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Abstract

The phenomenon of cyberbullying has growing in worrying proportions with the development
of social networks. Forums and chat rooms are spaces where serious damage can now be done
to others, while the tools for avoiding on-line spills are still limited. This study aims to as-
sess the ability that both classical and state-of-the-art vector space modeling methods provide
to well known learning machines to identify aggression levels in social network cyberbullying
(i.e. social network posts manually labeled as Overtly Aggressive, Covertly Aggressive and Non-
aggressive). To this end, an exploratory stage was performed first in order to find relevant settings
to test, i.e. by using training and development samples, we trained multiple learning machines
using multiple vector space modeling methods and discarded the less informative configurations.
Finally, we selected the two best settings and their voting combination to form three compet-
ing systems. These systems were submitted to the competition of the TRACK-1 task of the
Workshop on Trolling, Aggression and Cyberbullying. Our voting combination system resulted
second place in predicting Aggression levels on a test set of untagged social network posts.

1 Introduction

The introduction of the Internet and its democratization in the public sphere has fostered the emergence
of many sociological phenomena. It opens the possibility of forming friendly relations and informa-
tion sharing from online networking platforms. These platforms, which are often the subject of strong
ownership by young users, introduce a paradigm shift in interpersonal relationships since they are now
interactive spaces where it is hard to put regulation rules in place. Thus, each time more we see the ap-
pearing of aggressive behaviors that were confined to the physical space until recently. These aggressions
can take different forms: insults, intimidation, humiliation, exclusion, etc. All them have for common
point to take place in a space where it is possible to cause serious moral damage without suffering the
consequences, in particular because of the possibility of evolving in a completely anonymous way. This
phenomenon, referred to as cyberbullying, or Internet harassment, is defined as “the use of information
and communication technologies to repeatedly, intentionally, and aggressively engage in behavior with
respect to an individual or a group with the intention of causing harm to others” – Belsey (2013).

Several solutions have been proposed, often based on a behavioral and pedagogical approach (ignore
the attacker, confront him or even denounce him). However, it becomes necessary to think about relevant
algorithmic strategies to better protect Internet users from cyberbullying. Such strategies would allow
the establishment of an automated system to detect cyberbullying in social media. This assist moderators
to identify the most serious cases, and thus to contribute to a safer virtual space for both the youngest
and the adults.

In this paper we propose an approach based on multiple classical text mining pipelines. The aim of
this is to explore the actual difficulties linguistic and extralinguistic phenomena may imply to effectively
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identify aggression levels of cyberbullying in social network posts manually labeled as Overtly Aggres-
sive (OAG), Covertly Aggressive (CAG) and Non-aggressive (NAG). Our exploratory approach has two
main stages. First, we tested multiple vector space modeling methods along with multiple well known
learning machines (classifiers) for predicting each of aggression levels individually. The vector space
modeling techniques included TF–IDF vectors, Latent Semantic Analysis (LSA, of varied dimension-
alities) of TF–IDF vectors. Both TF–IDF and LSA were computed for character and word n−gram
features. In addition, we used word embedding-based representations of posts. Learning machines that
were evaluated along with the aforementioned vector space modeling methods include Naïve Bayes,
Linear Perceptron, Support Vector Machine (SVM) and Passive-Aggressive classifier. Once this first
stage gives us several preliminary results, we selected the two configurations giving the best accuracies
as competing systems for the first two runs. As a third run, we combined these two systems, which incor-
porates a random class generator based on class frequencies of the training and development sets. This
class generator draws one of the three classes in the case of disagreement of the combined systems. This
approach resulted in 2nd place of the Facebook competition dataset with 0.6315 of weighted F1 score.
In the Social Media dataset, our best system resulted in 4th place with 0.5716 of weighted F1 score.

This paper is organized as follows: the section 2 shows the state of-the-art, section 3 describes the
methodology and the COLING’18 TRAC-1 dataset used, section 4 shows the results and finally the
section 5 conclude our paper.

2 State of the Art

There already exist software designed to combat the phenomenon of cyberbullying, e.g. Bsecure1, Cy-
berPatrol2, Eblaster3 or IamBigBrother4. The main drawback of these systems is that they are based on
keyword filtering, which is a limitation because no statistical features of texts are taken into account.
Further, these keyword filtering methods require manual maintenance.

To overcome the limitations of keyword filtering systems, (Yin et al., 2009) is one of the former at-
tempts to detect cyberbullying by using statistical features: word frequency, analysis of feelings (use of
pronouns in the second person, insults, etc.) and context. (Dinakar et al., 2011) built a system that can
detect bullying elements in commentaries of YouTube videos. These were classified according to dif-
ferent representative categories (sexuality, intelligence, race and physical attributes). The classification
revealed weaknesses and an increase in false positive cases. Researchers emphasized the importance
of using common sense to understand users’ goals, emotions, and relationships, thereby disambiguating
and contextualizing language.

In (Berry and Kogan, 2010) the authors were also interested in a word search method based on a bag
of words (BoW) system incorporating sentiment and contextual analysis. They build a decision tree that
predicted intimidating messages with an accuracy rate of 93%. The researchers also have developed the
Chatcoder software to detect malicious activities on-line (Kontostathis et al., 2012)5.

In another study it was tested a system that allows users of a website to control the messages posted
on their web pages: it customized vocabulary filtering criteria using a machine learning method that
automatically labeled the contents. This approach had limitations because it was unable to measure
relationships between terms beyond a certain semantic level (Davdar et al., 2012).

(Nahar et al., 2014) provided a concrete method for detecting on-line harassment by measuring the
score of sent and received messages (and thus their degree of involvement in a conversation) using the
Hyper link-Induced Topic Research algorithm (HITS). The authors also proposed a graphical model that
identifies the aggressors and their most active victims.

Other studies have attempted to go further by seeking to take into account more specific characteristics.
(Davdar et al., 2012) tried to establish a system based on language features characterizing the author’s

1http://www.bsecuregroup.com/
2https://www.cyberpatrol.com/
3https://www.veriato.com/
4http://www.parentalsoftware.org/bigbrother.html
5http://www.chatcoder.com/
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genre of comments on MySpace. Their results revealed an improvement in the detection of bullying
when this information is taken into account.

As we can see, recent work defines the means to respond to the cyberbullying phenomenon that is be-
coming more and more widespread as the use of the web does. This paper addresses such a phenomenon
and discusses a number of approaches to address it.

3 Methodology and Data

The methodology employed in this study has two main parts. First, we explored the hypothesis that dif-
ferent levels of aggression have different difficulty levels of identification. This hypothesis implies that
the classifiers behave differently for different levels of aggression, so we decided to explore each level
separately in an OVR (One-Versus-Rest) approach. Furthermore, we hypothesized that Covered Aggres-
sions (CAG) are harder to identify than the other ones. This is because of the undirected way things can
be expressed by users. A high pragmatic component is present in the form of sarcasm, which requires to
decode extra-linguistic information. Thus, during this first stage, a number of learning algorithms were
trained along with different text representations of their input vector space modeling.

Given that this first stage was mainly an exploratory one, assessing the actual difficulties of identifying
each level of aggression also involves exploring well-known text representation methods. This can be
achieved, on one hand, by using classical methods such as TF-IDF (Spärk-Jones, 1972; Torres-Moreno,
2014), Bag of Words (BoW, simple word counts) and Singular Value Decomposition (SVD). And, on the
other hand, we used an easy-to-use word embedding-based method allowing to observe whether Aggres-
sion Identification demands more representation ability than what is provided by traditional methods.

Exploring separately the difficulty of identification of each aggression level aims to be highly illustra-
tive of the properties of the Aggression Identification task. Also, it aims to select the machine learning
algorithms and the text representation methods that best perform in most of the exploratory experiments.

The second stage was to compete in three runs. To this end, we first used the two combinations
of machine learning algorithms with text representations that best performed during the exploratory
stage (out of the four that we tested). These combinations were submitted as two independent systems
representing one run each. In addition, we combined these two systems as a fusion system (multi-agent
system) that was submitted as our third run.

3.1 Dataset
The TRAC-1 dataset (Kumar et al., 2018) has been used in order to train our systems. The available
dataset is composed of samples with a variable class distribution according to the task. It is divided into
two subsets: a training set and a development set. The training set contains 12014 instances. 4241 of
them are labeled as Covertly Aggressive (CAG), 5055 of them are labeled as Non-aggressive (NAG),
and 2708 of them are labeled as Overtly Aggressive (OAG). The development dataset is constituted by
3003 samples. 1058 of them are labeled as CAG, 1233 of them are labeled as NAG and 711 of them are
labeled as OAG. See that there is a class imbalance mainly affecting the distribution of the OAG class.

3.2 Methods
3.2.1 Classical Vector Space Modeling using TF-IDF
Term Frequency-Inverse Document Frequency (TF-IDF) is a document representation method originally
used in Information Retrieval (Spärk-Jones, 1972; Torres-Moreno, 2014). This method represents a
document di by building its associated sparse vector xi = (x1, . . . , xn)

> ∈ Rn. Each of its components
j = 1, . . . , n is a weight associated to a word wj in the vocabulary of a collection of documents D =
{di}mi=1. In general, this weight can be seen as the information amount gained from D as wj is observed
in di. Each component xj ∈ R of the TF–IDF representation xi of a document di is given by equation (1):

xj =
fij

1 + log2m+ log2mj
(1)

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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where m is the total number of documents in the collection, mj is the number of documents that share
the word wj , and fij is the frequency of occurrence of wj within di. It has been showed that when the
documents are small, a binary version of fij behaves better than raw frequencies (Salton et al., 1983),
so fij can be defined as fij = 1 if wj ∈ di and fij = 0 otherwise. Furthermore, in our experiments we
computed TF-IDF sparse representations both for character-based and for word-based n−grams.

3.2.2 Word Embedding-Based Method
In the NLP literature there are reported a number of text embedding methods at the sentence level.
Among the State of the Art methods there is an easy to use one which uses a combination of word
embeddings weighted with TF-IDF (Word Information Series for Sentence Embedding, WISSE). The
word embeddings used were FastText of 300 dimensions (Joulin et al., 2016), which have been reported
to performe well in sentence representations for Semantic Textual Similarity tasks (Cer et al., 2017;
Arroyo-Fernández et al., 2017). WISSE simply represents a document di as in equation (2):

xi =
∑
wj∈di

ϕjxj , (2)

where xi ∈ Rn is the document/sentence representation of di and xj ∈ Rn is the word embedding of
wj . ϕj is the TF–IDF weight of wj . This weight represents the information amount provided by xj to xi
given that wj is observed in di and in D (the whole set of FB and SM posts).

3.2.3 Support Vector Machines
Let X = {x1, . . . , xn} be a set of samples, Y = {y1, . . . , yn : yi ∈ {CAG,NAG,OAG}} a set of labels
and D = {(xi, yi) : xi ∈ X , yi ∈ Y} a dataset of training examples. A Support Vector Machine (SVM)
builds a model f(x) such that given a new arbitrary point x it returns the category yi ∈ Y the point
belongs to (Cortes and Vapnik, 1995). The model is given by equation (3):

f(x) =
∑̀
i=1

αik(xi, x) + b (3)

where k(·, ·) is a kernel function acting as an inner product allowing to capture non-linear relationships
among data points. The linear case can be considered by setting k(xi, x) = 〈xi, x〉. The so called
dual coefficients αi are associated to each training point in X and they indicate how important is each
training point in representing D. The coefficients are trained by means of linear programming with `1
regularization. Thus, after the training, most these coefficients result very small or zero. The remaining
non-zero coefficients are associated to the so called support vectors, which are used to model the data.

For Aggression identification the SVM model is a representation of the Internet posts mapped so that
they can be divided by a clear gap that is as wide as possible so that each division indicates a category.

3.2.4 Passive-Aggressive Classifier
Let X = {x1, . . . , xn} be a set of samples, Y = {y1, . . . , yn : yi ∈ {CAG,NAG,OAG}} a set of
labels and D = {(xi, yi) : xi ∈ X , yi ∈ Y} a dataset of training examples. A Passive-Aggressive
learning algorithm (PA) updates a vector of weights wi that parametrize a linear decision boundary
f(xi) = 〈wi, xi〉 if this vector causes an error in the training for a sample xi ∈ X . This modification is
said to be aggressive. In case there is no error, the vector of weights is unchanged, i.e. wi+1 = wi, and
then the algorithm is said to be passive (Crammer et al., 2006). The update rule is given by equation (4).

wi+1 = wi + τiyixi (4)

where yi is the training label of the i−th training example (xi, yi) ∈ D and wi+1 is the updated version
of wi. It’s similar to the delta rule originally proposed for training one-layer neural networks (Haykin,
2009). The parameter τi is given by equation (5):

τi = min

{
C,
Li(wi, xi)

‖xi‖2

}
(5)
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where C is a manually set parameter that regulates aggressiveness (which is commonly termed as mo-
mentum in neural networks literature). Li is the hinge loss Li(wi, xi) = max{0, 1− yi〈wi, xi〉}, which
indicates whether an error occurred and its magnitude. The version of PA explained here is the simplest
one, and it allows to see a general portrait of this kind of algorithms. Nonetheless, a number of different
versions of them are shown in detail in (Crammer et al., 2006).

3.2.5 Classifier Fusion Using Class Distribution
Our third run was a fusion of the two classifiers having the best performance on the validation dataset.
The fusion is quite simple: for each sample, if the classifiers - Passive-Aggressive and SVM - are in
agreement, the predicted class is assigned to the document. Otherwise, if the classifiers are in disagree-
ment, a third classifier (based on the most statistically probable label from the class distribution of the
training set) decides the final output by using a simple vote.

4 Results and Discussion

4.1 Results of the Exploratory Stage (training and development datasets)

In the Figures 1-3 we show results (in terms of accuracy) of four approaches, i.e. Naïve Bayes (NB),
Perceptron, SVM and Passive-Aggressive (PA), in identifying independently each of the three levels of
aggression (OAG, CAG, NAG) in a OVR fashion. To model the input vector space of these algorithms
we used two baseline representation methods, i.e. Hashing (Bag of Words, BoW) and TF-IDF, and one
state-of-the-art word embedding-based method, i.e. WISSE. One of the main things we observed during
the exploratory stage was how the amount of training samples influenced the accuracy of the classifiers.
Therefore we plotted the accuracy as a function of the amount of training samples (from the whole
training set). The accuracy was measured on the development dataset.

The results show that NB, PA and SVM classifiers perform in similar ways. However, the Perceptron
showed to be a bit unstable and performed the worst. In most cases, the classifiers attained relatively
stable performance after 5000 training samples. In this sense, with respect to NAG and CAG, identifying
OAG aggressions represented much less complexity as a classification problem (2000 − 3000 TF-IDF-
transformed samples were required by classifiers to stabilize their performance). On the other hand,
identifying CAG resulted in a much more complex task for the classifiers. Perceptron was again the worst
while Naïve Bayes and linear SVM performed better, but barely surpassed 65% accuracy. Detecting NAG
aggressions required much more samples to allow the classifiers to be relatively stable. Furthermore, it
was hard for the classifiers to reach 73 − 74% of accuracy. Overall TF-IDF representations allowed the
classifiers to be much more stable than Hashing did.

Two additional experiments were conducted for exploring baseline representations on CAG detection
in more detail. First, we used Singular Value Decomposition (SVD) for dimensionality reduction on the
word-based TF-IDF representations of the posts. Although a number of dimensionalities were tested
(50, 100, 200, 300, 400), this modification neither showed improvements with respect to sparse TF-IDF
representations. Nonetheless, training time increased considerably as the implementations are better
prepared for sparse presentations. Secondly, we segmented documents into character n-grams before
represent them by means of TF-IDF. Surprisingly the classification accuracy was much better (+10%)
in general. This time, the Passive-Aggressive and linear SVM classifiers attained about 70% of accuracy
in CAG identification by segmenting the input posts into a range of [1− 5] character-based n-grams. To
observe this performance, more than 9000 samples were needed (See Figures 1-3). Other n-gram ranges
did not perform better (e.g. 2− 5, 3− 5, 1− 6, 2− 6, etc.).

We also used word embedding-based representations to represent the posts as sentence embeddings.
Even when these embeddings showed state-of-the-art performance in STS, their performance in Aggres-
sion Identification was not better than the baseline methods presented above (see Figures 4 and 5). The
behavior of classifiers with sentence embeddings showed much more unstable and the performance di-
minished by 5% in general with respect to the character-based TF-IDF sparse representations. Although
the sparse representations are high dimensional (thousands of dimensions), 5% or less of their entries are
nonzero. Most state-of-the-art implementations of the classifiers are prepared to deal efficiently with this
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Figure 1: One versus rest accuracy of four learning machines in predicting Overtly Aggressive (OAG)
Facebook posts (development dataset). The left hand side plot are accuracies of classifiers on (hashing)
Bag of words vectors. The right hand side are plots of accuracies of same classifiers on TF–IDF vectors.

Figure 2: One versus rest accuracy of four learning machines in predicting Covertly Aggressive (CAG)
Facebook posts (development dataset). The left hand side plot are accuracies of classifiers on (hashing)
Bag of words vectors. The right hand side are plots of accuracies of same classifiers on TF–IDF vectors.

issue. Therefore, the classifier ends by learning from 100 or less nonzero entries by sample. Conversely,
sentence embeddings based on word embeddings are dense representations of 300 dimensions, which
adds complexity to the learning problem (varying dimensions of the embeddings did not offered im-
provements and the learning instability held). Furthermore, the original purpose of sentence embeddings
is to represent an approximation of each word semantics, and then of the whole sentence semantics. This
may result in much more complex patterns represented by sentence embeddings than what is needed for
aggression identification.

This additional complexity in their input space can lead to over-fitting of the classifiers.

4.2 Results of the Competition Stage (test dataset)
The Aggression Identification competition required participants to apply their systems on a test dataset.
This dataset consists of two files. The first one having a class distribution similar to the training set, and
the second one with a so-called “surprise” configuration.

Three runs were conducted on the TRAC-1 test dataset, that was splitted into two files: Facebook and
Social Media. There are 916 samples on the Facebook set, and 1257 samples on the Social Media set
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Figure 3: One versus rest accuracy of four learning machines in predicting Non-aggressive (NAG) Face-
book posts (development dataset). The left hand side plot are accuracies of classifiers on (hashing) Bag
of words vectors. The right hand side are plots of accuracies of same classifiers on TF–IDF vectors.
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Figure 4: One versus rest accuracies of PA, Perceptron y SVM classifiers on Overtly Aggressive (left)
and Non-aggressive (right) Facebook posts (development dataset). The input embeddings were WISSE
of 300 dimensions.

(Kumar et al., 2018). During the exploratory stage we selected the two classifiers that performed the best
in most experiments conducted, i.e. the Passive-Aggressive (PA) and the SVM classifiers. Therefore,
our run 1 was executed by using a PA classifier whose hyperparameters were the best ones found via
3-fold cross-validation on the training dataset; the run 2 was executed by a SVM classifier whose hy-
perparameters were the best ones found with same method than for PA. And the run 3 was the fusion of
both coupled with a probabilistic distribution of the classes. The PA and SVM implementations we used
are the provided ones by (Pedregosa et al., 2011) (for the SVM we used the SGD version, Stochastic
Gradient Descent). Furthermore, we selected the vector representation that best performed during the
exploration stage, i.e. character based n-gram TF-IDF sparse representations with n ∈ {1, 5}. Because
their low performance during the exploratory stage, we decided do not use the word embedding-based
representations during the competition stage.

Tables 1 and 2 shows our rank position on the English Facebook (2nd place) and Social Media (4th
place) tasks respectively.

The Figures 6 and 7 shows the confusion matrix (True label vs. Predicted label) measured on the
English Facebook and Social Media files respectively. The confusion matrix in the case of Facebook
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Figure 5: One versus rest accuracies of PA, Perceptron y SVM classifiers on Covertly Aggressive (CAG)
Facebook posts (development dataset). The input embeddings were WISSE of 300 dimensions.

Rank System F1 (weighted)
1 saroyehun 0.6425
2 EBSI-LIA-UNAM 0.6315
3 DA-LD-Hildesheim 0.6178
4 TakeLab 0.6161
5 sreeIN 0.6037
... ... ...
30 bhanodaig 0.3572

Random Baseline 0.3535

Table 1: Results for the English (Facebook) task. Our model EBSI-LIA-UNAM (ELU) is placed in 2nd
rank.

Rank System F1 (weighted)
1 vista.ue 0.6008
2 Julian 0.5994
3 saroyehun 0.5920
4 EBSI-LIA-UNAM 0.5716
5 uOttawa 0.5690
... ... ...

Random Baseline 0.3477
... ... ...
30 bhanodaig 0.1960

Table 2: Results for the English (Social Media) task. Our model EBSI-LIA-UNAM (ELU) is placed in
4th rank.

data, shows that the OAG and CAG classes are the most difficult to classify (with 52% error rate for
OAG, 53% error rate for CAG). For the Social Media file, the CAG and OAG classes were the most
difficult to categorize (with 53% error rate for OAG, 64% error rate for CAG). In both sets, the NAG
class was detected correctly (33% and 11% error rate).

5 Conclusion

The methodology that we adopted allowed us to observe in broad strokes the complexity of the problem
in question. On the one hand, word embeddings are possibly trained to represent much more complex or



148

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

69 37 38

15 66 61

55 154 421

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6: EN-Facebook task, EBSI-LIA-UNAM Run 03.
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Figure 7: EN-Social Media task, EBSI-LIA-UNAM Run 03.

detailed patterns in the text (e.g., distributional semantics), which leads to over-fitting that is reflected in
the instability of the predictions of the classifiers. Probably the word embedding approach is not the best
option for this task. Indeed, text representations with classical methods show much better adaptation
to this problem, and are much less complex to interpret than word embeddings. Finally, the datasets
provided for the task allow for taking into account only linguistic evidence, we think better results require
additional data contextualizing other aspects of aggressions in cyberbullying. For example, sarcasm, a
pragmatic phenomenon, requires extra-linguistic knowledge to be processed properly. We would have
liked to include a sentiment analysis resource in our experimentation. Finally, further processing of the
data might have provided us with additional information. For example, it might have been possible to
use the degree of severity associated with certain forms to refine our analysis, or to try to specify whether
an insulting sentence implies a response that also contains intimidation.

The use of the Levenshtein algorithm could have allowed a more precise identification of insults. This
algorithm takes into account changes in character strings, which is particularly suitable for discussions
on social networks where non-homogeneous language is used (Baetens, 2013).
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