (initialized with GLoVe). However,

5We also experimented with word-level context but did
not get any significant improvements. We believe this is due
to higher variance at word level than at the character level.

the inputs now are context-aware representations
of characters instead of one-hot representations.

Word-sum + char n-grams (WS + CNG),
Augmented word-sum + char n-grams
(AUGMENTED WS + CNG), and Context
word-sum + char n-grams (CONTEXT WS +
CNG). These methods are identical to the (context/
augmented) hidden-state + char n-grams methods
except that here we include the character n-grams
and our character-based word composition model
on top of the word-sum baseline.

Char hidden-state (CHAR HS) and Char word-
sum (CHAR WS). In all the methods described up
till now, the input to the core RNN is word em-
beddings. To gauge whether character-level inputs
are themselves sufficient or not, we construct two
methods based on the character to word (C2W) ap-
proach of Ling et al. (2015). For the char hidden-
state method, the input is one-hot representations
of characters from a fixed vocabulary. These rep-
resentations are encoded into a sequence w1, . . . ,
wn of intermediate word embeddings by a 2-layer
bi-directional LSTM. The word embeddings are
then fed into a 2-layer GRU that transforms them
into hidden states h1, . . . , hn. Finally, as in the
hidden-state baseline, an LR layer with softmax
activation uses the last hidden state hn to perform
classification while propagating error backwards
to train the network. The char word-sum method
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is similar except that once the network has been
trained, we use the intermediate word embeddings
produced by it to train a GBDT classifier in the
same manner as done in the word-sum baseline.

5 Experiments and Results

5.1 Experimental setup
We normalize the input by lowercasing all words
and removing stop words. For the GRU architec-
ture, we use exactly the same hyper-parameters
as Pavlopoulos et al. (2017),6 i.e., 128 hidden
units, Glorot initialization, cross-entropy loss, and
Adam optimizer (Kingma and Ba, 2015). Bad-
jatiya et al. (2017) also use the same settings
except they have fewer hidden units. The LSTM

in our character-based word composition model
has 256 hidden units while that in our encoder
has 64; the CNN has filters of widths varying
from 1 to 4. The results we report are with an
LSTM-based word composition model. In all the
models, besides dropout regularization (Srivastava
et al., 2014), we hold out a small part of the train-
ing set as validation data to prevent over-fitting.
We use 300d embeddings and 1 to 5 character n-
grams for Wikipedia and 200d embeddings and
1 to 4 character n-grams for Twitter. We imple-
ment the models in Keras (Chollet et al., 2015)
with Theano back-end. We employ Lightgbm (Ke
et al., 2017) as our GDBT classifier and tune its
hyper-parameters using 5-fold grid search.

5.2 Twitter results
For the Twitter dataset, unlike previous research
(Badjatiya et al., 2017; Park and Fung, 2017), we
report the macro precision, recall, and F1 averaged
over 10 folds of stratified CV (Table 1). For a
classification problem with N classes, macro pre-
cision (similarly, macro recall and macro F1) is
given by:

Macro P =
1

N

N∑

i=1

Pi

where Pi denotes precision on class i. Macro met-
rics provide a better sense of effectiveness on the
minority classes (Van Asch, 2013).

We observe that character n-grams (CNG) con-
sistently enhance performance, while our aug-
mented approach (AUGMENTED) further improves

6The authors have not released their models; we replicate
their method based on the details in their paper.

upon the results obtained with character n-grams.
All the improvements are statistically significant
with p < 0.05 under 10-fold CV paired t-test.

As Ling et al. (2015) noted in their POS tagging
experiments, we observe that the CHAR HS and
CHAR WS methods perform worse than their coun-
terparts that use pre-trained word embeddings, i.e.,
the HS and WS baselines respectively.

To further analyze the performance of our
best methods (CONTEXT/AUGMENTED WS/HS +
CNG), we also examine the results on the racism
and sexism classes individually (Table 2). As be-
fore, we see that our approach consistently im-
proves over the baselines, and the improvements
are statistically significant under paired t-tests.

Method P R F1

HS 79.14 77.06 78.01
CHAR HS 79.48 69.00 72.36

HS + CNG† 80.36 78.20 79.19
AUGMENTED HS + CNG† 81.28 77.84 79.37

CONTEXT HS + CNG† 81.39 77.47 79.21
WS 80.78 72.83 75.93

CHAR WS 80.04 68.17 71.94
WS + CNG† 83.16 76.60 79.31

AUGMENTED WS + CNG† 83.50 77.20 79.80
CONTEXT WS + CNG† 83.44 77.06 79.67

Table 1: Results on the Twitter dataset. The meth-
ods we propose are denoted by †. Our best method
(AUGMENTED WS + CNG) significantly outper-
forms all other methods.

Method P R F1

HS 74.15 72.46 73.24
AUGMENTED HS + CNG† 76.28 72.72 74.40

CONTEXT HS + CNG† 76.61 72.15 74.26
WS 76.43 67.77 71.78

AUGMENTED WS + CNG† 78.17 72.20 75.01
CONTEXT WS + CNG† 77.90 72.26 74.91

(a) Racism

Method P R F1

HS 76.04 68.84 72.24
AUGMENTED HS + CNG† 80.07 69.28 74.26

CONTEXT HS + CNG† 80.29 68.52 73.92
WS 81.75 57.37 67.38

AUGMENTED WS + CNG† 85.61 65.91 74.44
CONTEXT WS + CNG† 85.80 65.41 74.18

(b) Sexism

Table 2: The baselines (WS, HS) vs. our best ap-
proaches (†) on the racism and sexism classes.

Additionally, we note that the AUGMENTED WS

+ CNG method improves the F1 score of the WS
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+ CNG method from 74.12 to 75.01 for the racism
class, and from 74.03 to 74.44 for the sexism class.
The AUGMENTED HS + CNG method similarly im-
proves the F1 score of the HS + CNG method from
74.00 to 74.40 on the racism class while making
no notable difference on the sexism class.

We see that the CONTEXT HS/WS + CNG meth-
ods do not perform as well as the AUGMENTED

HS/WS + CNG methods. One reason for this
is that the Twitter dataset is not able to expose
the methods to enough contexts due to its small
size. Moreover, because the collection of this
dataset was bootstrapped with a search for certain
commonly-used abusive words, many such words
are shared across multiple tweets belonging to dif-
ferent classes. Given the above, context-aware
character representations perhaps do not provide
substantial distinctive information.

5.3 Wikipedia results

Following previous work (Pavlopoulos et al.,
2017; Wulczyn et al., 2017), we conduct a stan-
dard 60:40 train–test split experiment on the two
Wikipedia datasets. Specifically, from W-TOX,
95, 692 comments (10.0% abusive) are used for
training and 63, 994 (9.1% abusive) for testing;
from W-ATT, 70, 000 (11.8% abusive) are used for
training and 45, 854 (11.7% abusive) for testing.
Table 3 reports the macro F1 scores. We do not
report scores from the CHAR HS and CHAR WS

methods since they showed poor preliminary re-
sults compared to the HS and WS baselines.

Method W-TOX W-ATT
HS 88.65 86.28

HS + CNG† 89.29 87.32
AUGMENTED HS + CNG† 89.31 87.33

CONTEXT HS + CNG† 89.35 87.44
WS 85.49 84.35

WS + CNG† 87.12 85.80
AUGMENTED WS + CNG† 87.02 85.75

CONTEXT WS + CNG† 87.16 85.81

Table 3: Macro F1 scores on the two Wikipedia
datasets. The current state of the art method for
these datasets is HS. † denotes the methods we
propose. Our best method (CONTEXT HS + CNG)
outperforms all the other methods.

Mirroring the analysis carried out for the Twit-
ter dataset, Table 4 further compares the per-
formance of our best methods for Wikipedia
(CONTEXT/AUGMENTED HS + CNG) with that of

the state of the art baseline (HS) on specifically the
abusive classes of W-TOX and W-ATT.

Method P R F1

HS 84.48 74.60 79.24
AUGMENTED HS + CNG† 85.43 76.02 80.45

CONTEXT HS + CNG† 85.42 76.17 80.53
(a) W-TOX

Method P R F1

HS 78.61 72.88 75.64
AUGMENTED HS + CNG† 81.23 74.06 77.48

CONTEXT HS + CNG† 81.39 74.28 77.67
(b) W-ATT

Table 4: The current state of the art baseline (HS)
vs. our best methods (†) on the abusive classes of
W-TOX and W-ATT.

We observe that the augmented approach sub-
stantially improves over the state of the art base-
line. Unlike in the case of Twitter, our context-
aware setup for word composition is now able to
further enhance performance courtesy of the larger
size of the datasets which increases the availability
of contexts. All improvements are significant (p <
0.05) under paired t-tests. We note, however, that
the gains we get here with the word composition
model are relatively small compared to those we
get for Twitter. This difference can be explained
by the fact that: (i) Wikipedia comments are less
noisy than the tweets and contain fewer obfusca-
tions, and (ii) the Wikipedia datasets, being much
larger, expose the methods to more words dur-
ing training, hence reducing the likelihood of un-
seen words being important to the semantics of the
comments they belong to (Kim et al., 2016).

Like Pavlopoulos et al. (2017), we see that
the methods that involve summation of word em-
beddings (WS) perform significantly worse on the
Wikipedia datasets compared to those that use hid-
den state (HS); however, their performance is com-
parable or even superior on the Twitter dataset.
This contrast is best explained by the observation
of Nobata et al. (2016) that taking average or
sum of word embeddings compromises contextual
and word order information. While this is ben-
eficial in the case of tweets which are short and
loosely-structured, it leads to poor performance of
the WS and WS + CNG methods on the Wikipedia
datasets, with the addition of the word composi-
tion model (CONTEXT/AUGMENTED WS + CNG)
providing little to no improvements.
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Abusive sample Predicted class
WS WS + CNG AUGMENTED WS + CNG

@mention I love how the Islamofascists recruit 14 and 15 year
old jihadis and then talk about minors in reference to 17 year
olds.

neither racism racism

@mention @mention @mention As a certified inmate of the Is-
lamasylum, you don’t have the ability to judge.

neither racism racism

@mention “I’ll be ready in 5 minutes” from a girl usually
means “I’ll be ready in 20+ minutes.” #notsexist #knownfrom-
experience

neither sexism sexism

RT @mention: #isis #muslim #Islamophobia? I think the word
you’re searching for is #Islamorealism http://t.co/NyihT8Bqyu
http://t.c...

neither neither racism

@mention @mention And looking at your page, I can see that
you are in the business of photoshopping images, Islamist cock-
sucker.

neither neither racism

I think Kat is on the wrong show. #mkr is for people who can
cook. #stupidbitch #hopeyouareeliminated

neither neither sexism

@mention because w0m3n are a5sh0les #feminismishate neither neither sexism

Table 5: Improved classification upon the addition of character n-grams (CNG) and our word composition
model (AUGMENTED). Names of users have been replaced with mention for anonymity.

6 Discussion

To investigate the extent to which obfuscated
words can be a problem, we extract a number
of statistics. Specifically, we notice that out of
the approximately 16k unique tokens present in
the Twitter dataset, there are about 5.2k tokens
that we cannot find in the English dictionary.7

Around 600 of these 5.2k tokens are present in
the racist tweets, 1.6k in the sexist tweets, and
the rest in tweets that are neither. Examples from
the racist tweets include fuckbag, ezidiz, islamo-
fascists, islamistheproblem, islamasylum and isis-
aremuslims, while those from the sexist tweets in-
clude c*nt, bbbbitch, feminismisawful, and stupid-
bitch. Given that the racist and sexist tweets come
from a small number of unique users, 5 and 527
respectively, we believe that the presence of ob-
fuscated words would be even more pronounced if
tweets were procured from more unique users.

In the case of the Wikipedia datasets, around
15k unique tokens in the abusive comments of
both W-TOX and W-ATT are not attested in the En-
glish dictionary. Examples of such tokens from
W-TOX include fuggin, n*gga, fuycker, and 1d10t;
and from W-ATT include f**king, beeeitch, musul-
mans, and motherfucken. In comparison to the
tweets, the Wikipedia comments use more “stan-
dard” language. This is validated by the fact that
only 14% of the tokens present in W-TOX and W-
ATT are absent from the English dictionary as op-

7We use the US English spell-checking utility provided by
the PyEnchant library of python.

posed to 32% of the tokens in the Twitter dataset
even though the Wikipedia ones are almost ten
times larger.

Across the three datasets, we note that the ad-
dition of character n-gram features enhances the
performance of RNN-based methods, corroborat-
ing the previous findings that they capture com-
plementary structural and lexical information of
words. The inclusion of our character-based word
composition model yields state of the art results
on all the datasets, demonstrating the benefits of
inferring the semantics of unseen words. Table
5 shows some abusive samples from Twitter that
are misclassified by the WS baseline method but
are correctly classified upon the addition of char-
acter n-grams (WS + CNG) and the further addition
of our character-based word composition model
(AUGMENTED WS + CNG).

Many of the abusive tweets that remain mis-
classified by the AUGMENTED WS + CNG method
are those that are part of some abusive dis-
course (e.g., @Mich McConnell Just “her body”
right?) or contain URLs to abusive content (e.g.,
@salmonfarmer1: Logic in the world of Islam
http://t.co/6nALv2HPc3).

In the case of the Wikipedia datasets, there are
abusive examples like smyou have a message re
your last change, go fuckyourself!!! and F-uc-k
you, a-ss-hole Motherf–ucker! that are misclassi-
fied by the state of the art HS baseline and the HS

+ CNG method but correctly classified by our best
method for the datasets, i.e., CONTEXT HS + CNG.
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Word Similar words in training set
women girls, woman, females, chicks, ladies
w0m3n† woman, women, girls, ladies, chicks

cunt twat, prick, faggot, slut, asshole
a5sh0les† assholes, stupid, cunts, twats, faggots

stupidbitch† idiotic, stupid, dumb, ugly, women
jihad islam, muslims, sharia, terrorist, jihadi

jihaaadi† terrorists, islamist, jihadists, muslims
terroristislam† terrorists, muslims, attacks, extremists

fuckyouass† fuck, shit, fucking, damn, hell

Table 6: Words in the training set that exhibit high
cosine similarity to the given word. The ones
marked with † are not seen during training; em-
beddings for them are composed using our word
composition model.

To ascertain the effectiveness of our task-tuning
process for embeddings, we conducted a quali-
tative analysis, validating that semantically simi-
lar words cluster together in the embedding space.
Analogously, we assessed the merits of our word
composition model by verifying the neighbors of
embeddings formed by it for obfuscated words not
seen during training. Table 6 provides some exam-
ples. We see that our model correctly infers the se-
mantics of obfuscated words, even in cases where
obfuscation is by concatenation of words.

7 Conclusions

In this paper, we considered the problem of obfus-
cated words in the field of automated abuse detec-
tion. Working with three datasets from two differ-
ent domains, namely Twitter and Wikipedia talk
page, we first comprehensively replicated the pre-
vious state of the art RNN methods for the datasets.
We then showed that character n-grams capture
complementary information, and hence, are able
to enhance the performance of the RNNs. Finally,
we constructed a character-based word composi-
tion model in order to infer semantics for unseen
words and further extended it with context-aware
character representations. The integration of our
composition model with the enhanced RNN meth-
ods yielded the best results on all three datasets.
We have experimentally demonstrated that our ap-
proach to modeling obfuscated words significantly
advances the state of the art in abuse detection. In
the future, we wish to explore its efficacy in tasks
such as grammatical error detection and correc-
tion. We will make our models and logs of experi-
ments publicly available at https://github.
com/pushkarmishra/AbuseDetection.
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Abstract

Hate speech is commonly defined as any com-
munication that disparages a target group of
people based on some characteristic such as
race, colour, ethnicity, gender, sexual orienta-
tion, nationality, religion, or other characteris-
tic. Due to the massive rise of user-generated
web content on social media, the amount of
hate speech is also steadily increasing. Over
the past years, interest in online hate speech
detection and, particularly, the automation of
this task has continuously grown, along with
the societal impact of the phenomenon. This
paper describes a hate speech dataset com-
posed of thousands of sentences manually la-
belled as containing hate speech or not. The
sentences have been extracted from Storm-
front, a white supremacist forum. A custom
annotation tool has been developed to carry
out the manual labelling task which, among
other things, allows the annotators to choose
whether to read the context of a sentence be-
fore labelling it. The paper also provides a
thoughtful qualitative and quantitative study of
the resulting dataset and several baseline ex-
periments with different classification models.
The dataset is publicly available.

1 Introduction

The rapid growth of content in social networks
such as Facebook, Twitter and blogs, makes it im-
possible to monitor what is being said. The in-
crease of cyberbullying and cyberterrorism, and
the use of hate on the Internet, make the identi-
fication of hate in the web an essential ingredient
for anti-bullying policies of social media, as Face-
book’s CEO Mark Zuckerberg recently acknowl-
edged1. This paper releases a new dataset of hate
speech to further investigate the problem.

1https://www.washingtonpost.com/news/the-
switch/wp/2018/04/10/transcript-of-mark-zuckerbergs-
senate-hearing/

Although there is no universal definition for
hate speech, the most accepted definition is pro-
vided by Nockleby (2000): “any communication
that disparages a target group of people based on
some characteristic such as race, colour, ethnicity,
gender, sexual orientation, nationality, religion, or
other characteristic”. Consider the following2:

(1) “God bless them all, to hell with the blacks”

This sentence clearly contains hate speech against
a target group because of their skin colour. How-
ever, the identification of hate speech is often not
so straightforward. Besides defining hate speech
as a verbal abuse directed to a group of people
because of specific characteristics, other defini-
tions of hate speech in previous studies care to in-
clude the speaker’s determination to inflect harm
(Davidson et al., 2017).

In all, there seems to be a pattern shared by most
of the literature consulted (Nockleby, 2000; Djuric
et al., 2015; Gitari et al., 2015; Nobata et al., 2016;
Silva et al., 2016; Davidson et al., 2017), which
would define hate speech as a) a deliberate attack,
b) directed towards a specific group of people, and
c) motivated by actual or perceived aspects that
form the group’s identity.

This paper presents the first public dataset of
hate speech annotated on Internet forum posts in
English at sentence-level. The dataset is publicly
available in GitHub3. The source forum is Storm-
front4, the largest online community of white na-
tionalists, characterised by pseudo-rational discus-
sions of race (Meddaugh and Kay, 2009), which
include different degrees of offensiveness. Storm-
front is known as the first hate website (Schafer,
2002).

2The examples in this work may contain offensive lan-
guage. They have been taken from actual web data and by no
means reflect the authors’ opinion.

3https://github.com/aitor-garcia-p/hate-speech-dataset
4www.stormfront.org
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The rest of the paper is structured as follows:
Section 2 describes the related work and contex-
tualises the work presented in the paper; Section
3 introduces the task of generating a manually la-
belled hate speech dataset; this includes the de-
sign of the annotation guidelines, the resulting cri-
teria, the inter-annotator agreement and a quantita-
tive description of the resulting dataset; next, Sec-
tion 4 presents several baseline experiments with
different classification models using the labelled
data; finally, Section 5 provides a brief discussion
about the difficulties and nuances of hate speech
detection, and Section 6 summarises the conclu-
sions and future work.

2 Related Work

Research on hate speech has increased in the last
years. The conducted studies are diverse and work
on different datasets; there is no official corpus for
the task, so usually authors collect and label their
own data. For this reason, there exist few publicly
available resources for hate speech detection.

Hatebase5 is the an online repository of struc-
tured, multilingual, usage-based hate speech. Its
vocabulary is classified into eight categories: ar-
chaic, class, disability, ethnicity, gender, national-
ity, religion, and sexual orientation. Some stud-
ies make use of Hatebase to build a classifier for
hate speech (Davidson et al., 2017; Serra et al.,
2017; Nobata et al., 2016). However, Saleem et al.
(2016) prove that keyword-based approaches suc-
ceed at identifying the topic but fail to distinguish
hateful sentences from clean ones, as the same vo-
cabulary is shared by the hateful and target com-
munity, although with different intentions.

Kaggle’s Toxic Comment Classification Chal-
lenge dataset6 consists of 150k Wikipedia com-
ments annotated for toxic behaviour. Waseem and
Hovy (2016) published a collection of 16k tweets
classified into racist, sexist or neither. Sharma
et al. (2018) collected a set of 9k tweets contain-
ing harmful speech and they manually annotated
them based on their degree of hateful intent. They
describe three different classes of hate speech.
The definition on which this paper is based over-
laps mostly with their Class I, described as speech
a) that incites violent actions, b) directed at a par-
ticular group, and c) with the intention of convey-

5https://www.hatebase.org/
6https://www.kaggle.com/c/jigsaw-toxic-comment-

classification-challenge/data

ing hurting sentiments.
Google and Jigsaw developed a tool called Per-

spective7 that measures the “toxicity” of com-
ments. The tool is published as an API and gives a
toxicity score between 0 and 100 using a machine
learning model. Such model has been trained on
thousands of comments manually labelled by a
team of people8; to our knowledge, the resulting
dataset is not publicly available.

The detection of hate speech has been tackled in
three main different ways. Some studies focus on
subtypes of hate speech. This is the case of Warner
and Hirschberg (2012), who focus on the identifi-
cation of anti-Semitic posts versus any other form
of hate speech. Also in this line, Kwok and Wang
(2013) target anti-black hate speech. Badjatiya
et al. (2017); Gambäck and Sikdar (2017) study
the detection of racist and sexist tweets using deep
learning.

Other proposals focus on the annotation of hate
speech as opposed to texts containing derogatory
or offensive language (Davidson et al., 2017; Mal-
masi and Zampieri, 2017, 2018; Watanabe et al.,
2018). They build multi-class classifiers with the
categories “hate”, “offensive”, and “clean”.

Finally, some studies focus on the annotation
of hate speech versus clean comments that do not
contain hate speech (Nobata et al., 2016; Burnap
and Williams, 2015; Djuric et al., 2015). Gi-
tari et al. (2015) follow this approach but further
classify the hateful comments into two categories:
“weak” and “strong” hate. Del Vigna et al. (2017)
conduct a similar study for Italian.

In all, experts conclude that annotation of hate
speech is a difficult task, mainly because of the
data annotation process. Waseem (2016) con-
ducted a study on the influence of annotator
knowledge of hate speech on classifiers for hate
speech. Ross et al. (2016) also studied the relia-
bility of hate speech annotations and acknowledge
the importance of having detailed instructions for
the annotation of hate speech available.

This paper aims to tackle the inherent subjectiv-
ity and difficulty of labelling hate speech by fol-
lowing strict guidelines. The approach presented
in this paper follows (Nobata et al., 2016; Bur-
nap and Williams, 2015; Djuric et al., 2015) (i.e.,
“hateful” versus “clean”). Furthermore, the anno-
tation has been performed at sentence level as op-

7https://www.perspectiveapi.com
8https://www.nytimes.com/2017/02/23/technology/google-

jigsaw-monitor-toxic-online-comments.html
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posed to full-comment annotation, with the pos-
sibility to access the original complete post for
each sentence. To our knowledge, this is the first
work that releases a manually labelled hate speech
dataset annotated at sentence level in English posts
from a white supremacy forum.

3 Hate Speech Dataset

This paper presents the first dataset of textual hate
speech annotated at sentence-level. Sentence-level
annotation allows to work with the minimum unit
containing hate speech and reduce noise intro-
duced by other sentences that are clean.

A total number of 10,568 sentences have been
extracted from Stormfront and classified as con-
veying hate speech or not, and into two other aux-
iliary classes, as per the guidelines described in
Section 3.2. In addition, the following informa-
tion is also given for each sentence: a post identi-
fier and the sentence’s position in the post, a user
identifier, a sub-forum identifier9. This informa-
tion makes it possible re-build the conversations
these sentences belong to. Furthermore, the num-
ber of previous posts the annotator had to read be-
fore making a decision over the category of the
sentence is also given.

3.1 Data extraction and processing
The content was extracted from Stormfront using
web-scraping techniques and was dumped into a
database arranged by sub-forums and conversation
threads (Figea et al., 2016). The extracted forum
content was published between 2002 and 2017.
The process of preparing the candidate content to
be annotated was the following:

1. A subset of 22 sub-forums covering diverse
topics and nationalities was random-sampled
to gather individual posts uniformly dis-
tributed among sub-forums and users.

2. The sampled posts were filtered using an au-
tomatic language detector10 to discard non-
English texts.

3. The resulting posts were segmented into sen-
tences with ixa-pipes (Agerri et al., 2014).

4. The sentences were grouped forming batches
of 500 complete posts (∼ 1,000 sentences per
batch).

9All the identifiers provided are fake placeholders that
facilitate understanding relations between sentences, Storm-
front users, etc., but do not point back to the original source.

10https://github.com/shuyo/language-
detection/blob/wiki/ProjectHome.md

The manual annotation task was divided into
batches to control the process. During the anno-
tation of the first two batches, the annotation pro-
cedure and guidelines were progressively refined
and adapted. In total, 10,568 sentences contained
in 10 batches have been manually annotated.

A post-processing step was performed to filter
excessively long or short sentences. The cleansing
process removed sentences shorter than 3 words or
longer than 50 words. In total, 652 sentences were
discarded, which represent 6.17% of the original
dataset. The resulting dataset (henceforth referred
to as the “clean” dataset) is the one described in
Section 3.4 and used for experimentation in Sec-
tion 4. The release of the dataset will contain both
the raw sentences without any post-processing and
the clean version, both annotated.

3.2 Annotation guidelines
Schmidt and Wiegand (2017) acknowledge that
the procedure for hate speech annotation is fairly
vague in previous studies, which translates into
low agreement scores. In this study, all the annota-
tors together created and discussed the guidelines
to ensure all participants had the same understand-
ing of hate speech. The final guidelines consider 4
types of sentences:

3.2.1 HATE

Sentences in this category contain hate speech.
Hate speech is a

a) deliberate attack
b) directed towards a specific group of people
c) motivated by aspects of the group’s identity.

The three premises must be true for a sentence to
be categorized as HATE. Consider the following
examples:

(2) “Poor white kids being forced to treat apes
and parasites as their equals.”

(3) “Islam is a false religion however unlike
some other false religions it is crude and
appeals to crude people such as arabs.”

In (2), the speaker uses “apes” and “parasites” to
refer to children of dark skin and implies they are
not equal to “white kids”. That is, it is an attack to
the group composed of children of dark skin based
on an identifying characteristic, namely, their skin
colour. Thus, all the premises are true and (2) is
a valid example of HATE. Example (3) brands all
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people of Arab origin as crude. That is, it attacks
the group composed of Arab people based on their
origin. Thus, all the premises are true and (3) is a
valid example of HATE.

3.2.2 NOHATE

This label is used to categorise sentences that do
not convey hate speech per the established defini-
tion. Consider the following examples:

(4) “Where can I find NS speeches and mu-
sic, also historical, in mp3 format for free
download on the net.“

(5) “I know of Chris Rock and subsequently
have hated him for a long time.”

Example (4) mentions National Socialism (“NS”),
but the user is just interested in documentation
about it. Therefore, the sentence itself is not an at-
tack, i.e., premise a) is not true, despite the sound
assumption that the speaker forms part of a hat-
ing community. Thus, (4) is not a valid instance
of HATE. Example (5) is directed towards an indi-
vidual; thus, premise b) is false and the sentence
is not a valid example of HATE, despite the sound
assumption that the attack towards the individual
is based on his skin colour.

Finally, it must be emphasized that the pres-
ence of pejorative language in a sentence cannot
systematically be considered sufficient evidence to
confirm the existence of hate speech. The use of
“fag” in the following sentence:

(6) “Two black fag’s holding hands.”

cannot be said to be a deliberate attack, taken with-
out any more context, despite it likely being offen-
sive. Therefore, it cannot be considered HATE.

3.2.3 RELATION

When (6) (repeated as (7.1)) is read in context:

(7.1) “Two black fag’s holding hands.”
(7.2) “That’s Great!”
(7.3) “That’s 2 blacks won’t be having kids.”

it clearly conveys hate speech. The author is cele-
brating that two people belonging to the black mi-
nority will not be having children, which is a delib-
erate attack on a group of people based on an iden-
tifying characteristic. The annotation at sentence-
level fails to discern that there exists hate speech in
this example. The label RELATION is for specific
cases such as this, where the sentences in a post

do not contain hate speech on their own, but the
combination of several sentences does. Consider
another example:

(8.1) “Probably the most disgusting thing I’ve
seen in the last year.”

(8.2) “She looks like she has some African
blood in her, or maybe it’s just the makeup.”

(8.3) “This is just so wrong.”

Each sentence in isolation does not convey hate
speech: in (8.1) and (8.3), a negative attitude is
perceived, but it is unknown whether it is targeted
towards a group of people; in (8.2), there is no
hint of an attack, not even of a negative attitude.
However, the three sentences together suggest that
having “African blood” makes a situation (what-
ever “this” refers to) disgusting, which constitutes
hate speech according to the definition proposed.

The label RELATION is given separately to all
the sentences that need each other to be under-
stood as hate speech. That is, consecutive sen-
tences with this label convey hate speech but de-
pend on each other to be correctly interpreted.

3.2.4 SKIP

Sentences that are not written in English or that
do not contain information as to be classified into
HATE or NOHATE are given this label.

(9) “Myndighetene vurderer n om de skal f per-
manent oppholdstillatelse.”

(10) “YouTube - Broadcast Yourself.”

Example (9) is in Norwegian and (10) is irrelevant
both for HATE and NOHATE.

3.3 Annotation procedure
In order to develop the annotation guidelines, a
draft was first written based on previous similar
work. Three of the authors annotated a 1,144-
sentence batch of the dataset following the draft,
containing only the categories HATE, NOHATE

and SKIP. Then, they discussed the annotations
and modified the draft accordingly, which resulted
in the guidelines presented in the previous sec-
tion, including the RELATION category. Finally, a
different batch of 1,018 sentences was annotated
by the same three authors adhering to the new
guidelines in order to calculate the inter-annotator
agreement.

Table 1 shows the agreements obtained in terms
of the average percent agreement (avg %), av-
erage Cohen’s kappa coefficient (Cohen, 1960)
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(avg k), and Fleiss’ kappa coefficient (Fleiss,
1971) (fleiss). The number of annotated sen-
tences (# sent) and the number of categories to la-
bel (# cat) are also given for each batch. The re-
sults are in line with similar works (Nobata et al.,
2016; Warner and Hirschberg, 2012).

# sent # cat avg % avg k fleiss

1 1,144 3 91.03 0.614 0.607
2 1,018 4 90.97 0.627 0.632

Table 1: Inter-annotator agreements on batches 1 and 2

All the annotation work was carried out using a
web-based tool developed by the authors for this
purpose. The tool displays all the sentences be-
longing to the same post at the same time, giving
the annotator a better understanding of the post’s
author’s intention. If the complete post is deemed
insufficient by the annotator to categorize a sen-
tence, the tool can show previous posts to which
the problematic post is answering, on demand, up
to the first post in the thread and its title. This con-
sumption of context is registered automatically by
the tool for further treatment of the collected data.

As stated by other studies, context appears to be
of great importance when annotating hate speech
(Watanabe et al., 2018). Schmidt and Wiegand
(2017) acknowledge that whether a message con-
tains hate speech or not can depend solely on the
context, and thus encourage the inclusion of extra-
linguistic features for annotation of hate speech.
Moreover, Sharma et al. (2018) claim that context
is essential to understand the speaker’s intention.

3.4 Dataset statistics

This section provides a quantitative description
and statistical analysis of the clean dataset pub-
lished. Table 2 shows the distribution of the sen-
tences over categories. The dataset is unbalanced
as there exist many more sentences not conveying
hate speech than ‘hateful” ones.

Table 3 refers to the subset of sentences that
have required reading additional context (i.e. pre-
vious comments to the one being annotated) to
make an informed decision by the human anno-
tators. The category HATE is the one that requires
more context, usually due to the use of slang un-
known to the annotator or because the annotator
needed to find out the actual target of an offensive
mention.

Assigned label # sent %

HATE 1,119 11.29
NOHATE 8,537 86.09

RELATION 168 1.69
SKIP 92 0.93
total 9,916 100.00

Table 2: Distribution of sentences over categories in the
clean dataset

Context used No context used

HATE 22.70 77.30
NOHATE 8.00 92.00

Table 3: Percentage of sentences for which the human
annotators asked for additional context

The remaining of the section focuses only on
the subset of the dataset composed of the cate-
gories HATE and NOHATE, which are the core of
this work. Table 4 shows the size of said subset,
along with the average sentence length for each
class, their word counts and their vocabulary sizes.

HATE NOHATE

sentences 1,119 8,537
sentence length 20.39 ± 9.46 15.15 ± 9.16

word count 24,867 144,353
vocabulary 4,148 13,154

Table 4: Size of the categories HATE and NOHATE in
the clean dataset

Regarding the distribution of sentences over
Stormfront accounts, the dataset is balanced as
there is no account that contributes notably more
than any other: the average percentage of sen-
tences is of 0.50 ± 0.42 per account, the total
amount of accounts in the dataset being 2,723. The
sub-forums that contain more HATE belong to the
category of news, discussion of views, politics,
philosophy, as well as to specific countries (i.e.,
Ireland, Britain, and Canada). In contrast, the sub-
forums that contain more NOHATE sentences are
about education and homeschooling, gatherings,
and youth issues.

In order to obtain a more qualitative insight of
the dataset, a HATE score (HS) has been calculated
based on the Pointwise Mutual Information (PMI)
value for each word towards the categories HATE

and NOHATE. PMI allows calculating the corre-
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lation of each word with respect to each category.
The difference of the PMI value of a word w and
the category HATE and the PMI of the same word
w and the category NOHATE results in the HATE

score of w, as shown in Formula 1.

HS(w) = PMI (w, HATE)−PMI (w, NOHATE) (1)

Intuitively, this score is a simple way of captur-
ing whether the presence of a word in a HATE con-
text occurs significantly more often than in a NO-
HATE context. Table 5 shows the 15 most and least
hateful words: the more positive a HATE score, the
more hateful a word, and vice versa.

HS HS

ape 6.81 pm -3.38
scum 6.25 group -3.34

savages 5.73 week -3.13
filthy 5.73 idea -2.70
mud 5.31 thread -2.68

homosexuals 5.31 german -2.67
filth 5.19 videos -2.67
apes 5.05 night -2.63

beasts 5.05 happy -2.63
homosexual 5.05 join -2.63

threat 5.05 pictures -2.60
monkey 5.05 eyes -2.54

libtard 5.05 french -2.52
coon 5.05 information -2.44

niglet 4.73 band -2.44

Table 5: Most (positive HS) and least (negative HS)
hateful words

The results show that the most hateful words
are derogatory or refer to targeted groups of hate
speech. On the other hand, the least hateful words
are neutral in this regard and belong to the se-
mantic fields of Internet, or temporal expressions,
among others. This shows that the vocabulary is
discernible by category, which in turn suggests
that the annotation and guidelines are sound.

Performing the same calculation with bi-grams
yields expressions such as “gene pool”, “race
traitor”, and “white guilt” for the most hateful cat-
egory, which appear to be concepts related to race
issues. The less hateful terms are expressions such
as “white power”, “white nationalism” and “pro
white”, which clearly state the right-wing extrem-
ist politics of the forum users.

Finally, the dataset has been contrasted against
the English vocabulary in Hatebase. 9.28% of
HATE vocabulary overlaps with Hatebase, a higher
percentage than for NOHATE vocabulary, of which
6.57% of the words can be found in Hatebase.
In Table 6, the distribution of HATE vocabulary
is shown over Hatebase’s 8 categories. Although
some percentages are not high, all 8 categories are
present in the corpus. Most of the HATE words
from the dataset belong to ethnicity, followed by
gender. This is in agreement with Silva et al.
(2016), who conducted a study to analyse the tar-
gets of hate in social networks and showed that
hate based on race was the most common.

category % examples

archaic 2.46 div, wigger
ethnicity 41.63 coon, paki
nationality 7.03 guinea, leprechaun
religion 1.34 holohoax, prod
gender 36.05 bird, dyke
sexual orientation 2.34 fag, queer
disability 2.01 mongol, retarded
social class 7.14 slag, trash

total 100.00

Table 6: Distribution of HATE vocabulary over Hate-
base categories

4 Experiments

In order to further inspect the resulting dataset
and to check the validity of the annotations (i.e.
whether the two annotated classes are separable
based solely on the text of the labelled instances) a
set of baseline experiments have been conducted.
These experiments do not exploit any external re-
source such as lexicons, heuristics or rules. The
experiments just use the provided dataset and
well-known approaches from the literature to pro-
vide a baseline for further research and improve-
ment in the future.

4.1 Experimental setting
The experiments are based on a balanced subset of
labelled sentences. All the sentences labelled as
HATE have been collected, and an equivalent num-
ber of NOHATE sentences have been randomly
sampled, summing up 2k labelled sentences. From
this amount, the 80% has been used for training
and the remaining 20% for testing.

The evaluated algorithms are the following:
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• Support Vector Machines (SVM) (Hearst
et al., 1998) over Bag-of-Words vectors.
Word-count-based vectors have been com-
puted and fed into a Python Scikit-learn Lin-
earSVM11 classifier to separate HATE and
NOHATE instances.
• Convolutional Neural Networks (CNN), as

described in (Kim, 2014). The implementa-
tion is a simplified version using a single in-
put channel of randomly initialized word em-
beddings12.
• Recurrent Neural Networks with Long Short-

term Memories (LSTM) (Hochreiter and
Schmidhuber, 1997). A LSTM layer of size
128 over word embeddings of size 300.

All the hyperparameters are left to the usual val-
ues reported in the literature (Greff et al., 2017).
No hyperparameter tuning has been performed.
A more comprehensive experimentation and re-
search has been left for future work.

4.2 Results
The baseline experiments include a majority class
baseline showing the balance between the two
classes in the test set. The results are given in
terms of accuracy for HATEand NOHATE individu-
ally, and the overall accuracy, calculated according
to the equations 2, 3 and 4, where TP are the true
positives and FP are the false positives.

AccHATE =
TPHATE

TPHATE + FPHATE
(2)

AccNOHATE =
TPNOHATE

TPNOHATE + FPNOHATE
(3)

AccALL =
TPALL

TPALL + FPALL
(4)

We show the accuracy for the both complemen-
tary classes instead of the precision-recall of a sin-
gle class to highlight the performance of the clas-
sifiers for the both classes individually. Table 7
shows the results of using only sentences that did
not require additional context to be labelled, while
Table 8 shows the results of including those sen-
tences that required additional context. Not sur-
prisingly, the results are lower when including sen-
tences that required additional context. If a hu-
man annotator required additional information to

11http://scikit-learn.org/stable/modules/svm.html
12https://github.com/dennybritz/cnn-text-classification-tf

make a decision, it is to expect that an automatic
classifier would not have enough information or
would have a harder time making a correct pre-
diction. The results also show that NOHATE sen-
tences are more accurately classified than HATE

sentences. Overall, the LSTM-based classifier ob-
tains better results, but even the simple SVM using
bag-of-words vectors is capable of discriminating
the classes reasonably well.

AccHATE AccNOHATE AccALL

Majority n/a n/a 0.50
SVM 0.72 0.76 0.74
CNN 0.54 0.86 0.70

LSTM 0.76 0.80 0.78

Table 7: Results excluding sentences that required ad-
ditional context for manual annotation

AccHATE AccNOHATE AccALL

Majority n/a n/a 0.50
SVM 0.69 0.73 0.71
CNN 0.55 0.79 0.66

LSTM 0.71 0.75 0.73

Table 8: Results including sentences that required ad-
ditional context for manual annotation

4.3 Error Analysis
In order to get a deeper understanding of the per-
formance of the classifiers trained, a manual in-
spection has been performed on a set of erro-
neously classified sentences. Two main types of
errors have been identified:

Type I errors Sentences manually annotated as
HATE but classified as NOHATE by the system,
usually due to a lack of context or to a lack of
the necessary world knowledge to understand the
meaning of the sentence:

(11) “Indeed, now they just need to feed them-
selves, educate themselves, police them-
selves ad nauseum...‘

(12) “If you search around you can probably
find “hoax of the 20th century” for free on
the net.”

In (11), it is not clear without additional context
who “themselves” are. It actually refers to people
of African origin. In its original context, the author
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was implying that they are not able to feed, police
nor educate themselves. This would make the sen-
tence an example of hate speech, but it could also
be a harmless comment given the appropriate con-
text. In (12), the lack of world knowledge about
what the Holocaust is, or what naming it “hoax”
implies –i.e., denying its existence–, would make
it difficult to understand the sentence as an act of
hate speech.

Type II errors Sentences manually labelled as
NOHATE and automatically classified as HATE,
usually due to the use of common offensive vo-
cabulary with non-hateful intent:

(13) “I dont like reporting people but the last
thing I will do is tolerate some stupid pig
who claims Hungarians are Tartars.“

(14) “More black-on-white crime: YouTube -
Black Students Attack White Man For Eat-
ing Dinner With Black”

In (13), the user accuses and insults a particu-
lar individual. Example (14) is providing informa-
tion on a reported crime. Although vocabulary of
targeted groups is used in both cases (i.e., “Hun-
garians”, “Tartars”, “black”), the sentences do not
contain HATE.

5 Discussion

There are several aspects of the introduced dataset,
and hate speech annotation in general, that deserve
a special remark and discussion.

First, the source of the content used to ob-
tain the resulting dataset is on its own a source
of offensive language. Being Stormfront a white
supremacists’ forum, almost every single com-
ment contains some sort of intrinsic racism and
other hints of hate. However, not every expression
that contains a racist cue can be directly taken as
hate speech. This is a truly subjective debate re-
lated to topics such as free speech, tolerance and
civics. That is one of the main reasons why this pa-
per carefully describes the annotation criteria for
what here counts as hate speech and what not. In
any case, despite the efforts to make the annotation
guidelines as clear, rational and comprehensive as
possible, the annotation process has been admit-
tedly demanding and far from straightforward.

In fact, the annotation guidelines were crafted in
several steps, first paying attention to what the lit-
erature points about hate speech annotation. After

a first round of manual labelling, inconsistencies
among the human annotators were discussed and
the guidelines and examples were adapted. From
those debates we extract some conclusions and
pose several open questions. The first annotation
criteria (hate speech being a deliberate attack) still
lacks robustness and a proper definition, becom-
ing ambiguous and subject to different interpreta-
tions. A more precise definition of what an attack
is and what it is not would be necessary: Can an
objective fact that however undermines the honour
of a group of people be considered an attack? Is
the mere use of certain vocabulary (e.g. “nigger”)
automatically considered an attack? With regard
to the second annotation criteria (hate speech be-
ing directed towards a specific group of people),
it was controversial among the human annotators
as well. Sentences were found that attacked indi-
viduals and mentioned the targets’ skin colour or
religion, political trends, and so on. Some anno-
tators interpreted these as indirect attacks towards
the collectivity of people that share the mentioned
characteristics.

Another relevant point is the fact that the anno-
tation granularity is sentence level. Most, if not
all, of the existing datasets label full comments. A
comment might be part of a more elaborated dis-
course, and not every part may convey hate. It
is arguable whether a comment containing a sin-
gle hate-sentence can be considered “hateful” or
not. The dataset released provides the full set of
sentences per comment with their annotations, so
each can decide how to work with it.

In addition, and related to the last point, one
of the labels included for the manual labelling is
RELATION. This label is meant to be used when
two or more sentences need each other to be un-
derstood as hate speech, usually because one is a
premise and the following is the (hateful) conclu-
sion. This label has been seldom used.

Finally, a very important issue to consider is
the need of additional context to label a sentence
(i.e., the rest of the conversation or the title of the
forum-thread). It can happen to human annotators
and, of course, to automatic classifiers, as con-
firmed in the error analysis (Section 4.3). Study-
ing context dependency to perform the labelling, it
has been observed that annotators learn to distin-
guish hate speech more easily over time, requiring
less and less context to make the annotations (see
Figure 1).
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Figure 1: Percentage of comments per batch that re-
quired additional context to be manually labelled. The
amount of context needed by a human annotator de-
creases over time.

6 Conclusions and Future Work

This paper describes a manually labelled hate
speech dataset obtained from Stormfront, a white
supremacist online forum.

The resulting dataset consists of ∼10k sen-
tences labelled as conveying hate speech or not.
Since the definition of hate speech has many sub-
tleties, this work includes a detailed explanation of
the manual annotation criteria and guidelines. Fur-
thermore, several aspects of the resulting dataset
have been studied, such as the necessity of addi-
tional context by the annotators to make a deci-
sion, or the distribution of the vocabulary used in
the examples labelled as hate speech. In addition,
several baseline experiments have been conducted
using automatic classifiers, with a focus on exam-
ples that are difficult for automatic classifiers, such
as those that required additional context or world
knowledge. The resulting dataset is publicly avail-
able.

This dataset provides a good starting point for
discussion and further research. As future work, it
would be interesting to study how to include world
knowledge and/or the context of an online conver-
sation (i.e. previous and following messages, fo-
rum thread title, and so on) in order to obtain more
robust hate speech automatic classifiers. Future
studies could also explore how sentences labelled
as RELATION affect classification, as this sen-
tences have not been included in the experiments
presented. In addition, more studies should be per-
formed to characterize the content of the dataset

in depth, regarding timelines, user behaviour and
hate speech targets, for instance. Finally, since
the proportion of HATE/NOHATE examples tends
to be unbalanced, a more sophisticated manually
labelling system with active learning paradigms
would greatly benefit future labelling efforts.
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Abstract

Language toxicity identification presents a
gray area in the ethical debate surround-
ing freedom of speech and censorship. To-
day’s social media landscape is littered
with unfiltered content that can be any-
where from slightly abusive to hate induc-
ing. In response, we focused on training
a multi-label classifier to detect both the
type and level of toxicity in online content.
This content is typically colloquial and
conversational in style. Its classification
therefore requires huge amounts of anno-
tated data due to its variability and incon-
sistency. We compare standard methods
of text classification in this task. A con-
ventional one-vs-rest SVM classifier with
character and word level frequency-based
representation of text reaches 0.9763 ROC
AUC score. We demonstrated that lever-
aging more advanced technologies such
as word embeddings, recurrent neural net-
works, attention mechanism, stacking of
classifiers and semi-supervised training
can improve the ROC AUC score of clas-
sification to 0.9862. We suggest that in or-
der to choose the right model one has to
consider the accuracy of models as well as
inference complexity based on the appli-
cation.

1 Introduction

While the sheer volume of online content presents
a major challenge in information management, we
are equally plagued by our current inability to ef-
fectively monitor its contents. In particular, so-
cial media platforms are ridden with verbal abuse,
giving way to an increasingly unsafe and highly
offensive online environment. With the threat of

sanctions and user turnover, governments and so-
cial media platforms currently have huge incen-
tives to create systems that accurately detect and
remove abusive content.
When considering possible solutions, the binary
classification of online data, as simply toxic and
non-toxic content, can be very problematic. Even
with very low error rates of misclassification, the
removal of said flagged conversations can impact
a user’s reputation or freedom of speech. Develop-
ing classifiers that can flag the type and likelihood
of toxic content is a far better approach. It em-
powers users and online platforms to control their
content based on provided metrics and calculated
thresholds.
While a multi-label classifier would yield a more
powerful application, it’s also a considerably more
challenging natural language processing problem.
Online conversational text contains shortenings,
abbreviations, spelling mistakes, and ever evolv-
ing slang. Huge annotated datasets are needed
so that the models can learn all this variability
across communities and online platforms (Chan-
drasekharan et al., 2017). Furthermore, building a
representative and high volume annotated dataset
of social media contents for multiple types of tox-
icity can be exhaustive. It is a subjective, disturb-
ing and time consuming task. Critical considera-
tion of the relationships between different subtasks
is needed to label this data (Waseem et al., 2017).
Additionally, the annotated datasets will always be
unbalanced since some types of toxic content are
much more prevalent than others.
Some of the back-end approaches to this task have
been well researched. Hand-authoring syntactic
rules can be leveraged to detect offensive content
and identify potential offensive users on social me-
dia (Chen et al., 2012). Also, morphological, syn-
tactic and user behavior level features have been
shown to be useful in learning abusive behavior
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(Papegnies et al., 2017; Buckels et al., 2014; Yin
et al., 2009; Chen et al., 2012). Conventional ma-
chine learning classifiers such as SVM classifiers
(Nobata et al., 2016) and linear regressions mod-
els (Davidson et al., 2017; Xiang et al., 2012) have
also been used to effectively detect abusive online
language. Deep learning models with word em-
beddings as text representations are state-of-the-
art text classification solutions that show effective-
ness in many tasks such as sentiment analysis and
the detection of hate speech (Gambäck and Sikdar,
2017). Although all these methods are well stud-
ied and established, it is not always clear what the
best choice for a specific task is due to the trade-off
between acquired success rate of the classification
model and the complexities of its deployment and
inference.
In our work, we used the Wikimedia Toxicity
dataset to investigate how various methods of de-
signing a standard text classifier can impact the
classification success rate as well as its inference
cost. This dataset was published and used for a
Kaggle competition. In the context of the competi-
tion, it is a common practice to train multiple large
size models and ensemble them to get the highest
results, tailored for the competition test set. Here,
however, we only looked at standard classification
models that are suitable to be deployed and used
for inference in real-time. For text representations,
we looked at frequency-based methods and mul-
tiple word embeddings. For classification mod-
els, we considered neural network models that can
learn sentence representation using recurrent neu-
ral networks and attention layers. We also inves-
tigated stacking classifiers and used them to auto-
matically label the unannotated part of the dataset
to be added to the training set. This paper high-
lights how we compared various standard methods
to help identify what the best practices for this ap-
plication are.
The paper is organized as follows. In Section 2,
we describe the dataset, annotation, cleaning and
augmentation steps that we applied. In Section 3,
we review some of the commonly used text repre-
sentation methods and look at how representation
of text can impact the classification results. In Sec-
tion 4, we compare neural network models that are
effective in learning long sequences. In Section
5, we investigate how stacking two classifiers can
improve results. In Section 6, we investigate the
impact of using automatically labeled datasets to

(a) counts of classes in annotated dataset

(b) overlap between class pairs

Figure 1: The counts and overlap of classes in
training dataset

further train the classifiers and Section 7 discusses
our findings.

2 Dataset

In this work, we used Wikimedias Toxic-
ity Data Set (Wulczyn et al., 2016b,a).
This dataset is also available on Figshare
https://figshare.com/articles/
Wikipedia_Detox_Data/4054689 as the
Wikipedia Human Annotations of Toxicity on
Talk Pages and contains about 215K annotated
examples from Wikipedia Talk pages. The dataset
has been annotated by Kaggle based on asking
5000 crowd-workers to rate Wikipedia comments
according to their toxicity (which they evaluated
based on how likely they were to make others
leave the conversation). The labels include seven
types: neutral, toxic, severe toxic, obscene, threat,
insult and identity hate. This dataset was pub-
lished in two parts namely train and test set. The
train set has 159571 annotated comments while
the test set includes about 160k entries. However,
only 63978 of test comments are identified as
valid and annotated, which are used here as test
set. There are more than 24 million words in this
dataset yet the vocabulary size is only 495147.
This is a very unbalanced dataset and a sample
can get more than one label. Figure 1 shows

22



the count of multiple labels in the train set as
well as the training labels’ overlaps. For all the
experiments the AUC score is calculated which is
the area under the curve (true positive rate vs the
false positive rate) is calculated for the test set as
the evaluation metric.
All classes except for the non-toxic examples are
augmented through translation to French, Dutch
and Spanish before translating back to English.
Using this method, we get slightly different
sentences and the label is preserved. Punctuation
was removed and a set of very common word
variations (including abbreviations) on social
media were found and replaced by the original
word. This cleaning reduced the vocabulary from
495147 to 434161.

3 Text Representation

We investigated word tf-idf and character tf-idf
as frequency-based text representations and com-
pared them with representing text using average
of word embeddings. For these experiments stop
words are removed from text. Character level
tf-idf is calculated for character n-grams where
n = 1, . . . ,6. Word level tf-idf is calculated for
word n-grams where n = 1,2,3. A fastText skip-
gram model (Bojanowski et al., 2016) is trained to
obtain 50D word embedding vectors for charac-
ter level n-gram features where n = 1, . . . ,6 and
word n-gram features where n = 1,2,3 . We
also used pre-trained word embeddings, including
Glove (Pennington et al., 2014) and 300D fastText
vectors. In order to evaluate the impact of text
representation, we trained seven one-vs-rest SVM
classifiers to predict the labels independently. Ta-
ble 1 shows the results obtained from our experi-
ments. Our results show that word level tf-idf fails
to achieve accurate classification when the data is
informal and conversational. However, if charac-
ter level tf-idf is added to the representations, re-
sults will improve drastically. Training a special-
ized word embedding is not shown to be effective
in our experiments. The low volume of the train-
ing set can be attributed to this observation. Pre-
trained fastText is shown to slightly outperform
Glove since it can assign vectors to every word
while Glove discards the OOV words. Based on
these results we chose to represent the text with
pre-trained fastText embedding for the rest of the
experiments.

Table 1: Comparison of different text
representation methods in training one-vs-rest

SVM classifiers

Representation AUC
word tfidf 0.5423
char and word tfidf 0.9763
Average of 50D trained fasttext 0.8765
Average of Glove 0.9725
Average of 300D Pretrained fasttext 0.9782

4 Neural Network Classification Models

While word embeddings are a semantic represen-
tation of words, bidirectional neural networks are
the technology known for generating a seman-
tic representation for a given sequence of words.
Bidirectional recurrent neural networks learn the
meaning of a sentence not only from the individual
words but by processing the dependencies of the
surrounding words through forward and backward
connections. Both bi-LSTM (Chen et al., 2016)
and bi-GRU (Chung et al., 2015) architectures are
shown to perform well in sentence representation.
LSTM and GRU layers have a proficient learning
ability for long text, because they can control how
much information should be received in the cur-
rent step, how much should be forgotten, and how
much information should be passed back.
Attention layers (Parikh et al., 2016; Felbo et al.,
2017) are mechanisms suitable for converting se-
quence representations, which are usually in the
form of matrices, to a vector representation that is
tailored for the desired classification tasks. We in-
vestigated the impact of leveraging these technolo-
gies by training and testing of two neural network
structures shown in Figures 2a and b. Pre-trained
fasttext embeddings are used and stop words are
not removed, since we want the LSTM and at-
tention layer learn the complete sequences. The
neural network shown in Figure 2a which contains
two layers of biLSTM to encode the information
of sequences achieves 0.9842 and the one shown
in Figure 2b which uses attention mechanism to
combine the context information from embedding
layer and the sequence information from each biL-
STM layer to get a summary vector of the sen-
tence, reaches 0.9844 in AUC.

5 Stacking of Classifiers

Stacking of classifiers is a standard way of increas-
ing the accuracy of a classification task by com-
bining the predictions of multiple classifiers to-
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Figure 2: Structure of neural network classifiers
trained and tested in this work

Figure 3: A schematic of applied stacking method

gether (Merz, 1999). In this method, a supervisor
model is trained and learns how to combine the
predictions of different types of models that dif-
fer in their variance, bias and capability of deal-
ing with noise (Sluban and Lavrač, 2015). Fig-
ure 3 describes the stacking method applied in this
work. We used a Light Gradient Boosting Ma-
chine (LGBM) stacking model which is a gradient
boosting library implemented by Microsoft (Ke
et al., 2017). LGBM is an implementation of fast
gradient boosting on decision trees. Given a set
of features, this classifier learns a linear combi-
nation of the predictions of preliminary classifiers
to predict the label. The output of softmax layer
from both classifiers (probabilities predicted for 6
classes) is fed to the LGBM. Also, the length of
the text, frequency of exclamation marks and fre-
quency of capital letters are considered as LGBM
features. The LGBM classifier reached a 0.9847
score.

Table 2: comparison of different classification
models

classifier training AUC
classifier-1 supervised 0.9842
classifier-2 supervised 0.9844
LGBM supervised 0.9847
classifier-1 semi-supervised 0.9860
classifier-2 semi-supervised 0.9862

6 Semi-supervised Training

In this section, we investigate the impact of
pseudo-labeling as a semi-supervised training
method (Lee, 2013). Simply put, we split the test
dataset into 10 folds. We then trained the two
classifiers described in Section 4, in a supervised
fashion, with both training set and 9 folds of test
set. For test set, pseudo-labels are used which
are the predictions calculated by the best classi-
fier (the LGBM model) as if they were true la-
bels. The trained classifier is tested on the 10th
fold and the experiment is repeated for all 10 folds.
This method has shown to be equivalent to entropy
regularization (Grandvalet and Bengio, 2005) and
makes up for dissimilarities of distributions be-
tween test and train dataset. Semi-supervised
training of classifier-1 and classifier-2 improves
the AUC score to 0.9860 and 0.9862 respectively.

7 Conclusion

Our investigation reveals that in the domain of
conversational text, choosing the right text rep-
resentation is crucial. Comparisons between
multiple standard text representation techniques
show that character-level representations outper-
form word-level representations in case of con-
versational text. Even with conventional SVM
one-vs-rest classifiers, drastic improvement can
be achieved when the text representation includes
character level tfidf instead of only word level tfidf
vectors (Table 1 ). We also showed that using var-
ious state-of-the-art classification techniques in-
cluding sequence modeling neural network mod-
els, attention mechanisms and stacking of classi-
fiers can slightly improve the AUC score of clas-
sification. Moreover, we demonstrated that further
training of models through automatic labeling of
unannotated datasets can improve the success rate
of the classifier (Table 2). However, significance
of these improvements depends on the application,
inference cost and complexity and the amount of
data that has to be processed during inference. Our
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research gave life to a language toxicity identifica-
tion tool, which will be presented alongside this
paper.
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Abstract

We present a neural-network based approach
to classifying online hate speech in general,
as well as racist and sexist speech in par-
ticular. Using pre-trained word embeddings
and max/mean pooling from simple, fully-
connected transformations of these embed-
dings, we are able to predict the occurrence of
hate speech on three commonly used publicly
available datasets. Our models match or out-
perform state of the art F1 performance on all
three datasets using significantly fewer param-
eters and minimal feature preprocessing com-
pared to previous methods.

1 Introduction

The increasing popularity of social media plat-
forms like Twitter for both personal and politi-
cal communication (Lapowsky, 2017) has seen a
well-acknowledged rise in the presence of toxic
and abusive speech on these platforms (Hillard,
2018; Drum, 2017). Although the terms of ser-
vices on these platforms typically forbid hate-
ful and harassing speech, enforcing these rules
has proved challenging, as identifying hate speech
speech at scale is still a largely unsolved prob-
lem in the NLP community. Waseem and Hovy
(2016), for example, identify many ambiguities
in classifying abusive communications, and high-
light the difficulty of clearly defining the parame-
ters of such speech. This problem is compounded
by the fact that identifying abusive or harassing
speech is a challenge for humans as well as au-
tomated systems.

Despite the lack of consensus around what con-
stitutes abusive speech, some definition of hate
speech must be used to build automated systems
to address it. We rely on Davidson et al. (2017)’s
definition of hate speech, specifically: “language
that is used to express hatred towards a targeted

group or is intended to be derogatory, to humili-
ate, or to insult the members of the group.”

In this paper, we present a neural classification
system that uses minimal preprocessing to take ad-
vantage of a modified Simple Word Embeddings-
based Model (Shen et al., 2018) to predict the oc-
currence of hate speech. Our classifier features:

• A simple deep learning approach with few
parameters enabling quick and robust train-
ing

• Significantly better performance than two
other state of the art methods on publicly
available datasets

• An interpretable approach facilitating analy-
sis of results

In the following sections, we discuss related
work on hate speech classification, followed by a
description of the datasets, methods and results of
our study.

2 Related Work

Many efforts have been made to classify hate
speech using data scraped from online message fo-
rums and popular social media sites such as Twit-
ter and Facebook. Waseem and Hovy (2016) ap-
plied a logistic regression model that used one- to
four-character n-grams for classification of tweets
labeled as racist, sexist or neither. Davidson et al.
(2017) experimented in classification of hateful as
well as offensive but not hateful tweets. They ap-
plied a logistic regression classifier with L2 reg-
ularization using word level n-grams and various
part-of-speech, sentiment, and tweet-level meta-
data features.

Additional projects have built upon the data sets
created by Waseem and/or Davidson. For exam-
ple, Park and Fung (2017) used a neural network
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approach with two binary classifiers: one to pre-
dict the presence abusive speech more generally,
and another to discern the form of abusive speech.

Zhang et al. (2018), meanwhile, used pre-
trained word2vec embeddings, which were then
fed into a convolutional neural network (CNN)
with max pooling to produce input vectors for
a Gated Recurrent Unit (GRU) neural network.
Other researchers have experimented with using
metadata features from tweets. Founta et al.
(2018) built a classifier composed of two sepa-
rate neural networks, one for the text and the other
for metadata of the Twitter user, that were trained
jointly in interleaved fashion. Both networks used
in combination - and especially when trained us-
ing transfer learning - achieved higher F1 scores
than either neural network classifier alone.

In contrast to the methods described above,
our approach relies on a simple word embedding
(SWEM)-based architecture (Shen et al., 2018),
reducing the number of required parameters and
length of training required, while still yielding im-
proved performance and resilience across related
classification tasks. Moreover, our network is able
to learn flexible vector representations that demon-
strate associations among words typically used in
hateful communication. Finally, while metadata-
based augmentation is intriguing, here we sought
to develop an approach that would function well
even in cases where such additional data was miss-
ing due to the deletion, suspension, or deactivation
of accounts.

3 Data

In this paper, we use three data sets from the liter-
ature to train and evaluate our own classifier. Al-
though all address the category of hateful speech,
they used different strategies of labeling the col-
lected data. Table 1 shows the characteristics of
the datasets.

Data collected by Waseem and Hovy (2016),
which we term the Sexist/Racist (SR) data set1,
was collected using an initial Twitter search fol-
lowed by analysis and filtering by the authors and
their team who identified 17 common phrases,
hashtags, and users that were indicative of abu-
sive speech. Davidson et al. (2017) collected the
HATE dataset by searching for tweets using a
lexicon provided by Hatebase.org. The final data

1Some Tweet IDs/users have been deleted since the cre-
ation, so the total number may differ from the original

Dataset Labels and Counts Total

SR
Sexist Racist Neither
3086 1924 10,898 15,908

HATE
Hate Speech Not Hate Speech

1430 23,353 24,783

HAR
Harassment Non Harassing

5,285 15,075 20,360

Table 1: Dataset Characteristics

set we used, which we call HAR, was collected by
Golbeck et al. (2017); we removed all retweets re-
ducing the dataset to 20,000 tweets. Tweets were
labeled as “Harrassing” or “Non-Harrassing”; hate
speech was not explicitly labeled, but treated as an
unlabeled subset of the broader “Harrassing” cat-
egory(Golbeck et al., 2017).

4 Transformed Word Embedding Model
(TWEM)

Our training set consists of N examples
{Xi, Y i}Ni=1 where the input Xi is a sequence of
tokens w1, w2, ..., wT , and the output Y i is the
numerical class for the hate speech class. Each
input instance represents a Twitter post and thus,
is not limited to a single sentence.

We modify the SWEM-concat (Shen et al.,
2018) architecture to allow better handling of in-
frequent and unknown words and to capture non-
linear word combinations.

4.1 Word Embeddings

Each token in the input is mapped to an embed-
ding. We used the 300 dimensional embeddings
for all our experiments, so each word wt is mapped
to xt ∈ R300. We denote the full embedded se-
quence as x1:T . We then transform each word
embedding by applying 300 dimensional 1-layer
Multi Layer Perceptron (MLP) Wt with a Recti-
fied Liner Unit (ReLU) activation to form an up-
dated embedding space z1:T . We find this bet-
ter handles unseen or rare tokens in our training
data by projecting the pretrained embedding into a
space that the encoder can understand.

4.2 Pooling

We make use of two pooling methods on the up-
dated embedding space z1:T . We employ a max
pooling operation on z1:T to capture salient word
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features from our input; this representation is de-
noted as m. This forces words that are highly
indicative of hate speech to higher positive val-
ues within the updated embedding space. We also
average the embeddings z1:T to capture the over-
all meaning of the sentence, denoted as a, which
provides a strong conditional factor in conjunction
with the max pooling output. This also helps reg-
ularize gradient updates from the max pooling op-
eration.

4.3 Output
We concatenate a and m to form a document rep-
resentation d and feed the representation into a 50
node 2 layer MLP followed by ReLU Activation to
allow for increased nonlinear representation learn-
ing. This representation forms the preterminal
layer and is passed to a fully connected softmax
layer whose output is the probability distribution
over labels.

5 Experimental Setup

We tokenize the data using Spacy (Honnibal and
Johnson, 2015). We use 300 Dimensional Glove
Common Crawl Embeddings (840B Token) (Pen-
nington et al., 2014) and fine tune them for the
task. We experimented extensively with pre-
processing variants and our results showed bet-
ter performance without lemmatization and lower-
casing (see supplement for details). We pad each
input to 50 words. We train using RMSprop with
a learning rate of .001 and a batch size of 512.
We add dropout with a drop rate of 0.1 in the final
layer to reduce overfitting (Srivastava et al., 2014),
batch size, and input length empirically through
random hyperparameter search.

All of our results are produced from 10-fold
cross validation to allow comparison with previ-
ous results. We trained a logistic regression base-
line model (line 1 in Table 2) using character
ngrams and word unigrams using TF*IDF weight-
ing (Salton and Buckley, 1987), to provide a base-
line since HAR has no reported results. For the
SR and HATE datasets, the authors reported their
trained best logistic regression model’s2 results on
their respective datasets.

2Features described in Related Works section
3SR: Sexist/Racist (Waseem and Hovy, 2016), HATE:

Hate (Davidson et al., 2017) HAR: Harassment (Golbeck
et al., 2017)

Method SR HATE HAR

LR(Char-gram + Unigram) 0.79 0.85 0.68

LR(Waseem and Hovy, 2016) 0.74 - -

LR (Davidson et al., 2017) - 0.90 -

CNN (Park and Fung, 2017) 0.83 - -

GRU Text (Founta et al., 2018) 0.83 0.89 -
GRU Text + Metadata 0.87 0.89 -

TWEM (Ours) 0.86 0.924 0.71

Table 2: F1 Results3

6 Results and Discussion

The approach we have developed establishes a
new state of the art for classifying hate speech,
outperforming previous results by as much as 12
F1 points. Table 2 illustrates the robustness of our
method, which often outperform previous results,
measured by weighted F1. 4

Using the Approximate Randomization (AR)
Test (Riezler and Maxwell, 2005), we perform sig-
nificance testing using a 75/25 train and test split

to compare against (Waseem and Hovy, 2016)
and (Davidson et al., 2017), whose models we re-
implemented. We found 0.001 significance com-
pared to both methods. We also include in-depth
precision and recall results for all three datasets in
the supplement.

Our results indicate better performance than
several more complex approaches, including
Davidson et al. (2017)’s best model (which used
word and part-of-speech ngrams, sentiment, read-
ability, text, and Twitter specific features), Park
and Fung (2017) (which used two fold classifica-
tion and a hybrid of word and character CNNs,
using approximately twice the parameters we use
excluding the word embeddings) and even recent
work by Founta et al. (2018), (whose best model
relies on GRUs, metadata including popularity,
network reciprocity, and subscribed lists).

On the SR dataset, we outperform Founta et al.
(2018)’s text based model by 3 F1 points, while
just falling short of the Text + Metadata Inter-
leaved Training model. While we appreciate the
potential added value of metadata, we believe a
tweet-only classifier has merits because retriev-
ing features from the social graph is not always

4This was used in previous work, as confirmed by check-
ing with authors
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tractable in production settings. Excluding the em-
bedding weights, our model requires 100k param-
eters , while Founta et al. (2018) requires 250k pa-
rameters.

6.1 Error Analysis
False negatives5

Many of the false negatives we see are specific ref-
erences to characters in the TV show “My Kitchen
Rules”, rather than something about women in
general. Such examples may be innocuous in iso-
lation but could potentially be sexist or racist in
context. While this may be a limitation of consid-
ering only the content of the tweet, it could also be
a mislabel.

Debra are now my most hated team on
#mkr after least night’s ep. Snakes in
the grass those two.

Along these lines, we also see correct predictions
of innocuous speech, but find data mislabeled as
hate speech:

@LoveAndLonging ...how is that exam-
ple ”sexism”?

@amberhasalamb ...in what way?

Another case our classifier misses is problematic
speech within a hashtag:

:D @nkrause11 Dudes who go to culi-
nary school: #why #findawife #notsex-
ist :)

This limitation could be potentially improved
through the use of character convolutions or sub-
word tokenization.
False Positives
In certain cases, our model seems to be learning
user names instead of semantic content:

RT @GrantLeeStone: @MT8 9 I don’t
even know what that is, or where it’s
from. Was that supposed to be funny?
It wasn’t.

Since the bulk of our model’s weights are in the
embedding and embedding-transformation matri-
ces, we cluster the SR vocabulary using these
transformed embeddings to clarify our intuitions
about the model (8). We elaborate on our clus-
tering approach in the supplement. We see that

5Focused on the SR Dataset (Waseem and Hovy, 2016)

the model learned general semantic groupings of
words associated with hate speech as well as spe-
cific idiosyncrasies related to the dataset itself (e.g.
katieandnikki)

Cluster Tokens
Geopolitical and
religious refer-
ences around Islam
and the Middle
East

bomb, mobs, jewish, kidnapped, airstrikes,
secularization, ghettoes, islamic, burnt, mur-
derous, penal, traitor, intelligence, molesting,
cannibalism

Strong epithets
and adjectives
associated with
harassment and
hatespeech

liberals, argumentative, dehumanize, gen-
dered, stereotype, sociopath,bigot, repressed,
judgmental, heinous, misandry, shameless,
depravity, scumbag,

Miscellaneous turnt, pedophelia, fricken, exfoliated, soci-
olinguistic, proph, cissexism, guna, lyked,
mobbing, capsicums, orajel, bitchslapped,
venturebeat, hairflip, mongodb, intersec-
tional, agender

Sexist related epi-
thets and hashtags

malnourished, katieandnikki, chevapi, dumb-
slut, mansplainers, crazybitch, horrendous-
ness, justhonest, bile, womenaretoohardtoan-
imate,

Sexist, sexual, and
pornographic terms

actress, feminism, skank, breasts, redhead,
anime, bra, twat, chick, sluts, trollop, teenage,
pantyhose, pussies, dyke, blonds,

Table 3: Projected Embedding Cluster Analysis from
SR Dataset

7 Conclusion

Despite minimal tuning of hyper-parameters,
fewer weight parameters, minimal text preprocess-
ing, and no additional metadata, the model per-
forms remarkably well on standard hate speech
datasets. Our clustering analysis adds inter-
pretability enabling inspection of results.

Our results indicate that the majority of recent
deep learning models in hate speech may rely
on word embeddings for the bulk of predictive
power and the addition of sequence-based param-
eters provide minimal utility. Sequence based ap-
proaches are typically important when phenom-
ena such as negation, co-reference, and context-
dependent phrases are salient in the text and thus,
we suspect these cases are in the minority for pub-
licly available datasets. We think it would be
valuable to study the occurrence of such linguistic
phenomena in existing datasets and construct new
datasets that have a better representation of sub-
tle forms of hate speech. In the future, we plan to
investigate character based representations, using
character CNNs and highway layers (Kim et al.,
2016) along with word embeddings to allow robust
representations for sparse words such as hashtags.
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A Supplemental Material

We experimented with several different prepro-
cessing variants and were surprised to find that re-
ducing preprocessing improved the performance
on the task for all of our tasks. We go through
each preprocessing variant with an example and
then describe our analysis to compare and evalu-
ate each of them.

A.1 Preprocessing
Original text

RT @AGuyNamed Nick Now, I’m not
sexist in any way shape or form but I
think women are better at gift wrapping.
It’s the XX chromosome thing

Tokenize (Basic Tokenize: Keeps case and
words intact with limited sanitizing)

RT @AGuyNamed Nick Now , I ’m not
sexist in any way shape or form but I
think women are better at gift wrapping
. It ’s the XX chromosome thing

Tokenize Lowercase: Lowercase the basic tok-
enize scheme

rt @aguynamed nick now , i ’m not sex-
ist in any way shape or form but i think
women are better at gift wrapping . it ’s
the xx chromosome thing

Token Replace: Replaces entities and user
names with placeholder)

ENT USER now , I ’m not sexist in any
way shape or form but I think women
are better at gift wrapping . It ’s the xx
chromosome thing

Token Replace Lowercase: Lowercase the To-
ken Replace Scheme

ENT USER now , i ’m not sexist in any
way shape or form but i think women
are better at gift wrapping . it ’s the xx
chromosome thing

We did analysis on a validation set across mul-
tiple datasets to find that the ”Tokenize” scheme
was by far the best. We believe that keeping the
case in tact provides useful information about the
user. For example, saying something in all CAPS
is a useful signal that the model can take advantage
of.

Preprocessing Scheme Avg. Validation Loss
Token Replace Lowercase 0.47
Token Replace 0.46
Tokenize 0.32
Tokenize Lowercase 0.40

Table 4: Average Validation Loss for each Preprocess-
ing Scheme

A.2 In-Depth Results

Waseem 2016 Ours

P R F1 P R F1

none 0.76 0.98 0.86 0.88 0.93 0.90
sexism 0.95 0.38 0.54 0.79 0.74 0.76
racism 0.85 0.30 0.44 0.86 0.72 0.78

0.74 0.86

Table 5: SR Results

Davidson 2017 Ours

P R F1 P R F1

none 0.82 0.95 0.88 0.89 0.94 0.91
offensive 0.96 0.91 0.93 0.95 0.96 0.96
hate 0.44 0.61 0.51 0.61 0.41 0.49

0.90 0.924

Table 6: HATE Results

Method Prec Rec F1 Avg F1

Ours 0.713 0.206 0.319 0.711
LR Baseline 0.820 0.095 0.170 0.669

Table 7: HAR Results

A.3 Embedding Analysis

Since our method was a simple word embedding
based model, we explored the learned embedding
space to analyze results. For this analysis, we only
use the max pooling part of our architecture to
help analyze the learned embedding space because
it encourages salient words to increase their val-
ues to be selected. We projected the original pre-
trained embeddings to the learned space using the
time distributed MLP. We summed the embedding
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dimensions for each word and sorted by the sum
in descending order to find the 1000 most salient
word embeddings from our vocabulary. We then
ran PCA (Jolliffe, 1986) to reduce the dimension-
ality of the projected embeddings from 300 dimen-
sions to 75 dimensions. This captured about 60%
of the variance. Finally, we ran K means cluster-
ing for k = 5 clusters to organize the most salient
embeddings in the projected space.

The learned clusters from the SR vocabulary
were very illuminating (see Table 8); they gave in-
sights to how hate speech surfaced in the datasets.
One clear grouping we found is the misogynistic
and pornographic group, which contained words
like breasts, blonds, and skank. Two other clusters
had references to geopolitical and religious issues
in the Middle East and disparaging and resentful
epithets that could be seen as having an intellec-
tual tone. This hints towards the subtle pedagogic
forms of hate speech that surface.

We ran silhouette analysis (Pedregosa et al.,
2011) on the learned clusters to find that the clus-
ters from the learned representations had a 35%
higher silhouette coefficient using the projected
embeddings compared to the clusters created from
the original pre-trained embeddings. This rein-
forces the claim that our training process pushed
hate-speech related words together, and words
from other clusters further away, thus, structuring
the embedding space effectively for detecting hate
speech.

Cluster Tokens
Geopolitical and
religious refer-
ences around Islam
and the Middle
East

bomb, mobs, jewish, kidnapped, airstrikes,
secularization, ghettoes, islamic, burnt, mur-
derous, penal, traitor, intelligence, molesting,
cannibalism

Strong epithets
and adjectives
associated with
harassment and
hatespeech

liberals, argumentative, dehumanize, gen-
dered, stereotype, sociopath,bigot, repressed,
judgmental, heinous, misandry, shameless,
depravity, scumbag,

Miscellaneous turnt, pedophelia, fricken, exfoliated, soci-
olinguistic, proph, cissexism, guna, lyked,
mobbing, capsicums, orajel, bitchslapped,
venturebeat, hairflip, mongodb, intersec-
tional, agender

Sexist related epi-
thets and hashtags

malnourished, katieandnikki, chevapi, dumb-
slut, mansplainers, crazybitch, horrendous-
ness, justhonest, bile, womenaretoohardtoan-
imate,

Sexist, sexual, and
pornographic terms

actress, feminism, skank, breasts, redhead,
anime, bra, twat, chick, sluts, trollop, teenage,
pantyhose, pussies, dyke, blonds,

Table 8: Projected Embedding Cluster Analysis from
SR Dataset
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Abstract

Toxic comment classification has become an
active research field with many recently pro-
posed approaches. However, while these ap-
proaches address some of the task’s challenges
others still remain unsolved and directions for
further research are needed. To this end, we
compare different deep learning and shallow
approaches on a new, large comment dataset
and propose an ensemble that outperforms all
individual models. Further, we validate our
findings on a second dataset. The results of
the ensemble enable us to perform an exten-
sive error analysis, which reveals open chal-
lenges for state-of-the-art methods and direc-
tions towards pending future research. These
challenges include missing paradigmatic con-
text and inconsistent dataset labels.

1 Introduction

Keeping online conversations constructive and in-
clusive is a crucial task for platform providers.
Automatic classification of toxic comments, such
as hate speech, threats, and insults, can help in
keeping discussions fruitful. In addition, new reg-
ulations in certain European countries have been
established enforcing to delete illegal content in
less than 72 hours.1

Active research on the topic deals with com-
mon challenges of natural language processing,
such as long-range dependencies or misspelled
and idiosyncratic words. Proposed solutions in-
clude bidirectional recurrent neural networks with
attention (Pavlopoulos et al., 2017) and the use
of pretrained word embeddings (Badjatiya et al.,
2017). However, many classifiers suffer from in-
sufficient variance in methods and training data
and therefore often tend to fail on the long tail of
real world data (Zhang and Luo, 2018). For future
research, it is essential to know which challenges

1https://www.bbc.com/news/technology-
42510868

are already addressed by state-of-the-art classifiers
and for which challenges current solutions are still
error-prone.

We take two datasets into account to investi-
gate these errors: comments on Wikipedia talk
pages presented by Google Jigsaw during Kag-
gle’s Toxic Comment Classification Challenge2

and a Twitter Dataset by Davidson et al. (2017).
These sets include common difficulties in datasets
for the task: They are labeled based on differ-
ent definitions; they include diverse language from
user comments and Tweets; and they present a
multi-class and a multi-label classification task re-
spectively.

On these datasets we propose an ensemble of
state-of-the-art classifiers. By analysing false neg-
atives and false positives of the ensemble we get
insights about open challenges that all of the ap-
proaches share. Therefore, our main contributions
are:

1) We are the first to apply and compare a
range of strong classifiers to a new public multi-
label dataset of more than 200,000 user comments.
Each classifier, such as Logistic Regression, bidi-
rectional RNN and CNN, is meant to tackle spe-
cific challenges for text classification. We apply
the same classifiers to a dataset of Tweets to vali-
date our results on a different domain.

2) We apply two different pretrained word em-
beddings for the domain of user comments and
Tweets to compensate errors such as idiosyncratic
and misspelled words.

3) We compare the classifiers’ predictions and
show that they make different errors as mea-
sured by Pearson correlation coefficients and F1-
measures. Based on this, we create an ensem-
ble that improves macro-averaged F1-measure es-
pecially on sparse classes and data with high
variance.

2https://www.kaggle.com/c/jigsaw-
toxic-comment-classification-challenge
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4) We perform a detailed error analysis on re-
sults of the ensemble. The analysis points to com-
mon errors of all current approaches. We propose
directions for future work based on these unsolved
challenges.

2 Related Work

Task definitions. Toxic comment classification
is not clearly distinguishable from its related
tasks. Besides looking at toxicity of online com-
ments (Wulczyn et al., 2017; Georgakopoulos
et al., 2018), related research includes the investi-
gation of hate speech (Badjatiya et al., 2017; Bur-
nap and Williams, 2016; Davidson et al., 2017;
Gambäck and Sikdar, 2017; Njagi et al., 2015;
Schmidt and Wiegand, 2017; Vigna et al., 2017;
Warner and Hirschberg, 2012), online harass-
ment (Yin and Davison, 2009; Golbeck et al.,
2017), abusive language (Mehdad and Tetreault,
2016; Park and Fung, 2017), cyberbullying (Dad-
var et al., 2013; Dinakar et al., 2012; Hee et al.,
2015; Zhong et al., 2016) and offensive lan-
guage (Chen et al., 2012; Xiang et al., 2012).
Each field uses different definitions for their clas-
sification, still similar methods can often be ap-
plied to different tasks. In our work we focus on
toxic comment detection and show that the same
method can effectively be applied to a hate speech
detection task.

Multi-class approaches. Besides traditional
binary classification tasks, related work con-
siders different aspects of toxic language,
such as “racism” (Greevy and Smeaton, 2004;
Waseem, 2016; Kwok and Wang, 2013) and
“sexism” (Waseem and Hovy, 2016; Jha and
Mamidi, 2017), or the severity of toxicity (David-
son et al., 2017; Sharma et al., 2018). These
tasks are framed as multi-class problems, where
each sample is labeled with exactly one class out
of a set of multiple classes. The great majority
of related research considers only multi-class
problems. This is remarkable, considering that in
real-world scenarios toxic comment classification
can often be seen as a multi-label problem, with
user comments fulfilling different predefined
criteria at the same time. We therefore investigate
both a multi-label dataset containing six different
forms of toxic language and a multi-class dataset
containing three mutually exclusive classes of
toxic language.

Shallow classification and neural networks.
Toxic comment identification is a supervised clas-
sification task and approached by either meth-
ods including manual feature engineering (Burnap
and Williams, 2015; Mehdad and Tetreault, 2016;
Waseem, 2016; Davidson et al., 2017; Nobata
et al., 2016; Kennedy et al., 2017; Samghabadi
et al., 2017; Robinson et al., 2018) or the use of
(deep) neural networks (Ptaszynski et al., 2017;
Pavlopoulos et al., 2017; Badjatiya et al., 2017; Vi-
gna et al., 2017; Park and Fung, 2017; Gambäck
and Sikdar, 2017). While in the first case manu-
ally selected features are combined into input vec-
tors and directly used for classification, neural net-
work approaches are supposed to automatically
learn abstract features above these input features.
Neural network approaches appear to be more ef-
fective for learning (Zhang and Luo, 2018), while
feature-based approaches preserve some sort of
explainability. We focus in this paper on base-
lines using deep neural networks (e.g. CNN and
Bi-LSTM) and shallow learners, such as Logistic
Regression approaches on word n-grams and char-
acter n-grams.

Ensemble learning. Burnap and Williams
(2015) studied advantages of ensembles of differ-
ent classifiers. They combined results from three
feature-based classifiers. Further the combination
of results from Logistic Regression and a Neural
Network has been studied (Gao and Huang,
2017; Risch and Krestel, 2018). Zimmerman
et al. (2018) investigated ensembling models with
different hyper-parameters. To our knowledge, the
approach presented in this paper, combining both
various model architectures and different word
embeddings for toxic comment classification, has
not been investigated so far.

3 Datasets and Tasks

The task of toxic comment classification lacks a
consistently labeled standard dataset for compar-
ative evaluation (Schmidt and Wiegand, 2017).
While there are a number of annotated pub-
lic datasets in adjacent fields, such as hate
speech (Ross et al., 2016; Gao and Huang,
2017), racism/sexism (Waseem, 2016; Waseem
and Hovy, 2016) or harassment (Golbeck et al.,
2017) detection, most of them follow different def-
initions for labeling and therefore often constitute
different problems.
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Class # of occurrences

Clean 201,081
Toxic 21,384
Obscene 12,140
Insult 11,304
Identity Hate 2,117
Severe Toxic 1,962
Threat 689

Table 1: Class distribution of Wikipedia dataset. The
distribution shows a strong class imbalance.

Class # of occurrences

Offensive 19,190
Clean 4,163
Hate 1,430

Table 2: Class distribution of Twitter dataset. The ma-
jority class of the dataset consists of offensive Tweets.

3.1 Wikipedia Talk Pages dataset

We analyse a dataset published by Google Jigsaw
in December 2017 over the course of the ‘Toxic
Comment Classification Challenge’ on Kaggle. It
includes 223,549 annotated user comments col-
lected from Wikipedia talk pages and is the largest
publicly available for the task. These comments
were annotated by human raters with the six labels
‘toxic’, ‘severe toxic, ‘insult’, ‘threat’, ‘obscene’
and ‘identity hate’. Comments can be associated
with multiple classes at once, which frames the
task as a multi-label classification problem. Jig-
saw has not published official definitions for the
six classes. But they do state that they defined a
toxic comment as “a rude, disrespectful, or unrea-
sonable comment that is likely to make you leave
a discussion”.3

The dataset features an unbalanced class distri-
bution, shown in Table 1. 201,081 samples fall un-
der the majority ‘clear’ class matching none of the
six categories, whereas 22,468 samples belong to
at least one of the other classes. While the ‘toxic’
class includes 9.6% of the samples, only 0.3% are
labeled as ‘threat’, marking the smallest class.

Comments were collected from the English
Wikipedia and are mostly written in English
with some outliers, e.g., in Arabic, Chinese or
German language. The domain covered is not

3http://www.perspectiveapi.com/

strictly locatable, due to various article topics
being discussed. Still it is possible to apply a
simple categorization of comments as follows:4

1) ‘community-related’:
Example: “If you continue to vandalize
Wikipedia, you will be blocked from editing.”

2) ‘article-related’:
Example: “Dark Jedi Miraluka from the Mid-
Rim world of Katarr, Visas Marr is the lone sur-
viving member of her species.”

3) ‘off-topic’:
Example: “== I hate how my life goes today
== Just kill me now.”

3.2 Twitter dataset

Additionally we investigate a dataset introduced
by Davidson et al. (2017). It contains 24,783
Tweets fetched using the Twitter API and anno-
tated by CrowdFlower workers with the labels
‘hate speech’, ‘offensive but not hate speech’ and
‘neither offensive nor hate speech’. Table 2 shows
the class distribution. We observe a strong bias
towards the offensive class making up 77.4% of
the comments caused by sampling tweets by seed
keywords from Hatebase.org. We choose this
dataset to show that our method is also applicable
to multi-class problems and works with Tweets,
which usually have a different structure than other
online user comments due to character limitation.

3.3 Common Challenges

We observe three common challenges for Natural
Language Processing in both datasets:

Out-of-vocabulary words. A common problem
for the task is the occurrence of words that are
not present in the training data. These words
include slang or misspellings, but also inten-
tionally obfuscated content.

Long-Range Dependencies. The toxicity of a
comment often depends on expressions made
in early parts of the comment. This is espe-
cially problematic for longer comments (>50
words) where the influence of earlier parts on
the result can vanish.

4Disclaimer: This paper contains examples that may be
considered profane, vulgar, or offensive. These contents do
not reflect the views of the authors and exclusively serve to
explain linguistic research challenges.
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Multi-word phrases. We see many occurrences
of multi-word phrases in both datasets. Our
algorithms can detect their toxicity only if
they can recognize multiple words as a sin-
gle (typical) hateful phrase.

4 Methods and Ensemble

In this section we study baseline methods for the
above mentioned common challenges. Further, we
propose our ensemble learning architecture. Its
goal is to minimize errors by detecting optimal
methods for a given comment.

4.1 Logistic Regression

The Logistic Regression (LR) algorithm is widely
used for binary classification tasks. Unlike deep
learning models, it requires manual feature engi-
neering. Contrary to Deep Learning methods, LR
permits obtaining insights about the model, such
as observed coefficients. Research from Waseem
and Hovy (2016) shows that word and character
n-grams belong to one of the most indicative fea-
tures for the task of hate speech detection. For this
reason we investigate the use of word and charac-
ter n-grams for LR models.

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) interpret a
document as a sequence of words or character n-
grams. We use four different RNN approaches:
An LSTM (Long-Short-Term-Memory Network),
a bidirectional LSTM, a bidirectional GRU (Gated
Recurrent Unit) architecture and a bidirectional
GRU with an additional attention layer.

LSTM. Our LSTM model takes a sequence of
words as input. An embedding layer transforms
one-hot-encoded words to dense vector represen-
tations and a spatial dropout, which randomly
masks 10% of the input words, makes the network
more robust. To process the sequence of word em-
beddings, we use an LSTM layer with 128 units,
followed by a dropout of 10%. Finally, a dense
layer with a sigmoid activation makes the predic-
tion for the multi-label classification and a dense
layer with softmax activation makes the prediction
for the multi-class classification.

Bidirectional LSTM and GRU. Bidirectional
RNNs can compensate certain errors on long range
dependencies. In contrast to the standard LSTM
model, the bidirectional LSTM model uses two

LSTM layers that process the input sequence in
opposite directions. Thereby, the input sequence is
processed with correct and reverse order of words.
The outputs of these two layers are averaged. Sim-
ilarly, we use a bidirectional GRU model, which
consists of two stacked GRU layers. We use lay-
ers with 64 units. All other parts of the neural
network are inherited from our standard LSTM
model. As a result, this network can recognize
signals on longer sentences where neurons repre-
senting words further apart from each other in the
LSTM sequence will ‘fire’ more likely together.

Bidirectional GRU with Attention Layer. Gao
and Huang (2017) phrase that “attention mecha-
nisms are suitable for identifying specific small
regions indicating hatefulness in long comments”.
In order to detect these small regions in our com-
ments, we add an attention layer to our bidirec-
tional GRU-based network following the work
of Yang et al. (2016).

4.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are re-
cently becoming more popular for text classifica-
tion tasks. By intuition they can detect specific
combinations of features, while RNNs can extract
orderly information (Zhang and Luo, 2018). On
character level, CNNs can deal with obfuscation
of words. For our model we choose an architec-
ture comparable to the approach of Kim (2014).

4.4 (Sub-)Word Embeddings

Using word embeddings trained on very large cor-
pora can be helpful in order to capture informa-
tion that is missing from the training data (Zhang
and Luo, 2018). Therefore we apply Glove word
embeddings trained on a large Twitter corpus by
Pennington et al. (2014). In addition, we use sub-
word embeddings as introduced by Bojanowski
et al. (2017) within the FastText tool. The ap-
proach considers substrings of a word to infer its
embedding. This is important for learning rep-
resentations for misspelled, obfuscated or abbre-
viated words which are often present in online
comments. We train FastText embeddings on 95
million comments on Wikipedia user talk pages
and article talk pages.5 We apply the skip-gram
method with a context window size of 5 and train
for 5 epochs.

5https://figshare.com/articles/
Wikipedia_Talk_Corpus/4264973
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Model Wikipedia Twitter

P R F1 AUC P R F1 AUC
CNN (FastText) .73 .86 .776 .981 .73 .83 .775 .948
CNN (Glove) .70 .85 .748 .979 .72 .82 .769 .945
LSTM (FastText) .71 .85 .752 .978 .73 .83 .778 .955
LSTM (Glove) .74 .84 .777 .980 .74 .82 .781 .953
Bidirectional LSTM (FastText) .71 .86 .755 .979 .72 .84 .775 .954
Bidirectional LSTM (Glove) .74 .84 .777 .981 .73 .85 .783 .953
Bidirectional GRU (FastText) .72 .86 .765 .981 .72 .83 .773 .955
Bidirectional GRU (Glove) .73 .85 .772 .981 .76 .81 .784 .955
Bidirectional GRU Attention (FastText) .74 .87 .783 .983 .74 .83 .791 .958
Bidirectional GRU Attention (Glove) .73 .87 .779 .983 .77 .82 .790 .952
Logistic Regression (char-ngrams) .74 .84 .776 .975 .73 .81 .764 .937
Logistic Regression (word-ngrams) .70 .83 .747 .962 .71 .80 .746 .933

Ensemble .74 .88 .791 .983 .76 .83 .793 .953

Table 3: Comparison of precision, recall, F1-measure, and ROC AUC on two datasets. The results show that the
ensemble outperforms the individual classifiers in F1-measure. The strongest individual classifier on both datasets
is a bidirectional GRU network with attention layer.

4.5 Ensemble Learning
Each classification method varies in its predictive
power and may conduct specific errors. For exam-
ple, GRUs or LSTMs may miss long range depen-
dencies for very long sentences with 50 or more
words but are powerful in capturing phrases and
complex context information. Bi-LSTMs and at-
tention based networks can compensate these er-
rors to a certain extent. Subword Embeddings can
model even misspelled or obfuscated words.

Therefore, we propose an ensemble deciding
which of the single classifiers is most powerful on
a specific kind of comment. The ensemble ob-
serves features in comments, weights and learns
an optimal classifier selection for a given feature
combination. For achieving this functionality, we
observe the set of out-of-fold predictions from the
various approaches and train an ensemble with
gradient boosting decision trees. We perform 5-
fold cross-validation and average final predictions
on the test set across the five trained models.

5 Experimental Study

Our hypothesis is that the ensemble learns to
choose an optimal combination of classifiers based
on a set of comment features. Because the classi-
fiers have different strengths and weaknesses, we
expect the ensemble to outperform each individ-
ual classifier. Based on results from previous ex-
periments mentioned in Section 2 we expect that

the state-of-the-art models have a comparable per-
formance and none outperforms the others sig-
nificantly. This is important because otherwise
the ensemble learner constantly prioritizes the out-
performing classifier. We expect our ensemble
to perform well on both online comments and
Tweets despite their differing language character-
istics such as comment length and use of slang
words.

5.1 Setup

To evaluate our hypotheses, we use the following
setup: We compare six methods from Section 4.
For the neural network approaches we apply two
different word embeddings each and for LR we
use character and word n-grams as features.

We need binary predictions to calculate pre-
cision, recall and the resulting F1-measure. To
translate the continuous sigmoid output for the
multi-label task (Wikipedia dataset) into binary la-
bels we estimate appropriate threshold values per
class. For this purpose we perform a parame-
ter search for the threshold to optimize the F1-
measure using the whole training set as validation.
In case of the multi-class task (Twitter dataset) the
softmax layer makes the parameter search need-
less, because we can simply take the label with the
highest value as the predicted one.

We choose the macro-average F1 measure since
it is more indicative than the micro-average F1
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for strongly unbalanced datasets (Zhang and Luo,
2018). For the multi-label classification we mea-
sure macro-precision and -recall for each class
separately and average their results to get the F1-
measure per classifier. The Area under the Re-
ceiver Operating Curve (ROC AUC) gives us a
measurement of classifier performance without the
need for a specific threshold. We add it to provide
additional comparability of the results.

5.2 Correlation Analysis
Total accuracy of the ensemble can only improve
when models with comparable accuracy produce
uncorrelated predictions. We therefore measure
the correlation of the predictions of different clas-
sifiers. We look at a set of combinations, such as
shallow learner combined with a neural net, and
inspect their potential for improving the overall
prediction. For measuring the disparity of two
models we use the Pearson correlation coefficient.
The results are shown in Table 4.

5.3 Experimental Results
As shown in Table 3 our ensemble outperforms
the strongest individual method on the Wikipedia
dataset by approximately one percent F1-measure.
We see that the difference in F1-measure between
the best individual classifier and the ensemble is
higher on the Wikipedia dataset as on the Twitter
dataset. This finding is accompanied by the results
in Table 4 which show that most classifier com-
binations present a high correlation on the Twit-
ter dataset and are therefore less effective on the
ensemble. An explanation for this effect is that
the text sequences within the Twitter set show less
variance than the ones in the Wikipedia dataset.
This can be reasoned from 1) their sampling strat-
egy based on a list of terms, 2) the smaller size of
the dataset and 3) less disparity within the three
defined classes than in the six from the Wikipedia
dataset. With less variant data one selected classi-
fier for a type of text can be sufficient.

As the results in Table 4 show, ensembling is
especially effective on the sparse classes “threat”
(Wikipedia) and “hate” (Twitter). The predictions
for these two classes have the weakest correlation.
This can be exploited when dealing with strongly
imbalanced datasets, as often the case in toxic
comment classification and related tasks. Table 4
gives us indicators for useful combinations of clas-
sifiers. Combining our shallow learner approach
with Neural Networks is highly effective. Contrary

Class F1 Pearson

Different word embeddings
GRU+G GRU+FT

W avg. .78 .78 .95
W threat .70 .69 .92
T avg. .79 .79 .96
T hate .53 .54 .94

CNN+G CNN+FT
W avg. .75 .78 .91
W threat .67 .73 .82
T avg. .77 .78 .94
T hate .49 .53 .90

Different NN architectures
CNN BiGRU Att

W avg. .78 .78 .85
W threat .73 .71 .65
T avg. .78 .79 .96
T hate .50 .49 .93

Shallow learner and NN
CNN LR char

W avg. .78 .78 .86
W threat .73 .74 .78
T avg. .78 .76 .92
T hate .50 .51 .86

BiGRU Att LR char
W avg. .78 .78 .84
W threat .71 .74 .67
T avg. .79 .76 .92
T hate .49 .51 .88

Character- and word-ngrams
LR word LR char

W avg. .75 .78 .83
W threat .70 .74 .69
T avg. .75 .77 .94
T hate .50 .51 .91

Table 4: F1-measures and Pearson correlations of dif-
ferent combinations of classifiers. When the pearson
score is low and F1 is similar, an ensemble performs
best. We see that this appears mostly on the Wikipedia
dataset and on the respective minority classes ‘threat’
and ‘hate’. ‘W’: Wikipedia dataset; ‘T’: Twitter
dataset; ‘G’: Glove embeddings; ‘FT’: FastText em-
beddings; ‘avg.’: Averaged

to that we see that the different word embeddings
used do not lead to strongly differing predictions.
Another finding is that word and character n-
grams learned by our Logistic Regression classi-
fier produce strongly uncorrelated predictions that
can be combined for increasing accuracy.
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6 Detailed Error Analysis

The ensemble of state-of-the-art classifiers still
fails to reach F1-measures higher than 0.8. To find
out the remaining problems we perform an exten-
sive error analysis on the result of the ensemble.

We analyse common error classes of our ensem-
ble based on research from Zhang and Luo (2018);
Zhang et al. (2018); Qian et al. (2018); Davidson
et al. (2017); Schmidt and Wiegand (2017); No-
bata et al. (2016). Moreover, we add additional
error classes we encountered during our manual
analysis. To address deficits in both precision and
recall we inspect false negative and false positive
classifications. We focus on error classes with the
highest frequency in the observed samples. The
occurrence of an error class within a comment is
taken to be binary (occurs in comment or not).

We present the results on class ‘toxic’ of the
Wikipedia dataset and class ‘hate’ of the Twitter
dataset. Both classes are of high significance for
the task of user comment moderation. Our ensem-
ble results in 1794 false negatives and 1581 false
positives for the Wikipedia dataset. We choose
200 random samples out of each set as represen-
tatives. For the smaller Twitter dataset we get 55
false negatives and 58 false positives, we perform
our analysis on all of these samples.

6.1 Error Classes of False Negatives

Doubtful labels. We observe a high number of
comments for which we question the original label
when taking the respective class definition into
account. A common occurrence is actual toxic
or hateful content that is cited by the comment’s
author. Another pattern is the use of potentially
toxic words within an explanation or self reproach.

Example: “No matter how upset you may be
there is never a reason to refer to another editor
as ‘an idiot’ ”

We find that 23% of sampled comments in the
false negatives of the Wikipedia dataset do not
fulfill the toxic definition in our view. Taking the
hate speech definition of the authors into account,
we question 9% of the Twitter dataset samples.
For the remaining error classes we only include
the comments with undoubtful labels.

Toxicity without swear words. Davidson et al.
(2017) phrase the problem that hate speech may
not contain hate or swear words at all.

Example: “she looks like a horse”

50% of Wikipedia dataset samples have no com-
mon hate or swear word in them. This makes it the
largest error class for the Wikipedia dataset and
shows that our classifiers often fail when there are
no obvious hateful words present. We observe this
in 18% of hate speech comments from the Twitter
dataset. It is important to notice that the frequency
of swear words is naturally higher within this
dataset, because of its sampling method with hate-
ful words as seeds. In many cases the problem is a
lack of paradigmatic context. Hence, an important
research topic for future work is investigating
improved semantic embeddings, which can better
distinguish different paradigmatic contexts.

Rhetorical questions. It is common practice to
wrap toxic statements online within rhetorical or
suggestive questions as pointed out by Schmidt
and Wiegand (2017).

Example: “have you no brain?!?!”

21% of Wikipedia dataset samples and 10% of
Twitter dataset samples contain a rhetorical or
suggestive question. Again paradigmatic context
can help to identify this kind of comments. An
additional signal is the existence of question
words and question marks.

Metaphors and comparisons. Subtle
metaphors and comparisons often require
understanding of implications of language or
additional world knowledge. Zhang and Luo
(2018) and Schmidt and Wiegand (2017) report
on this common error class.

Example: “Who are you a sockpuppet for?”

We only see this problem in the Wikipedia dataset
samples with 16% of false negatives impacted.

Idiosyncratic and rare words. Errors caused
by rare or unknown words are reported by Nobata
et al. (2016); Zhang and Luo (2018); Qian et al.
(2018). From our observation they include mis-
spellings, neologisms, obfuscations, abbreviations
and slang words. Even though some of these
words appear in the embedding, their frequency
may be too low to correctly detect their meaning
on our word embeddings.

Example: “fucc nicca yu pose to be pullin up”

We find rare or unknown words in 30% of exam-
ined false negatives from the Wikipedia dataset
and in 43% of Twitter dataset samples. This
also reflects the common language on Twitter
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with many slang words, abbreviations and mis-
spellings. One option to circumvent this problem
is to train word embeddings on larger corpora
with even more variant language.

Sarcasm and irony. Nobata et al. (2016) and
Qian et al. (2018) report the problem of sarcasm
for hate speech detection. As sarcasm and irony
detection is a hard task itself, it also increases
difficulty of toxic comment classification, because
the texts usually state the opposite of what is
really meant.

Example: “hope you’re proud of yourself.
Another milestone in idiocy.”

Sarcasm or irony appears in 11% of Wikipedia
dataset samples, but in none of the Twitter dataset
samples.

6.2 Error Classes of False Positives

Doubtful labels. We find that 53% of false
positive samples from the Wikipedia dataset
actually fall under the definition of toxic in our
view, even though they are labeled as non-toxic.
Most of them contain strong hateful expressions
or spam. We identify 10% of the Twitter dataset
samples to have questionable labels.

Example: “IF YOU LOOK THIS UP UR A
DUMB RUSSIAN”

The analysis show that doubtful labels belong to
one of the main reasons for a false classification
on the Wikipedia dataset, especially for the false
positives. The results emphasize the importance
of taking labeler agreement into account when
building up a dataset to train machine learning
models. It also shows the need for clear defini-
tions especially for classes with high variance
like toxicity. Besides that, a deficient selection of
annotators can amplify such problems as Waseem
et al. (2018) point out.

Usage of swear words in false positives. Clas-
sifiers often learn that swear words are strong
indicators for toxicity in comments. This can be
problematic when non-toxic comments contain
such terms. Zhang and Luo (2018) describe this
problem as dealing with non distinctive features.

Example: “Oh, I feel like such an asshole now.
Sorry, bud.”

60% of false positive Wikipedia dataset samples
and 77% of Twitter dataset samples contain swear
words. In this case, the paradigmatic context is

not correctly distinguished by the embedding.
Hence, the classifier considered signals for the
trigger word (a swear word) stronger, than other
signals from the context, here a first person
statement addressing the author himself.

Quotations or references. We add this error
class because we observe many cases of ref-
erences to toxic or hateful language in actual
non-hateful comments.

Example: “I deleted the Jews are dumb
comment.”

In the Wikipedia dataset samples this appears in
17% and in the Twitter dataset in 8% of com-
ments. Again the classifier could not recognize
the additional paradigmatic context referring
to typical actions in a forum, here explicitly
expressed with words ‘I deleted the. . . ’ and ‘
. . . comment’.

Idiosyncratic and rare words. Such words (as
described in Section 6) in non-toxic or non-hateful
comments cause problems when the classifier
misinterprets their meaning or when they are
slang that is often used in toxic language.

Example: “WTF man. Dan Whyte is Scottish”

8% of Wikipedia dataset samples include rare
words. In the Twitter dataset sample the fre-
quency is higher with 17%, but also influenced by
common Twitter language.

7 Conclusion

In this work we presented multiple approaches
for toxic comment classification. We showed that
the approaches make different errors and can be
combined into an ensemble with improved F1-
measure. The ensemble especially outperforms
when there is high variance within the data and on
classes with few examples. Some combinations
such as shallow learners with deep neural net-
works are especially effective. Our error analysis
on results of the ensemble identified difficult sub-
tasks of toxic comment classification. We find that
a large source of errors is the lack of consistent
quality of labels. Additionally most of the un-
solved challenges occur due to missing training
data with highly idiosyncratic or rare vocabulary.
Finally, we suggest further research in represent-
ing world knowledge with embeddings to improve
distinction between paradigmatic contexts.
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Abstract

In the past few years, bully and aggressive
posts on social media have grown signifi-
cantly, causing serious consequences for vic-
tims/users of all demographics. Majority of
the work in this field has been done for En-
glish only. In this paper, we introduce a deep
learning based classification system for Face-
book posts and comments of Hindi-English
Code-Mixed text to detect the aggressive be-
haviour of/towards users. Our work focuses on
text from users majorly in the Indian Subcon-
tinent. The dataset that we used for our mod-
els is provided by TRAC-11 in their shared
task. Our classification model assigns each
Facebook post/comment to one of the three
predefined categories: “Overtly Aggressive”,
“Covertly Aggressive” and “Non-Aggressive”.
We experimented with 6 classification mod-
els and our CNN model on a 10 K-fold cross-
validation gave the best result with the predic-
tion accuracy of 73.2%.

1 Introduction

It is observed that multilingual speakers often
switch back and forth between languages when
speaking or writing, mostly in informal settings.
This language interchange involves complexing
grammar, and the terms “code-switching” and
“code-mixing” are used to describe it (Lipski,
1978). Code-mixing refers to the use of linguis-
tic units from different languages in a single utter-
ance or sentence, whereas code-switching refers
to the co-occurrence of speech extracts belonging
to two different grammatical systems (Gumperz,
1982). As both phenomena are frequently ob-
served on social media platforms in similar con-
texts, we have considered the Code-Mixing sce-
nario for our work.

1https://sites.google.com/view/trac1/shared-
task?authuser=0

Following is an instance from the dataset used:

T1 : “Post tabah krne se kuch nhi hoga 2 k
badale 200 ko maro”

Translation: “No point in destroying the
Post, kill 200 in return for your 2 dead.”

Due to the massive rise of user-generated web
content, in particular on social media networks,
the amount of hate, aggressive, bully text is also
steadily increasing. It has been estimated that
there has been an increase of approximately 25%
in the number of tweets per minutes and 22% in-
crease in the number of Facebook posts per minute
in the last 3 years. It is estimated that approxi-
mately 500 million tweets are sent per day, 4.3 bil-
lion Facebook messages are posted and more than
200 million emails are sent each day, and approx-
imately 2 million new blog posts are created daily
over the web 2. Over the past years, interest in
online hate/aggression/bullying detection and par-
ticularly the automatization of this task has con-
tinuously grown, along with the societal impact of
the phenomenon (Ring, 2013). Natural language
processing methods focusing specifically on this
phenomenon are required since basic word filters
do not provide a sufficient remedy. What is con-
sidered as an aggressive text might be influenced
by aspects such as the domain of an utterance, its
discourse context, as well as context consisting of
co-occurring media objects (e.g. images, videos,
audio), the exact time of posting and world events
at this moment, identity of author and targeted re-
cipient.

Hence, we can say that aggression and bully-
ing by/against an individual can be performed in
several ways beyond just using obvious abusive

2https://www.gwava.com/blog/internet-data-created-
daily
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language (Vandebosch and Van Cleemput, 2008)
(Sugandhi et al., 2015) – e.g., via constant sar-
casm, trolling, etc. This can have deep effects
on one’s mental as well as social health and sta-
tus (Phillips, 2015).

The structure of this paper is as follows. In Sec-
tion 2, we review related research in the area of
hate/aggression/bullying detection in social media
texts. In Section 3, we describe the process of
dataset creation which is a work of (Kumar et al.,
2018). In Section 4, we discuss the pre-processing
and data statistics. In Section 5, we summarize our
classification systems and the construction of the
feature vectors. In Section 6, we present the results
of experiments conducted using various features
and classification models along with CNN. In the
last section, we conclude our paper, followed by
future work and references.

2 Background and Related work

There have been several studies on computa-
tional methods to detect abusive/aggressive lan-
guage published on social media in the last few
years (Razavi et al., 2010) (Watanabe et al., 2018).
The first thing to observe is that majority of the
work in this domain has been done in English
(Del Bosque and Garza, 2014) and a few more
languages (Alfina et al.), (Mubarak et al., 2017),
(Tarasova, 2016), but we know that social media
abuse, bullying or aggression is independent of
demography or language. With the advancement
of new language keypads and social media web-
sites supporting many new languages brings with
itself the negative side of social media to those
languages too. Hence, there is a need to address
this problem and many others (Singh et al., 2018)
for low resourced languages or say informal lan-
guages. (Bali et al., 2014) performed analysis of
data from Facebook posts generated by English-
Hindi bilingual users. Analysis depicted that sig-
nificant amount of code-mixing was present in the
posts. (Vyas et al., 2014) formalized the prob-
lem, created a POS tag annotated Hindi-English
code-mixed corpus and reported the challenges
and problems in the Hindi-English code-mixed
text. They also performed experiments on lan-
guage identification, transliteration, normalization
and POS tagging of the dataset. (Sharma et al.,
2016) addressed the problem of shallow parsing of
Hindi-English code-mixed social media text and
developed a system for Hindi-English code-mixed

Script No. of posts/comments
Roman 10,000

Devnagari 2,000
Total 12,000

Table 1: Text statistics in corpus

Tag Count
CAG 4869
NAG 2275
OAG 4856

Table 2: Tags and their Count in Corpus

text that can identify the language of the words,
normalize them to their standard forms, assign
them their POS tag and segment into chunks.

3 Dataset

We used the Hindi-English code-mixed dataset
(Kumar et al., 2018) published as a shared task for
1st Workshop on Trolling, aggression and Cyber-
bullying (TRAC-1) 3 . The data was crawled from
public Facebook Pages and Twitter. The data was
mainly collected from the pages/issues that are ex-
pected to be discussed more among the Indians
(and in Hindi) for the reason of the presence of
Code-Mixed text.

While collecting data from Facebook more than
40 pages were identified and crawled. It included
pages of the below-mentioned types:

• News websites/organizations like NDTV,
ABP News, Zee News, etc.

• Web-based forums/portals like Firstost, The
Logical Indian, etc.

• Political Parties/groups like INC, BJP, etc.

• Students’ organisations/groups like SFI,
JNUSU, AISA, etc.

• Support and opposition groups built around
incidents in last 2 years in Indian Universi-
ties of higher education like Rohith Vemula’s
suicide in HCU, February 9, 2016, incident
in JNU, etc.

For Twitter, the data was collected using some
of the popular hashtags around such contentious
themes as “beef ban”, “India vs. Pakistan cricket

3https://sites.google.com/view/trac1/shared-
task?authuser=0
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match”, “election results”, “opinions on movies”,
etc. During collection, the data was not sam-
pled on the basis of language and so it included
data from English, Hindi as well as some other
Indian languages. In the later stages, the data
belonging to other languages was removed leav-
ing only Hindi, English and Hindi-English Code-
Mixed data.

The collected dataset was labelled into three
classes naming:

Covertly-Aggressive (CAG): It refers to texts
which are an indirect attack against the victim
and is often packaged as (insincere) polite expres-
sions (through the use of conventionalized polite
structures), In general, a lot of cases of satire,
rhetorical questions, etc. An example is given
below -

T2 : “Harish Om kya anti-national ko bail
mil sakti hai? ? ?”

Translation: “Harish Om can an anti-national
get bail?”

Overtly-Aggressive (OAG): This refers to the
texts in which aggression is overtly expressed
either through the use of specific kind of lexical
items or lexical features which is considered
aggressive and/or certain syntactic structures. An
example is given below -

T1 : “Agar inke bas ki nahi hai toh Hume
bhej do border”

Translation: “If they can’t handle it, then
send us to border”

Non-Aggressive (NAG): It refers to texts
which are not lying in the above two categories.
An example is given below -

T1 : “Waise bandhu jet lag se bachne ke
liye Raat ko 10 baje ke baad so jao”

Translation: “By the way brother, sleep af-
ter 10 o’clock at night to avoid jet lag”

3.1 Aggression and Abuse

Abuses and aggression are often correlated but
neither entails the other. In cases of certain prag-

Tag Average post length
CAG 28.10
NAG 27.40
OAG 27.63

Table 3: Average post length of different class text

Tag Average word length
CAG 4.24
NAG 4.77
OAG 4.24

Table 4: Average word length in different class text

matic practices like ’banter’ and ’jocular mock-
ery’, abusive constructions are used for establish-
ing inter-personal relationships and increasing sol-
idarity. So these instances cannot be labelled as
aggressive. Moreover, In this dataset, both use of
aggression and abuse is present in the text.

However, both aggression and abuse do co-
occur in a lot of cases and a lot of times we
are probably more concerned with (actual) abuses
(and not the banter/teasing) than aggression itself.
As such, we may consider abuse/curse as one as-
pect of aggression (even though not strictly a sub-
type of aggression). However, a more in-depth
analysis is needed to discover the relationship be-
tween the two.

4 Pre-processing and Data Statistics

4.1 Data Statistics

The format of data provided was the
“post/comment ID”, “post/comment”, “Tag”.
Where ID refers to users who posted the content,
post/comment refers to the actual text content of
the post/comment which we need to process to de-
velop our features on, and Tags are the three class
labels. It (the data) contained posts/comments
both in Roman scripts as well as Devanagari
scripts. Table 1 shows the statistics of the data
distribution in Roman and Devanagari scripts.
Table 2 shows the count of tags in the corpus.

4.2 Pre-Processing

The pre-processing step is done after extracting
our useful features from the text as many elements
get removed in pre-process step as they are not im-
portant for textual feature creation as well helps to
keep the dimension of our feature vector small and
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Tag Precision Recall F1-score
CAG 0.51 0.72 0.60
NAG 0.98 0.13 0.23
OAG 0.60 0.60 0.60

avg / total 0.64 0.56 0.53

Table 5: Multi-modal Naive Bayes Model

dense. Below mentioned are the steps we did on
our text for pre-processing:

• Transliterated Devnagari text to Roman using
the system by (Bhat et al., 2014).

• Removed stop words.

• Removed Punctuation.

• Replaced multiple spaces (“ ”) or “.” to a sin-
gle one.

• Removed URLs.

• Removed emoticon Uni-codes and other un-
known Uni-codes from text.

• Removed phone numbers (“+91-...”).

5 System architecture and Features

5.1 Convolutional Neural Network
In this section, we outline the Convolutional Neu-
ral Networks (Fukushima, 1988) for classification
and also provide the process description for text
classification in particular. Convolutional Neu-
ral Networks are multistage trainable Neural Net-
works architectures developed for classification
tasks (LeCun et al., 1998). Each of these stages,
consist the types of layers described below (Geor-
gakopoulos and Plagianakos, 2017):

• Convolutional Layers: These are major
components of the CNN. A convolutional
layer consists of a number of kernel matrices
that perform convolution on their input and
produce an output matrix of features where a
bias value is added. The learning procedures
aim to train the kernel weights and biases as
shared neuron connection weights.

• Pooling Layers: These are the integral com-
ponents of the CNN. The purpose of a pool-
ing layer is to perform dimensionality re-
duction of the input feature images. Pool-
ing layers make a sub-sampling to the output
of the convolutional layer matrices combing
neighbouring elements. The most common

Tag Precision Recall F1-score
CAG 0.49 0.50 0.50
NAG 0.44 0.42 0.43
OAG 0.53 0.53 0.53

avg / total 0.50 0.50 0.50

Table 6: Decision Tree Model

pooling function is the max-pooling function,
which takes the maximum value of the local
neighbourhoods.

• Embedding Layer: It is a special compo-
nent of the CNN for text classification prob-
lems. The purpose of an embedding layer
is to transform the text inputs into a suitable
form for the CNN. Here, each word of a text
document is transformed into a dense vector
of fixed size.

• Fully-Connected Layer: It is a classic
Feed-Forward Neural Network (FNN) hidden
layer. It can be interpreted as a special case
of the convolutional layer with kernel size
1x1. This type of layer belongs to the class
of trainable layer weights and it is used in the
final stages of CNN.

The training of CNN relies on the Back-
Propagation (BP) training algorithm (LeCun et al.,
1998). The requirements of the BP algorithm is
a vector with input patterns x and a vector with
targets y, respectively. The input xi is associated
with the output oi. Each output is compared to
its corresponding desirable target and their differ-
ence provides the training error. Our goal is to find
weights that minimize the cost function

Ew =
1

n

P∑

p=1

NL∑

j=1

(oLj,p − yj,p)
2

where P is the number of patterns, oLj,p is the
output of jth neuron that belongs to Lth layer, NL

is the number of neurons in output of Lth layer,
yj,p is the desirable target of jth neuron of pattern
p. To minimize the cost function Ew, a pseudo-
stochastic version of SGD algorithm, also called
mini-batch Stochastic Gradient Descent (mSGD),
is usually utilized (Bottou, 1998).

5.2 LSTMs
As mentioned in (Lample et al., 2016) Recurrent
neural networks (RNN) are a family of neural net-
works that operate on sequential data. They take
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Tag Precision Recall F1-score
CAG 0.54 0.68 0.60
NAG 0.70 0.31 0.43
OAG 0.60 0.59 0.59

Avg / total 0.59 0.57 0.56

Table 7: SVM Model with L2 penalty

Tag Precision Recall F1-score
CAG 0.54 0.51 0.51
NAG 0.74 0.79 0.75
OAG 0.52 0.53 0.52

avg / total 0.41 0.42 0.39

Table 8: MLP model

an input sequence of vectors (x1, x2, . . . , xn) and
return another sequence (h1, h2, . . . , hn) that rep-
resents some information about the sequence at
every step of the input. In theory, RNNs can
learn long dependencies but in practice, they fail
to do so and tend to be biased towards the most
recent input in the sequence (Bengio et al., 1994).
Long Short Term Memory networks or ”LSTMs”
are a special kind of RNN, capable of learn-
ing long-term dependencies. Here with our data
where posts/comments are not very long in the size
LSTMs can provide us with a better result as keep-
ing previous contexts is one of the specialities of
LSTM networks. LSTM networks were first in-
troduced by (Hochreiter and Schmidhuber, 1997)
and they were refined and popularized by many
other authors. They work well with a large variety
of problems especially the one consisting of se-
quence and are now widely used. They do so using
several gates that control the proportion of the in-
put to give to the memory cell, and the proportion
from the previous state to forget. These network
has been used in the past for tasks similar to our
task like hate speech detection (Badjatiya et al.,
2017), bullying detection (Agrawal and Awekar,
2018), Abusive language detection (Chu et al.,
2016), etc on social media text. Hence, we ex-
periment out data with LSTM model and compare
the results as to how good our CNN model works
as compares to LSTMs.

5.3 Features

• Text Based: In this stretch, we look into the
presence of hashtags, uppercase text (indi-
cation of intense emotional state or ‘shout-

Tag Precision Recall F1-score
CAG 0.63 0.62 0.63
NAG 0.83 0.83 0.83
OAG 0.69 0.69 0.69

avg / total 0.58 0.57 0.58

Table 9: LSTM model

ing’), number of emoticons (emoticons and
exclamation marks can be associated with
more aggressive forms of online communi-
cation (Clarke and Grieve, 2017)), presence
and repetition of punctuation, URLs, phone
numbers, etc. The median value for URLs for
“bully”, “spam”, “aggressive”, and normal
users is 1, 1, 0.9, and 0.6, respectively. The
maximum number of URLs between users
also varies: for the bully and aggressive users
it is 1.17 and 2 respectively, while for spam
and normal users it is 2.38 and 1.38. Thus,
normal users tend to post fewer URLs than
others. Also aggressive and bully users have
a propensity to use more hashtags within their
tweets, as they try to disseminate their attack-
ing message to more individuals or groups
(Chatzakou et al., 2017).

• Abusive or Aggressive words: We observe
that the text with tags as aggressive either
Covertly or Overly contains Abusive and Ag-
gressive language usage which can be used as
one of the important features to identify the
aggressive posts/comments. It’s not always
though that the aggressive text contains these
words but it’s a feature which gives some cer-
tainty for the presence of Aggressive nature
of the text (Chatzakou et al., 2017).

• Numerical features: It is observed that the
average length of post/comment for aggres-
sive texts is, in general, greater as compared
to non-aggressive posts. It is also observed
that the average size of words in the aggres-
sive texts are smaller as compared to Non-
aggressive posts which deny the findings of
(Nobata et al., 2016). The stats for the aver-
age length of post/comment and that of words
in these three class are shown in Table 3 and
4.

While creating the sentence vectors with the
use of vocabulary from out dataset (top 4000
words) we removed sentences which had sizes
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Tag Precision Recall F1-score
CAG 0.63 0.63 0.63
NAG 0.83 0.85 0.84
OAG 0.69 0.68 0.69

avg / total 0.57 0.59 0.58

Table 10: CNN model

greater than 400, which is a good threshold
looking at the average size of a sentence which is
28. After removing the sentence having size more
than 400 we are left with 11,617 sentences and
our dimensionality reduced to 11617x400 from
11634x5000 as there were few sentences of 5000
length (noise in social media text). This reduction
in dimensionality helps our training model to run
faster without affecting the results/learning much.

Tag Count
CAG 974
NAG 466
OAG 960
Total 2400

Table 11: Support Test instances for each Tags

List of all features that we used for our systems
are as follows:

• Sentence vector after pre-processing.

• Count of abusive/aggressive/offensive words.

• Number of tokens.

• Size of post/comment.

• Presence of URLs.

• Presence of phone numbers.

• Presence of hash-tags.

• Number of single letters.

• Average length of words.

• Number of words with uppercase characters.

• Number of Punctuation.

We experimented with the different set of fea-
tures for the CNN model which we have discussed
in Section 6 and a report for which can be seen in
Table 13.

Model Accuracy
Multimodal NB 0.56
Decision Tree 0.49

SVM 0.57
MLP 0.42

LSTM 0.58
CNN 0.73

Table 12: Test Accuracy of different models

6 Experiments

This section presents the experiments we per-
formed with different combinations of features
and models. The models on which we ran experi-
ments are:

• Multimodal Naive Bayes

• Decision Tree

• Support Vector Machine (SVM)

• Multi layer Perceptrons (MLPs)

• Long-short Term Memory (LSTM) Networks

• Convolutional Neural Networks (CNNs)

For experiments on the first three models, we
used only the text as features and used library
feature extraction method which turns our text
content into numerical features with bag-of-words
strategy, ignoring the relative positions of words.
The classification report for these three models has
been shown in Table 5, 6, 7 respectively with their
accuracy as shown in Table 12. The support for
each tag during the experiments on our models
shown in Table 5, 6 and 7 have the same numbers
of data per tag which is shown in Table 11.

We then experimented with the three above
mentioned neural networks and their classification
report is shown in Tables 8, 9 and 10.

In order to determine the effect of each feature
and parameter of different models, we performed
several experiments with some and all feature at
a time simultaneously changing the values of the
parameters as well. We arrived at the provided val-
ues of parameters and hyper-parameters after fine
empirical tuning.

7 Results and Observations

The classification report of all the models is shown
in Tables 5, 6, 7, 8, 9, 10. From the experiments
above we can conclude that CNN works best for
our case classifying posts 73.2% of the times to
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Feature Eliminated Accuracy
None 72.8
Size of post 72.4
Avg. length of words 72.6
Single letters/chars count 73.0
Number of Tokens 72.2
Presence of URL 73.2
Presence of Phone-number 72.9
Total Uppercase words 72.5
Presence of hash-tags 72.3
Number of punctuation’s 73.1
Aggressive words 72.2
All except sent vector 73.2

Table 13: Impact Of Each Feature Calculated By
Eliminating One at A Time for CNN Model.

the correct class. The best classification accuracy
of all the models is shown in Table 12.

One observation to keep in mind is that the
nature of data that we used in our work also
makes this classification task difficult to general-
ize (Davidson et al., 2017), this is because of the
presence of noisy text in social media data.

8 Conclusion and Future work

In this paper, we experimented with machine
learning as well as deep learning classification
models for classifying social media Hindi-English
Code-Mixed sentences as aggressive or not. We
cannot always rely on neural networks to per-
form better than simple machine learning algo-
rithms (eg. SVM performs better than MLP).
CNN worked best with an accuracy of 73.2% and
the best f1-score of 0.58. To make our predictions
and models results more significant, we would like
to choose a greater variety of social media text that
could be considered as offensive/aggressive/hate
speech. In addition, many of the posts were from
the same thread i.e not much diverse. This has ad-
vantages and disadvantages. One advantage may
be that this makes the system more fine-tuned: if
two people are discussing the same topic, what dif-
ferentiates one as using “aggressive/hate speech”
versus one who is not? But on the other hand,
many of the posts were similar in meaning and did
not add much to our model to learn. In future, we
would like to create a larger, more representative
dataset of social media post/comments, perhaps
those flagged as offensive by users/annotators as
well as covering more diverse and general topic

discussions on social media. We also plan to ex-
plore some more features from a different variety
of texts and experiment them with the deep learn-
ing methodologies available in natural language
processing. The processed dataset as well as the
system models are made available online 4.

References
Sweta Agrawal and Amit Awekar. 2018. Deep learn-

ing for detecting cyberbullying across multiple so-
cial media platforms. In European Conference on
Information Retrieval, pages 141–153. Springer.

Ika Alfina, Rio Mulia, Mohamad Ivan Fanany, and
Yudo Ekanata. Hate speech detection in the indone-
sian language: A dataset and preliminary study.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Kalika Bali, Jatin Sharma, Monojit Choudhury, and
Yogarshi Vyas. 2014. ” i am borrowing ya mix-
ing?” an analysis of english-hindi code mixing in
facebook. In Proceedings of the First Workshop
on Computational Approaches to Code Switching,
pages 116–126.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha Tam-
mewar, Riyaz Ahmad Bhat, and Manish Shrivastava.
2014. Iiit-h system submission for fire2014 shared
task on transliterated search. In Proceedings of the
Forum for Information Retrieval Evaluation, pages
48–53. ACM.
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Abstract

Although WhatsApp is used by teenagers as
one major channel of cyberbullying, such in-
teractions remain invisible due to the app pri-
vacy policies that do not allow ex-post data
collection. Indeed, most of the information
on these phenomena rely on surveys regarding
self-reported data.

In order to overcome this limitation, we de-
scribe in this paper the activities that led to
the creation of a WhatsApp dataset to study
cyberbullying among Italian students aged 12-
13. We present not only the collected chats
with annotations about user role and type of
offense, but also the living lab created in a col-
laboration between researchers and schools to
monitor and analyse cyberbullying. Finally,
we discuss some open issues, dealing with eth-
ical, operational and epistemic aspects.

1 Introduction

Due to the profound changes in ICT technologies
over the last decades, teenagers communication
has been subjected to a major shift. According
to the last report by the Italian Statistical Insti-
tute (ISTAT, 2014) in Italy 82.6% of children aged
11-17 use the mobile phone every day and 56.9%
access the web on a daily basis. Despite being
of fundamental importance for teenagers’ social
life, the use of these new technologies paved the
way to undesirable side effects, among which the
digitalisation of traditional forms of harassment.
We refer to these form of harassment as “cyber-
bullying”. Should we adopt a narrow definition,
cyberbullying refers only to actions repeated over
time with the aim to hurt someone. By defini-
tion, cyberbullying is in fact ‘an aggressive, in-
tentional act carried out by a group or individ-
ual, using electronic forms of contact, repeatedly
and over time against a victim who cannot easily
defend him or herself’ (Smith et al., 2008). In

everyday life, however, the notion of cyberbully-
ing indicates each episode of online activity aimed
at offending, menacing, harassing or stalking an-
other person. The latter definition of cyberbully-
ing is the one currently adopted in most of the re-
search conducted on this phenomenon and in the
present work. The phenomenon has been recog-
nised as a ubiquitous public health issue, as the
literature clearly highlights negative consequences
for teenagers: studies show that victims are more
likely to suffer from psychosocial difficulties, af-
fective disorders and lower school performance
(Tokunaga, 2010). Since the difference between
cyberbullying and traditional forms of bullying
lies in the intentional use of electronic forms of
contact against the designed victim, data on verbal
harassment and cyberbullying stances are particu-
larly useful to analyse the phenomenon. However,
due to the private nature of these verbal exchanges,
very few datasets are available for the computa-
tional analysis of language. It should be noted
that the possibilities offered by social networking
platform to share privately content among users
combined with the increasing digital literacy of
teenagers has the paradoxical effect to hinder the
possibility to scrutinize and study the actual cyber-
bullying activities. For instance, although What-
sApp is used by teenagers as one major channel of
cyberbullying (Aizenkot and Kashy-Rosenbaum,
2018), their interactions remain invisible due to
the privacy policies that impede ex-post data col-
lection. Most of the information on these phe-
nomena, though, relies on surveys regarding self-
reported data. Yet, specifically for this reason,
the possibility to study how cyberbullying interac-
tions and offenses emerge through instant messag-
ing app conversations is crucial to fight and pre-
vent digital harassment.

In this light, this paper presents an innovative
corpus of data on cyberbullying interaction gath-

51



ered through a WhatsApp experimentation with
lower secondary school students. After outlining
the CREEP project1 (CybeRbullying EffEcts Pre-
vention) during which the activities were carried
out, and the living lab approach that led to the cre-
ation of the corpus, we present the provisional re-
sults of the computational analysis.

In the discussion, we address the main ethical
concerns raised by the experimentation and we
discuss the implications of such a methodology
as a tool for both research and cyberbullying
prevention programs. Annotated data, in a stand-
off XML format, and annotation guidelines are
available online2.

NOTE: This paper contains examples of lan-
guage which may be offensive to some readers.
They do not represent the views of the authors.

2 Related Work

In this Section we provide an overview of datasets
created to study cyberbullying, highlighting the
differences with respect to our Whatsapp corpus.

The sources used to build cyberbullying
datasets are several and cover many different web-
sites and social networks. However, the main dif-
ferences are not in the source of the data but in the
granularity and detail of the annotations. Reynolds
et al. (2011) propose a dataset of questions and
answers from Formspring.me, a website with a
high amount of cyberbullying content. It consists
of 12,851 posts annotated for the presence of cy-
berbullying and severity. Another resource de-
veloped by Bayzick et al. (2011) consists of con-
versation transcripts (thread-style) extracted from
MySpace.com. The conversations are divided into
groups of 10 posts and annotated for presence and
typology of cyberbullying (e.g. denigration or ha-
rassment, flaming, trolling). Other studies cover
more popular social networks such as Instagram
and Twitter. For example, the dataset collected
from Instagram by Hosseinmardi et al. (2015),
consists of 2,218 media sessions (groups of 15+
messages associated to a media such as a video or
a photo), with a single annotation for each media
session indicating the presence of cyberagressive
behavior. The work by Sui (2015) is instead on
Twitter data, presenting a corpus of 7,321 tweets

1http://creep-project.eu/
2http://dh.fbk.eu/technologies/

whatsapp-dataset

manually annotated for the presence of cyberbul-
lying. In this dataset, other than cyberbullying, the
authors provide different layers of associated in-
formation, for example the role of the writer, the
typology of attack and the emotion. The afore-
mentioned works have two main differences with
respect to the data presented in this paper. First,
each annotation refers to an entire message (or a
group of messages) and not to specific expressions
and portions of text. Second, the categories used
for the annotation are more generic than the ones
adopted in our guidelines.

A more detailed investigation on the cyberbul-
lying dynamics can be found in Van Hee et al.
(2015b,a) presenting the work carried out within
the project AMiCA3, which aims at monitoring
web resources and automatically tracing harmful
content in Dutch. The authors propose a detailed
analysis of cyberbullying on a dataset of 85,485
posts collected from Ask.fm and manually anno-
tated following a fine-grained annotation scheme
that covers roles, typology of harassment and level
of harmfulness. This scheme has been recently ap-
plied also to English data (Van Hee et al., 2018).
This approach is different from the previous ones
since its annotations are not necessarily related
to entire messages but can be limited to shorter
strings (e.g., single words or short sequences of
words). We found this approach the more suitable
for our data, allowing us to obtain a detailed view
of pre-teens use of offensive language and of the
strategies involved in a group with ongoing cyber-
bullying. The details on how we use the guidelines
from the AMiCA project (Van Hee et al., 2015c) as
the starting point to define our annotation scheme
can be found in Section 5.

Another important difference between our cor-
pus and the datasets previously discussed is the
source of our data. Indeed, among the many avail-
able instant messaging and social media platforms,
WhatsApp is not much investigated because it is
private, thus an explicit donation from the chat
participants is required to collect data (Verhei-
jen and Stoop, 2016). Although in the last few
years WhatsApp corpora have been released in
several languages including Italian (see for exam-
ple the multilingual corpus built in the context
of the “What’s up, Switzerland?” project4 (Ue-

3https://www.lt3.ugent.be/projects/
amica

4https://www.whatsup-switzerland.ch/
index.php/en/
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berwasser and Stark, 2017), these corpora have
been collected with the goal to investigate spe-
cific linguistic traits such as code-switching, or to
study whether the informal language used in the
chats affects the writing skills of students (Do-
rantes et al., 2018; Verheijen and Spooren, 2017).
With respect to the aforementioned works focused
on the analysis of linguistic phenomena in What-
sApp, our aim is to study a social phenomenon,
that is cyberbullying, by analysing how it is lin-
guistically encoded in WhatsApp messages. Even
if the relation between cyberbullying and What-
sApp is strong, no annotated corpus of WhatsApp
chats has been released so far. Therefore, our cor-
pus represents a novel resource, useful to study
in particular cyberbullying in classmates’ groups
(Aizenkot and Kashy-Rosenbaum, 2018).

3 Project Description

The corpus presented in this paper is part of
the CybeRbullying EffEcts Prevention activities
(CREEP), a larger project based in Italy and sup-
ported by EIT Digital5, for the monitoring of
cyberbullying and the assistance of students and
teachers. The project goals are i) to develop ad-
vanced technologies for the early detection of cy-
berbullying stances through the monitoring of so-
cial media and ii) to create a virtual coaching sys-
tem for communicating preventive advice and per-
sonalised messages to adolescents at risk of cyber-
bullying aggressions. To this purpose, one of the
means to reach the objectives is the realisation of
a living lab, namely an in vivo research method-
ology aimed at co-creating innovation through
the involvement of aware users in a real-life set-
ting (Dell’Era and Landoni, 2014). This ap-
proach permits to tackle the cyberbullying phe-
nomenon within the social media platform from a
user-centric perspective, thereby favouring the co-
creation of prevention strategies whilst avoiding
top-down planning. When applied to the school
context, the living-lab approach presents a three-
fold advantage. Researchers gain ecological valid-
ity by studying the phenomenon with target users
through a role-play experiment. Teenagers can ac-
tively engage in the participatory design without
being used as passive research subjects. Schools
can count on a supplementary tool for raising
awareness on cyberbullying and give pupils addi-
tional means to understand the phenomenon first-

5https://www.eitdigital.eu/

hand.
The creation of the corpus required the involve-

ment of students in a role-playing simulation of
cyberbullying and has so far involved three lower
secondary schools’ classes of teenagers aged 12-
13 from 2 different schools based in Trento, in
the North-East of Italy. The experimentation it-
self, described in the next section, was embedded
in a larger process that required four to five meet-
ings, one per week, involving every time two so-
cial scientists, two computational linguists and at
least two teachers for the class. The content of the
meetings is briefly described below:

1. Lecturing on cyberbullying. Researchers
introduce the theme of cyberbullying and
elicit personal experiences and students’
opinions.

2. Pilot annotation of online interactions.
Students in pairs annotate semantically six
online threads gathered from Instagram and
Twitter. They discuss the hate speech cate-
gories that will be then annotated also in the
WhatsApp interactions.

3. Introducing the experimentation. Re-
searchers present the experimentation, both
the practicalities and the rules of the role-
playing.

4. Participatory analysis. Researchers present
the preliminary analysis of the experimenta-
tion and elicit students interpretations of the
data gathered.

5. Feedback to teachers and parents (optional
but recommended). Researchers present the
whole project to parents of students involved
and teachers, discussing results and future ac-
tivities.

The relevance and implications of this approach
are presented in Section 6.

4 WhatsApp Experimentation

The choice of WhatsApp is based on two main
considerations: first, the application is one of the
most preferred and used messaging applications
(Fiadino et al., 2014). In 2015, almost 60% of
Italian teens aged 12-17 used the app (Save the
Children, 2014). In fact, in each class involved
in the living lab, around 70% of the children al-
ready had an active WhatsApp account on their
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Scenario Type of addressed problem
Your shy male classmate has a great passion for classical dance.
Usually he does not talk much, but today he has decided to invite
the class to watch him for his ballet show.

Gendered division of sport
practices

Your classmate is very good at school, but does not have many
friends, due to his/her haughty and ‘teacher’s pet’ attitude. Few
days ago, s/he realised that his/her classmates brought cigarettes
to school and snitched on them with the teacher. Now they will
be met with a three days suspension, and they risk to fail the year.

Interference in others’
businesses

Your classmate is very good at school, and everyone think s/he is
an overachiever. S/He studies a lot and s/he never goes out. S/He
does not speak much with his/her classmates, that from time to
time tease him/her for his/her unsocial life. Things have slightly
changed recently: your classmates mum convinced teachers to
increase the homework for all the students. A heedless teacher
revealed the request to the class, and now some students are very
angry at him/her.

Lack of independence, parental
intromission.

Your shy classmate is good in all subjects but in gymnastics. For
this reason, his/her classmates often tease on him/her when s/he
exercises. Recently, the class has found out a video on the social
network Musical.ly, where s/he dances gracelessly, on a 90s song
that no one has never heard before.

Web virality

Table 1: Scenarios adopted in our experimentation.

personal smartphones. Only a minority (around
5 or 6 teens) used their parents’ smartphones to be
able to participate. Second, the app provides all
the functionalities of social networking services,
and Whatsapp classmates’ groups are identified by
other studies as contexts of cyberbullying perpe-
tration (Aizenkot and Kashy-Rosenbaum, 2018).
Overall, a total number of 70 students participated
in the experimentation.

After receiving the necessary authorisation
from the school director, the school board, and
teenagers’ parents, the researchers presented the
experimentation to the participants, conceived as
a role-play. In each class, two WhatsApp groups
with around 10 teens were created. Teachers were
part of the groups and could assist to the conver-
sation, but they never actively participated to the
chat. In each group, one researcher played for the
whole time the role of the victim. Students were
instead given the following roles: cyberbully (2
students), cyberbully assistants (3-4 students), and
victim assistants (3-4 students). Teachers divided
the classes and assigned the roles to pupils, so
to take into account previous class dynamics and
childrens personalities. Each role-play lasted for 3

days, after which pupils changed roles within the
same chat; students were allowed to participate in
the chat only after the school hours, and could be
excluded for a short time in case of misbehaviour.
Teachers and researchers used dedicated mobile
phones provided by the project, not their private
ones. Each chat started with the following basic
rules:

• Offenses must target only the designated vic-
tim (the researcher)

• Bad words are allowed, but do not exaggerate

• Do your best to play your role and try to in-
teract in a realistic way

• Stick to the roles previously defined

• Do not hesitate to quit the chat if you feel of-
fended

• Use the chat only after school hours

Moreover, in order to trigger the conversation,
several scenarios, previously discussed and agreed
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by the students, opened the role-play. The sce-
narios, reported in Table 1, aim to address differ-
ent types of problematics that teenagers can en-
counter, from the gendered division of sport prac-
tices to the embarrassment caused by a viral video.
At the end of the experimentation, a two-hour
meeting with each class was organised to reflect
with students and teachers on the content of the
conversation, and to discuss some of the taken-for-
granted aspects of cyberbullying and raise aware-
ness on teenagers. During this occasion, students
could reflect on the experience, highlight with re-
searchers and teachers the most problematic inter-
actions, and point out the benefits and drawbacks
of the methodology.

Three middle-school classes were involved in
this experimentation. Since WhatsApp groups
are closed and not accessible from the outside, a
preliminary agreement was signed involving stu-
dents’ parents, teachers and headmasters to allow
the activity. The threads were then saved in anony-
mous form and manually annotated by two ex-
pert linguists. The original names were not com-
pletely removed, but they were replaced by ficti-
tious names, so that it was still possible to track all
the messages exchanged by the same person.

5 Corpus Description

The corpus of Whatsapp chats is made of 14,600
tokens divided in 10 chats. All the chats have
been annotated by two annotators using the CAT
web-based tool (Bartalesi Lenzi et al., 2012)
following the same guidelines.

Our guidelines are an adaptation to Italian of
the “Guidelines for the Fine-Grained Analysis
of Cyberbullying” developed for English by the
Language and Translation Technology Team of
Ghent University (Van Hee et al., 2015c). Follow-
ing these guidelines, the annotator should identify
all the harmful expressions in a conversation
and, for each of it, he/she should annotate: (i)
the cyberbullying role of the message’s author;
(ii) the cyberbullying type of the expression; (iii)
the presence of sarcasm in the expression; (iv)
whether the expression containing insults is not
really offensive but a joke. The guidelines identi-
fies four cyberbullying roles: Harasser (person
who initiates the harassment), Victim (person
who is harassed), Bystander-defender
(person who helps the victim and discourages the
harasser), Bystander-assistant (person

who takes part in the actions of the harasser).
As for the type of cyberbullying expressions,
we distinguish between different classes of
insults, discrimination, sexual talk and aggres-
sive statements: Threat or blackmail,
General Insult, Body Shame, Sexism,
Racism, Curse or Exclusion, Insult
Attacking Relatives, Harmless
Sexual Talk, Defamation, Sexual
Harassment, Defense, Encouragement
to the Harassment, and Other. Each
message in the chat can contain more than
one expression to be annotated with a different
associated type thus making the annotation
fine-grained. For example the message fai schifo,
ciccione! / you suck, fat guy is made of two
harmful expressions e.g. [fai schifo,]General Insult
[ciccione!]Body Shame.

With respect to the original guidelines by Van
Hee et al. (2015c), we added a new type of insult
called Body Shame to cover expressions that
criticize someone based on the shape, size, or
appearance of his/her body. We did this addition
because body shaming has become an important
societal issue that according to existing literature
has a strong impact on the cybervictimization
of teens and pre-treens (Frisén et al., 2014;
Berne et al., 2014). We have also changed
the original type Encouragement to the
Harasser into Encouragement to the
Harassment, so to include all the incitements
between the bully and his/her assistants. We
indeed noticed that the exhortations to continue
the persecution and the expressions of approval
for insults and acts of intimidation do not have
a single direction (that is, from the assistants to
the bully) but all the people taking part in the
harassment encourage each other.
We calculated the inter annotator agreement
between our annotators on one of the chats, made
of 1,000 tokens and belonging to the scenario
about the video posted on musical.ly. Results
are shown in Table 2 in terms of Dice coefficient
(Dice, 1945) for the extension of the annotated
expression and in terms of accuracy for the
attributes associated to each message. Since
that the roles where pre-defined, we did not
measure the agreement on the assignment of the
cyberbullying roles. Results are satisfactory given
that the agreement is equal or above 0.8 both for
the extension and the attributes. These scores are
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Extension Attributes
Dice coefficient Accuracy

exact match partial match type sarcasm non-offensive
0. 80 0.88 0.87 1 1

Table 2: Results of Inter Annotator Agreement

TYPES ROLES
Defense 381 (31.7%) Bystander assistant 358 (29.8%)
General Insult 313 (26.0%) Harasser 343 (28.5%)
Curse or Exclusion 200 (16.6%) Bystander defender 334 (27.7% )
Threat or Blackmail 81 (6.7%) Victim 168 (14.0%)
Encouragement to the Harassment 63 (5.2%)
Body Shame 45 (3.7%) OFFENSIVE
Discrimination-Sexism 45 (3.7%) non-offensive 0
Attacking relatives 28 (2.3%)
Other 24 (2%) SARCASM
Defamation 23 (1.9%) sarcasm 27 (2.2%)
TOTAL 1203

Table 3: Annotated data on WhatsApp data

higher than those reported for the annotation made
using the guidelines to which we were inspired
(Van Hee et al., 2015b). This difference could
be explained by the fact that our annotators were
directly involved in the creation of our guidelines.

Table 3 reports statistics about the annotated
data in the WhatsApp chats. We identified a total
of 1,203 cyberbullying expressions, correspond-
ing to almost 6,000 tokens: this means that the
phenomenon we are investigating covers 41.1%
of the whole corpus. Roles are quite balanced
in the chats with many interactions among all
the participants. Expressions of type Defense
written by the victim or bystander defenders
are the most numerous (31.7%): they include
expressions in support of the victim specifying
his/her positive characteristics (e.g., secondo me
è bravo! / I think he’s good!) but also showing
disapproval and indignation (e.g., lasciatelo stare!
/ leave him alone!). Undesirable sexual talk (type
Sexual harassment) and expressions of
discrimination that are based on the victim’s race,
skin color, ethnicity, nationality, or religion are
never found in the WhatsApp corpus. Besides,
all rude remarks and bad words are offensive
in the context in which they are used (i.e., the
non-offensive tag is never used). The de-
fenders of the victim often fight back responding
to attacks with insults (e.g., le sfigate siete voi
/ you are the losers) and threats (e.g. Se non la

smetti la vedrai con tutti noi / If you do not stop
you will see it with all of us). These types of
expressions correspond to the 37.1% of the anno-
tations with the role Bystander-defender.
Almost all the expressions in the category
Curse or Exclusion (96%) are aimed at
detaching the counterpart from social relations
with expressions such as chiudi il becco / shut
up, nessuno ti vuole / nobody wants you, cambia
classe / change class. The strong majority of
insults of type Attacking relatives, corre-
sponding to 82.1%, are addressed to the mother
(e.g., Tua madre fa schifo quanto te / Your mother
sucks as much as you do) whereas the others are
attacks to sisters, brothers and friends in general.
Different scenarios bring out different types of
cyberbullying expressions and thus different types
of insults. For example, the scenario about the
ballet has a high presence of expressions with a
sexist nature, starting from the idea that ballet
is an activity only for girls, e.g. Balli anche
te cosı̀ da gay? / Do you dance so gay too?).
The scenario related to the video on musical.ly
has attracted many comments on the appearance
of the victim and, as a consequence, we have
high occurrence of insults of type Body Shame.
Typically, these insults contain references to
animals stressing the heaviness of the victim, for
example Dimagrisci elefante / lose weight, you
elephant, Sembra un bisonte quando corre! / He
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looks like a bison when he runs!.

6 Discussion

The use of a simulation to create the corpus de-
scribed in the previous sections raises a number
of issues. A detailed and thorough exploration of
such issues is beyond the scope of the present pa-
per and it would require a paper in its own right.
Nonetheless, in this last section we discuss some
of the issues faced with no pretense of exhaustive-
ness, distinguishing between operational, ethical
and epistemic issues. As we shall see, though,
there are considerable overlaps among these cat-
egories.

6.1 Operational Issues

First and foremost, the creation of a WhatsApp
corpus has required several accompanying mea-
sures. The effort required to gather the corpus is
only a fraction of the overall effort needed to set
up the living lab. Participation of schools was en-
sured by making data gathering only a part of a
larger set of activities aimed at paving the way for
experimentation (lecture, annotation) and provid-
ing teachers and parents, our internal stakehold-
ers, with results to be further used for educational
purposes (feedback). All these activities required
to invest extra-time. At the same time, though,
the prolonged involvement and exchanges with
students and teachers allowed us to build a trust
meant to ensure a smooth participation to the role-
playing and avoid that researchers are perceived as
judgmental.

A second issue, partially related to the former, is
the need of a consistent engagement of researchers
in the creation of the corpus. The experimentation,
far from having a predictable behaviour, needed
to be monitored to ensure that participants would
adhere to the rules (i.e. not insulting each other)
or stop interacting. This required making several
decisions (e.g. sending private messages to remind
the rules to specific students) to avoid the failure of
the role-playing. Borderline cases were frequent
and each required choices to be made on the fly.
As a rule, researchers adopted a flexible approach
towards rule-breaking, deeming that an excessive
intervention would have broken the ‘suspension of
disbelief’ of the role-playing.

On a separate note, the unfolding of the re-
search process required to make some decisions
regarding conflicting needs. For instance, the stu-

dents without a smartphone were excluded from
the role-playing experimentation. We evaluated
the possibility to provide a smartphone to these
students to avoid their exclusion from the activi-
ties of the rest of the classmates. The option was
ruled out preferring realism over participation.

6.2 Ethical Issues

The ethical issues were a main concern since
the drafting of the study design. The study has
been co-designed with the schools involved and
parents’ informed consent was gathered before-
hand. The role-playing methodology was adopted,
among other considerations, as it did not require
gathering sensitive information regarding minors.
Students were assigned a role and they were asked
to play it considering a fictional (even if realistic)
scenario, so no information regarding lived expe-
riences was collected.

Beside these formal considerations, ethics has
been a central concern of the research team
throughout the process and it was addressed by-
design as far as possible. As briefly mentioned in
the Project description (see Section 3), the role-
playing activity was part of a larger set up. The
purpose was to ensure a framing of the experimen-
tation and its possible outcomes in a broader per-
spective, allowing students to play different roles.
Therefore, the introductory lecture in class ad-
dressed the issue of cyberbullying adopting a dis-
tal perspective (cyberbullying as a topic). The an-
notation phase required students to be exposed to
the raw material of cyberbullying in all its unpleas-
antness but filtering their perception by adopting
the perspective of researchers (cyberbullying as
an object of study). The role-playing was per-
formed after each student had already been famil-
iarized with cyberbullying. The role-playing al-
lowed a protected space to experiment cyberbul-
lying, avoiding students to impersonate the bul-
lied (victims were always impersonated by re-
searchers) and experiencing different roles (cyber-
bullying as a lived experience from multiple per-
spectives: bully, support to the bully, support to the
victim). The participatory analysis allowed stu-
dents to retrospectively frame and provide mean-
ing to the lived experience in a protected environ-
ment (cyberbullying as a prop for reflectivity). The
whole process was designed to allow the honest
and realistic outburst during the role-playing but
framing it with accompanying measures aimed at
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avoiding/minimizing the negative effects of harsh
interactions during the role-playing. The presence
and vigilance of two researchers and a teacher in
each phase of the process ensured a failsafe mech-
anism to prevent the derangement of the experi-
ment and its containment.

6.3 Epistemic Issues

At last, we shall address the issue of validity of
the corpus created with the experimentation. Can
the corpus be considered a substitute for a set of
actual interactions or should it be considered just
as the result of a playful experience with little (if
any) resemblance to reality? The lack of a What-
sApp corpus of non-simulated cyberbullying ac-
tivities does not allow for a comparison to assess
the plausibility of the cyberbullying interactions
gathered. Evaluating the realisticness of such in-
teractions is both the main challenge and the key
to replicate and extend the methodology adopted
to other domains. While a clear-cut methodology
to perform such evaluation was not developed for
the case at hand, we tentatively assessed the plau-
sibility of the corpus indirectly.
Since we could not assess the verisimilitude of the
outcome (i.e. corpus) we collected information to
evaluate the credibility of the process. We focused
on three dimensions:

• observer effect, to estimate the self-
censorship implied in being watched by
adults;

• evolution of the interaction, to estimate the
resemblance to actual online harassing;

• engagement in the interaction, to understand
the constant awareness of being involved in a
simulated activity.

The classes did not seem too worried about be-
ing under observation. Both classes had already
experienced cyberbullying issues in the past years
and teachers were informed by the students about
it. In those occasions, to the surprise of the teach-
ers, students voluntarily showed them the text to
request their help, despite the presence of vul-
gar content. Moreover, during the experimenta-
tion, researchers had to remind several students to
behave themselves and remember the basic rules
of roleplaying. As for the evolution of the in-
teraction, students declared that the experimenta-
tion mirrored a ‘normal’ heated conversation on

WhatsApp, with violent but short-lived outbursts
regarding a single issue. About the engagement in
the interaction, the participatory analysis revealed
that some participants were forgetful of the text
they sent, as if they got carried away by the role
playing. While we are aware that a only a thor-
ough methodology could respond to the question
of the validity of the corpus gathered through the
role playing, these preliminary findings suggest
that the spirit of the game may lead participants
to act with in a way that resembles real life.

7 Conclusions

In this work, we present and release a WhatsApp
dataset in Italian created through a role-play by
three classes of students aged 12-13. The data,
which are freely available, have been anonymized
and annotated according to user role and type of
insult. Given the difficulty to retrieve WhatsApp
data, since their chats are only accessible to the
group members, we believe that datasets of this
kind can give a better insight into the language
used by pre-teens and teens in closed communities
and into the dynamics of cyberbullying. The work
has also highlighted the importance of creating a
living lab with a setting suitable for experimenta-
tion and educational activities. Nevertheless, sev-
eral open issues must be taken into account, from
ethical issues related to exposing pre-teens to of-
fensive language, to the problem of data realistic-
ness when using a role-play environment.
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mans, and Véronique Hoste. 2015b. Detection and
fine-grained classification of cyberbullying events.
In International Conference Recent Advances in
Natural Language Processing (RANLP), pages 672–
680.

Cynthia Van Hee, Ben Verhoeven, Els Lefever, Guy
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Abstract
Growing amount of comments make online
discussions difficult to moderate by human
moderators only. Antisocial behavior is a com-
mon occurrence that often discourages other
users from participating in discussion. We pro-
pose a neural network based method that par-
tially automates the moderation process. It
consists of two steps. First, we detect inapp-
ropriate comments for moderators to see. Se-
cond, we highlight inappropriate parts within
these comments to make the moderation fas-
ter. We evaluated our method on data from a
major Slovak news discussion platform.

1 Introduction

Keeping the discussion on a website civil is im-
portant for user satisfaction as well as for legal
reasons (European court of human rights, 2015).
Manually moderating all the comments might be
too time consuming. Larger news and discussion
websites receive hundreds of comments per mi-
nute which might require huge moderator teams.
In addition it is easy to overlook inappropriate
comments due to human error. Automated soluti-
ons are being developed to reduce moderation time
requirements and to mitigate the error rate.

In this work we propose a neural network ba-
sed method to speed up the moderation process.
First, we use trained classifier to automatically de-
tect inappropriate comments. Second, a subset of
words is selected with a method by (Lei et al.,
2016) based on reinforcement learning. These se-
lected words should form a rationale why a com-
ment was classified as inappropriate by our model.
Selected words are then highlighted for modera-
tors so they can quickly focus on problematic parts
of comments. We also managed to evaluate our so-
lution on a major dataset (millions of comments)
and in real world conditions at an important Slo-
vak news discussion platform.

2 Related work

Inappropriate comments detection. There are
various approaches to detection of inappropriate
comments in online discussions (Schmidt and
Wiegand, 2017). The most common approach is
to detect inappropriate texts through machine le-
arning. Features used include bag of words (Bur-
nap and Williams, 2016), lexicons (Gitari et al.,
2015), linguistic, syntactic and sentiment featu-
res (Nobata et al., 2016), Latent Dirichlet Allo-
cation features (Zhong et al., 2016) or comment
embeddings (Djuric et al., 2015). Deep learning
was also considered to tackle this issue (Badjatiya
et al., 2017; Mehdad and Tetreault, 2016).

Apart from detecting inappropriate texts, mul-
tiple works focus on detecting users that should be
banned (Cheng et al., 2015) by analyzing their po-
sts and their activity in general (Adler et al., 2011;
Ribeiro et al., 2018a), their relationships with ot-
her users (Ribeiro et al., 2018b) and the reaction
of other users (Cheng et al., 2014) or modera-
tors (Cheng et al., 2015) towards them.

Interpreting neural models. Interpretability of
machine learning models is common requirement
when deploying the models to production. In our
case moderators would like to know why was the
comment marked as inappropriate.

Most of the works deal with interpretability
of computer vision models (Zeiler and Fergus,
2014), but progress in interpretable text proces-
sing was also made. Several works try to ana-
lyze the dynamics of what is happening inside
the neural network. Karpathy et al. (2015); Au-
bakirova and Bansal (2016) focus on memory
cells activations. Li et al. (2016a) compute how
much individual input units contribute to the fi-
nal decision. Other techniques rely on attention
mechanisms (Yang et al., 2016), contextual de-
composition (Murdoch et al., 2018), representa-
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tion erasure (Li et al., 2016b) or relevance pro-
pagation (Arras et al., 2017). Our work uses the
method by Lei et al. (2016), which selects co-
herent subset of words responsible for neural ne-
twork decision. The authors use this model to ex-
plain multi-aspect sentiment analysis over beer re-
views and information retrieval over CQA system.

In the domain of detecting antisocial behavior
Pavlopoulos et al. (2017) used attention mecha-
nism to interpret existing model. Their work is the
most relevant to ours, but we use other datasets as
well as other, more explicit, technique for model
interpretation.

3 Interpretable Neural Moderation

We propose a method to speed up the moderation
process of online discussions. It consists of two
steps:

1. We detect inappropriate comments. This is a
binary classification problem. Comments are
sorted by model confidence and shown to the
moderators. In effect after this initial filtering
moderators work mostly with inappropriate
comments which improves their efficiency.

2. We highlight critical parts of inappropriate
comments to convince moderators that selec-
ted comments are indeed harmful. The mo-
derators can then focus on these highlighted
parts instead of reading the whole comment.

3.1 Step 1: Inappropriate comments
detection

We approach inappropriate comments detection as
a binary classification problem. Each comment is
either appropriate or inappropriate. We use recur-
rent neural network that takes sequence of word
embeddings as input. The final output is then
used to predict the probability of comment being
inappropriate. We use RCNN recurrent cells (Bar-
zilay et al., 2016) instead of more commonly
used LSTM cells as they proved to be faster to
train with practically identical results. This part of
our method is trained in supervised fashion using
Adam optimization algorithm.

3.2 Step 2: Inappropriate parts highlighting
Our method implements (Lei et al., 2016). It can
learn to select the words responsible for a decision
of a neural network called rationale without the
need for word level annotations in the data.

The model processes comment word embed-
dings x and generates two outputs: binary flags z
representing selection of individual words into ra-
tionale which is marked (z, x) and y being proba-
bility distribution over classes appropriate / inapp-
ropriate. The model is composed of two modules:
generator gen and classifier clas called also enco-
der in the original work.

Generator gen. The role of generator is to se-
lect words that are responsible for a comment be-
ing in/appropriate. On its output layer it generates
probabilities of selection for each word p(z|x). A
well trained model assigns high probability scores
to words that should form the rationale and low
scores to the rest. In the final step these probabi-
lities are used to sample binary selections z. The
sampling layer is called Z-layer.

Due to sampling in Z-layer gen graph beco-
mes non-differentiable. To overcome this issue the
method uses reinforcement learning method cal-
led policy gradients (Williams, 1992) to train the
generator.

Classifier clas. clas is a softmax classifier that
tries to determine whether a comment is inapprop-
riate or not by processing only words from rati-
onale (z, x).

Joint learning. In order to learn to highlight
inappropriate words from inappropriate comments
we need gen and clas to cooperate. gen selects
words and clas provides feedback on the quality
of selected words. The feedback is based on the
assumption that the words are selected correctly if
clas is able to classify comment correctly based
on the rationale (z, x) and vice versa.

Furthermore, there are some conditions on the
rationale: it must to be short and meaningful (the
selected words must be near each other) what is
achieved by adding regularization controlled by
hyperparameters λ1 (which forces the rationales
to have fewer words) and λ2 (which forces the se-
lected words to be in a row). The following loss
function expresses these conditions:

loss(x, z, y′) = ‖clas(z, x)− y′‖22

+ λ1‖z‖+ λ2

K−1∑

t=1

|zt − zt+1| (1)

where x is original comment text, z contains bi-
nary flags representing non/selection of each word
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in x, (z, x) contains actual words selected to rati-
onale, y′ is correct output and K is the length of x
and also z respectively.

From the loss function we can see that the trai-
ning is based on a simple assumption that rationale
is a subset of words that clas classifies correctly.
If it is not classified correctly then the rationale is
probably incorrect. This way we can learn to ge-
nerate rationales without need to have word level
annotations. We would like to make the point that
training to generate these rationales is not done
to improve the classification performance. It uses
only the exact same data the classifier from Step
1 uses. Its only effect is to generate interpretable
rationales behind the decisions classifier takes.

4 Experiments and Results

4.1 Dataset

We used a proprietary dataset of more than 20 mil-
lion comments from a major Slovak news discus-
sion platform. Over the years a team of modera-
tors was considering reported comments and re-
moving the inappropriate ones while also selec-
ting a reason(s) from prepared list of possible dis-
cussion code violations. In this work we consi-
der only those that were flagged because of fol-
lowing reasons: insults, racism, profanity or spam.
The rest of the comments are considered approp-
riate. We split the dataset in train, validation and
test set where validation and test set both were ba-
lanced to contain 10,000 appropriate and 10,000
inappropriate comments. Rest of the dataset forms
the training set. Test and validation sets were sam-
pled from the most recent months. During the trai-
ning we balance it on batch level by supersampling
inappropriate comments.

Highlights test set. We did not have any annota-
tions on rationales in the dataset. We created a test
set by manually selecting words that should form
the rationales in randomly picked 100 comments.
This way we created a test set containing 3,600
annotated words.

Word embeddings. We trained our own fast-
Text embeddings (Bojanowski et al., 2017) on our
dataset. These take into account character level in-
formation and are therefore suitable for inflected
languages (such as Slovak) and online discussions
where lots of grammatical and typing errors occur.

4.2 Inappropriate comments detection

We performed a hyperparameter grid search with
our method. We experimented with different re-
current cells (RCNN and LSTM), depth (2, 3), hid-
den size (200, 300, 500), bi-directional RNN and
in the case of RCNN also with cell order (2, 4). We
also trained several non-neural methods for com-
parison. Results from this experiment are marked
in Table 1. We measure accuracy as well as ave-
rage precision (AP). The best results were achie-
ved by bi-directional 2-layer RCNN with hidden
size 300 and order 2. Deep neural network mo-
dels outperform feature based models by almost
10% of accuracy. RCNN achieves results similar
to LSTM but with approximately 8.5 times less
parameters.

The results here might be significantly affec-
ted by noisy data. During the years many inapp-
ropriate comments went unnoticed and many app-
ropriate comments were blocked if they were in
inappropriate threads. Qualitative interviews we
carried out with moderators indicate that our ac-
curacy might be a bit higher.

We observed that model was the most confident
about insulting and offensive comments. Thanks
to sub-word based word embeddings the model
can find profanities even when some characters
within are replaced with numbers (e.g. 1nsult ins-
tead of insult) or there are arbitrary characters in-
serted into the word (e.g. i..n..s..u..l..t instead of
insult.

To better understand the impact of this classi-
fier we plotted its results using ROC curve in Fi-
gure 1. Here we can see how many comments a
moderator needs to read to find certain percentile
of inappropriate ones. E.g. when looking for 80%
of inappropriate comments, only 20% of reviewed
comments will be falsely flagged by the model.

4.3 Highlighting inappropriate parts

gen and clas are implemented as recurrent neural
networks with RCNN cells. gen is a bi-directional
2-layer RCNN with hidden size equal 200 and or-
der equal 2. Z-layer is realized as unidirectional
RNN with hidden size equal 30. clas is an uni-
directional 2-layer RCNN with hidden size equal
200 and order equal 2. For regularization hyper-
parameters we found values λ1 ∈ [5 × 10−4, 3 ×
10−3] and λ2 ∈ [2λ1, 4λ1] to perform well.

We observed a significant instability during the
training caused by formulation of our loss func-
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Figure 1: Receiver operating characteristic (ROC) of
different models. We plot only one neural based solu-
tion as they almost completely overlap.

Model # params % acc AUC
LDA (75 topics) - 63.2 0.684
LSA (300 topics) - 66.2 -
TF-IDF - 68.8 0.754
2-gram TF-IDF - 70.1 0.766
Unidir. RCNN 0.6M 79.0 0.870
Unidir. LSTM 3.3M 78.9 0.872
Bi-dir. RCNN 1.7M 79.4 0.872
Bi-dir. LSTM 14.6M 79.4 0.875

Table 1: Comparison of test set performance of mul-
tiple classification models. Baseline models (first four)
use various text representations that are classified by
boosted decision trees (1,000 trees) (Freund and Scha-
pire, 1995).

tion. The model would often converge to a state
where it would pick all the words or no words at
all. Especially the cases when the model started to
pick all the words proved to be impossible to over-
come. In such cases we restarted the training from
a different seed what increased the probability of a
model converging successfully by a factor of five.

We evaluated following metrics of our models:

• Precision – how many of selected words were
actually part of golden inappropriate data.
Correct selection of words is a prerequisite
for saving moderators’ time. Recall is not
very important as we do not need to select
all the inappropriate parts. One part is usually
enough for the moderators to block a com-
ment.

• Rationale length – the proportion of words
selected into rationale. It is important to mea-

Figure 2: Test set performance of models highlighting
inappropriate parts in comments.

sure this metric as we want our model to only
pick a handful of strongly predictive words.

We compare our proposed model with the mo-
del based on first-derivative saliency (Li et al.,
2016a). The comparison of models is shown in
Figure 2. We can see that with length reduction
the precision grows as expected. Our best models
achieve a precision of nearly 90% while selecting
10–15% of words. We consider this to be very
good result. Our method outperforms the saliency
based one and also produces less scattered rationa-
les. By this we mean that the average length of a
segment of subsequently selected words is 2.5 for
our method, but only 1.5 for saliency-based met-
hod. Instead of picking individual words our mo-
del tries to pick longer segments.

5 Conclusion

Moderating online discussions is time consuming
error-prone activity. Major discussion platforms
have millions of users so they need huge teams of
moderators. We propose a method to speed up this
process and make it more reliable. The novelty of
our approach is in the application of a model inter-
pretation method in this domain.

Instead of simply marking the comment as
inappropriate, our method highlights the words
that made the model think so. This is significant
help for moderators as they can now read only
small part of comment instead of its whole text.
We believe that our method can significantly speed
up the moderation process and user study is under-
way to confirm this hypothesis.

We evaluated our model on dataset from a major
Slovak news discussion platform with more than

63



20 million comments. Results are encouraging as
we were able to obtain good results on inapprop-
riate comments detection task. We also obtained
good results (nearly 90% precision) when high-
lighting inappropriate parts of these comments.

In the future we plan to improve the evaluation
of highlighting. Instead of measuring the global
precision, we plan to analyze how well it performs
with various types of inappropriateness, such as
racism, insults or spam. We are also looking into
the possibility of incorporating additional data into
our algorithm – other comments from the same th-
read, article for which the comments are created
or even user profiles. These could help us improve
our results or even detect the possibility of antiso-
cial behavior before it even happens.

Acknowledgments

This work was partially supported by the Slovak
Research and Development Agency under the con-
tracts No. APVV-17-0267 - Automated Recogni-
tion of Antisocial Behaviour in Online Communi-
ties and No. APVV-15-0508 - Human Information
Behavior in the Digital Space. The authors would
like to thank for financial contribution from the
Scientific Grant Agency of the Slovak Republic,
grant No. VG 1/0646/15.

References
B Thomas Adler, Luca De Alfaro, Santiago M Mola-

Velasco, Paolo Rosso, and Andrew G West. 2011.
Wikipedia vandalism detection: Combining natural
language, metadata, and reputation features. In In-
ternational Conference on Intelligent Text Proces-
sing and Computational Linguistics, pages 277–288.
Springer.

Leila Arras, Franziska Horn, Grégoire Montavon,
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Abstract

We probe the heterogeneity in levels of abu-
sive language in different sections of the Inter-
net, using an annotated corpus of Wikipedia
page edit comments to train a binary classi-
fier for abuse detection. Our test data come
from the CrimeBB Corpus of hacking-related
forum posts and we find that (a) forum inter-
actions are rarely abusive, (b) the abusive lan-
guage which does exist tends to be relatively
mild compared to that found in the Wikipedia
comments domain, and tends to involve ag-
gressive posturing rather than hate speech or
threats of violence. We observe that the pur-
pose of conversations in online forums tend
to be more constructive and informative than
those in Wikipedia page edit comments which
are geared more towards adversarial interac-
tions, and that this may explain the lower lev-
els of abuse found in our forum data than in
Wikipedia comments. Further work remains
to be done to compare these results with other
inter-domain classification experiments, and to
understand the impact of aggressive language
in forum conversations.

1 Introduction

The automatic identification of abusive language
online1 is of growing interest and concerns have
proliferated about aggressive Internet behaviours
commonly known as ‘trolling’. From an appli-
cations perspective, the accurate detection of vit-
riolic language is one of the clearest examples
of natural language processing for social good,
assuming data has been collected ethically and
stored legally, and that any intervention is left to
the appropriate authorities (Kennedy et al., 2017;
Kumar et al., 2018). Meanwhile from a theoretical

1Note that this paper quotes texts which many will find
offensive and/or upsetting. Please contact the authors if you
would prefer to read the article with all quotations removed.

point of view, there are many outstanding linguis-
tic and sociological research questions surround-
ing Internet aggression and how it manifests it-
self in writing (Pieschl et al., 2015; Waseem et al.,
2017).

The question we address here is whether online
abusive language is of one type or whether there is
discernible variation in the level of abuse found
in different subsections of the Internet. We do
not claim to have the final answer to this nebulous
question, but instead we have addressed one small
part of the whole: is the level of abuse found in one
Internet domain – namely discussions about En-
glish Wikipedia page edits – similar to that found
in another domain, that of an online hacking fo-
rum?

We show that the type of abusive language
occurring in the latter is more closely aligned
with the milder levels of abuse of those found
in Wikipedia discussions, and consider why this
might be. We observe that the online hacking fo-
rum tends to contain texts aimed at helping or in-
forming other users, whereas the Wikipedia con-
versations are inherently more adversarial since
they relate to recent page edits and disputes aris-
ing. Where abusive language is found in the online
hacking forum, it tends to involve profane name-
calling, insults and heated disputes, rather than
hate speech or threats of violence – those which
have tended to be the more prominent causes for
public concern.

Note here that we make a distinction between
aggressive and offensive language: the former of-
ten involves the latter, but not always so. Offensive
language – identifiable word tokens such as swear-
words and the like – may offend but is not always
used aggressively; sometimes it is used in a joc-
ular fashion, for example. Aggressive language,
which more often than not is built on the composi-
tion of many words, involves a hostile stance from
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one speaker or writer to another. It is this which
might seem to be abusive and which we seek to
automatically detect and better understand.

We also distinguish aggressive language from
hate speech – that which might be characterised
as prejudicial diatribes to provoke action, perhaps
violent, against a group or groups – and from cy-
berbullying – that which involves a sustained pe-
riod of persecution against an individual or indi-
viduals. Certainly the distinctions are fuzzy at the
edges, but these might be thought of as the canon-
ical definitions of these abuse types. We are deal-
ing with what we deem to be one-off instances of
aggression in online communities, though if these
were shown to be prejudicial against a group, or
sustained against an individual, then the instances
start to move into hate speech or cyberbullying be-
haviours.

In both Wikipedia edits and the online hack-
ing forum, abusive comments are infrequent in the
community as a whole and the general objective of
gaining reputation in the domain dis-incentivises
aggressive behaviour. Nevertheless we show that
aggressive language which does occur may be de-
tected fairly well by training on the Wikipedia ed-
its corpus – the advantage being that it has been
multiply and widely annotated – and setting the
threshold for a binary aggression classifier at a
fairly moderate level relative to the worst types
of abuse found in Wikipedia comments. Future
work remains to be done to more broadly charac-
terise intra-community behaviour in different sub-
sections of the Internet.

2 Related work

Offensive language serves many purposes in ev-
eryday discourse: from deliberate effect in hu-
mour to self-directed profanity to toxic or abusive
intent. We are not concerned here with humorous
uses of offensive language or with general profan-
ity. Instead we are interested in toxic and abusive
behaviour, specifically online harassment involv-
ing abusive language, aggression and personal at-
tacks. There has been work on other forms of abu-
sive behaviour, such as hate speech (Warner and
Hirschberg, 2012; Kwok and Wang, 2013; Ribeiro
et al., 2018) and cyberbullying (Xu et al., 2013;
Pieschl et al., 2015), and we put these aside for
now as challenging, distinct topics (though with
the fuzzy edges described above).

In terms of online harassment, previous work

has centred around definitions, automatic detec-
tion, and dataset creation – for example the Hate
Speech Twitter Annotations and Wikipedia Com-
ments Corpus (Waseem and Hovy, 2016; Wul-
czyn et al., 2017). Most work has been conducted
on English data, with some extensions to other
languages (e.g. Arabic (Mubarak et al., 2017),
Slovene (Fišer et al., 2017)).

Automated detection approaches have drawn on
classic document classification methods for spam
detection and sentiment analysis, and tend to use
lexical and syntactic features (Nobata et al., 2016;
Li et al., 2017; Bourgonje et al., 2018). Machine
learning techniques range from logistic regression
(Cheng et al., 2015) to support vector machines
(Yin et al., 2009) to neural networks (Gambäck
and Sikdar, 2017). Our aim here is not especially
to push the boundaries on detection techniques
– though naturally we wish our classifier to per-
form fairly well – but rather we are interested in
how to make use of existing labelled training data
when predicting personal attacks in other corpora.

In case any persuasion is needed that improved
understanding, detection and action on abusive
language are desirable, there is evidence that ex-
perience of online harassment leads to decreased
online participation and is connected with oppres-
sion, violence and suicide (Dinakar et al., 2011;
Sood et al., 2012; Wulczyn et al., 2017). Of course
there may be reasons to be concerned about the
perpetrator’s wellbeing along with that of the vic-
tims (Cheng et al., 2017).

3 Training & test corpora

We have an inter-corpus experimental design, in
which a document classifier is trained on one
dataset and tested on other datasets. Our training
data come from the Wikipedia Comments Corpus
(WikiComments) (Wulczyn et al., 2017), which
contains 115,864 discussion posts extracted from
an English Wikipedia dump, judged as personal at-
tacks or harassment by crowdworkers. Ten judge-
ments were collected for each post; hence we have
an attack score from zero to ten for every post2,
and we assume that the higher the attack score the
greater the linguistic aggression shown in writing.

This assumption may be challenged, as we ac-
cept that there are many reasons why a text may
not be unanimously judged to be an attack or ha-

2Note that the original authors scaled the attack score be-
tween 0 and 1, whereas we re-scale the scores from 0 to 10.
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rassment – properties of the text such as poor
grammar which obfuscates meaning, use of slang
insults which are not universally known, or sar-
castic phrasing which is not interpreted as an at-
tack by all annotators. On the other hand, prop-
erties of the annotator, such as fatigue or inatten-
tion, inexperience with English or the terminol-
ogy used, or idiosyncratic linguistic thresholds for
attacks and harassment, could all play a part in
judgement variation as well. However, over such a
large dataset we assume that in terms of aggressive
language the texts will be broadly well ordered by
their attack scores. Table 1 shows examples ran-
domly drawn from each attack score, zero to ten,
along with the number of posts in each class, and
the cumulative size of the corpus in reverse order
from attack score ten to zero.

The curators of WikiComments used these an-
notated discussion posts to train a classifier and
further label unseen posts in a larger collection of
63 million discussion posts, with a view to large-
scale analyses of attacks by unregistered users,
moderator actions in response to attacks, and more
(Wulczyn et al., 2017). They experimented with
different thresholds t where attack scores at or
above t would be labelled as attacks, and those be-
low t would not be attacks. They found that the
optimal value for t balancing precision and recall
was 4.25.

Our intention is to take the texts and attack
scores from WikiComments to train a binary ag-
gression classifier for use with other corpora. The
question with such a classifier is how to partition
the training data for true/false aggression labels:
the cut-off could be any attack score value from
one to ten. In the following sections we report on
classification experiments with each attack score
cut-off value and a test corpus sourced from Inter-
net forums.

Our test data come from the CrimeBB Cor-
pus3, a dataset harvested from several hacking-
related websites including HackForums, Antichat
and Greysec (Pastrana et al., 2018). The corpus
currently contains both English and Russian lan-
guage data, with plans to incorporate other lan-
guages in future. We opted to work only with posts
from the HackForums website4, it being the most
popular English language hacking site worldwide.

Among other author intents such as helpfulness,
3Available by application to the Cambridge Cybercrime

Centre, https://www.cambridgecybercrime.uk
4https://hackforums.net

disapproval, sarcasm and gratitude, we manually
labelled author aggression as indicated by abu-
sive language in a total of 4123 posts randomly
sampled from a selection of HackForums bulletin
boards (themed discussion pages) from November
2007 to January 2018. All boards are related to
hacking (such as ‘Cryptography, Encryption, and
Decryption’, ‘Keyloggers’, and ‘Remote Admin-
istration Tools’), as opposed to other interests rep-
resented on HackForums such as gaming, enter-
tainment and graphics. Three annotators labelled
2200 posts and agreed to a ‘moderate degree’ ac-
cording to Landis & Koch’s framework for inter-
preting Fleiss’s kappa (Fleiss, 1971; Landis and
Koch, 1977) – i.e. κ = 0.4 to 0.6. We did not at-
tempt to settle on single annotations for each post,
but instead treated all judgements equally, allow-
ing multiple labels both by individual annotators
and across different annotators. A single annota-
tor further labelled the remaining 1923 posts.

Posts with aggressive intent are uncommon
on HackForums, with only 100 aggressive posts
judged to be aggressive by at least one annotator
in the total corpus of 4123 posts (2.4%). Note
that profane language is more commonly found
– which is unsurprising given the casual linguistic
register – with 201 posts in this dataset featuring
at least one of ‘fuck, shit, cunt, jerk, crap, dick’
(or derived forms). However, the profanity is of-
ten used for humorous purposes, or to defuse po-
tentially confrontational conversations, or simply
in a casual way for no purpose at all; it is not al-
ways used aggressively (hence the need for man-
ual annotation). This observation underlines the
distinction between offensive and aggressive lan-
guage. Table 2 shows the size of the CrimeBB
Corpus, the HackForums subset, and the annotated
posts, along with examples of aggressive and non-
aggressive posts from HackForums.

4 Classification experiments

We trained a binary aggression classifier on
the WikiComments Corpus setting the true/false
threshold t at each attack score from 1 to 10 and
testing the classifier on our annotated set of 4123
HackForums posts from the CrimeBB Corpus.

4.1 Evaluation

We are interested in the successful classification
of aggressive posts only and therefore, rather than
reporting precision, recall and F -measures, we re-
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Attack
score Example N.posts Cumulative

n.posts

10
fuck u asshole go fuck your own mother fuck fuck
fuck fuck a duck fucked a kangaroo you piece of
shit go suck your own balls.

3223 3223

9
drop dead. you’re a cancer on wikipedia, and i
assume you’re a cancer on the rest of the world as
well. your baby will do better without you.

2842 6065

8
oh right, like “this article sucks and you know it.”
isn’t abusive language. hypocrite. eat shit and die,
loser.

2501 8566

7

the link is there. i have an idea. why not delete the
page and then re create it a few days later you
fucking retard? have you a life at all? is it your life
to go around and delete everything here? why not
go outside and build a snowman you loser?

2195 10,761

6

next time you remove a section without first
following procedures, i will have you permanently
barred from wikipedia. i wrote the section and it is
completely accurate an unbiased as reported. you
are a fool and a vandal and i will be closely
monitoring your activities on anything i write.

2706 13,467

5
so this looks like a vendetta. it is stupid. you are
pissing me off. this is not what we are here for.

2263 15,730

4
everybody!!! everybody!!!! redacted is the
undigested part of a giant squid stuck in a sperm
whales intestines and testicles

4133 19,863

3

hello, hoaxer. thank you for posting on my talk
page. it appears that you enjoy wasting hours first
hoaxing and then arguing about it with wikipedia
editors on discussion and user pages. all one needs
to is track your ip army to see that you are the
hoaxer. nobody is falling for your nonsense,
especially when you don’t sign your posts.

6280 26,143

2

i am aware that most bible thumping christians
want to burn this guy alive. i find your assessment
far from neutral, i will agf here, but your tone is
vitriolic.

9408 35,551

1
the new title doesn’t convey what i wanted the
section to be about, think of title that conveys the
question not just the general subject matter.

22,548 58,099

0

in a legal brief, one might well exclude trial court
opinions. in an encyclopedia article, it’s a different
story, especially when the trial court opinion
predates the appellate decision by decades.

57,765 115,864

Table 1: Examples, the number of posts, and the cumulative size (in reverse order) for each attack score subset of
the Wikipedia Comments Corpus (Wulczyn et al., 2017).
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Corpus Example N.posts
CrimeBB 57,733,219

HackForums 40,152,443

Annotated dataset 4123

Non-aggressive
my bet would be install linux and then use spoofing
via that

4023

Aggressive
kill yourself. most retarded advice you could give
him

100

Table 2: Examples and the number of posts in subsets of the CrimeBB Corpus (Pastrana et al., 2018).

port accuracy as in equation (1):

Accuracy =
true positives

true positives + false negatives
(1)

4.2 Method
All test and training texts were lower-cased and
transformed into document-term matrices using
the text2vec package for R (Selivanov and
Wang, 2017). For each value of threshold t from
1 to 10, the training texts were assigned true and
false labels according to their attack score s where
aggression is true if s ≥ t.

We trained an extreme gradient boosting (XG-
Boost) classifier with the R package xgboost
(Chen et al., 2018). Boosting is an additive tech-
nique whereby new models are added to correct
the errors made by existing models thus far: mod-
els are added sequentially until no further im-
provements can be made. In gradient boosting,
new models predict the residuals or errors of prior
models using a gradient descent algorithm. XG-
Boost is known to work well with sparse matrices,
which is the kind of input associated with textual
data, and in NLP terms has been shown to perform
competitively in sentiment analysis shared tasks
(Nasim, 2017; Jabreel and Moreno, 2018).

To avoid over-fitting we set parameters fairly
conservatively, with a maximum tree depth of 6,
the number of rounds at 10 and early stopping set
to 5, gamma at 1, and the learning rate at 0.3. We
report classifier accuracy according to equation (1)
on gold aggression:true labels in our CrimeBB test
corpus. Recall that we do not compare XGBoost
with other classifiers, as our focus is on the train-
ing data rather than performance. In future work
we can investigate other models including neural
networks, though logistic regression has in some

cases out-performed neural nets in the detection
of abusive language (Park and Fung, 2017).

As the value of t increases the size of the ag-
gression:true dataset decreases, as seen in Table 1.
To ensure any change in accuracy is not due to the
decrease in aggression:true training instances, we
run a second experiment in which for all values
of t both label subsets (aggression:true and ag-
gression:false) are randomly reduced to 3223 in-
stances – the size of the smallest attack score sub-
corpus (per the cumulative n.posts column in Ta-
ble 1). For this latter experiment we report accu-
racies averaged over one hundred runs to smooth
variation in the random sampling process (identi-
fied as ‘Acc.Control’ in Table 3).

4.3 Results
Classification accuracies are shown in Table 3 5. It
is apparent that in both training data settings – con-
trolled and non-controlled (‘all’) – the accuracy of
aggression identification reduces as the true/false
cut-off threshold t increases. In the case of the
controlled training data setting there is at first a
small increase in accuracy as t rises from 1 to 3.
This result suggests that the levels in the Wiki-
Comments Corpus most closely matching the ag-
gressive posts on HackForums are those in the at-
tack score range 1 to 5, and that the optimal value
of t is between 2 and 3.

To illustrate the rise and fall in classification ac-
curacy as t increases, we plot accuracies as box-
plots for the 100 runs in the controlled training
data setting (Figure 4.3). The boxplots show medi-
ans (the thick horizontal bars), first and third quar-

5For comparison with the classifiers trained by Wulczyn
et al (2017) we also calculated AUC (area under the curve)
measures in the ‘all’ condition. Our best AUC was .739 with
t at 2; Wulczyn et al’s best model was a multi-layered per-
ceptron estimating empirical distributions based on character
n-grams and this achieved an AUC of .966.
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t
N.True

posts
Acc.

All
Acc.

Control
1 58,099 .80 .76

2 35,551 .63 .77

3 26,143 .54 .78

4 19,863 .41 .75

5 15,730 .35 .72

6 13,467 .32 .70

7 10,761 .27 .64

8 8566 .22 .60

9 6065 .19 .52

10 3223 .09 .42

Table 3: Classification accuracy for aggressive posts in
the CrimeBB Corpus, with a varying true/false training
threshold t from 1 to 10, the size of the aggression:true
set in WikiComments for different values of t, accu-
racy for all training WikiComments instances, and a
controlled experiment sampling 3223 true and false in-
stances (averaged over 100 runs).

tiles (Q1, Q3, shown by the hinges), and whiskers
extending as far as 1.5 ∗ IQR where IQR is the
inter-quartile range between Q1 and Q3. Data-
points beyond the whiskers are outliers and are
plotted individually.

4.4 Discussion

It is evident from our classification experiments
that levels of linguistic aggression in HackForums
tend to be milder than those in WikiComments, if
we take the optimal value of t to lie between 2
and 3 (Table 3) whereas for WikiComments it was
found to be 4.25 (Wulczyn et al., 2017). A possi-
ble explanation for this finding may be the differ-
ence in purposes of the two sources for our test and
training data: discussion of Wikipedia page edits
often end up as arguments between contributors.
The fact these arguments may become aggressive
or personally offensive at times is unsurprising.

In HackForums, where our test data came from,
users often have the intention of educating others,
learning from others, buying and selling products,
and in many cases discouraging others from act-
ing illegally online (those with a so-called ‘white
hat’ hacking ethos – hackers who identify secu-
rity vulnerabilities and report them rather than
exploit them). HackForums is not an oasis of
calm, positive behaviour, however – on the con-

trary, users can often be off-hand in their com-
ments, dismissive of ‘noobs’ and ‘skids’ (script
kiddies – a novice or tinkerer), sarcastic and rude.
These attitudes, where they do not cross the line
into aggressive behaviour, map to our negative la-
bel for author intent. Debates about hacking tech-
niques, authorship of code, and user behaviour
(e.g. spam, posting out-of-date tutorials, offering
hacking tools which don’t work as advertised) are
frequent. But on the whole, the forum exists for in-
formation and technology exchange and the white
hat hackers, along with active administrators and
a reputation scoring system, help to constrain user
behaviour.

Indeed this highly active reputation scoring sys-
tem may deter aggressive online harassment and
allow for users to engender trust in what could oth-
erwise be quite untrustworthy environments (Holt
et al., 2016; Décary-Hétu and Leppänen, 2016).
Furthermore, online deviant communities such as
these tend to be rather homogeneous, particu-
larly involving young males (Hutchings and Chua,
2017). Therefore the targets for any harassment
may be off, rather than on, the forum.

Aside from aggression, we also labelled posi-
tive texts (which answer others’ questions, con-
tain laughter-related word tokens or emoticons, or
praise the work of others), neutral texts, and neg-
ative texts (including users stating that others can-
not or should not do something, sarcasm and argu-
ments). These intent types are the majority labels
in our 4123 post subset, with 1562 positive, 2566
neutral and 788 negative occurrences (the posts
could be multiply labelled, hence these counts sum
to more than 4123). Minority labels are aggres-
sion (n=100), users posting to moderate discus-
sion (n=119), and requests to continue discussion
in private messaging (n=238).

We further subdivide our set of 100 aggres-
sive forum posts into seven classes: simply ag-
gressive, personal denigration, alludes to violence,
refers to disability, features misogyny, homopho-
bia, racism. Personal denigration typically in-
volves name-calling – dismissing someone as an
idiot or moron, doubting their technical skills, and
so on. The other classes indicate that the au-
thor of the post alludes to violence (“I’ll cut your
neck”), disability (“you’re a retard”), misogyny
(“stop bitching”), homophobia (“that’s gay”), and
racism (“fucking jew”). Note that, with the ex-
ception of ‘simply aggressive’ which tends to be
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Figure 1: Classifying aggressive posts in the CrimeBB Corpus using controlled training data sizes; with the
true/false training threshold t on the x-axis and accuracy on the y-axis, and each data point being 1 of 100 runs
randomly sampling the training data.

a fallback if the post falls into no other class, the
posts may be assigned multiple labels and that a
single annotator undertook labelling. Label counts
are shown in Table 4.

We find that most aggressive posts are just that
– simply aggressive manners of writing which
would be out of place in polite discourse. For
example, authors add emphasis with the f-word,
including formulaic phrases in acronym form
(‘gtfo’, ‘wtf’, ‘stfu’). The next most common ag-
gression type is personal denigration: most often
calling the addressee’s intelligence into question,
or doubting their motives. After that, the minor-
ity labels are those which might feature in hate
speech: discriminating against women, homosex-
uals and ethnicities. In addition, the ‘refers to dis-

Label Count
Simply aggressive 48

Personal denigration 37

Refers to disability 7

Includes misogyny 4

Alludes to violence 2

Includes homophobia 1

Includes racism 1

Table 4: Aggression subclass counts in 100 HackFo-
rums posts with aggressive intent from the CrimeBB
Corpus.
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ability’ label always involves the words ‘retard’
and ‘retarded’ in this 100 post sample. Finally,
direct threats of violence are very rare, with only
two examples found in this subcorpus.

5 Conclusions & Future work

We have shown that abusive language in an on-
line hacking forum is relatively mild compared to
that found in Wikipedia page edit comments. We
propose that the tendency of forum users to on the
whole engage in constructive and informative dis-
course results in positive behaviour and non-toxic
language. WikiComments, on the other hand, is
made up of debates about the rights and wrongs of
page edits, and perhaps inevitably this adversarial
set up allows more aggressive behaviours to man-
ifest themselves in writing.

In future work we evidently need to annotate
more data so that we have more than 100 exam-
ples of abusive language from CrimeBB. Due to
the low hit rate for abusive language in CrimeBB
texts (100 in 4123, for instance) we can investigate
automatic annotation of further chunks of the data,
along with supervised sampling from those new
annotations to check their quality. These labelled
data on a larger scale will allow us to analyse more
general patterns of behaviour such as individual
and community-wide trends over time, how ag-
gression surfaces and is dealt with by moderators,
and linguistic facets of aggressive behaviour such
as homophobia, racism, misogyny and so on.

We can also investigate other Internet domains
such as social media, other forums and potentially
the Dark Web, but also other sections of CrimeBB,
such as the reputation voting area within HackFo-
rums in which we might expect to find more vitri-
olic interactions given that votes can be both posi-
tive and negative and accompanied by review-like
texts. Finally, we are also interested in applica-
tions of our research, including the questions of
desired accuracy of any deployed system, the ap-
propriate actions to take, and the ethics of data col-
lection, analysis and intervention (Kennedy et al.,
2017; Thomas et al., 2017). One option could be
to create an alert system for forum moderators,
thereby offering real-world impact for our work
while allowing the appropriate authorities to take
action when necessary (Kumar et al., 2018).
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Abstract

The paper investigates the potential effects
user features have on hate speech classifica-
tion. A quantitative analysis of Twitter data
was conducted to better understand user char-
acteristics, but no correlations were found be-
tween hateful text and the characteristics of
the users who had posted it. However, ex-
periments with a hate speech classifier based
on datasets from three different languages
showed that combining certain user features
with textual features gave slight improvements
of classification performance. While the in-
corporation of user features resulted in vary-
ing impact on performance for the different
datasets used, user network-related features
provided the most consistent improvements.

1 Introduction

Detecting hate speech has become an increasingly
important task for online communities, but auto-
matic hate speech detection is a challenging task,
which the majority of the research in the field is
targeting through textual features. However, as
shown by, e.g., Gröndahl et al. (2018), there is
a need for further efforts to improve the qual-
ity and efficiency of detection methods, motivat-
ing for studies on how non-textual features can be
utilised to enhance detection performance.

The goal of this research is to investigate in-
formation related to users in the Twitter commu-
nity that can be helpful in identifying online hate
speech, and use this as features in hate speech clas-
sification. Information about the users could be ei-
ther known factors, such as age and gender, or fac-
tors derived from behaviour. There exists research
that investigates the impact of different features,
and research about the personality and behaviour
of users expressing hate speech. However, there is
little research that combines the two topics.

Most early studies on automatic recognition of
online hate speech focused on lexicon-based ap-
proaches for detecting “bad” words, with Kwok
and Wang (2013) finding that 83% of their data
was annotated racist due to the presence of of-
fensive words. However, these approaches tend
to give low precision by mistakenly classifying all
messages containing specific terms as hate speech,
which is particularly problematic on social media
sites that have a relatively high prevalence of of-
fensive words (Wang et al., 2014). After all, hate
speech can be much more sophisticated than that.

Finding the features that best represent the un-
derlying phenomenon of hate speech is challeng-
ing. Later studies have mainly focused on content-
based text classification using features such as the
appearance or frequency of words, spelling mis-
takes or semantic meaning, but while these meth-
ods perform relatively well, there is still need for
improvements to increase the quality of detection.

The rest of the paper is structured as follows:
Section 2 discusses previous studies related to the
authors of hate speech and Section 3 presents the
datasets used together with an analysis of user
characteristics. Section 4 describes the classifier
developed, while Section 5 details the experiments
conducted to measure the impact of user features.
Section 6 sums up the research contributions along
with suggestions for potential future work.

2 Related Work

Including user information in methods for detect-
ing hate speech is an under-researched area. How-
ever, related to hate speech detection are studies
of the people that post hateful content online, in-
cluding characteristics and behavioural traits that
are typical of the authors behind aggressive be-
haviour, hate speech or trolling. Chen et al. (2012)
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proposed a Lexical Syntactic Feature architecture
to bridge the gap between detecting offensive con-
tent and potential offensive users in social media,
arguing that although existing methods treat mes-
sages as independent instances, the focus should
be on the source of the content. Waseem and Hovy
(2016) stated that among various extra-linguistic
features, only gender brought improvements to
hate speech detection. Papegnies et al. (2017)
mention a plan to use context-based features for
abuse detection, and especially those based on
the networks of user interactions. Several authors
share this intention, but face the challenge that
user information often is limited or unavailable.

Wulczyn et al. (2017) qualitatively analyzed
personal attacks in Wikipedia comments, showing
that anonymity increases the likelihood of a com-
ment being an attack, although anonymous com-
ments only contributed to less than half of the
total attacks. The study also suggested that per-
sonal attacks cluster in time, which may be be-
cause one attack triggers another. In another qual-
itative analysis, Cheng et al. (2015) characterized
forms of antisocial behaviour in online discussion
communities, comparing the activity of users that
have been permanently banned from a community
to those that are not banned. The study found
the banned users to use less positive words and
more profanity, and to concentrate their efforts in
a small amount of threads. They also receive more
replies and responses than other users.

Hardaker (2010) defined a troller as a user who
appears to sincerely wish to be part of a group,
including professing, or conveying pseudo-sincere
intentions, but whose real intentions are to cause
disruption or to trigger conflict for the purposes
of their own amusement. Buckels et al. (2014)
studied the characteristic traits of Internet trolls
by looking at commenting styles and personal-
ity inventories, and found strong positive relations
among commenting frequency, trolling enjoyment
and trolling behaviour and identity. Cheng et al.
(2017) proposed that an individual’s mood and
seeing troll posts by others trigger troll behaviour.

Most similar to the objectives of the present
work, Chatzakou et al. (2017) investigated user
features that can be utilized to enhance the de-
tection and classification of bullying and aggres-
sive behaviour of Twitter users. They found that
network-based features (such as the number of
friends and followers, reciprocity and the position

in the network) were particularly useful and effec-
tive in classifying aggressive user behaviour.

3 Data Analysis

Creating datasets of hate speech is time consum-
ing, as the number of hateful instances in online
communities is relatively low. The datasets avail-
able are also often created for different tasks, and
from different types of media and languages, and
therefore vary in characteristics and types of hate
speech. Sources include Twitter (Waseem and
Hovy, 2016; Fortuna, 2017; Ross et al., 2016),
Wikipedia (Wulczyn et al., 2017), and Fox News
(Gao and Huang, 2017). Furthermore, many
datasets (from Yahoo, SpaceOrigin and Twitter)
are not publicly available (Djuric et al., 2015; No-
bata et al., 2016; Papegnies et al., 2017; Chatzakou
et al., 2017), while others are available only under
some restrictions (Davidson et al., 2017; Golbeck
et al., 2017). This may be due to privacy issues or
considering the content of the datasets: Pavlopou-
los et al. (2017) made their Greek Gazzetta dataset
available by using an encryptor to avoid directly
publishing hate speech content.

Here, three datasets were used to investigate
the characteristics of users for increased insight
and to allow comparisons of the findings. All
datasets have Twitter as their source, ensuring that
the same information could be retrieved. However,
the datasets differ in terms of annotations, size and
characteristics, and come from three different lan-
guages: English (Waseem and Hovy, 2016), Por-
tuguese (Fortuna, 2017), and German (Ross et al.,
2016). The datasets contain tweet IDs that can be
used to retrieve the actual text, information about
the tweet or information about the user who has
posted it. As user information is something that
should be handled with care, it is important to
mention that no attempt was made to directly iden-
tify the actual users.

Tweet IDs may become unavailable, either by
the tweet having been deleted, or if the user who
posted the tweet has become suspended or has
deleted their account. Therefore, a review of the
availability of the tweets in all datasets was con-
ducted prior to the investigation of characteristics,
and will be described first below, before going into
details of the analysis of the user characteristics in
the three datasets. The statistics of the actually
available tweets and posting users in the datasets
as included in this work are shown in Table 1.
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ENG POR GER
Label Tweets Users Tweets Users Tweets Users

Hate 4,968 539 649 376 98 47
None 10,759 1,569 2,410 634 243 123

Total 15,727 2,108 3,059 1,010 341 170

Table 1: Available tweets and users in the datasets

3.1 Datasets
The English dataset by Waseem and Hovy (2016)
is publicly available on GitHub.1 The Twitter
search API was used to collect the corpus, and in
total 16,907 tweets (from 2,399 users) were anno-
tated either as racist, sexist or neither. The dataset
contains more instances of neutral than racist or
sexist tweets. This unbalance was intended by the
developers, to make the corpus more representa-
tive of the real world, where hate speech is a lim-
ited phenomenon. Since the dataset was devel-
oped in 2016, the Python library Tweepy was used
here to filter out any unavailable tweets and users.
Furthermore, the original “Sexism” and “Racism”
classes were merged into one “Hate speech” class.
1,180 of the original tweets were no longer avail-
able, which also impacted the number of users in
the dataset. The remaining tweets and users are
presented in Table 1, in the ‘ENG’ column.

Fortuna (2017) developed a dataset consisting
of 5,668 Portuguese tweets and made it available
through the INESC TEC research data repository.2

Tweets were collected through the Twitter API
with searches based on keywords related to hate
speech and Twitter profiles known for posting hate
messages. Fortuna aimed to have a higher pro-
portion of hate speech messages than other related
datasets, and 22% of the tweets were annotated as
hate speech. She annotated nine direct hate speech
sub-classes, but in the present work those will be
merged into one hate speech class. In total there
are 5,668 annotated tweets by 1,156 distinct users;
however, the distribution of users within the tar-
get classes was not specified. Today, close to half
of the tweets in both classes are unavailable; how-
ever, as shown in the ‘POR’ column of Table 1,
there are still 1,010 users available, meaning that
the unavailability of tweets did not heavily affect
the number of users. While the original dataset
had a binary value for the presence of hate speech
and subcategories as labels, the target classes were
here changed to “Hate speech” and “None”.

1github.com/ZeerakW/hatespeech
2rdm.inesctec.pt/dataset/cs-2017-008

To investigate the issue of reliability concerning
hate speech annotation, Ross et al. (2016) com-
piled a German hate speech corpus with tweets
linked to the refugee crisis in Europe. By using
known insulting or offensive hashtags, a total of
13,766 tweets were collected, 469 of which were
annotated by two annotators for presence or ab-
sence of hate speech. In Table 1 the column ‘GER’
shows the availability of the tweets in the dataset
and the number of users in each target class. It
was beneficial to transform the labels of the dataset
into binary classes, to equal the labelling of the
other datasets. Therefore, a tweet that was la-
belled “Yes” by one or both of the annotators was
assigned to the “Hate speech” class. Hence, the
“Hate speech” class consists of 65 available tweets
labelled as hate speech by one annotator, and 33
labelled hate speech by both annotators.

3.2 Characteristics

A quantitative analysis was conducted to better
understand the characteristics of the users in the
datasets, based on the proposed features in Sec-
tion 2 and other information about the user avail-
able through the Twitter API. All datasets included
several tweets from the same users; tweets that
then can be present in both target classes. How-
ever, to better distinguish between users and avoid
redundancy in the analysis, users who are present
in both target classes are here only included as
users within the “Hate speech” class.

Gender: Twitter does not require users to reg-
ister their gender, so no explicit gender field is
retrievable through the Twitter API. Finding the
gender distribution for users in the dataset is there-
fore challenging. Waseem and Hovy (2016) inves-
tigated the distributions of gender in their origi-
nal dataset through extracting gender information
by looking up usernames and names in the user
profiles, and then comparing these to known male
or female given names. A similar approach was
used here, by incorporating lists of common inter-
national, Portuguese, German, and English names.
In addition, the user descriptions were also con-
sidered, as users often give a more detailed de-
scription there of who they are, e.g., “I am a mom
of three boys”. A risk with this approach is that
names or descriptions may mistakenly be classi-
fied as the wrong gender, and therefore the gender
findings may not be entirely accurate. Names that
can be both female and male have been avoided.
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(a) English (Waseem and Hovy, 2016) (b) Portuguese (Fortuna, 2017) (c) German (Ross et al., 2016)

Figure 1: Gender distribution of users in the datasets: blue = male, green = female, beige = unidentified

Waseem and Hovy (2016) expressed that the
gender of about half the users could not be iden-
tified by their approach, and that the male gender
was over-represented in all categories. Figure 1a
presents the gender distribution derived here, with
significant differences to their findings. In par-
ticular, the female users are identified to a much
larger degree, with the distribution of male, fe-
male and unidentified users being more equal; the
fraction of unidentified users has decreased from
50% to 36%. Still, a higher amount of male users
are identified than female, which is also the case
for the dataset by Ross et al. (2016). In contrast,
the gender distribution derived from the dataset by
Fortuna (2017) shows a majority of the identified
user genders to be female. In that dataset there is
also a large number of unidentified genders (55%),
which is equal to the number of unidentified users
in the dataset by Ross et al. (2016).

User Network: The user networks are defined
here as their social networks on Twitter, i.e., who
a user follows (called ‘following’ or ‘friends’ on
Twitter) and who follows that user (‘followers’).
Chatzakou et al. (2017) found network-based fea-
tures to be very useful in classifying aggressive
user behaviour. They investigated features such

as the ratio of followers to friends, the extent to
which users reciprocate the follow connections
they receive from others, and the users’ tendency
to cluster with others.

In Figure 2a, the relationship between a user’s
friends and followers in the dataset by Waseem
and Hovy (2016) is illustrated. The majority of
users form a cluster in the area below 10,000
friends and 50,000 following. Beyond this cluster,
it appears as users of the “None” class are most
common, with the exception of one outlier of the
“Hate speech” class with about 228,00 followers
and no friends. It is difficult to say whether this
trend can be generalized, or is caused by the un-
even number of users in the two target classes.

Figure 2b shows the distribution of friends and
followers for the users in the dataset by Fortuna
(2017). A general observation is that the users
of this dataset often tend to have more followers
than friends. Furthermore, there is little that dis-
tinguishes the users of the two classes regarding
the number of friends and followers. The number
of users in the dataset by Ross et al. (2016) is con-
siderably lower than the other datasets, and may
explain the lower number of friends and follow-
ers for the users, as shown in Figure 2c. There is

(a) English (Waseem and Hovy, 2016) (b) Portuguese (Fortuna, 2017) (c) German (Ross et al., 2016)

Figure 2: Distribution of users based on their network (number of friends vs number of followers)
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Figure 3: Distribution of users based on activity (number of favourites given vs number of status updates)

an outlier in the “Hate speech” class with about
13,000 followers and 14,000 friends, but the rest
of the users are somewhat evenly distributed.

Activity: Previous research suggests that both
high and low activity levels can be related to post-
ing hate speech content. Buckels et al. (2014)
found commenting frequency to be positively as-
sociated with trolling enjoyment and Cheng et al.
(2015) suggested that frequently active users are
often associated with anti-social behaviour online.
In contrast, Wulczyn et al. (2017) found users that
launched personal attacks on Wikipedia regardless
of activity level. Here, activity is defined by the in-
formation that can be extracted through the Twitter
API. Tweepy enables the retrieval of the number
of tweets a user has posted (also known as ‘status
updates’ on Twitter) and the number of ‘favorites’
they have given to tweets by others (corresponding
to ‘likes’ in other online media).

In Figure 3 the relationship between a user’s
number of favourites given and total number of
statuses is illustrated, showing that there is a gen-
eral tendency to have a larger number of status
updates than favourites. With the exception of
one outlier in the “Hate speech” class with over
400,000 favourites and over 600,000 statuses, the
majority of users in both classes of the English
dataset form a cluster below 50,000 favourites and
200,000 statuses. In the Portuguese dataset, the
users of both target classes are somewhat evenly
distributed, and in general the users of this dataset
have posted below 200,000 tweets and given be-
low 25,000 favourites. The number of status up-
dates and the number of favourites for the users
in the German dataset are much lower than in the
other datasets, and similarly to the findings inves-
tigating the users’ network, there is no clear dis-
tinction between the activity characteristics of the
users in the target classes.

ENG POR GER
Feature Hate None Hate None Hate None

Geotag 51.7 48.6 58.8 58.2 16.1 26.6
Profile 60.1 72.4 75.1 67.4 50.0 45.9
Image 98.1 96.2 99.6 98.2 98.4 98.2

Table 2: User profile characteristics (%)

User Profile: Twitter enables users to customize
their profile pages, e.g., by changing theme colour,
or by adding a profile or header picture. In addi-
tion, users can add a bio description, a geograph-
ical location or a web page link. Wulczyn et al.
(2017) found personal attacks to be more preva-
lent among anonymous users than registered users.
Therefore the elements of a user’s profile that can
be personalized were examined with the under-
lying assumption that personalizing the profile is
contradicting to remaining anonymity. The ele-
ments retrieved were the number of public lists a
user has joined, geotagging of tweets, the profile
image, and whether or not the user has altered a
default theme or background of the profile.

The users in the English data are somewhat
equally divided between enabling and disabling
of geotagging for both target classes, as seen in
Table 2. The distribution is similar for the geo-
tagging characteristic of users in the Portuguese
data. However, the majority in both target classes
in the German data have disabled geotagging, with
a slightly higher percentage for the users in the
“Hate speech” class. There is a tendency of the
users in the English and Portuguese datasets to
rather have a customized profile page than a stan-
dard, while the German data is more evenly dis-
tributed. Nearly all the users in the three datasets
have changed their profile image. For all the
datasets, the percentage of changed profile images
is also marginally higher for the users in the “Hate
speech” class than the users in the “None” class.
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4 Classification Setup

The analysis of the datasets presented in the previ-
ous section indicated that none of the investigated
user characteristics could be clearly used to dif-
ferentiate textual tweets annotated “Hate speech”
and “None”. However, the impact of user features
in detection may become more visible when tested
through a classifier. To investigate the possible ef-
fects user features have on the performance of hate
speech classification, a baseline hate speech classi-
fier was implemented and trained only on the tex-
tual tweets from the datasets, and then compared
to a classifier that also incorporated user features.
Along with observing the overall effects of user
feature inclusion, the impacts of the individual fea-
tures and feature subsets were investigated.

A basic hate speech classifier needs to include
preprocessing of the textual input, feature extrac-
tion, and a choice of actual classification model.
These will be addressed in turn below, while clas-
sification results will be given in the next section.

Preprocessing: Text processing is a difficult
task due to the noise contained in language and
should be done with care, to avoid losing any im-
portant features. This is particularly proliferent
in social media such as Twitter, which also intro-
duces domain-specific challenges: the character
limit in a tweet increases the use of abbreviations,
while including non-textual content (e.g., URLs,
images, user mentions and retweets) is common.

The Natural Language Toolkit (Bird et al.,
2009) was used for preprocessing of the data,
through: (i) removal of Twitter specific informa-
tion (user mentions, emoticons, retweets, URLs,
and hashtag symbols; only retaining textual con-
tent), (ii) tokenization, (iii) lowercasing, and (iv)
stop word removal (with different stop word lists
for the datasets, due to the different languages).

Feature Extraction and Representation: Hav-
ing found many tweets to be annotated racist due
to the appearance of offensive words, Kwok and
Wang (2013) constructed a vocabulary using uni-
gram features only. However, this fails to cap-
ture relationships between words, so Nobata et al.
(2016) added syntactic features, while also em-
ploying n-grams and distributional semantic de-
rived features. They found combining all fea-
tures to yield the best performance, but character
n-grams made the largest individual feature con-
tribution. Mehdad and Tetreault (2016) specifi-

cally investigated character-based approaches and
showed them to be superior to token-based ap-
proaches and other state-of-the-art methods.

Since n-grams thus have been shown to be very
useful in hate speech classification, both character
n-grams and word n-grams were tested here to rep-
resent the textual content of the tweets. A TF-IDF
approach was used to represent the n-gram fea-
tures, and ranges up to n=6 tested. Higher values
of n were not considered due to the computational
effort required. The most suitable type of n-gram
and n-gram range were explored through a grid
search, and finding different alternatives for rep-
resenting the tweets suiting the different datasets.

Classification Model: Supervised machine
learning classifiers have been the most frequently
used approaches to hate speech detection, in
particular Support Vector Machines (SVM) and
Logistic Regression (LR). Davidson et al. (2017)
found LR and linear SVM to perform better than
other models, such as Naı̈ve Bayes, Decision
Trees, and Random Forests. A comparative
study performed by Burnap and Williams (2015)
concluded that an ensemble method seemed
most promising. Deep learning methods have
also been investigated, both Recurrent Neural
Networks (Pavlopoulos et al., 2017; Mehdad and
Tetreault, 2016), Convolutional Neural Networks
(Gambäck and Sikdar, 2017), and combinations
(Zhang et al., 2018). Badjatiya et al. (2017)
used various deep learning architectures to learn
semantic words embeddings and showed these to
outperform character and word n-grams.

Here a Logistic Regression model was chosen
due to its simplicity and its common usage in lan-
guage classification. This is also in line with the
note by Gröndahl et al. (2018) that a simple LR
model performed on par with more complex mod-
els in their comparison of hate speech detection
classifiers. As the aim here was not to implement
the best performing classifier or to compare meth-
ods, but to investigate the effects of user features,
no other classification models were tested.

5 Experiments and Results

The datasets were initially split into training data
and test data to ensure that the model performance
was evaluated on unseen data. A grid search with
10-fold cross-validation over the training data was
used for selecting model parameters. The classi-
fication model with the chosen hyperparameters
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ENG POR GER
n-gram Word Char Word Char Word Char

[1, 1] .8166 .7399 .7769 .6927 .7227 .7185
[1, 2] .8168 .8020 .7718 .7383 .7185 .7269
[1, 3] .8147 .8201 .7688 .7525 .7227 .7101
[1, 4] .8119 .8226 .7667 .7657 .7227 .7101
[1, 5] .8117 .8248 .7637 .7698 .7227 .7143
[1, 6] .8110 .8237 .7612 .7759 .7227 .7143

Table 3: Grid search of n-gram parameters

ENG POR GER
Class P R F1 P R F1 P R F1

None .83 .94 .88 .79 .96 .87 .68 .99 .81
Hate .82 .58 .68 .82 .40 .54 .50 .03 .06

Avg. .83 .83 .83 .80 .79 .79 .62 .68 .65

Table 4: Baseline model performance on test data

was then evaluated on the test set. This section
first presents results from baseline classification
with only n-gram features, and then discusses the
effects of incorporating user features.

5.1 Classifier with Text Features
The dataset provided by Waseem and Hovy (2016)
contained 15,727 available English tweets, that
were split into a training set of 11,008 tweets and
a test set containing 4,719 tweets, of which 3,275
were classified as non-hate speech. A grid search
found that character n-grams in range [1,5] pro-
vided the best performance, as shown in the col-
umn ‘ENG’ in Table 3. Table 4 shows the per-
formance metrics of the model, where 0.83 was
the macro average F1-score. Both the precision
and recall values are higher for the “None” class.
However, the recall value for the “Hate speech”
class obtained for this dataset is higher than for
the other datasets, most probably due to the larger
amount of available training data.

3,059 tweets from the Portuguese dataset by
Fortuna (2017) were used, with the training set
containing 2,636 tweets and the test set 423, of
which 126 were annotated as hate speech. Word
unigrams yielded the best performance (Table 3),
and the macro average F1-score obtained for the
test data was 0.79 (Table 4). The precision ob-
tained for “Hate speech” is slightly higher than for
the “None” class, while the recall is much lower.

The German dataset by Ross et al. (2016) is
considerably smaller than the other datasets, con-
taining only 341 tweets, that were split into a train-

ENG POR GER
Features P R F1 P R F1 P R F1

n-grams .83 .83 .83 .80 .79 .79 .62 .68 .65

+ gender .83 .83 .83 .80 .79 .79 .69 .70 .69
+ network .84 .85 .84 .81 .81 .81 .63 .68 .65
+ activity .83 .84 .83 .79 .79 .79 .68 .69 .68
+ profile .83 .83 .83 .80 .80 .80 .71 .71 .71

+ all .86 .86 .86 .79 .79 .79 .63 .68 .65

Table 5: Impact of different user feature sets

ing set of 238 and a test set of 103 (33 hateful).
A grid search of the n-gram parameters (‘GER’ in
Table 3) showed a character n-gram with the range
[1,2] produced the best 10-fold cross validation re-
sults on the training data. On the unseen test data,
this model received a macro average F1-score of
0.65 (Table 4), with the score severely hampered
by the classifier only being able to identify 3% of
the instances of the “Hate speech” class. This is
most likely due to small the size of the dataset,
resulting in an insufficient amount of training in-
stances. Notably, Ross et al. (2016) did not de-
velop this dataset primarily for classification, but
for investigating hate speech annotation reliabil-
ity. Their study concluded that the presence of
hate speech perhaps should not be considered a bi-
nary yer-or-no decision; however, this is how the
current classification model is operating.

5.2 Classifier with Text and User Features
In the second part of the experiments, the classi-
fier was expanded to incorporate various user fea-
tures and subsets. Four types of in total ten fea-
tures were experimented with:

Gender: male and female,
Network: number of followers and friends,
Activity: number of statuses and favourites,
Profile: geo enabled, default profile, default

image, and number of public lists,
where the “number of” features are integer valued,
while all the other features are binary (boolean).

Table 5 repeats the performance of the baseline
model (n-grams only, in row 1) and then shows n-
grams along with various subsets of user features.
Including all user features yielded the largest im-
provement over the baseline on the Waseem and
Hovy (2016) dataset, with the ‘Network’ feature
subset making the largest difference. ‘Gender’ did
not improve performance at all, while ‘Activity’
and ‘Profile’ provided very slight improvements.
Each individual feature was also tested along with
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(a) English (Waseem and Hovy, 2016) (b) Portuguese (Fortuna, 2017) (c) German (Ross et al., 2016)

Figure 4: F1 of individual features along with n-grams. (Red lines = average F1 using n-grams only.)
[Features: Male, Female, Friends, Followers, Statuses, Favourites, Public Lists, Geo Enabled, Default Profile, Default Image.]

n-grams, as shown in Figure 4a. Half of the fea-
tures had no impact on performance; ‘Default pro-
file’ and ‘Geo enabled’ increased F1 by 0.1, while
‘Female’, ‘Followers’ and ‘Public lists’ had the
most impact, increasing F1 by 0.2.

The incorporation of all user features on the
Fortuna (2017) dataset resulted in a slightly wors-
ened performance. This was also the case for
inclusion of the ‘Activity’ subset, while includ-
ing ‘Network’ improved performance. ‘Gender’
and ‘Profile’ made no major impact on the scores.
Of the individual features, ‘Followers’ and ‘Geo
enabled’ resulted in the largest F1-score increase
when used in combination with n-gram features,
as shown in Figure 4b. In addition, the inclusion of
‘Public lists’ also slightly improved the F1-score.
Interestingly, the inclusion of ‘Statuses’ actually
worsened model performance.

By only using word unigrams, the baseline clas-
sifier only received a recall value of 0.03 for the
hate speech class of the dataset by Ross et al.
(2016), as shown in Table 4. Looking at Table 5,
we see that the ‘Gender’, ‘Activity’ and ‘Profile’
feature subsets resulted in improvements of the av-
erage F1-score. The inclusion of all the features

(a) Only n-gram features (b) Adding all user features

Figure 5: English dataset confusion matrices

and the ‘Network’ subset had no effect on the aver-
age F1 score. The inclusion of ‘Activity’ increased
the F1 by 0.02, ‘Gender’ increased it by 0.04, and
‘Profile’ had the largest impact by increasing F1

by 0.06. These results are consistent with the test-
ing of the individual features shown in Figure 4c,
where ‘Male’, ‘Female’ and ‘Profile’ have a large
impact on performance. However, the ‘Statuses’,
‘Favourites’, and ‘Public lists’ had the largest im-
provement by 0.4. Of the individual features in-
cluded, only ‘Geo Enabled’ lead to a decreased F1

score over the baseline.
The results are notably affected by the uneven

distribution of instances in the target classes, as
shown by significantly lower F1-scores for “Hate
speech” than “None” for all datasets. This was re-
flected clearly by a closer comparison of classi-
fier output for the English data with n-grams and
with all user features (i.e., the setup which yielded
the best classifier performance on this dataset):
the number of correctly labelled “Hate speech”
instances increased from 623 to 1,048 (of 1,444)
while the correctly labelled “None” instances de-
creased slightly, from 3,111 to 3,000 (of 3,275), as
illustrated by the confusion matrices in Figure 5.

(a) Only n-gram features (b) Adding ‘Network’ subset

Figure 6: Portuguese dataset confusion matrices
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A similar pattern was observed also for the
German data, for which the optimal classifier
setup was to include the ‘Profile’ feature subset.
However, for Portuguese where the best classifier
utilised only the ‘Network’ user features, Figure 6
shows that adding those features produced a de-
crease of correctly labelled “Hate speech” (from
60 to 56 of 116) with marginally increased cor-
rectly labelled “None” instances (from 285 to 286
of 297), possibly since data sparsity made the
model interpret the added features as noise.

6 Conclusion and Future Work

There are several challenges linked to the detec-
tion of harmful online behaviour, such as detec-
tion beyond simply recognising offensive words.
Aiming to address this gap, the paper investigated
the potential and effects of including user features
in hate speech classification, focusing on Twitter.
A quantitative analysis of three datasets in three
different languages indicated that there were no
particular characteristics distinguishing the users
who have had tweets annotated as hate speech and
those who have seemingly not.

However, systematically incorporating the user
features into a Logistic Regression-based hate
speech classifier in conjunction with word and
character n-gram features allowed observations of
the effects of individual features and feature sub-
sets. Experimental results showed that the inclu-
sion of specific user features, in addition to n-
grams, caused a slight improvement of the base-
line classifier performance.

Of all individually tested feature subsets, ‘Net-
work’ (i.e., the number of followers and friends)
caused the largest improvement of the classi-
fier performance on the English and Portuguese
datasets, corroborating the findings of Chatzakou
et al. (2017) that network-based features are pow-
erful for detecting aggressive behaviour. This sub-
set improvement may have been affected by the
individual feature (number of) ‘Followers’, which
also increased the F1-score on the two datasets.
The other features had inconsistent effects on the
different datasets, suggesting that the impact is
highly dependent on the data or the subtask the
data was created for. The experiments also found
the inclusion of some user features to be detrimen-
tal to model performance, while some user fea-
tures were ineffective alone, but improved model
performance when combined with others.

Interestingly, the ‘Gender’ feature subset
mainly failed to give any F1-score improvements,
in contrast to the result by Waseem and Hovy
(2016). While other user features are easily re-
trievable through the Twitter API, user gender was
derived from a comparative method, classifying
more users by gender than in the work by Waseem
and Hovy. However, also the method used here is
still unable to identify the gender of a large amount
of users in all datasets, so combinations with other
gender identification methods would be needed to
properly investigate the impact gender has in hate
speech detection. As of now, it can be argued that
gender is not a useful feature to include, at least
where it cannot be directly extracted.

One limitation of using several datasets is that
they were developed for different subtasks and
languages, with different geographical areas of the
users in the datasets, and in particular with differ-
ent interpretations and annotations of hate speech.
However, the main difference of the datasets is the
size and hence number of instances available for
model training, which probably is the main reason
for the different results. Still, the results combine
to show a potential for incorporating user features
to improve hate speech detection performance.

There is a great amount of information related
to the users of Twitter that was not used in the ex-
periments, but that could be retrieved or derived
from user behaviour. Examples include consider-
ing the time of tweeting, investigations of relation-
ships with other users, communication with other
users, and what content users are exposed to. It is
in general important to not only consider who the
users are or what they have written, but also their
context and how they are affected by surround-
ing factors in their online communities, as well as
combinations of those issues, since what can be
considered as hate speech by one user in a specific
context may be considered as non-hate speech if
written by another user or in another context.
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Abstract

Deep neural networks have been applied to
hate speech detection with apparent success,
but they have limited practical applicability
without transparency into the predictions they
make. In this paper, we perform several ex-
periments to visualize and understand a state-
of-the-art neural network classifier for hate
speech (Zhang et al., 2018). We adapt tech-
niques from computer vision to visualize sen-
sitive regions of the input stimuli and identify
the features learned by individual neurons. We
also introduce a method to discover the key-
words that are most predictive of hate speech.
Our analyses explain the aspects of neural net-
works that work well and point out areas for
further improvement.

1 Introduction

We define hate speech as “language that is used to
express hatred towards a targeted group or is in-
tended to be derogatory, to humiliate, or to insult
the members of the group” (Davidson et al., 2017).
This definition importantly does not include all in-
stances of offensive language, reflecting the chal-
lenges of automated detection in practice. For
instance, in the following examples from Twit-
ter (1) clearly expresses homophobic sentiment,
while (2) uses the same term self-referentially:

(1) Being gay aint cool ... yall just be confused
and hurt ... fags dont make it to Heaven

(2) me showing up in heaven after everyone
told me god hates fags

As in many other natural language tasks, deep
neural networks have become increasingly popu-
lar and effective within the realm of hate speech
research. However, few attempts have been made
to explain the underlying features that contribute
to their performance, essentially rendering them
black-boxes. Given the significant social, moral,
and legal consequences of incorrect predictions,

interpretability is critical for deploying and im-
proving these models.

To address this, we contribute three ways of vi-
sualizing and understanding neural networks for
text classification and conduct a case study on a
state-of-the-art model for generalized hate speech.
We 1) perform occlusion tests to investigate re-
gions of model sensitivity in the inputs, 2) identify
maximal activations of network units to visualize
learned features, and 3) identify the unigrams most
strongly associated with hate speech. Our analy-
ses explore the bases of the neural network’s pre-
dictions and discuss common classes of errors that
remain to be addressed by future work.

2 Related Work

Hate speech classification. Early approaches em-
ployed relatively simple classifiers and relied on
manually extracted features (e.g. n-grams, part-
of-speech tags, lexicons) to represent data (Di-
nakar et al., 2011; Nobata et al., 2016). Schmidt
and Wiegand (2017)’s survey of hate speech de-
tection describes various types of features used.
The classification decisions of such models are
interpretable and high-precision: Warner and
Hirschberg (2012) found that the trigram “<DET>
jewish <NOUN>” is the most significant posi-
tive feature for anti-semitic hate, while Waseem
and Hovy (2016) identified predictive character n-
grams using logistic regression coefficients. How-
ever, manually extracted feature spaces are lim-
ited in both their semantic and syntactic repre-
sentational ability. Lexical features are insuffi-
cient when abusive terms take on various dif-
ferent meanings (Kwok and Wang, 2013; David-
son et al., 2017) or are not present at all in
the case of implicit hate speech (Dinakar et al.,
2011). Syntactic features such as part-of-speech
sequences and typed dependencies fail to fully
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capture complex linguistic forms or accurately
model context (Waseem and Hovy, 2016; Warner
and Hirschberg, 2012). Wiegand et al. (2018)
used feature-based classification to build a lexi-
con of abusive words, which is similar to the in-
terpretability task in this paper of identifying in-
dicative unigram features. While their approach is
primarily applicable to explicit abuse, they showed
that inducing a generic lexicon is important for
cross-domain detection of abusive microposts.

Neural network classifiers. The limitations of
feature engineering motivate classification meth-
ods that can implicitly discover relevant features.
Badjatiya et al. (2017) and Gambäck and Sikdar
(2017) were the first to use recurrent neural net-
works (RNNs) and convolution neural networks
(CNNs), respectively, for hate speech detection in
tweets. A comprehensive comparative study by
Zhang et al. (2018) used a combined CNN and
gated recurrent unit (GRU) network to outperform
the state-of-the-art on 6 out of 7 publicly avail-
able hate speech datasets by 1-13 F1 points. The
authors hypothesize that CNN layers capture co-
occurring word n-grams, but they do not perform
an analysis of the features that their model actu-
ally captures. Deep learning classifiers have also
been explored for related tasks such as personal
attacks and user comment moderation (Wulczyn
et al., 2017; Pavlopoulos et al., 2017). Pavlopoulos
et al. (2017) propose an RNN model with a self-
attention mechanism, which learns a set of weights
to determine the words in a sequence that are most
important for classification.

Visualizing neural networks. Existing ap-
proaches for visualizing RNNs largely involve ap-
plying dimensionality reduction techniques such
as t-SNE (van der Maaten and Hinton, 2008) to
hidden representations. Hermans and Schrauwen
(2013) and Karpathy et al. (2015) investigated the
functionality of internal RNN structures, visual-
izing interpretable activations in the context of
character-level long short-term memory (LSTM)
language models. We are interested in the
high-level semantic features identified by network
structures and are heavily influenced by the sig-
nificant body of work focused on visualizing and
interpreting CNNs. Zeiler and Fergus (2013) in-
troduced a visualization technique that projects
the top activations of CNN layers back into pixel
space. They also used partial image occlusion
to determine the area of a given image to which

Label # Examples % Examples
Hate 1430 5.8%
Offensive 19190 77.4%
Neither 4163 16.8%

Table 1: Distribution of class labels in the dataset.

Figure 1: Illustration of the CNN-GRU architecture.

the network is most sensitive. Girshick et al.
(2013) propose a non-parametric method to visu-
alize learned features of individual neurons for ob-
ject detection. We adapt these techniques to draw
meaningful insights about our problem space.

3 Case Study

Dataset. We use the dataset of 24,802 labeled
tweets made available by Davidson et al. (2017).
The tweets are labeled as one of three classes:
hate speech, offensive but not hate speech, or nei-
ther offensive nor hate speech. The distribution
of labels in the resulting dataset is shown in Ta-
ble 1. Out of the seven hate speech datasets pub-
licly available at the time of this work,1 it is the
only one that is coded for general hate speech,
rather than specific hate target characteristics such
as race, gender, or religion.

CNN-GRU model. We utilize the CNN-GRU
classifier introduced by Zhang et al. (2018), which
achieves the state-of-the-art on most hate speech
datasets including Davidson et al. (2017), and con-
tribute a Tensorflow reimplementation for future
study. The inputs to the model are tweets which
are mapped to sequences of word embeddings.
These are then fed through a 1D convolution and
max pooling to generate input to a GRU. The out-
put of the GRU is flattened by a global max pool-
ing layer, then finally passed to the softmax out-
put layer, which predicts a probability distribution
over the three classes. The model architecture is
shown in Figure 1 and described in detail in the
original paper.

1For details and descriptions of all seven datasets, see
Zhang et al. (2018).
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Figure 2: Partial occlusion heatmaps of test examples demonstrating four types of errors made by the CNN-GRU
network. Heatmaps are plotted for the predicted class (boxed) while the true class is given below. Darker regions
denote portions of the input to which the classifier prediction is most sensitive.

4 Visualization Techniques

4.1 Partial Occlusion

Previously applied to image classification net-
works, partial occlusion involves iteratively oc-
cluding different patches of the input image and
monitoring the output of the classifier. We apply
a modified version of this technique to our CNN-
GRU model by systematically replacing each to-
ken of a given input sequence with an <unk> to-
ken.2 We then plot a heatmap of the classifier
probabilities of the true class (hate, offensive, or
neither) over the tokens in the sequence.

The resulting visualizations reveal a few major
types of errors made by the CNN-GRU (Figure
2). We observe overlocalization in many long se-
quences, particularly those misclassified as offen-
sive. This occurs when the classifier decision is
sensitive to only a single unigram or bigram rather
than the entire context, as in Figure 2(a). The net-
work loses sequence information during convolu-
tion and shows decreased sensitivity to the longer
context as a result.

Lack of localization is the opposite problem in
which the model is not sensitive to any region of
the input, shown in Figure 2(b). It occurs mostly
in longer and hate class examples. A possible ex-
planation for this type of error is that convolving
sequential data diffuses the signal of important to-
kens and n-grams.

For correctly classified examples, the sensitive
regions intuitively correspond to features like n-
grams, part-of-speech templates, and word depen-
dencies. However, incorrectly classified examples

2<unk> indicates an out-of-vocabulary word. The word
embedding for <unk> is random, whereas in-vocabulary
word embeddings encode meaning via unsupervised pre-
training.

also demonstrate sensitivity to unintuitive fea-
tures that are not helpful for classification. For
instance, Figure 2(c) shows a sensitive region that
crosses a sentence boundary.

Finally, we see a high rate of errors due to the
discretization of the hate and offensive classes.
While hate speech is largely contained within of-
fensive language, the sensitive regions for the two
classes are disparate. In Figure 2(d), the network’s
prediction that the example is offensive is highly
sensitive to the sequence “those god damn”, but
not the racial slur “chinks,” which is both hateful
and offensive.

Some of the errors we identify, such as lack of
localization and unintuitive features, can be ad-
dressed by modifying the model architecture. We
can change the way long sequences are convolved,
or restrict convolutions within phrase boundaries.
More difficult to address are the errors in which
our network is sensitive to the correct regions (or
a reasonable subset thereof) but makes incorrect
predictions. These issues stem from the nature
of the data itself, such as the complex linguistic
similarity between hate and offensive language.
Moreover, many misclassified examples contain
implicit characteristics such as sarcasm or irony,
which limits the robustness of features learned
solely from input text.

4.2 Maximum Activations

The technique of retrieving inputs that maximally
activate individual neurons has been used for im-
age networks (Zeiler and Fergus, 2013; Girshick
et al., 2013), and we adapt it to the CNN-GRU
in order to understand what features of the input
stimuli it learns to detect. For each of the units
in the final global max pooling layer of the CNN-
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Figure 3: Examples of interpretable units from the
global max pool layer of the CNN-GRU. The inputs
with the top eight activations for each neuron are
shown, with relevant tokens bolded. In the interest of
space, some examples here are abridged and the full
version can be found in Appendix Figure 4.

GRU, we compute the unit’s activations on the en-
tire dataset and retrieve the top-scoring inputs.

Figure 3 displays the maximally activating ex-
amples for seven of 100 units in the global max
pool. We verify that the model does indeed learn
relevant features for hate speech classification,
some of which are traditional natural language
features such as the part-of-speech bigram “you
<NOUN PHRASE>.” Others, like a unit that fires
on sports references and a unit that detects Dutch-
language tweets (the result of querying for hate
keywords yankee and hoe, respectively), reflect as-
sumptions in data collection. Some units capture
features that reflect domain-specific phenomena,
such as repeated symbols or sequences of multiple
abusive keywords.

Many units are too general or not interpretable
at all. For instance, several units detect the
hate term bitch, but none of them clearly capture
the distinction between when it is used in sex-
ist and colloquial contexts. Conversely, exam-
ples containing rarer and more ambiguous slurs
like cracker do not appear as top inputs for any
unit. Overall, the CNN-GRU discovers some in-
terpretable lexical and syntactical features, but its
final layer activations overrepresent common uni-

Category Terms
Hatebase words faggot, nigger, fag, coon, teabag-

ger, cripple, spook, muzzie,
mook, jiggaboo, mutt, redskin,
dink

Hatebase plural faggots, niggers, fags, crackers,
coons, rednecks, hos, queers, col-
oreds, wetbacks, muzzies, wig-
gers, darkies

Pejorative nom-
inalization

blacks, jews, commie, lightskins,
negroes

Hate-related or
offensive

racist, fugly, hag, traitor, chucks,
goon, asss, blacc, eff, homopho-
bic, racists, nogs, muhammed,
fatherless, slurs

Hateful context
words

arrested, yelled, smoked, joints,
stoned, frat, celibate, catfished,
wedlock, sliced, kappa, trap-
pin, birthed, allegiance, menace,
commander, stamp, cyber

Hashtags (see Table 4)
Dialect varia-
tions

des, boutta, denna, waddup, boof,
ont, bestf, playen, sav, erbody,
prolli, deze, bougie

Pop culture gram, tweakin, dej, uchiha,
mewtwo, bios, fenkell, mikes,
beavis, aeropostale

Other en, waffle, moe, saltine, squid,
pacer, sharpie, skyler, sockfetish,
johns, lactose, ov, tater

Table 2: List of keywords discovered via synthetic test
examples. Terms within each category appear in order
of frequency in the corpus. Descriptions for hashtags
are from blogs such as www.socialseer.com and
cross-referenced on Twitter.

grams and fail to detect semantics at a more fine-
grained level via surrounding context.

4.3 Synthetic Test Examples
Lastly, we propose a general technique to identify
the the most indicative unigram features for a deep
model using synthetic test examples and apply it to
the CNN-GRU.

For each word in our corpus, we construct a sen-
tence of the form “they call you <word>” and
feed it as input to the CNN-GRU network. We
choose this structure to grammatically accommo-
date both nouns and adjectives, and because it is
semantically neutral compared to similar formula-
tions such as “you are <word>.” We then retrieve
the words whose test sentences are classified as
hate speech. After filtering out words that do not
appear in two or more distinct tweets (retweets are
indistinct) and words containing non-alphabetical
characters,3 this method returns 101 terms. We
manually group the terms into nine categories and

3We inspect the output to confirm that this filtering elimi-
nates only nonsense tokens and not intentional misspellings.
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summarize them in Table 2.
As a quantitative heuristic for the quality of the

discovered terms, we evaluate our method’s recall
on the hate speech lexicon Hatebase.4 We measure
the recall of Hatebase words, plural forms of Hate-
base words, and tweets containing Hatebase terms
and compare against a random baseline (Table 3).
The recall of our method is approximately an order
of magnitude better than random across all cate-
gories. Recall of plural forms is better than that of
base forms, which may reflect the training data’s
definition of hate speech as language that targets
a group. Notably, recall of Hatebase tweets5 is
lower than recall of individual terms regardless of
form, meaning that the Hatebase terms discovered
using our template method are not the ones that
occur most commonly in the corpus. This is rea-
sonable as several of the most common Hatebase
terms such as bitch and nigga are ones that tend to
be used colloquially rather than as slurs.

Of the non-Hatebase terms that our method dis-
covers, four are pejorative nominalizations. These
are neutral adjectives that take on pejorative mean-
ing when used as nouns, such as blacks and
jews (Palmer et al., 2017). We also find six
domain-specific hate terms in the form of hash-
tags, which tend to be non-word acronyms and
primarily used by densely connected, politically
conservative Twitter users (see Table 4). The re-
sults also include dialect-specific terms and slang
spellings, such as des and boutta, which mean
these and about to respectively. While these terms
co-occur frequently with hate speech keywords in
our corpus, they are semantically neutral, suggest-
ing that our model exhibits bias towards certain
written vernaculars. While these terms co-occur
frequently with hate speech keywords in our cor-
pus, they are semantically neutral, suggesting that
our model exhibits bias towards certain written
vernaculars.

5 Conclusion

We presented a variety of methods to understand
the prediction behavior of a neural network text
classifier and applied them to hate speech. First,

4Hatebase (https://www.hatebase.org) is an on-
line, crowd-sourced hate speech lexicon. Davidson et al.
(2017) use Hatebase queries to bootstrap the dataset we use
in this paper.

5The number of tweets containing one of the 26 discov-
ered terms divided by the number of tweets containing any
Hatebase term.

Recall Recall % Recall %
(ours) (ours) (random)

Hb terms 13/182 7.14 1.05
Hb plurals 13/91 14.29 1.06
Both 26/273 9.52 1.04

Hb tweets
1453/

6.00 1.21
24234

Table 3: Comparison between our method and a ran-
dom baseline on recall of Hatebase lexicon terms and
tweets containing Hatebase terms. The random base-
line is averaged over 10,000 trials.

Hashtag Meaning
#pjnet Patriot Journalist Network
#lnyhbt Let Not Your Heart Be Troubled,

Sean Hannity’s hashtag
#tgdn Twitter Gulag Defense Network
#httr Hail to the Redskins
#yeswedid Reference to President Obama’s

motto
#acab All Coppers Are Bastards

Table 4: Descriptions of discovered hashtag keywords,
given by blogs such as www.socialseer.com and
cross-referenced on Twitter.

we used partial occlusion of the inputs to visual-
ize the sensitivity of the network. This revealed
that the architecture loses representational capac-
ity on long inputs and suffers from lack of class
separability. We then analyzed the semantic mean-
ing of individual neurons, some of which capture
intuitively good features for our domain, though
many still appear to be random or uninterpretable.
Finally, we presented a way to discover the most
indicative hate keywords for our model. Not all
discovered terms are inherently hateful, revealing
peculiarities and biases of our problem space.

Overall, our experiments give us better insight
into the implicit features learned by neural net-
works. We lay the groundwork for future efforts
towards better modeling and data collection, in-
cluding active removal of linguistic discrimina-
tion.

Acknowledgments

Thanks firstly to Christopher Potts for many use-
ful discussions that formed the foundation for this
work in this paper. Thanks also to the three anony-
mous reviewers for their insightful feedback and
constructive suggestions. This material is based in
part upon work supported by the NSF under Grant
No. BCS-1456077.

90



References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In WWW 2017 Compan-
ion, pages 759–760. International World Wide Web
Conference Committee.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
In Proceedings of the Eleventh International AAAI
Conference on Web and Social Media, pages 512–
515.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbul-
lying. In Fifth International AAAI Conference on
Weblogs and Social Media Workshop on the Social
Mobile Web, pages 11–17.
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A Appendix

Tr
ue

la
be

ls Hate 0.31 0.58 0.11

Offensive 0.04 0.94 0.03

Neither 0.02 0.13 0.85

Hate Offensive Neither

Predicted labels

Table 5: A summary of performance for the CNN-GRU
classifier on a held-out test set.
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Figure 4: Version of Figure 3 with full text of each tweet. Examples of interpretable units from the global max
pool layer of the CNN-GRU. The inputs with the top eight activations for each neuron are shown, with relevant
tokens bolded.
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Abstract

While analysis of online explicit abusive lan-
guage detection has lately seen an ever-
increasing focus, implicit abuse detection re-
mains a largely unexplored space. We carry
out a study on a subcategory of implicit
hate: euphemistic hate speech. We propose
a method to assist in identifying unknown
euphemisms (or code words) given a set of
hateful tweets containing a known code word.
Our approach leverages word embeddings and
network analysis (through centrality measures
and community detection) in a manner that can
be generalized to identify euphemisms across
contexts- not just hate speech.

1 Introduction

Euphemisms, as an instrument to mask intent,
have long been used throughout history. For ex-
ample, a rich lexicon of drug slang has developed
over time, with entire communities subscribing to
benign sounding words that allude to names of
drugs, intake practices or other stakeholders (such
as dealers). In these instances, the primary mo-
tive is often to get a message across while evading
detection from authorities. The main obstacle in
these cases is the inability to identify code words
without gaining access to an explicit mapping be-
tween the words and their latent meanings. Often,
these words are already embedded in such com-
mon parlance that they cannot be spotted without
placing the correct context.

Notably, in late 2016, a number of users across
social media platforms and internet forums (par-
ticularly 4chan) began a movement called ‘Oper-
ation Google’, a direct retaliation to Google an-
nouncing the creation of tools for the automated
moderation of toxic content. Essentially, the idea
was to create code words for communities within
the context of hate speech, so that they would

not be detected by such systems. The move-
ment branched out to a number of social media
platforms, and in particular Twitter (Magu et al.,
2017). The complete list of all code words is pre-
sented in Table 1.

Recent work has begun to emerge on studying
this instance of euphemistic hate speech. How-
ever, they deal largely with the impact of code
words in hate speech. Our work instead focuses
on moving towards automating the discovery of
code words. The objective is to significantly de-
crease, or even eliminate the need for human ef-
fort required in manually evaluating what words
could be euphemisms. That said, the solutions
and processes we describe go beyond finding use
within the hate speech context. While some parts
of the preprocessing stages do benefit from being
aware about hate speech associated issues, the fun-
damental approach is general enough to be applied
to assist in extracting code words in any context
that may be found in natural language.

Additionally, our technique, revolving around
studying the structures of the word co-occurrence
networks that emerge from instances of coded
hate speech, also lies within a predominantly un-
explored space. We find that the centralities of
word nodes within such networks indirectly pro-
vide crucial hints about the context within which
they arise.

2 Abusive Language

The past few years have witnessed an increased fo-
cus on abusive language (particularly hate speech)
detection, with a variety of different approaches
and applications to a diverse set of contexts. These
have ranged from classification of hateful tweets
using bag-of-words models and typed dependen-
cies (Burnap and Williams, 2015), to using se-
mantic structure of sentences to the study of tar-
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Code Word Actual Word
Google Black
Yahoo Mexican
Skype Jew
Bing Chinese

Skittle Muslim
Butterfly Gay

Fishbucket Lesbian
Durden Transsexual

Car Salesman Liberal
A leppo Conservative

Pepe Alt-Right

Table 1: Some common code words.

gets of hate (Silva et al., 2016). Others have
used related methods to study phenomena closely
associated to hate speech such as cyberbullying
(Raisi and Huang, 2017) and offensive language
in general. From an application perspective, Magu
et al. (2018) create models to predict the extent of
hateful content in the comments section of news
sources, using article titles and body information
as input, indicating a relationship between the en-
tities. Davidson et al. (2017), a recent work on
hate speech detection, notes the difference be-
tween hate speech and offensive language.

Notably, Waseem et al. (2017) provide a typol-
ogy of abusive language, categorizing abusive lan-
guage across two dimensions: 1) target of abuse
and 2) degree of abuse being explicit. In terms
of target, they distinguish directed hate (hatred to-
wards an individual. Example: ‘Go kill yourself’)
and generalized hate (hatred towards a recognized
group. Example: ‘So an 11 year old n***er girl
killed herself over my tweets? thats another
n***er off the streets!!’). With regard to this, a
number of studies have been carried out that mea-
sure and study this effect, particularly within the
context of social media. For instance, ElSherief
et al. (2018) deal with analyzing the characteristics
of hate speech instigators and targets on Twitter.

For the second dimension, the authors differen-
tiate between explicit (containing ‘language that
which is unambiguous in its potential to be abu-
sive’. Examples could be language containing
racial slurs) and implicit (containing ‘language
that does not immediately imply or denote abuse’.
Example: ‘Gas the skypes’ (Magu et al., 2017) )
hate. The authors discuss the role of context which
is needed to correctly identify hate. As such,

they touch upon a fundamental mode of expres-
sion that displays implicit hate: euphemistic hate
speech. Euphemistic hate speech stands separate
from other forms of implicit hate speech (namely
micro-aggressions) because in truth, they are often
direct toxic attacks as opposed to veiled or con-
text dependent ones. They are implicit because
they make use of clever word substitutions in lan-
guage to avoid detection. Even a classifier trained
on a hate speech dataset containing instances of
code words, can fail to identify hateful content if
new code words (either intentionally or otherwise)
start being used by the community. Indeed, cur-
rently, the only available option to recognize such
instances manually, which is often inefficient and
burdensome. Therefore, this motivates the explo-
ration of more automated methods to detect eu-
phemisms within the hateful context.

2.1 Euphemistic Hate Speech
To clearly define the problem of euphemistic hate
speech, we start by looking at the general defi-
nition of hate speech as given by Davidson et al.
(2017). They define hate speech as:

”language that is used to expresses ha-
tred towards a targeted group or is in-
tended to be derogatory, to humiliate, or
to insult the members of the group.”

In this sense, we note that euphemistic offen-
sive language also qualifies as hate speech because
it targets communities based on race, religion and
sexual orientation. As a result, hate speech that re-
lies on intentional word substitutions to evade de-
tection can be considered to be euphemistic hate
speech.

As discussed earlier, one of the most promi-
nent uses of euphemistic hate speech came as a
result of Operation Google, ever since the move-
ment started in 2016. For instance Hine et al.
(2016) studied the usage patterns and behavior of
a community on 4chan (where the movement first
started) and Twitter. Finally, Magu et al. (2017)
analyzed euphemistic hate speech on Twitter, cre-
ating a tool to automate the process of segregat-
ing tweets containing code words (eg. ‘gas the
skypes’) from those containing code words, but
benign in nature (eg. ‘I like to make skype calls’).

3 Dataset

We collected approximately 200,000 English
tweets containing the code words using the Twit-
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ter Streaming API. The time range was crucial
for us as we wanted to study the use of code
words as they first propped up. Therefore, our ex-
tracted tweets were concentrated between Septem-
ber 2016 (when the code first gained prominence)
up until November 2016 slightly after the election
season in the United States of America. Next, we
needed to select a single code word that could be
used as a starting seed word for our analysis. Ef-
fectively, the aim was to retrieve other code words
knowing only one code word beforehand. We
chose the code word ‘Skypes’ (used in place of
‘Jews’) and manually extracted 850 random tweets
that used it in a hateful context (for example say-
ing ‘Gas the Skypes’ but not ‘I like to Skype call
him everyday’). From this point on, all of our anal-
ysis is carried out on this dataset of hate tweets
containing the word ‘Skype’. Note that the set of
tweets can and do contain other code words also
(example: ‘If welfare state is a given it must go to-
wards our own who needs. No Skypes, googles, or
yahoos’). As a proof of concept, we showcase the
entire process starting with ‘skypes’ but this can
be extended to other starting code words as well.
While we recognize the value of a comprehensive
study of the methodology across the entire spec-
trum of combinations (retrieving all other codes
given any randomly selected initial word), it went
beyond the exploratory nature of our work.

Importantly, as an artifact of the time range of
the data (late 2016), we do not expect there to be
any previously unidentified code words (or at least
not ones used extensively by the community dur-
ing that time) within the dataset. Therefore, to val-
idate the working of our methodology, from this
point on, we instead assume we have no knowl-
edge of the existence of any other code word be-
side ‘skype’. Indeed, our method does not in-
corporate or exploit any hints it may derive from
knowing any of the other code words beforehand.

4 Baseline

To asses how well our method performed, we
needed to establish a baseline method. Currently,
the simplest way to identify code words in natu-
ral language would be to manually sift through a
series of tweets of users belonging to known hate
communities. Clearly, this is an arduous and inef-
fective process. A reasonable approach is to rank
all the words in the corpus (on the basis of some
metric) so that higher ranked words have a greater

Code Word Rank
Google 10
Yahoo 67
Bing 195

Skittle 23
Butterfly 459

Fishbucket 998
Durden 471

Car Salesman 232
A leppo 667

Pepe 137

Table 2: Baseline ranks of code words.

chance of being code words than those lower on
the list. For a small time frame like ours and with-
out any prior information (note there might not be
any qualifying indicator for a specific word to be a
code word), a good bet would be to use word fre-
quency as the metric. This is based on the idea that
rarely used words would be unlikely candidates
for code words. This method forms our baseline.
As a result, the base ranks of our code words were
the ranks of the words on this baseline list. Thus,
we can quantify the performance of the method
we develop by comparing evaluating the rank im-
provement of code words against their base ranks.
Baseline ranks can be found in Table1.

5 Preprocessing

We made use of a set of strong assumptions about
hate code usage in natural language to inform our
data processing decisions (visualized through Fig-
ure 1). It is worth considering that while these as-
sumptions help immensely in narrowing the space
of possibilities, they are general enough to be ap-
plied to any scenario involving coded speech. Ad-
ditionally, it is important to note that the number-
ing of these assumptions does not indicate a se-
quential order of processing (in terms of trimming
down words). This is because some of these steps
benefit from having the entire, unaltered tweet
available to them. Pruning is carried out after de-
terminations are made for each word through all
of the assumption steps. Thes assumptions are as
follows:

• A1: The code words are nouns.

• A2: They are not words normally considered
negative.
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• A3: They are not either extremely generic nor
are they very specific

Figure 1: Flow chart depicting the pre-processing
steps.

It is safe to assume that the words would be
nouns, in the context they are written within
tweets. It is to be noted that all code words are
used in place of references to real communities,
which in turn are necessarily nouns. As a result,
although the references themselves are replaced,
the syntactic structures of the tweets remain in-
tact. Hence, the code words, like the communities
themselves would be detected as nouns by syntac-
tic parsing. Therefore we use part-of-speech tag-
ging to extract the set of all nouns from the entire
list of words tokens.

Next, we lemmatize these tokens to bring them
to their base form. This is of critical impor-
tance because we would like to construct a net-
work at some point, and without standardization,
we would be left with multiple duplicate nodes
and unclear results. Additionally, carrying out
lemmatization at this stage considerably reduces
the space of possibilities early on, allowing for
faster computation during later stages.

We move onto our next assumption A2, namely
1code words are not words normally considered
negative’. Using words that are already negative
(for example, ‘terrorist’, ‘vermin’ etc) defeats the
purpose of using code words to begin with, asides
from immensely confusing readers. For instance,
consider replacing ‘Jews’ with ’terrorists’ in the
sentence ‘Kill the Jews’. In the new sentence, ‘Kill
the terrorists’, even if ‘terrorists’ had been adopted
as a code word, it would become impossible for
the author to convey whether they meant killing of
Jews or actually terrorists. Hence, we attempt to
remove all negative words at this stage. We do this
by importing the list of negative words assembled
by Hu and Liu (2004) and removing words from
our lemmatized set that match those in this list.

The third assumption A3 (‘They are not either
extremely specific nor are they very generic’) is
checked for next. Clearly, like in the previous
case, it is very confusing if the code words are too
broad. For instance, in each of the following cases
‘These people are disgusting’, ‘These men are dis-
gusting’, ‘Something is disgusting’, the potential
code words ‘people’, ‘men’ and ‘something’ have
alternate meanings that fit well within the context,
but are too generic to be used as code words. As
a result, we discard all such instances. Similarly,
sample ‘This Hillary is stupid!’ in place of ‘This
Jew is stupid’. It is hard to decipher whether the
author refers to a particular individual (‘Hillary’
the name) or the target community (‘Hillary’ as
a euphemism for Jew). In these cases, the words
are too specific to be useful as code words. There-
fore, we use a mix of named entity recognition and
manual pruning to remove these tokens.

Next, it is imperative to also exclude words that
are directly related to the known code word. For
example, we need to remove instances like ‘Jew’,
‘Gas’, ‘Holocaust’ etc when using the dataset for
skypes because these already exist within the con-
text of anti-semitic hate speech and cannot be used
as code words by definition. Yet they may affect
our analysis because of their expectedly high com-
mon usage. This is the only part of the filtering
process that requires some basic domain knowl-
edge of the problem.

As a final step, we discard the word skypes it-
self, since it occurs in every single tweet and pro-
vides no additional information.

6 Detecting Euphemistic Hate Speech

The main idea behind how our system works, is
that code words are an abnormality within the con-
text defined by hateful users. Words like ‘google’,
‘skype’, ‘yahoo’ etc are not expected to occur reg-
ularly in tweets aiming to attack groups. For ex-
ample, the occurrence of ‘skypes’ and ‘googles’
is an aberration with respect to the surrounding
words within the following:

”fucking googles and skypes kill em all”

6.1 News Data Word Embeddings
As a result, we can exploit this effect by repre-
senting all of our word tokens by their word em-
beddings that have been pre-trained on a regu-
lar, not necessarily hateful context, and evaluat-
ing how dissimilar they are with respect to each
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other. For our purpose we use word2vec (Mikolov
et al., 2013) embeddings trained on a Google news
dataset (built on google news articles with over a
100 million words) and find the pairwise cosine
distances for all words. Essentially, we can ex-
pect the code words to be further apart than other
words which belong to the hate speech context. A
subgraph, with a few representative nodes can be
seen in Figure 2.

Figure 2: A subgraph of the network composed of some
sample nodes. The red nodes are code words whereas
the yellow nodes are non-code words. The diagram
is for representation only and these labels are not pro-
vided beforehand.

The primary limitation to this approach is that
some of the code words do not have representa-
tions within this pre-trained model and might be
missed entirely. These words are ‘leppos’, ‘fish-
buckets’ and ‘durdens’.

6.2 Hate Network
Since 1) the pairwise relationships between words
are now quantified and 2) that these relation-
ships cannot be assumed to be independent of
each other, an intuitive way to study this struc-
ture would be to model it as a network (seen in
Figure 3). The degree distribution is graphically
represented in Figure 4. Specifically, we created
a network where each node represented a partic-
ular word, and the edges denoted the cosine dis-
tance between their respective word embeddings.
In addition, we decided to leverage the fact that a
sizable number of words did not co-occur together
in tweets, thus providing us with additional infor-
mation about context. As a result, we pruned all
edges where the connected words did not ever oc-
cur together in any tweet. Some characteristics of
the graph such as number of edges and average de-

gree are given in Table 3.

Figure 3: The hate word network. Note that the nodes
are colored by the connected component they belong
to. Those belonging to components insignificant in size
are colored grey. The giant component is colored or-
ange. Also, the size of the nodes corresponds to the
degree. The largest node in the center is ‘Google’.

Figure 4: The degree distribution (in black) and log-
binned degree distribution (in red) of the network.

The network displays characteristics typical of a
complex network. For instance,the network shows
the small world effect (Watts and Strogatz, 1998).
We evaluated the value of the cluster coefficient
(C) and mean shortest path length (L) for the net-
work (as can be seen in Table 3) and then found
the average of those metrics (Cr and Lr) across an
ensemble of 100 random graphs with the same de-
gree distribution. This allowed us to calculate the
value of the small-world coefficient (σ), which is
found using equation 1. The value was noted to
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Metric Value
Number of nodes 1129
Number of edges 2188
Average Degree 3.88

Clustering coefficient 0.76
Mean shortest path length 4.53

Table 3: Hate network properties. Clustering coeffi-
cient and mean shortest path length are for giant com-
ponent.

be 20.46 which is much greater than the required
threshold of 1, for a graph to be expected to show
the small world effect.

σ =
C/Cr

L/Lr
(1)

6.3 Word Ranks

As noted by Magu et al. (2017), the code words
tend to extensively co-occur with each other.
There are a number of possible explanations for
this effect. First, as people warm up to a new
code, they are incentivized to use as many dif-
ferent words as possible so that the code gains
traction amongst their followers. Using too few
code words within tweets (at the very beginning
of adoption) could lead to those words being over-
looked, or be treated as mistakes. Second, the alt-
right (the primary users of the code) tend to dis-
play blanket hate towards a number of different
communities across spectrum of race, religion and
sexuality. Therefore, their tweets often simultane-
ously target a number of different groups, a pattern
which in turn is replicated in their code word us-
age.

In this circumstance, we decided to use eigen-
vector centralities (Bonacich, 1972a,b) words as
our ranking metric. Intuitively, this was an ap-
propriate choice. Eigenvector centrality estimat-
ing techniques attribute higher centrality values to
nodes that are connected to other important nodes.
This was very relevant to our context since we
know that the existence of certain words (which
are hard to pre-determine) within hate speech have
an effect on whether surrounding words could be
code words or not. The ranks of code words are
shown in Table 4. As we can see all codewords
(barring those without word embeddings) sub-
stantially move up the ranking order, when com-
pared to the baseline model (with a mean jump of

Code Word EC IoB
Google 1 9
Yahoo 3 64
Bing 22 173

Skittle 2 21
Butterfly 215 244

Fishbucket - -
Durden - -

Car Salesman 4 228
A leppo - -

Pepe 30 107

Table 4: Centrality rank of code words in comparison
to baseline. EC: Eigenvector Centrality Rank. IoB: Im-
provement over Baseline. Note that the centrality val-
ues and improvements for some words is absent since
they did not have a word-embedding within the pre-
trained model. As a result, they were removed at an
earlier stage.

134 positions). Interestingly, the improvement for
‘butterfly’ was not as dramatic (in terms of its final
rank) likely because it might have occurred with
words considerably different than those connected
to the other code words.

6.4 Candidate Cluster

There is one major issue with the above discussed
approach: manually moving down a ranked list to
discover code words can be cumbersome. Addi-
tionally, there is no bound or limit till which we
can expect to cover all or most code words. There-
fore, perhaps a more useful technique could be
to suggest a group or cluster of candidate words
which have a high chance of being code words.
Community detection analysis on the network is
hence a viable approach.

First, since the graph is disconnected, we fo-
cus on the largest component (or the giant compo-
nent) of the graph to further carry out our analyses
(visualization in Figure 3). Since we know that
the code words are likely to be closely connected
to each other, we expect to find cliques (sets of
completely connected subgraphs) within the net-
work. Therefore, we applied the clique percola-
tion method (Palla et al., 2005) on our graph to
achieve overlapping communities of words. Es-
sentially, the clique percolation method works by
constructing communities from k-cliques (where
k is a natural number). A community is obtained
by finding the maximal union of k-cliques that are
within reach from each other through a sequence
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Figure 5: Finding the optimal community. This is a
high level visualization of the approach used to deter-
mine a set of candidate nodes using community detec-
tion analysis.

of adjacent k-cliques. Here, adjacent k-cliques are
those cliques which have k-1 nodes in common.
Since we do not know the optimal value of k, we
carried out separate analyses for each value of k
starting from k=4 to k=8, which is the largest pos-
sible value such that no (k+1) cliques exist in the
graph. Judging by the extremely high clustering
coefficient of the graph, there are an immensely
large number of triangles in the graph. As a result,
the algorithm is non-trivially affected because es-
sentially, all or most nodes are grouped together
into a single community. This is why values of k
less than 4 were not considered.

Next, we needed to find the optimal commu-
nity out of all the possible communities we have
achieved for each value of k. A common ap-
proach is to simply select the largest community,
which implies the community with the most num-
ber of nodes (largest length). This approach as-
sumes each node to have the same weight (of value
1). However, since we know that eigenvector cen-
tralities serve as a useful indicator to finding the
code words, we can weigh each node instead by its
eigenvector centrality. As a result, in place of sim-
ply finding the community with the highest length,
we summed over the eigenvector centralities of all
nodes in every community and returned the one
with the highest value. The resulting community
was: [‘blind’, ‘skittle’, ‘google’, ‘don’, ‘commie’,

‘car’, ‘salesman’, ‘youtube’, ‘yahoo’, ‘bings’].
Figure 5 depicts a high level representation of the
process.

The cluster is extremely tight- consisting of
only 10 members. Yet, it contains all the code
words that are present within the word2vec pre-
trained model except ‘pepe’ and ‘butterfly’ with
only a few outliers. While some of these are likely
noise, the occurrence of terms like ‘commie’ is ex-
plainable.The left is frequently targeted by the alt-
right, the most common users of the euphemisms.
Therefore, these users seem to often group ‘com-
mies’ (or communists) together with the other tar-
get communities (which have euphemisms) within
their tweets. This is why they form part of the
clique that was uncovered through our analysis.
For example:

”In theory, I agree, but with a congress
filled with skypes , yahoos, googles, and
commies, @realDonaldTrump won’t
get anything done”

Thus, other than providing us with a set of
strong candidates for euphemisms, this approach
also reveals useful information about the posting
patterns of this community of hateful users.

7 Limitations

There are some limitations that we would like to
work on in the future. The major drawback is that
we need one starting seed code word to find others.
We would like to be able to identify code words in
a manner in which we require no prior informa-
tion about any code words, even at the cost of ro-
bustness. Second, it would be useful if we could
iteratively improve our performance. For exam-
ple, if we are able to identify a second code word
using our technique, the suggestions for the next
candidates should adapt appropriately to generate
better results. Finally, we wish to achieve the word
embeddings on larger, varied datasets so that when
they are used to find cosine distances, some impor-
tant words are not automatically missed out on.

8 Conclusions

We discussed the problem of euphemistic hate
speech and how we could transform the challenge
of finding unknown code words into a network sci-
ence problem. We presented insights that can be
derived during the preprocessing stage (such as the
code words being nouns and neither too generic
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nor too specific). Finally, we showed how by using
cosine distances between word embeddings could
be coupled with analyzing the structure of the re-
sulting network to achieve likely candidates for
code words.

Our approach can be used to detect code words
not only within the context of hate speech, but any-
where else where a community may feel the need
to use euphemisms within natural language.
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Abstract

The context-dependent nature of online ag-
gression makes annotating large collections of
data extremely difficult. Previously studied
datasets in abusive language detection have
been insufficient in size to efficiently train
deep learning models. Recently, Hate and
Abusive Speech on Twitter, a dataset much
greater in size and reliability, has been re-
leased. However, this dataset has not been
comprehensively studied to its potential. In
this paper, we conduct the first comparative
study of various learning models on Hate and
Abusive Speech on Twitter, and discuss the
possibility of using additional features and
context data for improvements. Experimen-
tal results show that bidirectional GRU net-
works trained on word-level features, with La-
tent Topic Clustering modules, is the most ac-
curate model scoring 0.805 F1.

1 Introduction

Abusive language refers to any type of insult, vul-
garity, or profanity that debases the target; it also
can be anything that causes aggravation (Spertus,
1997; Schmidt and Wiegand, 2017). Abusive lan-
guage is often reframed as, but not limited to, of-
fensive language (Razavi et al., 2010), cyberbul-
lying (Xu et al., 2012), othering language (Bur-
nap and Williams, 2014), and hate speech (Djuric
et al., 2015).

Recently, an increasing number of users have
been subjected to harassment, or have witnessed
offensive behaviors online (Duggan, 2017). Major
social media companies (i.e. Facebook, Twitter)
have utilized multiple resources—artificial intelli-
gence, human reviewers, user reporting processes,
etc.—in effort to censor offensive language, yet
it seems nearly impossible to successfully resolve
the issue (Robertson, 2017; Musaddique, 2017).

∗* Equal contribution.

The major reason of the failure in abusive
language detection comes from its subjectivity
and context-dependent characteristics (Chatzakou
et al., 2017). For instance, a message can be re-
garded as harmless on its own, but when taking
previous threads into account it may be seen as
abusive, and vice versa. This aspect makes detect-
ing abusive language extremely laborious even for
human annotators; therefore it is difficult to build
a large and reliable dataset (Founta et al., 2018).

Previously, datasets openly available in abu-
sive language detection research on Twitter ranged
from 10K to 35K in size (Chatzakou et al., 2017;
Golbeck et al., 2017). This quantity is not suffi-
cient to train the significant number of parameters
in deep learning models. Due to this reason, these
datasets have been mainly studied by traditional
machine learning methods. Most recently, Founta
et al. (2018) introduced Hate and Abusive Speech
on Twitter, a dataset containing 100K tweets with
cross-validated labels. Although this corpus has
great potential in training deep models with its sig-
nificant size, there are no baseline reports to date.

This paper investigates the efficacy of differ-
ent learning models in detecting abusive language.
We compare accuracy using the most frequently
studied machine learning classifiers as well as re-
cent neural network models.1 Reliable baseline
results are presented with the first comparative
study on this dataset. Additionally, we demon-
strate the effect of different features and variants,
and describe the possibility for further improve-
ments with the use of ensemble models.

2 Related Work

The research community introduced various ap-
proaches on abusive language detection. Razavi

1The code can be found at: https://github.com/
younggns/comparative-abusive-lang

101



et al. (2010) applied Naı̈ve Bayes, and Warner and
Hirschberg (2012) used Support Vector Machine
(SVM), both with word-level features to classify
offensive language. Xiang et al. (2012) generated
topic distributions with Latent Dirichlet Alloca-
tion (Blei et al., 2003), also using word-level fea-
tures in order to classify offensive tweets.

More recently, distributed word representations
and neural network models have been widely ap-
plied for abusive language detection. Djuric et
al. (2015) used the Continuous Bag Of Words
model with paragraph2vec algorithm (Le and
Mikolov, 2014) to more accurately detect hate
speech than that of the plain Bag Of Words mod-
els. Badjatiya et al. (2017) implemented Gradi-
ent Boosted Decision Trees classifiers using word
representations trained by deep learning mod-
els. Other researchers have investigated character-
level representations and their effectiveness com-
pared to word-level representations (Mehdad and
Tetreault, 2016; Park and Fung, 2017).

As traditional machine learning methods have
relied on feature engineering, (i.e. n-grams, POS
tags, user information) (Schmidt and Wiegand,
2017), researchers have proposed neural-based
models with the advent of larger datasets. Con-
volutional Neural Networks and Recurrent Neural
Networks have been applied to detect abusive lan-
guage, and they have outperformed traditional ma-
chine learning classifiers such as Logistic Regres-
sion and SVM (Park and Fung, 2017; Badjatiya
et al., 2017). However, there are no studies inves-
tigating the efficiency of neural models with large-
scale datasets over 100K.

3 Methodology

This section illustrates our implementations on
traditional machine learning classifiers and neural
network based models in detail. Furthermore, we
describe additional features and variant models in-
vestigated.

3.1 Traditional Machine Learning Models

We implement five feature engineering based
machine learning classifiers that are most often
used for abusive language detection. In data
preprocessing, text sequences are converted into
Bag Of Words (BOW) representations, and nor-
malized with Term Frequency-Inverse Document
Frequency (TF-IDF) values. We experiment with
word-level features using n-grams ranging from

1 to 3, and character-level features from 3 to
8-grams. Each classifier is implemented with the
following specifications:

Naı̈ve Bayes (NB): Multinomial NB with additive
smoothing constant 1
Logistic Regression (LR): Linear LR with L2
regularization constant 1 and limited-memory
BFGS optimization
Support Vector Machine (SVM): Linear SVM
with L2 regularization constant 1 and logistic loss
function
Random Forests (RF): Averaging probabilistic
predictions of 10 randomized decision trees
Gradient Boosted Trees (GBT): Tree boosting
with learning rate 1 and logistic loss function

3.2 Neural Network based Models

Along with traditional machine learning ap-
proaches, we investigate neural network based
models to evaluate their efficacy within a larger
dataset. In particular, we explore Convolutional
Neural Networks (CNN), Recurrent Neural
Networks (RNN), and their variant models. A
pre-trained GloVe (Pennington et al., 2014)
representation is used for word-level features.

CNN: We adopt Kim’s (2014) implementation as
the baseline. The word-level CNN models have 3
convolutional filters of different sizes [1,2,3] with
ReLU activation, and a max-pooling layer. For the
character-level CNN, we use 6 convolutional fil-
ters of various sizes [3,4,5,6,7,8], then add max-
pooling layers followed by 1 fully-connected layer
with a dimension of 1024.

Park and Fung (2017) proposed a HybridCNN
model which outperformed both word-level and
character-level CNNs in abusive language detec-
tion. In order to evaluate the HybridCNN for this
dataset, we concatenate the output of max-pooled
layers from word-level and character-level CNN,
and feed this vector to a fully-connected layer in
order to predict the output.

All three CNN models (word-level, character-
level, and hybrid) use cross entropy with softmax
as their loss function and Adam (Kingma and Ba,
2014) as the optimizer.

RNN: We use bidirectional RNN (Schuster and
Paliwal, 1997) as the baseline, implementing a
GRU (Cho et al., 2014) cell for each recurrent unit.
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From extensive parameter-search experiments, we
chose 1 encoding layer with 50 dimensional hid-
den states and an input dropout probability of 0.3.
The RNN models use cross entropy with sigmoid
as their loss function and Adam as the optimizer.

For a possible improvement, we apply a self-
matching attention mechanism on RNN baseline
models (Wang et al., 2017) so that they may better
understand the data by retrieving text sequences
twice. We also investigate a recently introduced
method, Latent Topic Clustering (LTC) (Yoon
et al., 2018). The LTC method extracts latent topic
information from the hidden states of RNN, and
uses it for additional information in classifying the
text data.

3.3 Feature Extension

While manually analyzing the raw dataset, we no-
ticed that looking at the tweet one has replied to
or has quoted, provides significant contextual in-
formation. We call these, “context tweets”. As
humans can better understand a tweet with the ref-
erence of its context, our assumption is that com-
puters also benefit from taking context tweets into
account in detecting abusive language.

As shown in the examples below, (2) is la-
beled abusive due to the use of vulgar language.
However, the intention of the user can be better
understood with its context tweet (1).

(1) I hate when I’m sitting in front of the bus and somebody

with a wheelchair get on.

�

(2) I hate it when I’m trying to board a bus and there’s

already an as**ole on it.

Similarly, context tweet (3) is important in
understanding the abusive tweet (4), especially in
identifying the target of the malice.

(3) Survivors of #Syria Gas Attack Recount ‘a Cruel Scene’.

�

(4) Who the HELL is “LIKE” ING this post? Sick people....

Huang et al. (2016) used several attributes of
context tweets for sentiment analysis in order
to improve the baseline LSTM model. How-
ever, their approach was limited because the meta-
information they focused on—author information,
conversation type, use of the same hashtags or
emojis—are all highly dependent on data.

In order to avoid data dependency, text se-
quences of context tweets are directly used as

Labels Normal Spam Hateful Abusive
Number 42,932 9,757 3,100 15,115

(%) (60.5) (13.8) (4.4) (21.3)

Table 1: Label distribution of crawled tweets

an additional feature of neural network models.
We use the same baseline model to convert con-
text tweets to vectors, then concatenate these vec-
tors with outputs of their corresponding labeled
tweets. More specifically, we concatenate max-
pooled layers of context and labeled tweets for the
CNN baseline model. As for RNN, the last hidden
states of context and labeled tweets are concate-
nated.

4 Experiments

4.1 Dataset

Hate and Abusive Speech on Twitter (Founta et al.,
2018) classifies tweets into 4 labels, “normal”,
“spam”, “hateful” and “abusive”. We were only
able to crawl 70,904 tweets out of 99,996 tweet
IDs, mainly because the tweet was deleted or the
user account had been suspended. Table 1 shows
the distribution of labels of the crawled data.

4.2 Data Preprocessing

In the data preprocessing steps, user IDs, URLs,
and frequently used emojis are replaced as special
tokens. Since hashtags tend to have a high correla-
tion with the content of the tweet (Lehmann et al.,
2012), we use a segmentation library2 (Segaran
and Hammerbacher, 2009) for hashtags to extract
more information.

For character-level representations, we apply
the method Zhang et al. (2015) proposed. Tweets
are transformed into one-hot encoded vectors us-
ing 70 character dimensions—26 lower-cased al-
phabets, 10 digits, and 34 special characters in-
cluding whitespace.

4.3 Training and Evaluation

In training the feature engineering based machine
learning classifiers, we truncate vector represen-
tations according to the TF-IDF values (the top
14,000 and 53,000 for word-level and character-
level representations, respectively) to avoid over-
fitting. For neural network models, words that ap-
pear only once are replaced as unknown tokens.

2WordSegment module description page: https://
pypi.org/project/wordsegment/
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Normal Spam Hateful Abusive Total
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NB (word) .776 .916 .840 .573 .378 .456 .502 .034 .063 .828 .744 .784 .747 .767 .741
NB (char) .827 .805 .815 .467 .609 .528 .452 .061 .107 .788 .832 .803 .752 .751 .744
LR (word) .807 .933 .865 .616 .365 .458 .620 .161 .254 .868 .844 .856 .786 .802 .780
LR (char) .808 .934 .866 .618 .363 .457 .636 .183 .283 .873 .848 .860 .788 .804 .783

SVM (word) .757 .967 .850 .678 .190 .296 .836 .034 .065 .865 .757 .807 .773 .775 .730
SVM (char) .763 .968 .853 .680 .198 .306 .805 .070 .129 .876 .775 .822 .778 .781 .740

RF (word) .776 .945 .853 .581 .213 .311 .556 .109 .182 .852 .819 .835 .757 .781 .745
RF (char) .793 .934 .857 .568 .252 .349 .563 .150 .236 .853 .856 .854 .765 .789 .760

GBT (word) .806 .921 .860 .581 .320 .413 .506 .194 .279 .854 .863 .858 .772 .794 .773
GBT (char) .807 .913 .857 .560 .346 .428 .472 .187 .267 .859 .859 .859 .770 .791 .772

CNN (word) .822 .925 .870 .625 .323 .418 .563 .182 .263 .846 .916 .879 .789 .808 .783
CNN (char) .784 .946 .857 .604 .180 .264 .663 .124 .204 .848 .864 .856 .768 .787 .747

CNN (hybrid) .820 .926 .869 .616 .322 .407 .628 .180 .265 .853 .910 .880 .790 .807 .781
RNN (word) .856 .887 .870 .589 .514 .547 .577 .194 .287 .844 .934 .887 .804 .815 .804
RNN (char) .606 .999 .754 .000 .000 .000 .000 .000 .000 .000 .000 .000 .367 .605 .457

RNN-attn (word) .846 .898 .872 .593 .469 .520 .579 .194 .283 .849 .925 .886 .800 .814 .800
RNN-LTC (word) .857 .884 .871 .583 .525 .551 .564 .210 .302 .846 .932 .887 .804 .815 .805

CNN (w/context) .828 .910 .867 .609 .341 .429 .505 .246 .309 .840 .914 .875 .786 .804 .784
RNN (w/context) .858 .880 .869 .577 .527 .549 .534 .175 .256 .840 .937 .885 .801 .813 .801

Table 2: Experimental results of learning models and their variants, followed by the context tweet models. The
top 2 scores are marked as bold for each metric.

Since the dataset used is not split into train, de-
velopment, and test sets, we perform 10-fold cross
validation, obtaining the average of 5 tries; we di-
vide the dataset randomly by a ratio of 85:5:10,
respectively. In order to evaluate the overall per-
formance, we calculate the weighted average of
precision, recall, and F1 scores of all four labels,
“normal”, “spam”, “hateful”, and “abusive”.

4.4 Empirical Results

As shown in Table 2, neural network models
are more accurate than feature engineering based
models (i.e. NB, SVM, etc.) except for the LR
model—the best LR model has the same F1 score
as the best CNN model.

Among traditional machine learning models,
the most accurate in classifying abusive language
is the LR model followed by ensemble models
such as GBT and RF. Character-level represen-
tations improve F1 scores of SVM and RF clas-
sifiers, but they have no positive effect on other
models.

For neural network models, RNN with LTC
modules have the highest accuracy score, but there
are no significant improvements from its base-
line model and its attention-added model. Simi-
larly, HybridCNN does not improve the baseline
CNN model. For both CNN and RNN models,
character-level features significantly decrease the
accuracy of classification.

The use of context tweets generally have little

effect on baseline models, however they notice-
ably improve the scores of several metrics. For
instance, CNN with context tweets score the high-
est recall and F1 for “hateful” labels, and RNN
models with context tweets have the highest recall
for “abusive” tweets.

5 Discussion and Conclusion

While character-level features are known to im-
prove the accuracy of neural network mod-
els (Badjatiya et al., 2017), they reduce classifi-
cation accuracy for Hate and Abusive Speech on
Twitter. We conclude this is because of the lack of
labeled data as well as the significant imbalance
among the different labels. Unlike neural network
models, character-level features in traditional ma-
chine learning classifiers have positive results be-
cause we have trained the models only with the
most significant character elements using TF-IDF
values.

Variants of neural network models also suffer
from data insufficiency. However, these models
show positive performances on “spam” (14%) and
“hateful” (4%) tweets—the lower distributed la-
bels. The highest F1 score for “spam” is from
the RNN-LTC model (0.551), and the highest for
“hateful” is CNN with context tweets (0.309).
Since each variant model excels in different met-
rics, we expect to see additional improvements
with the use of ensemble models of these variants
in future works.
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In this paper, we report the baseline accuracy
of different learning models as well as their vari-
ants on the recently introduced dataset, Hate and
Abusive Speech on Twitter. Experimental results
show that bidirectional GRU networks with LTC
provide the most accurate results in detecting abu-
sive language. Additionally, we present the possi-
bility of using ensemble models of variant models
and features for further improvements.
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Abstract 

Text classification models have been 

heavily utilized for a slew of interesting 

natural language processing problems. 

Like any other machine learning model, 

these classifiers are very dependent on the 

size and quality of the training dataset. 

Insufficient and imbalanced datasets will 

lead to poor performance. An interesting 

solution to poor datasets is to take 

advantage of the world knowledge in the 

form of knowledge graphs to improve our 

training data. In this paper, we use 

ConceptNet and Wikidata to improve 

sexist tweet classification by two methods 

(1) text augmentation and (2) text 

generation. In our text generation 

approach, we generate new tweets by 

replacing words using data acquired from 

ConceptNet relations in order to increase 

the size of our training set, this method is 

very helpful with frustratingly small 

datasets, preserves the label and increases 

diversity. In our text augmentation 

approach, the number of tweets remains 

the same but their words are augmented 

(concatenation) with words extracted from 

their ConceptNet relations and their 

description extracted from Wikidata. In 

our text augmentation approach, the 

number of tweets in each class remains 

the same but the range of each tweet 

increases. Our experiments show that our 

approach improves sexist tweet 

classification significantly in our entire 

machine learning models. Our approach 

can be readily applied to any other small 

dataset size like hate speech or abusive 

language and text classification problem 

using any machine learning model. 

1 Introduction 

When it comes to machine learning 
algorithms, the dataset plays a pivotal role in the 
usability of those models. There are many 
problems where datasets are imbalanced, data is 
rare or data is hard to collect, hard to label or the 
overlap between the classes is high. One of the 
methods which handles these shortcomings in 
text classification is text generation. Text 
generation has been used widely for machine 
translation, summarization and dialogue 
generation (Sathish Indurthi et al., 2017) and  

(Uchimoto, K. et al. 2002). In addition, sentences 
contain different keywords and concepts. One 
way of understanding these concepts and getting 
more information about them is by using linked 
data and knowledge graphs. The popularity of the 
internet and advancements in linked data 
research has led to the development of internet-
scale public domain knowledge graphs such as 
FreeBase, DBPedia, ConceptNet and Wikidata. 

Boosting Text Classification Performance on Sexist Tweets 
by Text Augmentation and Text Generation  

Using a Combination of Knowledge Graphs 
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Knowledge in popular knowledge graphs is 
usually mined from available online resources 
such as Wikipedia using natural language 
understanding techniques or harvested by crowd 
sourcing or a combination of both.  Knowledge 
graphs are used to represent concepts and their 
relationships in a computer understandable 
format. They have a wide range of application in 
the text analysis domain such as question 
answering (Xu, Q. et al., 2017) query expansion 
(Yao, Xuchen et al.,2014), recommendation 
engines (Voorhees, E, 1994) and many more.  

ConceptNet is a common sense knowledge 
graph that represents approximately 21 million 
everyday concepts and their relationships using 
one of the 36 existing relationships such as IsA 
(e.g. jack IsA first name), UsedFor (e.g. car 
UsedFor driving ) or PartOf  (wheel PartOf  car) 
(Dzmitry Bahdanau et al., 2015). Each fact in 

ConceptNet has a weight value which shows the 
degree of truthiness. Higher values show more 
confidence. In other words, it shows the 
closeness of the concpts to each other. Wikidata 
is a wiki project that is used to crowd source 
structured data which is consumable both by 
humans and machines. Wikidata contains 4400 
types of relationships between more than 45 
million concepts.  ConceptNet and Wikidata are 
far from perfectly consistent and complete. 
Therefore, we use both of these knowledge 
graphs in our approach for better coverage of 
word knowledge with more consistency.  An 
interesting source of information in Wikidata is 
concept descriptions. We use these descriptions 
for augmenting tweets. For the text generation 
task, we replace words in each tweet by words 
that they are connected to in ConceptNet using 
some of its 19 relations such as IsA, RelatedTo, 
HasA, HasProperty, etc.  

Another approach for improving the 
classification is text augmentation, adding more 
information or enriching the text semantically for 
the purpose of achieving better classification 

results. Text augmentation has been widely used 
in bioinformatics, image processing, computer 
vision, video and audio processing (Björn 
Gambäck and Utpal Kumar Sikdar. 2017) and (X. Lu, 

2006). Even though the most prevalent 
applications of text augmentation are in the fields 
of vision or audio, we believe that introducing 
simple but effective ideas can be useful for text 
classification tasks. In addition, they can help in 
reducing the scarcity of the data,  avoiding over-
fitting due to lack of data and increasing the 
generality power of the algorithm.  

Our contribution in this paper is using 

ConceptNet, Wikidata and a combination of both 

for text generation and augmentation in order to 

improve sexist tweet classification. Even though 

we have used our approach for sexist tweet 

classification, it can be readily applied to other 

text classification problems using any of the 

existing text classification models. It can also be 

beneficial for hateful speech and abusive dataset 

where the data is scarce.  

The rest of the paper is as follows: In the next 

section, we will discuss the prior work on sexism, 

text generation and text augmentation. Then, in 

the experiment part, we will go through the 

dataset, text preprocessing, classification 

algorithms, and the detailed method of text 

generation and text augmentation. In the results, 

we will show the result of text generation and text 

augmentation and finally the conclusion. 

 

2 Related Work 

2.1 Text generation  

Text generation has been studied for many 
years and computational linguistic and diverse 
methods have been suggested ever since. 
Sentence structures are very different and these 
diversities expand in different types of social 
media whichmakes text generation harder. For 
instance, text in Wikipedia is well written and 
well structured. However, twitter sentences 
follow mandatory structures in being less than 
280 characters (Robert Speer, 2017). Two 
directions for text generation systems have been 
suggested. The first method tries to keep the 
reusability and generality of the sentence without 
focusing on the structure of the sentence. The 
second approach tries to keep the structure and 
template of the sentence (Kingma & Welling, 
2013). Uchimoto Kiyotaka et al. suggested their 
text generation method using keywords candidate 
coming from a dependency tree. 

More recently, deep learning approaches have 
been utilized for this purpose. Deep generative 
models have been used for this task. One of these 
is to use Variational Autoencoders (VAEs). 
Kingma and Welling, 2013 took advantage of 
VAEs to encode the data examples to a latent 
representation and then new samples were 
generated from that latent space. There have been 
other works on text question and answer 
generation using knowledge graphs. Sathish 
Indurthi et al., 2017  produces the question and 
answer pair from a knowledge graph. They used 
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Freebase as their knowledge base to produce the 
triples and then used them for their question, 
answer pair. They argue that each triplet is a 
subject, predicate and an object set and these 
parts in the triplets can be used exchangeably in 
the question and answer.  

2.2  Text Augmentation 

Text augmentation is studied in many areas 

such as image processing, bioinformatics, and 

video and audio processing. One of the famous 

works in data augmentation is related to the study 

by (Krizhevsky et al., 2014). They tried to 

classify the images into many classes. They used 

data augmentation to avoid the problem of over 

fitting in their neural networks, having 60 million 

parameters. From a large image, they extracted 

all the smaller patches and used those patches 

along with the original image in the training. In 

addition, for other types of data augmentation, 

they accompanied the image with different 

intensities of the original image in the training 

phase. (Dosovitskiy et. al., 2014) tried data 

augmentation by first getting different batches 

from the original data; then they tried different 

transformations such as different scale, color and 

contrast on those batches and added them to that 

class. They trained a convolutional neural 

network and report higher accuracy using data 

augmentation. (Bouthillier et. al., 2015) 

suggested adding data from the same distribution 

as the original data in the training. They argue 

that it helps the classifier to have better 

generalization error. In line with the previous 

research, (Simard, Steinkraus and Platt, 2003), 

suggested text augmentation as their best practice 

in their article. They added different versions of 

the original data such as the rotated version of the 

data or random displacement fields to the data for 

training. They noticed an improvement in the 

classification error, training their convolutional 

neural network.  In this article, we suggest text 

augmentation by adding concepts from 

Conceptnet and Wikidata and descriptions 

deprived from Wikidata. The detail of these 

methods is found in the following sections. In 

addition, we argue that the relations and the 

concepts in the ConceptNet are not complete and 

their combination with relation and concepts 

from Wikidata are more useful and complete for 

this process. For this purpose, we present Fig.2. 

It shows the knowledge graphs from Wikidata 

and ConceptNet; we limit the number of nodes 

(concepts) to 10 and the number of relations for 

the purpose of clarity.  We chose the word 

“bitch” because it was the most frequent non-

stop-word in our corpus. Figure 1a, the image of 

the Wikidata knowledge graph around this word,  

shows the related concepts to which “bitch” is 

related , “profanity” and “insult”, with the 

relation, IsA. Figure 1b, is a ConceptNet 

knowledge graph with more relations such as 

IsA, Synonym, relatedTo and CapableOf to 

words such as “sugar_baby”, “cunt”, “canine”, 

“difficulty” and “backbite”. Figure 1c. shows the  

combination of the two knowledge graphs.  

 

Figure 1a: Wikidata knowledge graph 

 

 

Figure 1b: ConceptNet knowledge graph 

 

 
Figure 1c: Combination of Wikidata and 

ConceptNet knowledge graphs. 
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3 Experiment 

3.1 Dataset 

Z. Waseem and D. Hovy,  2016 were the first who 

collected hateful tweets and categorized them into 

sexism, racism or neither. Inspired by the study of 

McIntosh (Peggy McIntosh, 2003), Waseem 

categorized the tweets into being sexist or racist if 

they have any of the proposed 18 observations in 

the tweets such as the usage of any kind of slur to 

showing sexism racism, criticizing minorities and 

so forth. Jha and Mamidi 2017 (Jha, A., and 

Mamidi, R. 2017) solely focused on sexist tweets 

and proposed two categories of hostile and 

benevolent sexism. However, these categories 

were very general and simply ignored other types 

of sexism happening in social media. In one step 

further, Sharifirad S. and Matwin S 2018( S 

sharifirad and S Matwin, 2018), proposed 

complimentary categories of sexist language 

inspired from social science work. They 

categorized sexist tweets into the categories of (1) 

indirect harassment, (2) information threat, (3) 

sexual harassment and (4) physical harassment. 

Table 1 shows the distribution of the dataset along 

with the sample of tweets in each category 

mentioned in Table2. 

 

 

Table 2: Sample of each category 

category sample 

Indirect 
harassment 

-'act like a woman think like a 
man' 
-'conservative and intelligent 

women did not take the day off' 
-'everybody knows that every girl 

should only want to marry a sane 
man as good as her sane father 
nobody can top a girl’ 

- 'i am so sick amp tired of this 
attitude oh wow youre smart for a 
girl' 

Physical 

harassment 

-'a womans guide to st century sex 

naked paintball girls' 
-'correction katie and nikki are 

really the dumb blonde ones 
-'hoping to see the spice girls 
crash and burn' 

- 'how can such an ugly girl win a 

beauty competition she must have 
been the only one competing that 
year' 

- 'i ll never understand why pretty 
girls let below average guys treat 
them like shit' 

-'nobody fucking likes you you 
ugly stupid fat bitch' 

Sexual 

harassment 

-birch bitch d.ck tosser theres no 

enough words for him but dead 
man walking id say forged 
f..cking v 

-'bitch shut yall dumbasses up 
cosigning on bullshit' 
-chloe and kelly you are a pack of 

cunts' 
-'f..ck on that bitch and we lay up' 

-'caramel girl misionary position 
naked girls', 
-caribbean girls getting f..cked 

best porn shot', 

 

In this study, we focused on the sexual 

harassment tweets gathered by (Sharifirad and 

Matwin, 2018, 2018).  

 

3.2 Text preprocessing 

Preprocessing of the tweets involves removal 
of the punctuation, hyperlinks/URLs, emojis and 
tags. Before training the classification models, 
Wordnet lemmatization from NLTK library is 
applied on all the tweets. We set the maximum 
size of each tweet to 40 words, and padded the 
tweets of shorter length with zeroes. Next, tweets 
are converted into  vectors using Word2vec (T. 

Mikolov , 2013), all with the length 300. For the 
out-of-vocabulary words, we use their character 
vectors and concatenate them to have the final 
representation of the word. Classification 

algorithms For multiclass classification, we 
considered a baseline along with some traditional 
classification algorithms utilized for this purpose 
and deep learning algorithms. We used one-vs-rest 
(OVR),  and trained and evaluated K independent 
binary classifiers for each class separately. We 
considered all the samples in that class positive 
and the rest were all negative samples using 
LinearSVC in the Sklearn python package. We 
also considered Support vector Machines (SVM) 
and Naive Bayes (NB) as the traditional methods 
and Long-short-term-memory (LSTM) and 
Convolutional Neural network (CNN) for the 
choice of deep learning methods (Björn Gambäck 
and Utpal Kumar Sikdar. 2017 ). 

 

 

Table 1: The detail information of the sexist 
data distribution. 

Category Number of tweets 

Indirect harassment(#1) 260 

Information threat(#2) 6 

Sexual harassment(#3) 417 

Physical harassment(#4) 123 
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3.3 Text Generation 

We generated new tweets using ConceptNet in 
order to improve coverage of our classes using 
three methods and compared their performance 
of classification using machine learning models.  
In the first approach which we call “All Words 
Replacement (AWR)”, tweets were tokenizedand 
then each token (except for stop words), 
regardless of its grammatical role, was replaced 
with all their FromOf and IsA relationships target 
in ConceptNet whose weight is greater than 1.0. 
We started from the first token and went forward 
until a specific number of new tweets had been 
generated. Relationships other than the ones 
listed in table 3 led to meaningless tweets that did 
not represent the original tweet. As an example, 
the output of Conceptnet for the query of the 
word “girl” is as follows: [{'relationship': 'IsA', 
'target': 'woman', 'weight': 2.0}, {'relationship': 

'IsA', 'target': 'female person', 'weight': 1.0}, 
{'relationship': 'IsA', 'target': 'female young 
human', 'weight': 1.0}]. We then replaced the 
word “girl” with the words “women”, “female 
person” and “female young human”. The second 
method which we call “Verb Replacement (VR)” 
was to first tokenize the tweet and replace the 
verb by its synonyms in ConceptNet. The third 
method is called “Noun Replacement (NR)”; the 
process is the same as with the second approach, 
VR, but with the difference that we replaced only 
the nouns with the concepts coming from 
ConceptNet. Table3 shows the summary of the 
relation, the selected words and the generated 
sentence. For each sentence we show only one 
example out of many of the newly generated 
tweet. Table 4 shows the result of classification 
algorithms on the generated tweets. 

Table 3: Sample of generated sentence along 
with the relation type. 

 Sentence 

sample 

Types 

of 
relation 

Generated 

sentence 

AW

R 

"Kathy you 

bitch  need to 
slap your 
daughter" 

FromOf 

IsA 

"Kathy 

you cunt  
want to hit 
your 

mom" 

VR "Kathy you 
bitch  need to 
slap your 

daughter" 

Synony
m 

Kathy you 
bitch want 
to smack 

your 
daughter 

NR "Kathy you 
bitch  need to 

slap your 
daughter" 

Synony
m 

Related
To 

Kathy you 
bitch need 

to slap 
your 

mother 

 

 

 

3.4 Text augmentation 

For text augmentation, we added the concepts 
from ConceptNet for the first proposed method. 
In the second method, we considered the 
concepts from ConceptNet and Wikidata in a 
smart procedure. The first method is based on 
adding the related concepts to the original tweets. 
We tokenized each tweet, then considered “IsA” 
as the relation and chose the top ten related 
concepts based on their weight from ConceptNet 
and added them to the end of the tweet. Even 
though the number of tweets remained the same 
the length of the tweets increased to the length of 
a paragraph. Table 5 shows an example of text 
augmentation. In the second approach, in 
addition to the augmentation of tweets using 
ConceptNet, we augmented tweets by the 
definition of their tokens in Wikidata. We 
tokenized the sentence, then added the top related 
concepts from ConceptNet based on the sorted 
weight. After that, we combined ConceptNet 
with Wikidata. The output of the Wikidata 
around the word query “girls” is 39 tuples; we 
mention 4 of them as follows: [{'q1.description': 
'painting by Lisa Milroy', 'relationship': 'IsA', 
'target': 'painting' },{'q1.description': 'painting by 
Henri-Jean-Guillaume Martin','relationship': 
'IsA', 'target': 'painting' }, , {'q1.description': 
'young female human', 'relationship': 'IsA', 
'target': 'female' }, {'q1.description': 'young 
female human', etc. Of all these concepts in 
Wikidata, only one of them is pertaining to the 
concept “girl” in ConceptNet. To choose the 
right concept from Wikidata, we first chose the 
top 10 concepts sorted by the weight, then 

calculated the cosine similarity between the 
averaged word vectors of these concepts using 
Word2vec and the averaged vector of the words 
in the description from Wikidata. After sorting 
the descriptions based on the similarity score, we 
added the most similar description to that tweet.  

Table 4: Classification results on the original 

and on the generated texts. 
 OVR SVM Naive 

Baye
s 

LST
M 

CN
N 

The 

origin
al data 

0.52 0.68 0.60 0.74 0.75 

AWR 0.79 0.94 0.92 0.98 0.98 

NR 0.77 0.83 0.85 0.92 0.91 

VR 0.82 0.88 0.88 0.97 0.95 
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4 Results 

4.1 Experimental Setup 

 

We made bigrams using the python NLTK 
package and changed them into vectors using 
word2vec. For  word2vec, we used the genism 
library trained using CBOW and concatenated 
the vectors of length 300 to get a vector for the 
each tweet. We used multi-class Naïve Bayes in 
Scikit learn python, multiclass LSTM and multi-

class CNN using Keras for the choice of 
classifiers. We divided the dataset into 70% train 
and 30% set. For each tweet, we made the labels 
in the form of one-hot encoding of length four 
and we used the same labels for all the 
classification process. We applied a CNN-based 
approach to automatically learn and classify 
sentences into one of the four categories. During 
the evaluation, a grid search was applied to get 
the optimal number of filters and filter sizes. 
Also, we tried with multiple configurations of 
convolutional layers of 2, 4 and 6. The best 
performance consisted of two convolutional 
layers of each followed by a max pooling layer. 
Convolutional of size 256 with filter size 5 
applied for all the convolutional layers. A 
dropout rate of 0.5 was implemented to avoid 
over fitting. A fully connected layer with a length 
of 128 was followed by a second dropout 
function. This was followed by a dense layer 
with a size of 4 to represent the number of 

classification classes using the Softmax function. 
Our implementation was similar to the model 
presented in (Björn Gambäck and Utpal Kumar 

Sikdar. 2017).  We trained a simple LSTM model 
including one hidden layer containing 256 nodes 
and rectifier activation on the hidden layer, 
sigmoid activation on the output layer ADAM 
gradient descent, and a negative likelihood loss 
function. We created 300 epochs and batch sizes 
of 5. Table 6 shows the results of the text 
generation. Our first classification experiment 
was over the original dataset with three classes, 
since in the original dataset, the second class, 
indirect harassment, had only 6 tweets and in 
comparison to the other classes, it didn’t have 
enough tweets; thus we removed this class and 
performed our classification algorithm on the rest 
of three classes. Our second classification 
approach, verb replacement (VR), was based on 
the four balanced classes each having about 996 
tweets, coming from the first text generation 
method, all word replacement (AWR).  The third 
classification experiment, noun replacement 
(NR), was on the four balanced datasets coming 
from the second method of text generation, each 
class having about one thousand data points and 
the last experiment coming from the third 
approach for text generation; each class having 
the same number of tweets. We used five 
classification algorithms, the one-versus-all 
algorithm as the baseline, naive Bayes and SVM 
as more traditional classification algorithms and 
then two artificial neural network approaches, 
Recurrent Neural Network (RNN) and 
Convolutional Neural Network (CNN). On the 
original dataset, the highest accuracy, we 
achieved was 75% using CNN (for more results 
please see Table 6). We believe this poor 
performance was due to poor coverage of our 
dataset and the imbalanced nature of the dataset. 
We aimed to alleviate these issues using 
ConceptNet. Experimenting on the second 
dataset, which was the generated data with all 

word replacement (AWR), showed a 
considerably higher performance in comparison 
to the original dataset. In this dataset, all four 
classes are balanced. LSTM and CNN both have 
the same high performance on the classes. The 
second performance relates to the SVM and the 
last one relates to the one-versus-all classification 
algorithm.  In the third generated dataset, noun 
replacement, the highest performance relates to 
the LSTM and the second highest relates to the 
CNN with a very small margin.  The highest 
performance is related to the LSTM for the third 
method of generated data, followed by CNN and 
the SVM and Naive Bayes. We ran different text 
generated methods to know the best way to 

Table 5: Sample of text augmentation 

Original 

tweet 

Augmented tweet 

“local 
girls 

near you 
that are 
down to 

fuck rt 
what 
links do 

yall 
keep 

clicking 
on to get 
hacked” 

local girls near you that are down to 
fuck rt what links do yall keep 

clicking on to get hacked public 
transport local organization smaller 
than national agent non geographical 

animanga character area unit passive 
verb feather hair highland strike get 
better of direction turn soft feather 

from goose hair feather mood 
landscape semisolid sexual 

intercourse rude word television 
station dehydrated may rehydrated 
right best human ear good all-purpose 

life but seeing difference film 
television show situation software 
solfa syllable travel create proceed 

carry through musical artist record 
confine have store stronghold grow 

lodge protect stay sound emission 
communicate destroy make buy 
return catch annoy touch hit seize 

get'” 
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increase the number of tweets in each class and 
to balance it. It seems all word replacement 
(AWR) of the sentence elements with specific 
relations from ConceptNet in combination with 
neural network yields the highest performance 
boost. As mentioned in table 5. All the generated 
methods have better performance in comparison 
to the raw data. VR has better performance in 
comparison to the NR. The best performance for 
the text generation method is AWR (all Word 
Replacement) using ConceptNet as the 
generation method and LSTM and CNN as the 
classification method. In addition, all the 
augmentation methods have better performance 
in comparison to the original data. The method in 
which we augment the concepts from Wikidata 
and ConceptNet along with the description from 
Wikidata has better performance in comparison 
to the augmentation with ConceptNet. However, 
the performance is not as good as the text 
generation method. 

 

5 Conclusion 

In this article we introduced simple but 
effective methods for text generation and text 
augmentation using general purpose knowledge 
graphs. For text generation we solely used 
ConceptNet and for text augmentation we used 
both ConceptNet separately and both ConceptNet 
and wikidata. Since there is no mapping between 
ConceptNet and wikidata, we used the cosine 
similarity of word vectors of related concepts in 

ConceptNet and words in description of wikidata 
in order to establish mappings between their 
concepts. Application of our method to the 
problem of sexist tweet classification shows 
drastic improvements in classification results. 
Our approach can be applied without any 
modifications to any other text classification 
problem. As the future work, it is interesting to 

add words and descriptions from Wikidata for the 
text augmentation task. We would liketo  try this 
method on other abusive and hate speech 
datasets. It would also be interesting to combine 
ConceptNet, Wikidata and Emoji ontology for 
the text augmentation and text generation task. 
Also, investigating the impact of the methods on 
larger datasets are an interesting future work 
direction. 
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Abstract

This paper discusses the question whether it is
possible to learn a generic representation that
is useful for detecting various types of abusive
language. The approach is inspired by recent
advances in transfer learning and word embed-
dings, and we learn representations from two
different datasets containing various degrees
of abusive language. We compare the learned
representation with two standard approaches;
one based on lexica, and one based on data-
specific n-grams. Our experiments show that
learned representations do contain useful in-
formation that can be used to improve detec-
tion performance when training data is limited.

1 Introduction

Abusive language is prevalent on the Internet of
today. Many users of social media can attest to the
frequent occurrence of negative slurs, racist and
sexist comments, hate speech, cyberbullying, and
outright threats. Commentary fields of news out-
lets, discussion forums, blogs, and normal web-
sites are overflooded by abusive language, forcing
administrators to restrict the possibility to com-
ment on content, and in many cases removing this
possibility altogether. As unfortunate as this de-
velopment may be, it is hardly surprising. Our
current information landscape has been designed
to maximize the effectiveness of human communi-
cation, and factors such as transparency, trust and
credibility have remained of peripheral concern
for service providers. The combination of accessi-
bility and anonymity of many online services pro-
vides the perfect conditions for “dark triad” behav-
ior (Paulhus and Williams, 2002) to flourish. Even
traditional news media, which have been seen as
the last bastion for credibility and trust, are nowa-
days driven by the need for fast updates, sensation-
alism, and the hunt for clicks. It should serve as a

cautionary observation that even fringe phenom-
ena such as trolling fit comfortably in the current
media landscape on the Internet (Phillips, 2015).

Our research focus in this paper is the question
whether an inherently abusive environment such
as a discussion forum or a white supremacist web-
site can be used to learn a generic representation
of abusive language, and whether such a represen-
tation can be used in supervised methods for de-
tecting abusive language. Our work is inspired on
the one hand by recent advances in transfer learn-
ing and pre-training of deep neural networks (Pan
and Yang, 2010; Erhan et al., 2010; Peters et al.,
2018), and on the other hand the use of embed-
dings as representation layer in text classification
(Sahlgren and Cöster, 2004; Jin et al., 2016). We
use two different data sources for learning rep-
resentations (Stormfront and Reddit, further de-
tailed in Section 4.1) and three different represen-
tation learning mechanisms (character-enhanced
word embeddings, document-enhanced word em-
beddings, and a character-level language model,
all further detailed in Section 3.3). We compare
the proposed approaches with standard lexicon-
based classification as well as supervised classi-
fication using Bag-of-Words n-gram representa-
tions.

2 Previous Work

The widespread occurrence of abusive language
and behavior in online environments makes it nec-
essary to devise detection methods to identify
and mitigate such phenomena. Where the occur-
rence of abusive language is an increasing nui-
sance that may have economic consequences for
service providers, it can be a matter of life and
death for individuals and organizations who are
targeted with more extreme forms of abusive lan-
guage, such as explicit death threats. There has
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been a fair amount of previous work on detecting
various forms of abusive language. In particular
the general concept of hate speech, which may in-
clude anything from negative remarks and racist
comments to threats, has enjoyed a considerable
amount of previous research (see e.g. Warner and
Hirschberg (2012); Wester et al. (2016); Ross et al.
(2016); Waseem and Hovy (2016); Davidson et al.
(2017); Isbister et al. (2018)), demonstrating both
the complexity of such a general problem as man-
ifested by low inter-annotator agreement scores,
but also the viability of using machine learning
for detecting specific instances of hate speech in
online conversations. Several researchers have fo-
cused on more specific types of abusive language,
such as cyberbullying (see e.g. Reynolds et al.
(2011); Nandhini and Sheeba (2015); Murnion
et al. (2018)) and threats (e.g. Hammer (2014);
Wester et al. (2016)), demonstrating the applica-
bility of machine learning for detection purposes.
The somewhat related, but more general, tasks
of sentiment analysis and stance detection have
a long history in Natural Language Processing
(NLP), with a large body of literature on both theo-
retical and practical issues related to detection and
monitoring (see e.g. Turney (2002); Pang and Lee
(2008); Liu (2012); Pozzi et al. (2016); Kucher
et al. (2017)).

3 Text Representations

Our primary interest in this study is the effect of
text representations for the task of detecting abu-
sive language. We consider three inherently dif-
ferent approaches: predefined sets of keywords
(i.e. lexica), data-specific n-grams (i.e. Bag-of-
Words), and pretrained embeddings. The follow-
ing sections provide more details regarding the
different approaches.

3.1 Lexica

The arguably most simplistic representation for
detecting abusive language is to use a set of key-
words (i.e. a lexicon) of abusive terms, possibly
augmented by weights that quantify the relative
importance of lexicon items. As an example, a
lexicon with negative slurs may list terms such as
“idiot”, “redneck” and “white trash”, and weights
may be assigned that give higher importance to oc-
currences of “idiot” and “white trash” than to oc-
currences of “redneck”. It is obvious that the cov-
erage of the lexicon will be dependent on the in-

ventiveness of the lexicographer. Coming up with
an exhaustive list of all possible negative slurs is
a daunting task, and (the almost certain) failure to
do so will affect the coverage of the method. One
way to alleviate this synonymy problem is to use
unsupervised (or semi-supervised) machine learn-
ing to augment the compiled lexicon (Gyllensten
and Sahlgren, 2018). Another obvious problem
with keyword matching is polysemy, or the fact
that words can have several different meanings.
As an example, consider a statement such as “you
should use the white trash can”, which contains
the abusive keyword “white trash”, but does not
signal negativity. Accounting for such context-
sensitivity is a challenging problem (referred to
as word-sense disambiguation in NLP) that affects
the precision of the classification.

Despite these apparent drawbacks, lexicon-
based classification is common in both sentiment
analysis (see e.g. Taboada et al. (2011); Jurek et al.
(2015)), and in hate speech detection (e.g. Njagi
et al. (2015); Schmidt and Wiegand (2017); Isbis-
ter et al. (2018)). The two main reasons for this
is simplicity and transparency. Simply defining a
set of keywords and counting their occurrences in
text is a quick and easy way to get an impression
of the prevalence of some phenomenon. Further-
more, being able to precisely identify the matching
keywords in text is a transparent and simple way
to explain a classification decision to a user. Such
explainability can be a very important considera-
tion in practical applications.

In the following experiments, we use four pre-
viously published lexica relating to abusive lan-
guage. We use the baseLexicon containing
537 tokens, and the expandedLexicon con-
taining 2,680 tokens from (Wiegand et al.)1, and
the hatebaseLexicon containing 1,018 to-
kens, and the refined_ngramLexicon con-
taining 178 tokens from (Davidson et al., 2017)2.
We refer to these lexica simply as Lexicon #1,
Lexicon #2, Lexicon #3, and Lexicon #4 in the
remainder of this article. The original lexica are
modified such that only terms that are certain to
convey abusiveness, according to the lexicon cre-
ators, are retained and word class information is
discarded. That is, in Lexicon #1, all terms la-
beled FALSE by the annotators are removed, and
in Lexicon #2 all terms with a positive score (in-

1https://github.com/uds-lsv/lexicon-of-abusive-words
2https://github.com/t-davidson/hate-speech-and-

offensive-language
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dicating abusiveness) are kept. Lexicon #3 and #4
are used as-is. For the classification tasks using the
lexica, a text is considered as abusive if it contains
at least one term from a lexicon. Examples of abu-
sive lexical entries include: “linthead”, “alligator
bait”, and “you fuck wit”.

3.2 Bag-of-Words

In contrast to a priori defining a set of represen-
tative terms, a Bag-of-Words (BoW) representa-
tion identifies informative terms directly from the
training data. A BoW representation is an un-
ordered collection of terms, in which each text is
represented as an n-dimensional vector, where n
is the size of the vocabulary, and each dimension
encodes the weight (or informativeness) of a spe-
cific word in the current text. The standard term
weight is some variant of TF-IDF (Sparck Jones,
1988), which combines a measure of the represen-
tativeness of a word for a text (often simply the fre-
quency of the word in the text, TF) with a measure
of how discriminative words are (often the inverse
document frequency of a word, IDF). This “simple
and proven” (Robertson and Jones, 1994) method
for representing text is often employed in practi-
cal document processing applications, such as text
categorization, document clustering, and informa-
tion retrieval.

The main benefit of using BoW representations
is that does not require any a priori knowledge,
and that it operates completely on the given data.
As such, a BoW representation may learn to use
features that are not obvious for a lexicographer,
and it may learn to use certain features in combi-
nation (e.g. that the occurrence of “can” in con-
junction with “white trash” signals absence rather
than presence of abusiveness). On the other hand,
a BoW representation will be sensitive to out-of-
vocabulary items, and it may learn to use fea-
tures that do not make sense for a human ana-
lyst, which obviously decreases the explainability
of the method.

In the following experiments, we augment stan-
dard BoW unigram features with character n-
grams. This is normally done in order to account
for morphological variation; if a training exam-
ple contains the word “abuse” but a test example
contains the word “abusive”, a standard BoW rep-
resentation will allocate different vector dimen-
sions for these two words, and consequently there
will be no similarity between the BoW representa-

tions for these texts. Using character n-grams, we
would instead represent these words by their com-
ponent character n-grams (up to some size of n),
which would allocate the same vector dimensions
to shared n-grams such as “abus”, thus inducing
similarity between their representations.

We use up to 4-grams for the character se-
quences, and we also allow for word bigrams in
the representations. Word bigrams can be helpful
to distinguish the use of collocations from use of
the component terms. As an example, we would
assign very different abusive scores to the two
statements “you can use the trash can that is white”
and “you are white trash”; it is not the individ-
ual occurrences of the words “white” and “trash”
that is significant here, but the collocation “white
trash”. We weight the dimensions of the result-
ing representations using standard TF-IDF. For the
classification tasks, the weighted n-gram repre-
sentations are fed into a Logistic Regression clas-
sifier with L2 penalization.

3.3 Embeddings

While a lexicon relies completely on prior knowl-
edge about the task and the domain, a BoW repre-
sentation relies exclusively on task-dependent fea-
tures. The idea of using pre-trained embeddings is
a way to combine these two perspectives; we use
bag-of representations to encode task-specific fea-
tures, but take prior knowledge about the domain
into account by learning a representation from rep-
resentative data, which (in the best case) encodes
latent variables that may be useful for relevant
classification tasks.

This approach is inspired by recent advances in
transfer learning and pre-training of deep neural
networks (Pan and Yang, 2010; Erhan et al., 2010;
Peters et al., 2018), in which a model that has been
learned on some data is used as the foundation for
learning a new model on new data. By doing so,
the new model can take advantage of the previ-
ous knowledge already encoded in the representa-
tions of the pre-trained model. This is conceptu-
ally the same idea as using pre-trained word em-
beddings as representation layer in text classifica-
tion (Sahlgren and Cöster, 2004; Jin et al., 2016),
where the hope is that the embeddings can provide
useful generalizations in comparison with only us-
ing standard BoW.

We investigate three flavors of this idea. The
first flavor relies on character-enhanced word em-
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beddings trained using the FastText model (Bo-
janowski et al., 2017), which uses the character
n-grams of a set of context words to predict a
target word. For those who are familiar with the
word2vec model (Mikolov et al., 2013), this is es-
sentially the same idea as the CBOW architecture,
but using character n-grams instead of only word
tokens. The resulting embeddings are used to pro-
duce text representations by simply averaging the
TF-IDF-weighted vectors for all words in a text.
For the embeddings, we use 300-dimensional vec-
tors using the CBOW architecture with character
n-grams, where n ranges between 3 to 6 charac-
ters. We use a window size of 5 tokens, and dis-
card tokens that occur less than 100 times in the
training data. These parameter settings are stan-
dard in the literature on embeddings, and are based
on experience and trial and error.

The second flavor uses document-enhanced
word embeddings trained using the Doc2Vec
model (Le and Mikolov, 2014), which also re-
lies on the architectures from word2vec, but adds
a document id as input signal in addition to the
word tokens. In this case, we use the distributed
bag-of-words architecture, which predicts a set of
word vectors based on a document vector (i.e. a
document-based version of the SkipGram archi-
tecture). We use 300 dimensions for the embed-
dings, and the distributed bag-of-words architec-
ture with a window size of 5, including only tokens
that occur more than 100 times in the training data.

The third flavor uses a character-level language
model that is trained to predict the next charac-
ter given an input sequence of characters. We
use a simple architecture consisting of one recur-
rent layer with Gated Recurrent Units (GRU) (Cho
et al., 2014) using recurrent dropout, followed by
a dense output layer using softmax activation. For
training the network, we use adam optimization
with learning rate decay, and a context size of 32
characters. For producing input vectors for train-
ing examples in the supervised classification ex-
periments, we split the examples into consecutive
chunks of 32 characters, and average the activa-
tions of the GRU layer over all chunks.

Despite being conceptually similar, there is
an important difference between these three ap-
proaches that concerns the compositionality of the
text representations. In the case of character-
enhanced and document-enhanced word embed-
dings, we are essentially using bag-of represen-

tations that disregard the sequential nature of the
data. That is, the average embedding for the se-
quences “Bob hates Mary” and “Mary hates Bob”
will be exactly the same. This is not the case for
the language model, which operates on the char-
acter sequences, and therefore will produce differ-
ent compositional representations for these two se-
quences. It is an empirical question whether this
difference is of practical importance when using
the resulting representations as input to a super-
vised classifier.

4 Experiments

In order to compare the viability for detecting
abusive language of the representations described
in the previous sections, we use two different
datasets for building embeddings, and four differ-
ent datasets for validating classifiers based on the
representations. Since our main focus in this paper
is to study the effect of the representations rather
than pursuing state of the art results, we use the
same supervised classifier in all cases; a Logis-
tic Regression classifier with L2 penalization. Be-
fore turning to the results, we describe the various
datasets used in the experiments.

4.1 Data for Pre-Training

The three types of embeddings are trained on
two different data sets; a collection of roughly
5 million posts from the white supremacist web-
site Stormfront, and a random sample of approx-
imately 54 million comments from the discussion
forum Reddit. Both datasets were crawled specif-
ically for these experiments.

The reason for selecting these data is that they
can be expected to contain various levels of abu-
sive language. In the case of Stormfront, which
has been classified as a hate site (Levin, 2002),
we can expect to find a wide diversity of abusive
language, ranging from negative slurs of various
sorts (racial, sexual, religious, political) to explicit
threats and targeted hate. Reddit, on the other
hand, is mainly a discussion forum where regis-
tered users discuss anything from general life style
topics such as movies, gaming, and music, to very
specialized topics such as machine learning and
survivalism. Due to its diverse and inherently con-
versational nature, Reddit can also be expected to
contain a fair amount of controversial topics and
abusive language. However, it seems reasonable to
assume that Stormfront contains a wider spectrum
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Dataset Token ratio Doc. ratio
Stormfront 0.043 6.237
Reddit 0.041 1.497

Table 1: Ratios of occurrences of lexicon items in
Stormfront vs. Reddit.

of abusive language, due to the fact that subjects
who are active in white-supremacist environments
tend to exhibit not only racial prejudice but gener-
alized prejudice, which means we can also expect
to find a substantial amount of sexism, homopho-
bia, islamophobia, and so on.

As a simple demonstration of this, Table 1
shows the proportion of occurrences of terms from
the various lexica introduced in Section 3.1 in
Stormfront vs. Reddit. We count ratios of the
occurrence of lexical items over both tokens and
documents to account for differences in docu-
ment length (comments on Stormfront are on av-
erage 143 words long, but only 36 words long
on Reddit). The ratios in Table 1 demonstrate a
slightly higher concentration of abusive terminol-
ogy (especially when considering document ratio)
in Stormfront compared to Reddit.

4.2 Data for Classification

Table 2 shows the four different datasets used to
evaluate the viability of the different representa-
tions for detecting various forms of abusive lan-
guage. The columns Pos. used and Neg. used
specify the number of examples included in our
experiments; we delimit all datasets to 10,000 data
points (by random sampling) for efficiency rea-
sons, and in order to use an equal amount of data
in all experiments. Note that all datasets are highly
imbalanced between the classes. This means that
one could achieve high accuracy by simply guess-
ing the majority class (i.e. the negative examples).
To address this, we use weighted F1 score, which
calculates F1 for each label and then their aver-
age is weighted by support – i.e. the number of
true instances for each label. Note that the use of

weighted F1 can result in an F-score that does not
lie in between precision and recall. We also pro-
vide a baseline method similar to random guess-
ing by using a stratified dummy classifier that gen-
erates predictions by respecting the training set’s
class distribution.

4.3 Results

The results for the various representations on
the various datasets are shown in Table 3 (next
side). It is obvious that all representations
beat the baseline, which demonstrates that they
all provide useful information. Starting with
the lexica, it is interesting to note that Lexi-
con #1 (the baseLexicon containing 537 to-
kens) outperforms the other lexica in all Wikipedia
datasets, despite Lexicon #2 and #3 being sig-
nificantly bigger. Lexicon #4, which is the
refined_ngramLexicon containing merely
178 tokens, performs only slightly worse than
the other lexica. The biggest lexicon, the
expandedLexicon with 2,680 tokens, per-
forms best on the Twitter Hatespeech data. These
differences demonstrate that lexica in general do
not generalize well.

The best-performing lexicon for each dataset
outperforms the character-level language model
representations. However, none of the lexica beat
the GRU representations on all datasets, which in-
dicates that pretrained representations have better
generalization capabilities than simple keyword
matching approaches. This is further corroborated
by the fact that the FastText representations con-
sistently outperform the lexica (and the language
model). The best performing embeddings are the
Doc2Vec representations, which produce competi-
tive results in particular for the Wikipedia datasets
(aggression, attack, and toxicity).

However, the standard BoW n-gram represen-
tations outperform all other representations on
all datasets. We include three variants of the
BoW vectors. The row labeled “n-grams” con-
tain results from data-specific BoW representa-

Dataset Reference Pos. available Pos. used Neg. available Neg. used
Twitter Hatespeech Waseem and Hovy (2016) 2,989∗ 2,989 8,270∗ 7,011
Wikipedia Aggression Wulczyn et al. (2017) 21,496 1,647 94,368 8,353
Wikipedia Attack Wulczyn et al. (2017) 19,627 1,492 96,237 8,508
Wikipedia Toxicity Wulczyn et al. (2017) 23,023 1,205 136,663 8,795
∗Note that since the publishing of Waseem and Hovy (2016), more than 5,000 tweets in the original corpus have
become unavailable, and are thus not included in our experiment.

Table 2: Datasets used for evaluating the representations in supervised classification of abusive language.
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Representation Hatespeech Aggression Attack Toxicity
Baseline 0.610 0.700 0.720 0.753
Lexicon #1 0.664 0.795 0.806 0.831
Lexicon #2 0.729 0.751 0.758 0.783
Lexicon #3 0.647 0.777 0.798 0.824
Lexicon #4 0.626 0.749 0.771 0.804
n-grams 0.871 0.831 0.848 0.870
n-grams-Reddit 0.854 0.833 0.850 0.870
n-grams-Stormfront 0.851 0.826 0.844 0.869
n-grams-Doc2Vec-Reddit 0.857 0.841 0.857 0.878
FastText-Stormfront 0.749 0.796 0.814 0.843
FastText-Reddit 0.738 0.804 0.824 0.848
Doc2Vec-Stormfront 0.820 0.817 0.840 0.862
Doc2Vec-Reddit 0.816 0.824 0.846 0.869
GRU-Stormfront 0.719 0.780 0.798 0.828
GRU-Reddit 0.711 0.774 0.791 0.824

Table 3: Results for the various representations on the datasets used in these experiments. The baseline is based on
random guessing in proportion to the class distributions, and the lexica use simple Boolean matching (i.e. presence
or absence of lexicon terms). All other results are produced by feeding the representations to a Logistic Regression
classifer with L2 penalization.

tions (i.e. n-grams collected from the training
data), while the “n-grams-Reddit” and the “n-
grams-Stormfront” use vocabulary collected from
the Reddit and Stormfront data, respectively. The
point of including all three variants is to study
the effect of data-specific vocabulary, which only
seems to have a clear positive effect on the Twitter
Hatespeech data. This is hardly surprising, since
the Twitter data features a lot of domain-specific
terminology such as hashtags and @-mentions.

In order to investigate whether the best-
performing embeddings (Doc2Vec) contribute ad-
ditional information in comparison with the data-
specific BoW n-grams, we also include results
with a model that concatenates the data-specific
BoW n-grams with the Doc2Vec-Reddit model.
These augmented representations produce the best
results on all the Wikipedia datasets, but low-
ers the score for the Twitter Hatespeech data.
This demonstrates that the document-based em-
beddings do contribute useful information in addi-
tion to the BoW n-grams, but that domain-specific
vocabulary is important to include. It could be in-
teresting in future research to investigate whether
Doc2Vec representations that have been trained
on Twitter data would improve the results for the
Twitter Hatespeech dataset.

Note that the FastText and Doc2Vec embed-
dings trained on Stormfront produce slightly bet-

ter results for the Twitter Hatespeech data than the
ones trained on Reddit, but the opposite is true
for the Wikipedia data. One interpretation of this
is that the Wikipedia data is more similar in na-
ture to Reddit than to Stormfront; both Wikipedia
discussions and Reddit are essentially conversa-
tional in nature, and typically do not contain ex-
plicit hatespeech to the extent present in the Twit-
ter Hatespeech data and in the white supremacist
website Stormfront. This analysis does not hold
for the GRU language model, however, where the
model trained on Stormfront produces slightly bet-
ter results on all datasets. Although the differ-
ences in the results produced with the representa-
tions learned from Stormfront and Reddit are very
small, they indicate that the choice of background
data can have an influence on the suitability of the
learned representations for specific classification
tasks.

In order to further investigate the effect of using
pretrained representations, we compute learning
curves for the Logistic Regression classifier using
the various representations, shown in Figures 1 to
4 (next side). The score for each set of training ex-
amples in these Figures is the average of 10 cross-
validations. Note that the number of training ex-
amples on the x axis is log scale, since we want
to investigate how the representations perform on
limited amounts of training data. Note also the
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Figure 1: Learning curves for the Twitter Hatespeech
data using different representations with a Logistic Re-
gression classifier.

straight lines for the Baseline and Lexicon repre-
sentations, which do not rely on training data.

The arguably most interesting aspect of the
learning curves is the fact that the Doc2Vec rep-
resentations lead to the best performance for all
datasets when the amount of training data is lim-
ited. Up to a couple of hundred training examples,
the Doc2Vec representation outperforms the BoW
n-grams by a large margin. This does not apply
for the other types of embeddings, however, which
seem to require substantial amounts of training
data in order to produce useful results. This sug-
gests that when there is limited training data avail-
able, it is beneficial to utilize pretrained document-
based embeddings as representation layer.

Note also that very few labelled examples are
needed to beat the best-performing lexicon when
using Doc2Vec embeddings. In the case of the
Twitter Hatespeech data, only a hundred labelled
examples are needed to beat the best lexicon. For
the Wikipedia datasets, a couple of hundred ex-
amples are needed. This observation seems incon-
sistent with claims that lexica are more efficient to
compile than collecting training data. Compiling a
suitable lexicon with a couple of hundred relevant
terms is hardly an easier, or more efficient, task
than collecting a couple of hundred data samples.
It could be an interesting future study to quantify
the relative efforts involved in lexicon construction
vs. data annotation.

5 Conclusions

This paper has investigated the question whether
an inherently abusive environment such as a dis-

Figure 2: Learning curves for the Wikipedia Aggres-
sion data using different representations with a Logistic
Regression classifier.

Figure 3: Learning curves for the Wikipedia Attack
data using different representations with a Logistic Re-
gression classifier.

Figure 4: Learning curves for the Wikipedia Toxicity
data using different representations with a Logistic Re-
gression classifier.
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cussion forum or a white supremacist website can
be used to learn a generic representation of abu-
sive language, and whether such a representation
can be used in supervised methods for detecting
abusive language. The answer seems to be yes.

Our main result is the fact that pretrained em-
beddings, in particular Doc2Vec representations,
trained on some relevant background data produce
better results than standard BoW n-grams when
training data is limited. We hypothesize that the
results produced with the Doc2Vec representations
will be very difficult to beat even when using state
of the art methods if the classifier can only use
a couple of hundred training examples. The fact
that Doc2Vec representations produce more useful
results than the other embeddings suggests that it
could be interesting to investigate the use of more
traditional document-based embedding techniques
such as Latent Semantic Analysis (LSA) or La-
tent Dirichlet Allocation (LDA). We leave this as
a suggestion for future research.

We acknowledge the fact that other machine
learning methods may be more suitable to use for
the input representations included in these experi-
ments. We use Logistic Regression mainly for its
simplicity and its well-known effectiveness. There
have been many successful results using (deep)
neural networks with pretrained embeddings, but
these models learn complex internal representa-
tions that are difficult to interpret, which means
that such models are less suitable to use when
studying the effect of the input representations on
the classification performance. Even so, it could
be interesting to investigate whether the Doc2Vec
embeddings produce the best results also when us-
ing other (deep) machine learning models.

Our results also show that lexica do not gen-
eralize well across tasks, and that only a couple
of hundred training examples are needed for a su-
pervised classifier based on pretrained document-
based embeddings to beat the best-performing lex-
icon.
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Abstract

This paper presents two large newly con-
structed datasets of moderated news comments
from two highly popular online news por-
tals in the respective countries: the Slovene
RTV MCC and the Croatian 24sata. The
datasets are analyzed by performing manual
annotation of the types of the content which
have been deleted by moderators and by in-
vestigating deletion trends among users and
threads. Next, initial experiments on auto-
matically detecting the deleted content in the
datasets are presented. Both datasets are pub-
lished in encrypted form, to enable others to
perform experiments on detecting content to
be deleted without revealing potentially inap-
propriate content. Finally, the baseline classi-
fication models trained on the non-encrypted
datasets are disseminated as well to enable
real-world use.

1 Introduction

With the rapid rise of user-generated content, there
is increased pressure to manage inappropriate on-
line content with (semi)automated methods. The
research community is by now well aware of
the multiple faces of inappropriateness in on-line
communication, which preclude the use of simple
vocabulary-based approaches, and are therefore
turning to more robust machine learning methods
(Pavlopoulos et al., 2017). These, however, re-
quire training data.

Currently available datasets of inappropriate
on-line communication are primarily datasets of
English, such as a Twitter dataset annotated for
racist and sexist hate speech (Waseem and Hovy,
2016)1, the Wikimedia Toxicity Data Set (Wul-
czyn et al., 2017)2, the Hate Speech Identifica-

1https://github.com/ZeerakW/hatespeech
2https://figshare.com/projects/

Wikipedia_Talk/16731

tion dataset containing tweets annotated as hate
speech, offensive language, or neither (Davidson
et al., 2017)3, and the SFU Opinion and Comment
Corpus consisting of online opinion articles and
their comments annotated for toxicity4.

Datasets in other languages have recently also
started to emerge, with a German Twitter dataset
focused on the topic of refugees in Germany
(Ross et al., 2017)5 and a Greek Sport News
Comment dataset containing moderation metadata
(Pavlopoulos et al., 2017)6.

In this paper we present two new and large
datasets of news comments, one in Slovene, and
one in Croatian. Apart from the texts, they
also contain various metadata, the primary being
whether the comment was removed by the site ad-
ministrators. Given the sensitivity of the content,
we publish the datasets in full-text form, but with
user metadata semi-anonymised and the comment
content encrypted via a simple character replace-
ment method using a random, undisclosed bijec-
tive mapping, similar to the encryption method
applied to the Gazzetta Greek Sport News Com-
ments dataset7 introduced in Pavlopoulos et al.
(2017). The two datasets presented in this pa-
per are aimed at further enriching the landscape
of datasets on inappropriate online communication
overall, but especially the dimension of multilin-
guality and multiculturality.

3https://data.world/crowdflower/
hate-speech-identification

4https://github.com/sfu-discourse-lab/
SOCC

5https://github.com/UCSM-DUE/IWG_
hatespeech_public

6https://straintek.wediacloud.net/
static/gazzetta-comments-dataset/
gazzetta-comments-dataset.tar.gz

7https://straintek.wediacloud.net/
static/gazzetta-comments-dataset/README.
txt
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The contributions of this paper are the follow-
ing: (1) we introduce two new datasets annotated
for content inappropriateness, (2) we perform a
basic analysis of the type of the deleted content,
(3) we investigate whether the deleted content is
more dependent on specific users, threads or loca-
tions in a thread, (4) we build baseline predictive
models on these datasets and (5) we publish the
full but semi-anonymised and encrypted datasets,
as well as the models built on the non-encrypted
data ready to be used in real-life scenarios.

2 Dataset description

This section gives a description of the two
datasets, which we obtained from two different
sources from different countries and in different
languages. Both datasets are comprehensive in the
sense that they contain all the comments from the
given time period. Their main value in the context
of studying inappropriate content lies in the fact
that they also contain all the comments that were
deleted by the moderators of the two sites.

The Slovenian MMC dataset contains com-
ments on news articles published on the MMC
RTV web portal8, the on-line portal of the Slove-
nian national radio and television. The dataset
comprises all the comments from the beginning of
2010 until the end of 2017, i.e. eight years’ worth
of content, including deleted comments. The por-
tal is monitored by moderators who delete com-
ments that contain hate speech but also those that
are not relevant for the thread or are spam by ad-
vertisers.

We obtained the dataset as a CSV file, where
we deleted comments with formatting errors, re-
moved illegal UTF-8 characters and remnants of
formatting, and then converted the dataset into
XML. Apart from the text itself, each comment
contains the following metadata: comment ID;
ID of the news article that is commented (note,
however, that we did not receive the news articles
themselves due to copyright limitations); user ID;
time stamp; whether the comment was deleted or
not; and the number of up- and down-votes.

The Croatian STY dataset contains comments
on articles from the news portal 24sata9 which
is owned by Styria Media International. They
comments in the dataset span from 2007-09-12 to
2017-07-21, i.e. almost ten years of content. Until

8http://www.rtvslo.si/
9https://www.24sata.hr/

2016 the portal was monitored by one moderator,
with the last two years of content being moderated
by two moderators. Both hate speech and spam
are deleted, and the respective users are banned
for an amount of time depending on the frequency
of their misbehavior.

We received the dataset as a SQL database
dump, where we, similarly to MMC, cleaned the
file and converted it to a similar XML as the MMC
one. Here, the metadata was somewhat different,
comprising: comment ID; ID of the news article
that is commented (again, we did not receive the
news articles themselves); where applicable, ID
of comment that is being replied to; the ID of the
thread to which the comment belongs; the user ID;
the user name; time stamp; whether the comment
was deleted or not; and the number of replies to
the comment.

2.1 The datasets in numbers

Table 1 gives the sizes of the two datasets in users,
texts (comments) and words, split into retained
and deleted comments, and overall. As can be
seen, both datasets are substantial, having together
almost 25 million comments, and over 700 million
words. The two datasets have a similar size per
year, but given that the STY dataset has a longer
time span it is also larger, with over 407 million
words, against 325 million words in MMC. In-
terestingly, given their comparable size, the STY
dataset has many more comments (17 million, as
opposed to only 7.6 million of MMC) as well
as many more users (185 thousand as against 42
thousand of MMC). On the other hand, MMC
users write significantly longer texts.

As for the deleted comments, we first note that
for a user to be classified into either of the Yes/No
deleted row, it suffices that one of their comments
has been deleted (or not), so the two percent-
ages do not sum to 100%. The percentages re-
veal that the two portals adopt somewhat differ-
ent deletion policies: for MMC almost half of the
users had at least one comment deleted, while un-
der 10% had a comment deleted in STY. Simi-
larly for texts, the MMC portal deleted over 8% of
the texts, while STY deleted under 2%. The pro-
portion of the number of deleted words is lower
for MMC and higher for STY, meaning that with
MMC the deleted comments are typically shorter
than the retained texts, while for STY they are
slightly longer.
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Corpus Deleted Users Texts Words
MMC No 41,142 96.8% 6,965,725 91.7% 302,123,513 92.9%
MMC Yes 20,086 47.3% 630,961 8.3% 23,102,063 7.1%
MMC Σ 42,502 100.0% 7,596,686 100.0% 325,225,576 100.0%
STY No 181,626 98.0% 16,732,818 98.2% 399,214,351 98.0%
STY Yes 17,810 9.6% 310,147 1.8% 8,334,776 2.0%
STY Σ 185,266 100.0% 17,042,965 100.0% 407,549,127 100.0%
Σ No 222,768 97.8% 23,698,543 96.2% 701,337,864 95.7%
Σ Yes 37,896 16.6% 941,108 3.8% 31,436,839 4.3%
Σ Σ 227,768 100.0% 24,639,651 100.0% 732,774,703 100.0%

Table 1: Sizes of MMC and STY datasets.

MMC STY
Calumination 6 8
Discrimination 11 10
Disrespect 37 21
Insult 10 42
Irony 19 10
Swearing 3 14
Other 19 18
Σ 105 124

Table 2: Categories of deleted comments.

2.2 Types of inappropriate content

To gain more insight into the nature of the deleted
comments, we manually classified 100 random
deleted comments from each datasets into the 9
categories proposed by Pavlopoulos et al. (2017):
calumniation, discrimination, disrespect, hooli-
ganism, insult, irony, swearing, threat and other.
Both samples were annotated by the same annota-
tor. Where required, multiple labels were assigned
to a comment.

As shown in Table 2, there are many differences
between the two datasets. In the MMC sample,
the most frequently represented category is dis-
respect (37) while swearing is the least frequent
(3). Only 5 of the 100 comments were annotated
with double labels. In the STY sample, on the
other hand, 17 received a double and 1 a triple la-
bel (most frequent combinations being insult and
swearing). The most frequent category in the STY
sample is insult (42) and the least frequent one
threat (1), which does not appear in the MMC
sample. In general, the Croatian sample of deleted
comments contains worse forms of inappropriate
content compared to the Slovene one (e.g., many
more cases of insults and swearing compared to

more subtle irony which is particularly common
in the Slovene sample). Beyond the types of in-
appropriate comments, we have also observed dif-
ferences in the persons, groups and institutions to-
wards which the disrespectful comments are tar-
geted. Whereas the targets are the expected “cul-
prits” in the Croatian sample (e.g. marginalized
members of the society), in the Slovenian sample,
most of them are targeted at the national broad-
casting service, its journalists or the administrators
of the on-line comments, especially in the cate-
gory of disrespectful comments.

The reasons for these differences could lie in the
different positions of the two media (one national
and the other one private) and their subsequently
different policies for the treatment of inappropri-
ate content, with MMC deleting more and STY
only the most blatant examples of inappropriate
comments. Another reason could also be cultural
differences, such as more widespread swearing in
public discourse in Croatia compared to Slove-
nia. Interestingly, in both samples a substantial
amount (19 vs. 18) of the analysed comments did
not belong to any of the categories specified by
Pavlopoulos et al. (2017), suggesting that the an-
notation schema might benefit from further refine-
ments.

3 Dataset Analysis

This section presents a basic analysis of deleted
vs. retained content in both datasets. We ana-
lyze (1) the distribution of deleted vs. retained
content through the years, (2) the distribution of
deleted content among users, (3) the distribution
of deleted content in threads, and (4) the dis-
tribution of the relative positions of the deleted
comments in a thread. We compare the distribu-
tions (2)-(4) with their random counterparts to see
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Figure 1: Distribution of deleted (red) and retained (green) comments throughout the publication years for MMC
(left) and STY (right).

whether there is a dependence of comment dele-
tion on these three phenomena: user, thread, and
location in a thread.

3.1 Distribution through time

Figure 1 shows the distribution of the deleted and
retained comments in each dataset throughout the
publication years. The trends in the two datasets
are quite different. While the STY dataset has
an obvious increase in the number of comments
throughout the years, the number of comments
in the MMC dataset is rather stable. The num-
ber of the deleted comments throughout the years
is even more different in the two datasets. Most
of the deleted content in the STY dataset is from
2016 and 2017, which indicates an obvious change
in the policy of content deletion.10 In the MMC
dataset, on the other hand, the percentage of the fil-
tered content is rather stable throughout the years,
with only a slight increase through time. The ob-
served difference can be followed back to the type
of publishers: STY is a commercial publisher,
freely modifying filtering rules, whereas MMC is
a national broadcasting company and is as such re-
quired to have a much more elaborate and strict, as
well as more stable code of conduct.

3.2 Distribution per user

Figure 2 depicts the distribution of the percent-
age of comments deleted from each user, taking
into account only users that published 10 or more
comments to ensure a proper representation of the
percentages on a histogram with 10 bins. The
plot shows similar trends in both languages, with
most users having 10% or less of their comments
deleted. In both datasets we see an increase in
the percentage of users having all their comments

10The increase in the amount of deleted content can be fol-
lowed back to the internal decision of the newspaper to make
the moderation model more strict, resulting in greater identi-
fication of inappropriate content, but also an increase in the
amount of inappropriate content aimed at the moderators.

deleted. This phenomenon can be followed back
to the practice of deleting users and all their corre-
sponding content.

We hypothesize that this distribution is signifi-
cantly different from a random one, i.e., that there
are users whose comments are deleted more often
than by chance. Put in simpler terms, we assume
that inappropriate comments are not a blunder that
happens to everyone now and then but that there
are consistently “non-conforming” users whose
comments are deleted more often than those of
other users. We test our hypothesis by applying the
Kolmogorov-Smirnov non-parametric two-tailed
test (Massey, 1951) of the equality of two distri-
butions, with the null hypothesis that there is no
difference between the observed and the expected
random distribution. We calculate the expected,
random distribution by calculating the probability
of a comment to be deleted in a dataset and gen-
erating a dataset with the identical distribution of
comments among users, calculating whether the
comment is deleted via a random function with
the deletion probability as estimated on the real
dataset. On the MMC test we obtain a statistic
of 0.274 with the p-value, i.e., the probability that
we might falsely reject the null hypothesis that the
two distributions are identical being close to 0.0.
For the STY dataset we obtain a statistic of 0.371,
with a p-value being close to 0.0. These results
show that in each dataset some users’ comments
are being deleted more often than by chance.

To measure to what amount each of the distri-
butions are different to a random one, we calculate
the Wasserstein distance (Ramdas et al., 2017) be-
tween the observed and the random distributions.
While we obtain a distance of 0.068 for the MMC
distribution, this distance for the STY distribu-
tion is 0.032.11 This inspection shows that in the

11We repeat the calculation on the STY dataset only on
the data from 2016 and 2017 to control for the different ap-
proach to deleting comments before and from 2016, obtaining
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Figure 2: Distribution of the percentage of comments deleted per user publishing 10 or more comments for MMC
(left) and STY (right).

Slovene MMC dataset the phenomenon of deleting
content of specific users is more prominent than in
the Croatian STY dataset.

3.3 Distribution per thread

In this subsection we repeat the calculations per-
formed in the previous subsection on user-focused
distributions of deleted content, only that this time
we utilize the thread structures which are available
in both datasets. For this analysis, as well as the
following one presented in Section 3.4, we take
into account only threads with at least 10 com-
ments, again to ensure a proper representation on
a 10-bin histogram.

In Figure 3 we plot the probability distribution
of the percentage of comments deleted in each
thread, obtaining a similar, long-tailed distribution
as with the user-focused distribution. As with the
user distributions, the MMC dataset has a larger
number of threads with slightly higher percentage
of deleted content (higher than 10%), indicating a
less random deletion process in the MMC dataset,
i.e., that there are threads that have more content
deleted than would be expected by chance.

Similar to our previous calculations, we first
calculate whether the obtained distributions are
different from distributions obtained by randomly
deleting comments in threads by applying the
Kolmogorov-Smirnov test of the equality of two
distributions. We then quantify the distance of the
observed distributions to the random distributions
via the Wasserstein distance.

When applying the Kolmogorov-Smirnov test
on the MMC dataset, we obtain a statistic of 0.292
with a p-value close to 0.0, while on the STY
dataset the obtained statistic is 0.333 with a p-
value also close to 0.0. Based on this we can re-
ject the null hypothesis that the random and the
observed probability distributions are the same on
both datasets. In other words, deletion on some

an identical distance.

threads is more prominent than on others.
We continue by calculating the Wasserstein dis-

tance metric between the observed and the random
distribution, with an obtained distance of 0.036
on the MMC dataset and a distance of 0.010 on
the STY dataset. Similar to the previous mea-
surements on the percentage of users’ deleted con-
tent, a stronger difference between the two distri-
butions is again observed on the MMC dataset,
showing the deletion on that dataset to be less
random. Furthermore, the distances obtained on
the thread-dependent distributions are almost half
the size of the distances calculated on the user-
dependent distributions, showing that comments
of specific users are deleted more often than com-
ments on specific threads, which is an interest-
ing result. Note that the user-focused and thread-
focused distances are directly comparable as both
distributions are defined on the same scale be-
tween 0 and 1.

3.4 Distribution per location in thread

Finally, we inspect the distributions of the deleted
comments as per their relative location in a dis-
cussion thread. We apply the same calculations as
with the user-focused and thread-focused analyses
presented in the previous two subsections.

We first analyze the plot of the distribution of
the relative location in a thread where a comment
is deleted, which is given in Figure 4. Our expec-
tation was that more comments will be deleted in
the middle and at the end of the thread because
discussions get heated gradually. Both distribu-
tions seem very similar, with a close to uniform
distribution. However, on both distributions we
observe a trend that is opposite to our expecta-
tions, namely that comments are deleted more of-
ten at the beginning of a thread. The Kolmogorov-
Smirnov test of the equality of the random and
the observed distribution gives the test statistic
of 0.027 and the p-value of 1.448 ∗ 10−199 on
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Figure 3: Distribution of the percentage of comments deleted in each thread containing 10 or more comments for
MMC (left) and STY (right).

Figure 4: Distribution of the relative position of comments deleted in a thread containing 10 or more comments
for MMC (left) and STY (right).

the MMC dataset, while the test statistic on the
STY dataset is 0.017 and the p-value 3.26∗10−39.
The differences between the observed and the ran-
dom distribution are still highly significant, but
less than with the other analyses. Again, the STY
dataset appears more random-like than the MMC
dataset. We double-check these observations by
calculating the Wasserstein distance between ob-
served and random distributions. On the MMC
dataset the distance is 0.018, while on the STY
dataset it is 0.011. On the MMC dataset this is the
smallest distance measured, while on the STY dis-
tance this distance is similar to the one calculated
on the thread-dependent distribution. The distance
to a random distribution is, again, smaller on the
STY dataset than on the MMC dataset.

3.5 Discussion

Regarding the three analyses performed, namely
the analysis of content deletion among users,
threads and relative locations in threads, we can
conclude that on the MMC dataset all the distribu-
tions are further away from random distributions
than on the STY dataset, hinting at a more careful
supervision of comments on that dataset. How-
ever, we must be careful about drawing such a con-
clusion because a less random behavior might also
point towards targeting specific users (e.g., previ-
ously misbehaving users), threads (e.g., threads on
specific topics) or locations of the comment in the
thread (e.g., the beginning of the thread).

With these three levels of analysis we have
shown that the user-dependent distribution of
deleted comments is the least random, followed
by the thread-dependent distribution, with the lo-
cation of the comment in the thread being closest
to random. In other words, specific users seem to
be the most filtered, followed by specific threads,
with specific locations in the thread being least
prone to filtering. The observation that comments
of specific users are more prone to deletion than
comments in specific threads is interesting and
should be compared to the distributions in other
datasets. Given that we observe the same phe-
nomenon in two datasets of different origin, we
assume that such regularity would hold in other
datasets as well.

4 Availability of data and baseline model

4.1 Data availability

Both datasets are published on the CLARIN.SI
repository with all the metadata pseudo-
anonymised, and the text encrypted via a
simple character replacement method using a
random, undisclosed bijective mapping to comply
with the terms-of-use of our data providers as
well as to mitigate propagation of inappropri-
ate content. The Slovene dataset, published
together with the baseline model described
in the following subsection, is available from
http://hdl.handle.net/11356/1201,
while the Croatian counterpart is available from
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http://hdl.handle.net/11356/1202.

4.2 Model availability

Given that the distributed datasets are encrypted,
because of which only in-vitro experiments on in-
appropriate content identification can be run, but
the final systems cannot be applied on real data,
we have also published baseline models trained
on the non-encrypted data. While these models
are capable of identifying potentially inappropri-
ate content, by sharing them we do not propagate
inappropriate content above the token level.

For building the baseline models, we split each
dataset into training, development and testing por-
tions in a 8:1:1 distribution, and trained, tuned and
evaluated fastText (Joulin et al., 2016) classifica-
tion models on that data split. The published fast-
Text models were trained on the full datasets.

When splitting the data into train, dev and test,
we randomly shuffled on the thread level, ensur-
ing that there is no spillover between threads, i.e.,
that there are no portions of the same thread to be
found in train and dev or test data.

During tuning, we optimized the following fast-
Text hyperparameters: word n-gram length (de-
fault is 1), minimum and maximum character n-
gram length (no character n-grams are used by de-
fault) and number of epochs (default is 5). We op-
timize them by training on the train portion and
evaluating on the dev portion. In Table 3 we give
the results of the best-performing non-default val-
ues on each of the hyperparameters. We evalu-
ate via the ROC AUC score, i.e., the area under
the ROC curve, which is 0.5 in case of random
results and 1 for perfect results where all posi-
tive instances are ranked higher than all negative
instances. The presented results show that most
impact can be obtained with adding character n-
grams to the word, i.e., text representation proce-
dure. By adding character n-grams of length 3 to
7 we lower the error rate on both datasets by 18%.
Adding word n-grams longer than 1 does not have
a positive impact on performance of fastText. Op-
timizing the number of epochs has a slight posi-
tive impact as long as other hyperparameters are
kept default. If we combine optimal character n-
gram and epoch hyperparameter values (last row
in Table 3, there is no significant difference to us-
ing optimal character n-grams only. This is why
we decided to use for our final setting all default
hyperparameters, except for the character n-gram

lengths that we set between 3 and 7.
We evaluate our final system setting on the test

set and obtain a ROC AUC result of 0.794 for
the MMC dataset and 0.793 for the STY dataset.
These results are more than half way from random
to perfect, which is still far from satisfying. We
leave the task of building stronger prediction mod-
els to future work.

The baseline fastText models trained on the full
non-encrypted datasets with optimal hyperparam-
eter values can be obtained from the CLARIN.SI
repository together with the encrypted datasets, as
mentioned above.

MMC STY
default (ngram=1;epoch=5) 0.755 0.746
ngram=2 0.717 0.711
charngram=3,7 0.798 0.791
epoch=3 0.762 0.753
charngram=3,7;epoch=3 0.796 0.792

Table 3: Results of tuning hyperparameters on both
datasets. Results are ROC AUC scores.

5 Conclusions

In this paper we have introduced two new large
on-line news comment datasets annotated for in-
appropriate content by the content providers for
Slovene and Croatian, languages typically rarely
represented in similar datasets, making them all
the more valuable for the research community.

We have performed a small manual analysis of
the kinds of comments that get deleted in each of
the datasets. The Croatian deleted comments con-
tain more severe types of inappropriate content,
such as insults, as well as more swearing. The
Slovene ones, on the other hand, are more covert,
formulated as irony, and are frequently aimed at
the broadcaster or are off-topic, which indicates
differences in the policy of handling user com-
ments by the two media outlets.

The initial statistical analysis of the distribution
of filtering among users, threads and locations in
threads, has shown that all the distributions are
less random on the MMC dataset than on the STY
dataset, which is probably caused by more con-
stant and vigilant moderation on the MMC RTV
portal. Regarding the three levels of analysis,
we showed that the distribution of deleted content
among users is the least random, followed by the
distribution of that content among threads, with
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the location of the deleted content being closest
to random. This shows that specific users seem to
be the most deleted, followed by specific threads,
with specific locations in the thread being least
prone to deletion.

Finally, by building baseline models on the new
datasets, we have shown that fastText classifiers
can be improved most easily by adding character
n-gram information to the text representation. The
obtained results are promising, but still far from
production-ready, at least for most usages. How-
ever, we have published not only the datasets with
metadata pseudo-anonymised and texts encrypted,
but also the baseline models trained on the non-
encrypted full text of each dataset. We expect that
our baseline classification models will not serve
just as a point of comparison, but will also be used
in real world scenarios, either for feature extrac-
tion and text representation for similar tasks, or
for the task of ranking or classifying inappropriate
content directly.

Acknowledgments

We would like to thank MMC RTV and Styria
Media International for providing their databases
of comments. The work presented in this paper
was funded by the Slovenian Research Agency
within the national basic research project Re-
sources, methods and tools for the understanding,
identification and classification of various forms of
socially unacceptable discourse in the information
society (J7-8280, 2017-2020).

References
Thomas Davidson, Dana Warmsley, Michael W. Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
CoRR, abs/1703.04009.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of Tricks
for Efficient Text Classification. arXiv preprint
arXiv:1607.01759.

F. J. Massey. 1951. The Kolmogorov-Smirnov test for
goodness of fit. Journal of the American Statistical
Association, 46(253):68–78.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017. Deeper Attention to Abu-
sive User Content Moderation. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, pages
1125–1135.

Aaditya Ramdas, Nicols Garca Trillos, and Marco Cu-
turi. 2017. On Wasserstein Two-Sample Testing and
Related Families of Nonparametric Tests. Entropy,
19(2).

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the Reliability of Hate
Speech Annotations: The Case of the European
Refugee Crisis. CoRR, abs/1701.08118.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for
Hate Speech Detection on Twitter. In Proceed-
ings of the Student Research Workshop, SRW@HLT-
NAACL 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
88–93.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 1391–1399,
Republic and Canton of Geneva, Switzerland. In-
ternational World Wide Web Conferences Steering
Committee.

131



Proceedings of the Second Workshop on Abusive Language Online (ALW2), pages 132–137
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

Cross-Domain Detection of Abusive Language Online

Mladen Karan and Jan Šnajder
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Abstract

We investigate to what extent the models
trained to detect general abusive language gen-
eralize between different datasets labeled with
different abusive language types. To this end,
we compare the cross-domain performance of
simple classification models on nine different
datasets, finding that the models fail to gen-
eralize to out-domain datasets and that hav-
ing at least some in-domain data is impor-
tant. We also show that using the frustratingly
simple domain adaptation (Daume III, 2007)
in most cases improves the results over in-
domain training, especially when used to aug-
ment a smaller dataset with a larger one.

1 Introduction

Abusive language online (Waseem et al., 2017)
is an increasing problem in modern society. Al-
though abusive language is undoubtedly not a new
phenomenon in human communication, the rise
of the internet has made it concerningly prevalent.
The main reason behind this is the cloak of rela-
tive anonymity offered when commenting online,
which lowers the inhibitions of individuals prone
to abusive language and removes some of the so-
cial mechanisms present in real life that serve to
protect potential victims. Moreover, this type of
psychological violence can occur at any time and
regardless of the physical distance between the per-
sons involved. While abusive language online can
probably never be weeded out entirely, its effect can
certainly be lessened by locating abusive posts and
removing them before they cause too much harm.
Training supervised machine learning models to
recognize abusive texts and alert human modera-
tors can make this process much more efficient.
However, retaining humans in the loop is crucial,
since blindly relying on model predictions would
in effect turn every false positive prediction into
infringement of free speech. This would defeat the

initial purpose of using machine learning models
to facilitate a free and civilized online discussions.

Detecting abusive language online is a subject
of much ongoing research in the NLP community.
Different studies have zeroed in on different types
of abusive language (e.g., aggressive language,
toxic language, hate speech) and have yielded a
number of different datasets collected from various
domains (e.g., news, Twitter, Wikipedia). However,
from a practical perspective – if one simply wishes
to build a classifier for detecting general abusive
language in a given domain – the question arises as
to which of these datasets to use for training. More
generally, the question is to what extent abusive
language detection transfers across domains, and
how much, if anything, can be gained from a sim-
ple domain adaptation technique that combines the
source and the target domain.

This paper investigates the question to what ex-
tent abusive language detection can benefit from
combining training sets and sharing information be-
tween them through domain adaptation techniques.
Our contribution is twofold. First, we compare the
cross-domain performance of simple classification
models on nine different English datasets of abu-
sive language. Second, we explore whether the
framework of frustratingly simple domain adapta-
tion (FEDA) (Daume III, 2007) can be applied to
improve classifier performance, in particular for
smaller data sets. In addition, we show how a sim-
ple post-hoc feature analysis can reveal which fea-
tures are specific to a certain domain and which are
shared between two domains. We make our code
and links to the used datasets available online.1

2 Related Work

A bewildering plethora of different types of abu-
sive language can be found online. Some of the

1http://takelab.fer.hr/alfeda
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types dealt with in related work include but are
not limited to sexism, racism (Waseem and Hovy,
2016; Waseem, 2016), toxicity (Kolhatkar et al.,
2018), hatefulness (Gao and Huang, 2017), aggres-
sion (Kumar et al., 2018), attack (Wulczyn et al.,
2017), obscenity, threats, and insults. A typology
of abusive language detection subtasks was recently
proposed by Waseem et al. (2017).

Traditional machine learning approaches to de-
tecting abusive language include the naive Bayes
classifier (Kwok and Wang, 2013; Chen et al., 2012;
Dinakar et al., 2011), logistic regression (Waseem
and Hovy, 2016; Davidson et al., 2017; Wulczyn
et al., 2017; Burnap and Williams, 2015), and sup-
port vector machines (SVM) (Xu et al., 2012; Dad-
var et al., 2013; Schofield and Davidson, 2017).
The best performance is most often attained by
deep learning models, the most popular being con-
volutional neural networks (Gambäck and Sikdar,
2017; Potapova and Gordeev, 2016; Pavlopoulos
et al., 2017) and variants of recurrent neural net-
works (Pavlopoulos et al., 2017; Gao and Huang,
2017; Pitsilis et al., 2018; Zhang et al., 2018).
Some approaches (Badjatiya et al., 2017; Park and
Fung, 2017; Mehdad and Tetreault, 2016) also rely
on combining different types of models.

In this paper we explore combining different
datasets from different domains to improve model
performance. This idea is well established in the
machine learning community under the name of
transfer learning; we refer to (Weiss et al., 2016;
Lu et al., 2015) for overviews. The work closest
to ours is (Waseem et al., 2018), where multi-task
learning is used to build robust hate-speech detec-
tion models. Our approach is very similar, but we
consider more datasets and use a simpler, more
easily interpretable transfer learning scheme.

3 Datasets

For our study we use nine publicly available
datasets in English; Table 1 summarizes their main
characteristics. For reasons of efficiency and com-
parability, we use a fixed split on each of the
datasets into a train, development, and test por-
tions. We respected the official splits where they
were provided. As we are interested in detecting
the presence of general abusive language, rather
than in discerning among its many subtypes, we
binarize the labels on all datasets into positive (abu-
sive language) and negative (not abusive language).

2Available at https://tinyurl.com/y7qmd8lm

We do this by labeling all classes typeset in bold
in Table 1 as positive and all other classes as neg-
ative. There are two exceptions to this rule. First,
on the Kol dataset, we consider as positive those
examples for which at least one annotator gave a
rating higher than 1. Second, on the Kaggle dataset,
which uses a multilabeling scheme, we consider as
positive all instances annotated with at least one
of the six harmful labels, and as negative all in-
stances without any labels. We perform only the
very basic preprocessing by lowercasing all words
and lemmatizing them using NTLK (Loper and
Bird, 2002).

While these modifications to original datasets
make a comparison to previous work difficult, they
allow a direct comparison across the datasets and a
straightforward application of FEDA.

4 Exp. 1: Cross-Domain Performance

The goal of this experiment is to asses how well the
models trained on a particular dataset of abusive
language perform on a different dataset. The dif-
ferences in performance can be traced back to two
factors: (1) the difference in the types of abusive
language that the dataset was labeled with and (2)
the differences in dataset sizes. In this work we
observe the joint effect of both factors.

4.1 Experimental Setup
We use a linear Support Vector Machine (SVM),
which has already been successfully applied to the
task of abusive text classification (Schofield and
Davidson, 2017). The main motivation for using
an SVM, rather than more complex deep learn-
ing models, is that in this study we favor model
interpretability, even if this means sacrificing per-
formance.3 Having interpretable models makes it
easier to identify the biases that the models might
have learned from data and how domain adaptation
affects such biases. While, from a practical per-
spective, we might want to retain those biases for
the sake of improving performance, it is important
that we are aware that they exist, and thus have the
option to correct them if necessary.

For the same reason, we rely on the most sim-
ple text representation with unigram counts, which
makes it possible to directly correlate word salience
to feature weights obtained from the SVM.

3We acknowledge that there are other competitive and
yet interpretable models, such as deep neural networks with
attention mechanisms. We leave the investigation of such
models for future work.
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Source Train Dev Test BR Labels

Kol (Kolhatkar et al., 2018) Newspaper 730 104 209 .627 toxicity rating: 1,2,3,4
Gao (Gao and Huang, 2017) Fox news 1069 153 306 .284 non-hateful, hateful
TRAC (Kumar et al., 2018) Twitter 11999 3001 916 .566 non-aggressive, covertly-aggressive,

openly-aggressive
Was2 (Waseem, 2016) Twitter 4836 691 1382 .153 none, racism, sexism, both
Was1 (Waseem and Hovy, 2016) Twitter 11835 1691 3381 .319 none, racism, sexism
Wul1 (Wulczyn et al., 2017) Wikipedia 69526 23160 23178 .146 non-aggressive, aggressive
Wul2 (Wulczyn et al., 2017) Wikipedia 69526 23160 23178 .134 non-attack, attack
Wul3 (Wulczyn et al., 2017) Wikipedia 95692 32128 31866 .115 non-toxic, toxic
Kaggle 2 Wikipedia 143614 15957 63978 .101 toxic, severe toxic, obscene, threat,

insult, identity hate

Table 1: Nine abusive language datasets: the source, the number of instances in the train, development, and test
set, positive instance base rate (BR), and label sets. We mapped the boldface labels to the positive label.

When an SVM model trained on dataset X is ap-
plied to dataset Y , we first train the model on train-
ing set X optimizing the hyperparameter C in the
range {2−10, ..., 26} to maximize performance on
the development set of X . We then train the SVM
with the optimal hyperparameters on the union of
training and development sets of X , and then use
the model to label the test set of Y , obtaining the
final score. We measure the performance using the
standard two-class F1 score.

4.2 Results
Results are given in Table 2. The rows correspond
to different training sets, while the columns cor-
respond to different test sets. For each test set,
the best performance is shown in bold. The di-
agonal cells correspond to the cases of in-domain
model testing. For each model X tested on each
out-domain dataset Y (off-diagonal cells), we test
the statistical significance between that model’s
in-domain and out-domain performance using a
two-tailed bootstrap resampling test at α = 0.05.

Expectedly, most models perform best on the
in-domain test sets. Exceptions are the Wikipedia-
based data sets, where the model trained on Kaggle
performs the best on all test sets. This can be at-
tributed to the an overlap that exists between these
data sets: Wul1 and Wul2 contain almost identi-
cal texts, Wul3 has 68% overlap with them and
Kaggle has 1.5% and 3% overlap with Wul1/Wul2
and Wul3, respectively. We mark in gray the cor-
responding portion of the tables, and refrain from
drawing any conclusions from this data.

Another observation is that the performance on
out-domain data sets is considerably lower. When
applying models to a different test set the perfor-
mance often drops by more than 50% of F1 score,
which indicates that the models do not generalize

well to different datasets. In cases when the size of
X is small compared to the size of Y , the training
portion of X will also be smaller than the train-
ing portion of Y , and it could be argued that the
drop in performance is simply due to the model
having less training data. However, considerable
performance drops are also observable when going
from a large X to a small Y , which suggests that
the gains from having more training instances in
X are counterbalanced by the domain differences
betweenX and Y , and the net result is a loss in per-
formance. Our experiments thus show that having
a smaller dataset for a particular domain of abusive
language is better than having a very large dataset
from a different one. In the following experiment
we explore whether a large dataset from a different
domain can still be leveraged in a different way.

5 Exp. 2: Domain Adaptation

5.1 Experimental Setup

We investigate the potential of applying domain
adaptation to augment the original domain with
the information from a different domain. To this
end, we employ the FEDA framework (Daume III,
2007), which works by copying features several
times to account for different domains, allowing
the model to learn domain-dependent weights for
each feature.

Let the dataset from the original domain be de-
noted as O and the data set from an augmentation
domain as A. We generate a joint train set as a
union of train sets of O and A by keeping three
copies of each feature: (1) a general copy, which is
unaltered for instances from both domains, (2) an
O-specific copy, which is set to 0 for all instances
not from O, and (3) an A-specific copy, which is
set to 0 for all instances not from A. In the same
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Kol Gao TRAC Was2 Was1 Wul1 Wul2 Wul3 Kaggle

Kol 0.816 0.423 0.475* 0.280* 0.479* 0.251* 0.233* 0.204* 0.178*
Gao 0.362* 0.493 0.249* 0.181* 0.399* 0.184* 0.177* 0.168* 0.139*
TRAC 0.697* 0.421 0.548 0.283* 0.484* 0.307* 0.288* 0.259* 0.225*
Was2 0.088* 0.023* 0.091* 0.680 0.174* 0.108* 0.109* 0.098* 0.094*
Was1 0.432* 0.348* 0.238* 0.421* 0.739 0.236* 0.229* 0.208* 0.186*
Wul1 0.092* 0.118* 0.316* 0.190* 0.236* 0.701 0.718 0.746 0.602*
Wul2 0.115* 0.078* 0.318* 0.248* 0.226* 0.694 0.710 0.757 0.613*
Wul3 0.139* 0.159* 0.320* 0.263* 0.316* 0.773* 0.784* 0.753 0.626*
Kaggle 0.054* 0.132* 0.296* 0.249* 0.300* 0.782* 0.800* 0.860* 0.640

Table 2: Results of cross-domain model performance. Rows are the training datasets and columns are the test
datasets. The best performance for each test set (column) is shown in bold. “*” indicates statistical significance at
significance level α = 0.05 with respect to the diagonal cell.

None Kol Gao TRAC Was2 Was1 Wul1 Wul2 Wul3 Kaggle

Kol 0.816 – 0.654* 0.775* 0.605* 0.615* 0.627* 0.651* 0.622* 0.605*
Gao 0.493 0.500 – 0.460 0.534 0.507 0.441 0.415 0.463 0.455
TRAC 0.548 0.548 0.554 – 0.567 0.568 0.575 0.573 0.557 0.565
Was2 0.680 0.703 0.661 0.730* – 0.711 0.706 0.714* 0.715* 0.724*
Was1 0.739 0.744 0.743 0.755* 0.743 – 0.749 0.747 0.749 0.752*
Wul1 0.701 0.701 0.699 0.708* 0.701 0.699 – 0.701 0.717* 0.717*
Wul2 0.710 0.709 0.709 0.719* 0.710 0.715 0.716* – 0.734* 0.736*
Wul3 0.753 0.753 0.753 0.758* 0.752 0.754 0.764* 0.763* – 0.788*
Kaggle 0.640 0.640 0.640 0.643* 0.639 0.639 0.640 0.640 0.638 –

Table 3: FEDA domain adaptation results. Rows correspond to original datasets and columns to augmentation
datasets. The best performance for each original dataset (row) is shown in bold. “*” indicates statistical significance
at significance level α = 0.05 against the “None” column, which is equivalent to the diagonal of Table 2.

way we generate joint development and test sets.
The intuition behind why this effectively leads to
domain adaptation is that it allows the underlying
machine learning model to differentiate features
(words) that are generally useful from those that are
useful in only one of the domains. Consequently, it
can better learn the similarities and differences of
the domains and how to exploit them to maximize
performance. For example, a word such as moron
is almost universally abusive in all domains and
would generalize well. On the other hand, a word
like fruit is almost always completely non-abusive
except in specific domains where it might denote a
derogatory slang for a homosexual person.

As before, the SVM is trained on the joint train-
ing set, with model selection on the joint develop-
ment set. The model is then trained using optimal
hyperparameters on the union of joint training and
joint development set and applied to the joint test
set. Note that the joint test set contains test in-
stances from both O and A. We evaluate the model
only on the test instances from O, as the goal is to
determine whether augmentation with A improves
performance on the dataset from the original do-
main O.

5.2 Results

Results are given in Table 3. Each row represents
an original domain dataset and each column an
augmentation domain dataset. The “None” column
corresponds to the results obtained using no aug-
mentation. We use two-tailed bootstrap resampling
with α = 0.05 to test the statistical significance of
each result to the one on the same original dataset
without augmentation. The main observation is
that for most datasets FEDA leads to performance
improvements, and for six out of nine datasets there
is at least one augmentation dataset which gives a
statistically significant performance improvement.
For the five smallest datasets, (Kol, Gao, TRAC,
Was1, and Was2) domain adaptation improves the
performance on four, and for two the improvements
are statistically significant. These results indicate
that domain adaptation has the potential to improve
results on smaller datasets. Augmenting Wul1,
Wul2, and Wul3 with Kaggle yields considerable
improvements, which again can be attributed to the
overlap between these datasets. An exception is
Kol, on which models do not benefit from FEDA.
The possible reasons for this might be its small size
or high base rate.
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No FEDA General Was2 TRAC

anti feminazi movement motherfucker feminazi fuck
feminazi cocksucker west idiot
feminazi front dickhead howtospotafeminist asshole
models douchebag feminazi front ass
howtospotafeminist cunt blondes bitch
prowomanchoice assholes anti feminazi movement motherfucker
raging fuckers coon cocksucker
blondemoment fuckhead killerblondes dickhead
prove feminazi asian shit
adorable coward hold douchebag

Table 4: Top 10 features by SVM weights for the Was2
data set without FEDA and with FEDA using TRAC
as the augmentation dataset and three feature variants
(General, Was2-specific, and TRAC-specific)

5.3 Feature Analysis

FEDA offers a convenient way to analyze which
features are generic and signal abusive language
in both domains, and which are specific to each.
The former features will have high merit for their
general copies, while the latter will have high merit
for domain-specific copies. In Table 4 we list the
top 10 features for the case where we observed
the highest improvement: Was2 as the original and
TRAC as the augmentation dataset. The results
show that the model does indeed learn to differen-
tiate between the sexism/racism domain of Was2
and the aggression focused domain of TRAC, while
also learning the general features useful on both
datasets.

When not using FEDA, the most indicative fea-
tures are, expectedly, focused mostly on the sex-
ism/racism aspects of the Was2 dataset. How-
ever, when introducing the augmentation domain
TRAC dataset, which focuses on aggressive/non-
aggressive texts, the features discern between dif-
ferent aspects of abusive language. Words in the
General column of Table 4 are indeed generally
abusive words and can be viewed as indicative of
the abusive class for both datasets. On the other
hand, the domain-specific features reflect the spe-
cific properties of each dataset. For the Was2
dataset these include words correlated with sexism
or racism (but not useful for aggression detection
on TRAC) such as feminazi. On the TRAC dataset
domain-specific features are words that are indica-
tive of aggression (but not of sexism/racism in the
Was2 dataset), such as shit.

6 Conclusion

We compared the performance of abusive language
classifiers across datasets from different sources
and types of abusive language. We found that

the models considered do not generalize well to
different-domain datasets, even when trained on a
much larger out-domain data. This indicates that
having in-domain data, even if not much of it, is
crucial for achieving good performance on this task.
Furthermore, the experiments have shown that frus-
tratingly simple domain adaptation (FEDA) in most
cases improves the results over in-domain training,
especially when smaller datasets are augmented
with a larger datasets from a different domain.

We found FEDA to be a useful tool to compare
the differences between various domains of abu-
sive language and believe that related techniques
might lead to new interesting insights into the phe-
nomenon of abusive language.
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Abstract

The use of code-switched languages (e.g.,
Hinglish, which is derived by the blending
of Hindi with the English language) is get-
ting much popular on Twitter due to their
ease of communication in native languages.
However, spelling variations and absence of
grammar rules introduce ambiguity and make
it difficult to understand the text automati-
cally. This paper presents the Multi-Input
Multi-Channel Transfer Learning based model
(MIMCT) to detect offensive (hate speech or
abusive) Hinglish tweets from the proposed
Hinglish Offensive Tweet (HOT) dataset us-
ing transfer learning coupled with multiple
feature inputs. Specifically, it takes multi-
ple primary word embedding along with sec-
ondary extracted features as inputs to train
a multi-channel CNN-LSTM architecture that
has been pre-trained on English tweets through
transfer learning. The proposed MIMCT
model outperforms the baseline supervised
classification models, transfer learning based
CNN and LSTM models to establish itself as
the state of the art in the unexplored domain of
Hinglish offensive text classification.

1 Introduction

Increasing penetration of social media websites
such as Twitter in linguistically distinct demo-
graphic regions has led to a blend of natively
spoken languages with English, known as code-
switched languages. Social media is rife with such
offensive content that can be broadly classified as
abusive and hate-inducing on the basis of sever-
ity and target of the discrimination. Hate speech
(Davidson et al., 2017) is an act of offending a per-
son or a group as a whole on the basis of certain
key attributes such as religion, race, sexual ori-
entation, gender, ideological background, mental
and physical disability. On the other hand, abu-
sive speech is offensive speech with a vague tar-

get and mild intention to hurt the sentiments of
the receiver. Most social media platforms delete
such offensive content when: (i) either someone
reports manually or (ii) an offensive content classi-
fier automatically detects them. However, people
often use such code-switched languages to write
offensive content on social media so that English
trained classifiers can not detect them automati-
cally, necessitating an efficient classifier that can
detect offensive content automatically from code-
switched languages. In 2015, India ranked fourth
on the Social Hostilities Index with an index value
of 8.7 out of 10 (Grim and Cooperman, 2014),
making it imperative to filter the tremendously
high offensive online content in Hinglish.

Hinglish has the following characteristics: (i)
it is formed of words spoken in Hindi (Indic)
language but written in Roman script instead of
the standard Devanagari script, (ii) it is one of
the many pronunciations based pseudo languages
created natively by social media users for the
ease of communication and (iii) it has no fixed
grammar rules but rather borrows the grammat-
ical setup from native Hindi and compliments it
with Roman script along with a plethora of slurs,
slang and phonetic variations due to regional in-
fluence. Hence, such code-switched language
presents challenging limitations in terms of the
randomized spelling variations in explicit words
due to a foreign script and compounded ambigu-
ity arising due to the various interpretations of
words in different contextual situations. For in-
stance, the sentence: Main tujhe se pyaar karta
hun is in Hinglish language which means I love
you. Careful observation highlights how the word
pyaar meaning ’love’ can suffer from phonetic
variations due to multiple possible pronunciations
such as pyar, pyaar or pyara. Also, the explicit
word by word translation of the above sentence, I
you love do, is grammatically incorrect in English.
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We present deep learning techniques that clas-
sify the input tweets in Hinglish as: (i) non-
offensive, (ii) abusive and (iii) hate-inducing.
Since transfer learning can act as an effective strat-
egy to reuse already learned features in learning a
specialized task through cross domain knowledge
transfer, hate speech classification on a large En-
glish corpus can act as source tasks to help in ob-
taining pre-trained deep learning classifiers for the
target task of classifying tweets translated in En-
glish from Hinglish language.

Representation vectors constructed by CNN
consider local relationship values while the feature
vectors constructed by LSTM stress on overall de-
pendencies of the whole sentence. The proposed
MIMCT model employs both CNN and LSTM as
concurrent information channels that benefit from
local as well as overall semantic relationship and
is further supported by primary features (multi-
ple word embeddings) and secondary external fea-
tures (LIWC feature, profanity vector and senti-
ment score), as described in Section 3.3. The
complete MIMCT model is pre-trained on En-
glish Offensive Tweet (EOT) dataset, which is an
open source dataset of annotated English tweets
that was obtained from CrowdFlower1 and is an
abridged version of the original dataset created by
Davidson et al. (2017), followed by re-training on
the proposed HOT dataset.

The main contributions of our work can be sum-
marized as follows:

• Building an annotated Hinglish Offensive
Tweet (HOT) dataset2.

• We ascertain the usefulness of transfer learn-
ing for classifying offensive Hinglish tweets.

• We build a novel MIMCT model that outper-
forms the baseline models on HOT.

The remainder of this paper is organized as fol-
lows. Sections 2 and 3 discuss the related work
and methodologies in detail, respectively. Discus-
sions and evaluations are done in Section 4 fol-
lowed by conclusion and future work in Section 5.

2 Related Work

One of the earliest works on code switched
languages was presented by Bhatia and Ritchie

1https://www.crowdflower.com/
2The dataset and source code is available for re-

search purposes at www.github.com/pmathur5k10/
Hinglish-Offensive-Text-Classification

(2008) demonstrating cross-linguistic interaction
on a semantic level. Several attempts to trans-
late the Hindi-English mixed language into pure
English have been made previously, but a major
hindrance to this progress has been the fact that
the structure of language varies due to relative
discrepancies in grammatical features (Bhargava
et al., 1988). Ravi and Ravi (2016) proved that a
combination of TF-IDF features, gain ratio based
feature selection, and Radial Basis Function Neu-
ral Network work best for sentiment classification
in Hinglish text. Joshi et al. (2016) used sub-word
level LSTM models for Hinglish sentiment analy-
sis. Efforts to detect offensive text in online textual
content have been undertaken previously for other
languages as well like German (Ross et al., 2017)
and Arabic (Mubarak et al., 2017).

Gambäck and Sikdar (2017) used a multi-
channel HybridCNN architecture to arrive at
promising results for hate speech detection in En-
glish tweets. Badjatiya et al. (2017) presented a
gradient boosted LSTM model with random em-
beddings to outperform state of the art hate speech
detection techniques. Vo et al. (2017) demon-
strated the use of multi-channel CNN-LSTM
model for Vietnamese sentiment analysis. The
use of transfer learning enables the application of
feature-based knowledge transference in domains
with disparate feature spaces and data distribution
(Pan and Yang, 2010). Pan et al. (2012) gave
a detailed explanation about the application of
transfer learning for cross-domain, instance-based
and feature-based text classification. An impor-
tant work in this direction of Hinglish offensive
text classification was done by by Mathur et al.
(2018b) by effectively employing transfer learn-
ing.

3 Methodology

3.1 Pre-processing

The tweets obtained from data sources were chan-
neled through a pre-processing pipeline with the
aim to transform them into semantic feature vec-
tors. The transliteration process was broken into
intermediate steps:

Step 1: The first pre-processing step was the
removal of punctuations, URLs, user mentions
{@mentions} and numbers {0-9}. Hash tags and
emoticons were suitably converted by their textual
counterparts along with conversion of all tweets
into lower case. Stop words corpus obtained from
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NLTK was used to eliminate most unproductive
words which provide little information about in-
dividual tweets. This was followed by translitera-
tion and then translation of each word in Hinglish
tweet into the corresponding English word using
the Hinglish-English dictionary mentioned in Sec-
tion 4.1. At this step, the syntax and grammatical
notions of the target language were ignored and
the resultant tweet was treated as an assortment of
isolated words and phrases to make them eligible
for conversion into word vector representation.

Step 2: We used multiple word embedding
representations such as Glove (Pennington et al.,
2014), Twitter word2vec (Godin et al., 2015), and
FastText (Bojanowski et al., 2016) embeddings for
creating the word embedding layers and to ob-
tain the word sequence vector representations of
the processed tweets. Finally, the train-test split
of both the datasets was been kept in the ratio of
80:20 for all experiments described in this paper.

3.2 Transfer Learning based Offensive Text
Classification

Recently, Badjatiya et al. (2017) performed state
of the art classification of tweets in English lan-
guage as racist, sexist or neither using multiple
deep learning techniques motivating exploration
of similar models for our task. The problem of
hate speech classification in Hinglish language is
similar to that in English due to the semantic par-
allelism but suffers from the drawback of syntac-
tic disassociation when Hinglish is translated into
English. The proposal to apply transfer learning
is inspired by the fact that despite having a small-
sized dataset, it provides relative performance in-
crease at a reduced storage and computational cost
(Bengio, 2012). Deep learning models pre-trained
on EOT learn the low-level features of the English
language tweets. The weights of initial convolu-
tional layers are frozen while the last few layers
are kept trainable such that when the model is re-
trained on the HOT dataset, it learns to extract high
level features corresponding to syntax variations
in translated Hinglish language.

One major drawback of CNN models is the fact
that it finds only the local optimum in weighted
layers. This disadvantage is somewhat overcome
by LSTM’s since they are well-suited to clas-
sify, process and capture long term dependencies
in text. This makes them an excellent choice to
learn long-range dependencies from higher-order

sequential features. The aim of three-label offen-
sive tweet classification is achieved by using both
CNN and LSTM models, respectively. In the first
stage of experiments, the respective models are
trained and tested on HOT to serve as a bench-
mark. The same models are reinitialized and run
from scratch on the EOT dataset followed by re-
training on the HOT dataset by keeping only the
last dense layers as trainable. The models are fi-
nally then tested on the testing section of HOT and
results compiled in Table 7. We hypothesize that
the performance of both CNN and LSTM should
comparatively enhance due to transfer learning
as compared to the benchmark due to syntactical
degradation of tweets during the pre-processing
step. If this process leads to an overall enhance-
ment of model performance on HOT dataset, then
the intuition to use transfer learning for transfer-
ring pre-learnt semantic features between two syn-
tactically obscure language would hold ground.
As per (Park and Fung, 2017), proposed CNN and
LSTM architecture for these experiments were de-
signed to have shallow layers as the small size of
our dataset runs the risk of overfitting on the data.

3.3 MIMCT Model

The architecture of the MIMCT model is shown
in Figure 1, consisting of two main components:
(i) primary and secondary inputs and (ii) CNN-
LSTM binary channel neural network. The fol-
lowing subsection describes the application of pri-
mary and secondary inputs in MIMCT.

Figure 1: The MIMCT model

3.3.1 Primary and Secondary Inputs
Word embeddings help to learn distributed low-
dimensional representations of tweets and differ-
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ent embeddings induced using different models,
corpora, and processing steps encode different as-
pects of the language. While bag of words statis-
tics based embeddings stress on word associations
(doctor-hospital), those based on dependency-
parses focus on similarity in terms of use (doctor-
surgeon). Inspired by the works of (Mahata et al.,
2018b), it is natural to consider how these em-
beddings might be combined to obtain the set
of most promising word embeddings amongst
Glove, Twitter Word2vec and FastText. Assuming
m word embeddings with corresponding dimen-
sions d1, d2, ...dm are independently fed into the
MIMCT model as primary inputs. Thus the input
to MIMCT will comprise of multiple sentence ma-
trices A1, A2, ...Am, where each Al ∈ Rs∗dl hav-
ing s as zero-padded sentence length and dl as di-
mensionality of the embedding. Keeping the em-
bedding dimension constant to 200 in each case,
we obtained independent feature vectors for each
set of embeddings that are known as primary in-
puts. Apart from the regular embedding inputs,
additional hierarchical contextual features are also
required so as to complement the overall classi-
fication of the textual data. These features addi-
tionally focus on the sentiment and tailor-made
abuses that may not be present in regular dictio-
nary corpus. This helps to overcome a serious
bottleneck in the classification task and could be
one of the prominent reasons for high misclassifi-
cation of abusive and hate-inducing class in base-
line and basic transfer learning approaches. The
multiple modalities added to the MIMCT model
as secondary inputs are:

• Sentiment Score (SS): We have used tweet
sentiment score evaluated using SentiWord-
Net (Baccianella et al., 2010) as a feature to
stress on polarity of the tweets. The SS in-
put will be a unidimensional vector denoted
by +1 for positive, 0 for neutral and -1 for
negative sentiment.

• LIWC Features: Inspired by (Sawhney
et al., 2018a), Linguistic Inquiry and Word
Count (Pennebaker et al., 2007) throws light
on various language modalities expressing
the linguistic statistical make-up of each text.
Table 1 portrays the cumulative linguistic
attributes calculated by LIWC2007 to form
a LIWC attribute vector of 67 dimension
(67D). Moreover, we have excluded numbers

and punctuation in LIWC features as these
are removed in pre-processing steps.

• Profanity Vector: Swearing is a form of ex-
pressing emotions, especially anger and frus-
tration (Jay and Janschewitz, 2008). Section
4.1 describes the Hinglish Profanity list with
corresponding English translation. An inte-
ger vector of dimension 210 (210D) is con-
structed for each tweet such that the presence
of a particular bad word is demarcated by its
corresponding profanity score while its ab-
sence is demarcated by null value to empha-
size the presence of contextually subjective
swear words.

4 Evaluation

We provide an extensive description of the
sources, ground truth annotation scheme and
statistics of the proposed Hinglish Offensive
Tweets (HOT) dataset in Section 4.1. Next, we
discuss implementation details of baseline, trans-
fer learning and MIMCT model in Section 4.2 fol-
lowed by results analysis in Section 4.3.

4.1 Dataset

Table 2 spells out tweet distributions across EOT
and HOT datasets. HOT is a manually annotated
dataset that was created using the Twitter Stream-
ing API3 by selecting tweets having more than 3
Hinglish words. The tweets were collected dur-
ing the interval of 4 months of November 2017
to February 2018. The tweets were mined by
imposing geo-location restriction such that tweets
originating only in the Indian subcontinent were
made part of the corpus. Inspired by the work
of Rudra et al. (2016), tweets were mined from
popular Twitter hashtags of viral topics popular
across the news feed. Bali et al. (2014) pointed
out that Indian social media users have high ac-
tivity on Facebook pages of a few listed promi-
nent public entities. Hence, we crawled tweets and
responses from Twitter handles of sports-persons,
political figures, news channels and movie stars.
The collected corpus of tweets initially had 25667
tweets which was filtered down to remove tweets
containing only URL’s, only images and videos,
having less than 3 words, non-English and non-
Hinglish scripts and duplicates. The annotation of

3https://developer.twitter.com/
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LIWC Categories Attributes

Linguistic Statistics word count (mean), words per sentence, dictionary words, total pronouns, words >6 letters,
total functional words, personal pronouns

Grammatical Structures
1st person singular, 1st person plural,2nd person, 3rd person singular, 3rd person plural,
impersonal pronouns, articles, common verbs, auxiliary verbs, past, present and future tense,
adverbs, prepositions, conjunctions, negotiations, quantifiers, swear words

Textual Category sexual, body, health, ingestion, relativity, motion, space, time,

Psychological Processes
social processes, family, friends, humans, effective processes, negative and positive emotions,
anxiety, anger, sadness, cognitive processes, insight, causation, discrepancy, tentativeness,
certainty, inhibition, inclusive, exclusive, perceptual processes, see, hear feel, biological processes,

Current Concerns work, achievement, leisure, home, money, religion, death
Spoken Categories assent, non-fluencies, fillers

Table 1: LIWC linguistic attributes used in the MIMCT model

Label EOT HOT
Non-Offensive 7274 1121

Abusive 4836 1765
Hate-inducing 2399 303

Total 14509 3189
Train 11608 2551
Test 2944 637

Table 2: Tweet distributions in EOT and HOT.

HOT tweets were done by three annotators hav-
ing sufficient background in NLP research. The
tweets were labeled as hate speech if they satis-
fied one or more of the conditions: (i) tweet used
sexist or racial slur to target a minority, (ii) undig-
nified stereotyping or (iii) supporting a problem-
atic hashtags such as #ReligiousSc*m. The la-
bel chosen by at least two out of three indepen-
dent annotators was taken as final ground truth
for each tweet. In case of conflict amongst the
annotators, an NLP expert would finally assign
the ground truth annotation for ambiguous tweets.
In this way, 386 tweets needed expert annotation,
while 2803 tweets were labeled through consen-
sus of annotators with an average value of Cohen
Kappa’s inter-annotator agreement κ = 0.83. Ta-
ble 5 shows the internal agreement between our
annotators.

A curated list of profane words was extracted
to form the Hinglish profanity list4, which was
created by accumulating Hinglish swear words
from curated social media blog posts (Rizwan,
2016) and dedicated swear word forums5. Each
swear word was assigned an integer score on the
scale of (1-10) based on the degree of profanity.
This assignment of profanity scores was accom-
plished through discussion amongst four indepen-
dent code-switching linguistic experts having an
extensive background in social media analysis.

The task of transliterating Hinglish words into
4www.github.com/pmathur5k10/

Hinglish-Offensive-Text-Classification
5http://www.hindilearner.com/hindi_

words_phrases/hindi_bad_words1.php

Tweet Label
(i) Tum ussey pyar kyun nahin karti?
(ii) Why don’t you love him?
(iii) you him love why no

Non-offensive

(i) Ch*d! Yeh sab ch*tiye hain! :/
(ii) F**k! They all are c*nts! :/
(iii) F**k they all c*nts are

Abusive

(i) M*d*rch*d Mus*lm**n sE nafrat
(ii) m*therf*ck*r m*sl*m hate
(iii) m*therf*ck*r m*s*l*m**n hate

Hate-inducing

Table 3: Examples of tweets in the HOT dataset.
Categories (i), (ii) and (iii) denote the Hinglish
tweet, its corresponding English meaning and its
transliterated and translated version. The authors
have modified some bad words in original tweets
with ’*’ to not offend the readers.

Devanagari Hindi was achieved using datasets
provided by Khapra et al. (2014). The words
so obtained were further translated into Roman
script using a Hindi-English dictionary consist-
ing of 136110 word pairs mined from CFILT,
IIT Bombay6. Additionally, the English transla-
tions present of the words in Hinglish Profanity
list were added to form a map based Hinglish-
English dictionary. A pertinent challenge in deal-
ing with Hinglish language was the presence of
spelling variants, homophones and homonyms that
are used frequently in a loose context. Thus
the spelling variations of various popular Hinglish
words were added to the corpus. The Hinglish-
English dictionary thus formed, comprising of
7193 word pairs, was used as the basis for all
further Hinglish to English tweet conversions.
Table 4 gives detailed examples of word pairs
in Hinglish-English dictionary along with a few
swear words and their profanity scores.

Approximately, 29% of the tokens in pre-
processed tweets are in Hinglish, a whopping 65%
of the tokens are in English, while the remaining
are Hinglish named entities like persons, events,
organizations or places. The higher instances of

6http://www.cfilt.iitb.ac.in/˜hdict/
webinterface_user/
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Hinglish English Tag
acha
neeche
abhi
aur
nahin
ghar
ek
saath
tum
pyar

good
under
now
and
no
home
one
with
you
love

adjective
adposition
adverb
conjunction
determiner
noun
numeral
particle
pronoun
verb

s**la
k*tta
s**ver
har**mi
ch*tiya
bh*dve
g**nd
r*ndi
b*h*nch*d
m*d*rch*d

blo*dy
dog
pig
bast*rd
f*cker
p*mp
a*s
ho*oker
s*sterf*ck*r
m*therf*ck*r

swear (1)
swear (2)
swear (3)
swear (4)
swear (5)
swear (6)
swear (7)
swear (8)
swear (8)
swear (10)

Table 4: Examples of word pairs in Hinglish-
English dictionary and Hinglish Profanity List
with their profanity score

the named-entities in the HOT dataset is a result
of the way the data is sourced. Around 1.4% of
Hinglish words in HOT share the same spellings
with some English words because of transliter-
ation of Hindi text to Roman script. The t-
SNE (Maaten and Hinton, 2008) plot of the HOT
dataset shows the probability distribution of words
in terms of the tokens used in tweets as represented
by Figure 2. We also computed a few metrics to
understand code-switching patterns in our dataset,
so as to rationalize the performance of the classifi-
cation models.

Figure 2: T-SNE plot of the HOT dataset

Multilingual Index (Mi): It is a word-count-
based measure that quantifies the inequality of the

A1 A2 A3

A1 − 0.76 0.84
A2 0.76 − 0.88
A3 0.84 0.88 −

Table 5: Cohen’s Kappa for three annotators
A1, A2 and A3

language tags distribution in a corpus of at least
two languages (Barnett et al., 2000). Let k be the
total number of languages and pj is the total num-
ber of words in the language j over the total num-
ber of words in the corpus. The value ofMi ranges
between 0 and 1 where, a value of 0 corresponds
to a monolingual corpus and 1 corresponds to a
corpus with equal number of tokens from each lan-
guage. Equation 1 depicts theMi which is approx-
imately equal to 0.601, indicating that a majority
of words are in Hinglish.

Integration Index (Ii): Integration Index is the
approximate probability that any given token in
the corpus is a switch point (Guzmán et al.,
2017). This metric quantifies the frequency of
code-switching in a corpus. Given a corpus com-
posed of tokens tagged by language {lj}, i ranges
from 1 to n − 1, where n the size of the corpus.
S(li, lj ) = 1 if li = lj and 0 otherwise in Equa-
tion 2. The value of Ii computed is approxima-
teedly 0.079 portraying a high frequency of code-
switching points.

Mi =
1−∑

p2j
(k − 1)

∑
p2j

(1)

Ii =
1

n− 1

∑

1<=i<j−1<=n−1

S(li, lj) (2)

4.2 Implementation Details
4.2.1 Baseline
Several baseline models were experimented such
as Support Vector Machine (SVM) and Random
Forests (RF). The supervised models were trained
using k-fold cross-validation with 10 splits (k=10)
each. The hyper-parameters for Random Forest
classifier were fine tuned and the results were
found to be optimal when n estimators, max depth
and max features were fixed at 1000, 15 and
log2, respectively. Other parameters for the SVM
classifiers were initialized to default values. In-
spired by Badjatiya et al. (2017) and Mathur et al.
(2018a), various features were extracted from pre-
processed tweets to be used as input to the baseline
models such as (i) Character n-grams, (ii) Bag of
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Words Vector (BoWV) and (iii) TF-IDF count vec-
tor and the results have been summarized in Table
6.

4.2.2 Transfer Learning
The number of trainable and static layers were
toyed with to get the best combination giving suit-
able results. For the classification task, both CNN
and LSTM models are trained using 10-fold cross
validation to identify the best hyper-parameter set-
tings as presented below:

• CNN: Convolutional 1D layer (filter size=15,
kernel size=3) → Convolutional 1D (filter
size=12, kernel size=3) → Convolutional 1D
(filter size=10, kernel size=3) → Dropout
(0.2) → Flatten Layer → Dense Layer (64
units, activation = ’relu’) → Dense Layer (3
units, activation = ’softmax’)

• LSTM : LSTM layer(h=64, dropout=0.25,
recurrent dropout=0.3) → Dense (64 units,
activation = ’relu’) → Dense (3 units, acti-
vation = ’sigmoid’)

The final layer of both CNN and LSTM models
is the compile layer with categorical cross-entropy
as the loss function, Adam as the optimizer, learn-
ing rate kept at 0.001 and L2 regularization with
strength of 1E-6. The CNN and LSTM models
were tested using three flavors of word embed-
dings : (i) Glove, (ii) Twitter word2vec and (iii)
FastText separately. The dimensions of input word
embeddings were kept constant at 200 as for con-
sistency across all embeddings. The hyper param-
eters were chosen by grid search by running the
experiments over a wide range. The batch size was
experimented from size 8 to 128. Similarly, the
number of epochs were limited at point were the
model training loss plateaued by exploring differ-
ent values from 10 to 50 in intervals of 5. The
epochs and batch size were fixed to 20 and 64
respectively so as to maintain consistency in per-
formance evaluation in each case without compro-
mising on the optimality of the results correspond-
ing to each configuration as summarized in Table
7.

4.2.3 MIMCT Model
Distinct word embedding representation are gen-
erated from each participant embedding layer that
are concatenated along with secondary features

Feature Char N-grams BoWV TF-IDF
Classifier SVM RF SVM RF SVM RF
Precision 0.679 0.565 0.688 0.579 0.721 0.655
Recall 0.708 0.587 0.731 0.664 0.724 0.678
F1-Score 0.688 0.574 0.703 0.639 0.723 0.666

Table 6: Baseline results for non-offensive, abu-
sive, hate-inducing tweet classification on HOT

and fed to the MIMCT model as independent in-
puts to both CNN and LSTM channels. The fea-
tures after passing through both the channels are
merged and passed to the Max-pooling 1D layer.
The resultant vector is reshaped and fed into a
final softmax layer to perform tertiary classifica-
tion. The architecture of CNN channel comprises
of three successive Convolutional-1D layers with
filter size chosen as 20, 15 and 10 respectively.
This is followed by a dropout layer of value 0.25
and flatten layer. This is immediately followed by
a single dense layer of 3 units with softmax ac-
tivation. The LSTM channel is simply a layered
structure comprising of a LSTM layer (128 units
and dropout value of 0.2) and a dense layer (3 units
and softmax activation). The MIMCT model uses
Adam optimizer (Kingma and Ba, 2014) along
with L2 regularization to prevent overfitting in the
model. MIMCT was initially trained on the EOT
dataset and the complete model is re-trained on the
HOT dataset so as to benefit from the transfer of
learnt features in the last stage. The model hyper-
parameters were experimentally selected by trying
out a large number of combinations through grid
search.

4.3 Results and Discussion

Table 6 clearly show that SVM model supple-
mented with TF-IDF features gives peak perfor-
mance in terms of F1-score and precision when
compared to other configurations of baseline su-
pervised classifiers. The general inference that
can be drawn at this stage is that the SVM clas-
sifier outperforms Random Forest. Another use-
ful observation is that TF-IDF is the most effec-
tive feature for semantically representing Hinglish
text and gives better performance than both Bag of
Words Vector and Character N-grams on respec-
tive classifiers. These observations are in agree-
ment with the results presented by Badjatiya et al.
(2017) who also used supervised classification for
offensive tweet classification in English.

Table 7 shows results (in terms of F1-score,
precision, and recall) for the classification task
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Embedding Glove Twitter Word2vec FastText
Model CNN LSTM CNN LSTM CNN LSTM
Data EOT HOT TFL EOT HOT TFL EOT HOT TFL EOT HOT TFL EOT HOT TFL EOT HOT TFL
Precision 0.843 0.734 0.789 0.819 0.753 0.802 0.856 0.762 0.793 0.821 0.756 0.810 0.800 0.730 0.758 0.799 0.746 0.823
Recall 0.841 0.804 0.820 0.834 0.764 0.819 0.861 0.811 0.817 0.835 0.779 0.846 0.820 0.805 0.827 0.807 0.677 0.838
F1-Score 0.841 0.755 0.801 0.816 0.752 0.813 0.857 0.799 0.815 0.835 0.765 0.830 0.811 0.772 0.793 0.800 0.755 0.823

Table 7: Results for non-offensive, abusive, hate-inducing tweet classification on EOT, HOT and the
HOT dataset with transfer learning (TFL) for Glove, Twitter Word2vec and FastText embeddings

of transfer learning on CNN and LSTM models.
Macro metrics are preferred in experimentation
evaluation as the class imbalance is not severe
enough to skew the outcomes. Training and test-
ing the same models from scratch on HOT without
transfer learning reports a sharp downfall in per-
formance of CNN and LSTM, which is quite ex-
pected as the Hinglish tweets in the HOT dataset
suffer from syntactic degradation after transliter-
ation and translation. But following the transfer
learning methodology, the model performances on
HOT improve significantly strengthening the ar-
gument that there was a positive transfer of fea-
tures from English to Hinglish tweet data. A rel-
ative comparison between several configurations
of CNN and LSTM with corresponding word em-
beddings reflects that LSTM’s are slightly better in
each case relative to the corresponding CNN mod-
els and the Twitter word2vec outperforms its con-
temporary embeddings in most cases.

Lastly, the observation of the MIMCT model
gives us useful insights to examine the effects of
using multiple inputs. While the combination of
Twitter word2vec (Tw) and FastText (Ft) shows
superior performance than other embedding com-
binations, the addition of sentiment score has little
affect on the overall classification performance. In
contrast, the usage of profanity vector and LIWC
features boosts the metric values and the best clas-
sifier performance is recorded when all the sec-
ondary features are used together in conjugation
with Twitter word2vec and FastText embeddings.
MIMCT shows significant performance improve-
ment over the baselines presented in our work to
emerge as the current state of the art in the task
of Hinglish offensive tweet detection. MIMCT
model (Tw + Ft + SS + PV + LIWC) out per-
forms SVM supplemented with TF-IDF features
and the Twitter-LSTM transfer learning model by
0.166 and 0.165 F1 points, respectively.

4.4 Error Analysis

Some categories of error that occur in MIMCT:

MIMCT Features Precision Recall F1
Glove (Gl) 0.819 0.849 0.805
Twitter Word2vec (Tw) 0.867 0.810 0.852
FastText (Ft) 0.860 0.777 0.831
(Gl) + (Tw) 0.859 0.745 0.844
(Tw) + (Ft) 0.861 0.854 0.857
(Gl) + (Ft) 0.800 0.850 0.812
(Gl) + (Tw) + (Ft) 0.819 0.795 0.804
(Tw) + (Ft) + [ SS ] 0.782 0.902 0.858
(Tw) + (Ft) + [ LIWC ] 0.793 0.925 0.885
(Tw) + (Ft) + [ PV ] 0.618 0.890 0.888
(Tw) + (Ft) + [ SS + PV ] 0.759 0.904 0.886
(Tw) + (Ft) + [ SS + LIWC ] 0.732 0.865 0.889
(Tw) + (Ft) + [ PV + LIWC ] 0.851 0.905 0.893
(Tw) + (Ft) + [ SS + PV + LIWC ] 0.816 0.928 0.895

Table 8: Results of the MIMCT model with various
input features HOT compared to previous base-
line. Primary inputs are enclosed within parenthe-
ses, e.g., (Tw), and secondary inputs are enclosed
within square brackets, e.g. [ LIWC ].

1. Creative word morphing: Human annota-
tors as well as the classifier misidentified
the tweet ’chal bhaag m*mdi’, which trans-
lates in English as ’go run m*mdi’, as non-
offensive instead of hate-inducing. Here
’m*mdi’ is an indigenous way of referring to
a particular minority that has been morphed
to escape possible identification.

2. Indirect hate: The tweet ’Bas kar ch*tiye
m***rsa educated’ was correctly identified
by our annotators as hate-inducing but the
classifier identified it as abusive. This is be-
cause pre-processing of this tweet as ’Limit
it m*ther f*cking religious school educated’
leads to lose in its contextual reference to cus-
toms and traditions of a particular commu-
nity.

3. Uncommon Hinglish words: The work in
its present form dos not deal with uncommon
and unknown Hinglish words. These may
arise due to spelling variations, homonyms,
grammatical incorrectness, mixing of for-
eign language, influence of regional dialect
or negligence due to subjective nature of the
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transliteration process.

4. Analysis of code-mixed words: It has been
shown in previous research (Singh, 1985)
that bilingual languages tend to be biased in
favour of code-mixing of certain words at
specific locations in text. Contextual inves-
tigation in this direction can be a useful to
eliminate the subjective problem of Hinglish
to English transliteration in future work.

5. Possible overfitting on homogenous data:
The data usually present on the social media
portals tend to be noisy and often repetetive
in content. The skew in the class balance of
dataset coupled with training on deep layered
model may lead to overfitting of the data and
may possibly induce large variation between
expected and real-world results. We suspect
this might be inherent in present experiments
and can be overcome by extracting data from
heterogenous sources to model a real-life sce-
nario.

5 Conclusion and Future Work

We introduced a novel HOT dataset for multi-
class labeling of offensive textual tweets in Hindi-
English code switched language. The tweets in
Hinglish language are transformed into semanti-
cally analogous English text followed by exper-
imental validation of transfer learning for clas-
sifying cross-linguistic tweets. We propose the
MIMCT model that uses multiple embeddings and
secondary semantic features in a CNN-LSTM par-
allel channel architecture to outperform the base-
lines and naive transfer learning models. Finally, a
brief analysis of the HOT dataset and its associated
errors in classification has been provided. Pos-
sible future enhancements include applying fea-
ture selection methods to choose the most promi-
nent features amongst those presented similar to
the work done by (Sawhney et al., 2018b,c), ex-
tending MIMCT to other code-switched and code-
mixed languages and exploring GRU-based mod-
els. Also, stacked ensemble of shallow convolu-
tional neural networks can be explored for Twitter
data as shown by Mahata et al. (2018a).
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Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl wnut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Proceedings of the Workshop on
Noisy User-generated Text, pages 146–153.

Brian J Grim and Alan Cooperman. 2014. Religious
hostilities reach six-year high. Pew Research Center,
January, 14.

146



Gualberto Guzmán, Joseph Ricard, Jacqueline Serigos,
Barbara E Bullock, and Almeida Jacqueline Toribio.
2017. Metrics for modeling code-switching across
corpora. Proc. Interspeech 2017, pages 67–71.

Timothy Jay and Kristin Janschewitz. 2008. The prag-
matics of swearing. Journal of Politeness Research.
Language, Behaviour, Culture, 4(2):267–288.

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and
Vasudeva Varma. 2016. Towards sub-word level
compositions for sentiment analysis of hindi-english
code mixed text. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2482–2491.

Mitesh M Khapra, Ananthakrishnan Ramanathan,
Anoop Kunchukuttan, Karthik Visweswariah, and
Pushpak Bhattacharyya. 2014. When translitera-
tion met crowdsourcing: An empirical study of
transliteration via crowdsourcing using efficient,
non-redundant and fair quality control. In LREC,
pages 196–202.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
and Jing Jiang. 2018a. Did you take the pill?-
detecting personal intake of medicine from twitter.
arXiv preprint arXiv:1808.02082.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
et al. 2018b. # phramacovigilance-exploring deep
learning techniques for identifying mentions of
medication intake from twitter. arXiv preprint
arXiv:1805.06375.

Puneet Mathur, Meghna Ayyar, Sahil Chopra, Simra
Shahid, Laiba Mehnaz, and Rajiv Shah. 2018a.
Identification of emergency blood donation request
on twitter. In Proceedings of the Third Workshop
On Social Media Mining for Health Applications.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018b. Detecting offensive tweets
in hindi-english code-switched language. In Pro-
ceedings of the Sixth International Workshop on
Natural Language Processing for Social Media,
pages 18–26.

Hamdy Mubarak, Kareem Darwish, and Walid Magdy.
2017. Abusive language detection on arabic social
media. In Proceedings of the First Workshop on
Abusive Language Online, pages 52–56.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Weike Pan, Erheng Zhong, and Qiang Yang. 2012.
Transfer learning for text mining. In Mining Text
Data, pages 223–257. Springer.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. arXiv preprint arXiv:1706.01206.

James W Pennebaker, Roger J Booth, and Martha E
Francis. 2007. Liwc2007: Linguistic inquiry and
word count. Austin, Texas: liwc. net.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Kumar Ravi and Vadlamani Ravi. 2016. Sentiment
classification of hinglish text. In Recent Advances
in Information Technology (RAIT), 2016 3rd Inter-
national Conference on, pages 641–645. IEEE.

Sahil Rizwan. 2016. This Reddit Thread On The
Best Indian Gaalis Will Increase Your Vocabulary,
If Nothing Else. https://www.buzzfeed.
com/sahilrizwan/speak-no-evil?utm_
term=.kgPxblYyl#.suP6XO4VO. [Online;
accessed 19-May-2018].

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. arXiv preprint arXiv:1701.08118.

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Ka-
lika Bali, Monojit Choudhury, and Niloy Ganguly.
2016. Understanding language preference for ex-
pression of opinion and sentiment: What do hindi-
english speakers do on twitter? In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1131–1141.

Ramit Sawhney, Prachi Manchanda, Raj Singh, and
Swati Aggarwal. 2018a. A computational approach
to feature extraction for identification of suicidal
ideation in tweets. In Proceedings of ACL 2018, Stu-
dent Research Workshop, pages 91–98.

Ramit Sawhney, Puneet Mathur, and Ravi Shankar.
2018b. A firefly algorithm based wrapper-penalty
feature selection method for cancer diagnosis. In
International Conference on Computational Science
and Its Applications, pages 438–449. Springer.

Ramit Sawhney, Ravi Shankar, and Roopal Jain.
2018c. A comparative study of transfer functions
in binary evolutionary algorithms for single objec-
tive optimization. In International Symposium on
Distributed Computing and Artificial Intelligence,
pages 27–35. Springer.

Rajendra Singh. 1985. Grammatical constraints on
code-mixing: evidence from hindi-english. Cana-
dian Journal of Linguistics/Revue canadienne de
linguistique, 30(1):33–45.

147



Quan-Hoang Vo, Huy-Tien Nguyen, Bac Le, and
Minh-Le Nguyen. 2017. Multi-channel lstm-cnn
model for vietnamese sentiment analysis. In Knowl-
edge and Systems Engineering (KSE), 2017 9th In-
ternational Conference on, pages 24–29. IEEE.

148



Proceedings of the Second Workshop on Abusive Language Online (ALW2), pages 149–159
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

Decipherment for Adversarial Offensive Language Detection

Zhelun Wu, Nishant Kambhatla, Anoop Sarkar
School of Computing Science

Simon Fraser University
Burnaby, BC , Canada

{zhelunw,nkambhat,anoop}@sfu.ca

Abstract

Automated filters are commonly used by on-
line services to stop users from sending age-
inappropriate, bullying messages, or asking
others to expose personal information. Previ-
ous work has focused on rules or classifiers to
detect and filter offensive messages, but these
are vulnerable to cleverly disguised plaintext
and unseen expressions especially in an adver-
sarial setting where the users can repeatedly
try to bypass the filter. In this paper, we model
the disguised messages as if they are produced
by encrypting the original message using an
invented cipher. We apply automatic decipher-
ment techniques to decode the disguised ma-
licious text, which can be then filtered using
rules or classifiers. We provide experimen-
tal results on three different datasets and show
that decipherment is an effective tool for this
task.

1 Introduction

Under-aged social media users and users of
chat rooms associated with software like video
games are routinely exposed to offensive language
including sexting, profanities, age-inappropriate
languages, cyber-bullying, and requests for per-
sonal identifying information. A common ap-
proach is to have a filter to block such messages.
Filters are either rule-based (Razavi et al., 2010)
or machine learning classifiers (Yin et al., 2009;
Warner and Hirschberg, 2012; Williams and Bur-
nap, 2015). However, users wishing to bypass
such filters can subtly transform messages in novel
ways which can be hard to detect.

Since malicious users and spammers can
change their attacks to avoid being filtered, an ap-
proach to offensive text detection that takes into
account this adversarial relationship is what can
deal with real-world abusive language detection
better. Techniques like spelling correction have

been used to correct misspelled words in user gen-
erated content (Kobus et al., 2008), but in an ad-
versarial setting it is easy to defeat a spelling cor-
rection system trained on predictable errors. Con-
text based normalization methods have been pro-
posed to convert erroneous user generated text
from social media to standard text (Choudhury
et al., 2007; Schulz et al., 2016). We, however,
treat this problem as follows: we model malicious
users trying to bypass a filtering system as having
invented a new cipher, and our goal is to decipher
their encrypted messages back to plaintext. We
use a large space of possible ciphers that could be
invented by those seeking to bypass a filter.

This paper addresses the problem of finding and
filtering offensive messages as a special case of de-
cipherment. In decipherment, a message in plain-
text (original text) is converted into ciphertext (en-
crypted text). Encryption disguises the content of
the original plaintext to a ciphertext so that it can-
not be filtered out or blocked. Decryption or deci-
pherment is the process of recovering the plaintext
from the ciphertext. We treat disguised inappropri-
ate content as ciphertext, and the actual intended
content as the plaintext. Then we apply decipher-
ment to recover more recognizable plaintext from
the ciphertext and apply filters on the plaintext.
Conceivably these users may create very complex
unbreakable ciphers which cannot be deciphered
by our system, but in such cases the ciphers are
likely to also be unreadable by other humans who
are the intended audience. We do not see many
examples of this in our real-world chat messages.

We use Expectation Maximization (Dempster
et al., 1977) and Hidden Markov Models (HMM,
Rabiner (1989)) for our unsupervised decipher-
ment method (Knight et al., 2006). We use an effi-
cient beam search decoding algorithm to decipher
ciphertext into the most likely plaintext. We also
compare against supervised noisy channel models
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and a state-of-art spelling correction system (As-
pell). We discover that our method is immune
to many previously unobserved types of changes
made by users to disguise the original message.

2 Decipherment for Offensive Language
Detection

The goal of decipherment is to uncover the hidden
plaintext sequence p1...pn, given a disguised ci-
phertext sequence c1...cn. We assume that all cor-
rupted forms of offensive language are originally
explicit plaintext encrypted using letter substitu-
tion, insertion, or deletion.

2.1 NULL Insertion

A user can hide plaintext by inserting additional
letters, or making substitutions and deletions in the
plaintext:

Offensive text :you are a B*n@n@ee

Intended Plaintext :you are a bunny

we lowercase the texts and substitute the special
symbols and punctuation marks inside the words
with NULL, and then map NULL to any letter or
NULL. Thus, the corrupted word B*n@n@ee is
changed to

b<NULL>n<NULL>n<NULL>ee

When dealing with insertion of symbols, we
treat it as an injective decipherment problem and
solve it by adding NULL symbols in the ciphertext
so that the decipherment model could map candi-
date letters. We compare two methods: 1) Insert-
ing the NULL in a random position of the corrupted
offensive key words; 2) Using a character-level
n-gram model to segment the ciphertext adapt-
ing the technique for unsupervised word segmen-
tation Ando and Lee (2003) in order to find where
to insert NULL symbols.

The character-level n-gram model is trained on
an unsegmented corpus (spaces removed between
words). At each position k, we determine whether
to insert a NULL symbol or not by calculating an
n-gram score using Eqns (1) and (2).

vn(k) =
1

2(n− 1)

∑

d∈{L,R}

n−1∑

j=1

I>(c(s
n
d ), c(t

n
d ))

(1)

vN (k) =
1

N

∑

n∈N
vn(k) (2)

where n is the n-gram order, and s are n-grams
that straddle the potential NULL position k to the
left L and right R and t are n-grams that are on ei-
ther side of position k also on the left L and right
R and c() is the n-gram frequency. For a sequence
A B C D W X Y Z, for n = 4 and position
k = 4 between D and W, Eqn (1) for a particular n
compares the frequency of the s type n-grams that
straddle position k = 4 (so, in this case frequency
of B C D W, C D W X, D W X Y against the
frequency of the t type n-grams on either side: A
B C D and W X Y Z. Eqn (2) then takes the av-
erage for each n-gram order (for n=1,2,3,4). The
position k that has a score from Eqn (2) higher
than a threshold value is chosen as the position for
NULL insertion.

2.2 Decipherment Model

A decipherment model maximizes the probability
of a substitution map that converts the ciphertext
sequence c to plaintext sequence p (Eqn 3).

P (c) =
∑

e

P (p) · P (c | p) (3)

where P (.) is a character-level language model of
the plaintext source trained using a monolingual
corpus. We model P (c | p) as the emission prob-
ability of a Hidden Markov Model (Knight et al.,
2006) with cipher characters c as observations and
plaintext characters p as the hidden states of the
HMM. We train this using unsupervised learning
using the Forward-Backward algorithm (Rabiner,
1989).

We propose our own initialization algorithm
(Algorithm 1), based on the assumption that the
previous trained table can help us to reach bet-
ter local optima with fewer iterations compared to
uniform initialization with random perturbations.

With the learned posterior distribution and lan-
guage model score we use beam search to obtain
the best plaintext (Forney Jr, 1973; Nuhn et al.,
2013). Beam search combines breadth-first search
and child pruning reducing the search space for
each partial hypothesis of the decipherment.
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Algorithm 1 Initialization with previous trained
table

1: Given a set of cipher text sentences with size
of d, a plain text with vocabulary size v and
plain text trigram model b

2: Randomly initialize the s(c | e) substitution
table and normalize

3: for i = 1 . . . d do
4: preprocess the i-th cipher text sequence by

removing repeated characters and lower case
the text

5: insert NULL based on techniques in
Sec. 2.1

6: if i 6= 1 then
7: initialize s(c | e) using the (i − 1)th

trained table s(c | e)
8: apply Forward-Backward algorithm to

learn parameters s(c | e)

3 Data

3.1 Wiktionary

We created an offensive language dataset from
English Wiktionary data. We use Wiktionary la-
bels for vulgar, derogatory, etc. and selected ex-
ample sentences for words tagged with such la-
bels. From the entire English Wiktionary data , us-
ing this method, we extracted 2298 offensive sen-
tences and 152,770 non-offensive sentences. This
data is organized as {key word : example
sentence} as in a dictionary. With the dupli-
cates removed, for each key word, the corre-
sponding sentences were split into a 3:1 ratio as
training and testing data.

We used 1,532 sentences offensive training set
data and sampled 1,532 non-offensive sentences
as a balanced dataset for training an offensive sen-
tence classifier. We split 716 offensive testing sen-
tences into 4 parts in sequence. The first three
parts we set as test sets A,B and C and the lat-
ter part as development set. Every set has 179
sentences. The three test sets are taken from the
same larger corpus to measure the variance in per-
formance of the decipherment powered classifica-
tion technique.

The Wiktionary dataset is used to train our lan-
guage model. The offensive sentences had fewer
instances than the non-offensive counterparts. To
offset any loss in information, the offensive sen-
tences were duplicated until they were as many in
number as the non-offensive sentences, resulting

in a balanced training set of 155,251 tokens.

3.2 Other data

Language Model: For the character models we
used a combination of Wiktionary and the Eu-
ropean Parliament Proceedings Parallel Corpus
1996-2011 (Koehn, 2005). 100K English sen-
tences were sampled from the German-English
EuroParl Corpus to give us a 2.7M token English
plaintext corpus.

Spelling Correction: We use the English Giga-
word corpus (Graff et al., 2003) to train the lan-
guage model for the noisy channel spelling correc-
tion module. The preprocessed corpus has 7.4M
lowercase English word tokens. For spelling cor-
rection, the Linux system dictionary with 479,829
English words in lower case is used. We used
3,393,741 pairs of human disguised words and
original plain text words from the rule-based fil-
tering system to train the error model.

3.3 Real World Chat Messages

We obtained 4,713,970 unfiltered, unlabelled chat
messages from a provider of filtering services for
chat rooms aimed at under-aged users. The data
was provided by Two Hat Security which provides
human powered chat room monitoring and filter-
ing. Two Hat combines artificial intelligence with
human expertise to classify chat room discussions
and images on a scale of risk, taking user profiles
and context into account. We pre-processed the
chat messages to produce a cleaner version of the
original message using tokenization rules.

We used 4,700,000 chat messages provided to
us by Two Hat Security as a training set to train a
letter based language model. To build a more com-
prehensive language model, this language model
was interpolated with the ones trained on Wik-
tionary and Europarl datasets.

We also collect a separate set of 500 plaintext
chat messages flagged as offensive by the filtering
system to use as a development set. For the test
set, we sampled 500 chat messages from 265,626
chat messages which were identified as offensive
using a rule-based filtering system that uses lists
of offensive words. These messages were marked
inoffensive and cleared for posting in an older ver-
sion of the same rule-based filtering system (two
years older). We use this data to evaluate our deci-
pherment system: can we match the performance
improvement of two years of rule development?
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Over two years new rules were added to account
for user behaviour of trying to bypass the rule-
based filtering system. Can decipherment discover
these patterns automatically?

4 Experimental Setup

4.1 Language Model
Character Language Model: We used the
SRILM toolkit (Stolcke et al., 2002) to train a
character language model (LM) from Wiktionary
and Europarl data. We trained two LMs and in-
terpolated them using a mixture model. The in-
terpolation weights were tuned on the develop-
ment set. We used py-srilm-interpolator
(Kiso, 2012) for the mixture model.

Word Language Model: We trained a word tri-
gram language model on English Gigaword data.

4.2 Encipherment
The sentences in the test set are encrypted using
different techniques: the Caesar 1:1 substitution
cipher, the Leet simple substitution cipher1 and re-
placing the offensive keywords with real human-
disguised versions of curse words obtained from
the rule-based filtering system. This was done to
mimic the way people disguise their messages on-
line.

4.3 Decipherment
HMM: For the HMM based decipherment, we
run 100 random restarts (Berg-Kirkpatrick and
Klein, 2013), running the EM algorithm to con-
vergence 100 times, to find the initialization that
leads to the local optima with highest likelihood.

Spelling Correction: We use settings for the
noisy channel model based spelling correction as
stated in Norvig (2009): pspell error = 0.05, and
λ =1. The maximum edit distance limit is set to
3, and the error model is trained on the real chat
messages we collected. The error model trained on
pairs of misspelled words and the correctly spelled
English words from the Linux system dictionary.

4.4 Evaluation
We evaluate our approach in terms of the classifier
accuracy and the risk level from the rule-based fil-
tering system for the real chat messages. We are
using a simple logistic regression classifer from
the LibShortText toolkit (Yu et al., 2013) to train

1https://en.wikipedia.org/wiki/Leet

a classifier to classifies offensive and normal sen-
tences. After training the classifier, we classify the
original test sentences without any encryption.

We do not use a very sophisticated classifier be-
cause the goal of classification here is not to cor-
rectly classify offensive messages, but rather, to
measure how well the decipherment method can
recover the original messages containing offensive
text back from the encrypted messages. We com-
pare the classification accuracy between the origi-
nal and deciphered messages. If the classification
accuracy gap between the original and deciphered
messages is small, the decipherment approach can
recover the original user-intended messages from
encrypted messages.

Tuning: We have a set of 179 sentences as the
development set which is used for tuning the clas-
sifier and other hyper-parameters. After tuning,
we were able to achieve the highest classification
accuracy of 86%.

5 Experiments and Results

On the test sets A,B and C (see Sec. 3.1), in both
our experiments on Caesar ciphers and Leet code,
we first measure the number of offensive instances
that were correctly classified by our logistic re-
gression classifier. Then, the same classifier is run
on the encrypted versions of these messages. The
first two columns in the Table 1 and Table ?? show
the classification accuracy obtained in those set-
tings.

In our experiments, we apply Spelling Correc-
tion and our Decipherment techniques on the en-
crypted messages separately and finally use our
classifier to determine the number of offensive in-
stances that were correctly classified in decrypted
text. The objective here is to measure how well
either of the techniques is able to recover the orig-
inally intended message from the encrypted ver-
sion of the message, simulating a real online user’s
behaviour of disguising an offensive text to beat a
rule-based filter. In other words, we aim at de-
creasing the gap between the classification accu-
racies on a test set and its encrypted form.

5.1 Decipherment of Caesar Ciphers
Caesar cipher is a simple substitution cipher in
which each plaintext token is ‘shifted’ a certain
number of places down the alphabet. We en-
crypted three test sets A, B, C with Caesar cipher
encryption by shifting 3 letters to the right.
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Test Set Original text Caesar cipher
encrypted text

Noisy Channel
Spelling Correction

Deciphering
per line

Deciphering
whole set

A 86%
(154/179)

4%
(8/179)

28%
(51/179)

55%
(99/179)

86%
(154/179)

B 86%
(154/179)

3%
(7/179)

22%
(41/179)

51%
(92/179)

86%
(154/179)

C 84%
(152/179)

5%
(10/179)

22%
(41/179)

58%
(104/179)

84%
(152/179)

Table 1: Classification Accuracy of Spelling Correction and Decipherment Results in Caesar Cipher Encrypted Text

After being encrypted with a Caesar cipher, all
the letters in the original messages are replaced,
making the text unreadable. Applying spelling
correction on such text sequences is almost fu-
tile as the text does not contain lexically correct
words. HMM based decipherment approach, how-
ever, is capable of handling such obfuscated text
sequences by design. We apply both the meth-
ods on three separate test sets A,B and C that built
from the Wiktionary dataset (see Sec. 3.1).

Te
st

 D
at

as
et

A

B

C

Classification Accuracy (%)
0 22.5 45 67.5 90

Spelling Correction Decipherment

Original Text: im going to hit 
the clubs and see if I can get me 
some cunt 
Encryption: lp jrlqj wr klw wkh 
foxev dqg vhh li l fdq jhr ph 
vrph fxqw 
Decipherment: im going to hit 
the clubs and see if I can get me 
some cunt 
Spelling Correction: lp rj wr kl 
with foxe dq hh li l dq jew ph ph 
few

Figure 1: Decipherment vs. Spelling Correction ap-
proaches on Caesar cipher encrypted offensive mes-
sages. (Example from Test set A.)

The classification accuracies in Table 1 show
that the HMM decipherment approach outper-
forms our other baselines.

With 100 random restarts on EM during the de-
cipherment of the Caesar cipher encrypted dataset
A, our system reports a mean loglikelihood of -
27923 and a standard deviation of 23. The Figure
2 shows every loglikelihood value in 100 random
restarts. As the Caesar cipher is relatively easy to
decipher, the loglikelihood does not vary greatly.
The highest loglikelihood yields a classification
accuracy of 86% (154/179), which is the same as
the original plain text classification accuracy. The
decipherment process seems to recover the whole
message that was encrypted by the Caesar cipher.

5.2 Decipherment of Leet Substitution

Leet is a quasi-encryption method which makes
use of modified spellings and verbiage primarily
used by the Internet community for many pho-

Figure 2: 100 Random Restarts Loglikelihood in Caesar Ci-
pher Decipherment

netic languages. For the Leet substitution cipher,
we referred to the KoreLogic’s Leet rules (Kore
Logic Security, 2012) which tagged as “#KoreL-
ogicRulesL33t” . We used John the Ripper pass-
word cracker (Solar Designer and Community,
2013) to apply the KoreLogic Leet rules encrypt-
ing our test sets.

Encrypting a text with a Leet substitution does
not change all the letters in the original messages.
A spelling correction, therefore, performs better
on such text sequences compared to the ones enci-
phered with a Caesar cipher. So the noisy channel
spelling correction is able to recover the original
form of some of the corrupted messages. HMM
based decipherment approach, however, still man-
ages to outperform spelling correction. For deci-
pherment of Leet ciphers, we employ beam search
to decode the final results having obtained the pos-
terior probabilities from EM training. We apply
both the methods on the test sets A,B and C.

Table 1 shows that the noisy channel spelling
correction method is able to obtain an average
classification accuracy of 65 out of the 179 en-
crypted messages. For HMM based decipherment
techniques, however, we record higher accuracy,
as before. With a beam width of 5, when applied
to the whole set instead of a per-sentence basis,
the resulting messages are flagged at an average
of 82% across the three test sets. The deciphered
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Test Set Original
Text

Leet
Encryption Set

Noisy Channel
Spelling Correction

Deciphering
per line

Deciphering
whole set

A 86%
(154/179)

59%
(107/179)

68%
(122/179)

56%
(102/179)

82%
(147/179)

B 86%
(154/179)

64%
(115/179)

60%
(108/179)

62%
(112/179)

82%
(148/179)

C 84%
(152/179)

62%
(112/179)

65%
(117/179)

67%
(121/179)

81%
(146/179)

Table 2: Classification Accuracy of Spelling Correction and Decipherment Results in Leet Substitution Cipher with Beam
Search Width of 5
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Spelling Correction Decipherment

Original Text: whats fucker 

Encryption: wha+$ Fuck3r 

Decipherment: whats fucker 

Spelling Correction: what a 
fucker

Figure 3: Decipherment vs. Spelling Correction ap-
proaches on Leet cipher encrypted offensive messages.
(Example from Test set A.)

messages appear quite close to being as accurate
as the original raw test set.

Figure 4: 100 Random Restarts Loglikelihood in Leet Sub-
stitution Cipher Decipherment

On performing 100 random restarts on EM dur-
ing the decipherment of the Caesar cipher en-
crypted test dataset A, our system records an aver-
age loglikelihood of -30183 and a standard devi-
ation of 390. Figure 4 shows every loglikelihood
value in 100 random restarts. The high deviation
in the loglikelihood shows that a Leet substitution
is harder to solve than a Caesar cipher.

5.3 Decipherment of Real Chat Offensive
Words Substitution Dataset

In each of the offensive test sets A,B and C, the
offensive keywords in the messages are substi-
tuted with real human corrupted words obtained

from real-word chat messages. These chats are
transformed versions of these offensive words that
are matched using a hand-written rule-based sys-
tem. We used enciphered offensive words col-
lected from real chat messages and the corre-
sponding plain text for this task.

Original Text: hes really bitchy in the morning 
Encryption: hes really bitchyou in the morning 
Decipherment: hes really bitchy in the morning 
Spelling Correction: hes really bitchy in the morning

Since this quasi-encryption is based on real chat
messages, it closely mimics the inventive ways
users employ to disguise their messages to bypass
the filter system, which can involve both insertion
and deletion.

It is then imperative that we handle insertion,
deletion and substitution in the disguised words
to recover the original plain text words. In the
insertion case, for example, if the original word
hello is disguised as helo, a NULL symbol is
inserted inside the disguised word helo to deci-
pher. The ideal position to insert the NULL symbol
is he<NULL>lo but it is not known during train-
ing. To circumvent this, we experiment with two
techniques: (1) to insert NULL at random before
the beginning of the EM training, and (2) to insert
the NULL using the method in Sec. 2.1.
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Figure 5: Random vs. n-gram count based NULL insertions.

This insertion techniques uses the word-
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Test Set Wiktionary
Encrypted Set

Noisy Channel
Spelling

Correction

Aspell Spelling
Correction NULL Insertion Decipherment

A 64%
(116/179)

72%
(130/179)

77%
(138/179) Random 69%

(124/179)

n-gram Count Based 72%
(129/179)

B 72%
(129/179)

76%
(137/179)

73%
(131/179) Random 72%

(130/179)

n-gram Count Based 75%
(136/179)

C 75%
(136/179)

77%
(138/179)

77%
(138/179) Random 76%

(137/179)

n-gram Count Based 78%
(140/179)

Table 3: Classification Accuracy of Spelling Correction and Decipherment Results in Real Chat Offensive Words Substitution
Wiktionary Dataset

level language model 4.1 to learn the n-gram
counts.From Table 3 and Figure 7, the n-gram
count based insertion decipherment has a higher
classification accuracy than the random insertion
NULL decipherment. An advantage of this type
of HMM decipherment method is that it tends
to not change the words that are already correct
since these words have the highest language model
score. Rather, it changes the words that are cor-
rupted or misspelled. Irrespective of the type of
encryption, the HMM decipherment approach al-
ways deciphers the messages which fit with the
language model we trained.

We conducted an additional experiment to test
with the Aspell program. Table 3 shows that de-
ciphered messages obtain better accuracies than
Aspell on test sets B and C while on test set A,
it is about 5% less accurate. Note that the noisy
channel model was trained on data obtained from
a hand-tuned filtering system that was domain spe-
cific and created specifically for these chat mes-
sages. What we find in our results is that the deci-
pherment system can match this domain expertise
using unsupervised learning without any domain
specific knowledge.

Figure 6 shows every loglikelihood value in
100 random restarts on test-set B. The mean of
loglikelihood is -41444.7 and the standard devia-
tion was 115.53. The greater diversity among the
real chat offensive words renders the decipherment
much harder than controlled synthetic-scenarios.

5.4 Decipherment of Real Offensive Chat
Messages

We use two versions of a rule-based offensive lan-
guage filtering system to evaluate our decipher-
ment approach. The first version of the filter sys-

Figure 6: 100 Random Restarts Loglikelihood in De-
cipherment of Real Chat Offensive Words Substitution
on Test Set B

tem was two years old and the second version of
the filter system has benefited from daily updates
from humans monitoring the chat room. The ques-
tion we want to ask in this evaluation is if our de-
cipherment system can replicate the human effort
of two years of rule development in this filtering
system.

We use a test set of 500 offensive messages sam-
pled from the set of chat room messages which
were not flagged as offensive by the first (older)
version of the filter system but which were flagged
as offensive by the second version of the filter sys-
tem. This allows us to evaluate how many of those
offensive messages can be identified using deci-
pherment.

User corrupted text: fvk u 
User corrupted text: f2ck u 
Deciphered text: fuck you

Before deciphering these messages, we prepro-
cessed the text to remove repeated characters such
that only two sequential repeated characters re-
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main. For example, the text heeeellllooo is
preprocessed to heelloo. Further, all the special
symbols were replaced with <NULL>.

The preprocessed test-set is then deciphered
with the HMM based decipherment technique.
The deciphered messages are then passed back
into the first version of the filtering system. This
lets us check if deciphering the user-disguised
message into a simpler plaintext message allows
the two year old filter to catch it as offensive. The
above example shows that decipherment can han-
dle substitutions and insertions.

The two year old rule-based filter was able to
successfully flag 51.6% of the deciphered mes-
sages as offensive text. Thus, the decipherment
approach is able to transform about half of the cor-
rupted messages into a readable form so that the
filter system without the benefit of two years of de-
velopment can recognize them as offensive. This
shows that decipherment can lead to much faster
development of filtering systems for offensive lan-
guage.

6 Discussion

We observe that HMM decipherment trained on
the whole set is particularly able to recover most
encrypted letters (cipher text) into their original
letters (plain text). When we decipher each line
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Figure 7: Decipherment per line vs on whole set.

of messages individually, the EM training does not
observe enough data to learn the posterior proba-
bilities. In contrast, the substitution table trained
by previous messages being passed into next mes-
sage initialization table will not lose the informa-
tion learned from the previous messages. There-
fore, the results of whole set decipherment are bet-
ter than per line decipherment.

As Tables (1 2, 3) show, HMM decipherment
training can recover most of the words in our test

sets compared to the original message classifica-
tion accuracy of each set. From the results shown
in Table 1 and Table 2, no matter what encryp-
tion of substitution cipher was used, be it Caesar
cipher or Leet substitution cipher, the HMM de-
cipherment with language model could always re-
cover the original messages.

7 Related Work

For detecting offensive languages, rule-based fil-
tering systems and machine learning techniques
are widely used. Razavi et al. (2010) lever-
aged a variety of statistical models and rule-based
patterns and applied multi-level classification for
flame detection. Chen et al. (2012) introduced
a Lexical Syntactic Feature (LSF) architecture
to detect offensive content and identify poten-
tial offensive users in social media. Kansara and
Shekokar (2015) proposed a framework that de-
tects bullying texts and images in using feature ex-
traction and classifiers. Djuric et al. (2015) lever-
aged word embedding representations (Mikolov
et al., 2013) to improve machine learning based
classifiers. Nobata et al. (2016) unified predefined
linguistic elements and word embeddings to train
a regression model. Su et al. (2017) presented a
system to detect and rephrase profane words writ-
ten in Chinese. samghabadi2017detecting

Recently, deep learning methods have been em-
ployed for abusive language detection. Zhang
et al. (2018) presented an algorithm for detect-
ing hate speech using a combination of Convo-
lutional Neural Networks (CNN) and Gated Re-
current Unit (GRU). Gambäck and Sikdar (2017)
used four CNNs to classify tweets to one of four
predefined categories. Park and Fung (2017)
adopted a two-step approach with two classifiers.
The first step performs classification on abusive
language and the second step classifies a text into
types of sexist and racist abusive language given
that the language is abusive. Three CNN-based
models have been used for classification: Char-
CNN, WordCNN and HybridCNN. Badjatiya et al.
(2017) used an LSTM model with features ex-
tracted by character n-grams for hate speech de-
tection. As malicious users can change their ways
of transforming text to avoid being filtered, an
approach such as ours which takes into account
the adversarial relationship between the chat room
user and the offensive language filter is likely to
perform better at filtering.
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Previous work on decipherment are often based
on noisy-channel frameworks. Knight and Ya-
mada (1999) proposed to use EM algorithm to
estimate the mapping distribution over the sound
to characters, then generated the plaintext using
Viterbi algorithm (Forney Jr, 1973). The learn-
ing objective is to maximize the probability of the
mapping ciphertext phoneme-tokens to plaintext
characters. Further, Knight et al. (2006) studied
using EM for unsupervised learning of the sub-
stitution maps for 1:1 letter substitution ciphers.
Ravi and Knight (2011) proposed to regard for-
eign language as ciphertext and English as plain-
text, converting a translation problem into one of
word substitution decipherment. They employed
iterative EM approach and a Bayesian learning ap-
proach to build the translation mechanism using
monolingual data.

We use the EM based decipherment technique
to convert user-disguised offensive text into a
filter-recognizable plaintext.

8 Conclusion

The HMM decipherment can decipher disguised
text based on the language model regardless of
the encryption type. The decipherment approach
we proposed can cover more disguised cases than
spelling correction methods. However, due to the
limitation of edit distance and lack of traning data,
the noisy channel spelling correction has its limi-
tations and cannot handle high edit distance case.
Large edit distances are common in real chat mes-
sages, and thus the decipherment approach has its
advantages. The difference between the decipher-
ment with traditional spelling correction meth-
ods like Aspell is that decipherment method only
needs a language model to decipher cipher text,
and does not need a dictionary to refer to. The lan-
guage model has the advantage that we can train a
domain specific language model to decipher spe-
cific topic messages as real chat messages usually
have some sort of topics or domain, such as sports,
news and so on. The future work is that we can try
different language messages to decipher, as long
as we can have the corresponding language model.
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Abstract

This paper brings together theories from so-
ciolinguistics and linguistic anthropology to
critically evaluate the so-called “language
ideologies”—the set of beliefs and ways of
speaking about language—in the practices of
abusive language classification in modern ma-
chine learning-based NLP. This argument is
made at both a conceptual and empirical level,
as we review approaches to abusive language
from different fields, and use two neural net-
work methods to analyze three datasets devel-
oped for abusive language classification tasks
(drawn from Wikipedia, Facebook, and Stack-
Overflow). By evaluating and comparing these
results, we argue for the importance of incor-
porating theories of pragmatics and metaprag-
matics into both the design of classification
tasks as well as in ML architectures.

1 Introduction

Some problems lend themselves more
easily to A.I. solutions than others. So,
hate speech is one of the hardest, be-
cause determining if something is hate
speech is very linguistically nuanced.
Right?... I’m optimistic that over a five-
to 10-year period, we will have A.I.
tools that can get into some of the nu-
ances, the linguistic nuances of different
types of content to be more accurate in
flagging things for our systems.

(Excerpt from testimony to the U.S.
Senate and Judiciary and Commerce,
Science and Transportation Committees
by Mark Zuckerberg, April 10th, 2018)

The term nuance, as used in the above quote
from Mark Zuckerberg’s testimony to the U.S.
Senate, appears to imply that, like the successes

of convolutional neural networks in computer vi-
sion, the classification (or “flagging”) of (tex-
tual) hate speech should be considered a matter of
advanced pattern recognition, of recognizing the
right ‘shade’ or ‘color’ of a given sentence in iso-
lation. This view of linguistic action is in con-
trast with a tradition of speech-act theory (Austin,
1962; Searle, 1969) in which the meaning of an ut-
terance is not solely determined by lexical or syn-
tactic structure but by its social context and per-
formative effects. In studies of hate speech fol-
lowing these latter perspectives, such as those of
Butler (1997), words are seen not just as arbitrary
lexemes but something capable of actively causing
violence to one or more addressees.

Butler, in her account of hate speech, optimisti-
cally saw a ‘gap’ between a speech act and its ef-
fects (Butler, 1997)—comparable to Austin’s dis-
tinction between the illocutionary (the addressee’s
intention) and perlocutionary (the outcome of the
utterance)—which she uses to argue against legal
regulation of hate speech and instead for the possi-
bility of ‘restaging’ and ‘resignifying’ such speech
on the part of the addressee. Schwartzman (2002),
however, contended that Butler’s account was fun-
damentally missing an awareness of existing so-
cial structures of power, and that if any successful
‘resignification’ (as in the “taking back” of slurs)
occurs it is due to an active and political response
against oppression.

The question remains: is detecting hate speech
a matter of sufficiently advanced pattern recogni-
tion a matter of building the right distributed ar-
chitecture on a large enough data set of “hateful”
vs. “non-hateful” expressions? Or is it necessary
for any such automated classification to be inte-
grated with long-term ethnographic and contex-
tual immersion in the communities, however prob-
lematic, in which said expressions emerge (Sin-
ders and Martinez, 2018)? To what extent should
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we expect researchers to attempt to integrate the
sociocultural complexities of contemporary online
communication into their “A.I. tools”, and to what
extent should we expect success or failure from
those tools?

This article assesses the current poten-
tial for, and limitations of, machine learning
methodologies—both in terms of how the ‘gold
standard’ datasets are normally constructed and
how neural networks are applied—for abusive lan-
guage detection in natural language text. We will,
through our own experiments, explore the specific
conflicts between the research culture of achiev-
ing ”state-of-the-art” scores (Manning, 2015)
with (relatively) black-boxed architectures and
theories of the pragmatics (and metapragmatics)
of linguistic abuse in practice.

2 The Language Ideologies of NLP

With its 1950s intellectual origins in a) naı̈ve,
word-by-word machine translation and b) Chom-
sky’s conception of language as generated by a
machinic automata, the field of natural language
processing (NLP) inherited what we refer to as
a language ideology (Woolard and Schieffelin,
1994), a set of beliefs and ways of speaking about
‘language’.1 Fundamental to the Chomskyan lan-
guage ideology, for example, is the purported ex-
istence of an innate language faculty which is held
to explain the purported lack of training data for
humans (the so-called “poverty of the stimulus”)
(Pereira, 2000). This faculty is conceived as the
locus of a generative grammar which can in the-
ory enumerate all possible valid sentences.

Other disciplines of human communication,
however, developed alternative perspectives which
embed language in a more complex sociocultural
environment. The field of sociolinguistics (Labov,
1972) considered quantitative measurements of
language variation (such as dialects and creoles)
not as a matter of syntactic validity but as intrin-
sically related to social differentiation and class
structure; and linguistic anthropology (Duranti,
1997) simultaneously drew from the semiotic and
structuralist traditions of Peirce and Jakobson,
emphasizing acts of reflexive, sociocultural en-

1The term ‘ideology’ as it used here is not intended as
a pejorative; following Woolard (1998), we see ideology as
“derived from, rooted in, reflective of, or responsive to the
experience or interests of a particular social position” but not
necessarily “in the service of the struggle to acquire or main-
tain power” (although it may also be that.)

textualization and contextualization (Bauman and
Briggs, 1990) inherent to any communicative situ-
ation.

From the perspective of these latter fields, the
study of ‘natural language’ by computer scientists
(so named to distinguish itself from formal logic
and ‘artificial’ programming languages devised in
early AI research) would be seen as largely fo-
cused on entextualized utterances (such as writ-
ten sentences or recorded speech) and the uncov-
ering (or ‘processing’) of their hidden symbolic
patterns and structures. The introduction of sta-
tistical approaches to NLP (Charniak, 1996) laid
the groundwork for the eventual incorporation of
a machine learning methodology which uses of a
corpus of data composed of training inputs with
labeled outputs. Today’s neural network mod-
els in NLP are strongly dependent on this ar-
guably behaviorist (i.e. stimulus-response) ide-
ology of language, one in which syntax and se-
mantics can be durably encoded through the pre-
sentation and re-presentation of vectorized ‘stim-
uli’ (which, through backpropagation, modifies
the model’s parameters based on the distance of
the ‘response’ vector from the true values).

The study of abusive language in NLP, then,
represents a profitable collision between two po-
tentially compatible language ideologies — one a
“statistical NLP” ideology which claims the po-
tential to efficiently and intelligently discretize
and classify the contextually dense and multi-
modal miasma of real-time communication; and
the other, to be described in the next section,
which seeks to carve out and eliminate impurities
and danger (e.g., abusive language) in search of a
‘safe’, non-‘toxic’, and yet highly scalable envi-
ronment.

3 Abusive Language Ideologies

So, if language ideologies are a set of beliefs and
ways of speaking about ‘language’, then abusive
language ideologies are a set of beliefs and ways
of speaking about what it means for ‘language’ to
be ‘abusive’. As a review of the literature on this
topic immediately indicates, there are a variety of
theories regarding the nature of hate speech, abu-
sive language, cyberbullying, etc.; in this section
we will characterize the main positions, especially
in their potential relation to NLP methodologies.
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3.1 Politeness

The study of online antagonism was preceded
by much research in the linguistic field of prag-
matics on politeness such as Brown and Levin-
son (1987), who isolated the concept of polite-
ness as a set of interactional strategies to preserve
‘face’, a concept from Goffman (1967) reflecting
the ideal self-image of the addresser or addressee
in each communicative situation. This approach
took into account the four cooperative ‘maxims’
of Grice (1975), which are implicit interactional
norms in which speakers strive to be informative,
unambiguous, brief, and orderly—norms which,
we suggest, are potentially relevant to understand-
ing online Q&A platforms like StackOverflow.
Culpeper (1996) showed how a focus on impolite-
ness brought the importance of interactional con-
text to the fore, in contrast to a focus on surface
form in the work of Brown and Levinson; but later
work on gender difference and politeness argued
that impoliteness itself is only something classi-
fied as such by those in dominant positions of
power (Mills, 2003). The linguistic study of po-
liteness thus helpfully charts a development from
the study of lexical and syntactic structure to in-
teractional pragmatics to considerations of power
relations within and among communities of prac-
tice.

3.2 Hate Speech

The concept of hate speech (and the debates sur-
rounding its definition, legal and otherwise) is it-
self predicated on precisely a (conscious or uncon-
scious) philosophical dispute about whether lan-
guage can be segregated from action; the “fighting
words” doctrine in U.S. law (Chaplinsky vs. New
Hampshire, 1942), for example, was a legal inter-
vention that (in a single instance) outlawed speech
acts capable of provoking violent action (i.e. based
on their perlocutionary force). From such an Aus-
tinian perspective, to be a free speech absolutist
is to consider speech merely as locution and not
illocution or perlocution (Hornsby and Langton,
1998); NLP methodology, which typically takes
as input a set of text-artifacts segregated from
their original communicative situation and con-
sequences, could also be said to (implicitly) take
this position of considering speech solely as lo-
cution (even if researchers commonly appreciate
that their data was drawn from a past existence in
richer contexts). For example, the work of Warner

and Hirschberg (2012) acknowledges the limits of
their decontextualized comment dataset, but ar-
gues that hate speech can still be distinguished
through the recognition of stereotyped expressions
about social groups.

The most comprehensive philosophical attempt
to give meaning to the concept of hate speech is
by Alexander Brown. In his two recent articles
(Brown (2017a), Brown (2017b)), he explains that
the term ‘hate speech’ likely emerged from a 1988
conference paper at Hofstra (Matsuda, 1989), and
came to take on significant value for legal schol-
ars before becoming integrated into a more popu-
lar discourse. Matsuda’s intervention represents a
performative ideology of language; if words are
action, and some words are violent action, then
hate speech can be regulated without violating
a constitutional free speech principle. However,
Brown comes to a somewhat negative conclusion
regarding the possibility of coming to a coherent
universal definition of the concept of hate speech;
while it can be summarized as “a rough but nev-
ertheless serviceable term to describe... the ex-
pressive dimensions of identity-based envy, hostil-
ity, conflict, mistrust and oppression”, more fine-
grained enclosures are never sufficient, and he ar-
gues that the meaning of ‘hate speech’ is closer to
the ‘family resemblances’ concept of Wittgenstein
(1953), who argues that terms like ‘game’ (and—
implicitly—‘language’) can only denote an ever-
shifting family of related practices irreducable to
a precise definition.

It is thereby unsurprising that NLP’s method-
ological detachment from the speech situation
(itself embedded in other sociocultural contexts
which do not become part of the training data),
along with the fundamental indeterminacy of the
‘hate speech’ category, makes the reliability of
‘coding’ for hate speech a significant challenge
(Ross et al., 2017). In their survey of hate
speech detection in NLP, Schmidt and Wiegand
(2017) mention this time-consuming dependency
on hand-labeled data; but they also point out the
many strategic ways that NLP researchers have
proposed (if not always attempted) to overcome
the decontextualized limitations and problems of
definition of their data, and we will report similar
findings below.
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3.3 Abusive Language

Despite his critical conclusions, Brown argues that
the term ‘hate speech’ is still, for now, effective;
it “is used because it is useful, and it will re-
main useful so long as it can be used to do more
than merely signal disapproval. If [that was] all
it did... [it] would soon fall out of fashion or be
replaced by newer, cooler bits of language that
did the same thing but in more interesting ways”
(Brown, 2017a). One such current variant term is
abusive language, which appears in some of the
earliest literature on antagonistic Internet commu-
nication (Spertus, 1997) but has in the past years
taken on a greater prominence.

In part, the potentially milder connotations of
the ‘abusive language’ term reflects a shifting
from seeing online abuse as occurring on behalf
of identity-based communities to occurring to-
wards social groups in general, where those so-
cial groups might be something like “new users
of StackOverflow”. So for example, Nobata et al.
(2016) uses the concept of abusive language to in-
clude hate speech, derogatory language, and pro-
fanity together. In their work on personal at-
tacks in Wikipedia talk pages, Wulczyn et al.
(2016) adopts the rhetoric of ‘toxic’ behavior, a
term which metaphorically transposes affective
concepts (such as hate) to one of environmental
contamination and taboo (Douglas, 1966; Nagle,
2009); this represents a subtle move away from an
otherwise dominant personalist ideology in which
meaning emerges from the beliefs or intentions of
the speaker (Hill, 2008).

Recognizing the overall lack of consensus on
the boundaries of abusive language, Waseem et al.
(2017) proposes a twofold typology: (1) whether
language is “directed towards a specific individ-
ual or entity” or “directed towards a generalized
group” and (2) whether the content is ‘explicit’
or ‘implicit’. The resulting four axes, then, are
each analyzed for the methodological approaches
needed. Directed abuse can be detected with atten-
tion to proper nouns and entities like usernames;
Generalized abuse may be associated with lexi-
cal patterns based on the targeted groups; Explicit
abuse also often involves specific keywords and
Implicit abuse the most difficult category, where
more advanced semantic approaches such as word
embeddings can fail in a complex polysemous and
creative environment.

The view that indirectness and implicitness in

text-artifacts can be eventually ‘captured’ by ma-
chine learning models is related to the performa-
tive ideology of speech-act theory, which has been
criticized for its overemphasis on so-called explicit
performatives (such as “I now pronounce you man
and wife”) over (far more common) implicit per-
formative utterances which depend on contextual
cues (Gumperz, 1982; Lempert, 2012). As Asif
Agha puts it, “an indirect speech act is just a
name for the way in which a denotational text
diagrams an interactional text without describing
it” (Agha, 2007, p. 100). This diagramming in-
stead often happens through forms of pragmatic
and metapragmatic reflexivity which may be diffi-
cult to recognize through analyzing the utterance
detached from its interactional context, as is often
the case for NLP datasets.

That researchers see indirect and implicit
speech as a significant challenge, however, is in
part due to our methodological embeddedness in
a referentialist ideology which typically holds that
the meaning of words are stable (as realized, for
example, by static embedding vectors), and that
the purpose of language is to communicate infor-
mation. Jane Hill explains how the combination
of referentialist and performative ideologies typi-
fies conventional approaches to racism:

Stereotypes and slurs are visible as
racist to most people because they are
made salient by referentialist and per-
formative linguistic ideologies respec-
tively. But other kinds of talk and text
that are not visible, so called covert
racist discourse, may be just as impor-
tant in reproducing the culturally shared
ideas that underpin racism. Indeed, they
may be even more important, because
they do their work while passing unno-
ticed. (Hill, 2008)

We argue that it will be essential for NLP re-
searchers to recognize how our tools and tech-
niques may, in part, be material embodiments of
these ideologies, but also how one might partially
escape those ideologies without abandoning the
use of tools and techniques entirely. One positive
example of this is from Saleem et al. (2017), which
argues that supervised labeling based on keywords
is problematic, but also that one can improve per-
formance by training on language from specific
speech communities (Gumperz, 1968).

163



In the second part of this paper, we apply basic
deep NLP methods to building predictive models
for abusive language on three different datasets.
Through qualitative reflection on the data, train-
ing process, and results, we articulate the specific
limitations of common methods, as well as the fu-
ture directions, of deep learning methodology for
addressing concerns about abusive language.

4 Experiments

The nascent research cluster around NLP and abu-
sive language constitutes not just a ‘speech com-
munity’ but a language community, i.e., “an orga-
nization of people by their orientation to structural
(formal) norms for denotational coding (whether
explicit or implicit)” (Silverstein, 1996). The com-
bination of linguistic ideologies described above
is fully realized in the conventional experimen-
tal architecture of the shared task, in which mul-
tiple teams of researchers independently attempt
to build systems with good classificatory perfor-
mance by determining the true denotational mean-
ing of utterances which, most commonly, have
been excised from their interactional context.

For example, the tasks addressing abusive lan-
guage typically have as their goal the determi-
nation of whether stand-alone utterances should
be considered rude, offensive, or abusive. Train-
ing data is provided in the form of utterance-
label pairs, where the label may be a binary value
(i.e. abusive or not) or multi-class (for differ-
ent categorical and/or ordinal levels of offensive-
ness). In order to explore these kinds of tasks di-
rectly, in this paper we chose to experiment with
3 datasets: the Kaggle Toxic Comment Classifica-
tion Challenge2, the shared task in the 1st Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC1)3, and the StackOverflow dataset from
the 2nd EMNLP Abusive Language Workshop.4

4.1 Data Description

The Kaggle Toxic Comment Classification dataset
provides decontextualized Wikipedia “talk page”
comments, each paired with multi-class labels on
toxic behavior, judged by human raters; we em-
phasize that the dataset is decontextualized to in-
dicate that additional information about each dis-

2https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

3https://sites.google.com/view/trac1/home
4https://sites.google.com/view/alw2018

/resources/stackoverflow-dataset

cursive interaction is not provided (but for a depic-
tion of the organizational structure of their produc-
tion, one may consult Geiger (2017)’s “ethnogra-
phy of infrastructure” of Wikipedia). The labels of
toxicity include ‘toxic’, ‘severe toxic’, ‘obscene’,
‘threat’, ‘insult’ and ‘identity hate’. Because the
other datasets we examine classify differing but re-
lated categories, it was necessary to combine these
into one ‘offensive’ category to make comparisons
across datasets possible (a common methodologi-
cal decontextualization which elides available dif-
ference even at the level of the ‘clean’ dataset).
10.2% of the resulting dataset had an ‘offensive’
label. We split the data into training (150,571
observations), validation (6,000 observations) and
holdout sets (3,000 observations).

The TRAC1 shared task dataset contains 15,000
stand-alone Facebook posts and comments in
both Hindi and English unicode, each paired
with human-rated multi-class labels, distinguish-
ing “Overtly Aggressive”, “Covertly Aggressive”
and “Not Aggressive”. There are separate En-
glish and Hindi subsets, and we used the English
portion, which still contains significant amounts
of Hindi-English code-switching (Verma, 1976).
Again for comparison, it was necessary to group
the first two categories together; in the resulting
dataset, 58% of the comments are considered ag-
gressive. We split the dataset into training (11,999
observations) and validation (3,001 observations)
sets, and used the provided test set as our holdout
set (601 observations).

The StackOverflow dataset is yet another col-
lection of decontextualized comments, some of
which are flagged by the users to be “Not Con-
structive or off topic”, “Obsolete”, “Other” (not
the same as unflagged), “Rude or offensive”, or
“Too chatty”. Notably, however, these flags are
provided by the site’s users; when a comment is
flagged as “Rude or offensive”, it is reportedly dy-
namically removed from the website, which makes
this dataset’s semantics different from the previous
ones which were—as far as we can tell—labeled
post hoc by independent raters. Instead, the Stack-
Overflow data is a textual archive of speech acts
about speech acts, or of metapragmatic utterances
(Silverstein, 1993). They are traces of in-the-
moment judgments that may have acted to spon-
taneously eliminate the judged utterance from a
discourse.

The total number of flagged comments is
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525,085, of which 57,841 are “Rude or offensive”
(and thus were dynamically removed as per the
above). In addition, there are 15 million com-
ments that are not flagged to be undesirable in
any way. We joined a sample of 1 million of the
unflagged comments and the flagged comments,
but considered only the flag “Rude or offensive”
(the rest are grouped with unflagged). We used
this dataset, which has 3.8% comments flagged as
“Rude or offensive”, for training and testing. We
split this dataset into training (1,516,085), valida-
tion (6,000) and holdout (3,000) sets.

Out of the three datasets, both StackOverflow
and Kaggle have a significant class imbalance,
which is more significant for the StackOverflow
set (3.8% offensive) than Kaggle (10.2% offen-
sive).

4.2 Methods and Results
While some earlier research in the classification
of abusive language used feature-based classifica-
tion techniques such as support vector machines
(Warner and Hirschberg, 2012), we were inter-
ested in evaluating deep learning methods com-
parable to work such as Founta et al. (2018).
We implemented two neural network architectures
widely used in text classification: a convolutional
neural network (CNN) and a recurrent neural net-
work using Bidirectional Gated Recurrent Units
(RNN Bi-GRU).

CNN Model Convolutional neural networks
(CNNs), originally popularized in the context of
computer vision for recognition tasks (Le Cun
et al., 1990), can be applied to sequences of word
embeddings in a similar manner to how they are
applied to bitmap images, and have been shown
to perform well in some abusive language detec-
tion tasks (Park and Fung, 2017). Although CNNs
are unlikely to capture longer-term sequential re-
lations in the manner of the recurrent neural net-
works discussed below, they can plausibly capture
local patterns of features, and offensive speech can
often be detected by local features such as swear
words/phrases and racial slurs.

We implemented a vanilla CNN using Keras
(Chollet et al., 2015). The input is tokenized into
words, and converted into 300-dimensional word
embedding vectors using 1 million word vectors
trained on Wikipedia using the Fasttext classifier
(Joulin et al., 2016).5 We set a maximum length

5https://fasttext.cc/docs/en/english-vectors.html

of 100 tokens per input, and a vocabulary size of
30,000. The input layer is then fed into 2 convolu-
tional layers (of kernel size 1*5) each followed by
a max-pooling layer. This is followed by 2 dense
layers (dimensions 128 and 64) and finally the out-
put layer. We trained the model using the Adagrad
optimizer (Duchi et al., 2011), using a batch size
of 512 and 10 maximum epochs with early stop-
ping.

RNN Model Recurrent neural networks are
widely used in NLP tasks (e.g. Pavlopoulos et al.
(2017)) because they are good at capturing longer-
term sequential patterns in text. We used the RNN
variant known as Bidirectional GRU (Chung et al.,
2014; Cho et al., 2014); GRUs are recurrent units
with both an update gate and a reset gate that
aim to solve the “vanishing gradient” problem of
vanilla RNN units.

We implemented the Bi-GRU model using
Keras. The input layer is the same word embed-
ding layer as the CNN model, which is fed into a
80-unit Bi-GRU layer, followed by a pooling layer
concatenating features from an average and a max-
pooling operation. This is then fed into the final
output dense layer. We trained the model using
the Adam optimizer (Kingma and Ba, 2014) and a
dropout rate of 0.2, using a batch size of 512 and
a maximum of 10 epochs with early stopping.

4.3 Results

Offensive Normal
Model Prec Recall Prec Recall F1 (micro)
Kaggle Toxic (327 offensive, 2673 normal)
CNN .74 .76 .97 .97 .86
GRU .83 .76 .97 .98 .89
TRAC1 Trolling (354 offensive, 247 normal)
CNN .77 73 .64 .70 .71
GRU .75 .85 .73 .59 .73
StackOverflow (114 offensive, 2886 normal)
CNN .56 .19 .97 .99 .68
GRU .59 .22 .97 .99 .69

Table 1: Results on test sets of three data sources us-
ing two architectures. The numbers next to the data
sources shows the size of each class in the test set. Hy-
perparameters were manually tuned using the valida-
tion sets. We calculated the micro-averaged F1 score
because of the varied class imbalance in the datasets.

Our results show that the two architectures per-
formed similarly, but there were large differences
across the three datasets (see Table 1). The Kag-
gle dataset has the best results in terms of micro-
averaged F1 score, with very high precision and
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recall for the “normal” class and around 0.8 pre-
cision and recall for the “offensive” class. The
TRAC1 dataset had a lower micro-averaged F1
score, but the performance on the two classes are
more balanced than the Kaggle model. The Stack-
Overflow dataset has the lowest micro-averaged
F1 and the most unbalanced results between the
two classes: high precision and recall for the non-
offensive class, low precision and even lower re-
call (0.2) for the “offensive” class.

We argue that the large differences among the
three datasets using the same architectures can-
not be explained by differences in class imbalance;
both Kaggle and StackOverflow have heavy class
imbalance, yet the Kaggle model did much better
on the offensive class (results highlighted in bold
in Table1). Why, then, did the models perform so
poorly on detecting offensive comments on Stack-
Overflow?6 Looking at the model predictions,
we found that the predictions given by the GRU
and the CNN models are highly correlated (Chi-
squared = 1009.9, p < 2.2e-16).7 The mediocre
precision on the “offensive class” is mainly caused
by the fact that StackOverflow users don’t always
flag offensive comments, i.e., most of the false
positives (where positive is a classification of ‘of-
fensive’) should arguably be true positives. There
are 23 comments that are predicted to be offen-
sive by both models but don’t receive an ‘offen-
sive’ flag in the data. Out of the 23, two comments
are indeed not (overtly or covertly) ‘offensive’:
“`close(f)`–> `f.close()`”; “fuck bro !!! how the
fuck didnt i see that , jesus !! thanksssssss !!!!!!”.
Among the rest, most are overtly offensive but not
flagged, e.g. “dude can you answer the question
or not? if not stop wasting my time”; “teach him
instead of being a dick.”. A few can be considered
offensive in particular contexts or by certain users,
e.g. “jesus christ! what’re you doing?”; “don’t.
migrate. crap.”; “no shit sherlock”. This implies
that the models would have had a higher precision
if the gold standard was provided by annotators
who judge every comment in the dataset. In this

6In this section we focus on predictions of offensive
comments in the StackOverflow dataset, and compare it
with results of Kaggle. Because of the heavy presence of
Hindi and English code switching in the TRAC1 data, we
did not perform an error analysis for this dataset. For in-
depth discussions, please see the TRAC1 proceedings at
https://sites.google.com/view/trac1/accepted-papers.

7We looked at predictions of both the validation set and
the holdout set in order to have more samples to form a better
understanding of the models.

case, the pragmatic context of labeling matters.
The even lower recall, on the other hand, re-

veals a genuine limitation of the models and of the
dataset. Again, the two models agree highly. Out
of the 355 comments that are flagged as “offen-
sive” by StackOverflow users, the majority (75%)
are considered not offensive by both models (i.e.
they are false negatives). 22 comments (6%) are
identified as offensive by only one model, and
only 52 comments (15%) are correctely labeled
as offensive by both models. Why is the recall
so low? To investigate, we sampled 100 of the
false negatives and asked three human raters to
determine whether these comments are offensive.
Only 11 were considered offensive by at least two
out of three raters even though they are flagged as
“rude or offensive” by StackOverflow users. Here
are some examples of comments flagged as offen-
sive but not considered offensive by a majority of
raters:

• please post *code,* not screenshots.

• did not get you? where in the query that you
have provided should i add this?

• the phrase is “want to.”

• no testing!!!! i would prefer no coding

• you sir, deserve an unlimited amount of up-
votes for that comment

While these comments’ lexical ‘surface’ con-
tent is unlikely to be considered offensive by our
classifier, they can potentially be considered of-
fensive in their pragmatic implicatures (Levinson,
1983), which can only be recovered or enriched
given the context of the interaction and/or the
broader context of conventions and norms in the
StackOverflow forum.

Such context-dependent offensive comments
appear to account for the majority of the false neg-
atives in the StackOverflow results; this pattern is
much less obvious in the Kaggle results. Unlike
the StackOverflow dataset, the Kaggle dataset was
constructed by showing annotators stand-alone
comments. Therefore, the interactional context
of those comments was not overtly considered
during the rating, although it is likely that raters
would sometimes imagine or “accommodate” con-
text (Tian and Breheny, 2016). An analysis of the
false negatives show that while a few comments
likely require contextual enrichment (i.e., in the
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referentialist ideology, they are “implicitly” offen-
sive), the majority of the errors are due to uncon-
ventional ways of spelling, a known problem al-
ready being tackled by previous researchers who
convincingly argue for character-level as opposed
to word-level approaches (Mehdad and Tetreault,
2016).

To sum up, we saw that neural network models
with different architectures (CNN and Bi-GRU)
performed similarly and have the potential of re-
liable abusive/offensive language detection when
the offensiveness is signaled and/or classified via
expressions in the text-artifact itself (supported by
the Kaggle results). However, when the offensive-
ness is marked in a context-dependent way, cur-
rent neural network methods perform poorly; this
is not necessarily because neural networks cannot
be used to model context, but because the avail-
able datasets on abusive language detection do not
provide this context. This is manifested in the
poor performance of neural models on the Stack-
Overflow data: the context-dependency of offen-
siveness results in low recall, and the inconsis-
tency of user-generated flagging results in low pre-
cision. Because the flags are provided by users
who have seen the entire interaction, many com-
ments are considered offensive in context but not
offensive when standing alone. By contrast, Kag-
gle and TRAC1 are labeled by independent anno-
tators who did not participate or observe the full
interaction.

5 Conclusions and Future Directions

In this paper, we have attempted to provide a quan-
titative justification for a qualitative perspective:
namely, that theories of pragmatics (such as the
primacy of context in the dynamic construction of
meaning (Levinson, 1983)) and of metapragmatics
(e.g. the fundamental reflexivity of interactional
speech at various semiotic levels (Agha, 2007))
should take on a greater role in the classification
of abusive language in NLP research.

Our experiments using common neural network
architectures on text classification show promising
performance when the offensiveness/ abusiveness
is signalled within a single utterance, but give poor
performance when the offensiveness require con-
textual enrichment. This is a limitation of popular
abusive language detection tasks. For future work,
we would propose to investigate the modeling of
not just stand-alone utterances and their labels, but

the affective and interactional dynamics of online
communication.

In the case of StackOverflow, we suggest that a
serious approach to tackling the problem of abu-
sive language on the site would likely want to take
advantage of the site’s periodic data dumps, which
provide millions of user questions, answers, votes,
and favorites (Anderson et al., 2012). However,
the dynamic removal of flagged material from
the site poses some serious methodological issues,
and the question of how to incorporate this vast
relational data into neural network classifier archi-
tectures is another challenge, which we speculate
will involve embeddings of networks of interac-
tions as in Hamilton et al. (2018).

Finally, as a longer-term goal for the study
of abusive language in online communities,
we believe that it is quite promising that some
researchers have implicitly or explicitly moved
towards the notion of a speech community, in
which actors in different social spaces may
possess differing norms for appropriate behavior
(Saleem et al., 2017). However, we argue that
it will ultimately be necessary to attend to those
theorists emphasizing so-called communities of
practice (Holmes and Meyerhoff, 1999), a per-
spective which brings to the fore the embodiment
of communities in practical action (of which
language is only a part); to consider the role of
conflict as well as consensus; to see identity as
more than just a static set of categories; and to
more seriously take into account the participants’
understanding of their own practices (Bucholtz,
1999).
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