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Abstract

This paper describes two systems for detecting Verbal Multiword Expressions (VMWEs) which
both competed in the closed track at the PARSEME VMWE Shared Task 2018. CRF-DepTree-
categs implements an approach based on the dependency tree, intended to exploit the syntac-
tic and semantic relations between tokens; CRF-Seq-nocategs implements a robust sequential
method which requires only lemmas and morphosyntactic tags. Both systems ranked in the top
half of the ranking, the latter ranking second for token-based evaluation. The code for both
systems is published under the GNU General Public License version 3.01 and is available at
http://github.com/erwanm/adapt-vmwe18.

1 Introduction

This paper describes two systems for identifying verbal multiword expressions (VMWEs). This work
builds on the authors’ previous attempt at the same task (Maldonado et al., 2017; Moreau et al., 2018).
The two systems were designed and developed in the context of the 2018 edition of the PARSEME
VMWE Shared Task, in which training data annotated with VMWEs is provided for 20 different lan-
guages (Ramisch et al., 2018). This setting naturally leads to considering the task as a supervised learning
problem.2

In this edition of the PARSEME shared task, we attempted an approach which focuses on leveraging
the syntactic and semantic dependency relations between tokens; the aim is to take into account the phrase
structure of the expressions in order to improve their identification. We expect this to be useful especially
in the case of discontinuous VMWEs, which can be hard to identify using sequential approaches. In §2.1
we motivate this approach with a detailed analysis of the expressions found in the data; the rest of §2
describes the design and implementation of our first and main system, called CRF-DepTree-categs.

Comparatively, the second system CRF-Seq-nocategs (described in §3) is very simple and was origi-
nally intended as a baseline and/or a fallback option. It relies on a method inspired from the one presented
in (Moreau and Vogel, 2018) to optimize a sequential CRF model. To our surprise, the system performed
better than CRF-DepTree-categs with most datasets. A brief comparative analysis of the results of the
two systems is provided in §5, which validates our initial assumption that, despite its weaknesses, CRF-
DepTree-categs is better at identifying discontinuous VMWEs.

1https://www.gnu.org/licenses/gpl-3.0.en.html. Last verified: May 2018.
2It is worth noticing that this view also entails a complete dependency on the annotations with respect to what is defined as a

VMWE. In particular, there can be differences between datasets in the number, diversity and syntactic or semantic complexity
of the annotated expressions (Maldonado et al., 2017).

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: Proportion of a) sequentially-continuous and dependency-connected VMWEs (seq
cont dep conn), b) sequentially-discontinous but dependency-connected VMWEs (seq disc dep
conn), c) sequentially-continuous but dependency-disconnected VMWEs (seq cont dep disc) and
d) sequentially-discontinuous and dependency-disconnected VMWEs (seq disc dep disc), for each lan-
guage in the 2018 training dataset.4

The full implementation of the two systems is published under the GNU GPL License v 3.0 and
available at http://github.com/erwanm/adapt-vmwe18.

2 Dependency Tree Approach

2.1 Motivations

The previous edition of this shared task (Savary et al., 2017) found that a significant minority of VMWEs
in most language datasets were discontinuous, that is, VMWEs whose individual tokens did not necessar-
ily occur as an uninterrupted sequence within a sentence (e.g. take something into account). Therefore,
a system able to handle discontinuities could potentially make significant gains in performance. For a
sequential tagging method to be able to handle these discontinuities, sufficiently large word windows
would need to be considered. However, it can be difficult to determine an ideal word window size that
can cover a majority of cases and yet be tractable.

Nevertheless, we hypothesise that tokens in a VMWE should be directly connected to each other via
their syntactic dependency links, even if they are not sequentially continuous. We expect that most
VMWEs in a given language would tend to be fully dependency-connected, regardless of whether they
are sequentially continuous or not. If this is the case indeed, then a tree-based tagging method that
exploits these direct dependency links should perform well, even in sequentially-discontinuous VMWEs.

To estimate the potential gains to be made through such a dependency tree-based tagging method,
we counted the proportion of VMWEs in each language that are sequentially continuous/discontinuous
and dependency-connnected/not fully dependency-connected. Figure 1 shows the proportions of each
continuity and connectedness combination in each language. For the purposes of this figure, a VMWE
is deemed to be sequentially continuous if each of its member tokens appear in a sentence sequentially
with no tokens foreign to the VMWE breaking this continuity. Analogously, a VMWE is deemed to be
dependency connected if its member tokens are fully connected via their syntactic dependency links. That
is, all member tokens of a dependency-connected VMWE, depend on another member with the exception
of at most one member, which depends on a non-member token (i.e. the head for the whole VMWE).
We also consider a VMWE to be dependency connected if it has more than one member depending on
the same non-member token. But if at least two members depend on two different non-member tokens,
then the VMWE is deemed to be dependency disconnected for our purposes.
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<Feature xsi:type="Current-Parent" name="example">
<Ycur xsi:type="Label" value="label_O"/>
<Ypar xsi:type="Label" value="label_I"/>
<TestX value="self::TOKEN[@upos==’P’]"/>
<TestX value="ancestor::TOKEN[@upos==’V’]"/>

</Feature>

Figure 2: Example of an XCRF feature generated from the French training set. The value of this feature
is true if and only if the current node is labeled O, its parent node is labeled I,8the attribute upos of the
current node has value P and the current node has an ancestor containing value V for its attribute upos.

Not surprisingly for most languages, the majority of VMWEs are both sequentially continuous and
dependency connected (a in Figure 1), but the proportion of sequentially discontinuous but dependency
connected VMWEs (b) is quite significant. In fact, the vast majority of the VMWEs in all languages
are dependency connected (a + b), confirming that there are significant gains in performance to be made
by developing a method that is able to exploit the connectedness of dependency trees. The other two
combinations, (c and d), tend to be a minority in most languages. In some cases they are negligible (less
than 10%), but in others they are relatively significant (in particular for Turkish). We do not propose
strategies to deal with these combinations in this paper and leave their further analysis for future work.

2.2 Tree-Structured Dependencies in Conditional Random Fields
Conditional Random Fields (CRFs) can in theory handle dependencies of any level of complexity be-
tween variables (Lafferty et al., 2001; Sutton and McCallum, 2012).5 In practice, however, most appli-
cations where CRF proved sucessful are based on the most simple kind of dependency network, which
takes only sequential dependencies into account; this is largely due to the high computational cost of
adding dependency relations between variables for training a CRF model. Nonetheless, there are several
CRF software tools which are able to handle non-sequential dependencies; in this work we chose XCRF,
a Java library for labeling XML trees (Jousse et al., 2006; Jousse, 2007).6

Based on the analysis presented in §2.1, our approach relies on the dependency tree structure of a
sentence, provided in the Shared Task data for most languages (see §4). XCRF can deal with three kinds
of dependency relations between nodes in a tree; a group of inter-dependent nodes is called a clique, and
the different kinds of cliques, called the clique levels, are:

• Level 1: the label of the current node does not depend on any other label;

• Level 2: the label of the current node depends on its parent label;

• Level 3: the label of the current node depends on its parent label as well as on the label of its next
sibling.

2.3 Implementation
2.3.1 Feature Generation
The XCRF software requires boolean features which consist of two parts: the clique is the set of classes
for the current node (level 1), possibly with its parent (level 2) and possibly with its next sibling (level
3); the second part is a set of tests expressed as XPath expressions over the XML tree. Figure 2 shows
an example of such a feature.

After converting the cupt dataset to a set of XML tree, the system iterates through the data in order
to collect and count all the existing combinations of cliques and tests. Atomic tests are based on a
triple 〈Neighbourhood,Attribute, V alue〉, where: Neighbourhood describes a set of target nodes,

4In the case of Lithuanian (LT) the dependency structure was not provided; in this particular case, VMWEs are arbitrarily
represented as fully dependency-connected in figure 1.

5Here the word dependency refers to the probabilistic concept of conditional independence.
6http://treecrf.gforge.inria.fr/. Last verified: May 2018.
8The labeling scheme is explained in §4.
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which can be: the node itself, its parent, its children its preceding siblings or its following siblings;
Attribute specifies the attribute to test: the lemma, the Part-of-Speech tag (upos) or the dependency
relation (deprel); V alue is the value of the attribute. Additionally, conjunctions of a pair of tests are
generated by cartesian product for each node. All the possible features for XCRF are generated by
combining each test with the actual cliques that this node belongs to: for example, if the node has a
parent, each of the tests is counted at both clique levels one and two. Finally, the collected frequencies
(by clique, by clique level, by test and by combination clique+test) are used to calculate the probabilities
used for feature selection.

2.3.2 Feature Selection

In order to select the most relevant features but also to avoid memory issues with XCRF, we implemented
three different feature selection methods; the maximum number of features is a parameter (we used
25,000 for most languages). The number of features are shared equally between the atomic tests and
the multi-tests, as well as between the different clique levels. Thus for every clique level, we reduce the
number of features depending on the method, as explained below.

• Clique-blind: This method assumes that features with a similar proportion of true and false cases are
more likely to help predict the clique. To this end, for every feature we take the minimum frequency
difference between the case where the test is true and where it is false, and select the features for
which this value is the highest. This method is based on the frequency of the test only, without
taking into account the relation between the test and the clique within a feature.

• Binary Split: with this method, we select the tests which behave the most differently when occuring
with the default clique versus with another clique. The default clique is defined as the one which
contains only the default class (i.e. the class for the tokens which are not part of an expression).
More precisely, we select the tests which maximize |p(test = T |dc = T )− p(test = T |dc = F )|,
where dc is the default clique.

• Conditional entropy: H(Y |X) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x)

p(x, y)
, where Y is the set of cliques and X

is the boolean test. The features which have the lowest conditional entropy are selected.

Additionally, a boolean option specifies whether to use the probability of the clique as a weight. That
is, by not using a clique prior, it is assumed that all the cliques are equally important, even though this is
not representative of the actual clique distribution.

3 Sequential Approach

3.1 Motivations

The sequential CRF approach was originally implemented as a simple and robust alternative to the
dependency-tree approach (see §2). It uses only the lemma and the POS tag as features, so that it can be
applied to a dataset even if no syntactic information is provided.9 This can be useful in particular in the
case of languages for which no (good) parser exists.

As explained in §2.1, the majority of the VMWEs are continuous in almost every language. Thus
sequential CRFs are potentially capable of identifying most VMWEs, even though they are not well
equipped to capture discontinuous VMWEs (at least when the VMWE components are distant from each
other). Moreover, the efficiency of sequential CRFs implementations makes it possible to optimize the
parameters of the model, in particular the length of the window of tokens to consider around the target
token. Using this method, we expect the system to achieve a high performance on the continuous cases.

9In fact, the original intention was to use the sequential approach only for Lithuanian and Slovenian (see §2.2); the high
level of performance achieved by this method motivated its application to all the datasets.
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3.2 Implementation
To train a CRF model, we use the Wapiti sequence labelling toolkit (Lavergne et al., 2010).10. As in most
sequence labelling software tools, the features to be used in the model are specified as a list of patterns in
a template file; each pattern describes the observations to use as features for predicting the current token.

The CRF-Seq-nocategs system implements a simple brute-force method to optimize the sequential
CRF model, similar to the one used in (Moreau and Vogel, 2018): for every dataset, we generate a large
set of templates by varying the use of a column or not (lemma, POS or both), the maximum length of
the window (i.e. the number of tokens before and after the target token), and the maximum size n of
n-grams to use in the representation of the sequence of tokens. During the development stage, a model
is trained using every template, and each such model is evaluated against the development set; then we
simply select the model which achieves the highest performance.

4 Data and Training Process

For both systems, the data is first converted to a sequential labelling scheme which can be any of the
following options:

• IO: a token which belongs to a VMWE is labelled I, any other is labelled O;

• BIO: IO with an additional label B for the first token in a VMWE;

• BILOU: BIO with label L for the last token in a VMWE and label U for a single token span.

Embedded and overlapping VMWEs cannot be represented adequately in any of these labelling
schemes. Additionally, three options control how categories are handled: the default joint preserves
categories by suffixing a label with the category name, e.g. I IAV; in the independent mode, a distinct
version of the data is created for every category which contains only the expressions belonging to this
category, and an independent model is trained for each category; finally the ignore mode does not take
categories into account. The CRF-DepTree-categs system uses the best of the first two options by lan-
guage, while CRF-Seq-nocategs uses the last option.

The CRF-DepTree-categs system also requires converting the sentences to XML dependency trees.
The Shared Task data files are provided in .cupt format, and include a column HEAD which contains the
id of the parent for every token.11 Due to the complexity of the training process and memory issues with
the XCRF library, we had to reduce the size of the training set to a maximum 8,000 sentences.12

For every of the 19 datasets, the two systems have been trained using the training set provided; various
parameters were tuned using the development set if provided, or a 20% subset of the training set if not.
For CRF-DepTree-categs (resp. CRF-Seq-nocategs) we selected the model which achieves the highest
performance for the MWE-based evaluation (resp. token-based evaluation).

5 Results and Discussion

Table 1 gives a brief summary of the performance of our two systems in the PARSEME VMWE Shared
Task 2018.13 The two systems performed rather consistently across the 19 languages compared to other
participant systems: CRF-Seq-nocategs ranked from position 1 to 6 for all but one language, and CRF-
DepTree-categs ranked from position 2 to 7 for all but two languages (according to the token-based
evaluation). Both performed particularly well for Hindi, quite bad for Hebrew and especially bad for
Lithuanian, but overall the two methods work fairly well independently from the language.

10https://wapiti.limsi.fr/. Last verified: May 2018.
11This information is provided in full for 17 languages out of 19, excluding Lithuanian (no information in the HEAD column)

and Slovenian (incomplete information in the HEAD column); for these two languages the predictions made by CRF-Seq-
nocategs are used. For several languages, the dependency tree can have multiple roots (DE, EU, HU, IT, PL, TR).

12Thus the CRF-DepTree-categs system does not use the full training set for the following datasets: BG, EU, FR, HE, IT,
PL, RO, SL.

13The results cannot be detailed and analyzed fully in this paper, because there are many categories
of evaluation and languages; for more details, see the overview paper (Ramisch et al., 2018) and the
full official results at http://multiword.sourceforge.net/PHITE.php?sitesig=CONF&page=CONF_04_
LAW-MWE-CxG_2018&subpage=CONF_50_Shared_task_results.
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System MWE-based evaluation Token-based evaluation
Precision Recall F1-score Rank Precision Recall F1-score Rank

Best system (TRAVERSAL) 67.58 44.97 54.00 1 77.41 48.55 59.67 1
CRF-Seq-nocategs 56.13 39.12 46.11 4 73.44 43.49 54.63 2

CRF-DepTree-categs 52.33 37.83 43.91 6 64.65 41.56 50.60 5
Median system (GBD-NER-standard) 36.56 48.30 41.62 7 41.11 52.21 46.00 7

Table 1: Performance and ranking of the two systems at the PARSEME VMWE Shared Task 2018
(closed track, 13 participant systems, macro-average scores).

Percentage of continuous Percentage of non-continuous
Lang. expressions found by system: expressions found by system:

none both CRF-Seq CRF-DepTree none both CRF-Seq CRF-DepTree

BG 32.56 42.65 18.07 6.72 75.26 12.89 4.12 7.73
DE 60.30 23.22 8.99 7.49 67.38 8.15 4.29 19.31
EL 39.64 37.45 16.73 6.18 62.83 7.52 5.75 23.89
EN 60.34 18.31 16.27 5.08 87.86 0.00 0.00 12.14
ES 39.55 23.40 25.35 11.70 86.52 0.71 2.84 9.93
EU 20.39 62.90 12.78 3.93 79.57 5.38 0.00 15.05
FA 19.60 63.82 12.31 4.27 74.76 8.74 7.77 8.74
FR 44.48 36.65 13.52 5.34 61.75 12.44 5.53 20.28
HE 88.80 0.00 0.00 11.20 95.76 0.00 0.00 4.24
HI 23.66 59.78 6.88 9.68 42.86 31.43 0.00 25.71
HR 52.22 17.06 17.41 12.63 79.81 2.88 3.85 12.98
HU 14.06 71.73 9.99 4.22 38.46 24.62 12.31 24.62
IT 51.34 20.00 19.40 8.06 77.98 1.19 0.00 19.05
PL 24.93 36.57 25.21 13.30 64.29 7.79 3.90 24.03
PT 34.50 33.87 24.60 7.03 58.33 4.58 0.42 36.67
RO 12.98 57.76 26.46 2.80 20.92 56.63 13.78 8.67
TR 46.63 35.10 12.02 6.25 71.14 15.10 7.05 6.71

Table 2: Percentage of continuous and non-continuous expressions found by (1) none of the two systems,
(2) both of them, (3) CRF-DepTree-categs only and (4) CRF-Seq-nocategs only.16 The percentage is
based on the number of expressions according to the gold-standard labels, therefore these figures do not
take false positive cases into account (thus are akin to recall statistics: the recall measure for a given
system corresponds to the sum of the percentage for this system and the one for both). For every case,
the highest of the two values between (3) and (4) is displayed in bold.

Although the simple sequential approach significantly outperforms the more sophisticated dependency
tree-based one, there are indications that the latter might be able to deal with more complex cases: in the
special evaluation categories for discontinuous VMWEs and unseen-in-train VMWEs, CRF-DepTree-
categs ranks respectively 3rd and 4th, i.e. comparatively better than in the other evaluation categories.14

This suggests that despite its moderate success at detecting VMWEs in general, the method might be
good at capturing some of the hardest cases; in order to confirm this interpretation, we analyze the pre-
dictions made by both systems by contrasting the continuous and discontinuous cases: table 2 unambigu-
ously shows that even if both systems are able to identify both kinds of expressions, each system tends
to specialize on a specific kind; for most languages, CRF-Seq-nocategs identifies significantly more con-
tinuous expressions than CRF-DepTree-categs, but the latter identifies significantly more discontinuous
expressions than the former.

6 Conclusion and Future Work

In this paper we presented two CRF-based systems for detecting VMWEs: CRF-DepTree-categs which
exploits the dependency structure of the sentence, and CRF-Seq-nocategs which implements a simple se-
quential approach. While the latter achieved better performance in the PARSEME VMWE Shared Task
2018, our analysis shows that the two methods are complementary: CRF-Seq-nocategs identifies contin-

14For the sake of comparison, CRF-Seq-nocategs ranks 9th for discontinuous VMWEs and 7th for unseen VMWEs.
16Language with no dependency information (Lithuanian and Slovenian) are excluded; see §4.
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uous VMWEs better, while conversely CRF-DepTree-categs identifies discontinous VMWEs better. As
a consequence, combining the two approaches into a single system seems a very promising direction for
future work.
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