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Abstract

We introduce a dataset containing human-authored descriptions of target locations in an “end-
of-trip in a taxi ride” scenario. We describe our data collection method and a novel annotation
scheme that supports understanding of such descriptions of target locations. Our dataset contains
target location descriptions for both synthetic and real-world images as well as visual annota-
tions (ground truth labels, dimensions of vehicles and objects, coordinates of the target location,
distance and direction of the target location from vehicles and objects) that can be used in vari-
ous visual and language tasks. We also perform a pilot experiment on how the corpus could be
applied to visual reference resolution in this domain.

1 Introduction

The last few utterances in a typical taxi ride are the passengers directing the driver to stop their ride at
the desired target location. “Stop right next to the white car”, “behind the big tree should work”, “drop
me off in front of the second black pickup truck” are all examples of such utterances. Resolving these
requests, while a simple task for the human drivers, assumes complex vision and language understanding
capabilities. Some of the sub-tasks that the driver needs to perform to resolve these requests are: i) Visual
reference resolution: Identifying the visual objects that the rider is referring to (called the referent(s))
among the visual distractors present in the scene (the big tree, the second black pickup truck, the white
car, etc.); ii) Directional description understanding: Predicting the target location that the rider refers to
with respect to the referent(s) present around (in front of, right behind, a little further from, etc.); and iii)
Action identification: The action that the rider wants to take (stop, drop me off, etc.). The purpose of this
work is to build a dataset that comprises of such utterances and build an annotation scheme supporting
the understanding of such utterances.

We introduce a novel dataset which contains the human-authored natural language descriptions of the
desired target location in an end-of-trip taxi ride scenario with synthetic images and real street images.
We describe the annotation scheme for these descriptions which comprises of referents, directional de-
scriptions, and actions, and show that the inter-annotator agreement is high. Our dataset contains the
images with the ground-truth target location coordinates that are described by the users. The image an-
notations also contain object ground-truth labels, coordinates, dimensions along with the distance and
direction of the target location with respect to the objects that are present in the image. We refer to the
position of the target location as a function of ‘r’ and ‘✓’ where ‘r’ is the magnitude of the vector, and ✓
is the direction between the referent and the target location. This quantification provides the capability to
predict the target location coordinates using natural language sentences given the visual context. Figure 1
shows an example where the combination of r and ✓ determines the target location with respect to the
referent(s).

The contributions of this work are: 1) A novel corpus containing user descriptions of target locations
for synthetic and real-world street images. 2) The natural language description annotations along with
the visual annotations for the task of target location prediction. 3) A baseline model for the task of
identification of referents from user descriptions.

⇤ Equal contribution.
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Figure 1: Example from the synthetic section of the dataset. The annotation labels of r and ✓ define the
target location for an example utterance “drop me off in front of the cop car”. The green arrow shows
the direction of motion of the taxi.

2 Related Work

There is a strong relation between the language and vision modalities, and the information in the vision
modality influences the associated spoken language (Tanenhaus et al., 1995). In recent times, automating
various tasks involving vision and language has attracted much interest. The task of reference resolution
is one such example. This task typically involves identification of one of the objects referred to in a set of
similar distractors through dialogue (Clark and Wilkes-Gibbs, 1986; Kennington and Schlangen, 2015;
Paetzel et al., 2015; de Vries et al., 2017; Manuvinakurike et al., 2017).

Other tasks that combine language and vision are: visual question answering which requires answering
questions about an image (Antol et al., 2015), a related question generation task (Mostafazadeh et al.,
2016), storytelling (Huang et al., 2016), and conversational image editing (Manuvinakurike et al., 2018a;
Manuvinakurike et al., 2018b). Furthermore, other relevant approaches are automatic image captioning
and retrieval by using neural networks to map the image into a dense vector, and then conditioning a
neural language model on this vector to produce an output string (Mitchell et al., 2012; Kulkarni et al.,
2013; Socher et al., 2014; Vinyals et al., 2015; Devlin et al., 2015).

Annotation of spatial information including objects and their spatial relations in real-world images
has been studied in detail for developing the ISO-Space annotation scheme (Pustejovsky et al., 2011;
Pustejovsky and Yocum, 2014). The semantics of spatial language have also been studied in detail; see
for example Varzi (2007) and Bateman et al. (2010). The focus of our work is not on the study of spatial
semantics but rather on the task of target location identification using simplistic annotations.

The goal of this work is to study user descriptions in an “end-of-taxi” ride scenario which involves
studying language and vision in a situated environment. Related to our work, Lemon et al. (2006) built
a dialogue system for an in-car domain and Eric et al. (2017) studied dialogues with regard to helping
a driver navigate to a specific location. However, these works did not specifically study the interaction
and combination of the vision and language modalities in a situated in-car environment. Our work
contributes to the literature with a corpus combining the language and vision modalities in a situated
environment. We extract the embedded representations of descriptions generated from the users and use
them for the task of reference resolution by comparing them to similar embeddings extracted for the
object ground truth labels. We also discuss r✓ annotations that can be used to understand directional
relations using the outputs of the reference resolution module, which is a particularly novel feature
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of our annotation scheme. Note that in prior work, reference resolution is performed using models
that understand the meaning of words using classifiers trained with visual features (Kennington and
Schlangen, 2015; Manuvinakurike et al., 2016).

3 Data Collection

We use the crowd-sourcing paradigm1 to collect user descriptions instructing a taxi to stop at a given
location (we will refer to this location as the “target location”). The Amazon Mechanical Turk users
(called turkers) are shown an image (similar to Figure 2 or Figure 3) and are asked to imagine a scenario
where they are in a taxi about to reach their destination. As they approach their destination they need to
instruct the taxi driver in natural language to stop at the bright red cross. The turkers needed to provide at
least three unique descriptions. Only native English speakers whose location was the US (United States)
were chosen for the task.

The images shown to the turkers contain vehicles and other objects which are used as referents to
describe the target location. These images were either i) Synthetic (programmatically generated) or
ii) Street-view images (extracted from Google maps2) which we refer to as real-world images. The
synthetic images are generated with a 2-dimensional top-view perspective containing vehicles that are
typically observed on the streets in US parked on either side of the street. The street-view images are
collected using a popular street navigation application (Google street-view3), which contains the images
of real streets taken from a car-top mounted camera. Below we describe the methods followed in the
construction of these images.

3.1 Synthetic Images Construction
The synthetic images were constructed programmatically by overlaying the vehicle and object templates
on the street with a median in the middle. The synthetic images were constructed from bird’s eye point of
view which helps us overcome the problem of frame of reference. Templates of the different categories
of vehicles such as cars (of different colors4) including taxi and police cars, pickup trucks5, red truck,
white van, and limousine were overlaid on either side of the street randomly. The vehicles were placed
in a parked position on a two-way right-side-driving street6. Four objects (street lamp, fire pump, traffic
cone, and tree) were placed on the sidewalk randomly. A maximum of up to 4 vehicles were placed on
either side of the street. The distance between the vehicles was not uniform. Figure 2 shows a sample
synthetic image: vehicles and objects along with three user-authored descriptions. A “red cross” was
also randomly placed on the street part of the image which was to be used by the users as the target
location for the taxi to stop. The synthetic images provide an environment devoid of complexities (e.g.,
visual segmentation, object identification, masking) otherwise present in real-world images which are
not the focus of this work.

3.2 Real-World Images Construction
We extracted the real-world images from Google street-view imagery in the streets of a busy city. The
images were captured manually using the Linux snapshot tool. Since, the street-view images are taken
from the roof-mounted camera placed on a right-side-driving vehicle we do not face the issue of unknown
frame of reference. A sample image is shown in Figure 3. The “red cross” was overlaid randomly on the
street which was the designated target location for the users to describe in the image.

3.3 Structure of the Descriptions
Table 1 shows the statistics of the dataset collected. The descriptions mainly consist of three parts: i)
Actions: the words used by the user instructing the driver to perform an operation (e.g., “stop”, “keep

1https://www.mturk.com
2https://maps.google.com
3https://maps.google.com, official endorsement should not be inferred.
4The colors of the cars were chosen based on the most common car colors. We chose blue, brown, green, grey, yellow,

orange, pink, red, and white. We did not choose black as it is difficult to spot against the background.
5Blue and white color.
6As the majority of countries are right-side-driving, we choose the right-side-driving orientation for generating the images.
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Target location description samples:
● park the car in front of the cop car
● stop behind the blue pickup truck
● stop to the opposite of the blue pickup truck on the other side 

of the street

● [ACTION: park the car] [DD: in front of] [REF: the cop car]
● [ACTION: stop] [DD: behind] [REF: the blue pickup truck]
● [ACTION:stop] [DD: to the opposite of] [REF: the blue 

pickup truck on the other side of the street]

Annotated sample:

Pickup 
truck

Limo
Taxi Car Cop car Van

Tree

Safety cone
Fire hydrant

Street lamp

Figure 2: Sample data from the synthetic image set. The figure shows sample user instructions and the
annotations performed. The ground truth labels of the vehicles and objects are also provided. The color
information of the vehicles is also present in the dataset.

Synthetic Real-world Combined
images descriptions tokens images descriptions tokens unique common
324 1069 9708 68 212 1863 457 128

Table 1: Statistics of the dataset collected across the synthetic and the real-world images. The “com-
bined” section contains the total unique tokens and common tokens shared across the descriptions in the
synthetic and real-world. We observe that the difference in the language is mainly related to the referent
descriptions.

going until”). Since we had directed the users to provide instructions for stopping, the actions for nearly
all the actions specified were similar to the “stop” command. ii) Referent (REF): The words/phrases
used to refer to the vehicles or the objects present in the image. The users typically refer to vehicles
or objects close to the target location and these references are either simple or compound. In simple
referent descriptions, the users refer to a single object in the scene, e.g., “the blue car”, “the white van”.
In compound referent descriptions, the users refer to multiple objects such as “the two blue vans” in
the phrase “please park in front of the two blue vans”. They also use the position of the vehicles or
objects such as “the third car on the right” in “stop next to the third car on the right”. A few descriptions
contained multiple referents, such as ’‘stop in between the taxi and the white SUV’‘. In this case,
we mark each referent separately. iii) Directional description (DD): This is the part of the description
indicating direction that is used to refer to the target location in relation to the referent (REF). Instances
of directional descriptions include phrases such as “close to”, “next to”, “top of”, “near”, “between”, etc.
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Stop next to the first white 
car you see.
Stop next to the car behind 
the blue car.
Stop next to the white car.

[ACTION: Stop] [DD: next to] [REF: the 
first white car you see]
[ACTION: Stop] [DD: next to] [REF:the 
car behind the blue car]
[ACTION: Stop] [DD: next to] [REF:the 
white car]

Target location description 
samples:

Annotated sample:

Figure 3: Example data from the real-world 3d street images.

Synthetic Real-world
Actions Ref DD Actions Ref DD
273 408 372 173 217 219

Synthetic unique Real-world unique
Actions Ref DD Actions Ref DD
8 185 89 13 181 75

Table 2: Annotations statistics.

Figures 2 and 3 show sample annotations. Two expert annotators annotated the same 25 randomly
chosen descriptions to calculate inter-rater reliability. The annotations at the word level were considered
to be the same if both the labels and the boundaries were agreed upon by both annotators. The inter-
rater reliability scores were measured using Cohen’s kappa and was found to be 0.81 indicating high
agreement. Most of the disagreements were limited to marking the beginning and the endpoints (typically
articles and prepositions).

We annotated a section of the data collected (see Table 2). We observed that there are fewer actions
than user descriptions as a few turkers chose only to provide the directional description and referent.
The number of referents and directional descriptions is greater than the number of total phrases. This is
because the users provide compound descriptions mentioning multiple descriptions for the same target
location (e.g., “park to the left of the brown car, across the white van”). In such cases we label the
referents and directional descriptions separately. There were also instances of images with multiple
vehicles which looked similar. In such cases, the turkers supplemented the language used to identify the
referent with descriptions of other objects. This can be observed in the description “park the car near
the blue sedan next to the light post” where “the blue sedan” was not sufficient to identify the referent,
hence it was supplemented with further descriptions of the objects surrounding the referent. There are
a lot more unique referent descriptions per unit description for the real-data as the array of real-world
objects used for referents were more diverse.
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Figure 4: The graphs in the figure show the position of the target location (head of the arrow) with
respect to the referent (nock of the arrow) for different images. The users describe the target location
with respect to the referent.

3.4 The r✓ Labels

In order to estimate the coordinates of the target location, the coordinates of the objects in the scene,
the directional description, and the referent are required. The dataset contains the coordinates of all the
objects present in the image along with the ground truth labels. Given the target location description, its
position from the referent is available as an (r, ✓) tuple. Figure 4 shows a few examples. In Figure 4, the
position of the target location is shown with respect to the referent in different descriptions with the label
of the directional description. The figure shows different directional descriptions from the referent to
the target location. We can observe (top-left) that the directional description “next to” has a lower angle
‘✓’ and ‘r’ (top left) compared to “just past” (as in “stop just past the blue car”) which in turn has lower
values of ‘✓’ and ‘r’ compared to “two spaces past”. We can also see (bottom-right) that “next to” is used
to mean different positions with respect to the referent. “Behind” typically refers to a negative value of
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User 
description 

parsing

Referent 
identification

Target 
location 

identification

ACTION: Park 
DD : in front of 
REF: the cop car

DD  - Directional description
REF -  Referent

r

Figure 5: Task pipeline for identification of the target location using the user descriptions.

‘✓’ and “right next to” refers to a positive value (bottom-left). The synthetic and real-world data include
372 and 219 such directional descriptions respectively (see Table 2). The ‘r’ in the r✓ model refers to
the radial distance between the center of the referent vehicle or object and the target location, and the ‘✓’
refers to the angle measured from the horizontal direction.

4 Understanding User Descriptions

Given the user description, images, and the annotations (language annotations such as action, referent,
directional description, and visual annotations such as ground truth object labels and r✓ labels), we de-
fine three separate tasks (see Figure 5): i) Identification of the action, referent and directional relations
descriptions in the user instructions: This step is also sometimes referred to as segmentation and in-
tent labeling and is not the focus of this work. We assume oracle data, i.e., the complete and correct
identification of the action, referent, and directional relations descriptions in the user instructions. ii)
Referent(s) identification: The users refer to vehicles or objects in the images in their descriptions. The
task of reference resolution refers to the identification of the correct vehicle or object based on the user
description. In the cases where there are multiple referent descriptions, we identify all the referents in
the dataset. iii) Target location identification: This task refers to combining the information from the
referent identification and the directional relation description to identify the final target location.

In this work we focus on the second problem. We do not perform parsing on the user descriptions
and assume the availability of referent descriptions. We will pursue the goal of automating the complete
pipeline (see Figure 5) in future work. Below we describe the referent identification task.

4.1 Referent Identification

Given the referent description (REF) and the image, the task is to identify the object that is being referred
to by the user. In this section, we describe the approach that we take to identify the referent based on
the user description. We use the data for the synthetic images. We assume the availability of the referent
(text with REF label). The ground truth descriptions of the vehicles (e.g., pink car, white van, blue pickup
truck) and the objects (e.g., fire pump, tree, traffic cone) are available from the image annotations (see
Figure 2).

The first approach is the “random baseline”. Each image can have up to 16 vehicles and objects and
randomly predicting one such object as the referent yields 6.25% accuracy and is noted to be a random
weak baseline. For the second approach we use the “sub-string matching” method to identify the referent
object. In this approach we compare the user provided referent string (text with REF label e.g., “the pink
sedan”) and the ground truth label (e.g., pink car, red car, white van) available from the images. We
use the number of matching words to get the best match for a given image. In the case of a tie with
multiple objects matching the same number of words, we randomly select one of the objects and check
if the referent is correct. This method yields an accuracy of 47.5% which we use as a stronger logical
baseline for comparison. This approach yields lower numbers because of the diverse set of vocabulary
used to describe the referents. For instance, “police car” is referred to as “cop car” or “sheriff’s car”. To
overcome this problem, we use the sentence embeddings approach (Mikolov et al., 2013).
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Figure 6: Street image as seen by the user. For the description of “drop me off in front of the blue
car”, the referent (the blue car) is extracted and then the similarity scores are calculated with the objects
present in the image. We can see that the model identifies the correct referent using this method.

Random baseline 6.25%
Sub-string matching 47.5%
Embedding model (training set) 60%
Embedding model (Wiki-unigram) 70.2%

Table 3: Results of reference resolution performed using different methods (synthetic images). We can
see that the sentence embedding models outperform the baseline and sub-string matching. The out-
of-the-box embedding model performs significantly better than the model trained using the in-domain
trained embeddings (p<.05).

We obtain a vector representation of the referent description (~r) and the objects present in the image
(~o). These vectors are generated using sent2vec (Pagliardini et al., 2018) . We then get the best candidate
for the referent description by choosing the object with the maximum value of the dot product between
the objects present in the image and the description. Thus the best suited object for the referent descrip-
tion is chosen using arg maxi ~o.~ri. The dot product is a measure of cosine similarity between the referent
description (REF) and the ground truth labels.

Embeddings To choose the best embeddings we ran experiments with two approaches: i) out-of-the-
box (Wiki-unigram embeddings) and ii) embeddings trained on user descriptions from this domain (train-
ing set only). We split the data into 30% for the testing set and 70% for the training set. Figure 6 shows
the comparison of the similarity score ( ~O. ~Ri) using the embeddings trained on our corpus (in blue) and
the pre-trained vector (in red). The embeddings trained on the training set gave a good representation of
the similarity scores despite being sparse. A major drawback was the limited vocabulary of the training
set. This means that words present in the test set but absent in the training set are problematic and thus the
sentence embeddings for such descriptions are not produced satisfactorily. However, the Wiki-unigram
embeddings had a much larger vocabulary (1.7 billion words). This larger vocabulary resulted in a better
estimate of the vectors for the REF and ground truth object descriptions. Hence, to extract the sentence
embeddings, we use the pre-trained Wiki-unigram embeddings (600 dim, trained on English Wikipedia).
Table 3 shows the reference resolution accuracy of the model. This method yields the best performance
at 70.2% accuracy in finding the referent.
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5 Conclusion and Future Work

We introduced a novel dataset of users providing instructions about target locations in a taxi-ride sce-
nario. We collected the dataset in two parts, with synthetic images and real-world images. We showed
that the dataset can be used in many challenging tasks: i) visual reference resolution, ii) direction de-
scription understanding, and iii) action identification. We presented our novel annotation scheme for
natural language and image-related information and performed referent identification experiments on the
synthetic images data.

Our approach is still limited in its capability. Cases where multiple similar objects were present in the
image were not well handled. In such cases, a single sentence/phrase description may not be sufficient to
estimate the referent, and we believe that a conversation between the driver and the rider could clarify the
referent. We will extend our work to include dialogue data between the driver and the rider in a similar
simulated setting. Our model is currently not capable of performing the reference resolution of objects
when multiple similar objects are present in the scene and the user description is sufficient to resolve the
references, e.g., “the second blue truck on the right”, “the last car on the left”, etc. Another case where
the model fails to perform well is with plural descriptions of the referents (e.g., “park in between the 2
blue cars”). In such cases we resolve the tie by randomly selecting one of the objects as the referent. We
intend to address these issues in future work.

We also intend to validate and extend this work to real-world images. Note that the real-world images
descriptions contain more elaborate referent descriptions with e.g., names of car brands, sticker on the
car, which can further complicate the task.

Our annotation scheme has been developed to be task specific. Investigating whether the ISO-Space
annotation framework (Pustejovsky et al., 2011; Pustejovsky and Yocum, 2014) can be applied to our
domain is a fruitful direction for future work.
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