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Introduction

In the last few years, we have witnessed a gradual shift from largely static, read-only web to quickly
expanding user-generated web. There has been an exponential growth in the availability and use of online
platforms where users can post their own content. A major part of these platforms include social media
websites and apps, blogs, Q&A forums and several similar platforms. All of these are almost exclusively
user-generated websites. In all of these platforms and forums, humongous amount of data is created and
circulated every minute. It has been estimated that there has been an increase of approximately 25% in
the number of tweets per minutes and 22% increase in the number of Facebook posts per minute in the
last 3 years. It is posited that approximately 500 million tweets are sent per day, 4.3 billion Facebook
messages are posted and more than 200 million emails are sent each day, and approximately 2 million
new blog posts are created daily over the web 1. There is no such a thing as a ‘consolidated figure’ of the
number of comments and opinion generated on websites worldwide, but it can be safely assumed that
such a figure would be staggering.

As the number of people and this interaction over the web has increased, incidents of aggression and
related activities like trolling, cyberbullying, flaming, hate speech, etc. have also increased manifold
across the globe. The reach and extent of Internet has given such incidents unprecedented power and
influence to affect the lives of billions of people. It has been reported that such incidents of online
aggression and abuse have not only created mental and psychological health issues for web users, but
they have in fact forced many people to change things in their daily lives, spanning deactivating accounts
to instances of self-harm and suicide. Thus, incidents of online aggressive behaviour have become a
major source of social conflict, with a potential of forming criminal activity. Therefore, it is a timely task
for researchers and stakeholders to create preventive measures to safeguard the interests of web users,
and to contribute to the maintenance of the civility of the online space in a more general sense.

This workshop focusses on the phenomena of online aggression, trolling, cyberbullying and other related
phenomena, in both text (especially social media) and speech. The organisers aim to create a platform
for academic discussions on this phenomena, based on previous joint work that they have done as part
of a project funded by the British Council. We are particularly interested in promoting conversations
dedicated to the automatic detection of aggression in both speech and text, that is, we hope that our
workshop will not only be purely academic by nature but it will also generate real-life solutions to tackle
the phenomena studied. As such the workshop also includes a shared task on ‘Aggression Identification’.
The task is to develop a classifier that could make a 3-way classification in between ‘Overtly Aggressive’,
‘Covertly Aggressive’ and ‘Non-aggressive’ text data. We made available a dataset of 15,000 aggression-
annotated Facebook Posts and Comments each in Hindi (in both Roman and Devanagari script) and
English for training and validation. Additional data for testing was released at a later date.

Both the workshop and the shared task received a very encouraging response from the community. There
were more than 130 registrations for the shared task. Out of these, 30 teams submitted their systems. The
proceedings include 18 system description papers that were finally submitted by the authors. In addition
to this, the workshop also includes 5 regular papers presented in the workshop.

We would like to thank all the authors for their submision and members of the Program Committee for
their invaluable efforts in reviewing and providing feedback to all the papers. We would also like to
thank all the members of the Organising Comittee who have helped immensely in various aspects of the
organisation of the workshop and the shared task.

1Source: https://www.gwava.com/blog/internet-data-created-daily/
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Abstract

In this paper, we present the report and findings of the Shared Task on Aggression Identification
organised as part of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC - 1)
at COLING 2018. The task was to develop a classifier that could discriminate between Overtly
Aggressive, Covertly Aggressive, and Non-aggressive texts. For this task, the participants were
provided with a dataset of 15,000 aggression-annotated Facebook Posts and Comments each in
Hindi (in both Roman and Devanagari script) and English for training and validation. For testing,
two different sets - one from Facebook and another from a different social media - were provided.
A total of 130 teams registered to participate in the task, 30 teams submitted their test runs,
and finally 20 teams also sent their system description paper which are included in the TRAC
workshop proceedings. The best system obtained a weighted F-score of 0.64 for both Hindi and
English on the Facebook test sets, while the best scores on the surprise set were 0.60 and 0.50
for English and Hindi respectively. The results presented in this report depict how challenging
the task is. The positive response from the community and the great levels of participation in the
first edition of this shared task also highlights the interest in this topic.

1 Introduction

In the last decade, with the emergence of an interactive web and especially popular social networking
and social media platforms like Facebook and Twitter, there has been an exponential increase in the
user-generated content being made available over the web. Now any information online has the power
to reach billions of people within a matter of seconds. This has resulted in not only positive exchange of
ideas but has also lead to a widespread dissemination of aggressive and potentially harmful content over
the web. While most of the potentially harmful incidents like bullying or hate speech have predated the
Internet, the reach and extent of Internet has given these incidents an unprecedented power and influence
to affect the lives of billions of people. It has been reported that these incidents have not only created
mental and psychological agony to the users of the web but has in fact forced people to deactivate their
accounts and in extreme cases also commit suicides (Hinduja and Patchin, 2010). Thus the incidents of
aggression and unratified verbal behaviour have not remained a minor nuisance, but have acquired the
form of a major criminal activity that affects a large number of people. It is therefore important that
preventive measures can be taken to cope with abusive behaviour aggression online.

One of the strategies to cope with aggressive behaviour online is to manually monitor and moderate
user-generated content, however, the amount and pace at which new data is being created on the web has
rendered manual methods of moderation and intervention almost completely impractical. As such the
use (semi-) automatic methods to identify such behaviour has become important and has attracted more
attention from the research community in recent years (Davidson et al., 2017; Malmasi and Zampieri,
2017).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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This paper reports the results of the first Shared Task on Aggression Identification which was organised
jointly with the First Workshop on Trolling, Aggression and Cyberbullying (TRAC - 1) at COLING 2018.

2 Related Work

Verbal aggression per se has been rarely explored within the field of Natural Language Processing.
However, previous research in the field has been carried out to automatically recognise several related
behaviour such as trolling (Cambria et al., 2010; Kumar et al., 2014; Mojica, 2016; Mihaylov et al.,
2015) , cyberbullying (Dinakar et al., 2012; Nitta et al., 2013; Dadvar et al., 2013; Dadvar et al., 2014;
Hee et al., 2015), flaming / insults (Sax, 2016; Nitin et al., 2012), abusive / offensive language (Chen et
al., 2012; Nobata et al., 2016; Waseem et al., 2017), hate speech (Pinkesh Badjatiya and Varma, 2017;
Burnap and Williams, 2014; Davidson et al., 2017; Vigna et al., 2017; Djuric et al., 2015; Fortana,
2017; Gitari et al., 2015; Malmasi and Zampieri, 2018; Waseem and Hovy, 2016; Schmidt and Wie-
gand, 2017), radicalization (Agarwal and Sureka, 2015; Agarwal and Sureka, 2017), racism (Greevy and
Smeaton, 2004; Greevy, 2004) and others. In addition to these, there have been some pragmatic studies
on behaviour like trolling (Hardaker, 2010; Hardaker, 2013).

This huge interest in the field from different perspectives has created a conglomeration of terminolo-
gies as well as understandings of the phenomenon. On the one hand, this provides us with a very rich
and extensive insight into the phenomena yet, on the other hand, it has also created a theoretical gap
in the understanding of interrelationship among these. Moreover, it has also resulted in duplication of
research, to certain extent, and a certain kind of lack of focus and reusability of datasets across different
strands of research. In order to make improvements towards solving a complex phenomenon like this,
it is of utmost importance that some kind of uniform understanding of problem be achieved so that, at
least, standardised datasets and an understanding of different approaches to solving the problem may be
developed.

While a large part of the research has focused on any one of these phenomena and their computational
processing, it seems there is a significant overlap among these phenomenon in the way they are under-
stood in these studies - and because of this underlying overlap, insights from different studies might
prove useful for solving these seemingly different phenomena. All of these behaviours are considered
undesirable, aggressive and detrimental for those on the receiving end. So, trolling is intended “to cause
disruption and/or to trigger or exacerbate conflict for the purposes of their own amusement” (Hardaker,
2010). Cyberbullying is “humiliating and slandering behavior towards other people” (Nitta et al., 2013).
Flaming intends “to offend someone through e-mail, posting, commenting or any statement using insults,
swearing and hostile, intense language, trolling, etc.” (Krol, 1992).

Waseem et al. (2017) makes an attempt to unify these different trends of research in what may be con-
sidered a significantly overlapping field and proposes a 2-way typology for understanding what they call
’abusive language’ over the web. They propose 2 scales on which abusive language could be categorised
- the target of the abuse (an individual or a group) and the nature of the language (explicit or implicit).
Our classification of aggression into overt and covert aggression is largely similar to the explicit-implicit
distinction. However, we make a more detailed distinction in relation to the target of the abuse (Kumar
et al., 2018b) and it is not made along the axis of individual vs. group. This is so because we noticed
in a large number of instances both individuals and groups are simultaneously targeted - in such cases
individuals are targeted as members of certain groups or the individuals’ actions were considered those
of the group and became the locus of attack. As such it was not feasible to distinguish between the
individual and group attack in lot of instances while annotating the dataset. The distinction that we made
was related to the “locus” of attack and included such targets as gender, religion, caste, country of origin,
race, etc. This classification, on the one hand, gave scope for focusing on different kinds of attack (for
example, racial attacks or communal attacks) and, on the other hand, each of these targets may actually
be attacked using a different set of vocabulary, thereby, making these more natural classes that could be
classified using the surface-level linguistic features. Of course, it cannot be denied that these targets are
not mutually exclusive and, as such, it makes the problem not just a multi-class classification problem
but also multi-label classification problem. In addition to this, we also make use of a different terminol-
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ogy taking into account its use within socio-pragmatics. This was done with an understanding that huge
amount of literature within the field of aggression and impoliteness studies might be able to contribute
and provide insights to understanding the phenomenon in a better way.

The aim of this shared task was much simpler than the one discussed in the previous para. It only
involved classification of the texts into 3 categories - overt aggression, covert aggression and non-
aggression. We wanted to use the dataset for experimenting with different approaches to make the most
top-level classification of aggression on social media.

3 Task Setup and Schedule

The participants interested in competing in the shared task were required to register using a Google Form.
The form gave them an option to participate for either English or Hindi or both the languages. All the
registered participants were sent the links to the annotated dataset in the language(s) of their choice, along
with a description of the format of the dataset. The participants were allowed to use additional data for
training the system, with the condition that the additional dataset should be either publicly available or
make available immediately after submission (and well before the submission of the system papers) and
this must be mentioned in the submission. Use of non-public additional data for training was not allowed.
The participants were given around 6 weeks to experiment and develop the system. However, since more
than half of the participants registered after the first release of the data, most of them got less time than
this. Initially, the dataset was not released publicly but was emailed only to the registered participants.
After the 6 weeks of release of train and dev sets, the test set was released and the participants had 5 days
to test and upload their system. The complete timeline of the shared task is given in Table 1. We made
use of CodaLab 1 for the evaluation. Each team was allowed to submit up to 3 systems for evaluation.
We used the best of the 3 runs for the final ranking and evaluation of the systems.

Date Event
1 February, 2018 Shared Task Announcement and Start of Registration
13 March, 2018 Release of train and dev sets
25 April, 2018 Release of test set
30 April, 2018 Deadline for Submission of System
2 May, 2018 Declaration of Results
28 May, 2018 Deadline for Submission of System Description Paper

Table 1: Timeline of the Aggression Identification Shared Task at TRAC - 1.

4 Dataset

The participants of the shared task were provided with a dataset of 12,000 randomly sampled Face-
book comments for training and 3,000 comments for development and in English and Hindi each, an-
notated with 3 levels of aggression - Overtly Aggressive (OAG), Covertly Aggressive (CAG) and Non-
Aggressive (NAG). For test, 916 English comments and 970 Hindi comments were provided. Addi-
tionally, 1,257 English tweets and 1,194 Hindi tweets were given as the surprise test set 2. The dataset
released for the task is a subset of a larger dataset discussed in Kumar et al. (2018b).

4.1 Issues with the Dataset

While most of the participants considered the dataset to be of high quality, two major problems came up
during the task -

• The language issue: Some of the comments in English dataset contained code-mixed Hindi-English
data as well as data from other languages like German. These formed a minuscule proportion of the
data but nevertheless these need to be filtered out.

1https://competitions.codalab.org/
2The complete dataset used for the shared task can be downloaded here - http://trac1-dataset.kmiagra.org/
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• The annotation issue: The second and more serious issue that was raised by some participants
is related to the the annotation itself. Several instances of supposedly inaccurate annotation were
pointed out. Despite the fact that aggression is a highly subjective phenomenon and different anno-
tators may have different judgments about the same comment, some of the annotation indeed looked
highly implausible and consequently it needs further scrutiny and validation.

5 Participants and Approaches

The shared task gave the participants an option to register for either one of the two languages - English
or Hindi - or both. A total of 131 participants registered for the shared task, with 73 teams registering
to participate only in English track, 2 teams only in Hindi track and 56 teams registered to participate
in both the tracks. Out of these, finally a total of 30 teams submitted their systems - 15 teams for both
English and Hindi and 30 teams for only English track. All the systems who submitted their system
were invited to submit the system description paper, describing the experiments conducted by them. 18
participants submitted the final description paper which are included in the workshop proceedings - it
included papers by majority of the top 10 teams. Table 2, lists the participating teams and the language
they took part in.

Team Hindi English System Description Paper
saroyehun X (Aroyehun and Gelbukh, 2018)
EBSI-LIA-UNAM X (Arroyo-Fernández et al., 2018)
DA-LD-Hildesheim X X (Modha et al., 2018)
TakeLab X (Golem et al., 2018)
sreeIN X (Madisetty and Desarkar, 2018)
Julian X X (Risch and Krestel, 2018)
taraka rama X X
uOttawa X (Orabi et al., 2018)
Isistanitos X (Tommasel et al., 2018)
hakuchumu X
DataGeeks X X
na14 X X (Samghabadi et al., 2018)
dinel X (Orasan, 2018)
vista.ue X X (Raiyani et al., 2018)
MANITBHOPALINDIA X X
IRIT X (Ramiandrisoa and Mothe, 2018)
quine X X (Nikhil et al., 2018)
IIIT-Delhi X
PMRS X X (Maitra and Sarkhel, 2018)
resham X X
IreneR X
Nestor X X
UAEMex-UAPT1 X X
forest and trees X (Galery et al., 2018)
groutar X (Fortuna et al., 2018)
Shusrut X X (Roy et al., 2018)
malaypramanick X
UAEMex-UAPT-TAC2 X X
Unito X X
bhanodaig X (Kumar et al., 2018a)
Total 15 30 18

Table 2: The teams that participated in the Aggression Identification Shared Task at TRAC - 1.

Next we give a short description of the approach taken by each team for building their system. More
details about the approaches could be found in the paper submitted by the respective teams.
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• saroyehun system gives the best performance with LSTM and they resorted to translation as data
augmentation strategy. With the surprise twitter set, a combination of the representations of the
RNN and CNN as features, along with additional preprocessing like spelling correction, translation
of emoji, and computation of sentiment score gave the best performance. In this case, the dataset
was also augmented using translation and pseudolabelled using an external dataset on hate speech.3

This is the only approach in the competition that performs better on the Twitter dataset, despite
being trained the Facebook dataset, thereby, depicting the ability of the approach to generalise
across domain.

• EBSI-LIA-UNAM system uses a combination of the Passive-Aggressive (PA) and SVM classifiers
with character based n-gram (1 - 5 grams) TF-IDF for feature representation.

• DA-LD-Hildesheim uses LSTM with pretrained Fasttext vector for embeddings for classifying
English Facebook texts. For all other datasets including Twitter data in English and both Facebook
and Twitter dataset in Hindi, CNN performs better.

• TakeLab uses a Bidirectional LSTM on Glove embeddings to give the best performance.

• sreeIN system uses a voting-based ensemble method with 3 classifiers - CNN with 4 layers, LSTM
and Bidirectional LSTM.

• Julian team uses translation as data augmentation strategy and use an ensemble of TF-IDF based
approaches, using character n-grams (2 - 6) and word n-grams (1 - 2) with a bi-directional RNN,
using fasttext embeddings, to get the best performance in the task..

• taraka rama uses different systems for different datasets. For English Facebook dataset and Hindi
Twitter dataset, the team uses a stacked ensemble classifier that uses a SVM on top of the ensemble
of SVM classifiers. The SVMs were trained on 1 - 6 character n-grams and word unigrams. For
Hindi Facebook and English Twitter dataset, however, a plain SVM trained using character and word
bag-of-n-grams gave the best performance. In this case, the overlapping character and word n-gram
features are weigthed with sublinear tf-idf before being used for training and testing. The system
is tuned using 5-fold CV on the combined training and develpment sets for maximum number
of character and word n-grams included, case normalization, and SVM margin (regularization)
parameter C.

• uOttawa system is trained using a novel deep-learning architecture for text classification based on
Multi-task learning (MTL). The approach, MTL, is evaluated using three neural network models.
MultiCNN, multiple convolution structure with a trainable embedding layer, gives the best perfor-
mance.

• Isistanitos system uses a soft voting (average the class probabilities of other models) of two models
- a recurrent neural network, and an SVM. The recurrent neural network uses 3 preprocesed set
of features. The first set uses an ad-hoc glove model for representing the words, the second is
a sentiwornet based model, and the third is a traditional TfIdf plus Vader Sentiment analysis and
sentiments associated with the emojis. The SVM model is trained on a TF-IDF of the post stemmed
terms, excluding stopwords, and 3 - 5 character n-grams.

• hakuchumu system makes use of a Random Forest classifier with some preprocessing including
removal of urls and non letter characters and stop words. Along with the bag-of-word, the approach
uses multiple occurrences of letters, exclamation marks and question marks in a row and emoticons
as binary features.

• DataGeeks system uses Logistic Regression classifier with some preprocessing on the data such
as removing non-ascii characters, replacing new line with ’.’, replacing n’t with not, removing
stopwords and 1 - 3 word n-grams and 2 - 6 character n-grams for training the classifier.

3https://github.com/ZeerakW/hatespeech
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• na14 also uses Logistic Regression classifier with preprocessing involving replacing URLs, num-
bers, email addresses and spelling correction. The classifier is trained using word unigrams, tf-idf
vectors of word unigram, character 4-gram, character 5-gram and Google news pre-trained word
embedding model. For the Hindi dataset, Devanagari texts were transliterated into Roman at the
preprocessing stage.

• dinel achieves the best accuracy on the Facebook test set using a Random Forest classifier while
SVMs performed better for the surprise Twiiter test set. Both the classifiers were trained using 300
semantic features which represent the vector representation of the text, average scores of the top
emojis for each of the classes and positive and negative sentiment scores.

• vista.ue system is developed using dense neural networks.

• MANITBHOPALINDIA system for English is developed using SVM while for English it is trained
using deep neural networks.

• IRIT system gets the best performance for the English Facebook test set by using a combination of
two models - a doc2vec model and a logistic regression classifier. For the Twitter test set, it uses a
combination of CNN and LSTM to get the best performance.

• quine system is trained using an LSTM with attention and simple embeddings (word to index)
instead of pre-trained embeddings.

• IIIT-Delhi system uses a Single channel CNN for this task. Bayesian Optimization is used for
tuning the parameters.

• PMRS system employs a winner-takes- all autoencoder, called Emoti-KATE for Twitter senti-
ment classification. Each input dimension of Emoti-KATE is a log-normalized, sentiwordnet-score
weighted word-count vector. A binary cross-entropy loss function is used to train the network.

• resham system for English has been made using an open vocabulary approach and ensemble model
of two predictors with soft voting. The first predictor is a Naive Bayes model with CountVectorizer
for preprocessing. The second predictor is a recurrent neural network with one embedding layer
and two LSTM layers. Pre-trained word vectors have been used for the embedding layer. For Hindi
dataset, a Naive Bayes classifier is trained using the dataset augmented with English translations.

• IreneR system is based on a Multinomial Naive Bayes classifier that uses unigrams, bigrams,
hedging bigrams and trigrams such as ’do you’, someone who is’,’to see that’, that potentially
signal covert aggressivity, identified with chi-squared test as features. It also includes features from
LIWC2015 (list of anger and swear words).

• Nestor uses an approach that combines Neural Networks and a new word representation model.
The patterns obtained from the word model representation are used for training the back propa-
gation neural network with fix parameters. The length of the post was fixed and the word model
representation is language independent, so it was used for both the English and the Hindi tasks.

• UAEMex-UAPT1 uses the same approach as used by the team Nestor.

• forest and trees system uses a Pooled Recurrent Unit architecture combined with pre-trained En-
glish and Hindi fasttext word embeddings as a representation of the sequence input. In this approach,
Hindi and English vectors were aligned using pre-computed SVD matrices that pulls representations
from different languages into a single space. This enabled the same model to be used for both the
languages, thereby, making data re-utilization and model deployability easier.

• groutar system is trained using random forests. The dataset is augmented with an external toxicity
dataset 4. The approach involved understanding the effects of new data on aggression identification.

4https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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• Shusrut system uses an ensemble of CNN 2D with MAXPOOL classifier and a SVM classifier. The
ensemble model is passed through 3 dense layers to finally predict the output. Softmax activation is
used in the outer layer for classification.

• malaypramanick system uses a random forest classifier trained using a set of surface-level fea-
tures including number of line,s uppercase and lowercase letters, digits, named entities, unicode
characters, etc.

• UAEMex-UAPT-TAC2 system is generated by combination of twelve distance measures, through
a K Nearest Neighbors classification algorithm and a canonical genetic algorithm.

• Unito is the only unsupervised system submitted in the task. It is based only on a multilingual
lexicon of aggressive words. The lexicon is obtained by automatic translation from an handmade
lexicon of offensive words in Italian, with minimal human supervision. The original words are
expanded into a list of their senses. The senses are manually annotated to filter out senses that are
never used in an offensive context. Finally, all the lemmas of the remaining senses are generated
with BabelNet in 50+ languages. The words in the lexicon are divided in those translating sense that
can be used in an offensive context (but not necessarily are) and words translating senses that are
directly offensive. This distinction is mapped to the Overtly Aggressive and Covertly Aggressive
classes respectively. The classification of sentences is straightforward: a sentence that does not
contain any word from the lexicon is tagged as NAG, a sentence containing more directly offensive
words than potentially offensive words is tagged as OAG, and the other cases are tagged as CAG.

• bhanodaig system uses a bidirectional LSTM.

6 Results

In this section, we present the results of the experiments carried out by different teams during the shared
task. The results of the top 15 teams on English dataset is given in Figure 1 and that on Hindi dataset is
in Figure 2.

Figure 1: Performance of top 15 teams on English Dataset
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The participants were allowed to use other datasets, in addition to the one provided by the organizers of
the task. However, because of the lack of similar alternative datasets, all the groups, except ’groutar’ and
’saroyehun’ team, used only the dataset provided for the task. As we mentioned earlier, the participants
were given two kinds of test sets for the final testing of the system - one from Facebook and a surprise
test set from Twitter.

Figure 2: Performance of teams on Hindi Dataset

7 Conclusion

In this paper, we have presented the report of the First Shared task on Aggression Identification organized
with the TRAC workshop at COLING 2018. The shared task received a very encouraging response from
the community which underlines the relevance and need of the task. More than 100 teams registered and
30 teams finally submitted their system.

The performance of the best systems in the task show that aggression identification is a hard problem to
solve. Moreover, the performance of the neural networks-based systems as well as the other approaches
do not seem to differ much. If the features are carefully selected then classifiers like SVM and even
random forest and logistic regression perform at par with deep neural networks. On the other had, we
find quite a few neural networks-based systems not performing quite well in the task. Nonetheless, 14
systems were trained using one or the other architectures of deep neural networks - either solely or as
part of an ensemble. Moreover, 8 systems out of the top 15 are trained on neural networks, which shows
the efficacy of the approach but at the same time does not rule out the usefulness and relevance of linear
models for the task. There was only one system, Unito, that made use of a lexicon-based approach to
solve the task. A few participants of the task pointed out the apparent “inconsistencies” in the annotation.
It points towards the need to get the annotations validated by multiple human annotators.
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Abstract

This paper presents our system for “TRAC 2018 Shared Task on Aggression Identification”. Our
best systems for the English dataset use a combination of lexical and semantic features. However,
for Hindi data using only lexical features gave us the best results. We obtained weighted F1-
measures of 0.5921 for the English Facebook task (ranked 12th), 0.5663 for the English Social
Media task (ranked 6th), 0.6292 for the Hindi Facebook task (ranked 1st), and 0.4853 for the
Hindi Social Media task (ranked 2nd).

1 Introduction

Users’ activities on social media is increasing at a fast rate. Unfortunately, a lot of people misuse these
online platforms to harass, threaten, and bully other users. This growing aggression against social media
users has caused serious effects on victims, which can even lead them to harm themselves. The TRAC
2018 Shared Task on Aggression Identification (Kumar et al., 2018a) aims at developing a classifier that
could make a 3-way classification of a given data instance between “Overtly Aggressive”, “Covertly
Aggressive”, and “Non-aggressive”. We present here the different systems we submitted to the shared
task, which mainly use lexical and semantic features to distinguish different levels of aggression over
multiple datasets from Facebook and other social media that cover both English and Hindi texts.

2 Related Work

In recent years, several studies have been done towards detecting abusive and hateful language in online
texts. Some of these works target different online platforms like Twitter (Waseem and Hovy, 2016),
Wikipedia (Wulczyn et al., 2016), and ask.fm (Samghabadi et al., 2017) to encourage other research
groups to contribute to aggression identification in these sources.

Most of the approaches proposed to detect offensive language in social media make use of multiple
types of hand-engineered features. Nobata et al. (2016) use n-grams, linguistic, syntactic and distri-
butional semantic features to build a hate speech detection framework over Yahoo! Finance and News
and get an F-score of 81% for a combination of all features. Davidson et al. (2017) combine n-grams,
POS-colored n-grams, and sentiment lexicon features to detect hate speech on Twitter data. Van Hee et
al. (2015) use word and character n-grams along with sentiment lexicon features to identify nasty posts
in ask.fm. Samghabadi et al. (2017) build a model based on lexical, semantic, sentiment, and stylistic
features to detect nastiness in ask.fm. They also show the robustness of the model by applying it to the
dataset from different other sources.

Based on Malmasi and Zampieri (2018), distinguishing hate speech from profanity is not a trivial task
and requires features that capture deeper information from the comments. In this paper, we try different
combinations of lexical, semantic, sentiment, and lexicon-based features to identify various levels of
aggression in online texts.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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3 Methodology and Data

3.1 Data

Data Training (FB) Validation (FB) Test (FB) Test (SM)
English 12000 3001 916 1257
Hindi 12000 3001 970 1194

Table 1: Data distribution for English and Hindi corpus

The datasets were provided by Kumar et al. (2018b). Table 1 shows the distribution of training,
validation and test (Facebook and social media) data for English and Hindi corpora. The data has been
labeled with one out of three possible tags:

• Non-aggressive (NAG): There is no aggression in the text.

• Overtly aggressive (OAG): The text is containing either aggressive lexical items or certain syntac-
tic structures.

• Covertly aggressive (CAG): The text is containing an indirect attack against the target using polite
expressions in most cases.

3.2 Data Pre-processing

Generally the data from social media resources is noisy, grammar and syntactic errors are common, with
a lot of ad-hoc spellings, that make it hard to analyze. Therefore, we first put our efforts to clean and
prepare the data to feed it to our systems. For the English dataset, we lowercased the data and removed
URLs, Email addresses, and numbers. We also did minor stemming by removing “ing”, plural and
possessive “s”, and replaced a few common abstract grammatical forms with the formal versions.

On manual inspection of the training data for Hindi, we found that some of the instances are Hindi-
English code-mixed, some use Roman script for Hindi and others are in Devanagari. Only 26% of the
training data is in Devanagari script. We normalize the data by transliterating instances in Devanagari
to Roman script. These instances are identified using Unicode pattern matching and are transliterated
to Roman script using indic-trans transliteration tool1. For further analysis, we run an in-house word-
level language identification system on the training data (Mave et al., 2018). This CRF system is trained
on Facebook posts and has an F1-weighted score of 97%. Approximately 60% of the training data is
code-mixed, 39% is only Hindi and 0.42% is only English.

3.3 Features

We make use of the following features:
Lexical: Words are powerful mediums to convey a feeling, describe or express ideas. With this notion,
we use word n-grams (n=1, 2, 3), char n-grams (n=3, 4, 5), and k-skip n-grams (k=2, n=2, 3) as features.
We weigh each term with its term frequency-inverse document frequency (TF-IDF). We also consider
using another weighting scheme by trying binary word n-grams (n=1, 2, 3).
Word Embeddings: The idea behind this approach is to use a vector space model for extracting se-
mantic information from the text (Le and Mikolov, 2014). For the embedding model we use pre-trained
vectors trained on part of Google News dataset including about 3 million words2. We computed word
embeddings feature vectors by averaging the word vector of all the words in each comment. We skip
the words which are not in the vocabulary of the pre-trained model. This representation is only used for
English data and the coverage of the Google word embedding is 63% for this corpus.

1https://github.com/libindic/indic-trans
2https://code.google.com/archive/p/word2vec/
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Sentiment: We use Stanford Sentiment Analysis tool (Socher et al., 2013)3 to extract fine-grained sen-
timent distribution of each comment. For every message, we calculate the mean and standard deviation
of sentiment distribution over all sentences and use them as feature vector.
LIWC (Linguistic Inquiry and Word Count): LIWC2007 (Pennebaker et al., 2007) includes around
70 word categories to analyze different language dimensions. In our approach, we only use the categories
related to positive or negative emotions and self-references. To build the feature vectors in this case, we
use a normalized count of words separated by any of the mentioned categories. This feature is only
applicable to English data.
Gender Probability: Following the approach in Waseem (2016) we use the Twitter based lexicon pre-
sented in Sap et al. (2014) to calculate the probability of gender. We also convert these probabilities to
binary gender by considering the positive cases as female and the rest as male. We make the feature vec-
tors with the probability of the gender and binary gender for each message. This feature is not applicable
to Hindi corpus.

4 Experiments and Results

4.1 Experimental Settings

For both datasets, we trained several classification models using different combinations of features dis-
cussed in 3.3. Since this is a multi-class classification task, we use a one-versus-rest classifier which
trains a separate classifier for each class and labels each comment with the class with highest predicted
probability across all classifiers. We tried Logistic Regression and linear SVM as the estimator for the
classifier. We decided to use Logistic Regression in our final systems, since it works better in the valida-
tion phase. We implemented all models using scikit-learn tool4.

4.2 Results

To build our best systems for both English and Hindi data, we experimented with several models using
the different combinations of available features. Table 2 shows the validation results on training and
validation sets.

F1-weighted
Feature English Hindi
Unigram (U) 0.5804 0.6159
Bigram (B) 0.4637 0.5195
Trigram (T) 0.3846 0.4300
Char 3gram (C3) 0.5694 0.6065
Char 4gram (C4) 0.5794 0.6212
Char 5gram (C5) 0.5758 0.6195
Word Embeddings (W2V) 0.5463 N/A
Sentiment (S) 0.3961 N/A
LIWC 0.4350 N/A
Gender Probability (GP) 0.3440 N/A
BU + U + C4 + C5 + W2V 0.5875 N/A
C3 + C4 + C5 0.5494 0.6207
U + C3 + C4 + C5 0.5541 0.6267

Table 2: Validation results for different features for the English and Hindi datasets using Logistic Re-
gression model. In this table BU stands for Binary Unigram.

Table 3 shows the results of our three submitted systems for the English Facebook and Social Media
data. In all three systems, we used the same set of features as follows: binary unigram, word unigram,

3https://nlp.stanford.edu/sentiment/code.html
4http://scikit-learn.org/stable/
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character n-grams of length 4 and 5, and word embeddings. In the first system, we used both train and
validation sets for training our ensemble classifier. In the second system we only used the train data for
training the model. The only difference between the second and the third models is that we corrected
the misspellings using PyEnchant5 spell checking tool. Unfortunately, we could not try applying the
sentiment and lexicon-based features after spell correction due to the restrictions on the total number of
submissions. However, we believe that it can improve the performance of the system.

F1 (weighted)
System FB SM
Random Baseline 0.3535 0.3477
System 1 0.5673 0.5453
System 2 0.5847 0.5391
System 3 0.5921 0.5663

Table 3: Results for the English test set. FB: Facebook and SM: Social Media.

F1 (weighted)
System FB SM
Random Baseline 0.3571 0.3206
System 1 0.6451 0.4853
System 2 0.6292 0.4689

Table 4: Results for the Hindi test set. FB: Facebook and SM: Social Media.

Table 4 shows the performance of our systems for the Hindi Facebook and social media data. For the
Hindi dataset, the combination of word unigrams, character n-grams of length 3, 4 and 5 gives the best
performance over the validation set. These features capture the word usage distribution across classes.
Both System 1 and System 2 use these features, trained over training set only and training and validation
sets respectively.

4.3 Analysis

Looking at the mislabeled instances at validation phase, we found that there are two main reasons for the
classifier mistakes:

1. Perceived level of aggression can be subjective. There are some examples in the validation dataset
where the label is CAG but it is more likely to be OAG and vice versa. Table 5 shows some of these
examples.

2. There are several typos and misspellings in the data that affect the performance.

Label
Language Example Actual Predicted

English What has so far Mr.Yechuri done for this Country. Ask him to shut down his bloody
piehole for good or I if given the chance will crap on his mouth hole. CAG OAG

The time you tweeted is around 3 am morning,,which is not at all a namaz time.,As
you bollywood carrier is almost finished, you are preparing yourself for politics by
these comments.

OAG CAG

Hindi ajeeb chutya hai.... kahi se course kiya hai ya paida hee chutya hua tha CAG OAG
Salman aur aamir ki kounsi movie release huyee jo aandhi me dub gaye?? ?Bikau
chatukar media OAG CAG

Table 5: Misclassified examples in case of the aggression level

5https://pypi.org/project/pyenchant
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Also, it is obvious from Figure 1 that Hindi corpus is more balanced than the English one in case of
OAG and CAG instances. That could be a good reason why the performance of the lexical features is
better for Hindi data.

(a) Data distribution for training sets (b) Data distribution for evaluation sets

Figure 1: Label distribution comparison between training and evaluation sets

Table 6 illustrates the most informative features learned by the classifier for all three classes in Hindi
data. We observe that word unigrams and character trigrams are the most important features for the
system. From the table, the top features for CAG are mostly swear words in Hindi and character n-grams
of the swear words. More English words appear in the top list for NAG than the other two classes.
There is no overlap between these features with top features from either CAG or OAG. Our system has
difficulty differentiating between OAG and CAG when there is no strong swear word in the comments.

NAG CAG OAG
unigram : unigram ? char tri gram kut

unigram mera unigram baki unigram bc
unigram bike unigram ?? char tri gram cho
unigram jai unigram pm char 4 gram kut

unigram main unigram o unigram chutiya
unigram sahi char tri gram ky unigram maa

unigram ........... unigram badla unigram mc
unigram launch cha tri gram yad unigram gand

unigram jay char 5 gram e... char tri gram tiy
char tri gram mer unigram 3 char tri gram chu

Table 6: Top 10 features learned by System 1 for each class for the Hindi dataset.

Figure 2a shows the confusion matrix of our best model for all three classes in English Facebook
corpus. The most interesting part of this figure is that the classifier mislabeled several NAG instances with
CAG label. Since our system is mostly based on lexical features, we can conclude that there are much
fewer profanities in CAG instances comparing with the OAG ones, which make it hard to distinguish
them from NAG examples without considering the sentiment aspects of the messages. This fact can also
be proved by looking at Figure 2b, since it seems that the classifier was also confused to label CAG
instances in both cases with and without profanities in English Social Media corpus.

Figure 3a shows that for Hindi Facebook data, the most biggest challenge is to distinguish OAG
instances from CAG ones. Since our proposed system, in this case, is completely built on lexical features,
it can be inferred from the figure that even indirect aggressive comments in Hindi language contains lots
of profanities. However, for the Hindi Social Media corpus, we have the same concern as English data.
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Figure 2: plots of confusion matrices of our best performing systems for English Facebook and Social
Media data

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

199 155 8

69 313 31

25 54 116

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) HI-FB task

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

177 134 148

50 155 176

23 78 253

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) HI-SM task

Figure 3: Plots of confusion matrices of our best performing systems for Hindi Facebook and Social
Media data

5 Conclusion

In this paper, we present our approaches to identify the aggression level in English and Hindi comments
in two different datasets, one from Facebook and another from other social media. In our best performing
systems, we use a combination of lexical and semantic features for English corpus, and lexical features
for Hindi data.

Future work for English data includes exploring more sentiment features to capture implicit hateful
comments and adding more pre-processing levels. For instance, non-English character removal can
improve the system since our proposed model is mainly based on lexical features, and is likely very
sensitive to unknown characters and words. For the Hindi dataset, identifying the Hindi-English code-
mixed instances and processing these instances and Hindi monolingual instances separately could be a
future direction to explore. As the classification of aggression is subjective in most scenarios, adding
sentiment features to the lexical information might help to model performance for Hindi data.
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Abstract

This paper describes the participation of the IRIT team to the TRAC 2018 shared task on Aggres-
sion Identification and more precisely to the shared task in English language. The three following
methods have been used: a) a combination of machine learning techniques that relies on a set
of features and document/text vectorization, b) Convolutional Neural Network (CNN) and c) a
combination of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM).
Best results were obtained when using the method (a) on the English test data from Facebook
which ranked our method sixteenth out of thirty teams, and the method (c) on the English test
data from other social media, where we obtained the fifteenth rank out of thirty.

1 Introduction
In recent years, the emergence of social media platforms like Facebook, Twitter, etc. changes the way
people communicate (Sticca and Perren, 2013).

Although these platforms give many benefits to their users, they can also have several negative impacts
where people can be hurt for example by some aggressive texts (Dadvar et al., 2012). The aggression
on social media platforms is actually more harmful than traditional bullying for many reasons such as
allowing people to hide behind an alias (Sticca and Perren, 2013). Unfortunately, such phenomena of
on-line aggression and bullying not only have created psychological and mental health issues for on-line
users, but it can end by forcing some of them to change several things in their lives and can even conduct
them to suicide according to (Kumar et al., 2018b). The TRAC 2018 workshop has been created in order
to study these problems (Kumar et al., 2018a).

The TRAC 2018 workshop aims at providing the framework for evaluatig systems that aim at detect-
ing/identifying aggression, trolling, cyberbullying and other related phenomena in both speech and text
from social media (Kumar et al., 2018a). The shared task challenge consists in distinguishing three levels
of aggression from text: overtly aggressive, covertly aggressive and non-aggressive. Overtly aggressive
means that there is an expression of aggression directly with specific words or keywords. Covertly
aggressive expresses aggression subtly such as indirect attack or with more polite expressions. Two
different languages are studied independently: English and Hindi.

The shared task was organized into two different stages: training and testing. During the training
stage, two datasets of 15, 000 aggression-annotated Facebook posts and comments, one in English and
the other in Hindi, were provided. During testing stage, the organizers also included a data set from a
second social media platform. Overall, the test data set contains four sub-collections: two from Facebook
and two from another social media (not named by the organizers); for each source, one sub-collection is
in English while the other is in Hindi.Participants could participate to one or several of the four subtasks
which are: (1) English (Facebook) task, (2) Hindi (Facebook) task, (3) English (another social media)
task, and (4) Hindi (another social media).

More details about the task can be found in (Kumar et al., 2018a). Our team, IRIT, participated to
shared task in English language for both Facebook and the other social media platform: subtask (1) and
(3).

http://creativecommons.org/licenses/by/4.0/
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In this paper, we report the methods we proposed when participating to the subtasks; we have de-
veloped three approaches that we compare in this paper on the problem of aggression identification in
texts.

The first method is a combination of two classifiers : random forest that relies on features ranging from
surface features to more linguistic features and logistic regression based on text vectorization. We named
this method Trac-RF LR. The second approach is a deep learning technique widely used in image area
and adapted for text classification. It uses a Convolutional Neural Network and we named it Trac-CNN
in the rest of the paper. Finally, the third approach is a combination of two deep learning techniques:
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). We named this method
Trac-CNN LSTM.

The remaining of this paper is organized as follows: Section 2 is an overview of state-of-the-art ap-
proaches for aggression detection. Section 3 details the methods we developed. Section 4 reports the
results as well as the data sets and Section 5 concludes this paper.

2 Related Work

Several series of evaluation forums for applications related to social media have been developed in the
recent years, such as tweet contextualisation (Ermakova et al., 2017) or e-risk (Losada et al., 2017) in
CLEF. TRAC is the first that focus on detecting aggressive text. In the last few years, several studies have
been published in which the problem of detecting abusive language in social media has been tackled.
Although researchers focused on different aspects of abusive language such as cyberbullying (Dadvar et
al., 2013), hate speech (Warner and Hirschberg, 2012), profanity (Sood et al., 2012) and abusive language
in general (Chen et al., 2012), most of the approaches are based on supervised approaches (Schmidt and
Wiegand, 2017). Generally, the detection of abusive language is considered as a classification problem,
mainly as a binary text classification problem (Bosque and Garza, 2014) detecting whether the text
contains abusive parts or not.

For text classification problems, approaches based on features are widely used.

Methods are based on simple surface features such as unigrams and/or n-grams (Xu et al., 2012; Chen
et al., 2012; Waseem and Hovy, 2016; Abdou Malam et al., 2017), key-phrases (Mothe et al., 2018),
the frequency of punctuation, capitalized words, Htag, image, URL mentions (Hoang and Mothe, 2017),
average length of words, or frequency of words that do not exist in English dictionaries (Chen et al.,
2012; Nobata et al., 2016). Other features are: word generalization (for example using Latent Dirichlet
Allocation (LDA) (Zhong et al., 2016) and word/paragraph embedding (Nobata et al., 2016)), sentiment
analysis (Xu et al., 2012; Dinakar et al., 2012; Hee et al., 2015); lexical resources (Burnap and Williams,
2015; Burnap and Williams, 2016; Gitari et al., 2015; Hoang and Mothe, 2018); linguistic features (Xu
et al., 2012; Gitari et al., 2015; Burnap and Williams, 2016; Nobata et al., 2016; Abdou Malam et al.,
2017); knowledge-based features (Dinakar et al., 2012); and meta-information (Dadvar et al., 2012;
Dadvar et al., 2013; Waseem and Hovy, 2016).

Using these features, supervised classifiers such as Support Vector Machines (SVM) are used in order
to classify a text as containing aggressiveness or not (Schmidt and Wiegand, 2017).

In recent years, deep learning has been also employed. For example, (Mehdad and Tetreault, 2016)
used Recurrent Neural Network Language Model which is based on Recurrent Neural Networks for the
task of abusive language detection. The choice of this type of models is based on the fact that with few
training data, they can achieve good results for language models.

In addition of detecting if a text contains something harmful and/or aggressive, another challenge is to
distinguish the different aspects of the abusive language. (Malmasi and Zampieri, 2018) try to distinguish
general profanity from hate speech, but their results show that it is difficult to differentiate one from the
other. Their study also shows that all hate speech, bullying text, cyberbullying and abusive language are
not explicit, there are aggressive text written with subtle language and it can be hard to distinguish them.
This observation motivated the shared task not only to classify the text as aggressive or not, but also to
distinguish two kinds of aggression: overt and covert aggression.
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3 Developped methods for the IRIT participation

In this section, we present the three supervised approaches we developed to automatically detect aggres-
sion in texts and that we submitted to TRAC 2018 shared task for English.

3.1 Trac-RF LR: combination of two classifiers

In this model we combine two classifiers namely random forest and logistic regression where the first
one is based on different set of features from surface features to more linguistic features and the second
one is based on document vectorization. In the following, we first describe each classifier, then we detail
the combination method used.

Classifiers description

i) Features - RF Classifier:

This model uses different features, adapted from features used for depression detection in (Ab-
dou Malam et al., 2017), and are computed from the texts to predict the aggression. We represent texts
with a vector composed of the features as presented in Table 1.

Name Hypothesis or tool/resource used
Part-Of-Speech frequency Normalized frequencies of each tag: adjectives, verbs, nouns and

adverbs (four features). The idea behind is to check offensive
words used as nouns, verbs, adjectives, or adverbs.

Negation Normalized frequencies of negative words like: no, not, didn’t,
can’t, ... The idea behind is to detect non direct aggressiveness.

Capitalized The idea behind is that aggressive texts tend to put emphasis on
the target they mention. It can indicate feelings or speaking vol-
ume.

Punctuation marks ! or ? or any combination of both can emphasize offensiveness of
texts.

Emoticons Another way to express sentiment or feeling.

Sentiment Use of NRC-Sentiment-Emotion-Lexicons1 to trace the polarity
in text.

Emotions Frequency of emotions from specific categories: anger, fear, sur-
prise, sadness and disgust. The idea behind is to check the cate-
gories related to aggressiveness.

Gunning Fog Index Estimate of the years of education that a person needs to under-
stand the text at first reading.

Flesch Reading Ease Measure how difficult to understand a text is.

Linsear Write Formula Developed for the U.S. Air Force to calculate the readability of
their technical manuals2.

New Dale-Chall Read-
ability

Measure the difficulty of comprehension that persons encounter
when reading a text. It is inspired from Flesch Reading Ease
measure.

Swear words The intuition behind is that the texts containing insults are often
aggressive.

Lexical analysis with
python library empath

Empath is a tool for analyzing text across lexical categories. By
default, it has 194 lexical categories and each category is consid-
ered as feature.

Table 1: List of features used in RF.
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Some of these features are used for abusive language detection, hate speech, cyberbullying and the
others are used for sentiment or personality analysis that we judged useful for aggression detection.

A random forest classifier was trained on train and validation sets by representing each text with a vec-
tor composed by the features we mentioned above. The following parameters were used during the train-
ing: class weight=”balanced”, max features=”sqrt”, n estimators=60, min weight fraction leaf=0.0,
criterion=’entropy’, random state=2.

At prediction time, a text from the test set is represented with features and then run the trained model.
The output is the estimated probabilities for the three classes (overtly aggressive, covertly aggressive and
non-aggressive).

ii) Document vector - LR Classifier:

This model is based on document vectorization using Doc2vec (Le and Mikolov, 2014). Doc2vec is
used to represent sentences, paragraphs, or whole documents as vectors and it can be trained on small
corpora, which is case of the task datasets.

Before building the model (LR Classifier), we first trained two separate Doc2vec models: a Distributed
Bag of Words and a Distributed Memory model (Le and Mikolov, 2014). For the training, we used the
same configuration as in (Trotzek et al., 2017) for representing user’s text in order to detect if he or she is
depressed. The two Doc2vec models are trained on English text from the train and validation sets and we
used the Python package gensim3(Rehurek and Sojka, 2010). We also concatenated the output vectors
of these two models, as done in (Trotzek et al., 2017), resulting in a representation by a 200-dimension
vector per text.

Then a logistic regression classifier was trained on the vectors for both the train and validation sets with
the following parameters : class weight=”balanced”, random state=1, max iter=100, solver=”liblinear”.

At prediction time, the texts from the test set were vectorized by using the two Doc2vec models and
the 200-dimension vectors were given as input of trained classifier. The output is also a set of class
probabilities.

Combination of two classifiers
After the two classifiers (as described in section 3.1) provided their results, the calculated class probabil-
ities obtained from RF classifier and LR Classifier were averaged and finally the class with the highest
probability was considered as the class the text belongs to.

3.2 Trac-CNN: Model based on CNN

This model is based on the deep learning technique known as Convolutional Neural Networks
(CNN)(LeCun et al., 1998). CNN which is widely used in image analysis (Bhandare et al., 2016) and
has been adapted for text classification such as sentiment analysis (Chen et al., 2017). Figure 1 shows
the model architecture that we used for TRAC 2018 shared task.

We can see in this figure that before sending the text to the CNN, it is transformed as a matrix where
each row is a vector representation4 of words that compose the text5 . To perform convolutions on the
sentence matrix, we decided to use three sizes of filters6: bigrams (height = 2), trigrams (height = 3) and
fourgrams (height = 4) filters, each of which has 100 filters (in total we had 300 filters). The result of
convolutions is called feature map, a vector with variable-length according to the filter size and we had
300 features map. The 1-max pooling (Boureau et al., 2010), a common strategy, is performed over each

1http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm, Accessed on 2017-02-23
2http://www.streetdirectory.com/travel_guide/15675/writing/how_to_choose_the_best_

readability_formula_for_your_document.html, Accessed on 2018-02-25
3https://radimrehurek.com/gensim/index.html
4We used word2vec trained on the training and validation sets. Two models were trained, namely CBOW and Skip-gram

(Mikolov et al., 2013), and the final vector is a 200-dimensional vector which is a concatenation of the results from these
models.

5All the texts need to be the same length in order to have the same matrix size. We used Keras zero-pads at the beginning if
a text length is shorter than the maximum length (= length of longer text/document in the datasets).

6The width of filters are the same as word vectors (i.e 200) but the heights are different.
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feature map. More precisely, the largest number from each feature map is kept and then concatenated to
form a concatenated vector, where the dimension is equal to 300. Then we added one fully connected
hidden layer to reduce the dimension of the concatenated vector , the dropout is performed on the hidden
layer because dropout helps to reduce over fitting (Srivastava et al., 2014). Finally, the latest feature
vector is fed through a sigmoid function to generate the final classification.

100 filters with 
height = 4

100 filters with 
height = 3

100 filters with 
height = 2

Three size 
of filters

features
map

Sentence 
matrix

concatenated
 vectors

(height = 300)

Three features
 vectors

(height = 100)
Full connected

 layer Output

Convolution Activation function
 (RELU)

1-max pooling Concatenation Drop out
+

Activation function
 (Sigmoid)

Figure 1: Illustration of a CNN architecture for aggression detection inspired from (Zhang and Wallace,
2015).

3.3 Trac-CNN LSTM: Combination of CNN and LSTM

This model combines two deep learning techniques: CNN and LSTM. The main idea is to modify the
CNN architecture presented in Figure 1 by adding a LSTM layer and change the activation function
to softmax for the last classification. The LSTM is inserted after the poling layer and before the fully
connected hidden layer. It takes as input the 300-dimension concatenated feature vector and gives as
output a 300-dimension vector. Figure 2 presents the architecture of the combination.

4 Results

In this section, we detail the data used for TRAC 2018 shared task and the result we obtained using our
different models.

4.1 Data

The way the dataset used in the TRAC 2018 shared task was built is described in (Kumar et al., 2018b).
The dataset in the shared task was divided in three sets: training, validation and test. The training and

validation sets were released during the training stage to allow participants to train and built their systems.
These two sets are composed of 15,000 aggression-annotated Facebook posts and comments written
in English for participants who want to participate in this language and 15,001 aggression-annotated
Facebook writen in Hindi for those who prefer to work in this language.
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Figure 2: Illustration of a CNN + LSTM architecture for aggression detection inspired from (Zhang and
Wallace, 2015).

For the test set, the collection crawled from Facebook is also divided into two languages, 916 posts
and comments for the English dataset and 970 for the Hindi dataset. The organizers also included what
they called the surprise collection crawled from another social media, also divided into two languages
(1,257 posts and comments for English and 1,194 for Hindi). Table 2 describes the datasets used in the
shared task, it reports the total number of posts and comments (texts) in each set and the number of
texts with overt and covert aggression and texts without aggression. We can see from the Table 2 that
the proportion of aggressive text is more important in the Hindi dataset (13,803 texts which correspond
to 80.4% of total aggressive text (17,173)) than in the English dataset (9,776 texts which correspond to
56.9% of total aggressive text (17,165)).

Language Number of Train Validation
Test

Facebook other social media

English

texts (=posts+comments) 11,999 3,001 916 1,257
Overt aggression 2,708 711 144 361
Covert aggression 4,240 1,057 142 413
No aggression 5,051 1,233 630 483

Hindi

texts (=posts+comments) 12,000 3,001 970 1,194
Overt aggression 4,856 1,217 362 459
Covert aggression 4,869 1,246 413 381
No aggression 2,275 538 195 354

Table 2: Distribution of training, validation and testing data on TRAC 2018 data collection.
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4.2 Models
All submitted models was evaluated using weighted macro-averaged F-scores. This measure is defined
by organizers as follow: for each class, the individual F-score was weighted by the proportion of the
concerned class in the test set and then the average of these individual weighted F-scores is the final
F-score (See (Kumar et al., 2018a)). In order to have a baseline for comparison, the organizers give a
random baseline generated by assigning random labels.

Table 3 reports the results we obtained with the three models (see Section 3) we submitted for the
shared task and the baseline given by organizers. We can see that all of our models outperform the
baseline on both Facebook and the other social media platform. More precisely Trac-RF gives the best
results on Facebook and Trac-CNN LSTM on the other social media.

We can also see that our three models give better results on Facebook, this could be due to the train
dataset which is only composed of texts crawled from Facebook.

System F1 (weighted)
Facebook other social media

Random Baseline 0.354 0.348
Trac-RF LR 0.576 0.405
Trac-CNN 0.562 0.494

Trac-CNN LSTM 0.559 0.511

Table 3: Results for the English (Facebook and other social media) task. Bold value is the best perfor-
mance.

When compared to other participants, our best model on both social media platforms give encouraging
results. We are ranked sixteenth out of thirty teams on Facebook and fifteenth for other social media (see
Table 4).

Rank Team Facebook Rank Team other social media
1 saroyehun 0.642 1 vista.ue 0.601
2 EBSI-LIA-UNAM 0.632 2 Julian 0.599
3 DA-LD-Hildesheim 0.618 3 saroyehun 0.920
4 TakeLab 0.616 4 EBSI-LIA-UNAM 0.572
5 sreeIN 0.604 5 uOttawa 0.569
... ... ... ... ... ...
16 IRIT (Trac-RF LR) 0.576 15 IRIT (Trac-CNN LSTM) 0.511

Table 4: Results of top 5 teams vs our results which are in Bold.

5 Conclusion and Future Work

In this paper, we presented our participation to TRAC 2018 shared task on aggression identification in
English language for both platforms: Facebook and the other social media. We proposed three kinds
different methods: (a) a combination of machine learning techniques (classifiers) that relies on a set of
features and document vectorization, (b) Convolutional Neural Network (CNN); and (c) combination of
CNN and Long Short-Term Memory (LSTM). We obtained encouraging results: sixteenth out of thirty
teams with method (a) for Facebook and fifteenth out of thirty for the other social media with method
(c).

We can conclude that the model based on features gives the best results if the train dataset is built from
the same platform as the test dataset. However a deeper analysis of features is to be done to get stronger
conclusions. We can also see that deep learning models perform well even if the train and test datasets
are built from different platforms (unlike combined RF and LR models). So these techniques are useful
to build systems that can identify aggression on different social media.

For future work, we will analyze what the best features are for aggression detection by analyzing
those we already used and/or adding new ones. For example, more linguistic-oriented features such as
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specific writing or structure of sentences/paragraphs containing aggression could be added and feature
like ”proportion of aggressive text posted last year”. Finally, we would like to improve our model based
on deep learning by using different configurations and architectures, by combining it with traditional
machine learning algorithms (RF and LR models), and also training a model on large datasets built from
different social media platforms.
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Abstract

Aggression Identification and Hate Speech detection had become an essential part of
cyberharassment and cyberbullying and an automatic aggression identification can lead to the
interception of such trolling. Following the same idealization, vista.ue team participated in the
workshop which included a shared task on ’Aggression Identification’.

A dataset of 15,000 aggression-annotated Facebook Posts and Comments written in Hindi (in
both Roman and Devanagari script) and English languages were made available and different
classification models were designed. This paper presents a model that outperforms Facebook
FastText (Joulin et al., 2016a) and deep learning models over this dataset. Especially, the English
developed system, when used to classify Twitter text, outperforms all the shared task submitted
systems.

1 Introduction

A recent article1 states that on Facebook, every 60 seconds, 510,000 comments are posted and 293,000
statuses are updated. The facebook does have a policy for Violence and Criminal Behavior2 and with
the help of an Automted Aggression Identification system, the posts which violate the official policies
can be detected. The TRAC (Trolling, Aggression and Cyberbullying) workshop (Kumar et al., 2018a)
is taking a leap in this direction. Here, the task was aimed to develop a system that could make a 3-way
classification between ’Overtly Aggressive (OAG)’, ’Covertly Aggressive (CAG)’ and ’Non-aggressive
(NAG)’ over text data.

This paper presents the different methodologies developed and tested by the vista.ue team and
discusses their results, with the goal of identifying the best possible method for the aggression
identification problem in social media. It is organized in the following manner: Section 2 introduces past
research over text classification, different open source tools, approaches and presents a brief introduction
to text classification and its components; Section 3 describes different methods, data representations, and
system modeling and Section 4 discusses the experimental results obtained. Conclusion and future work
are highlighted in Section. 5.

2 Related Work

Machine Learning and Deep Learning approaches are been used in a multitude of problems and the text
classification is one of them. Many researchers and the companies are working on text classification to
get meaningful and relevant information out of text corpora. Next, research published from 2011 to 2018
over aggression, hate speech, offensive, and abusive language identification is presented.

Schmidt and Wiegand (2017) present ”A Survey on Hate Speech Detection using Natural Language
Processing”. Mainly, the authors empathize on features for hate speech detection, namely bag of word
including unigram, bigram and trigram word representations and also character level n-gram features.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.

1https://zephoria.com/top-15-valuable-facebook-statistics/
2https://www.facebook.com/communitystandards/violence_criminal_behavior/
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They report that BoW is most commonly used and character level models perform best. One important
concept mentioned is word generalization, meaning that words in test set should also be present in
training and validation sets, otherwise systems will not give a correct prediction. One can also resort
to doing the sentiment analysis based upon sentiment lexicon where words are grouped (or clustered)
according to overtly aggressive, covertly aggressive, non-aggressive and stop words. They also mention
the use of Linguistic Features: if two words are syntactically related then, the meaning of the unidentified
word can be easily found. They report that the most effective and important features are Knowledge-
Based Features and Meta-Information; simple words or vectors do not give meaning to the sentence but
rather the context they are in. For example, if the sentence has a sarcastic meaning, n-gram and linguistic
features are not able to identify it.

Davidson et al. (2017) discuss ”Automated Hate Speech Detection and the Problem of Offensive
Language”. They mention the difficulty in detecting offensive language and hate speech and empathize
that traditional lexical methods that rely on terms fail to differentiate between both (offensive language
and hate speech). Their approach uses a crowd-sourced hate speech lexicon enabling to classify between
three different categories namely, hate speech, offensive language and none. They show promising results
with the conclusion that ”Tweets without explicit hate keywords are also more difficult to classify”.
Therefore, Lexical methods are effective ways to recognize conceivably offensive terms but are fallacious
at classifying hate speech.

Similar to the previous work, Malmasi and Zampieri (2017) discuss ”Detecting Hate Speech in Social
Media”. The main difference is that they use supervised classification with character n-grams, word n-
grams, and word skip-grams, showing promising results with character 4-grams. They also reached the
similar conclusion that ”challenge lies in discriminating profanity and hate speech from each other.”

A proposal of the typology of abusive language is presented in (Waseem et al., 2017). It summarizes
previous work done in similar areas along with their insights on detecting abusive language efficiently.
Their typological approach helps in differentiating between Explicit or Implicit in directed & generalized
abusive sentence over abusive language. In a nutshell, it gives a vast information about different abusive
language usage with reference to Explicit and Implicit abuse.

Kwok and Wang (2013) talk about ”Locate the hate: Detecting Tweets Against Blacks”. The paper
states that Twitter has a large number of black community people and, based upon that, they propose a
model that is able to binary classify the text as ”racist” or ”non-racist”. They used a unigram approach
to create the vocabulary of offensive words which are related to racism and were able to achieve 86%
accuracy in detecting them.

Nobata et al. (2016) talk about the detection of abusive language over web portals. They claim
that their model outperforms classical/state-of-art blacklisting, regular expression, and NLP models.
For building the model they developed a corpus for abusive language labels and applied a supervised
approach using Lexicon, Linguistic, N-grams, Syntactic, word2vec features.

Schofield and Davidson (2017) state three different methods to identify hate speech in the social media.
The first approach uses lexicons while the second creates a bags-of-words. The third and final approach
mentioned uses Distributional Semantics, a group of methods that summarizes information about word
context or co-occurrence.

Fišer et al. (2017) define a framework to detect Socially Unacceptable Discourse (SUD) practices
in Slovenia, such as hate speech, threats over social media, use of abusive language and defamation.
According to them, Spletno Oko3 is collecting the biggest and most authoritative database of socially
unacceptable online discourse practices in Slovene. With the help of this, they were able to classify target
of SUD such as Ethnicity, Race, Sexual orientation, Political affiliation, and Religion. The framework
will automatically classify the text based upon the target SUD. The main mission of Spletno oko is
in cooperation with Police, Internet Service providers, and other governmental and non-governmental
organizations reduce the amount of child sexual abuse images and hate speech online.

Gambäck and Sikdar (2017) propose a ”Convolutional Neural Networks to Classify Hate-speech”.
Using deep learning algorithms like Convolutional Neural Networks and Max Pooling concepts, they

3http://www.spletno-oko.si/english/
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tried to classify racism, sexism, both and nonhate speech using softmax activation. Further, they used
features like character 4-grams, word vectors based on semantic information, randomly generated word
vectors, and word vectors combined with character n-grams. According to their work, the model with
word2vec embeddings outperformed all others. Here, all models were applied to the English Twitter
hatespeech dataset created by Waseem and Hovy (2016).

Zhang et al. (2018) report about ”Detecting Hate Speech on Twitter Using a Convolution-GRU Based
Deep Neural Network”. Using deep learning algorithms like Convolutional Neural Networks followed
by Gated Recurrent Networks with word-based features, this system is reported to outperform other
approaches in 6 out of 7 different datasets. The corpus focuses on hate speech, especially for Muslim
and refugees.

Founta et al. (2018) discuss various forms of abusive behavior on Twitter. They intend to cover
different types of labeling schemes for various abusive behaviors and made an 80 thousand tweets dataset
publicly available for the research purposes. The used labels are Offensive Language, Abusive Language,
Hate Speech, Aggressive Behavior, Cyberbullying Behavior, Spam and Normal. Further, they were able
to classify whether the state of behavior is Hateful or Normal.

ElSherief et al. (2018) present another great work. It talks about ”A Target-based Linguistic Analysis
of Hate Speech in Social Media” and they try to focus on the target of the speech, stating that it could
be a single entity or a large number of people in a group. According to their observation, direct hate
speech tends to be more informal and angrier; on the other side, hate speech towards groups is likely to
be targeted for religious hate, political parties dissatisfaction, and social bodies behavior.

Dadvar et al. (2013) talk about the importance of user context in improving cyberbullying and it
can give extra features like author profiling. They performed experiments on YouTube comments for
detecting cyberbullying and showed promising improvements when user context is taken into account.
They looked at the history of user’s activities in their dataset and used the averaged content-based features
on the users’ history to see whether there was a pattern of offensive language usage. They also checked
the frequency of profanity in their previous comments and other linguistic characteristics such as a
number of pronouns, the average length of the comments and usage of capital letters and the use of
emoticons. As the type of words and language structures may vary at different ages, they considered the
age of the users as a feature.

Dinakar et al. (2011) empathize with the use of a binary classifier for detecting textual cyberbullying.
The idea is to break down textual data into sub-categories until it becomes binary classification.
According to authors, binary classification gives better result compared to the multi-label classifier.
This enables to retrieve the topic-sensitive classification problem rather bigger picture of cyberbullying.
Afterward, Combining all binary classification in to one performs better than multi-label classification in
the detection of textual cyberbullying.

Burnap and Williams (2015) present ”Cyber hate speech on Twitter: An application of machine
classification and statistical modeling for policy and decision making” and focuses on the use of statistical
models to forecast the likely spread of cyber hate with the help of different features, like Part-of-Speech
(POS), grammatical dependencies and hate speech keyword classification, as input. For model creation
standard algorithms like Bayesian Logistic Regression, Support Vector Machine and Random Forest
Decision Tree were used. With the help of a voting mechanism, they were able to reduce the number
of false positives and false negative and concluded that an ”ensemble classification approach is most
suitable for classifying cyber hate, given the current feature sets”.

A recent discussion on the challenges of identifying profanity vs. hate speech can be found
in (Malmasi and Zampieri, 2018). Their results demonstrate that it can be hard to distinguish between
overt and covert aggression in social media. Further, it reveals that discriminating hate speech and
profanity is not a simple task, which may require features that capture a deeper understanding of the
text not always possible with surface n-grams. This is a key motivating factor for this shared task and a
highly relevant discussion to include.
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3 Data and Methodology

Before proceeding with the methodology, some time was taken to understand the data.

3.1 Data Characteristics

The methods used to compile the shared task dataset is described in (Kumar et al., 2018b). It has 15,000
Facebook Posts/Comments in both English and Hindi. The data has been split into three sets namely,
train (9000 samples), validation (3000 samples) and dev (3000 samples). After analyzing them, the
following data properties were found:

• Collection Region: India

• Usage of English Stop Words: Low

• Usage of Abbreviation: High

• Emoji Noise Level: Distributed (i.e. emojis are equally distributed among all the classes)

• Language (Hindi-English) Noise: High

• Sentence Length: Highly Fluctuating

• 50 Top Words: Distributed (i.e. the top 50 words are equally distributed over all the classes)

• Class Label Distribution: Imbalanced

• Text Segmentation Level: Moderate (i.e. usage of the hastags or joint words was moderate)

Agarwal et al. (2007) mention that level of noise depends upon the text and discuss which noise to
consider and which not on a specific problem. After analyzing the provided dataset, it was noted that
most of the data had spelling errors and abbreviations, so it was decided to remove this kind of noise
during pre-processing. Like consider two sentences ”I am in love with you” and ”im in luv wid u”. Both
the sentences have the same meaning and might be written the same author but the machine will see them
as two different representations. The motivation is to reduce the confusion/possibility for the machine
learning model. Table 1 presents the preprocessing done over a day to day informal communication
abbreviations.

Word Replaced with
app, wil, im, al, sx, u application, will, i am, all, sex, you
r, y, hv, c, bcz or coz are, why, have, see, because
ppl or pepl, nd, hw people, and, how
bc, fc, mc, wtf, chutiya fuck

Table 1: Informal Abbreviation Preprocessor

A total of 244 different Emojis were found in the data. From them, 82 were found in CAG data,
68 were found in OAG data and 214 were found in NAG data. Further, the use of emojis was
highly overlapped over all the classes, which means that emojis could not serve as a good feature for
classification. In day to day social media writing, people often use the symbolic emojis. This step
handles such emojies which are not in form of regular emoji. Table 2 shows the replacements done.

Another major consideration was the use of slang/informal abbreviation 45. The slang has a major
contribution in classifying the data as stated in (Theodora Chu and Wang, 2016). For example, in
many comments, a Hindi informal abbreviation ”bc” word was used. It is similar to Engish informal
abbreviation ”fk” which translate to ”fuck”. Having such word are likely to be categorized as OAG. So,
such Hindi/English words are pre-processed to the actual meaning (refer Table 1). These pre-processing
rules (or sets of regular expressions) were defined as a part of the original work. The rules were written
after analysing the dataset and the same could be found in the Appendix A.

4https://blogs.transparent.com/hindi/slang-in-hindi-i/
5https://www.paperrater.com/page/british-slang-words
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Symbol Replaced with
:) : ) :-) (: ( : (-: :’) em smile
:D : D :-D xD x-D XD X-D em laugh
<3 :* em love
;-) ;) ;-D ;D (; (-; em wink
:-( : ( :( ): )-: em sad
:,( :’( :"( em cry
X( >:-( >:( X-( em angry

Table 2: Symbolic Emoji Replacement

Normally, when using TFIDF, most repeated words are ranked lower than rare words, but in this
corpus, most repeated words like ”BJP”, ”JNU”, ”MODI” were a deciding factor of the class. It is
impossible to narrow it down manually on the keywords. Though, old papers (Frank et al., 1999)
and (Li et al., 2010) talk about the importance of ”Domain-Specific Keyphrase Extraction” and ”Keyword
Extraction for Social Snippets”. It shows that we can build a model that does automatic keyphrase
extraction but again it depends upon which type of text are you using. On the other hand Zhang and
LeCun (2015) claim that without any knowledge of the syntactic or semantic structure of a language,
their model can outperform state of art models. Though, it sounds more convenient to present domain-
specific keyphrase extraction to training model.

Lastly, the class distribution over the corpus. The provided data for OAG, CAG, and NAG is, 22.30%,
35.40%, and 42.30% for English and 40%, 41%, and 19% for Hindi, respectively. This can be taken into
account if basic assumption of statistical machine learning is considered.

In summarization, data property is one of the important factors which need to be counted for high
accuracy of the system.

3.2 Methodology
Nowadays there are many technologies for text classification and one of them is FastText (Joulin et
al., 2016a). It provides word vectors for 157 languages and supervised models for 8 datasets using a
character level n-gram approach (Joulin et al., 2016b). The next sub-section presents the different text
data representation the experiments done with them.

3.2.1 Text Representation
The English data representation was done using Tokenizer6 and GloVe (Pennington et al., 2014) pre-
trained word vectors. On another hand, Scikit-Learn API (Buitinck et al., 2013) was used for Tokenizing
Hindi data.

A sequential model can be designed for text classification where the text sequence is fed to the machine
learning algorithm. Nonetheless, these models only use numerical data and therefore a conversion was
needed which involves two subprocesses: Integer Encoding and One-Hot Encoding (Lantz, 2013).

In the Integer Encoding, each unique word/text value is assigned an integer value. For example, ”red”
is 1, ”green” is 2, and ”blue” is 3. This process is known as label encoding or an integer encoding and is
easily reversible. The idea of one-hot encoding is to replace the integer representation with binary. This
means, integer encoded variable is removed and a new binary variable is added for each unique integer
value.

3.2.2 Linear Models
Many research works shows that for small datasets people tend to use linear models. Usually, linear
models are fed with different word representations like unigram, bigram, and trigram. Hence, a model
using Logistic Regression with n-gram(1-3) was created and the results are shown in Figure 1.

From the figure 1, one can see that TFIDF unigram has the highest test accuracy because the dataset
has unique tokens like ”BJP”, ”JNU”, ”MODI”, ”PAK”, etc which are the deciding factor of the class.

6https://keras.io/preprocessing/text/
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Figure 1: Logistic Regression with N-gram(1-3)

So a TFIDF unigram representation along with sklearn machine learning libraries was used to train the
model. Table 3 shows the accuracy results with different sklearn linear models like Logistic Regression,
SVC, Multinomial NB, Bernoulli NB, Ridge Classifier, and AdaBoost Classifier. (Here, development set
is not equal to the test set.)

Linear Model Acc on Validation Split Acc on Development Set
Logistic Regression 57.20 37.45
Linear SVC 54.65 36.61
Linear SVC with L1-based 55.24 36.92
Multinomial NB 56.86 35.41
Bernoulli NB 53.90 36.51
Ridge Classifier 55.36 34.15
AdaBoost Classifier 51.94 33.78

Table 3: Experiment with Sklearn Linear Models: Unigram

3.2.3 Deep Learning Sequential Models

For the research and development, Keras (Chollet and others, 2015) was used as front-end and
Tensorflow (Abadi et al., 2016) as back-end.

Generally, a sequential model is designed for text classification where the text sequence is fed to the
model for learning and, commonly, the text is pre-processed. As discussed in Section 3.1, a specific
language pre-processor was developed. This pre-processor takes care of exempted stop words, regional
level abbreviations, emojis, and text segmentation. For segmentation, Ekphrasis (Baziotis et al., 2017)
text processing tool was used. After cleaning the data, the text is represented using methods talked in
Section 3.2.1 then the model was trained using different algorithms/layers (available in Keras). Table 4
presents the accuracy obtained over English development dataset. The parameters are shown in Appendix
B. After analyzing the table 4 results, the general conclusion was that the word representation used for the
pre-train word vector was causing this poor results. Therefore, a new model with one-hot representation
was formed and discussed in the Section 3.2.4.
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Method Acc on Dev (%)
Single layer LSTM 37.93
Multi layer LSTM 39.20
Conv1D & GlobalMaxPooling1D 37.37
Conv1D & MaxPooling1D with Hidden Layer 37.73
Convolutional Layers with LSTM 39.03
Convolutional Layers with Bidirectional LSTM 37.53
Fasttext Text Classification 54.00
Fasttext Text Classification with Skip Gram Model 37.00
Fasttext with Conv1D , MaxPooling1D & Bidirectional LSTM 38.53
Multiple Input RNN with Keras 37.00
Concatenate: 2 Bidirectional 38.00
Concatenate: Bidirectional with Conv1D & MaxPooling1D 37.50

Table 4: Results Using Different Deep Learning Algorithms/Layers

3.2.4 Fully Connected Neural Network with Advance Preprocessor & One-Hot Representation
After experimenting with lots of different methods and algorithms, a simple Dense7 architecture was used
to design the final model for submission. As discussed in Section 3.1, a specific language pre-processor
was developed. This pre-processor takes care of exempted stop words, regional level abbreviations,
emoji, and text segmentation. Regarding the data representation, a word dictionary was created, in which
all the unique words were indexed and the index was used as the word id. These ids were portrayed as
a binary matrix with the help of one-hot representation preserving the word orded of the sentences.
Consider the figure 2 for better understanding. Assuming the dictionary {”country”: 1, ”very”: 2, ”I”: 3,
”love”: 4, ”my”: 5}.

Figure 2: Word Representation

Here, in the figure 2, both sentences use the same words set but their sentence structure is preserved
using dictionary index and one-hot representation.

The figure 3 represents the architecture layers of the Dense Neural Network. After several iterations,
the number of layers for the architecture was set to three. The 1st hidden layer is having 1024 nodes
which take the input from the input layer and the 2nd layer had 512 nodes and the last layer had 256
nodes. Inbetween each layers, mathamatical activation functions like Relu, Sigmoid and Softmax were
used. The ordering of this activation function had very high impact on the results. The result of this
model is discussed in the section 4.

4 Results and Discussion

Four different test set categories were presented on the shared task: English - Facebook/Twitter and Hindi
- Facebook/Twitter

Participants were allowed to submit a maximum of 3 systems for each category and, as such, 3 systems
were submitted: Dense, Fasttext and Voting of the two. Tables 5, 6, 7 and 8 show the results, namely the

7https://keras.io/layers/core/
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Figure 3: Dense System Architecture

F1 measure, of the 3 systems for each category. These results were given by the organizing committee.

System F1 (weighted)
Random Baseline 0.3535
Dense 0.5813
Fasttext 0.5753
Voting 0.5698

Table 5: English (Facebook) Models.

System F1 (weighted)
Random Baseline 0.3477
Dense 0.6009
Fasttext 0.5544
Voting 0.5324

Table 6: English (Twitter) Models.

System F1 (weighted)
Random Baseline 0.3571
Dense 0.5951
Fasttext 0.5838
Voting 0.5634

Table 7: Hindi (Facebook) Models.

System F1 (weighted)
Random Baseline 0.3206
Dense 0.4830
Fasttext 0.4528
Voting 0.4437

Table 8: Hindi (Twitter) Models.

Tables 9, 10, 11 and 12 present confusion matrix with precision and recall for the Dense model (the
best model) in each category.

Predicted
OAG CAG NAG R@1

OAG 83 38 23 57.64
True CAG 31 67 44 47.18

NAG 91 190 349 55.40
P@1 40.49 22.71 83.89

Table 9: Confusion matrix of Dense Model -
English (Facebook) task.

Predicted
OAG CAG NAG R@1

OAG 230 113 18 63.71
True CAG 143 169 101 40.92

NAG 6 120 357 73.91
P@1 60.69 42.04 75

Table 10: Confusion matrix of Dense Model -
English (Twitter) task.

The observation from the tables 5–8 is that the Neural Network model is outperforming Fasttext
classification model in all categories. Especially, for Twitter classifier.

Table 9 and 11 shows that for OAG class in Facebook (English/Hindi) dataset, precision is varying
between 40.49 to 55.96 and the recall is varying between 57.64 to 59.67 and for CAG class, precision is
varying between 22.71 to 57.63 and the recall is varying between 47.18 to 65.86.

The table 10 and 12 shows that for OAG class in Twitter (English/Hindi) dataset, precision is varying
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Predicted
OAG CAG NAG R@1

OAG 216 140 6 59.67
True CAG 125 272 16 65.86

NAG 45 60 90 46.15
P@1 55.96 57.63 80.36

Table 11: Confusion matrix of Dense Model -
Hindi (Facebook) task.

Predicted
OAG CAG NAG R@1

OAG 254 146 59 55.34
True CAG 143 166 72 43.57

NAG 76 123 155 43.79
P@1 53.70 38.16 54.20

Table 12: Confusion matrix of Dense Model -
Hindi (Twitter) task.

between 53.70 to 60.69 and the recall is varying between 55.34 to 63.71 and for CAG class, precision is
varying between 38.16 to 42.04 and the recall is varying between 40.92 to 43.57.

In the given context of aggression, hate speech, offensive, and abusive language identification, it is
important to identify the aggressive or hate speech keywords. This leads to identifying the OAG and
CAG classes with higher recall value. At the same time, it is important to identify contexts in which
some words may be hateful. Because simply detecting the words will lead to a lot of false positives even
if it does raise the recall.

As mentioned, for a demanding task like aggression identification, the proposed model should not
have a lower recall for OAG and CAG classes. Further, it could be identified that systems are suffering
from false positive values. This could be overcome by reducing class imbalance or oversampling the
positive class (OAG & CAG) or changing the weight of examples.

Below is the official ranking of the models among different categories. This ranking was provided by
the organizing committee.

English (Facebook) English (Twitter) Hindi (Facebook) Hindi (Twitter)
14th out of 30 1st out of 30 7th out of 15 3rd out of 15

Table 13: Global Standing of Models: vista.ue

5 Conclusion

After discussing different text classification models, one can surely say that Automatic Aggression
Identification is necessary and researchers should put more efforts in making it more robust and precise.
From all the experiments and models, the designed model with a Dense architecture performs better than
a Fasttext model for all four categories. In fact, the system submitted for English - Twitter stood 1st
rank for its category. Between the Facebook and Twitter test dataset contents, the model trained over
Facebook dataset can be used for unknown Twitter test set but vice-versa is not true. The main reason
for this can be a length of sentence, amounts of hashtags, citation of users (i.e ’@’ and the amount of
retweet).

In this model words that are not found in the dictionary are omitted. As future work, and to address
this issue, a neighboring or similar word could be used; here each word would be added to a list from
which neighboring/similar word would be founded. This will help in categorizing unseen words to the
model. Thus, all the words are included and there is no omission of words. Another line of future work
can be to include semantic meaning from the sentences, extracting ontological features either by Part of
Speech (POS) tagging or Entity Extraction (EE).
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Appendix A Regional Level Abbreviations

FLAGS = r e . MULTILINE | r e .DOTALL

d e f t o k e n i z e ( t e x t ) :
# D i f f e r e n t r e g e x p a r t s f o r s m i l e y f a c e s
eyes = r ” [ 8 : = ; ] ”
nose = r ”[ ’ ‘\ − ]?”

# f u n c t i o n
d e f r e s u b ( p a t t e r n , r e p l ) :

r e t u r n r e . sub ( p a t t e r n , r e p l , t e x t , f l a g s =FLAGS)

t e x t = r e s u b ( r ” h t t p s ? : \ / \ / \ S+\b |www\ . ( \w+\ . ) +\S∗” , ” u r l ” )
# Smi le −− : ) , : ) , :− ) , ( : , ( : , (− : , : ’ )
t e x t = r e s u b ( r ” ( : \ s ? \ ) | : −\ ) | \ ( \ s ? : | \ ( − : | : \ ’ \ ) ) ” , ” em smi le ” )
# Laugh −− :D, : D, :−D, xD , x−D, XD, X−D
t e x t = r e s u b ( r ” ( : \ s ?D| :−D | x−?D |X−?D) ” , ” em laugh ” )

# Love −− <3, :∗
t e x t = r e s u b ( r ” ( <3 | :\∗ ) ” , ” em love ” )
# Wink −− ;− ) , ; ) , ;−D, ;D, ( ; , (−;
t e x t = r e s u b ( r ” ( ; −?\ ) | ; −?D | \ ( − ? ; ) ” , ” em wink ” )
# Sad −− :− ( , : ( , : ( , ) : , )−:
t e x t = r e s u b ( r ’ ( : \ s ? \ ( | : −\ ( | \ ) \ s ? : | \ ) − : ) ’ , ” em sad ” )
# Cry −− : , ( , : ’ ( , : ” (
t e x t = r e s u b ( r ’ ( : , \ ( | : \ ’ \ ( | : ” \ ( ) ’ , ” em cry ” )
# remove funnnnny −−> funny
t e x t = r e s u b ( r ” ( . ) \ 1 + ” , r ”\1\1” )
# remove &
t e x t = r e s u b ( r ” ( −|\ ’ ) ” , ” ” )
t e x t = r e s u b ( r ”@[0−9]+−” , ” number ” )
t e x t = r e s u b ( r ”{}{} [ ) dD ] + | [ ) dD ] +{}{} ” .
f o r m a t ( eyes , nose , nose , eyes ) , ” e m p o s i t i v e ” )
t e x t = r e s u b ( r ”{}{}p + ” . f o r m a t ( eyes , nose ) , ” e m p o s i t i v e ” )
t e x t = r e s u b ( r ”{}{}\ ( + | \ ) +{}{} ” .
f o r m a t ( eyes , nose , nose , eyes ) , ” e m n e g a t i v e ” )
t e x t = r e s u b ( r ” { } { } [ \ / | l ∗ ] ” .
f o r m a t ( eyes , nose ) , ” e m n e u t r a l f a c e ” )
t e x t = r e s u b ( r ’− ’ , r ’ ’ )
t e x t = r e s u b ( r ” ( [ p l s ? s ] ) { 2 , } ” , r ”\1 ” )
t e x t = r e s u b ( r ” ( [ p l z ? z ] ) { 2 , } ” , r ”\1 ” )
t e x t = r e s u b ( r ’\\n ’ , r ’ ’ )
t e x t = r e s u b ( r ” sx ” , ” sex ” )
t e x t = r e s u b ( r ” u ” , ” you ” )
t e x t = r e s u b ( r ” r ” , ” a r e ” )
t e x t = r e s u b ( r ” y ” , ” why ” )
t e x t = r e s u b ( r ” Y ” , ” WHY ” )
t e x t = r e s u b ( r ”Y ” , ” WHY ” )
t e x t = r e s u b ( r ” hv ” , ” have ” )
t e x t = r e s u b ( r ” c ” , ” s e e ” )
t e x t = r e s u b ( r ” bcz ” , ” b e c a u s e ” )
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t e x t = r e s u b ( r ” coz ” , ” b e c a u s e ” )
t e x t = r e s u b ( r ” v ” , ” we ” )
t e x t = r e s u b ( r ” p p l ” , ” p e o p l e ” )
t e x t = r e s u b ( r ” p e p l ” , ” p e o p l e ” )
t e x t = r e s u b ( r ” r b i ” , ” r b i ” )
t e x t = r e s u b ( r ” R B I ” , ” RBI ” )
t e x t = r e s u b ( r ” R b i ” , ” r b i ” )
t e x t = r e s u b ( r ” R ” , ” ARE ” )
t e x t = r e s u b ( r ” hav ” , ” have ” )
t e x t = r e s u b ( r ”R ” , ” ARE ” )
t e x t = r e s u b ( r ” U ” , ” you ” )
t e x t = r e s u b ( r ”U ” , ” you ” )
t e x t = r e s u b ( r ” p l s ” , ” p l e a s e ” )
t e x t = r e s u b ( r ” P l s ” , ” P l e a s e ” )
t e x t = r e s u b ( r ” p l z ” , ” p l e a s e ” )
t e x t = r e s u b ( r ” P l z ” , ” P l e a s e ” )
t e x t = r e s u b ( r ”PLZ ” , ” P l e a s e ” )
t e x t = r e s u b ( r ” P l s ” , ” P l e a s e ” )
t e x t = r e s u b ( r ” p l z ” , ” p l e a s e ” )
t e x t = r e s u b ( r ” P l z ” , ” P l e a s e ” )
t e x t = r e s u b ( r ”PLZ ” , ” P l e a s e ” )
t e x t = r e s u b ( r ” t h a n k z ” , ” t h a n k s ” )
t e x t = r e s u b ( r ” thnx ” , ” t h a n k s ” )
t e x t = r e s u b ( r ” fuck \w+ ” , ” fuck ” )
t e x t = r e s u b ( r ” f \∗\∗ ” , ” fuck ” )
t e x t = r e s u b ( r ”\∗\∗\∗k ” , ” fuck ” )
t e x t = r e s u b ( r ”F\∗\∗ ” , ” fuck ” )
t e x t = r e s u b ( r ”mo\∗\∗\∗\∗\∗ ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” b\∗\∗\∗\∗ ” , ” b lody ” )
t e x t = r e s u b ( r ” mc ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” MC ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” wt f ” , ” fuck ” )
t e x t = r e s u b ( r ” ch \∗\∗\∗ ya ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” ch \∗\∗Tya ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” ch \∗\∗ Tia ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” C\∗\∗\∗ yas ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” l \∗\∗\∗\∗ ” , ” s h i t ” )
t e x t = r e s u b ( r ” A\∗\∗\∗\∗\∗\∗S ” , ” ASSHOLES” )
t e x t = r e s u b ( r ” d i \∗\∗\∗\∗ s ” , ” f u c k e r ” )
t e x t = r e s u b ( r ” nd ” , ” and ” )
t e x t = r e s u b ( r ”Nd ” , ” and ” )
t e x t = r e s u b ( r ” ( i n d [ vs ] pak ) ” , ” i n d i a v e r s u s p a k i s t a n ” )
t e x t = r e s u b ( r ” ( pak [ vs ] i n d ) ” , ” p a k i s t a n v e r s u s i n d i a ” )
t e x t = r e s u b ( r ” ( i n d v s u a e ) ” ,
” i n d i a v e r s u s Un i t e d Arab E m i r a t e s ” )
t e x t = r e s u b ( r ” [ sS ] h u t [ Dd ] own [ jnuJNU ] ” , ” s h u t down j n u ” )
r e t u r n t e x t
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Appendix B Deep Learning Sequential Models

Parameter Value
Maximum Sequence Length 1000
Maximum Number of Words 20000
Embedding Dimension 200
Validation Split Ratio 0.2
Epochs 7
Batch Size 256
Activation Softmax
Optimizer Adam

Table 14: Experiment Parameters
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Abstract
This paper describes the process of building a cyberbullying intervention interface driven
by a machine-learning based text-classification service. We make two main contribu-
tions. First, we show that cyberbullying can be identified in real-time before it takes
place, with available machine learning and natural language processing tools, in partic-
ular convolutional neural networks. Second, we present a mechanism that provides in-
dividuals with early feedback about how other people would feel about wording choices
in their messages before they are sent out. This interface not only gives a chance for
the user to revise the text, but also provides a system-level flagging/intervention in a
situation related to cyberbullying.

1 Introduction

Cyberbullying, which can be defined as ‘when the Internet, cell phones or other devices are
used to send or post text or images intended to hurt or embarrass another person’ (Dinakar
et al., 2012), has become a pernicious social problem in recent years. This is also worrying,
as multiple studies found that cyberbullying victims often have psychiatric and psychosomatic
disorders (Beckman et al., 2012), and a British study found that nearly half of suicides among
young people were related to bullying (BBC News1). These factors underscore an urgent need
to understand, detect, and ultimately reduce the prevalence of cyberbullying.

In contrast to traditional bullying (e.g., school bullying), cyberbullying is not limited to a
time and place, which makes cyberbullying potentially more prevalent than traditional bully-
ing. Cyberbullying victims may not recognize their experiences as bullying and they may not
report them or seek help for associated emotional difficulties. Kowalski and Limber (2007) re-
ported that almost 90% of young cyberbullying victims did not tell their parents or other trusted
adults about their online negative experiences. These factors are especially worrying as multiple
studies have reported that the victims of cyberbullying often deal with psychiatric and psychoso-
matic disorders (Beckman et al., 2012; Sourander et al., 2010), and the worst cases are suicides
(Tokunaga, 2010).

Given the importance of the problem, content-based cyberbullying detection is becoming a
key area of cyberbullying research. Current state-of-the-art methods for cyberbullying detection
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

1http://www.bbc.co.uk/news/10302550
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combine contextual and sentiment features (e.g., curse word dictionaries, histories of users ac-
tivities, grammatical properties, and sentiment features derived from online users content) with
text-mining approaches. While performance can be improved by training on text-external fea-
tures, the scarcity of platform-ubiquitous external features requires a cross-platform new-media
text classification algorithm to be trained strictly on text. This reduces the presence of features
that are significant in training, but absent from data used in out-of-domain contexts. Hence, we
introduce a text-driven model which covers six social media platforms (Facebook, Instagram,
Twitter, Pinterest, Tumblr, Youtube), and it could be an ideal solution for this problem.

While presenting their methods for cyberbullying detection7, scholars have also suggested
different interfaces for intervention. Dinakar et al. (2012) describe cyberbullying intervention
mock-ups for both sender and receiver. With the aid of the text-driven model, this project also
implements an Android-based interface which combines and optimizes the mock-ups from Di-
nakar et al. (2012). For instance, an interface giving the sender a chance to retype/cancel the
message (as shown in Figure 1) is considered in our project. This project could be developed
into a thrid-party application between users and social media providers for creating a healthy
online environment.

Figure 1: Mock-up for delaying and undoing the issuance of messages from Dinakar et al.
(Dinakar et al., 2012)

2 Online Cyberbullying Model

2.1 Data Set

This paper uses a dataset that was built for cyberbullying detection. Visr, a predictive wellness
company, produced this dataset for use with an application (app) that analyzes online activities
and interactions, and then alerts parents to potentially harmful issues their children may be
experiencing.2 Issues that parents are alerted about include bullying, anxiety, and depression. By
making parents immediately aware of emerging issues on Instagram, Gmail, Tumblr, YouTube,
Facebook, Twitter, and Pinterest, the Visr app aims to help parents address such issues before
they grow into thornier problems. The app raises a red flag to warn parents when signs of
these issues are detected in a child’s online activities, including signs of possible mental health
consequences like nascent depression, eating disorders, and self-harm. Visr accesses children’s
social media content through the API’s of these social media channels with the consent of the
children who are the account holders. This provides a unique cross-platform dataset with rich
information.

2The app is available at https://app.visr.co, through the Apple App store, or through the Google Play store.
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The data was collected by the Visr child safety app from September 2014 to March 2016.
Over a half-million online posts were selected from among the social media platforms (Face-
book, Instagram, Twitter, Pinterest, Tumblr, Youtube) and Gmail. These posts were randomly
chosen among posts that had been viewed, received, or sent by the adolescents (between age
13 to 17). Personally identifying information was removed to ensure the privacy of Visr users.
Demographic information such as gender, age, location’s time-zone, post time, and the number
of likes were recorded as well.

The specific cyberbullying detection dataset is one of Visr’s labeled datasets. After combining
an enriched selection of those posts with 3,072 ‘real issues’ (posts with issues confirmed by
parents), an annotation process was performed by three annotators for the cyberbullying label.
1,753 posts were determined to be positive for cyberbullying), 304 were labeled as ‘unsure’, and
12,441 were labeled as negative for cyberbullying (Agreement percentage: 95.07%; Cohen’s
Kappa: 0.805). The posts either labeled as ‘unsure’ or about which annotators disagreed were
removed, leaving a corpus of 14,194.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are known to have good performance on data with
high locality, when words get more care weight about the features surrounding them. For our
classification problem, we are trying to get high locality in text given their short length and their
tendency to focus on cyberbullying.

We used CNNs that received input text in the form of sequences of integer representations of
stemmed unigrams. Our character processing included the conversion of emoticons into word
representations, and the removal of non-Latin characters. We also removed frequently occurring
url components (e.g., names of popular websites), metadata encoded in the main body-text (e.g.,
‘RT: ’), and a variety of social media platform-specific features. Hashtags and @-mentions were
reduced to binary features. The text was then lower-cased and tokenized using NLTK’s Tweet-
Tokenizer3. The tokenized text was next encoded using a dictionary of integers, with the original
ordering of the tokens preserved. The encoded text was converted into dense vectors of fixed
size. This one-dimensional embedding was fed into a single-layer CNN with 200 embedding
dimensions, 150 output dimensions, and 200 convolution kernels. The kernels were optimized
using Tensorflow’s ’adagrad’ optimizer (lr=0.001) using categorical cross-entropy as the loss
function. The 150 output dimensions were flattened using a sigmoid function into two output
nodes whose values are floats between 0 and 1, with 1 representing bullying and 0 representing
non-bullying.

To test the performance of our model, we took 70% of the dataset as training set, and 30%
of it for testing. As suggested by previous research, we also added textual features (total used:
93) from LIWC 2015 4 to build another model for comparison. We set the threshold which got
the best result (here we used highest F-measure to represent the performance). Comparison can
be seen in Table 1. We put ZeroR and SVM (Support Vector Machine) models as baselines
for comparison. Because the ZeroR model puts everythoing in the majority class, labeling all
of the positive instances as negative ones, both the F-measure for the positive class and True

3http://www.nltk.org/api/nltk.tokenize.html
4https://liwc.wpengine.com/
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Positive score are 0. Meanwhile, the AUC valus of the ZeroR model is 0.5 and the accuracy
measure depends on the distribution of positives and negatives in the dataset. It is obvious
that the performance of CNN model is better than that of the SVM model in terms of F-measure,
AUC, and True Positive rate. It is also expected that adding LIWC features could help to improve
the F-measure and accuracy. However, for other important parameters (i.e., True Positives and
AUC value), our original model with NLTK-tokenized features got a better index. Note that
all the thresholds are taken as ‘optimal’ because they lead to the highest F-measure, which is
not only influenced by True Positive rate but also by the True Negative rate. However, in real-
life, we care more about the true positives than the true negatives; in other words, detecting the
normal cases (which is much more frequent than cyberbullying) is not the goal for this project.
Hence, we are setting up the thresholds with another method which will be described in section
2.3.

Model name F-measure AUC Accuracy True Positive
ZeroR 0 0.5 87.6% 0%
SVM 0.517 0.851 87.1% 58.9%

SVM + LIWC 0.585 0.892 90.2% 55.9%
CNN 0.523 0.860 87.1% 60.4%

CNN + LIWC 0.597 0.898 90.0% 60.2%

Table 1: Comparison of the results of the CNN models

2.3 Thresholds Setting
To set up the thresholds of our application, we built an electronic survey which contains 45
cyberbullying posts (being labeled as cyberbullying) from the VISR dataset and there are five
posts which did not belong to cyberbullying at all (e.g., non-bullying–‘he was a complete ass
hole, .. He used 2 tell me that my mom tried to abort me because she didn’t want to have another
kid’, cyberbullying–‘Go fuck yourself!’). Then we invited four colleagues (two males and two
females, all PhD students) to give feedbacks of their feelings about those cyberbullying-related
online posts. The survey goes as follow:

“Assume someone (online, you might know the person or not) is sending you a message via
phone/posting a message which @yourid/leaving a comment under your profile, etc. Please
give the feedback score about how you feel:
1. It is totally fine;
2. Well, not that comfortable, but there is no need to hide it;
3. Not acceptable, I don’t want to see this ever, it should be blocked.”

After reviewing the feedback scores from our colleagues to ensure they understand the
assumption properly, one survey was deleted as the participant didn’t get the whole image
and returned the feedback with 47/50 ‘score 3’ (“I suggest to hide every F-word, that’s really
annoying” the participant wrote in the feedback survey). Thus, three surveys were kept for the
threshold setting.
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The results from the three participants’ feelings and the related bullying index of the chosen
text are shown in Figure 2. We averaged the ‘feeling score’ of the three participants; for instance,
the average ‘feeling score’ 1.67 represents the total score of 5, which means that probably two
chose 2 and one chose 1. The cyberbullying index of the selected texts is from 0.0431 to 0.8614.
We separated the text with ‘feeling score’ 1 - 1.33 as ‘totally fine’ group, 1.67 - 2.33 as ‘uncom-
fortable but not that bad’ group, 2.34 - 3 as ‘not acceptable’ group. With an ANOVA test, we
found the ‘totally fine’ group (mean = 0.17) is significantly different (p = 0.0101) from the other
two groups (‘uncomfortable but acceptable’: 0.40, ‘unacceptable’: 0.44).

From the results, six messages are mainly considered as ‘totally fine’ (‘feeling score’ from
1 to 1.33, similar to the number of not bullying at all) and the average index is 0.17; we set
this index as the threshold 1. From our testing document, most of the ‘uncomfortable’ and ‘not
acceptable’ scores are higher than threshold 1; only three of them would be identified as ‘totally
fine’. For the threshold 2, we set it with the average index of ‘uncomfortable but not that bad’
group (0.40); seven of the ‘not acceptable’ messages get lower index (which would not be sent
with warning, as discuss in the following section), but because of the threshold 1, only one of
these ‘not acceptable’ would not be filtered as ‘uncomfortable’.

Figure 2: Threshold Setting

3 Application

3.1 Platform and Development Environment

We chose Android OS as our application development platform as it is the most popular mobile
OS, and it is an open source, real time operating system which meets our development require-
ments. We used Android Studio for the development, since it is optimized for all devices, and it
provides various APIs and layouts.
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3.2 Application Design

3.2.1 Application Subsystem Design
The user interface has a text input field which allows the user to type the message and send it by
using the HTTPS to Visr API over the network. This app will extract the cyberbullying index
calculated by the Visr API and compare it with the set thresholds. Based on the results of the
comparison, a corresponding prompts will be given to the user.

We used HTTPS to transmit data, and we used Volley module to implement the HTTP func-
tions. Volley 5 is a HTTP library developed by Google, it provided us the: 1. Scheduling network
request; 2. JSON and images asynchronous downloading; 3. Network request priority handling;
4. Caching; and 5. Powerful APIs.

3.2.2 System Architecture
The system dialog is shown in Figure 3. Regarding users’ communication behavior and freedom
of speech, the challenges to this interface are presented as follow. On one hand, to build a better
online environment, we do not want to miss any of the ‘uncomfortable’/‘unacceptable’ texts
and allow them to be sent without filtering. On the other hand, we do not want the users to feel
annoying about the intervention; if they really want to send the message, it is not possible to stop
them. Hence, we built a win-win solution with the two thresholds and the related interventions.

Figure 3: System Diagram

In our interface application, for a text which has index between two thresholds (0.17, 0.40),
we send a prompt to the user (‘Your message may be aggressive to others, do you really want to
send?’). As in this level, the text is not identified as unacceptable; the user could either send it or
change it. Similar to figure 1, the prompt is displayed as a delay/chance for user to think about the
feelings of the receiver. For the text which has a extremely high index (>0.40) of cyberbullying,
the app will first send a prompt as ‘Your message may make others feel uncomfortable, please
change the tone.’ and stay on the same page for the sender to modify the message. If the user

5https://developer.android.com/training/volley/index.html
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changes it (or not) and the index is still high (above 0.40), the app will send another prompt as
‘Your message may make others feel uncomfortable, do you really want to send with warnings?’.
This second step comes as we do not want to infringe on users’ freedom of speech and we respect
the users’ communication behavior as well. The only idea is to give advice to the writer about
how other people would feel when reading the message. The system flow chart is shown in
Figure 4.

4 Examples of the interface

To understand the system better, here are examples of situations with different outputs from the
Visr API.

Imagine a user typed a message which receives the cyberbullying index as 0.20 which belongs
to the ‘uncomfortable but acceptable’ level; the prompt would pop us as ‘Alert: Your message
may be aggressive to others, do you really want to send?’ If the user clicks ‘yes’, it will send the
message immediately; if user clicks ‘no’, there would be a chance to change the message.

For the ‘extremely high index’ message, such as ‘what’s your opinion for this fucking shit?
You are retard!’, the system will display the prompt as shown in figure 5. Please note there is no
way to submit this message at the first time. No matter whether the user changes the content or
not, if the second time the submitted text’s index is still higher than threshold 2, a prompt which
is similar to ‘uncomfortable but acceptable’ would pop up. This prompt is shown in figure 6. If
the user wants to send it anyways, there will be warnings with this message, interventions such
as hiding the message or sending the message with a warning could be applied at the receiver’s
end.

Figure 5: ‘Extremely high index’ message
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Figure 4: Flow Chart
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Figure 6: The second time ‘extremely high’ index of the message

5 Conclusion and Future Work

This paper described the process of creating a cyberbullying intervention application based on a
convolutional neural network learning model trained on a multi-platform dataset. The model is
then used to compute a cyberbullying index for any new message.

For setting the two thresholds based on the feedbacks of the participants, different interven-
tions could be taken for different levels of the cyberbullying index. Finally, as discussed, this
project could be seen as the first step towards a framework of building an effective cyberbullying
intervention application for online applications. Social media platforms could use the textual cy-
berbullying index and our proposed thresholds in order to make interventions to safeguard users
from cyberbullying.

Several possible optimizations for future work are as follow:

• Word embeddings, such as GloVe6 or Word2Vec7 could be utilized to initialize our CNN
models, which might lead to better results.

• As sending images and videos is becoming popular among adolescents (Singh et al., 2017),
image/video processing would be another important area for cyberbullying detection.

• The user interface designed in this project takes the user’s input directly. In the future, it
can be designed as a background running application, which can collect user’s input from
different applications (while respecting privacy and security issues).

• A complete social network relationship graph (Huang et al., 2014) (for example, whether
this conversation is between two good friends or not) could be taken into consideration for
improving the cyberbullying identification.

6https://nlp.stanford.edu/projects/glove/
7https://code.google.com/archive/p/word2vec/
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Abstract

In this paper, we describe the system submitted for the shared task on Aggression Identifica-
tion in Facebook posts and comments by the team Nishnik. Previous works demonstrate that
LSTMs have achieved remarkable performance in natural language processing tasks. We deploy
an LSTM model with an attention unit over it. Our system ranks 6th and 4th in the Hindi subtask
for Facebook comments and subtask for generalized social media data respectively. And it ranks
17th and 10th in the corresponding English subtasks.

1 Introduction

In recent years, there has been a rapid growth in social media usage. Interactions over the web and
social media have seen an exponential increase. While usage of social media helps users stay connected;
incidents of aggression, trolling, cyberbullying, flaming, and hate speech are more prevalent now than
ever.

Recent works on aggression classification include the use of logistic regression classifier (Davidson
et al., 2017). They create a bunch of hand-crafted features like binary and count indicators for hashtags,
lexicon based sentiment scores for each tweet, unigram, bigram, and trigram features. They use two
logistic regression models, the first one to reduce dimensionality of the features and the second one to
make classification. Kwok and Wang (2013) train a binary classifier to label tweets into ‘racist’ and
‘non-racist’. They deploy Naive Bayes classifier on unigram features. Neural language model was used
in Djuric et al. (2015). First they learn embedding of the text passages using paragraph2vec (Le and
Mikolov, 2014). Then, they train a logistic regression classifier over those embeddings to classify into
hateful and clean comments. Schmidt and Wiegand (2017) surveys the recent development in this field.

The first shared task on aggression identification (Kumar et al., 2018a) was held at the first workshop
on Trolling, Aggression and Cyberbullying (TRAC). The goal was to classify social media posts into one
of three labels (Overtly aggressive, Covertly aggressive, Non-aggressive).

The major contribution of the work can be summarized as a neural network based model which has
LSTM units followed by an attention unit to embed the given social media post and training a classifier
to detect aggression. We discuss our methods in section 2. Section 3 contains the details about the
experiments and training data. In Section 4, we discuss the results and Section 5 concludes the paper
with closing remarks.

2 Methodology

We hypothesize that aggression identification requires processing of the words of a sentence in a
sequential manner. The positioning of a particular word at different places can alter the aggressiveness
of the sentence. Example:

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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These aliens are filthy, but they live in a good neighbourhood. (Aggressive)
These aliens are good, but they live in a filthy neighbourhood. (Less aggressive)

Recurrent Neural Networks (Mikolov et al., 2010) are good at handling sequential data and have
achieved good results in natural language processing tasks. As RNNs share parameters across time,
they are capable of conditioning the model on all previous words of a sentence. Although theoretically
it is correct that RNNs can retain information from all previous words of a sentence, but practically
they fail at handling long-term dependencies. Also, RNNs are prone to the vanishing and exploding
gradient problems when dealing with long sequences. Long Short-Term Memory networks (Hochreiter
and Schmidhuber, 1997), a special kind of RNN architecture, were designed to address these problems.

2.1 Long Short-Term Memory networks
LSTMs use special units in addition to standard RNN units. These units include a ‘memory cell’ which
can maintain its state for long periods of time. A set of non-linear gates is used to control when infor-
mation enters the memory(Input gate), when it’s outputted (Output gate), and when it’s forgotten (Forget
gate). The equations for the LSTM memory blocks are given as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ σh(ct) (5)

In these equations, xt is the input vector to the LSTM unit, ft is the forget gate’s activation vector, it
is the input gate’s activation vector, ot is the output gate’s activation vector, ht is the output vector of the
LSTM unit and ct is the cell state vector. w, u,B are the parameters of weight matrices and bias vectors
which are learned during the training.

2.2 Attention
Here, the attention module is inspired by (Bahdanau et al., 2014). We deploy it after the LSTM unit. It
helps the model decide the importance of each word for the classification task. It scales the representation
of the words by a learned weighing factor, as determined by these equations:

et = htwa (6)

at =
exp(et)∑T
i=1 exp(ei)

(7)

v =
T∑

i=1

aihi (8)

In these equations, ht is the hidden representation of a word at a time step t, wa is the weight matrix
for the attention layer, at is the attention score for the word at time t, and v is the final representation of
the sentence obtained by taking a weighted summation over all time steps.

3 Experiments

3.1 Datasets
The training datasets for the English and Hindi sub-tasks are constructed by 11,999 and 12,000 Facebook
posts and comments, respectively. The testing set includes 3,001 and 3,000 respectively. These are
collected and manually annotated by the organizers. Most of the datum has an id and is classified into
one of the three classes: OAG (Overtly aggressive), CAG (Covertly aggressive), NAG (Non-aggressive).

53



The distribution of the classes in the training dataset for English and Hindi are shown in Table 1. The
organizers released a modified version of the data where they remove the rows without specific id. As
the id is not important for prediction, we decided to work on the initially released dataset. The data
collection methods used to compile the dataset for the shared task are described in Kumar et al. (2018b).

Class Train (English) Test (English) Train (Hindi) Test (Hindi)
Non-aggressive 5,051 1,233 2,275 538
Covertly aggressive 4,240 1,057 4,869 1,246
Overtly aggressive 2,708 711 4,856 1,217

Table 1: Class distribution in train and test sets

3.2 Preprocessing
Before feeding the Facebook comments to the LSTM classifier, we performed the following operations
on the text:

1. We used the ekphrasis toolkit (Baziotis et al., 2017) for normalizing the occurrence of the following
in the comments: URL, E-mail, percent, money, phone, user, time, date, and number. For example,
URLs are replaced by <url>, and all occurrences of @someone are replaced by <user>.

2. We then passed the normalized text through the Social tokenizer. Unlike normal tokenizers, the
Social tokenizer is specifically aimed at the unstructured social media content. It understands and
parses complex emoticons, emojis and other unstructured expressions like dates, times, phone num-
bers etc.

3. Then, we removed the punctuations and used ekphrasis’s inbuilt spell corrector on the text.

4. Lastly, we used NLTK’s WordNet lemmatizer (Loper and Bird, 2002) to lemmatize the words to
their roots.

3.3 Parameters
Our model uses an embedding layer of 100 dimensions to project each word into a vector space. We
place a dropout (Srivastava et al., 2014) layer after this. To capture the context of the words passed from
the dropout layer we use an LSTM layer having 100 hidden dimensions. As the LSTM cells already
have non-linear activation functions, it helps the model capture non-linear semantics from the data. The
output from the LSTM is then passed through an attention module. The attention module helps the model
determine which word to give more importance to. The weighted output from attention module is passed
through a fully-connected layer. To get the probabilities of each class, softmax function is applied to the
output. We use the cross-entropy function to calculate the loss between the predicted and the target value.
Adam optimizer is used with a learning rate of 0.001 to learn the weights of the model. The dropout rate
was either 0.2 or 0.3 and is discussed in the Results section.

Although many machine learning classifiers like Naive Bayes, Decision Tree, Support Vector Machine
or Random Forest could be used as a baseline classifier for this task. Due to constraint of time we have
only used a Random Forest classifier. We train the classifier on a set of hand-crafted features. The
features used are as follows:

1. Number of words with positive sentiment.

2. Number of words with negative sentiment.

3. Number of punctuations.

4. Total number of words.

5. Inverse of the 2nd feature.

54



6. Natural logarithm of the 2nd feature.

We use the lists made available by Hu and Liu (2004) for extracting positive and negative words.

4 Results

Due to a mistake on our side, we first submitted a model which considered only the first 45 words of the
post/comment and used a dropout rate of 0.2, we denote this model as Eng-A in the tables. In Eng-B, we
use dropout rate of 0.3 and considered all the words. RF baseline is the random forest classifier based
model baseline of hand-crafted features.

System F1 (weighted)
Random Baseline 0.3535
EF-A 0.5533
EF-B 0.5746

Table 2: Results for the English (Facebook) task.

System F1 (weighted)
Random Baseline 0.3477
RF Baseline 0.3888
Eng-A 0.5304
Eng-B 0.5548

Table 3: Results for the English (Social Media) task.

For both the Hindi sub-tasks, we used the LSTM classifier with dropout probability of 0.3. We denote
the model as Hi-A in the tables.

System F1 (weighted)
Random Baseline 0.3571
Hi-A 0.6032

Table 4: Results for the Hindi (Facebook) task.

System F1 (weighted)
Random Baseline 0.3206
Hi-A 0.4703

Table 5: Results for the Hindi (Social Media) task.

Looking at the confusion matrices of the English subtasks, it is clear that the model is performing
well at classifying the non-aggressive comments from the aggressive or covertly aggressive comments.
But it performs poorly and classifies a lot of over-aggressive and non-aggressive comments to covertly
aggressive. The results in Malmasi and Zampieri (2018) also convey the same message.

5 Conclusion

In this paper, we present an LSTM network with an attention based classifier for aggression detection.
It gives competitive results while relying only on the dataset provided. The performance reported in this
paper could be further boosted by utilizing transfer learning methods from larger datasets, like using
pre-trained word embeddings. Furthermore, the model tends to over-fit on the training data. Better gen-
eralization techniques, like the use of an increased dropout rate, might help in increasing the performance
of the model.
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Abstract

This paper describes the work that our team bhanodaig did at Indian Institute of Technology
(ISM) towards TRAC-1 Shared Task on Aggression Identification in Social Media for COLING
2018. In this paper we label aggression identification into three categories: Overtly Aggressive,
Covertly Aggressive and Non-aggressive. We train a model to differentiate between these cate-
gories and then analyze the results in order to better understand how we can distinguish between
them. We participated in two different tasks named as English (Facebook) task and English (So-
cial Media) task. For English (Facebook) task System 05 was our best run (i.e. 0.3572) above the
random Baseline (i.e. 0.3535). For English (Social Media) task our system 02 got the value (i.e.
0.1960) below the Random Bseline (i.e. 0.3477). For all of our runs we used Long Short-Term
Memory model. Overall, our performance is not satisfactory. However, as new entrant to the
field, our scores are encouraging enough to work for better results in future.

1 Introduction

In the last few years, there is exponential growth in social media and user generated contents. The online
platforms like blogs, Q&A forums, online discussion forum and so on helps user to post their comments
and to reply other user’s comment. These comments may be of various forms like lovable, aggressive,
hate speech, offensive languages etc. As the number of people and this interaction over the web has
increased, incidents of aggression and related activities like trolling, cyberbullying, flaming, hate speech,
etc. have also increased manifold across the globe. Thus, incidents of online aggressive behaviour have
become a major source of social conflict, with a potential of forming criminal activity.

A key challenge for aggression identification on social media is to classify it from offensive or vitriolic
languages. Some of the task has been performed in this area but still it is a hot topic among researchers.
Keeping it in mind, we develop a system to discriminate between Overtly Aggressive (OAG), Covertly
Aggressive (CAG), and Non-aggressive (NAG) content in texts. In the paper (Kumar et al., 2018a) the
relevant task description is defined in detail.

In this paper, we used the fact that emojis serve as a proxy for the emotional contents of a text.
Therefore, pre-training on the classification task of predicting which emoji were initially part of a text can
improve performance on the target task. We used word embeddings that were trained on the classification
task. Then we used simple transfer learning approach, chain-thaw that sequentially unfreezes and fine-
tunes a single layer at a time. This approach increases accuracy on the target task at the expense of extra
computational power needed for the fine-tuning. By training each layer separately the model is able to
adjust the individual patterns across the network with a reduced risk of overfitting.

Organization of rest of the paper is as follows. We describe Related Work in Section 2. Section 3
describes Methodology and Dataset and Section 4 analyse our Results. Finally, we conclude in Section
5 with directions for future work.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:// creativecom-
mons.org/licenses/by/4.0/
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2 Related Work

The interest in identifying trolling, aggression, cyber-bullying and hate speech, particularly on social
media, has been growing in recent years. This topic has attracted attention from researchers interested
in linguistic and sociological features of aggression, and from engineers interested in developing tools
to deal with aggression on social media platforms. In this section we review a number of studies and
briefly discuss their findings. For a recent and more comprehensive survey on hate speech detection we
recommend (Schmidt and Wiegand, 2017).

Prior work has used theories of emotion such as Ekmans six basic emotions and Plutchiks eight basic
emotions(Suttles and Ide, 2013) and (Mohammad, 2012). The heterogeneous NLP tasks are bounded
by dearth of manually annotated data. Therefore, emotional expression plays significant role to gauge
the mood of users. (Deriu et al., 2016) and (Tang et al., 2014) tried to see the effect of positive/negative
emoticons for training their models. Similarly, (Mohammad, 2012) mapped hashtags such as #anger,
#joy, #happytweet, #ugh, #yuck and #fml into emotional categories for emotion analysis.

(Davidson et al., 2017) used crowd-sourced hate speech lexicon to collect tweets containing hate
speech keywords. They used crowd-sourcing to label a sample of these tweets into three categories:
those containing hate speech, only offensive language, and those with neither. They found that Tweets
without explicit hate keywords were also more difficult to classify.

(Xu et al., 2012) proposed sentiment analysis to detect bullying roles in tweets. For this they used
Latent Dirichlet Allocation to find out relevant topics in bullying texts.They classified the texts either
they are bullying or not.

(Dadvar et al., 2013) presented the results of a study on the detection of cyberbullying in YouTube
comments. They used a combination of content-based, cyberbullying-specific and user-based features.
their results showed that incorporation of context in the form of users activity histories improves cyber-
bullying detection accuracy.

(Kwok and Wang, 2013) detected tweets against blacks. They used unigram model and supervised
learning for their approach. (Djuric et al., 2015) used binary classification to detect hate speech. For this
they used word embeddings that performed better than bag-of-words model.

(Burnap and Williams, 2015) studied cyber hate speech in twitter. They showed that the production of
a machine classifier that can be developed into a technical solution for use by policymakers as part of an
existing evidence-based decision-making process.

(Nobata et al., 2016) studied the abusive language detection in online user content. They used different
syntactic features as well as different embedding features. They found that combining these features with
the features of NLP can boost F-score.

(Waseem and Hovy, 2016) presented a list of criteria based in critical race theory to identify racist and
sexist slurs. They used n-grams model for their approach. The dataset footnote1 used for this criteria is
freely available for users.

presenting the Hate Speech Detection dataset used in (Malmasi and Zampieri, 2017) and a few other
recent papers on the topic. A proposal of typology of abusive language sub-tasks is presented in (Waseem
et al., 2017). A recent discussion on the challenges of identifying profanity vs. hate speech can be found
in (Malmasi and Zampieri, 2018).

Most of the study,including ours, to discriminate between hate speech and abusive language are in
english due to its well annotation. However, few recent studies have also been published in some other
languages. Examples are (Mubarak et al., 2017) studied abusive language detection on Arabic Language.
(Su et al., 2017) rephrased profanity in Chinese language. (Tulkens et al., 2016) studied racism detection
in Dutch social media.

The results demonstrated that it can be hard to distinguish between overt and covert aggression in
social media.This is a key motivating factor for this shared task and a highly relevant discussion to
include.

1 https://github.com/zeerakw/hatespeech

59



Table 1: Results for the English (Facebook) task.
System F1 (weighted)
Random Baseline 0.3535
LSTM-01 0.3160
LSTM-04 0.3160
LSTM-05 0.3572

3 Data

The data collection methods used to compile the dataset used in the shared task is described in (Kumar et
al., 2018b). The Aggression Identification dataset is composed of 15,000 aggression-annotated Facebook
Posts and Comments each in Hindi (in both Roman and Devanagari script) and English for training and
validation. The users were asked to develop a system that could make three-way classification in between
Overtly Aggressive, Covertly Aggressive and Non-aggressive text data.

4 Methodology

4.1 Preprocessing
We preprocessed the texts firstly. Punctuation symbols, unicode, urls and emoji were removed from
data. All the tokens were also lowercased. For generalization proper tokenization is important. We
tokenized all tweets on the basis of word-by-word. Words that contain two or more repeated characters
were shortened to the same token (e.g. fool and fooool were tokenized such a way that could be treated
as same). After the tokenization, we included these in training set i.e. in the FB/Tweet that contains 1
token (not a punctuation symbol), special token 2.

For all of our runs we used Long-Short-Term-Memory (LSTM) model that performed successfully in
many NLP tasks (Sutskever et al., 2014) and (Hochreiter and Schmidhuber, 1997). Moreover, for the
word representation we have used deepmoji and chain-thaw method similar manner as in (Felbo et al.,
2017) to sequentially unfreezes and fine-tunes a single layer at a time. Please see Figure1 for illustration.

4.2 Model
Our model uses an embedding layer of 256 dimensions to project each word into a vector space. We used
pretrained embeddings from deepmoji. To capture context of each word we use a bidirectional LSTM
layer with 50 hidden units each layer. Then to capture higher level features we used one-dimensional
global max pooling. Then in next layer we use 50 hidden units with ReLU as an activation function. In
the next layer to avoid over-fitting we set dropout to 0.1. Finally, we used softmax layer with 3 units,
each corresponding to one of three given classes. We used categorical cross-entropy as loss function and
Adam optimization algorithm for optimization. Please refer Figure2 for illustration.

Our model is implemented using Theano (Team et al., 2016). We also implemented easy-to-use version
available in Keras (Chollet, 2016).

Table 2: Results for the English (Social Media) task.
System F1 (weighted)
Random Baseline 0.3477
LSTM-02 0.1960

5 Results

The scores obtained by us are shown in Table 1 and Table2. The official evaluation measures is F1
measure. We used random baseline for sake of comparison. Table 1 contains results for English (face-
book) task. For English (Facebook) task we submitted three runs. In this paper, we have just named

2 https://github.com/bfelbo/DeepMoji
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Figure 1: Illustration of the chain-thaw transfer learning approach, where each layer is fine-tuned sep-
arately. Layers covered with a blue rectangle are frozen. Step a) tunes any new layers, b) then tunes
the 1st layer and c) the next layer until all layers have been fine-tuned individually. Lastly, in step d) all
layers are fine-tuned together.

Figure 2: Illustration of the DeepMoji model with T being text length and C the number of classes.

our run as LSTM-01, LSTM-02, LSTM-03, LSTM-04 and LSTM-05. Here, LSTM-05 performs better
than LSTM-01 and LSTM-04. We just obtained slightly better score (i.e 0.3572) comparative to random
baseline (i.e. 0.3535). Table2 contains the results for English (Social Media) task. Here, we get the
score (i.e. 0.1960) for LSTM-02 that is much lower than random baseline.

The confusion matrix for EN-FB task and EN-TW task is shown in Figure3 and Figure4 respectively.
In Figure3 we see that maximum number of ’NAG’ comment is correctly predicted. ’CAG’ comment is
predicted after ’NAG’. The lowest prediction is of ’OAG’ Comment. ’OAG’ class is little bit confused
with ’CAG’ class.

Similarly, in Figure4 we see that 71 number of ’NAG’ comment is correctly predicted. There is large
difference between the class ’OAG’ and ’CAG’.
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Figure 3: Confusion Matrix for EN-FB task for our 3-classes,
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Figure 4: Confusion Matrix for EN-TW task for our 3-classes
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6 Conclusion

This  year  we participated  in  TRAC-1 Shared  Task on Aggression Identification  in  Social

Media. We tried to develop 3-way classification in between ’OAG’, ’CAG’ and ’NAG’. Our

system  performs  better  on  English  (Facebook)  task  in  comparison  with  English  (Social

Media) task. We have experimented using Deepmoji word embeddings which couldn’t capture

sub categories of aggression like ’OAG’ or ’CAG’. While there can be no denial of the fact

that our overall performance is dismal, initial results are suggestive as to what should be done

next.  We  need  to  consult  another  model  like  SVM  model,  Ensemble  model  etc.  for

classification. Also, it will be interesting to use char CNN to extract character level features

and then to use Random forest as a classifier. We shall explore some of these models in the

coming days.
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Abstract

In this paper we describe our system that we develop as part of our participation in the
shared task at COLING 2018 TRAC-1: Aggression Identification. The objective of
this task was to predict online aggression spread through online textual post or comment.
The datasets were released in two languages, one for English and the other for Hindi.
For each of these languages we submitted one system. Both of our systems are based on
an ensemble architecture where the individual models are based on Convoluted Neural
Network (CNN) and Support Vector Machine (SVM). Our system on English facebook
and social media post obtains the F1 scores of 0.5151 and 0.5099, respectively where
evaluation on Hindi facebook and social media obtains F1 score of 0.5599 and 0.3790,
respectively.

1 Introduction
In our modern world Internet has become a very powerful tool to convey and spread our feelings,
voices and intentions to a large section of people in a very short span of time. There has been a
phenomenal growth in web contents due to the emergence of numerous social media networking
platforms, blogs, review sites etc. There is also a growing rate of misusing these social media
and other sources against individuals, groups, organization etc. by targeting them directly or
indirectly. There has not been much literature that focus on machine learning applications
towards building intelligent systems that could detect aggression, cyberbullying, hate speech,
profanity etc. which often have overlapping characteristics. The task is more difficult when the
contents are mixed with more than one language, the phenomenon which is very well-known as
code mixing.

The task defined in the shared task was related to detecting aggression in two languages,
namely Hindi and English. (Baron and Richardson, 1994) defined aggression as a behavior that is
intended to harm another individual who does not wish to be harmed.(Buss, 1961) distinguished
between physical aggression (e.g. hitting,kicking etc.), verbal aggression (e.g. yelling, screaming
etc.) and relational aggression. The datasets provided in the shared task were labeled with
three classes, namely ”Overtly”,”Covertly” and ”Non- aggressive”.

2 Related Works
Aggression, Trolling, Cyberbullying, etc. are the problems that have attracted attention to the
various stakeholders (common people, governments, researchers) as these are some of the severe
issues that need urgent attention due to the abundance of information generated daily from the
various social media sources. Although not much of drafted works can be found on developing
an automated system to address these problems, a few works are available on the problem
domains that are very closely related, such as the detection of offensive languages and hate
speech. (Potapova and Gordeev, 2016) studied verbal expression of aggression and they found
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:

http://creativecommons.org/licenses/by/4.0/.
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that detection of such contents using machine learning techniques such as Random Forest (RF)
and Convolutional Neural Network (CNN) combined with Part-of-Speech (PoS) information can
produce good results. (Chu et al., 2017)showed that character embedding performed better than
word embedding for CNN in classifying the contents into two classes: personal attack and not-
personal attack. (Chen et al., 2012) proposed the Lexical Syntactic Feature (LSF) architecture
to detect offensive content and identify the potential offensive users in social media. (Gao and
Huang, 2017) proposed two types of hate speech detection models that incorporate context
information, a logistic regression model with context features and a neural network model with
learning components for context. Their evaluation showed that both the models outperform a
strong baseline by around 3% to 4% in F1 score and combining these two models further improved
the performance by another 7% in F1 score. (Nobata et al., 2016) divided their feature set into
4 classes as N-grams, linguistic, syntactic and distributional semantics to distinguish between
clean and abusive post. The abusive posts were further fine-grained into hate, derogatory and
profanity. Their character n-grams based approach also outperformed some word-based deep
learning models. (Davidson et al., 2017) discussed the problems in distinguishing the hate speech
from the offensive instances. They observed that lexical methods are inaccurate at identifying
hate speech and emphasized to take care of social biases into context.

Although there are works available for English in these related domains, we did not find
any such work on Hindi. However, there is a considerable increase in the volume of Indian
language social media contents, especially in Hindi. Hence detecting trolling, cyberbullying in
such languages have a very high relevance in today’s scenarios. In this paper we develop an
ensemble based architecture for aggression identification which tries to solve the problem in two
languages, viz. English and Hindi.

3 Problem Definition
The problem of the shared task was on Aggression Identification. The goal is to classify the
text into three classes, namely overtly, covertly and non-aggressive.
We first define aggression, and then put forward the different classes of aggression mentioned
in the task with examples.

1. Aggression: It is a human behavior intended to harm another by verbally, physically and
psychologically. Overtly Aggressive (OAG): This class includes the following cases.

(a) Aggression shown openly with verbal attack directly pointed towards any group or
individuals.

(b) Attack commenced using abusive words or calling names or comparing in a derogatory
manner.

(c) By supporting false attack or supporting others comment.
(d) Sometimes these texts also contain indirect references.

2. Covertly Aggressive (CAG): In these attacks aggression is generally hidden and contains
sarcastic negative emotions due to its indirect nature. It can be summarized as follows.

(a) By using metaphorical words to attack an individual,nation,religion.
(b) Praising someone by criticizing group irrespective of being right or wrong.
(c) Sometimes these texts also contain direct references.

3. Non Aggressive (NAG): These statements generally lack the intention to be aggressive
and mostly used while referring to the correct facts, wishing or supporting individuals or
groups on social issues.

Table 1 shows a few examples of each class.
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Class Sentence

Overtly Aggressive

1.We want to get rid of u Indians......why don’t u hear our loud cries
2.I support his speech, RSS is divider of country, they do not want to stay peace.
3.The U S Government of Donald Trump will do nothing
4."गटर के कҴड़े" ।
5.एस कुаे को जले मे दाल दो .देश िोहҰ हӔ ।

Covertly Aggressive

1.Modi ji, all the Pain & no Real Gain
2.udhav has shown bjp its place,bravo shivsena
3.Reservation is like another form of terrorism
4.दंगाई के कुसӅ मӒ बठै जाने से चѝरऽ नहҰ सधुरता ।
5.दोनӖ दलाल है और इन दोनӖ का दलाल Ѡमўडया है ।

Non-Aggressive

1.Sorry sir I forgot.
2.When is work on NH-8 getting completed? Particluarly Hero Honda Chowk??
3.I want to upgrade from my 180 CC to 400CC
4.џवўदशा से बीजपेी कҴ सषुमा ःवराज आगे ।
5.जͨम ўदन कҴ हाўदक˨ बधाई महाशया ।

Table 1: Some examples from English and Hindi data

�

Figure 1: Block Diagram of our System

4 System Overview
We adopt an Ensemble architecture to solve the problem of offensive language detection. The
base models are based on CNN and SVM. A block diagram of the system is shown in Figure 1.

4.1 Preprocessing
As the dataset was collected from social media platforms, it contains URLs, emoticons, hashtag,
smiley, etc. It also includes a lot of inconsistencies in the form of typos and abbreviations. So
the first step that we perform is the removal of URLs for the convenience of preprocessing. The
only ’#’ hash signs are removed from #soldmedia, #Bhagwa,#शव etc. to preserve the meaning.
After that for further preprocessing we remove punctuations and apostrophe words. These steps
are performed for both Hindi and English datasets. Detailed examples are given in Table 2. The
Hindi dataset further posed an additional challenge. The data has sentences mixed with actual
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Hindi words, transliterated Hindi words and actual English words- commonly known as code-
mixed social media text. To handle this, we convert the transliterated Hindi words and actual
English words into actual Hindi words using Indic-Trans api.

1 Before #shameonjournalism #soldmedia
After Shame on journalism sold media

2 Before Which one is the best example of #Bhagwa terrorism.
After Which one is the best example of bhagwa terrorism

3 Before goons and #presstitutes
After goons and presstitutes

4 Before दोनӖ शहҰदӖ के #शव के साथ बबर˨ता
After दोनӖ शहҰदӖ के शव के साथ बबर˨ता

Table 2: Preprocessing example

4.2 Word Embedding
In order to fit textual data into Neural Network we need vectorization of texts. This provides
useful evidence in capturing semantic property of a word. For Hindi we use the pre-trained
model of Wikipedia (Bojanowski et al., 2016). Each word is represented as a vector of 300
dimension. For English, we use the pre-trained Glove(Pennington et al., 2014) vectors. After
preprocessing the data, the English dataset has an average sentence length of 20 words with
maximum sentence length of 50 words, while the Hindi dataset has an average sentence length
of 21 words with maximum sentence length of 50 words 1. We consider maximum length of a
sentence to be 50-words. We use padding with zeros if the sentence length is less than 50, and
prune from the last if length of the sentence is greater than 50.

4.3 Features
To train any statistical machine learning model we need a set of features to be extracted from
the dataset. The features that we use to train the SVM model are:

• Uni-grams: An n-gram of size 1 is referred to as a ”unigram”. Unigrams helps us to identify
which words in the corpus are important to which particular class. Top 1000 unigrams in
the corpus are taken as one of the features for training our system.

• Tf-Idf vectors: We compute the Term Frequency-Inverse Document Frequency (TF-IDF)
and use as feature. Term Frequency refers to how many times a particular word appears
in a particular class, whereas Inverse document frequency refers to how much relevant the
word is to any particular class, whether the word is common or rare across all.

4.4 Methodology
In this section we describe our proposed methodologies, which are based on SVM and CNN.

• Support Vector Machines: Support Vector Machine (SVM) is a popular algorithm used
for solving many classification problems.(Vapnik, 2013)demonstrates that abstract learning
theory established conditions for generalization and understanding these conditions inspired
new algorithm approach to function estimation problems. He explained the generalization
ability of learning machine depends on capacity concepts. In our model we use Support
Vector Machine as one of the individual model used to form the ensemble system. In partic-
ular we use an SVM trained using John Platt’s sequential minimal optimization algorithm2

to solve the quadratic programming problem.
1while calculating max and avg sentence for both the English and Hindi dataset we consider all the sentences

of training and development dataset
2http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html
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• Convolutional Neural Network: In the recent times it has been seen that the convolu-
tion and pooling functions of CNN can be successfully used in text classification problems.
A convolution layer of n × m kernel size is used (where m-size of word embedding) to look
at n-grams of word at a time and then a Max-pooling layer selects the largest from the
convoluted inputs. In our system the convolutional layer is constructed with filter size 64
and ReLU as activation function. We capture the bi-gram features from this layer by taking
kernel size as 2 × EmbeddingSize. In Max-pooling layer we have used pool size of 1 × 2.

• Ensemble: Classifier ensemble3 aims at combining the predictions of different classifiers.
Ensembles (Florian et al., 2003; Ekbal and Bandyopadhyay, 2008) are often seen to be
much more accurate than the individual classifiers that make them up. In the system being
discussed output of the max-pooling layer of CNN classifier goes to a flatten layer and
then to a dense layer with ReLU activation. On the other hand output of SVM is passed
through a dense layer with ReLU activation. Output tensor form both CNN and SVM
are then concatenated and passed through a dense layer and a Dropout layer with hyper-
parameter of 0.5. This is finally inputted to the output layer with Softmax as an activation
function. We use Adam as an optimizer and Categorical Cross Entropy for loss function.

5 Data set

The Hindi (Roman and Devanagari) training dataset consists of 15000 annotated (6072 as OAG,
6115 as CAG and 2812 as NAG) instances, while the English training dataset consists of 12000
annotated (2708 as OAG, 4240 as CAG and 5052 as NAG) instances of Facebook posts and
comments. For tuning the system, validation set of 3000 instances of annotated (1216 as OAG,
1246 as CAG and 538 as NAG) Hindi data and 3000 instances of annotated (711 as OAG, 1056 as
CAG and 1233 as NAG) English data were provided. The test data has two different sets which
were prepared from two different sources-one from facebook (English: 1515, Hindi: 970) and the
another one from other social media (English: 1257, Hindi: 1194) posts and comments which
helped in determining generic performance ability of our system. Some details are depicted in
Table 4 for Hindi, and in Table 3 for English.

Class Train Dev Test FB Test SM
CAG 4240 1056

1515 1257NAG 5052 1233
OAG 2708 711

Table 3: English data description

Class Train Dev Test FB Test SM
CAG 4869 1246

970 1194NAG 2275 538
OAG 4856 1216

Table 4: Hindi data description

6 Experiments and Results

We perform all the experiments in Python 3 and Java Jdk8 environment. We use the following
packages: Keras, NLTK, Numpy and Weka.

3“ensemble classifier”, “classifier ensemble” and ”ensemble system” are used interchangeably referring to the
same system.
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We use F1-score as the evaluation metric, and use development data to fine-tune the system.
We first conduct our experiments with a DT (Decision Tree) model using unigrams as features.
The DT model performed on the development data with a weighted F1-score of 0.4593 on
Hindi data and 0.470 for English. Thereafter we conduct our experiments using a SVM model
with unigrams as features. We obtain the F1-score of 0.4986 and 0.5030 for Hindi and English,
respectively. We then performed experiments on the same SVM model using bigrams as features.
To our surprise, the performance of the model deteriorated to a weighted F1-score of 0.3858 on
Hindi data and 0.404 on English data, and predicted almost two third of the instances as NAG
for both the datasets. We then used unigrams and tf-idf vectors as features and conducted our
experiments on the SVM model. Performance of the model increased to the weighted F1-score
of 0.5457 for Hindi and 0.556 for English. To achieve better performance, we then looked into
some deep learning strategies. First, we performed our experiments using an LSTM model.
The weighted F1-score given by the model is 0.4061 on Hindi data and 0.4142 on English data.
Thereafter we used a CNN model that captures unigram features. The weighted F1-score of the
model is 0.5422 on Hindi data and 0.5431 on English data. Then on increasing the kernel size to
capture bigram features, the CNN model yields the weighted F1-score of 0.5663 for Hindi and
0.578 for English. The weighted F1-score of the final ensemble system, using CNN with kernel
size 2×EmbeddingSize and SVM with unigrams and tf-idf features, on Hindi development data
is 0.5987 while that on English development data is 0.6273. Evaluation on the test data shows
the F1-score of 0.5151 on English facebook data and F1-score of 0.5599 on Hindi facebook
data. We obtain the F1-score of 0.5099 on English social media data and F1-score of 0.3790
on Hindi social media data. These results are depicted in details in Table 5 for English Facebook
data and other social media data. Similarly, in Table 6 we report for Hindi Facebook data and
the Hindi other social media data.

Class English-FB English-SM
Precision Recall F1-Score Precision Recall F1-Score

CAG 0.2178 0.6197
0.5151

0.3900 0.4165
0.5099NAG 0.8612 0.4333 0.5906 0.7764

OAG 0.3795 0.5139 0.6243 0.3130
Table 5: Result: English test data

Class Hindi-FB Hindi-SM
Precision Recall F1-Score Precision Recall F1-Score

CAG 0.5180 0.7676
0.5599

0.3415 0.4777
0.3790NAG 0.6280 0.5282 0.4393 0.5113

OAG 0.4137 0.3729 0.6243 0.2244
Table 6: Result: Hindi test data

6.1 Error analysis
For analysis we study confusion matrix for each of the test sets. It is observed that for the
Hindi-FB test data depicted in Table 9, data originally labeled as OAG gets mostly confused
with the class CAG, where as data originally labeled as CAG gets mostly confused with the class
NAG. This pattern is also seen in case of test set for Hindi-SM (i.e. social media Hindi) data
as depicted in Table 10 and in case of test set for English-SM data as depicted in Table 8. In
case of English-FB test data as depicted in Table 7, OAG class gets mostly confused with CAG,
NAG class also gets confused with CAG but the data originally labeled as CAG gets confused
with both OAG and NAG classes almost equally. The reason for OAG getting converted to
CAG was a lot of common keywords present in both the classes like killed, terrorist etc. The
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reason for misclassification of CAG to NAG was because of indirect mentions and good words
used in a very sarcastic way. Due to this system could not capture the exact feeling behind
those sentences. The system performs better for classifying the CAG and NAG classes for all
the test datasets in comparison to the classification of OAG. Some of the misclassified examples
are shown in Table 11.

Class OAG CAG NAG
OAG 74 51 19
CAG 29 88 25
NAG 92 265 273

Table 7: Confusion matrix:English-FB

Class OAG CAG NAG
OAG 113 180 68
CAG 49 172 192
NAG 19 89 375

Table 8: Confusion matrix:English-SM

Class OAG CAG NAG
OAG 135 215 12
CAG 47 317 49
NAG 12 80 103

Table 9: Confusion matrix:Hindi-FB

Class OAG CAG NAG
OAG 103 240 116
CAG 84 182 115
NAG 62 111 181

Table 10: Confusion matrix:Hindi-SM

Original Predicted Sentence
CAG OAG I told you wait.7 pak killed within hours of their cowardice act.Go and weep for them .
OAG CAG yes we remember you are biggest terrorist country in the world you will do anything against humanity
CAG NAG Just get new currency to people and we will be happy
OAG NAG late night party enjoying life and now once he woke up he start complaining
CAG OAG अबे साले वह हमारे सѠैनक को मार रहे हӔ और तमु सब कड़ी Ѡनदंा हҰ कर रहे हो |
OAG CAG चोरो कҴ सरकार से आज़ादҰ Ѡमल गया |

Table 11: Example of Sentence predicted to different class

7 Conclusion

In this paper, we have presented the system that we developed as part of our participation
in the shared task. We have developed a supervised ensemble approach for detecting the ag-
gression. As base classification algorithm we use CNN and SVM. We evaluate the algorithms
for two languages, namely English and Hindi. Datasets of two different kinds of domains were
considered: textual posts and the comments made on social media platforms. Since the LSTM
model did not perform well in our experiments, it would be interesting to see how the network
fares when an attention mechanism will be deployed. As in many of the overtly and covertly
aggressive instances named entity is often seen especially with ’#hashtags’, it would also be
interesting to see that extracting NER feature from the data whether having any significant
impact. In future, we would like to explore some other relevant linguistic features and hybrid
machine learning architectures to improve the performance of the system further.
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Abstract

The system presented here took part in the 2018 Trolling, Aggression and Cyberbullying shared
task (Forest and Trees team) and uses a Gated Recurrent Neural Network architecture (Cho et al.,
2014) in an attempt to assess whether combining pre-trained English and Hindi fastText (Mikolov
et al., 2018) word embeddings as a representation of the sequence input would improve classi-
fication performance. The motivation for this comes from the fact that the shared task data for
English contained many Hindi tokens and therefore some users might be doing code-switching:
the alternation between two or more languages in communication. To test this hypothesis, we
also aligned Hindi and English vectors using pre-computed SVD matrices that pulls representa-
tions from different languages into a common space (Smith et al., 2017). Two conditions were
tested: (i) one with standard pre-trained fastText word embeddings where each Hindi word is
treated as an OOV token, and (ii) another where word embeddings for Hindi and English are
loaded in a common vector space, so Hindi tokens can be assigned a meaningful representation.
We submitted the second (i.e., multilingual) system and obtained the scores of 0.531 weighted
F1 for the EN-FB dataset and 0.438 weighted F1 for the EN-TW dataset.

1 Introduction

This paper details a system demonstration for the 2018 Trolling, Aggression and Cyberbullying shared
task (Kumar et al., 2018). The challenge was to provide a system capable of predicting the true class of
a social media post which would be either one of (i) Non-Aggression (NOAG), (ii) Covert Aggression
(CAG), or (iii) Overt Aggression (a multi-class but not a multi-label text classification problem). The
shared task had two datasets available, one in English and another in Hindi, that were split into test /
validation subsets. Systems were benchmarked against two datasets, one sourced from facebook (FB)
and another from twitter (TW) for each language (EN or HI).

Despite the fact that data was divided by language, we noticed that some Hindi vocabulary appeared in
the English data. This raised an interesting question. Could such vocabulary be conveying information
regarding the aggressive or polite nature of the content? Considering words from other languages as
mere noise could have unwanted consequences, as they could be instances of code-switching: situations
in which terms from two or more languages are used in a message to better convey the speaker’s intent.
For example, by mixing Spanish and English, a speaker who says ‘La onda is to fight y jambar’ means
something similar to ‘The in-thing is to fight and steal’ (Woolford, 1983). In these cases, understanding
the switched word (in this case, ‘fight’) is essential to understand the sentence’s meaning.

Against this background, we have decided to test the following hypothesis. Does the inclusion of
word representations from other languages (say, Hindi) increase the classification score of a given shared
task’s dataset? Although this is applicable to both English and Hindi datasets, we decided to focus our
experiments on the English one. This is partially due to time / effort reasons and logistics around the
registration for having access to the data.

To test our hypothesis, we used a classification pipeline that would run two conditions. In the single
language condition we simply regarded foreign (Hindi) words as OOV tokens. In the multi language
condition, we aligned English and Hindi fastText (Mikolov et al., 2018) vectors via SVD matrices that
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pull representations from different languages into a common space (Smith et al., 2017). We will discuss
some of the background behind these decisions in the next section.1

2 Related Work

2.1 Out-of-Vocabulary information
The idea behind using the meaning of words from different languages to improve classification results is
somewhat similar to the motivation for capturing emoticons and misspellings in text classification tasks.

The use of emoticons in text classification has been extensively discussed in sentiment analysis
(Hogenboom et al., 2013; Hu et al., 2013; Mozetič et al., 2016; Novak et al., 2015; Thelwall et al.,
2010; Zhao et al., 2012). Some have defended that the use of emoticons as a cue for sentiment analysis
of tweets results in better accuracy compared to using the linguistic text alone (Hogenboom et al., 2013;
Hu et al., 2013). Although emoticons tend to be a better indicator for an overall negative tweet than a
positive one, their meaning depends on the context, therefore they do not always act as a direct indicator
of emotions (Tian et al., 2017).

Building on this literature, we assumed that emoticons could be indicators of the aggression level of a
specific social media post. Borrowing from previous work (Eisner et al., 2016), we have generated em-
beddings for emoticons based on their unicode descriptions and used these representations (Emoji2Vec)
in our classification pipeline.

These are not the only out-of-vocabulary signal that might improve classification results discussed
by the literature. Given that online abuse unfortunately happens frequently, companies that manage
message boards started employing automatic detection methods in order to prevent abuse from happening
in message boards and social media platforms. Because these detection mechanisms initially relied on
a list of offensive words that would ban posts to be published, many users have changed their writing
style in order to bypass such forms of abuse prevention. For example, a message containing ‘kill yourself
asshole’ would be changed into ‘kill yrslef a$$hole’. Given that this type of intentional misspelling is
very hard to predict or blacklist and yet fundamental to the abusive nature of the message, our system
needs to be robust against this kind of stylistic variation (Nobata et al., 2016).

Dense word embeddings, such as Word2Vec (Mikolov et al., 2013b) and Glove (Pennington et al.,
2014), have been used as the de facto representations for the meaning of words in complex NLP pipelines.
However, these representations do not incorporate information about meaning at the sub-word level,
which means that we either get the vector for a word if it exists in the vocabulary, or some random (or
zero based) representation. As a consequence, using pre-trained Word2Vec or Glove representations
would not allow to capture the kind of creative misspelling just mentioned (e.g. ‘a$$hole’ would be
considered an OOV token). To bridge this gap, a new type of representation has been motivated, namely
fastText (Mikolov et al., 2018). The main advantage of this type of model is that it allows the retrieval of
vectors for character n-grams in a way similar to word lookups. This means that we can devise a method
for retrieving the vector of a systematically misspelled word by exploring its character level embeddings.

In conclusion, the discussion in this section motivates a better treatment of two forms of OOV tokens:
(i) emoticons and (ii) systematically misspelled words. We will discuss how both are captured in our
system when defining the classification pipeline.

2.2 Text Classification Architecture
In order to solve the classification challenge set out by the shared task, we need to employ some super-
vised machine learning model. Recurrent Neural Networks have been considered a natural match for
sequence modelling because they output a probability distribution over the next element of the sequence
given the current one) (hence a candidate for capturing sentence meaning). Despite of this, some (Bengio
et al., 1994) have showed that they are difficult to train because their gradients tend to vanish or explode.

In order to avoid these problems, Cho et al (Cho et al., 2014) proposed a unit whose activation em-
ploys gating functions that determine whether the hidden states should be updated or reset. This allows
the network to adaptively ‘forget’ irrelevant aspects of the data and ‘remember’ long term information.

1The implementation of this experiment is available at https://github.com/tgalery/geiger, see notebooks.
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They proposed this technique in the context of machine translation, but they also showed that the pro-
jected embeddings learned by the network captured semantic and syntactic relationships of phrases and
sentences (Van Der Maaten, 2013). Therefore, we decided to employ a GRU network for text classifi-
cation, as the target class might depend on phrasal-like aspects of meaning (for example, an aggressive
word’s meaning could be neutralised under the scope of negation).

3 Methodology and Data

3.1 Classification pipeline

Our general classification pipeline is defined as follows. After tokenization and preprocessing, the token
sequence would be passed to a token identifier, which would determine whether the token is (i) an
emoticon, (ii) a foreign (Hindi) token, or (iii) a standard (English) token.

Emoticons would be assigned a vector by averaging the vectors of the tokens of its unicode descrip-
tion. The treatment of foreign tokens would be split into two conditions: (i) an OOV vector (Single
Language Condition), (ii) aligned fastText vector (Multi Language Condition, to be detailed below). Fi-
nally, standard (English) tokens would be processed as follows. If a embedding could not be found for a
word, we would generate character trigrams from it and average the character-level vectors. In summary,
the processing pipeline would look like this.

Figure 1: Text Pipeline

The token sequence would then be padded and clipped to maximum length of 200 tokens. Then, each
token would be then mapped to its corresponding word embedding given the details above (Embedding
Layer). This layer is followed by a 1D spatial dropout layer (value is 0.2), which is then piped into a
Bidirectional Gated Recurrent Unit layer. This layer is then followed by a pooling layer that concatenates
an 1D global average pooling and global max pooling. This would then be finally fed into a Dense
layer whose dimensionality corresponds to the number of classes defined by the task: Non-Aggression,
Covert-Aggression, and Overt-Aggression and whose activation is softmax. We selected the class with
the maximum probability as the output. The model used categorical cross-entropy and Adam as an
optimizer and was trained for 10 epochs. Schematically, we have:
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Figure 2: Network Architecture

3.2 Aligning Multi Lingual Vectors

At this point, it is important to discuss the alignment process to embed pre-trained English and Hindi
embeddings within a single space. Combining pre-trained fastText word embeddings from English and
Hindi generates a problem. Since they were trained by different corpora, the word distribution in each
model does not necessarily align with the word distribution of similar words in the other model. In
our previous example of code-switching, ‘La onda is to fight y jambar.’, we would like for the word
embedding corresponding of ‘fight’ to be very similar to the word embedding of its Spanish counterpart
(namely, ‘luchar’), but that is not something that is guaranteed by our use of the pre-trained vectors.

To bridge this gap, we have borrowed from a technique that uses a Singular Value Decomposition
(SVD) to learn a linear transformation capable of aligning difference vector spaces (Smith et al., 2017).
This ‘offline’ way to project word embeddings contrasts the ‘online’ way in which embeddings from
multiple languages are learnt together via bilingual corpora of aligned sentences (Mikolov et al., 2013a).

Building on previous work (Xing et al., 2015), Smith et al. (2017) argue that Mikolov’s linear trans-
formation is an orthogonal matrix (mapping a vector from source to target language should allow you to
map that target vector back and obtain the original representation). To infer the orthogonal matrix, they
form two ordered matrices XD and YD from a bilingual dictionary (obtained via google translate), such
that the ith row of both matrices corresponds to the source and target language word vectors of the ith
pair in the dictionary. This allows SVD to be applied to both matrices (multiplying the transpose of one
by the other) maximising the cosine similarity of translation pairs in the dictionary.

This somehow makes the meaning of ‘fight’ and ‘luchar’ in our example above to be more similar than
they otherwise would be. We did not learn the orthogonal transform ourselves, but instead relied on a
pre-learned representation built on top of fastText embeddings made available by Babylon.2. Thus, for
the multi language condition, the fastText embeddings for English and Hindi were aligned after being
loaded, making our embedding matrix consistent for both languages.

4 Results

With regards to our hypothesis, we did not find any striking difference between multi (weighted F1 0.58)
and single language conditions(weighted F1 0.554) using validation data as a benchmark.

2Obtained through https://github.com/Babylonpartners/fastText_multilingual
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There are multiple reasons for this. First, it could be that the foreign (Hindi) tokens were not indica-
tive of the aggressive nature of the content. Another possibility is that the SVD method for aligning the
geometry of embeddings in different languages did not provide good enough representations. In hind-
sight, we realized that the number of Hindi tokens that occur as part of the English dataset is too low,
suggesting that code switching in not a deep characteristic of the data.

We were curious to see how our system would perform against others in the shared task, so we sub-
mitted results from the multi lingual version, taking the 24th place in the shared task’s leaderboard. The
results (and confusion matrices) were the following:

System F1 (weighted) EN-FB F1 (weighted) EN-TW
Random Baseline 0.3535 0.3477
Multi Lingual Pooled GRU 0.5315 0.4389

Table 1: Results for the English (Facebook) task and English (Social Media) task.
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For the facebook dataset it seems that the system provides much better answers than a random baseline.
Looking at the confusion matrix it seems that our classifier is more comfortable with overt aggression
and fairs worse with distinguishing covert aggression from non aggressive content.

5 Conclusion

It seems that for the shared task’s dataset, the use of aligned multi lingual vocabulary did not improve
the classification results. We do feel that our hypothesis has not been completely invalidated though. It
would be interesting to test it against a dataset with more systematic forms of code-switching in order to
draw better conclusions.

With regards to the architecture, we felt that the model had a problem when distinguishing between
overt aggression and non aggression. Given this limitation, a better solution would involve a combination
of two binary classifiers: (i) one distinguishing aggressive from non aggressive content and (ii) another
distinguishing covert from overt types of aggression.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.
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10(12):e0144296.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. 2017. Offline bilingual word vectors,
orthogonal transformations and the inverted softmax. arXiv preprint arXiv:1702.03859.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. 2010. Sentiment strength detec-
tion in short informal text. Journal of the Association for Information Science and Technology, 61(12):2544–
2558.

Ye Tian, Thiago Galery, Giulio Dulcinati, Emilia Molimpakis, and Chao Sun. 2017. Facebook sentiment: Re-
actions and emojis. In Proceedings of the Fifth International Workshop on Natural Language Processing for
Social Media, pages 11–16.

Laurens Van Der Maaten. 2013. Barnes-hut-sne. arXiv preprint arXiv:1301.3342.

Ellen Woolford. 1983. Bilingual code-switching and syntactic theory. Linguistic inquiry, 14(3):520–536.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embedding and orthogonal transform
for bilingual word translation. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1006–1011.

Jichang Zhao, Li Dong, Junjie Wu, and Ke Xu. 2012. Moodlens: an emoticon-based sentiment analysis system
for chinese tweets. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1528–1531. ACM.

79



Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, pages 80–89
Santa Fe, USA, August 25, 2018.

A K-Competitive Autoencoder for Aggression Detection in Social Media
text

Promita Maitra
Mumbai, India

promita.maitra@gmail.com

Ritesh Sarkhel
Ohio State University

Columbus, Ohio
sarkhel.5@osu.edu

Abstract

We present an approach to detect aggression from social media text in this work. A winner-
takes-all autoencoder, called Emoti-KATE is proposed for this purpose. Using a log-normalized,
weighted word-count vector at input dimensions, the autoencoder simulates a competition be-
tween neurons in the hidden layer to minimize the reconstruction loss between the input and
final output layers. We have evaluated the performance of our system on the datasets provided
by the organizers of TRAC workshop, 2018. Using the encoding generated by Emoti-KATE,
a 3-way classification is performed for every social media text in the dataset. Each data point
is classified as ‘Overtly Aggressive’, ‘Covertly Aggressive’ or ‘Non-aggressive’. Results show
that our proposed method is able to achieve promising results on some of these datasets. In this
paper, we have described the effects of introducing an winner-takes-all autoencoder for the task
of aggression detection, reported its performance on four different datasets, analyzed some of its
limitations and how to improve its performance in future works.

1 Introduction

With the rapid growth of unregulated social media platforms, a major problem coming to surface is the
aggressive nature of text used by people while interacting in these mediums. Manual monitoring or filter-
ing of this user generated data is a challenging task due to its sheer scale. Therefore, automatic detection
of aggressive text is the logical first step to combat the issue. There has been an increased interest among
contemporary researchers to propose an acceptable solution of this problem in recent years. However,
proposing an automated solution for this problem has some inherent obstacles. One of the most chal-
lenging obstacles among this to annotate these texts with an appropriate sentiment score. Social media
texts are almost always short in length, and exhibit ambiguous grammatical syntax including abbreviated
forms, typo errors, repeated alphabets to emphasize intentions as well as coinage of new words. Addi-
tionally, detecting aggression on social media posts or comments is especially challenging due to its lack
of context. Almost all of these posts are provide very little to no context. Detecting common ‘hate-words’
using a bag-of-words analysis does not work in these cases as conventionally non-aggressive words can
be deemed aggressive when used sarcastically.

In this paper we have proposed Emoti-KATE, a winner-takes-all autoencoder for representing social
media text. Performance of our autoencoder is evaluated on a downstream task of classifying the text
based on its aggression level. We have broadly categorized a social media post or comment into one
of three categories: Overtly Aggressive, Covertly Aggressive and Non-Aggressive. In recent times, re-
searchers (Socher et al., 2011b; Hermann and Blunsom, 2013; Chen and Zaki, 2017) have established
that autoencoders can be effectively used to learn representations of document text for various applica-
tions. However, they have some inherent limitations. As Chen et al. (Chen and Zaki, 2017) has pointed
out, in a traditional autoencoder, contributions of most of the hidden neurons in reconstructing the input
vector are often redundant. They have shown that introducing competition among these hidden neurons
can help get rid of these redundancies. The output vectors generated by such winner-takes-all approach

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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outperform most of the popular, contemporary document representation techniques as well. Inspired by
their success, we have taken a similar approach in this work. Emoti-KATE introduces a K-competition
layer between the input and output layers to generate the vector representation of each social media text.
We have evaluated the performance of our approach on a dataset of 15,000 aggression-annotated Face-
book posts and comments each in Hindi (in both Roman and Devanagari script) and English. After basic
preprocessing on the raw data1, the winner-takes-all autoencoder is deployed with a log-normalized vec-
tor at its input dimensions. Results show that while our system’s performance is promising in case of
English texts (weighted F1 score of 0.5694), the classifier has much scope of improvement for Hindi
texts (weighted F1 score of 0.4189). The main contribution of this work is an exhaustive investigation
into the performance of K-competitive autoencoders (Chen and Zaki, 2017) in identifying aggression
level in short, sparsely contexualized social media posts and comments. Our experimental result sug-
gests that introducing a competitive hidden layer in a autoencoder framework improves the performance
of aggression detection in sparse social media texts. A complete pseudocode of our system is presented
in Algorithm 1.

The rest of the paper is organized as follows: Section 2 gives a brief overview of the work already
done in this field. Section 3 describes the details of the dataset, preprocessing steps and the system we
have used to address the problem. Section 4 presents the analysis of results and finally, the conclusion
and future scopes are discussed in Section 5.

2 Related Work

Automatically detecting cyber-bullying and use of hate speech from textual analysis has gained momen-
tum with the rise of increasing amount of user-generated content on web. Most of the research works
have considered this to be a binary classification problem, i.e. aggressive or non-aggressive. The set of
features that has been widely used by contemporary researchers Schmidt and Wiegand (2017) includes
various word-level and character-level features including n-grams, usage of punctuations, capitalization,
and token-length. Some recent approaches have also proposed sentiment polarity detection, using lexical
resources available in web along with bag-of-words, and linguistic features such as POS tagging, de-
pendency parsing, knowledge-based feature extraction using ontology information etc. for this purpose.
To solve the problem of context sparsity, researchers have proposed some word clustering techniques as
well as meta-data analysis including user-profile analysis, and user-activity history analysis etc. How-
ever, most of these existing works have some strong assumptions inherent to their systems. For example,
in Dinakar et al. (2011) the authors assumed that an aggressive post in social media can primarily be
about one of the few topics, which include physical appearance, sexuality, race and culture, and intel-
ligence. They trained a multi-class classifier for identifying texts on these topics and individual binary
classifiers to subsequently classify whether the text covered one of the topics mentioned above. Features
such as TF-IDF, presence of swear words, frequent bigrams, and topic-specific n-grams were used to
train the classifiers. Dadvar et al. (2013) followed a similar approach and introduced user-profile specific
meta-data (separate classifiers based on user gender), which helped them to improve the precision of their
system. Nahar et al. (2012) extracted semantic features using Latent Dirichlet Allocation (LDA) along
with lexicon features, TF-IDF values and second-person pronouns to train a Support Vector Machine for
classification purposes. Sentiment analysis technique was leveraged to detect cyberbullying in a Twitter
dataset by Xu et al. (2012). They used Latent Dirichlet Allocation to identify the most frequent topics in
tweets that exhibited signs of bullying. Semi-supervised approaches with bootstrapping have also been
proposed in recent years (Schmidt and Wiegand, 2017). While there have been many significant research
contributions in this area, most of them considered the problem of aggression detection as a binary clas-
sification task, i.e., each text was to be classified either as aggressive or non-aggressive. Malmasi and
Zampieri (2018) is one of the early works that has taken a different approach. In their work, every social
media text is classified into three categories, hate speech, aggressive text and neutral. They argued that as
general profanity is an unavoidable part of social media posts due to their unregulated nature, our efforts

1we observed that ‘hashtags’ carry significant information in social media text and the segmentation improved our prediction
score on validation set by 3% to 5%
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should focus on distinguishing profanity from hate speech that targets an individual or a group. They
have used a single as well as ensemble classifiers with stacked generalization for this purpose. Their
feature set includes n-grams, skip-grams and clustering-based word representations.

With the evolution of deep neural network (DNN) based models for natural language analysis, there
has been some works using leveraged DNN models for this purpose as well. For example, Mehdad
and Tetreault (2016) have proposed a Recurrent Neural Network based Language Model approach with
character n-gram feature for this task to overcome the challenge of scarcity of large-scale dataset. Zhao
et al. (Zhao and Mao, 2017) have recently proposed a semantically enhanced marginalised denoising
autoencoder for detecting cyberbullying on social media text. In this work, they have extended a stacked
denoising autoencoder with semantic dropout noise and sparsity constraints. Contrary to these methods,
we have used a shallow autoencoder in Emoti-KATE. Following the work of Chen and Zaki (2017), we
have introduced a K-competition layer in our framework to tackle the problem of data sparsity and little
contextual information in these texts. This layer reduces the redundancy of reconstructed input patterns
in the respective contributions of hidden neurons to the final output layer. The main contribution of our
work is an exhaustive investigation of winner-takes-all autoencoder framework in detecting aggression
level in sparse social media texts. Our model has been evaluated on datasets collected from Facebook
and Twitter, in both Hindi and English languages.

Algorithm 1: K-competitive Autoencoder
Input: Training set (Dtrain), Test set (Dtest)
Output: Feature vectors (Vtest) of Dtest

Initialize Otest ← Φ . Otest ←Autoencoder output vectors for Dtest

for each document dε{Dtrain ∪Dtest} do
Compute input vector vd

end
W
′ ← training(Vtrain)

Otest ← tanh(W
′
Vtest + b) . Vtest ← Input vectors of Dtest

return Otest

procedure training: . Vtrain ←Input vectors for Dtrain

Forward propagate z = tanh(WVtrain + b)
Apply K-competition on activations z

′
= K-compete(z)

Compute error, back-propagate and iterate until convergence
return W ;

3 Methodology and Dataset

A K-competitive autoencoder for aggression detection in social media text is proposed in this work. A
detailed description of the dataset, some of its interesting characteristics and our approach towards this
task will be presented in this section.

3.1 Description of the dataset
The aggression-annotated dataset used in this shared task(Kumar et al., 2018a) has been collected and
prepaed by Kumar et al. (2018b). Collecting approximately 18k tweets and 21k facebook comments
from social media users in India, they used Crowdflower, a crowd-sourced platform to annotate the
entire dataset.2 This dataset is code-mixed i.e., it contains text in English and Hindi (written in both
Roman and Devanagari script). A total of 3 top-level and 10 level-2 tags were assigned to the entire
dataset. In this shared task, we have only considered the top-level tags, which are as follows: ‘Overtly
Aggressive’, ‘Covertly Aggressive’, and ‘Non-aggressive’. The organizers of TRAC 2018 have divided

2Interested readers can find more details about the data collection methods used to compile this dataset in Kumar et al.
(2018b).
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Figure 1: An illustration of competition among the hidden neurons in Emoti-KATE; The hidden
layer shows only one of each positive and negative neurons are selected as the winners out of the
six neurons competing to contribute to the output layer; All of the neurons in input, hidden and
output layers are fully connected but not shown in this figure for ease of interpretation

this dataset into a number of smaller datasets based on their origin (social media platform from where
it was collected) and language. This resulted in 4 different datasets for this task, which are as follows,
English-Facebook dataset, English-Social Media dataset, Hindi-Facebook dataset, and Hindi-Social Me-
dia dataset. We have evaluated and reported the performance of Emoti-KATE in Section 4, for each of
these datasets.

3.2 Preprocessing steps
Depending on the dataset, each document undergoes a number of preprocessing steps. The stopwords
were removed first. Then, the documents were stemmed using Porter Stemmer. We have used the NLTK
library for both of these steps. Next, each document representing a post in Twitter was further processed
as the ‘hashtags’ used along the normal text were further segmented into meaningful words. For example,
”#savethegirlchild” is segmented into four distinct words ”save”, ”the”, ”girl”, and ”child” at the end of
this step. If there are multiple such meaningful segmentations possible, all of these combinations are
generated. The segmented words generated by this process is then appended to the rest of the text in
the document, in the order they appeared in the original ‘hashtag’ itself. We have used data-driven
exhaustive search within the Brown corpus (Marcus et al., 1993) for this purpose. Split points are
decided by iteratively searching for every possible combination of meaningful words within the corpus.
The split points that produced the highest percentage of meaningful words are considered to be a possible
segmentation of the ‘hashtag’. We observe that although this strategy of handling ‘hashtags’ provides
the highest recall, it is very slow. Additionally, for social media platforms such as Twitter where the
maximum number of characters is limited and a significant number of posts use code-mixed data, this
strategy do not work very well.

3.3 Description of Emoti-KATE
Autoencoders (Vincent et al., 2008) are neural networks tasked to reconstruct an input vector by mini-
mizing the loss between the input and the final output layer. In recent years, it has been successfully used
to extract features encoding text data (Socher et al., 2011a; Li et al., 2015; Yang et al., 2017). We have
used a K-competitive autoencoder, called Emoti-KATE in this work. Contrary to a traditional shallow
autoencoder, a K-competitive autoencoder (Chen and Zaki, 2017), introduces a competition layer among
the hidden neurons. It has been shown in Chen and Zaki (2017), when encoding a sparse text document,
this competition among hidden neurons helps get rid of the redundancy contributed by some of the hid-
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den neurons in the final encoding. In the K-competitive layer, neurons compete among themselves for the
right to respond to the input vector, therefore focusing more on unique and important patterns in the input
data. Complete pseudo-code of the K-competitive encoder used in this work is presented in Algorithm 1.
Emoti-KATE is a shallow autoencoder, with a single competitive hidden layer. Let, xε Red denotes the
d-dimensional input vector of the autoencoder. The objective of this autoencoder is to reconstruct x at
the output layer. Let, h1, h2, ....hn denotes the neurons at the hidden layer. The weights between the
input-to-hidden layers and hidden-to-output layers are tied together. Therefore, if W ε Red×n represents
the input-to-hidden layer weight matrix, W T ε Ren×d will denote the weight matrix between hidden-to-
output layer. We have used tanh(x) = e2x−1

e2x+1
as the activation function between the input-to-hidden layer

and sigmoid function f(x) = 1
1+e−x as the activation function between hidden-to-output layer in our

implementation.

Input vector Description
X1 Word-counts weighted by sentiment-score
X2 X1 augmented with character-case information
X3 X2 with ‘hashtags’-segmented into unique words

Table 1: A brief overview of the input vectors used in our implementation

In this work, we have experimented with three different input vectors. A brief overview of how
these input vectors are computed is presented in Table 1. As mentioned, the first representation (X1)
denotes a weighted word-count vector of the document. Each word count is weighted by the sentiment
score for that word. We have used the sentiment analysis module embedded in nltk3 for this purpose.
The second input vector representation (X2) appends X1 with character-case statistics of the document.
More specifically, X1 is appended with a vector C = c1c2c3 of length 3, where c1, c2 and c3 denote
the number of lower, upper, and camel case words in the document. Finally, the last input vector (X3)
follows the same steps as X2, except one preprocessing step. The main difference between X2 and X3

is based on how they process ‘hashtags’ in a document. In case of both X1 and X2 they are treated as
distinct, individual words, whereas X3 takes a different approach. Each ‘hashtag’ in the document is
segmented into distinct meaningful words. The steps followed for this purpose has been described in
Section 3.2. Following the implementation by Chen et al. (Chen and Zaki, 2017), each input vector was
log-normalized before it is fed into the autoencoder. The training and encoding steps of Emoti-KATE
have been shown in Algorithm 1. We have used cross-entropy loss to compute the backpropagation error
in our implementation.

The main difference of a K-competitive autoencoder from a traditional shallow autoencoder is a K-
competition hidden layer. As mentioned before, we have used a single K-competitive layer in this work.
In a K-competitive layer with n neurons, say h1, h2, ...hn, gradients flowing through only the top-K
neurons obtain the right to contribute to the output layer. In Emoti-KATE, this selection of K neurons is
performed based on the activation values of the hidden neurons. We select the top dK2 e positive neurons
and the lowest bK2 c negative neurons during each feedforward step. The rest of the n−K loser neurons
are zeroed out. To compensate for the loss of these neurons as well as to amplify the competition among
the neurons, the winner neurons are then rewarded. This means reallocating the loss of activations of the
loser neurons to the winners therefore amplifying them in the process. We have illustrated the workflow
of the K-competition layer in Fig 1. Activations from the hidden neurons with positive activations i.e., h2
and h3 are suppressed and their activations are reallocated to h1, essentially amplifying its contribution
to the output neurons. Therefore, the only positive neuron that contributes to the output layer in Fig. 1 is
h1, as h2, h3 → 0. α is called the amplification factor. It decides how much of the loser activations flow
through the winners. For example, if α > 2

K , gradients flowing through loser neurons are amplified,
whereas if α = 0, they are completely suppressed and Emoti-KATE effectively (Chen and Zaki, 2017)
turns into a K-sparse autoencoder (Makhzani and Frey, 2013). The same process is repeated for the
negative neurons too. Hidden neurons h4 and h5 are zeroed out and their activations are reallocated to

3https://www.nltk.org/api/nltk.sentiment.html
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Dataset Input
Vector

Description F1
(weighted)

English-FB

X1 wordcount (WC) + sentiment score (SC) 0.5431
X2 WC + SC + capitalization feature (CF) 0.5285
X3 WC + SC + CF + hashtag analyzer (HA) 0.5694

Random Baseline 0.3535

English-
Social
Media

X1 wordcount (WC) + sentiment score (SC) 0.3379
X2 WC + SC + capitalization feature (CF) 0.2884
X3 WC + SC + CF + hashtag analyzer (HA) 0.3191

Random Baseline 0.3477

Hindi-FB

X1 wordcount (WC) + sentiment score (SC) 0.3969
X2 WC + SC + capitalization feature (CF) 0.3911
X3 WC + SC + CF + hashtag analyzer (HA) 0.4189

Random Baseline 0.3571

Hindi-Social
Media

X1 wordcount (WC) + sentiment score (SC) 0.2668
X2 WC + SC + capitalization feature (CF) 0.3143
X3 WC + SC + CF + hashtag analyzer (HA) 0.3142

Random Baseline 0.3206

Table 2: Results of Emoti-KATE on experimental datasets

the negative winner neuron h6 with α amplification. As a result, h6 is the only negative neuron that
contributes to the output layer.

4 Results

In this section, we will evaluate Emoti-KATE in learning meaningful representations of social media text
in detecting aggression in four different social media datasets. All of our experiments were performed
on a 2.80 GHz Intel i7 with 32GB RAM. We have used Keras4, a high level neural network library for
implementing the autoencoder. In our implementation for Emoti-KATE, we have closely followed the
design choices by Chen et al.5 (Chen and Zaki, 2017).

The system was evaluated on the basis of weighted macro-averaged F-scores. The individual
F-score achieved for class i.e., Overtly Aggressive (OAG), Covertly Aggressive (CAG) and Non-
Aggressive (NAG) was weighted by the proportion of the concerned class in the test set and the final
F-score is the average of these individual F-scores of each class. Our system achieved best result for
English Facebook texts and the lowest score was in Hindi Twitter data. A detailed description of the
results for each dataset has been provided below. The best performance achieved by Emoti-KATE for
each of these datasets has been highlighted in the respective tables. The best performance achieved by
randomly assigning class labels (random baseline) for each of the datasets have also been reported.

4.1 Results on the English-Facebook dataset

Our system performed best in English Facebook texts with a weighted F1 score of 0.5694 for the input
vectorX3, i.e., the input vector that considered Sentiment Score weighted Word Count vector augmented
with capitalization feature and ‘hashtag’ analyzer. The primary reason of our system performing better
on this particular dataset is the length of the texts. Typically, texts present in this dataset were longer
offering more context, resulting in a less sparse vector which ultimately improved the performance of
the classifier. Performance of Emoti-KATE on this dataset, for three different variations of input vec-
tors is presented in Table 2. We have also reported a class wise performance analysis for the best per-
formance (X3) of our system in Table 3. A heatmap representing the confusion matrix of this run is
presented in Fig. 2.

4https://github.com/keras-team/keras
5https://github.com/hugochan/KATE
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Class Precision Recall
OAG 39.216 39.216
CAG 33.803 22.967
NAG 72.063 80.639

Table 3: Class-wise distribution of
Precision and Recall for the best
result observed (X3)
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Figure 2: Heatmap of the confusion matrix for
our best result observed (X3)

4.2 Results on the English-Social Media dataset

Even though our approach achieved promising score in one of the English datasets, for the English social
media (Twitter) dataset, it has significant scope of improvement. The best run for this dataset could only
achieve a weighted F1 score of 0.3379. Two main reasons for this are as follows: (1) social media texts,
specially tweets consists of a lot of abbreviated forms, repeating characters in a word, newly coined terms
etc. which was not efficiently normalized, therefore not present during the training of the classifier, and
(2) length of the texts in this dataset was also very short which eventually resulted in sparse vectors.
Performance of our system for three different variations of input vectors has been described in Table 2.
We have also reported a class wise performance analysis for the best performance (X1) of our system in
Table 4. The heatmap representing a confusion matrix for this run is presented in Fig. 3.

For both the datasets in English, one interesting observation that came up from the confusion matrix
is that the system is biased towards the class NAG and this resulted in achieving higher recall in that
particular class (highest 80.639%).

4.3 Results on the Hindi-Facebook dataset

Similar to English, our system performs better in classifying Hindi Facebook texts than the social media
dataset (Twitter) by achieving a weighted F1 score of 0.4189, which is higher than the random baseline.
However, this dataset failed to score at par with the English dataset mainly due to the lack of good quality
sentiment lexicon resource in Hindi.

Performance of Emoti-KATE on this dataset, for three different variations of input vectors is presented
in Table 2. We have also reported a class wise performance analysis for the best performance (X3) of
our system in Table 5. A heatmap representing the confusion matrix of this run is presented in Fig. 4.

Class Precision Recall
OAG 43.137 6.094
CAG 35.319 20.097
NAG 43.46 87.371

Table 4: Class-wise distribution of
Precision and Recall for the best
result observed (X1)
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Figure 3: Heatmap of the confusion matrix for
our best result observed (X1)
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Class Precision Recall
OAG 46.988 32.32
CAG 46.379 72.881
NAG 31.944 11.795

Table 5: Class-wise distribution of
Precision and Recall for the best
result observed (X3)

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

117 222 23

86 301 26

46 126 23

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Heatmap of the confusion matrix for
our best result observed (X3)

4.4 Results on the Hindi-Social Media dataset

Similar to English-Social Media dataset, there is a lot of scope to improve the performance of our system
on the Hindi-Social Media dataset. We observed that unlike the English dataset, the inclusion of the
‘hashtag’ analyzer module did not improve the performance of this particular dataset. This is because
(1) ‘hashtags’ only consisted about 10 to 30 percent of the entire text on average which was not enough
to offset the performance for the entire text content, and (2) the ‘hashtag’ segmentation module did not
leverage a code mixed corpus to generate all possible unique segmentations for this dataset. Training
Emoti-KATE on sufficiently large code mixed corpus for ‘hashtag’ analysis as well as feature vector
generation mark some of the most significant future scopes of research. Performance of our system on
this dataset, for three different variations of input vectors is presented in Table 2. Similar to the rest
of the datasets, We have reported a class wise performance analysis for the best performance (X2) of
our system in Table 6 for this dataset also. A heatmap representing the confusion matrix of this run is
also presented in Fig. 5. We observe that our system is biased towards the class CAG in Hindi datasets.
Interestingly, highest recall values were obtained for the class CAG for both of the Hindi datasets in our
experimental setup.

We have compared our performance against two traditional approaches, a word2vec-based input vec-
tor, and an LDA-based input vector. We noticed an average improvement of 13.62% and 16.25% re-
spectively for Word2vec and LDA for all of our training datasets. To investigate the contribution of
the competitive hidden layer for the aggression detection task, we have also compared our performance
against a traditional variational autoencoder. We observed an average improvement of 19.47% across
all datasets. This boost in performance stems from the removal of redundant, confounding contributions
made by some of the hidden nodes which were removed by the competitive hidden layer. The differences
between output vectors reconstructed by a traditional autoencoder and Emoti-KATE has been illustrated

Class Precision Recall
OAG 37.586 23.747
CAG 33.424 64.829
NAG 32.727 15.254

Table 6: Class-wise distribution of
Precision and Recall for the best
result observed (X2)
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our best result observed (X2)
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Figure 6: An illustration of the differences between reconstructed output vectors by a traditional
Variational Autoencoder and Emoti-KATE

in Fig. 6 for better understanding. Additionally, downstream effects of this competitive layer is more
pronounced in our results due to the short length nature and contextual sparsity, often observed in social
media texts.

It was observed that the system failed to identify a few aggressive sentences mainly due to the absence
of a few words in our training vocabulary which contributed to the aggression score. To cite one example,
our system predicted the sentence ”Saala darpok. When he comes to south he comes with full security. He
makes early morning visit and runs away from backdoor :D” to be ’NAG’, while the correct classification
is ’CAG’. For English texts, we trained our system with standard dictionary words and common english
slangs, but code-mixed nature of dataset resulted in a decline in performance.

On the other hand, one can notice from the dataset specific precision-recall tables, that we achieved
promising result in case of texts which are covertly aggressive, such as ”I have seen rajamouli and
his brahman uncle cleaning toilet... and a dalit is head priest in tirupati...lol mahismati. .. this flim
also brahmanwadi agenda...bahubali got poonool..99.99% PRAJA are shudra. ..” or ”Or hum ne 1971
se 2017 tak 90k se zeyada tumaray soldiers mar diye”. Even though these sentences do not explicitly
contain any word which can generally be tagged as aggressive, our system was able to detect the sense
unlike the traditional autoencoder which tagged these as non-aggressive. While the traditional variational
autoencoder failed to capture this category of texts successfully, the introduction of competitive hidden
layer helped us achieve a better precision for ’CAG’ tagged texts across all domains owing to the removal
of loser neurons’ contribution as shown in 6.

5 Conclusion

We have proposed an approach for aggression detection from social media text in this work. Using the
feature vectors generated by Emoti-KATE, a shallow winner-takes-all autoencoder, a 3-way classification
was performed on the experimental datasets, classifying each data point as ‘Overtly Aggressive’ (OAG),
or ‘Covertly Aggressive’ (CAG) or ‘Non-aggressive’ (NAG). One of the main challenges of this task
was identifying Covertly Aggressive texts. We observed that distinguishing CAG from the rest of the
categories (especially NAG) is a difficult task. Handling code switch and transliteration in the Hindi
datasets as well as presence of out-of-domain test data in the Social Media datasets made this task
more challenging. Results show that our method is a little biased towards the class NAG for English
datasets, and the class CAG for the Hindi ones. We also observed that NAG and CAG classes formed
the largest set of accurately6 classified categories in English and Hindi datasets respectively. Although
we have achieved promising results for the English datasets, the performance on Hindi datasets can be
significantly improved in future works. Using appropriate Hindi corpus for sentiment scoring, training
our model on English-Hindi code-mixed data as well as readily available out-of-domain datasets may
help achieve better performance than the present system. Additionally, instead of a shallow autoencoder
like Emoti-KATE, investigating the performance of competitive stacked denoising autoencoders is also
an exciting future endeavor.

6based on both precision and recall
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Abstract
With the advent of the read-write web which facilitates social interactions in online spaces, the
rise of anti-social behaviour in online spaces has attracted the attention of researchers. In this
paper, we address the challenge of automatically identifying aggression in social media posts.
Our team, saroyehun, participated in the English track of the Aggression Detection in Social
Media Shared Task. On this task, we investigate the efficacy of deep neural network models of
varying complexity. Our results reveal that deep neural network models require more data points
to do better than an NBSVM linear baseline based on character n-grams. Our improved deep
neural network models were trained on augmented data and pseudo labeled examples. Our LSTM
classifier receives a weighted macro-F1 score of 0.6425 to rank first overall on the Facebook sub-
task of the shared task. On the social media sub-task, our CNN-LSTM model records a weighted
macro-F1 score of 0.5920 to place third overall.

1 Introduction

The read-write web has enabled user-generated content on several online platforms. A major part of these
platforms is the social media websites. These websites facilitate social interactions by way of posting
comments and replying to comments submitted by other users. As with offline interactions, interactions
taking place online are subject to anti-social behaviours such as trolling, flaming, abuse, bullying, and
hate speech. With globally increasing internet penetration, which has enabled unprecedented access to
the web, the illusion of ’invisibility’ by web users has given rise to growing anti-social behaviour in
online spaces. Consequently, web users are exposed to mental, psychological, and emotional distress if
such behaviour goes unchecked.

In an attempt to make the web more civil, the automatic detection of content that contains or could
have the effect of abuse, aggression or hate speech on social media platforms has being an important task.
However, most accessible (with publicly available datasets) studies on automatic hate speech detection
has focused on Twitter. The shared task on aggression detection (Kumar et al., 2018a) aims to benchmark
classifiers developed for the automatic identification aggression in social media platforms by making
annotated data collected from Facebook available. The task is to develop a multi-class classifier that
could make subtle distinction among texts that belong to one of three categories: overtly aggressive,
non-aggressive and covertly aggressive.

Motivated by existing work that applies machine learning to the task of automatic hate speech detec-
tion, we investigate the effectiveness of models that rely on little or no feature engineering. The presence
of noisy content such as misspellings, acronyms, code-mixing, and incorrect grammar in social media
posts makes the extraction of linguistic features using Natural Language Processing (NLP) tools highly
error-prone. As a result, we experimented with linear (NBSVM with n-grams) and deep learning models
(CNN, LSTM, BiLSTM, and combinations thereof). The linear model serves as our baseline (hard to
beat) while we refine our deep learning models for this task. We aim to examine (1) the relationship be-
tween model complexity and effectiveness and (2) the dataset requirements in order to accurately detect
aggression in social media posts.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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In the rest of this paper, Section 2 outlines related work. Sections 3 and 4 present the data and our
methodology respectively. The results of our experiments are in Section 5 and we conclude in Section 6.

2 Related Work

The task of aggression detection in social media can be considered as a document classification task.
This task can also be sub-divided into binary classification or multi-class classification. In the context
of detection of aggressiveness, the binary classification would imply the presence or absence of some
anti-social phenomena such as abuse (Nobata et al., 2016) in a given example (abusive or not abusive).
Whereas in the multi-class scenario, specific types of anti-social behaviour are of interest (Waseem et al.,
2017) such as racism, sexism, hate speech, and bullying. It has been observed that contents which contain
anti-social phenomena are rare in a collection of social media posts. This usually leads to imbalanced
datasets where posts which lack the phenomena of interest are overwhelming. This problem is even
more pronounced in the multi-class scenario which leads to difficulty in learning discriminative features
by classifiers. In (Malmasi and Zampieri, 2018), it was concluded that subtle distinction between types
of anti-social behaviour: profanity and hate speech is a difficult task for machine learning classifiers. By
extension, it will be difficult to differentiate between overt and covert aggression. Also, (Davidson et
al., 2017) submits that posts that does not contain explicit aggressive words are likely to be difficult to
identify. This would be likely applicable to the covertly aggressive class in this study.

Acknowledging the cost of annotating data for hateful comments in social media, (Gao et al., 2017)
proposed a system that leverages the availability of unlabeled data. Their result shows improvement over
systems that rely only on manually annotated data. This approach is most related to our work.

The identification of aggression in social media is closely related to existing studies in hate speech,
abuse, and cyberbullying detection. Methods used to tackle these tasks as supervised classification
broadly falls into two. One approach is based on manual feature engineering. With the feature engi-
neering approach, extracted features serve as input to classic machine learning algorithms such as naive
bayes, logistic regression, support vector machines, and random forest (Schmidt and Wiegand, 2017;
Malmasi and Zampieri, 2017). The other approach is based on deep neural networks that automatically
learn features from input data. (Gambäck and Sikdar, 2017) employed convolutional neural networks to
classify hate speech and (Zhang et al., 2018) used a combination of convolutional neural network and
gated recurrent unit (GRU) for the same task.

Rather than rely only on the textual content of social media posts in identifying hate speech, (Qian et
al., 2018; Founta et al., 2018) investigated the use of metadata about the users or the posts. However, the
metadata may not be readily available from the social media platforms. In addition, this approach may
breakdown where a social media platform allows anonymous posting.

3 Data

In this section, we describe the datasets used in this work and the data augmentation strategy. Also, the
details of the pseudo labeling approach is presented.

Dataset We used the annotated data provided by the task organizers. The details of the annotation
procedure is in (Kumar et al., 2018b). The dataset consists of posts collected from Facebook. The posts
are related to entities (organizations, individuals or issues) in India. The dataset covers both English
and Hindi. We used the English part in this work. The dataset provides three high-level tagsets namely:
covertly aggressive, non-aggressive, and overtly aggressive. Each post is annotated with one of these
tagsets. The English dataset consists of 12000 training examples, 3001 development examples, 916 test
examples from Facebook, and 1257 examples from an undisclosed social media platform. On the training
set, the number of examples per class is unbalanced. The covertly aggressive class is approximately 34%
of the training examples; non-aggressive class is approximately 42% of the training examples and overtly
aggressive class is approximately 24% of the training examples. The minimum and maximum number
of tokens on the training set are 1 and 1200 respectively. We observed that the training set contains
redundant posts: different post ID but duplicate content.
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Data Preprocessing We used well-formed texts in our experiments. We lowercased all alphabetic char-
acters. We removed punctuation, digits, URL, repeated characters, non-English characters, alphanumer-
ics, and usernames. In addition, we decoded emoji(emoticons) into their text equivalents and transformed
hashtags into their constituent tokens where possible. To address misspellings, we used a spell-checker.

Data Augmentation and Pseudo Labeling A common technique to improve model generalization in
computer vision is to enlarge the dataset using label-preserving transformation(s) (Simard et al., 2003).
This is usually achieved via known invariant operations such as rotation and scaling of images in the
training set. Inspired by this technique, we simulate transformations by translating each example to an
intermediate language and back to English. We translated into four intermediate languages: French,
Spanish, German, and Hindi. We observed marginal increase in model performance using the four lan-
guages. Machine translation is known to yield conceptually equivalent output in a target language. We
used the Google Translate API for the translation. We rely on a weak notion of label-preserving trans-
formation for text by translating the original training text to an intermediate language and backtranslate
to English. We hypothesize that the translation into several intermediate languages will help diversify
our augmented training set in terms of different lexical choice using each of the intermediate languages
as a source language and English as the target language in the backtranslation phase. Even though the
process of translation and backtranslation is error prone, this procedure increases the size of our training
set by a factor of 5. The resulting augmented training set is highly interdependent. With this technique,
our DNN models outperform the linear baseline model.

One of the test sets provided by the shared task organizers for evaluation is data collected from an
undisclosed social media platform. In order to diversify our training examples, we used a related dataset
collected from Twitter for hate speech detection which is publicly available 1. There are two datasets with
a total of 22075 tweets (subject to change based on availability on the Twitter platform). We hypothesize
that the dataset contains the phenomenon we are interested in. So, we used the model with the highest
performance on the development dataset to label the Twitter dataset. The examples with the pseudo
labels were added to the original training dataset and our deep learning models were retrained.

4 Methodology

Our approach was to develop a baseline model and a number of deep neural network models. The models
as well as our submissions are presented in this section.

Baseline Model A support vector machine (SVM) model that uses naive bayes (NB) log-count ratio
features (NBSVM) is proposed in (Wang and Manning, 2012). NBSVM demonstrates consistent per-
formance across text classification tasks. We used the logistic regression classifier in place of the SVM.
We consider this model a strong linear baseline. We implemented two variants of the NBSVM model.
One based on word n-grams and the other based on character n-grams. We found the model based on
character n-grams superior on the development dataset for aggression detection. The character n-grams
NBSVM serves as our baseline based on which we compare our deep neural network models during our
experiments.

Input Representation The representation of inputs to the deep neural network models is the embed-
ding layer. The embedding layer encode each word in the vocabulary used in the model. We exper-
imented with different pre-trained word vectors for the embedding layer including word2vec, Glove,
SSWE, and fastText. We observed that the coverage of the pre-trained embeddings are limited. FastText
has the highest vocabulary coverage in our experiment (with about 5000 missing entires). Thus, instead
of using a pre-trained word vector file to look up the vector representation for each word, we used the
fastText pre-trained model (Mikolov et al., 2018) to infer the vector representation for each word in the
vocabulary of our model. This allows us to use the sub-word level information to derive vector repre-
sentation for words not in the vocabulary of the corpus (Wikipedia) on which the fastText model was
pre-trained. This facility is especially important for social media posts which usually contains typos and

1https://github.com/ZeeraKW/hatespeech
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abbreviations. In addition, we used a randomly initialized embedding which is trained with the network
to learn task-specific word representation. So, the input representation to our deep neural network models
is a concatenation of 300 dimensional word vectors derived from fastText model and a 50 dimensional
task-specific word vector.

Deep Neural Network Models We experimented with seven deep learning models for aggression
detection: CNN, LSTM, BiLSTM, CNN-LSTM, LSTM-CNN, CNN-BiLSTM, and BiLSTM-CNN. The
models are of varying complexity, with the combination of BiLSTM and CNN: CNN-BiLSTM and
BiLSTM-CNN being the most complex neural architecture. CNNs have being used for text classification
(Kim, 2014). CNN is able to learn features from words or phrases in different positions in the text.
LSTMs model long-term dependencies in text and has been found to be useful for text classification .
BiLSTMs consists of two LSTMs. One encode information in a sequence in the forward direction and
the other in the backward direction. The past and future information is available to the model in making
classification decisions. CNNs and (Bi)LSTMs are complementary in their modeling capabilities. Each
of CNNs and (Bi)LSTMs capture information at different scales. As such, we explored whether there
could be potential improvements in combining multiple information at different scales for aggression
detection. We explored passing the input representation into the CNN and feed the local features learnt
by the CNN into the (Bi)LSTM in the CNN-(Bi)LSTM model. Conversely, we also passed the input
representation into the (Bi)LSTM and fed the long-term features learnt by the (Bi)LSTM into the CNN
in the (Bi)LSTM-CNN model. The representations learnt by the CNN, (Bi)LSTM, and combinations
thereof serve as input to the fully-connected layer. The output of the fully-connected layer is a softmax
output (probability) which indicates the chance of belonging to each of the three classes. The class with
the highest probability is the predicted class.

In training our deep neural network models, we used the sparse categorical cross-entropy as our objec-
tive function. We chose the RMSprop optimizer to minimize the loss function through backpropagation
within 5 epochs. We used feature dropout and earlystopping as regularization mechanisms to avoid
overfitting. A spatial dropout (Tompson et al., 2015) probability of 0.2 was applied to the embedding
layer.

Submissions Our team, ’saroyehun’ submitted three systems for evaluation on the unseen test dataset.
Our first submission is the predictions obtained from the LSTM model. This model was trained using
the augmented dataset. The second submission uses the representations learnt by the CNN and LSTM in
the CNN-LSTM set-up. This submission was trained on the larger training set consisting of augmented
and pseudo labeled examples. In addition, we computed sentiment score for each example and used
the score as an additional feature to the representations learnt by the CNN-LSTM layers before making
predictions. The third submission is an ensemble of the predictions made by our deep neural network
models trained on (1) augmented data and (2) combination of augmented and pseudo labeled data, and
sentiment score for each post. The final predictions was obtained by majority voting.

System F1 (weighted) F1 (weighted)+ F1 (weighted)++

NBSVM 0.5116 0.5135 –
CNN 0.4989 0.5520 0.5741
LSTM 0.4940 0.5679 0.5561
BiLSTM 0.4714 0.5274 0.5776
CNN-LSTM 0.4702 0.5296 0.5822
LSTM-CNN 0.3679 0.5624 0.5729
CNN-BiLSTM 0.3839 0.5272 0.5573
BiLSTM-CNN 0.4836 0.5523 0.5440

Table 1: Weighted Macro-F1 Scores on the English Development set
+: Data Augmentation

++: Data Augmentation and Pseudo Labeling
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Figure 1: Confusion Matrix of the LSTM Predictions on the English (Facebook) Test Set

5 Results

This section shows the results obtained on the English development and the test datasets (Facebook and
Social Media) in terms of weighted macro-F1 scores.

In Table 1, the performance of the baseline model (NBSVM) and the DNN models are presented.
Using the training dataset as given for training, the NBSVM model achieves the highest performance.
The table shows the impact of data augmentation and pseudo labeling on the models. It can be observed
that using data augmentation, the performance gain on the NBSVM is very minimal (0.0019) compared
to the DNN models where the maximum performance gain of 0.1433 is observed on the LSTM model.
The combination of data augmentation and pseudo labeling results in slight performance improvement
on the DNN models except for the LSTM model. Overall, data augmentation results in approximately
5% weighted macro-F1 improvement on the development set over the NBSVM baseline model. Also,
the combination of data augmentation and pseudo labeling yields about 7% weighted macro-F1 gain over
the linear baseline model. Pseudo labeling gives a marginal improvement of about 2%. The substantial
gain in performance (about 5%) is from the introduction of data augmentation. These gains demonstrate
the effectiveness of the data augmentation approach and complementarity of pseudo labeling in our
approach. In addition, we experimented with and without the sentiment score as a feature. However, we
did not observe any substantial gain in performance.

Table 2 shows the performance of the outputs of the three systems we submitted for evaluation on the
Facebook test set. All our submissions are better than the random baseline score provided by the task
organizers. All our systems exhibit comparable performance; they are all within 0.05 F1 score of each
other. The LSTM model trained on the augmented training set achieved the best weighted macro-F1
score of 0.6425. This score ranks first on the shared task which attracted 30 submissions. It is clear that
a complex model (CNN-LSTM) does not necessarily give the best result. Figure 1 shows the confusion
matrix for our best system, the LSTM model. From the confusion matrix, one can see that the most
mistakes made by the model is on the non-aggressive class (NAG) in absolute terms; the model predicts
covertly aggressive (CAG) when the true label is NAG. However, in relative terms, the most difficult
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Figure 2: Confusion Matrix of the CNN-LSTM Predictions on the English (Social Media) Test Set

class for the model is the CAG. Here, the most mistakes result from the model predicting NAG where the
true labels are CAG. In addition, one can see that the model performs best on the NAG class followed by
the overtly aggressive class (OAG) and the least performance is recorded on the CAG class.

System F1 (weighted)
Random Baseline 0.3535
LSTM 0.6425
CNN-LSTM 0.6058
Ensemble 0.5897

Table 2: Weighted Macro-F1 Scores on the English (Facebook) Test set

Table 3 outlines the scores achieved by our systems on the surprise test dataset collected from an
unnamed social media platform. On this dataset, our CNN-LSTM model trained on the combination
of the augmented training data, and pseudo labeled Twitter data as well as sentiment score as a feature
received our best weighted macro-F1 score of 0.5920. This score places the system on an overall ranking
of third among 30 systems that participated in this track. In this case, a complex model aided by an out-
of-domain data is superior. In figure 2, the confusion matrix gives us an insight into how the CNN-LSTM
model performs on each class. It can be observed that the model made the most mistakes on the CAG
class; predicting OAG when the true class is CAG. The model performs best on the NAG class followed
by the OAG class and records the least performance on the CAG class.

Going by the performance trend observed in our results, the performance of our best model for each
track seems to reflect the distribution of examples per class in the original training set. One can see
that our models show better performance on classes with more training examples compared with classes
having lesser training examples. Also, it is unsurprising that even though the OAG class has the least
number of examples, the performance of our models on the OAG class is better than on the CAG class
which has more examples. The performance of the OAG class validates a previous finding that a post
which explicitly contains aggressive word(s) is easy to classify. Given our result, it is obvious that the
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System F1 (weighted)
Random Baseline 0.3477
LSTM 0.5400
CNN-LSTM 0.5920
Ensemble 0.5682

Table 3: Weighted Macro-F1 Scores on the English (Social Media) Test set

finding is true even when the category containing explicit word(s) is the minority class.

6 Conclusion

In this paper, we address the challenge of automatically detecting aggression in social media posts. We
developed a linear baseline classifier using NBSVM with character n-grams as features. We conducted
experiments with deep neural network (DNN) models of varying complexity ranging from CNN, LSTM,
BiLSTM, CNN-LSTM, LSTM-CNN, CNN-BiLSTM to BiLSTM-CNN. In order to do better than our
linear baseline using deep neural networks, we experimented with data augmentation, pseudo labeling,
and sentiment score as a feature. We observed the greatest improvement from our data augmentation
strategy. The improved DNN models were better than the linear baseline model on the development
set. Hence, for this task the DNN models require more data points than a non-DNN model (in this case
NBSVM). As our results show, a complex model does not necessarily bring performance improvement
on this task. The classifier based on LSTM received the best weighted macro-F1 score on the English
Facebook task. With a score of 0.6425 on the Facebook test set we rank first out of 30 submissions. The
CNN-LSTM classifier receives a weighted macro-F1 score of 0.5920 on the social media test set. With
this score, we achieved an overall ranking of third out of 30 teams that participated in the social media
track.

The performance trend of our models on the three classes shows that for both tracks, our models
performed best on the NAG class and least on the CAG class. This is consistent with previous work on
the nature of implicit offensive language. The trend reflects the distribution of examples per class in the
training set provided for this task. We see a better performance on classes with more training examples
and lower performance otherwise. A natural avenue for future work is the investigation of approaches to
improve performance on classes with minimal number of training examples.
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Abstract

Aggression and related activities like trolling, hate speech etc. involve toxic comments in various
forms. These are common scenarios in today’s time and websites react by shutting down their
comment sections. To tackle this, an algorithmic solution is preferred to human moderation
which is slow and expensive. In this paper, we propose a single model capsule network with
focal loss to achieve this task which is suitable for production environment. Our model achieves
competitive results over other strong baseline methods, which show its effectiveness and that
focal loss exhibits significant improvement in such cases where class imbalance is a regular issue.
Additionally, we show that the problem of extensive data preprocessing, data augmentation can
be tackled by capsule networks implicitly. We achieve an overall ROC AUC of 98.46 on Kaggle-
toxic comment dataset and show that it beats other architectures by a good margin. As comments
tend to be written in more than one language, and transliteration is a common problem, we further
show that our model handles this effectively by applying our model on TRAC shared task dataset
which contains comments in code-mixed Hindi-English.

1 Introduction

In today’s time, with an ever increasing penetration of social media, news portals, blogs, QnA forums,
and other websites that allow user interaction, users often end up inviting comments that are nasty, har-
rasing, insulting, toxic etc. This can have adverse effects on users, who then become victims of cyber-
bullying or online harrasment. An online survey carried out by the Pew Research Centre in 2017 states
that 4 in 10 Americans have personally experienced online harrasment. Strikingly, 1 in 5 Americans
have witnessed severe form of online harrasment like physical threats, stalking, sexual harrasment etc.
There are several challenges associated with solving this kind of problem. First being the problem of
class imbalance found in the dataset. Since such type of comments are sparse in nature, they introduce
skewness in the dataset. There are several ways to handle this problem, however, we choose a more
recent technique which modifies the standard cross entropy loss function known as Focal Loss (Lin et
al., 2017). We will briefly describe how it helps in improving classifier performance. The next problem
we want to address is that of data preprocessing. This is the most time consuming task and requires a
good understanding of the data. However, we wish to minimise this process so as to have a good model
with minimal preprocessing of the data.
Another frequently observed challenge is transliteration, which is often observed, especially, when we
are working with text data from social networking websites. Users tend to speak in more than one lan-
guage in the same statement. This leads to several out of vocabulary or OOV words for which the model
would not have any word embedding. We use randomly initialised word embeddings in such a case and
show how they can be trained during model training procedure such that it results in clusters of OOV
words which have similar meaning in Hindi. We propose to tackle all the above described challenges us-
ing a single model as opposed to ensemble of several other models, which is a common practice in such
competitive challenges. We also show that our proposed model can converge really quickly, hence the
model can be trained in lesser time. This is essential when the model has to be deployed in a production
environment where it requires retraining periodically.
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2 Related Work

Early works in automated detection of abusive language made use of basic machine learning like Tf-Idf
(Yin et al., 2009), SVM (Warner and Hirschberg, 2012), Naive Bayes, random forests, or logistic regres-
sion over a bag-of-ngrams and achieved limited success. Newer approaches include solving problems
using deep learning architectures like CNNs (Kim, 2014; Zhang et al., 2015; Conneau et al., 2017b; Park
and Fung, 2017) which just focus on spatial patterns or LSTMs which treat text as sequences (Tai et
al., 2015; Mousa and Schuller, 2017). Another popular approach completely ignores the order of words
but focuses on their compositions as a collection, like probabilistic topic modeling (Blei et al., 2003;
Mcauliffe and Blei, 2008) and Earth Movers Distance based modeling (Kusner et al., 2015; Ye et al.,
2017).
Recently Capsule Network (Sabour et al., 2017) has been used in text classification (Zhao et al., 2018).It
makes use of the dynamic routing process to alleviate the disturbance of some noise capsules which may
contain background information such as stop words and words that are unrelated to specific categories
and show that capsule networks achieves significant improvement over strong baseline methods. As we
focus to solve the problem of toxic comments and cyberbullying, we are confronted with the issue of
large class imbalance. We use focal loss (Lin et al., 2017) to tackle it as it prevents the vast number of
easy negatives from overwhelming the detector during training. Also, in the online space people tend
to talk using different languages in the same comment and often use transliteration. We show that our
model is suitable for such data as well.

3 Capsule Net for Classification

Proposed Model: The model proposed in (Zhao et al., 2018) has been used for the experimentation with
an inclusion of Focal Loss (Lin et al., 2017) as a loss function to address the class imbalance problem. In
our experiments we have compared performances of CNNs and RNNs as feature extractors and found that
sentence representation obtained from RNNs performs better than representations obtained after applying
convolution operation, although CNNs tends to perform better on short texts. The model consists of four
layers:

(i) Word Embedding Layer: We represent every comment xi, as a sequence of one-hot encoding of
its words, xi = (w1, w2, ...wn) of length nmax, which is the maximum length of the comment,
with zero padding. Such a sequence becomes the input to the embedding layer. To represent word
tokens several ideas like sparse representation or dense representation (Collobert and Weston, 2008;
Bengio et al., 2003) have been proposed.

(ii) Feature Extraction Layer: This layer has been used to extract either n-grams feature at different
position of a sentence through different filters (CNNs) or long term temporal dependencies within
the sentence (RNNs). We use RNNs as feature extractors in our final model.

(iii) Capsule Layer: The Capsule layer is primarily composed of two sub-layers Primary Capsule Layer
and Convolutional Capsule Layer. The primary capsule layer is supposed to capture the instanti-
ated parameters of the inputs, for example, in case of texts local order of words and their semantic
representation. Suppose we have ê number of feature extractors, then the input to the Primary cap-
sule layer will be Z ∈ Rn×ê (where n is the number of timesteps in RNNs). The primary capsules
transform a scalar-output feature detector to vector-valued capsules to capture the instantiated fea-
tures. Let d be the dimension of each capsule, then for each capsule pi ∈ Rd, where p denotes
instantiated parameters set of a capsule (Sabour et al., 2017), we have pi = g (WZi + b), where Zi
is captured by RNNs in the feature extractor layer. Here, g is the nonlinear squash function which
shrinks the small vectors to around 0 and large vectors around 1.

(iv) The Convolutional Capsule: The Conv layers capsules output a local grid of vectors to capsules
in earlier layers using different transformation matrices for each capsule and grids member (Sabour
et al., 2017).Capsule networks are trained using a dynamic routing algorithm that overlooks words
that are not important or unrelated in the text, like stopwords and name mentions.
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Model Name Kaggle-toxic comment classification
(ROC-AUC)

TRAC - 1 (English-FB)
(Weighted F1)

TRAC - 1 (English-TW)
(Weighted F1)

CNN-multifilter 95.16 55.43 53.41
CNN-LSTM 96.85 62.20 47.68

Bi-directional LSTM with maxpool 97.35 59.79 51.146
FeedForward Attention Networks 97.42 57.43 55.49

Hierarchical ConvNets 97.95 51.38 50.43
Bi-LSTM, Logistic Regression 98.17 57.17 52.1

Bi-LSTM, xgboosted 98.19 57.33 52.31
Bi-LSTM with skip connections 98.20 61.78 51.98

Pre-trained LSTMs 98.25 60.18 58.7
CapsuleNet without Focal Loss 98.21 62.032 58.600

CapsuleNet with Focal Loss 98.46 63.43 59.41

Table 1: Comparison of several deep learning approaches with Capsule Net on the three datasets

Focal Loss: To handle the class imbalance problem, we have used Focal Loss which is given by the
following formula :

FL(pt) = −αt(1− pt)γ log(pt), where pt = { p if y = 1
1− p else

γ is the focusing parameter which smoothens the rate at which easy examples are down weighted and,
α is the weight assigned to the rare class.

Figure 1: CapsNet with LSTMs as feature extractor

4 Experiments

In this section we attempt to describe different models that we have used for the classification process.
We seek to answer the following questions: (1) Is combination of Capsules and focal loss the new
apotheosis for toxic comment classification problems? (2) Can capsules solve the problem of OOV and
transliteration implicitly ?

4.1 Datasets

4.1.1 Kaggle Toxic Comment Classification:
Recently, Kaggle hosted a competition named Toxic Comment Classification. This dataset has been
contributed by Conversation AI, which is a research initiative founded by Jigsaw and Google. The task
was comprised of calculating the log-likelihood of a sentence for the six classes, i.e., given a sentence
calculate the probability of it belonging to six classes. The six different classes were toxic, severe toxic,
obscene, threat, insult and identity hate.
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4.1.2 TRAC dataset:
“First Shared Task on Aggression Identification” released a dataset for Aggression Identification. The
task was to classify the comments into one of the three different classes Overtly Aggressive, Covertly
Aggressive, and Non-aggressive. The train data was given in English and Hindi, where some of the
comments in Hindi dataset were transliterated to English.

4.2 Data Preprocessing

For all our experiments, to show efficacy of our approach we kept the preprocessing as minimal as
possible. Apart from word lowerization, tokenization, and punctuation removal we didn’t perform any
other activity.

4.3 Baseline Algorithms

We evaluate and compare our model with several strong baseline methods including: LSTM with Max-
pool (Lai et al., 2015), Attention networks (Raffel and Ellis, 2015), Pre-trained LSTMs (Dai and Le,
2015), Hierarchical ConvNet (Conneau et al., 2017a), Bi-LSTM with Skip-connections, variation of
CNN-LSTM (Wang et al., 2016), CNN-multifilter (Kim, 2014), Bi-LSTM with xgboost and logistic re-
gression. We experiment with these models on three datasets. The models were first evaluated on Kaggle
competition for Toxic Comment Classification. All the model parameters and attributes were decided on
the basis of our best performing model, and were kept same for the rest of experimentations and datasets.

4.4 Model Training

For all our experiments we have used pre-trained embeddings for each word token obtained from (Joulin
et al., 2016). We have also exploited (Pennington et al., 2014), (Mikolov et al., 2013), random and manu-
ally trained embeddings for initialization. After experimentation, fasttext embeddings with dimension of
300 were found to perform better than rest of the initialization process. In our experiments we observed
that RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2014) as an optimizer works
well for training RNNs and CNNs respectively and used this throughout. The learning rate was kept
between [.1 and .001]. For CNNs, number of Kernels was chosen from the range [128, 256, 512] and the
LSTM units were selected from the range [128, 256]. In all of our experiments with the proposed model
only a single layer for feature extraction was used. Number of capsules was varied from [8, 10, 16], the
vector length of 8 for each capsule was found to be the best, and the dropout values for RNNs were taken
as per suggestions from (Zaremba et al., 2014). The α and γ values in focal loss were experimented for
[1.5, 2, 2.5, 3, 3.5] and [.2, .25, .3] and finally α = 2 and γ=0.25 were taken.

5 Results and Discussions

The proposed CapsNet architecture was able to beat other strong baseline algorithms with reasonable
difference in accuracies with minimal preprocessing. We demonstrated that using focal loss along with
CapsNet gave us .25 raise in the ROC-AUC for Kaggle’s toxic comment classification and 1.39 and
.80 gain in F1 scores on TRAC shared task dataset in English, from Facebook and Twitter comments
respectively. All of our experiments were performed on NVIDIA Quadro M1200 4096 MB GPU system
with 32 GB RAM and Intel i7 processor. The model took almost 33 minutes for an epoch to train
which was faster in comparison with other models, with exception to the models using CNNs as feature
extractors. For example, the second best performing model, which uses Pre-trained LSTM embeddings
takes more than a day for the autoencoder to train and further 39+ minutes for each epoch. Hence, we
can say that our model is viable for production environment.
We have tested the capability of the architecture to handle the OOV words or misspelled words. For
this we used TRAC shared dataset, initialised the word embeddings randomly and trained the model for
classification process. Next, we enabled the embeddings to be changed during training process which is
mentioned as dynamic channel in (Kim, 2014) to let the model learn new embeddings. After training, we
took the weights of embedding layer and plotted these embedings using Tensorboard (Abadi et al., 2015).
From figure 2 we can see that the model is able to minimise the distance between the misspelled word
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(a) Training and Validation Loss for Kaggle Toxic Comment
Classification Dataset (b) Clusters for word obtained after training

Figure 2

and is able to capture the relationship between transliterated words as in Table:2. We found that total
of 3 clusters were formed after the experiment as shown in Fig:2b. We investigated these clusters and
found that some of the highly used words in the comments belonged to certain classes. For example, one
of the cluster contained more of neutral words, another cluster contained highly aggressive and abusive
words, and the third cluster contained some toxic words along with place and country names related to
one’s origin which were used in some foul comments.
We show the capability of our model to tackle the problem of overfitting, as observed during training we
see the model to have comparatively lower difference in training and validation loss than other models.
Same can be seen from Fig:2a the loss margin difference doesn’t change . We have shown that, not only
our model has performed well on the classification task, it also has ability to generalise well and can
learn good representation for word tokens.

NN to “politics” NN to “bharat”
politic bharatiya

politican bhar
politico mahabharata

politicize bharti
politician bhaskar

NN to “kut*e”(Hindi)
chu**ya

sa*le
tere

g**d
ma***rc**d

Table 2: Example of handling misspelt words and transliteration. NN : Nearest Neighbour

6 Conclusion and Future Work

In this work, we have proposed to automatically detect toxicity and aggression in comments, we show
that with minimal preprocessing techniques we are able to achieve a good model performance and
demonstrated how OOV words and semantic sense are learnt implicitly with random initialisation. We
show the effectiveness of our proposed model against strong benchmark algorithms and that it outper-
forms others.
In this work, we did basic preprocessing of the data, however in future we intend to explore more pre-
processing techniques for the dataset, like data augmentation using translation approaches and methods
to deal with mispelled words. We further would examine the results of capsule net by visualising which
words or phrases does the model correctly recognises for classification as opposed to benchmark algo-
rithms. Also, we would like to examine the usage of focal loss with the rest of the baseline models.
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A Baseline Algorithm Descriptions

A.1 CNN Multifiter

The idea of applying CNNs for text classification was proposed in (Kim, 2014), where authors applied
filters of different length to extract N-gram features from text. The authors tried static and dynamic em-
bedding channels and concluded that the model with combination of both outperformed others. For our
setting we found that filters of length [2, 3, 4] have outperformed other filter sizes, we tried various com-
binations from range [2, 5]. For activations we used Leaky ReLU, and performed Batch Normalization
to stablize the data.

A.2 CNN LSTM

A joint architecture of CNNs and RNNs were proposed in (Wang et al., 2016), where the authors tried
combination of CNNs with different RNNs like GRUs and LSTMs. In our experiment, we again used
Leaky ReLU for CNNs activations, filter size of 3 was fixed for the experiments to decide the dropout
values and other hyperparameters tuning.

A.3 Bi-directional LSTM with maxpool

In (Lai et al., 2015), authors took Max Over Time on the RNN representation of the input. Their model
RNN outperformed other models in 3 out of 4 datasets. In our experiments, we fixed LSTM units to be
51, and rest of the parameters were decided on the basis of validation-data experiments.
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A.4 Hierarchical ConvNets
Convolutional Neural Networks are known to perform well on short texts (Yin et al., 2017), in (Conneau
et al., 2017a) authors proposed to concatenate representation at different levels of input sentence. The
model was claimed to capture hierarchical abstractions of the input sentence. For our experiments, we
fixed 128 kernels of size 2, 3, 4, 4 at 4 different levels. These values were decided after the experiments
with different number of kernels and their sizes.

A.5 Bi-LSTMS with skip connections
In one of our experiments, the summary vector obtained from LSTMs was concatenated with the vector
obtained after appying Max Over Time on the hidden state representation of the input. The intuition
behind this was that, by passing most relevant features along with summary of the input to the softmax
layer may enhance the clasification process. From the experiments we obtained competetive results using
this model.

A.6 Pre-trained LSTMs
In (Dai and Le, 2015), authors claimed that by pretraining LSTMs on some related task as Auto-Encoder
or as a Language Model, could optimize the stability of the LSTMs training process. The authors re-
ported improvenemt in error rates by good margin in many tasks like, text classification on 20 News-
group, IMDB etc. For our experiments we gathered many related datasets like all of Wikimedia datasets
(Wulczyn et al., 2017), TRAC shared dataset, IMDB movie reviews dataset. An autoencoder was trained
on these datasets and the LSTMs from the encoder part were extracted and used in the classifcation task.
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Abstract

Harmful speech has various forms and it has been plaguing the social media in different ways.
If we need to crackdown different degrees of hate speech and abusive behavior amongst it, the
classification needs to be based on complex ramifications which needs to be defined and hold
accountable for, other than racist, sexist or against some particular group and community. This
paper primarily describes how we created an ontological classification of harmful speech based
on degree of hateful intent, and used it to annotate twitter data accordingly. The key contribution
of this paper is the new dataset of tweets we created based on ontological classes and degrees of
harmful speech found in the text. We also propose supervised classification system for recogniz-
ing these respective harmful speech classes in the texts hence. This serves as a preliminary work
to lay down foundation on defining different classes of harmful speech and subsequent work will
be done in making it’s automatic detection more robust and efficient.

1 Introduction

Hate, as a simple standalone word is easily understood by everyone. But as a concept, hate is vast,
complex and has multiple themes and extensions. The issue of harmful speech has been widely debated
and analyzed by scholars in multiple fields of knowledge. If youve been on social media lately, chances
are good that you stumbled across something that might be classified as harmful speech online. Perhaps
you would have read a tweet that used offensive language to describe its recipient, or maybe you saw a
Facebook post that was designed to demean a particular group of people.

Modern artificial intelligence has proven useful in detecting patterns, whether that be in images for
facial recognition or audio for speech regulation. But language is fluid, and as Mark Zuckerberg also
recently noted in his testimony1 before the US Congress that harmful speech can be heavily dependent
on the context around the hateful words used and intent of the speaker. Some terms found in hate
speech are slang, and hence not part of the common vernacular used to train AI. Other pressing issues
remain determining different ways of expression of hate and the degree to which it affects people and
communities, trying to make a fine line differentiating freedom of speech with hate speech, with making
guidelines in defining hate speech (Sellars, 2016). Harmful speech has many manifestations, in speeches,
prose, literature, real like conversations; and thus it does define it’s own certain form in online discourse.
It’s important for us to understand the amplifications and extensions of harmful speech online, plaguing
the social media primarily (Ashar et al., 2016).

Twitter is also actively in an ongoing process to enforce new guidelines related to how it handles
hateful conduct and abusive behavior, by users, taking place on its platform. In addition to threatening
violence or physical harm, they also want to look for accounts affiliated with certain respective groups
that promote violence against citizens to move further in their hateful intentions. Any content that glo-
rifies violence or the perpetrators of a violent act will also be incorporated in violation of Twitters new
guidelines to combat hate speech. All these new developments in tackling hate speech in online discourse

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1https://www.nytimes.com/2018/04/10/us/politics/mark-zuckerberg-testimony.html

106



with a spectrum showcasing various degrees and ways (sarcasm, troll, profanity, violent threats etc) man-
ifests a need to studying ”Harmful speech online” in detail. This motivated us to develop a classification
based on an ontological view of harmful speech, taking inspiration from philosophical and social point
of view of hate speech, the intent of speakers involved, affiliation of recipient to an ideology/group or
individuality , and deduce them into classes marking some difference in degree of hateful intent.

Figure 1: Spectrum showing degree based classes of harmful speech

2 Background and Related Work

Research on harmful speech has been happening for some time now, but the datasets which are publicly
available only classify the text as offensive or not, with a small percentage identifying racist or sexist con-
tent. The manual way of filtering out harmful tweets is not scalable, hence it has motivated researchers
to identify automated ways. The problem of defining a classification of a tweet and formulating context
dependent bad language examples makes the task quite challenging, due to the inherent complexity of
the natural language constructs different forms of hatred, different kinds of targets, different ways of
representing the same meaning.

Combining psychology of hatred with context based classification of hateful speech can prove to
reduce the entropy of subjectivity of detection of harmful speech. There are some publicly available
datasets that are annotated with degree of hate speech, like 2 which includes toxic, severe toxic etc as
labels. The Kaggle data has around 150k Tweets out of which 16k are toxic, which is around twice the
hate speech present in the collected data. But it has classified the degree of hatred into only two distinct
classes, severe toxic and toxic, without any granularity like we present in our spectrum classification. To
the best of our knowledge, we are the first ones to work on conceptualizing, identifying and classifying
ontological classes of harmful speech based on understanding degree of harmful content, intent of the
speaker and how it affects people on social media.

(Hovy and Waseem, 2016) provided a Hate Speech dataset and the respective annotation procedure
in which an initial manual search was conducted in Twitter in order to collect common slurs and terms
pertaining to religious, sexual, gender, and ethnic minorities. The main researcher of the article, together
with a gender studies student, manually annotated the dataset of 16,918 tweets in categories as racist,
sexist and neither of the two. Another article

(Chang et al., 2016) describes a dataset where messages are classified in the general class abusive
language, and within the subclasses hate speech, derogatory and profanity. The authors sampled 2,000
comments posted on Yahoo! Finance and News, and noticed that Fleisss Kappa value dropped to 0.213
when using the fine-grained three classes (hate speech, derogatory and profanity) as compared to 0.401
for binary classification (only with the class abusive language).

The majority of the studies that we found for hate speech were conducted for English. However,
some other languages were considered. (Cabrera et al., 2017) is an example of a dataset collection
and annotation in German, in the specific topic of hate speech against refugees. The results of this
study pointed out that hate speech is a vague concept that requires definitions and guidelines in order

2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
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Degree Some examples

Class I
1. ”I fucking hate feminists and they should all be raped and burned to death. #sluts”
2. ”All muslims are faggots & should be slaughtered like pigs.”
3. ”Now that Trump is president, I’m going to shoot you and all the blacks I can find.”

Class II
1. ”You’re just an attention whore with no self esteem.”
2. ”You are so tan. Ugly dirty bitch. #LOL”
3. ”Shove your opinion up your arse and dance like a monkey.”

Class III

1. ”I hope you all have a great weekend. Except you, Lisa Kudrow. #CantStandHer”
2. ”If you find Benedict Cumberbatch attractive, I’m guessing you’d also quite enjoy

staring directly at poop.”
3. ”Going to Africa. Hope I don’t get AIDS. I am white. #JustKidding”

Table 1: List of examples for categories of Harmful Speech

for having reliable annotations. They also provided solutions for improving this classification task by
annotating multiple labels for each tweet, which can be an advantage. Moreover, the authors also note
that considering hate speech detection as a regression problem, instead of a binary classification task,
can also improve the classifiers performance.

The most recent paper in hate speech dataset annotation is (Davidson et al., 2017). This paper presents
data collected using the CrowdFlower platform using hate speech lexicon compiled by Hatebase.org in
English. They were instructed that the presence of a particular word, despite being offensive, did not
necessarily indicate a tweet is hate speech. They have used the majority decision in CrowdFlower for
each tweet to assign a label (Hateful, Offensive or Neither). The intercoder-agreement score provided
by CrowdFlower was 92% and a total percentage of only 5% of tweets were coded as hate speech by
the majority of coders. Consistent with previous work, this study pointed out that certain terms are
particularly useful for distinguishing between hate speech and offensive language. Besides, the results
also illustrate how hate speech can be used in different ways: it can be directly sent to a person or group
of people targeted; it can be espoused to nobody in particular; and it can be used in conversation between
people.

The current Facebook Community Standards also segregates different types and targets of people using
harmful speech, though our classification on the usage and basis of harmful speech is not inspired by the
guidelines laid by them.

3 Categorization of Hate Speech

For classifying harmful speech with it’s ontological implications, we looked at the philosophical point
of view to understand the emotion and verb : hate. Karin Sternberg’s theory of hate 3 observed hate as
an emotion, a feeling; from an erudite perspective which inspired to form extended nominal categories
of hatred. The harmful speech can be molded into a spectrum showing gradient of hate and harm, with
some distinguishing characteristics to particular classes and their degrees. The classes have been defined
on their decreasing degree of hateful intent from the speaker’s perspective, with three classes (Class I,
Class II and Class III) showcasing various categories of different types and examples of harmful speech
found in social media (like extremism, threatening someone or trolling), as shown in figure 1. As we have
devised a spectrum, not a discrete classification, the classes do have an overlapping in their definitions
and examples, but in a linear way.

Some of the guidelines used to distinguish the classes are given below. Annotators were asked to keep
them in mind along with common sense to classify the respective tweets. Table 1 shows some examples
of the three classes thus defined, classified by the annotators subsequently.

Class I :

3http://www.robertjsternberg.com/hate/
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• Incites violent actions beyond the speech itself.

• Is either public or directed at a particular group, mostly with no redeeming purpose. We considered
hatred and violent behavior projected to a group to be of more degree than individual accusation and
violence. This is an assumption made from the psychological point of view and by seeing various
examples that adhere to it.

• The context makes it evident that the speaker wants to intend hurting sentiments of certain isms
(extremism) for a violent response to be possible in return.

Class II :

• Cyber banter (accusing, threatening and using aggressive/provocative language for disagreeing etc.)
and verbal dueling constitutes.

• The violent characteristic is less than the degree in which Class I operates, which hurts sentiments
but not to the degree to invoke a violent response.

• Correlates between linguistic violence and non-linguistic/demographic intimidating and trespassing
someone in an online space. Can be highly provocative when addressing an individual rather than
some ideology or community/group.

Class III :

• Mildly provocative in nature, mostly given to an individual entity, not necessarily targeting a group
or community .

• Uses more profane and filthy words not directed or having context from the speaker to the recipient
to form a coherent remark. Context mainly revolves around trolling, ironic and sarcastic tone.

• Indirect or covert linguistically hurt sentiments, least degree of hateful intent shown in the cate-
gories.

4 Corpus Creation and Annotation

We constructed the corpus using the tweets posted online from Twitter. We had mined tweets with
querying for profane slang words and harmful words that we compiled from searching synonyms and
various parts of speech extensions of common words that can be used in hateful context. We scraped
tweets with hashtags focused on three groups who are often the target of abuse: African Americans
(black people), overweight people and women. Some examples of keywords and hashtags handled are :
#IfMyDaughterBroughtHomeABlack, Nigger(s), White Trash, #IfIWereANazi or the tweets in response
to #MakeAMovieAFatty. Certain hashtags and keywords from recent events surrounding politics, public
protests, riots, etc., which have a good propensity for the presence of harmful speech were also used. Cer-
tain example of above case can be attributed to the #GamerGate fiasco, where trolls and haters decided to
occupy and corrupt the #TakeBackTheTech and #ImagineAFeministInternet hashtags by posting thou-
sands of anti-feminist and misogynistic tweets and memes. We also used resources from Hatebase.org4

to narrow down slangs and hate speech used against the group who are a target of abuse. We retrieved
a total of 15,438 tweets from Twitter in json format, which consists of information such as timestamp,
URL, text, user, re-tweets, replies, full name, id and likes. A random sampling of the tweets containing
respective hashtags and an extensive processing was carried out to remove same tweets (certain reposts
of tweets). As a result of manual filtering, a dataset of 14,906 tweets was created.

4https://www.hatebase.org/
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Categories No. of tweets
Class I 2138
Class II 3924
Class III 3002
All 9064

Table 2: Twitter harmful speech dataset statistics

4.1 Annotation
For the annotation purpose, there were 3 annotators selected, who were very well versed with english
language as well had a fair amount of experience with witnessing harmful speech online that we deal
with on a day-to-day basis on social media.

Harmful Speech or Normal Speech : A lot of tweets in the dataset collected had occurrence of
words which can be used in harmful perspective but didn’t evoke any hateful context in the respective
tweet at all. Hence, it was required to filter out such normal speech to get a rich dataset of harmful
speech only. The initial task in hand was to annotate each tweet with one of the two tags (Harmful
Speech or Normal Speech). Harmful speech was detected in 9064 tweets. Remaining 5842 tweets in the
dataset comprised of normal speech, having no context of intent of harm at all, and were of no use for
our experiment.

The annotators were provided with a definition along with a detailed guidelines of all the classes and
respective categories and examples. Annotators were asked to think about the contextual implications of
a tweet, more importantly from the speaker’s intent perspective, rather than lexical based judgment of the
text, as a syntactic extension of harmful words can not necessarily indicate a tweet inciting hate. It could
very well be, plainly stating facts and truth with no intention of hurting sentiments of the recipients.
For borderline cases and overlapping examples; sub categories inside the classes (propaganda, enmity,
sarcasm etc) their definitions were used, along with measuring relative degree of hateful intent and
context, to classify the tweet into a respective class (I, II and III). Annotation of the corpus was carried
out as follows:

Categories of Harmful Speech : All the 9064 harmful tweets were then manually annotated ac-
cording to the guidelines mentioned, for classes of harmful speech (Class I, Class II and Class III). The
dataset then consisted of 2138 Class I, 3924 Class II and 3002 Class III harmful tweets, after successful
annotation. The annotated dataset (consisting of tweet ids and respective tag of harmful class) with the
classification system will be made available online later. All the dataset statistics are shown in Table 2
itself.

4.2 Inter Annotator Agreement
In order to validate the quality of annotation, subsequent iterations of annotation was carried out by, in
total, 2 human annotators. We calculated the inter-annotator agreement between the two iterations of
annotation using Cohens Kappa coefficient (Cohen, 1960). Kappa score was 0.689 which indicates that
the quality of the annotation and presented schema is substantially effective, given how subjective it is to
determine the new classification and tuning the degree of harmful content.

5 Pre-processing of the tweets

Given a tweet, we started by applying a light pre-processing procedure based on that reported in (?). A
Twitter-python API5 was used to pre process the tweets as described below :

1. Removal of URLs and User Names: All the URLs and links do not contribute towards any kind
of sentiment in the text for the tweets. Also, the mentions which are directed to certain users hold
no value, hence were also removed.

5https://pypi.python.org/pypi/tweet-preprocessor/0.4.0
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Classifiers Accuracy
Naive Bayes 73.42%
Support Vector Machines 71.71%
Random Forest 76.42%

Table 3: Accuracy of classification using respective classifiers

2. Normalising Hashtags: Furthermore, we also normalised hashtags into words, so #killthemuslims
became kill the muslims. This is because such hashtags are often used to compose sentences, and
we require full words instead, for our method to not miss on the context derived from hashtags too.
We used dictionary based look up to split such hashtags, which were made of coherent and correct
usage of words.

3. Removal of Special Characters : All the punctuation marks and special characters (: , ; & ! ? \)
in a tweet are also removed.

6 Experiment and Results

In this section, we presented our machine learning models which are trained and tested on the respective
dataset described in the previous sections. We performed experiments with three different classifiers
for multi-class classification namely Support Vector Machines with linear function kernel, Naive Bayes
method and Random Forest Classifier. For training our system classifier, we have used Scikit-learn
(Blondel et al., 2011). In all the experiments, we carried out 10-fold cross validation. Table 3 describe
the accuracy of each model used, in the case of Naive Bayes, Support vector machine and Random forest
classifier respectively. The feature set used for SVM and Naive Bayes methods included tf-idf method,
and for Random Forest classifier, we used bag of words. Random forest classifier performed the best
out of the three and gave a highest accuracy of 76.42%, while the other two models also gave relevant
accuracy with Naive Bayes with 73.42% and SVM with linear function kernel with 71.71%.

7 Conclusion and Future Work

Through this paper, we tried to get the ontological grasp of the hate expression and how it perpetuates it’s
existence in social media. Harmful speech online is a very subjective domain and has different structures
in the social media outreach, from website comments sections to chat sessions in online games. In this
paper, we presented an annotated corpus of tweets categorized over various degrees of hate, consisting of
tweet ids and the corresponding annotations, in which we tried to give a viable ontological classification
model to distinguish harmful speech. We also presented the supervised system used for detection of
the class of harmful speech (Class I, Class II and Class III) in the twitter dataset, based on our linear
classification skeleton of harmful speech. The corpus consists of 9064 harmful speech tweets annotated
with all three classes (degrees) of harmful speech. Best accuracy of 76.42% was achieved when bag of
words approach was used in the feature vector using Random Forest as the classification system.
As a part of future work, the supervised methods can be carried out on specific feature set like character
n-grams, word n-grams, punctuation, negation words and hate lexicon which can give more insight in
detailed account of accuracy for each method.
The class-based labeling of tweets makes the task in hand very one dimensional, it can be further im-
proved. If the annotation is done by giving scores to each tweet based on degree of hateful intent and other
designated characteristics of hate speech in general, the classification problem for automated harmful
speech detection and recognition of respective degrees will be considered as a regression model (David-
son et al., 2017) as compared to a mere classification task to conceptualize linear degree of hateful intent
of the text. Various deep learning methods can also be tried and tested on the respective classification to
automate the process to some extent.
Our future work includes enlarging and enriching our datasets from social media outlets other than Twit-
ter (example : Reddit) and to work on computationally automatic methods for classifying different forms
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of harmful speech with subsequent degrees with different methods and this framework a viable scale to
distinguish different harmful speech online. All these major subsequent tasks makes this work defined
as in-progress hence.
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Abstract

This paper describes our participation in the First Shared Task on Aggression Identification. The
method proposed relies on machine learning to identify social media texts which contain aggres-
sion. The main features employed by our method are information extracted from word embed-
dings and the output of a sentiment analyser. Several machine learning methods and different
combinations of features were tried. The official submissions used Support Vector Machines and
Random Forests. The official evaluation showed that for texts similar to the ones in the training
dataset Random Forests work best, whilst for texts which are different SVMs are a better choice.
The evaluation also showed that despite its simplicity the method performs well when compared
with more elaborated methods.

1 Introduction

Social media has become a normal medium of communication for people these days as it provides the
convenience of sending messages fast from a variety of devices. Unfortunately, social networks also
provide the means for distributing abusive and aggressive content. Given the amount of information
generated every day on social media, it is not possible for humans to identify and remove such messages
manually, instead it is necessary to employ automatic methods. In an attempt to boost the research in
this area, the First Workshop on Trolling, Aggression and Cyberbullying1 has organised the First Shared
Task on Aggression Identification.2 The purpose of this shared task was to encourage the development
of methods capable of classifying messages from social media (in the case of this task Facebook and
Twitter) into three categories Overtly Aggressive (OAG), Covertly Aggressive (CAG) and Non-aggressive
(NAG). The task was organised for English and Hindi. For each of the languages, the organisers prepared
a training dataset containing texts and comments from Facebook. Participants were able to test their
systems on two datasets. The first one was a dataset which contained text from Facebook and therefore
it was similar to the training set. The second dataset consisted of tweets and gave the opportunity to test
the systems on a dataset which was quite different than the training data. The systems were evaluated
using a weighted macro-averaged F-measure. A detailed description of the task, the data used and an
overview of the results can be found in (Kumar et al., 2018a).

Recent years have seen an increase in the number of papers attempting to detect hate speech, offensive
and abusive language. A high number of papers published in this area are from researchers who attempt
to tackle the problem of cyberbullying (Dinakar et al., 2011; Xu et al., 2012; Dadvar et al., 2013). As is
the case with many other fields in Natural Language Processing, the vast majority of the existing methods
rely on machine learning. (Burnap and Williams, 2015) uses Support Vector Machines, Random Forests
and a meta-classifier to distinguish between hateful and non-hateful messages. More recent papers focus
on using Deep Learning for this task:(Gambäck and Sikdar, 2017) train several classifiers based on
convolutional networks and (Zhang et al., 2018) combine convolutional and gated recurrent networks
to detect hate speech in tweets. A survey of recent research in the field is presented in (Schmidt and
Wiegand, 2017) and the current challenges are discussed in (Malmasi and Zampieri, 2018)

1https://sites.google.com/view/trac1/home
2https://sites.google.com/view/trac1/shared-task

113



This paper presents a machine learning method which combines information from word embeddings,
features derived from emoticos and information from a sentiment analyser to identify texts which con-
tain aggression. The structure of the remainder of the paper is as follows: Section 2 describes the
methodology used to train the machine learning methods and how the features were calculated. Sec-
tion 3 presents the evaluation results, followed by conclusions in Section 4. The code corresponding to
the research presented in this paper is available at https://github.com/dinel/aggression_
identification.

2 Methodology

The approach used in this research relies on machine learning to distinguish between the three categories
of texts used in this shared task. The features used to train our algorithm are presented in Section 2.1,
followed by a discussion of the machine learning algorithms employed in Section 2.2. They were applied
to the data set provided by the organisers. The data collection methods used to compile the dataset used
for training, development and testing are described in (Kumar et al., 2018b).

2.1 Features used
The approach explored in this research relies on three sources of information for extracting the features
corresponding to a text: word embeddings, emoticons and the sentiment expressed in the text. In order
to extract these features, our pipeline relies at the preprocessing stage only on NLTK3 to tokenise the
texts. Analysis of the output of the tokeniser showed that it is not robust enough to deal with some of the
data it had to process. This is particularly true in the case of Twitter data. Therefore, one way to improve
the results reported in Section 3 could be to use a more accurate tokeniser. The reminder of this section
describes the way each type of feature is determined.

2.1.1 Word embeddings
The main purpose of the method proposed here was to investigate to what extent the semantic informa-
tion encoded by word embeddings can be used to identify texts that contain aggression. For this reason,
we used GloVe vectors (Pennington et al., 2014) to extract the vector representation of words. For the
experiments presented in this paper, we used the pretrained word vectors obtained from the Common
Crawl corpus containing 840 billion tokens and 2.2 million vocabulary entries. Each word was repre-
sented using a vector with 300 elements.4 We experimented with other versions of the word vectors
which were trained on less data or had smaller dimensions, but they did not lead to better results. How-
ever, we did not experiment with word embeddings generated from Tweets. Given the significantly lower
results obtained on the Social media data (see section 3) it would be interesting to train the system using
these word embeddings and compare the results.

In order to obtain the embedding features associated with a text, we add all the vectors corresponding
to words in the text and divide them by the number of words in the text. The words which are not present
in the GloVe vectors are ignored and not used for weighting the overall vector.

Analysis of the data revealed that 12552 words from the training data and 3119 words from the devel-
opment data do not appear in the GloVe vectors we used. In addition, 1499 words from the Facebook
testing dataset and 3823 from the Twitter dataset are not present in the GloVe vectors. In most of the
cases these words appear only once. The majority of these words are not English words or are badly
tokenised words. Overall, the numbers reported above are small given the size of the data which makes
us believe that the missing words had little influence on the performance of the system.

2.1.2 Emoticons
In addition to word vectors, the proposed method also uses the emoticons in the training data to determine
an ‘emoticon score’ for each of the classes to be predicted. The assumption is that some emoticons are
more likely to indicate a type of aggression or the lack of aggression than others. To this end, we use the
training data to calculate the TF*IDF score for each of the emoticons with respect to each class. This

3http://nltk.org
4This file can be downloaded from http://nlp.stanford.edu/data/glove.840B.300d.zip
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is achieved by calculating the frequency of each emoticon in a class and the number of classes in which
the emoticon appears. After that, we apply a slightly modified TF*IDF formula to calculate the score
where we consider that we have a total of four classes rather than three. In this way we do not end up
with lots of emoticons with a score of zero. This was decided after initial experiments where the score
was calculated considering three classes led to worse results. Table 1 presents the top 5 emoticons for
each class as determined by our method. As can be seen in the table, some of the emoticons are highly
ambiguous, with :face with tears of joy: appearing in top 5 of all three classes.

Class CAG NAG OAG
1 :face with tears of joy: :heart suit: :face with tears of joy:
2 :grinning face: :cross mark: :hatching chick:
3 :clapping hands: :anger symbol: :cross mark:
4 :smiling face with horns: :face with tears of joy: :pouting face:
5 :OK hand: :hushed face: :joker:

Table 1: Top emoticons for each class

For each new text we calculate three features, each corresponding to one of the classes to be predicted.
The values of the features are the sum of the emoticons scores appearing in the text for the corresponding
class. The values of these three features are normalised by the number of emoticons in the text.

The emoticons are converted to their corresponding strings description using emoji library.5 This step
was not really necessary this particular research, but was introduced in order to accommodate future
extension of the proposed method in which we may try to group emoticons together on the basis of their
meaning. One possible way of doing this is by using information from EmojiNet.6

2.1.3 Sentiment features
The third type of features used by our method are sentiment features as determined by SentiStrength7

(Thelwall et al., 2010). In contrast with other methods for sentiment analysis which indicate whether a
text is positive or negative, or give a number corresponding to rating, SentiStrength returns two scores
between 1 and 5 indicating the amount of positive and negative sentiments in a text. The intuition behind
including this feature is that texts containing aggression are more likely to be negative. These features
were not used in all the runs.

2.2 Machine learning algorithms

The approach used to determine whether a text contains aggression or not relies on machine learning.
Several machine learning methods were evaluated during the development stage of the competition and
Support Vector Machines (Vapnik, 1995) and Random Forests (Breiman, 2001) proved to be the most
appropriate for the task.

2.2.1 Support Vector Machines
Support Vector Machines (SVMs) are a class of supervised machine learning algorithms that can be
used for both classification and regression, and proved very useful in NLP applications. When used as a
classification method, as is the case in this research, SVMs learn from the training data the parameters
of a hyperplane which separates the data in the best way. When data is not linearly separable, a kernel
function is employed in order to project the data in a different space which may make the data linearly
separable. There are several kernel functions available such as the radial basis function (RBF), sigmoid
function and the polynomial function. Experiments carried out during the development stage showed
that the best results are obtained using the RBF kernel.8

5https://pypi.org/project/emoji/
6http://emojinet.knoesis.org/
7http://sentistrength.wlv.ac.uk/
8https://en.wikipedia.org/wiki/Radial basis function kernel
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The accuracy of SVMs is influenced by the soft margin parameter C which determines the penalty
of wrongly classifying an instance. In addition, the RBF kernel also has the γ parameter which is the
inverse standard deviation of the RBF function. A grid search was performed in order to determine the
best values of the C and γ parameters. The best results on the development dataset were obtained using
C = 2 and γ = 0.5 when no sentiment features were used, and C = 5 and γ = 0.5 in the setting where
the sentiment features were employed.

2.2.2 Random Forests
Random Forests classifiers are ensembles of decision trees trained on random splits of the training data
and which are used together to classify new instances. Random Forests also proved useful in NLP largely
due to their ability to avoid overfitting. In contrast to SVMs, random forests have fewer parameters to
estimate. In the case of this research, a grid search was performed to determine the number of trees used
and their maximum depth. The best results on the development data set were obtained when 160 trees
were considered with a maximum depth of 10.

3 Results

We participated in the shared task with three systems in order to test the performance of different com-
binations of machine learning methods and sets of features. These are:

1. SVM-no-sentiment: in this setting we used SVM as a classifier and we did not include the senti-
ment features. The parameters used were C = 2 and γ = 0.5

2. SVM-with-sentiment: in this setting we used SVM as a classifier and we included the sentiment
features. The parameters used were C = 5 and γ = 0.5

3. RF-with-sentiment: in this setting we used random forests as a classifier and we included the
sentiment features. The parameters used were 160 for the number of trees and 10 for the maximum
depth.

Tables 2 and 3 present the performance of the three systems on the unseen test data. The figures
reported in the table are F1 (weighted), the official evaluation metric, Accuracy (on the test data) and
Accuracy on dev, which is the accuracy of the method on the development dataset and which was used
as reference when comparing various method during the development phase. The best performing setting
on the Facebook dataset (RF-with-sentiment) ranked 13th out of 30 participants, whilst the best on the
Twitter dataset (SVM-with-sentiment) ranked 18th out of 30 systems.

As can be seen, for the Facebook dataset the best result is obtained by the Random Forest classifier,
whereas for the Twitter data the best result is obtained by the SVM classifier. In both cases sentiment
features are used. The performance of the three systems submitted is quite similar on the Facebook data.
On the social media data, the performance of the system which uses random forests as a classifier is
significantly lower than the other two. This is particularly surprising given that it led to the best results
on the Facebook data and indicates that the system which uses random forests overfits to the domain and
cannot be easily ported to a new domain.

System F1 (weighted) Accuracy Accuracy on dev
Random Baseline 0.3535 - -
SVM-no-sentiment 0.5717 0.5295 0.5768
SVM-with-sentiment 0.5672 0.5251 0.5591
RF-with-sentiment 0.5830 0.5579 0.5459

Table 2: Results for the English (Facebook) task.

Figures 1 and 2 present the confusion matrices for the best system. As can be seen, in the case of the
Facebook data, the most problematic class to identify is OAG with an F-score of 0.2692, followed by
CAG with an F-score of 0.3353. Figure 1 shows that a large number of OAG are misclassified as CAG,
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System F1 (weighted) Accuracy Accuracy on dev
Random Baseline 0.3477 - -
SVM-no-sentiment 0.4956 0.5441 0.5768
SVM-with-sentiment 0.5074 0.5529 0.5591
RF-with-sentiment 0.3892 0.4749 0.5459

Table 3: Results for the English (Twitter) task.
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Figure 1: Confusion matrix for the SVM-with-sentiment system on the English (Facebook) task

and most of the misclassifications of CAG are as NAG. The latter is to be expected given the difficulties
of identifying covert aggression. Despite the large number of NAG instances misclassified, this class has
the highest f-score: 0.7106.

The picture is different for the Twitter data. The class with the lowest f-score is CAG (0.3247) followed
by OAG (f-score 0.4424) and NAG (f-score 0.7122). Interestingly enough, the proposed method has over
97% recall on the NAG class, but only 56% precision. The same method had only 56% recall and 82%
precision on the NAG class on the facebook data.

4 Conclusion

This paper has briefly presented our participation in the Aggression Identification Shared Task. Several
systems were developed and the code corresponding to these systems was made available at https:
//github.com/dinel/aggression_identification. When testing on a dataset similar to
the one used for training (i.e. Facebook data) the best system is one which uses Random Forests as a
classifier. On a dataset which contains tweets, and therefore is different from the training data, the best
classifier is the one which uses Support Vector Machines. The features used by the two systems are
the same. In both cases the inclusion of features which capture the sentiment of the texts helped. The
core of the methods is the use of features extracted from word embeddings. Despite their simplicity the
methods performed well ranking 13th out of 30 participants on the Facebook dataset and 18th out of 30
systems on the Twitter dataset. Analysis of the pipeline used in this research revealed several avenues to
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Figure 2: Confusion matrix for the SVM-with-sentiment system on the English (Twitter) task

improve its performance. This includes better tokenisation of the texts and use of domain specific word
embeddings. However, the most likely way to improve significantly the results is to use more powerful
learning architectures (e.g. use neural networks) and more informative features.
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Abstract

With the rise of user-generated content in social media coupled with almost non-existent mod-
eration in many such systems, aggressive contents have been observed to rise in such forums.
In this paper, we work on the problem of aggression detection in social media. Aggression
can sometimes be expressed directly or overtly or it can be hidden or covert in the text. On
the other hand, most of the content in social media is non-aggressive in nature. We propose
an ensemble based system to classify an input post into one of three classes, namely, Overtly
Aggressive, Covertly Aggressive, and Non-aggressive. Our approach uses three deep learning
methods, namely, Convolutional Neural Networks (CNN) with five layers (input, convolution,
pooling, hidden, and output), Long Short Term Memory networks (LSTM), and Bi-directional
Long Short Term Memory networks (Bi-LSTM). A majority voting based ensemble method is
used to combine these classifiers (CNN, LSTM, and Bi-LSTM). We trained our method on Face-
book comments dataset and tested on Facebook comments (in-domain) and other social media
posts (cross-domain). Our system achieves the F1-score (weighted) of 0.604 for Facebook posts
and 0.508 for social media posts.

1 Introduction

In recent years, a plethora of data is posted on the web. The data is in the form of text, images, audio,
video, memes, etc. Facebook, Twitter are some of the popular social networking sites where a lot of data
is posted. This data (tweets or posts) contains the opinions, feelings expressed by the users on various
topics or incidents that are happening across the world or about their personal life. Along with a large
increase of user-generated content in social networks, the amount of aggression related content is also
increasing (Kumar et al., 2018b).

Aggression in social media is targeted to a particular person or group to damage the identity and lower
their status and prestige (Culpeper, 2011). Aggression is often expressed in two ways: directly expressed
or hidden in the posts. According to (Kumar et al., 2018a), aggression in social media can be broadly
classified into three classes: Overtly Aggressive (OAG), Covertly Aggressive (CAG), and Non-aggressive
(NAG). Aggression is expressed directly in the overtly aggressive text. It can be expressed either through
lexical features or lexical items or certain syntactic structure. Any text in which the aggression is not
expressed directly is said to be covertly aggressive text. Aggression is hidden here. It is very hard to
distinguish between overtly aggressive text and covertly aggressive text (Malmasi and Zampieri, 2018).
In this paper, we develop a classifier for the problem of aggression detection in social media. Table 1
contains some examples of Overtly Aggressive, Covertly Aggressive, and Non-aggressive posts, from the
dataset (Kumar et al., 2018b).

Aggression also contains hate speech. Hate speech is generally defined as any communication that
defames a person or group on the basis of some characteristic such as color, gender, race, sexual ori-
entation, ethnicity, nationality, religion, or other characteristic (Nockleby, 2000). We proposed a voting
based ensemble classifier using deep learning methods in the ensemble for detecting the aggression in

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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Table 1: Example Facebook posts showing different categories of aggression

Id Text Category
101 Pakistan is comprised of fake muslims who does not know the meaning of

unity and imposes their thoughts on others.....all the rascals have gathered
there...

Overtly Aggressive

102 Communist parties killed lacks of opponents in WB in 35 years rul-
ing????? ?

Overtly Aggressive

103 For tht those hv more thn 2 flats or 2 land is legal rest has to surrender
properties to govt

Covertly Aggressive

104 In government office implement the online transactions... also all parties
should show off their account transaction for running their elections in
RTI.

Covertly Aggressive

105 Hi Anuj brought divis to days at 710 what to do and Tata motor dvr 275
any target

Non-aggressive

106 please advice about Bank nifty & how the NPA will benefit for PSU
Banks ?

Non-aggressive

social media posts. The deep learning methods used in the ensemble are CNN, LSTM, and Bi-LSTM.
First, we apply CNN on the training data. Next, we apply LSTM and Bi-LSTM on the same training
data. Finally, we use majority voting ensemble method to predict the final label for the given post.

Rest of the paper is organized as follows. Related literature for current work is described in Section
2. Next in Section 3, problem statement of our work is defined and details of the proposed method are
presented. Experimental evaluation of the method is described in Section 4. We conclude the work by
providing directions for future research in Section 5.

2 Related Work

In this section, we describe the literature work in the areas of aggression, hate speech, offensive, and
abusive language detection. Hate speech and cyberbullying are often considered as same.

Detection of cyberbullying is modeled in (Dinakar et al., 2011). The authors found that cyberbullying
in the text can be automatically detected by building topic-sensitive classifiers. Binary classifiers outper-
form multiclass classifiers. Bullying traces in social media is studied in (Xu et al., 2012). The authors
formulated several NLP tasks with the bullying traces in social media. NLP tasks used here are text cat-
egorization, role labeling, sentiment analysis, and latent topic modeling. However, only a few baseline
solutions were studied in the context of this problem. (Dadvar et al., 2013) proposed a method to im-
prove the cyberbullying detection by taking user context into account. Here user context is the past (six
months) comments of each user. Three types of features are used: content based features, cyberbullying
features, and user based features. A method is developed to detect the tweets against blacks in (Kwok
and Wang, 2013). The authors applied a simple Naive Bayes classifier with unigrams as features. They
built a dataset with class labels: racist and non-racist. However, only unigrams may not be sufficient to
differentiate the tweets of racist and non-racist.

An approach to detect hate speech with comment embeddings is developed in (Djuric et al., 2015).
The authors have used two phase approach. In step 1, paragraph2vec is used to learn the embeddings
of comments and words. In step 2, a binary classifier is applied on the learned embeddings. They
have used Yahoo finance dataset with 56,280 hate speech comments and 895,456 clean comments. A
dictionary-based approach to detect racism in Dutch social media is proposed in (Tulkens et al., 2016).
The authors have used three dictionaries. The first dictionary was created by taking the racist terms from
the training data. The second dictionary was created through automatic expansion using word2vec.
The last dictionary was created by manually filtering incorrect expansions. A method is developed
for abusive language detection in online user content in (Nobata et al., 2016). The authors have used
the following features: N-gram features, linguistic features, syntactic features, distributional semantic
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Figure 1: An overview of our proposed method.

features. They have used Vowpal Wabbits regression model 1. Recently a survey on hate speech detection
using natural language processing is done in (Schmidt and Wiegand, 2017). An automated method to
detect hate speech and offensive language is developed in (Davidson et al., 2017). The authors have used
the following features: TF-IDF (Unigram, Bigram, and Trigram), POS (Unigram, Bigram, and Trigram),
Flesch-Kincaid Grade Level, Flesch Reading Ease scores, sentiment lexicon, and some content based
features. They have used the classes: hate speech, only offensive language, and neither.

A method to detect abusive language on Arabic social media is proposed in (Mubarak et al., 2017).
The authors have created a list of obscene words and hashtags. They also expand the list of obscene
words using this classification. Obscene, offensive and clean are the classes used. A rule based approach
to rephrase profanity in Chinese text is developed in (Su et al., 2017). The authors have framed 29
rephrasing rules. The proposed system will provide rephrased text with less offensive content. However,
these rules are handcrafted. Convolutional Neural Networks are used to classify hate speech in (Gambäck
and Sikdar, 2017). The authors have used four CNNs: character 4-grams, word vectors based on semantic
information built using word2vec, randomly generated word vectors, and word vectors combined with
characters.

A recent discussion on the challenges of identifying profanity vs. hate speech can be found in (Mal-
masi and Zampieri, 2018). The results demonstrated that it can be hard to distinguish between overt and
covert aggression in social media.

3 Methodology and Data

In this section, we describe the methodology used for the problem of aggression detection in social
media. First, we describe the CNN architecture used in our approach. Next, we describe the LSTM and
Bi-LSTM architectures. Finally, we explain our voting based ensemble classifier used in this paper. An
overview of our proposed method is shown in Figure 1.

3.1 Convolutional Neural Networks (CNN)

Recently, CNNs have been achieving excellent results in various NLP tasks. Our CNN model is inspired
from (Kim, 2014). There are two channels in CNN architecture: static and non-static. In static channel,
the word vectors are static and are not changed whereas in non-static channel, the word vectors are tuned
according to the task. Word vectors are low dimensional dense representations of one hot vectors. These
word vectors or word embeddings can be treated as universal feature extractors i.e., they can be applied
to any task and achieve comparable performance.

Our CNN architecture contains five layers: Input layer, convolution layer, pooling layer, hidden dense
layer, and output layer. Let wi ∈ Rd be the d-dimensional word vector corresponding to ith word in the
sentence. Let the sentence be comprised of sequence of tokens: {t1, t2, t3, ...tn}. The sentence vector
can be obtained by the following equation.

w1:n = w1 ◦ w2 ◦ w3... ◦ wn (1)

1https://github.com/JohnLangford/vowpal wabbit
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where ◦ is concatenation operator, wi is the corresponding word vector of ti. Sentence matrix of
length s × d is given as input to the input layer, where s is the number of tokens in the sentence and d
is the dimension size. As part of convolution operation, a filter ft is applied to a window of h words to
produce a new feature. Similarly, all the convolution features are calculated for all the possible windows
of h words. Multiple filters can also be used. After finding the convolution features, these are given
as input to the pooling layer. The purpose of pooling layer is to get most important activation. In this
architecture, we use max pooling for this purpose. Next, features which are obtained by applying max
pooling are given as input to hidden dense layer and then finally softmax activation function is used to
get the prediction for the given text or sentence. We also use dropout parameter to reduce the problem of
overfitting.

3.2 Long Short Term Memory networks (LSTM)

In conventional neural networks, we assume that all inputs are independent of each other. However, this
assumption may not be valid for several problems where the input is inherently sequential, or there are
explicit dependencies between the input segments. For example, to predict a next word in a sentence,
it is better to know the previous words in the sentence. Recurrent Neural Networks (RNN) can predict
the next word in the sentence based on the previous words which come before it. RNNs work well if
the context is short. If the context is long RNNs may not work properly because they can not remember
the long dependencies and also because of vanishing gradient problem. To overcome the drawbacks of
RNNs, Long Short Term Memory networks (LSTM) were introduced. These are special kind of RNNs
which are capable of learning long-term dependencies and long contexts.

LSTMs have the capability to add or remove the information to the cell state Ct with the help of
structured gates. The first component of LSTM is forget gate. The function of forget gate is to decide
which information to remember and which information to forget. Sigmoid activation function is used in
this layer. So, it will output 1 if the information needs to be remembered otherwise 0. It can be computed
by looking at previous state ht−1 and current state xt as follows.

ft = σ(Wf .[ht−1, xt] + bf ) (2)

where [ht−1, xt] is the concatenated vector of ht−1 and xt, bf is the bias term, Wf is a weight vector.
Next, LSTM choose what new information to be stored by the cell state. It can be done in two parts. In
the first part, input gate decides what values to update.

it = σ(Wi.[ht−1, xt] + bi) (3)

In the second part, a vector of new candidate values C̃t that could be added to the cell state is generated
by applying tanh activation function.

C̃t = σ(WC .[ht−1, xt] + bC) (4)

Now, the new cell state is computed by the following equation.

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

Final gate is output gate. It is computed as follows.

ot = σ(Wo.[ht−1, xt] + bo) (6)

ht = ot ∗ tanh(Ct) (7)

Output is calculated by the ot. ht is calculated by applying tanh activation to the cell state Ct and by
multiplying with ot. This will decide which information should be passed to the next state.
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Table 2: The number of instances in the aggression dataset

Aggression Train Dev Test 1 (Face-
book posts)

Test 2 (Social
media posts)

All

Overtly Aggression
(OAG)

2708 711 144 361 4532

Covertly Aggression
(CAG)

4240 1057 142 413 5852

Non-aggressive (NAG) 5052 1233 630 483 6790
All 12000 3001 916 1257 17174

3.3 Bi-directional Long Short Term Memory networks (Bi-LSTM)
Bi-directional Long Short Term Memory networks (Bi-LSTM) use two LSTMs instead of one LSTM
for training. The first LSTM is applied on the normal sentence and the second LSTM is applied on the
reversed copy of the given input sentence. This can provide faster learning and additional context for
better training. In all the above deep learning methods, we use Glove word embeddings (Pennington et
al., 2014) with dimension size 200.

3.4 Voting Based Ensemble Classifier
There are different ensemble methods such as bootstrap aggregating (bagging), boosting, stacking, sim-
ple averaging, majority voting, etc. to combine the classifiers. In bagging ensemble method, each classi-
fier is trained on random sub-samples which are drawn from the original dataset using bootstrap sampling
method. In boosting, each classifier is trained on the same samples but the weights of the instances are
adjusted according to the error of the last prediction. In stacking, the classifiers are combined using
another machine learning algorithm. In simple averaging, the predictions of classifiers are averaged to
get the final predictions. Finally, in majority voting ensemble method, for each test instance, the final
prediction is the one which is predicted by the majority of classifiers.

Generally, the performance of the ensemble method is often better than the performances of individual
methods in the ensemble. We use majority voting based ensemble method for our problem. The methods
used in the ensemble are CNN, LSTM, and Bi-LSTM.

Data
The number of instances for each of the aggression categories in training and validation set are presented
in Table 2. For testing, we use two datasets. One dataset is from Facebook posts with 916 instances and
another one is from social media posts with 1257 instances. The data collection methods used to compile
the dataset used in the task is described in Kumar et al. (2018b).

4 Results

In this section, we describe the results obtained by applying our proposed method.

Evaluation Metrics
Let tp denotes the true positives, fn denotes the false negatives, fp denotes the false positives, and tn
denotes the true negatives. The following are the evaluation metrics used in this paper.

• Precision: Precision is computed as follows.

Precision(P ) =
tp

tp+ fp
(8)

• Recall: Recall is computed as follows.

Recall(R) =
tp

tp+ fn
(9)
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Table 3: Evaluation results of Facebook posts

Aggression Precision Recall F1-score #Samples
OAG 0.4938 0.5556 0.5229 144
CAG 0.2360 0.5634 0.3326 142
NAG 0.8602 0.5667 0.6833 630
Avg/Total 0.7059 0.5644 0.6037 916

Table 4: Evaluation results of Social Media posts

Aggression Precision Recall F1-score #Samples
OAG 0.5032 0.4294 0.4634 361
CAG 0.3953 0.4116 0.4033 413
NAG 0.6089 0.6542 0.6307 483
Avg/Total 0.5084 0.5099 0.5080 1257

• F1-score: F1-score (weighted) is calculated as follows.

F1-score =
2PR

P +R
(10)

Weighted F1-score calculate metrics for each class label, and find their average, weighted by support
(the number of true instances for each label).

The evaluation results with Facebook posts by applying our proposed method are shown in Table 3.
It can be observed that precision, recall, and F1-score of Non-aggressive class are higher than other two
classes. Similarly, for the Covertly Aggressive class all these metrics are lower than other classes. This
is because aggression is hidden in CAG class posts and it is very difficult to identify that type of posts.
For CAG class our proposed method is not doing well. However, overall precision, recall, and F1-score
values are good.

The evaluation results with social media posts by applying our proposed method are shown in Table
4. The evaluation metrics are behaving in a similar manner as the results of applying our method to
Facebook posts i.e., NAG class values are better and CAG class values are worse than remaining two
classes. However, overall values are less compared to the results of Facebook posts. This is because, in
the first case, the training and testing are done from the same domain (Facebook) whereas in the second
case, the training is done on one domain (Facebook) and testing is done on other domain (other social
networking site).

Table 5: Comparison of our proposed method results for Facebook posts.

System F1 (weighted)
Random Baseline 0.3535
Proposed method 0.6037

Table 6: Comparison of our proposed method results for social media posts.

System F1 (weighted)
Random Baseline 0.3477
Proposed method 0.5080

The comparison of our proposed method with random baseline method for Facebook posts is shown
in Table 5. In random baseline method, class labels are assigned randomly to each post and F1-score
is calculated. It can be observed that our proposed ensemble method outperforms the random baseline
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Figure 2: Confusion matrix of the proposed ensemble model for the three classes. The heat map represents the fraction of
correctly classified examples in each class. The raw numbers are also presented in each cell.

method. This shows the effectiveness of our proposed method. Similarly, the comparison of our proposed
approach for social media posts is shown in Table 6. Our proposed approach is performing better than
the random baseline method.

The confusion matrix of our proposed method for Facebook posts is shown in Figure 2a. This shows
there is the maximum confusion between NAG and CAG, with Non-aggressive frequently being confused
for Covertly Aggressive content. A considerable amount of Non-aggressive content is misclassified as
being Covertly Aggressive. The Non-aggressive class achieves the best result, with a huge majority of
instances being correctly classified. The confusion matrix of our proposed method for social media posts
is shown in Figure 2b. This figure shows there is a large amount of confusion between OAG and CAG,
with Overtly Aggressive being confused for Covertly Aggressive. Similarly, there is a substantial amount
of confusion between CAG and NAG, with Covertly Aggressive content is being misclassified as Non-
aggressive and vice-versa. In this case also, the Non-aggressive class achieves best result, with a large
number of instances being correctly classified.

5 Conclusion

We developed an ensemble method for aggression detection in social media with three deep learning
methods in the ensemble. Ensemble method performance is better than the performance of individual
methods in the ensemble. We observed that our approach is achieving good performance on cross-domain
also. Our proposed method outperforms the random baseline method. It is very difficult to differentiate
between Covertly Aggressive posts and Non-aggressive posts in social media. There is a scope to improve
our method because some of the classes (CAG and OAG) have lower precision values. For future work,
we want to include both feature based and deep learning methods in the ensemble.
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Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben Verhoeven, and Walter Daelemans. 2016. A Dictionary-based
Approach to Racism Detection in Dutch Social Media. In Proceedings of the Workshop Text Analytics for
Cybersecurity and Online Safety (TA-COS), Portoroz, Slovenia.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy Bellmore. 2012. Learning from bullying traces in social
media. In Proceedings of the 2012 conference of the North American chapter of the association for computa-
tional linguistics: Human language technologies, pages 656–666. Association for Computational Linguistics.

127



Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, pages 128–139
Santa Fe, USA, August 25, 2018.

Merging datasets for aggressive text identification
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Abstract

This paper presents the approach of the team “groutar” to the shared task on Aggression Identifi-
cation, considering the test sets in English, both from Facebook and general Social Media. This
experiment aims to test the effect of merging new datasets in the performance of classification
models. We followed a standard machine learning approach with training, validation, and test-
ing phases, and considered features such as part-of-speech, frequencies of insults, punctuation,
sentiment, and capitalization. In terms of algorithms, we experimented with Boosted Logistic
Regression, Multi-Layer Perceptron, Parallel Random Forest and eXtreme Gradient Boosting.
One question appearing was how to merge datasets using different classification systems (e.g.
aggression vs. toxicity). Other issue concerns the possibility to generalize models and apply
them to data from different social networks. Regarding these, we merged two datasets, and the
results showed that training with similar data is an advantage in the classification of social net-
works data. However, adding data from different platforms, allowed slightly better results in both
Facebook and Social Media, indicating that more generalized models can be an advantage.

1 Introduction

In the last few years, we have witnessed a growing number of online platforms where users can post
content. As the number of platforms has increased, so has the number of aggressive interactions, such
as cyberbullying or hate speech. The goal of our work is to contribute to the automatic identification of
this type of communication through the participation in the Shared Task on Aggression Identification in
text (Kumar et al., 2018a).

The task consisted in developing a classifier that could make a 3-way classification between Overtly
Aggressive (OAG), Covertly Aggressive (CAG) and Non-aggressive (NAG) text data. The organizers
provided a dataset of 15,000 aggression-annotated Facebook posts for training and validating the clas-
sification systems. Each team was allowed to test up to three systems and to use additional data for
training, as long as the data would be publicly available before submission of the system paper. Different
competitions were available with variations in language and data sources. It was possible to classify
aggression in English and Hindi and also using data from Facebook or other Social Media platform
unknown at submission time.

In our approach, we focused on understanding the effects of merging new datasets for training models.
We used the Toxicity dataset, from the Toxic comment classification challenge in Kaggle, as an additional
source of data, and we proceeded with the conversion from toxicity to aggression. We built and compared
two systems, one using only the original data for training, and the second using also toxic data. We
extracted some classic features and studied different machine learning classification algorithms using a
methodology of training, validation, and testing. Our approach focused on English and in both test sets
provided, Facebook and Social Media.

In the next sections, we present the related work (Section 2), our method (Section 3), the results
(Section 4), and finally our conclusions (Section 5).
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2 Related Work

Aggression by text is a complex phenomenon, and different knowledge fields try to study and tackle
this problem. In this analysis of related work, we focus mainly on a computer science perspective on
aggression identification, a recent emerging area. In the last years, the scientific study of automatic iden-
tification of aggressive text, from a Computer Science and Engineering point of view, is increasing. One
important aspect to consider is that in this scientific community, several related terms are used to express
different types of aggression. Some of those are hate (Tarasova, 2016), cyberbullying (Chen, 2011), abu-
sive language (Nobata et al., 2016), profanity (Dictionary, 2017), toxicity (Jigsaw, 2017), flaming (Guer-
mazi et al., 2007), extremism (Prentice et al., 2011; McNamee et al., 2010), radicalization (Agarwal and
Sureka, 2015), and hate speech (Schmidt and Wiegand, 2017).

Despite the differences between those concepts, previous research can give us insight into how to
approach the problem of identifying aggressive interactions. For instance, particular attention has been
given to the automatic detection of hate speech. In one survey paper (Schmidt and Wiegand, 2017), the
authors provide a short, comprehensive, structured and critical overview of the field of automatic hate
speech detection in natural language processing. In other, the main focus is on definitions and rules for
classification (Fortuna and Nunes, forthcoming), which is important for solving this complex task. One
of the main conclusions of these works is that the automatic classification of hate speech and other related
concepts rely frequently upon Machine Learning and classification approaches.

Regarding the automatic classification of messages, one first step is the gathering of training data.
Several studies published datasets for aggression identification with different classification systems. For
example, in one dataset the classes “Racism”, “Sexism” and “Neither” were used to annotate tweets for
English (Waseem and Hovy, 2016). In another dataset collected for the specific topic of hate speech
against refugees, tweets in German were annotated using only the class “Hate Speech” (Ross et al.,
2017). Another study presents a hate speech detection dataset in Twitter for English, using the classes
“Hate”, “Offensive” or “Neither” (Davidson et al., 2017). A third dataset not publicly available contains
comments from Yahoo! Finance and News in English and uses the classes “Hate Speech”, “Derogatory”,
“Profanity” and “Neither” (Nobata et al., 2016). Finally, one last dataset from a classification challenge in
Kaggle identifies Toxicity (Jigsaw, 2018). The dataset contains Wikipedia comments marked as “toxic”,
“severe toxic”, “obscene”, “threat” and “identity hate”, in a multi-class and multi-label approach. Based
on the information from these datasets, we conclude that none considers the class “aggression”, which
would be useful for this work. Another difficulty is the multiplicity of different concepts and definitions.
A recent work identifies this problem and proposes a typology that captures the similarities between con-
cepts (Waseem et al., 2017). According to this typology, abuse follows into directed vs. generalized and
explicit vs. implicit categories. This topology has implications on the following parts of a classification
procedure.

After the data collection, one of the most important steps when using classification is the process of
feature extraction (Schmidt and Wiegand, 2017). Different approaches are being used, ranging from Dic-
tionaries (Liu and Forss, 2015; Dadvar et al., 2012; Dinakar et al., 2011), to Bag-of-words (Burnap and
Williams, 2016; Kwok and Wang, 2013; Greevy and Smeaton, 2004), N-grams (Burnap and Williams,
2016; Nobata et al., 2016; Waseem and Hovy, 2016; Liu and Forss, 2014; Greevy and Smeaton, 2004;
Badjatiya et al., 2017; Davidson et al., 2017), Part-of-speech (Greevy and Smeaton, 2004; Dinakar et al.,
2011; Burnap and Williams, 2014), Lexical Syntactic Feature-based (LSF) (Chen, 2011), Rule based ap-
proaches (Haralambous and Lenca, 2014), Participant-vocabulary consistency (PVC) (Raisi and Huang,
2016), Template-based Strategies (Powers, 2011), Word Sense Disambiguation Techniques (Yarowsky,
1994), Sentiment analysis (Liu and Forss, 2014; Liu and Forss, 2015; Gitari et al., 2015; Agarwal and
Sureka, 2017; Del Vigna et al., 2017; Schmidt and Wiegand, 2017; Davidson et al., 2017), perpetrator
characteristics (Waseem and Hovy, 2016), Paragraph2vec (Djuric et al., 2015) and Deep learning (Yuan
et al., 2016). There are also features and approaches more specific to the problem of hate speech de-
tection, namely: othering language (Burnap and Williams, 2016; Dashti et al., 2015), declarations of
superiority of the ingroup (Warner and Hirschberg, 2012), objectivity (Gitari et al., 2015) and subjec-
tivity (Warner and Hirschberg, 2012) of hate speech language. Additionally, in the typology of hate,
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some considerations are made regarding the features to use (Waseem et al., 2017). In the case of direct
abuse, mentions, proper nouns, named entities, and co-reference resolution can be helpful. In general-
ized abuse, researchers should consider identifying vocabulary specificities regarding the groups targeted.
On the other hand, explicit abuse is often indicated by specific keywords. Hence, dictionary-based ap-
proaches may work well. Finally, implicit abuse identification works with character N-grams (Mehdad
and Tetreault, 2016), word embeddings (Djuric et al., 2015) and perpetrator characteristics (Waseem and
Hovy, 2016).

Regarding the classification algorithms, the more common are SVM (Del Vigna et al., 2017), Random
forests (Burnap and Williams, 2014), Decision trees (Dinakar et al., 2011), Logistic regression (Davidson
et al., 2017), Naive bayes (Liu and Forss, 2015) and Deep learning (Yuan et al., 2016).

In this challenge, we are not only interested in distinguishing between aggressive and non-aggressive
text, but different degrees of aggression are also considered. A recent discussion on the challenges of
identifying profanity vs. hate speech highlighted some issues in this topic (Malmasi and Zampieri, 2018).
The results revealed that discriminating hate speech from profanity is not a simple task, and it may require
features more complex than N-grams. From this conclusion, we can extrapolate that distinguishing overt
and covert aggression will be difficult as well. Overcoming this difficulty is a motivating factor for
conducting this shared task.

Regarding the specificities of our approach, the main research question of our work concerns the
effects of merging new datasets on the performance of models for aggression classification. Additionally,
there are some open issues that motivate our work. One question is if it is possible the combination of
datasets annotated with different classification systems (e.g. toxicity and aggression). This combination
would allow the use of multiple datasets simultaneously. Another question is if it is possible to generalize
models and apply them to data from different Internet sources. Finally, other question concerns the
duration in time of the models, even when the same platform is used, due to the fast evolution of online
language.

In the next sections, we aim to answer to some of these questions with our approach.

3 Methodology and Data

3.1 The datasets

The provided training datasets (Kumar et al., 2018b) contained Facebook text messages for English and
Hindi. From those messages, 12,000 were for training and 3,000 for development (dev). This last was
a dataset for testing before submitting final results. Regarding the test set, was the data available for
final classification and final submission for ranking of solutions in the contest. Several scenarios were
available for testing the final models. Besides different languages (English and Hindi), the teams could
classify diverse message sources (Facebook and general Social Media). For the annotation of the datasets,
there were three classes described solely as Overtly Aggressive (OAG), Covertly Aggressive (CAG) and
Non-aggressive (NAG) and no additional information provided. This lack of deeper definitions opposes
to previous recommendations (Ross et al., 2017), which pointed out the importance to clearly define
concepts before addressing problems like hate speech identification.

Aiming to improve the available definitions, we tried to manually inspect some data, so that we could
better understand the differences among the three types of messages. We concluded that it is not easy to
distinguish the classes and that they overlap (Table ??). For example, a text like “Nonsense” is marked
as overtly aggressive (OAG), while “No respect for him now” is marked as non-aggressive (NAG).

Outside of the challenge, the definitions of the classes became available in the article presenting the
dataset (Kumar et al., 2018b). According to these authors, overt aggression is any speech or text in which
aggression is overtly expressed, either through the use of specific kind of lexical items, lexical features
or certain syntactic structures, considered aggressive. On the other hand, covert aggression is any text in
which aggression is not overtly expressed. It is an indirect attack against the victim and is often packaged
as insincere polite expressions, through the use of conventionalised polite structures. For instance, cases
of satire or rhetorical questions may be classified as covert aggression.

Considering the opportunities this task enabled, we decided to conduct our experiment only for English
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Id Text Class

facebook corpus msr 326287
This is a false news Indian media is simply misguiding there nation and
creating hatred.. Media should be v careful while spreading the news..
SHAME.:(

NAG

facebook corpus msr 1805657 No respect for him now NAG

facebook corpus msr 401603 Now time has come to take firm action against pakistan, pl do not seat
idle.....public anger.... NAG

facebook corpus msr 382223 Unfortunately this is wat indian govt is capable of doing!!!!...i dint vote
for modiji to see such crap.. CAG

facebook corpus msr 470981 I visited 5 atm but I cont able to withdraw from money..not working.. CAG
facebook corpus msr 492174 I wanna meet the girl who said the iPhone is user friendly!!! CAG
facebook corpus msr 1853672 What the hell is happening OAG
facebook corpus msr 2032108 #salute you my friend OAG
facebook corpus msr 2241597 Nonsense OAG

Table 1: Examples of messages extracted from the provided dataset.

and to test the effect of adding a new dataset in our classification both in messages from Facebook and
general Social Media. Despite our intention, we did not find an alternative dataset that would have
classified text for aggression. We decided then to use a Toxicity dataset, already mentioned in Section 3.1.
The Toxicity dataset consists of 170,355 messages marked as toxic, severe toxic, obscene, threat and
identity hate, in a multi-class and multi-label approach (Jigsaw, 2018).

When we try to match the Aggression dataset with the Toxicity dataset, we are in the presence of two
unequal classification systems. Therefore, we conducted a procedure for converting the classes of the
Toxicity dataset into aggression (Figure 1).

Text Toxic Severe 

Toxic
Insult Threat Obscene Identity 

Hate

text1 1 0 0 0 0 1

text2 1 1 0 0 0 0

text3 1 1 1 0 0 1

text4 0 0 0 0 0 0

… … … … … … …

Text Class

text1 CAG

text2 OAG

text4 NAG

… …

Figure 1: Procedure conducted for transforming the Toxicity dataset into Aggressive communication
dataset.

The steps followed are:

• Regarding the toxic column, we decided to ignore it because it correlates strongly with the others.

• The columns “severe toxic”, ‘insult” ,“obscene” and “threat” would correspond to “overtly aggres-
sive” (OAG).

• The column “identity hate” would correspond to “covertly aggressive” (CAG).

• We excluded the instances that would score in both OAG and CAG dimensions because that is not
possible in our original dataset.

In this procedure, we decided to only keep “identity hate” in the covertly aggressive (CAG) class.
Following previous studies (Malmasi and Zampieri, 2018), “profanity vs. hate speech” are considered
and both identified and handled as different classes. In the case of the Toxicity dataset, we think that
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Figure 2: Conducted method for comparison of Systems 1 and 2 using training, validation, and test.

“severe toxic”, “insult” ,“obscene” and “threat” are more similar to “profanity” than to “hate speech”,
and the four should be grouped together as overtly aggressive (OAG).

3.2 Method

In order to test the effect of adding a new dataset to our classification procedure, we compared two
different systems (Figure 2). In the first, we build a model using only the training set provided in the
contest. For that, we extracted some classic features and studied different machine learning classification
methods. In the second, we applied the same procedure, but we fed the model not only with the provided
data but also with the Toxicity dataset.

3.2.1 Dataset Preparation and Feature Extraction

Regarding the features, we used the NLTK 3.3 library (Bird et al., 2009) for extracting:

• Parts of speech (POS).

• Sentiment analysis.

• Combination of POS and sentiment analysis.

• Capitalized words.

• Punctuation patterns.

• Frequencies of insults.

The procedure consisted in tokenization and extraction of parts of speech (POS) with Penn Treebank
style. Regarding sentiment, we considered Vader (Valence aware Dictionary and sentiment reasoner),
a lexicon and rule-based sentiment analysis tool specialized in social media (Hutto and Gilbert, 2014).
It produces four sentiment metrics, namely: positive, negative, neutral and compound. Additionally, to
these metrics, we extracted the counts of negative words, and the counts of negative adjectives, combining
both POS and sentiment analysis. We also measured the frequencies of capitalized words in a message
and marked with a boolean full capitalized messages. Punctuation patterns were obtained as explained
in Table ??. Finally, we mapped the frequencies of insults, using a dictionary1 with 350 words. The total
number of features in each group is presented in Table ??.

1http://www.insult.wiki/wiki/Insult_List
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Individual features Expression Description
ellipsis \.{2,} ellipsis occurrence counts
ellipsis reps — sum of the summed length of all ellipsis patterns
simple qm ˆ?$ counts of single question mark
simple exc ˆ!$ counts of single exclamation mark
reps qm ˆ(\?+)$ counts of question marks with repetition
reps exc ˆ(!+)$ counts of exclamation marks with repetition
mixed (\?—\!){1,} counts of patterns with both question and exclamation marks
num punct — counts of punctuation patterns
max punct — size of largest punctuation pattern

Table 2: Extracted features based on punctuation and regular expression used.

Feature group Total features
Insult words 350
POS 36
Punctuation 9
Sentiment 5
Capitalization 2
POS + sentiment 2

Table 3: The total number of features by group.

3.2.2 Train and validation

In this phase, we used the R caret package (Kuhn, 2008) and the functions train, trainControl, predict
and confusionMatrix. We opted by three-fold cross-validation with parameter tuning of length three.
Regarding the classification algorithms, we used Boosted Logistic Regression (LogitBoost), Multi-Layer
Perceptron (mlp), Parallel Random Forest (parRF) and eXtreme Gradient Boosting (xgbTree).

3.2.3 Test

For testing our model we conducted four different runs. We developed two systems (aggression data vs.
aggression + toxicity data) that were tested in two different scenarios (Facebook data vs. Social Media).
Based on the results of the train and validation phases, we submitted the following systems (Table ??),
for English data: training with the provided dataset, classification algorithm with parallel random forests
and testing in Facebook data (Fb ag rf); training with the provided dataset plus the dataset classified on
toxicity, classification algorithm with parallel random forests and testing in Facebook data (Fb ag tox rf);
training with the provided dataset, classification algorithm with parallel random forests and testing in
Social Media data (Sm ag rf); training with the provided dataset plus the dataset classified on toxicity,
classification algorithm with parallel random forests and testing in Social Media data (Sm ag tox rf).

System id Data for testing Data for training Classification Algorithm
Fb ag rf Facebook Aggression Random forests
Fb ag tox rf Facebook Aggression + Toxicity Random forests
Sm ag rf Social Media Aggression Random forests
Sm ag tox rf Social Media Aggression + Toxicity Random forests

Table 4: Systems considered in the submission, each corresponding to one run.
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4 Results

4.1 Train and validation results
After training our models using cross-validation, and tuning them in the default parameters, we tested
them in the development dataset. This section provides the results in this phase, which were used to
decide on which classification algorithm to keep for the final submission. We concluded (Figure 3) that
the models built using only the default dataset (marked as “without toxic dataset” in the figure) perform
better than the ones using also the Toxicity dataset (marked as “with toxic dataset”).

LogitBoost mlp parRF xgbTree

CAG NAG OAG CAG NAG OAG CAG NAG OAG CAG NAG OAG

0.0

0.2

0.4

0.6

Class

F
1

toxic

With toxic dataset

Without toxic dataset

Figure 3: Results of different algorithms on the dev test set.

This is an expected result when using the development data for testing due to the source of its mes-
sages. In this case, the origin is Facebook, which is the same as in the training set. On the other side, the
Toxicity dataset comes from a different platform (Wikipedia) and these extra messages can cause noise.
Despite this result, we think that it worths to test the system built with the Toxicity dataset because on the
final submission some test sets include unknown data. Regarding the classification algorithms, we de-
cided to keep the parRF because it was the best performing algorithm if we take into account the results
of the three classes.

4.2 Final test results
In this section, we present the results after submitting our classifications in the shared task platform. In
Table 5, we can observe the results with the Facebook test set. With a mixed training dataset (Fb ag tox rf
system), we have a model with a slightly better performance than when using only the provided dataset
for training (Fb ag rf system). In this case, we would expect the same results as in the development
dataset because in both cases data originates in Facebook. Hence the model trained without Toxicity
should have performed better. Regarding this unexpected result, one possible explanation would be if
the moments for the collection of both dev and test set would not match, and therefore some differences
existing due to that.

CAG NAG OAG avg
random baseline - - - 0.3535
Fb ag rf 0.2135 0.6379 0.3439 0.5259
Fb ag tox rf 0.2217 0.6403 0.3439 0.5288

Table 5: Results for the English (Facebook) task, comparing the use of aggressive data (FB ag rf) with
the use of aggressive data plus Toxicity dataset (FB ag tox rf) for training using Random Forests for
classification.

We verified the same pattern described from the Facebook test set on the Social Media data (Table 6).
Using a mixed dataset for training lead to models with a better performance. In this case, this is an
expected result because the Social Media messages are from another source than Facebook and therefore
a more generic model is likely to perform better.

134



CAG NAG OAG avg
random baseline - - - 0.3477
EN-TW task, groutar 00 0.314 0.4863 0.2469 0.3609
EN-TW task, groutar 01 0.3151 0.4889 0.2505 0.3633

Table 6: Results for the English (Social Media) task, comparing the use of aggressive data (Sm ag rf)
with the use of aggressive data plus Toxicity dataset (Sm ag tox rf) for training using Random Forests
for classification.

If we compare both (Table 5 and Table 6), we achieved an overall better performance when classifying
Facebook than Social Media messages. This is also an expected result because we trained with messages
from this social network and the added Toxicity dataset originates in Wikipedia. On the other hand, this
pattern does not apply if we consider only the covertly aggressive messages (CAG). In this case, the
classification worked better in the Social Media messages. This supports the idea that different social
media platforms have different expressions of behavior and the covertly aggressive messages were easier
to target on Twitter.

We also present here the confusion matrix for the Facebook test set and the Social Media (Figures 4
and 5). We concluded that, when adding the Toxicity dataset, the results are slightly better in identifying
covertly aggressive messages (CAG) on Facebook, overtly aggressive messages (OAG) on Social Media
and non-aggressive messages (NAG) in both.

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

49 52 43

25 49 68

67 216 347

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

(a) Provided dataset

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

49 53 42

24 51 67

68 214 348

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

(b) Provided + Toxicity datasets

Figure 4: Confusion matrix for the two developed systems, using the Facebook test set and Random
Forest classification algorithm.

5 Conclusion

Throughout our approach to this shared task, our goal was to discuss some open issues in aggressive
text identification. Namely, the main motivation of our work was measuring the effects of merging new
datasets on the performance of models for aggression classification. It can be difficult to combine distinct
datasets due to the differences in the classification systems used. We conducted an experiment where we
combined a toxicity dataset with the original aggression dataset used in this shared task. Our expectation
was that, by adding external data from a different context, we could improve the performance of the
system.

In the procedure of adding different datasets to the data from the shared task, we faced one problem.
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Figure 5: Confusion matrix for the two developed systems, using the Social media test set and Random
Forest classification algorithm.

We found no alternative dataset with text classified for aggression and therefore we had to merge datasets
using different classes (aggression vs. toxicity). This required a conversion procedure where we corre-
sponded identity hate with covertly aggressive discourse, and severe toxic, insult, obscene and threat,
were mapped to overtly aggressive discourse.

Another goal of our work was focused on evaluating if we can build models that are general enough
to be useful across different social networks. From our experiments, on average we achieved a better
performance in classifying messages from the same social network that we used for training (Facebook)
when comparing to other social media. This confirms that training with similar data is an advantage in
the classification of social networks data. However, on the other hand, adding data for training from a
different platform, allowed us to slightly increase performance, indicating that more generalized models
can be an advantage.

Regarding the features, we used POS tags, sentiment analysis, insult frequencies, capitalization, and
punctuation counts. According to the literature, this kind of features are more related with explicit abuse
detection (Waseem et al., 2017). However, we did not find any evident advantage in using them for
detecting overtly aggressive discourse (OAG) in comparison with covertly aggressive (CAG). In our
experiment, the results of classifying OAG and CAG were equivalent. This can be due to the simplicity
of the extracted features, or possibly to some weaknesses in the data, as we explain in the next paragraph.

In the exploration of the dataset, we faced unclear definitions of the classification system used in the
annotation. Also, the definitions provided a posteriori seemed to be superficial. We manually inspected
some messages and concluded that it was difficult to identify the differences between the classes because
messages with similar degrees of aggression were found in the three classes. Additionally, we also found
lack of clear definitions in the toxicity dataset. This problem should be tackled in future research because
the identification of aggression is complex and ambiguous even for humans and requires clear guidelines.
Finally, we also noticed a higher percentage of aggressive messages in this dataset in comparison to
previous studies in other related phenomenon (Davidson et al., 2017), which questions the quality of the
annotation.
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Abstract

The phenomenon of cyberbullying has growing in worrying proportions with the development
of social networks. Forums and chat rooms are spaces where serious damage can now be done
to others, while the tools for avoiding on-line spills are still limited. This study aims to as-
sess the ability that both classical and state-of-the-art vector space modeling methods provide
to well known learning machines to identify aggression levels in social network cyberbullying
(i.e. social network posts manually labeled as Overtly Aggressive, Covertly Aggressive and Non-
aggressive). To this end, an exploratory stage was performed first in order to find relevant settings
to test, i.e. by using training and development samples, we trained multiple learning machines
using multiple vector space modeling methods and discarded the less informative configurations.
Finally, we selected the two best settings and their voting combination to form three compet-
ing systems. These systems were submitted to the competition of the TRACK-1 task of the
Workshop on Trolling, Aggression and Cyberbullying. Our voting combination system resulted
second place in predicting Aggression levels on a test set of untagged social network posts.

1 Introduction

The introduction of the Internet and its democratization in the public sphere has fostered the emergence
of many sociological phenomena. It opens the possibility of forming friendly relations and informa-
tion sharing from online networking platforms. These platforms, which are often the subject of strong
ownership by young users, introduce a paradigm shift in interpersonal relationships since they are now
interactive spaces where it is hard to put regulation rules in place. Thus, each time more we see the ap-
pearing of aggressive behaviors that were confined to the physical space until recently. These aggressions
can take different forms: insults, intimidation, humiliation, exclusion, etc. All them have for common
point to take place in a space where it is possible to cause serious moral damage without suffering the
consequences, in particular because of the possibility of evolving in a completely anonymous way. This
phenomenon, referred to as cyberbullying, or Internet harassment, is defined as “the use of information
and communication technologies to repeatedly, intentionally, and aggressively engage in behavior with
respect to an individual or a group with the intention of causing harm to others” – Belsey (2013).

Several solutions have been proposed, often based on a behavioral and pedagogical approach (ignore
the attacker, confront him or even denounce him). However, it becomes necessary to think about relevant
algorithmic strategies to better protect Internet users from cyberbullying. Such strategies would allow
the establishment of an automated system to detect cyberbullying in social media. This assist moderators
to identify the most serious cases, and thus to contribute to a safer virtual space for both the youngest
and the adults.

In this paper we propose an approach based on multiple classical text mining pipelines. The aim of
this is to explore the actual difficulties linguistic and extralinguistic phenomena may imply to effectively
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identify aggression levels of cyberbullying in social network posts manually labeled as Overtly Aggres-
sive (OAG), Covertly Aggressive (CAG) and Non-aggressive (NAG). Our exploratory approach has two
main stages. First, we tested multiple vector space modeling methods along with multiple well known
learning machines (classifiers) for predicting each of aggression levels individually. The vector space
modeling techniques included TF–IDF vectors, Latent Semantic Analysis (LSA, of varied dimension-
alities) of TF–IDF vectors. Both TF–IDF and LSA were computed for character and word n−gram
features. In addition, we used word embedding-based representations of posts. Learning machines that
were evaluated along with the aforementioned vector space modeling methods include Naïve Bayes,
Linear Perceptron, Support Vector Machine (SVM) and Passive-Aggressive classifier. Once this first
stage gives us several preliminary results, we selected the two configurations giving the best accuracies
as competing systems for the first two runs. As a third run, we combined these two systems, which incor-
porates a random class generator based on class frequencies of the training and development sets. This
class generator draws one of the three classes in the case of disagreement of the combined systems. This
approach resulted in 2nd place of the Facebook competition dataset with 0.6315 of weighted F1 score.
In the Social Media dataset, our best system resulted in 4th place with 0.5716 of weighted F1 score.

This paper is organized as follows: the section 2 shows the state of-the-art, section 3 describes the
methodology and the COLING’18 TRAC-1 dataset used, section 4 shows the results and finally the
section 5 conclude our paper.

2 State of the Art

There already exist software designed to combat the phenomenon of cyberbullying, e.g. Bsecure1, Cy-
berPatrol2, Eblaster3 or IamBigBrother4. The main drawback of these systems is that they are based on
keyword filtering, which is a limitation because no statistical features of texts are taken into account.
Further, these keyword filtering methods require manual maintenance.

To overcome the limitations of keyword filtering systems, (Yin et al., 2009) is one of the former at-
tempts to detect cyberbullying by using statistical features: word frequency, analysis of feelings (use of
pronouns in the second person, insults, etc.) and context. (Dinakar et al., 2011) built a system that can
detect bullying elements in commentaries of YouTube videos. These were classified according to dif-
ferent representative categories (sexuality, intelligence, race and physical attributes). The classification
revealed weaknesses and an increase in false positive cases. Researchers emphasized the importance
of using common sense to understand users’ goals, emotions, and relationships, thereby disambiguating
and contextualizing language.

In (Berry and Kogan, 2010) the authors were also interested in a word search method based on a bag
of words (BoW) system incorporating sentiment and contextual analysis. They build a decision tree that
predicted intimidating messages with an accuracy rate of 93%. The researchers also have developed the
Chatcoder software to detect malicious activities on-line (Kontostathis et al., 2012)5.

In another study it was tested a system that allows users of a website to control the messages posted
on their web pages: it customized vocabulary filtering criteria using a machine learning method that
automatically labeled the contents. This approach had limitations because it was unable to measure
relationships between terms beyond a certain semantic level (Davdar et al., 2012).

(Nahar et al., 2014) provided a concrete method for detecting on-line harassment by measuring the
score of sent and received messages (and thus their degree of involvement in a conversation) using the
Hyper link-Induced Topic Research algorithm (HITS). The authors also proposed a graphical model that
identifies the aggressors and their most active victims.

Other studies have attempted to go further by seeking to take into account more specific characteristics.
(Davdar et al., 2012) tried to establish a system based on language features characterizing the author’s

1http://www.bsecuregroup.com/
2https://www.cyberpatrol.com/
3https://www.veriato.com/
4http://www.parentalsoftware.org/bigbrother.html
5http://www.chatcoder.com/
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genre of comments on MySpace. Their results revealed an improvement in the detection of bullying
when this information is taken into account.

As we can see, recent work defines the means to respond to the cyberbullying phenomenon that is be-
coming more and more widespread as the use of the web does. This paper addresses such a phenomenon
and discusses a number of approaches to address it.

3 Methodology and Data

The methodology employed in this study has two main parts. First, we explored the hypothesis that dif-
ferent levels of aggression have different difficulty levels of identification. This hypothesis implies that
the classifiers behave differently for different levels of aggression, so we decided to explore each level
separately in an OVR (One-Versus-Rest) approach. Furthermore, we hypothesized that Covered Aggres-
sions (CAG) are harder to identify than the other ones. This is because of the undirected way things can
be expressed by users. A high pragmatic component is present in the form of sarcasm, which requires to
decode extra-linguistic information. Thus, during this first stage, a number of learning algorithms were
trained along with different text representations of their input vector space modeling.

Given that this first stage was mainly an exploratory one, assessing the actual difficulties of identifying
each level of aggression also involves exploring well-known text representation methods. This can be
achieved, on one hand, by using classical methods such as TF-IDF (Spärk-Jones, 1972; Torres-Moreno,
2014), Bag of Words (BoW, simple word counts) and Singular Value Decomposition (SVD). And, on the
other hand, we used an easy-to-use word embedding-based method allowing to observe whether Aggres-
sion Identification demands more representation ability than what is provided by traditional methods.

Exploring separately the difficulty of identification of each aggression level aims to be highly illustra-
tive of the properties of the Aggression Identification task. Also, it aims to select the machine learning
algorithms and the text representation methods that best perform in most of the exploratory experiments.

The second stage was to compete in three runs. To this end, we first used the two combinations
of machine learning algorithms with text representations that best performed during the exploratory
stage (out of the four that we tested). These combinations were submitted as two independent systems
representing one run each. In addition, we combined these two systems as a fusion system (multi-agent
system) that was submitted as our third run.

3.1 Dataset
The TRAC-1 dataset (Kumar et al., 2018) has been used in order to train our systems. The available
dataset is composed of samples with a variable class distribution according to the task. It is divided into
two subsets: a training set and a development set. The training set contains 12014 instances. 4241 of
them are labeled as Covertly Aggressive (CAG), 5055 of them are labeled as Non-aggressive (NAG),
and 2708 of them are labeled as Overtly Aggressive (OAG). The development dataset is constituted by
3003 samples. 1058 of them are labeled as CAG, 1233 of them are labeled as NAG and 711 of them are
labeled as OAG. See that there is a class imbalance mainly affecting the distribution of the OAG class.

3.2 Methods
3.2.1 Classical Vector Space Modeling using TF-IDF
Term Frequency-Inverse Document Frequency (TF-IDF) is a document representation method originally
used in Information Retrieval (Spärk-Jones, 1972; Torres-Moreno, 2014). This method represents a
document di by building its associated sparse vector xi = (x1, . . . , xn)

> ∈ Rn. Each of its components
j = 1, . . . , n is a weight associated to a word wj in the vocabulary of a collection of documents D =
{di}mi=1. In general, this weight can be seen as the information amount gained from D as wj is observed
in di. Each component xj ∈ R of the TF–IDF representation xi of a document di is given by equation (1):

xj =
fij

1 + log2m+ log2mj
(1)

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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where m is the total number of documents in the collection, mj is the number of documents that share
the word wj , and fij is the frequency of occurrence of wj within di. It has been showed that when the
documents are small, a binary version of fij behaves better than raw frequencies (Salton et al., 1983),
so fij can be defined as fij = 1 if wj ∈ di and fij = 0 otherwise. Furthermore, in our experiments we
computed TF-IDF sparse representations both for character-based and for word-based n−grams.

3.2.2 Word Embedding-Based Method
In the NLP literature there are reported a number of text embedding methods at the sentence level.
Among the State of the Art methods there is an easy to use one which uses a combination of word
embeddings weighted with TF-IDF (Word Information Series for Sentence Embedding, WISSE). The
word embeddings used were FastText of 300 dimensions (Joulin et al., 2016), which have been reported
to performe well in sentence representations for Semantic Textual Similarity tasks (Cer et al., 2017;
Arroyo-Fernández et al., 2017). WISSE simply represents a document di as in equation (2):

xi =
∑

wj∈di
ϕjxj , (2)

where xi ∈ Rn is the document/sentence representation of di and xj ∈ Rn is the word embedding of
wj . ϕj is the TF–IDF weight of wj . This weight represents the information amount provided by xj to xi
given that wj is observed in di and in D (the whole set of FB and SM posts).

3.2.3 Support Vector Machines
Let X = {x1, . . . , xn} be a set of samples, Y = {y1, . . . , yn : yi ∈ {CAG,NAG,OAG}} a set of labels
and D = {(xi, yi) : xi ∈ X , yi ∈ Y} a dataset of training examples. A Support Vector Machine (SVM)
builds a model f(x) such that given a new arbitrary point x it returns the category yi ∈ Y the point
belongs to (Cortes and Vapnik, 1995). The model is given by equation (3):

f(x) =
∑̀

i=1

αik(xi, x) + b (3)

where k(·, ·) is a kernel function acting as an inner product allowing to capture non-linear relationships
among data points. The linear case can be considered by setting k(xi, x) = 〈xi, x〉. The so called
dual coefficients αi are associated to each training point in X and they indicate how important is each
training point in representing D. The coefficients are trained by means of linear programming with `1
regularization. Thus, after the training, most these coefficients result very small or zero. The remaining
non-zero coefficients are associated to the so called support vectors, which are used to model the data.

For Aggression identification the SVM model is a representation of the Internet posts mapped so that
they can be divided by a clear gap that is as wide as possible so that each division indicates a category.

3.2.4 Passive-Aggressive Classifier
Let X = {x1, . . . , xn} be a set of samples, Y = {y1, . . . , yn : yi ∈ {CAG,NAG,OAG}} a set of
labels and D = {(xi, yi) : xi ∈ X , yi ∈ Y} a dataset of training examples. A Passive-Aggressive
learning algorithm (PA) updates a vector of weights wi that parametrize a linear decision boundary
f(xi) = 〈wi, xi〉 if this vector causes an error in the training for a sample xi ∈ X . This modification is
said to be aggressive. In case there is no error, the vector of weights is unchanged, i.e. wi+1 = wi, and
then the algorithm is said to be passive (Crammer et al., 2006). The update rule is given by equation (4).

wi+1 = wi + τiyixi (4)

where yi is the training label of the i−th training example (xi, yi) ∈ D and wi+1 is the updated version
of wi. It’s similar to the delta rule originally proposed for training one-layer neural networks (Haykin,
2009). The parameter τi is given by equation (5):

τi = min

{
C,
Li(wi, xi)

‖xi‖2
}

(5)
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where C is a manually set parameter that regulates aggressiveness (which is commonly termed as mo-
mentum in neural networks literature). Li is the hinge loss Li(wi, xi) = max{0, 1− yi〈wi, xi〉}, which
indicates whether an error occurred and its magnitude. The version of PA explained here is the simplest
one, and it allows to see a general portrait of this kind of algorithms. Nonetheless, a number of different
versions of them are shown in detail in (Crammer et al., 2006).

3.2.5 Classifier Fusion Using Class Distribution
Our third run was a fusion of the two classifiers having the best performance on the validation dataset.
The fusion is quite simple: for each sample, if the classifiers - Passive-Aggressive and SVM - are in
agreement, the predicted class is assigned to the document. Otherwise, if the classifiers are in disagree-
ment, a third classifier (based on the most statistically probable label from the class distribution of the
training set) decides the final output by using a simple vote.

4 Results and Discussion

4.1 Results of the Exploratory Stage (training and development datasets)

In the Figures 1-3 we show results (in terms of accuracy) of four approaches, i.e. Naïve Bayes (NB),
Perceptron, SVM and Passive-Aggressive (PA), in identifying independently each of the three levels of
aggression (OAG, CAG, NAG) in a OVR fashion. To model the input vector space of these algorithms
we used two baseline representation methods, i.e. Hashing (Bag of Words, BoW) and TF-IDF, and one
state-of-the-art word embedding-based method, i.e. WISSE. One of the main things we observed during
the exploratory stage was how the amount of training samples influenced the accuracy of the classifiers.
Therefore we plotted the accuracy as a function of the amount of training samples (from the whole
training set). The accuracy was measured on the development dataset.

The results show that NB, PA and SVM classifiers perform in similar ways. However, the Perceptron
showed to be a bit unstable and performed the worst. In most cases, the classifiers attained relatively
stable performance after 5000 training samples. In this sense, with respect to NAG and CAG, identifying
OAG aggressions represented much less complexity as a classification problem (2000 − 3000 TF-IDF-
transformed samples were required by classifiers to stabilize their performance). On the other hand,
identifying CAG resulted in a much more complex task for the classifiers. Perceptron was again the worst
while Naïve Bayes and linear SVM performed better, but barely surpassed 65% accuracy. Detecting NAG
aggressions required much more samples to allow the classifiers to be relatively stable. Furthermore, it
was hard for the classifiers to reach 73 − 74% of accuracy. Overall TF-IDF representations allowed the
classifiers to be much more stable than Hashing did.

Two additional experiments were conducted for exploring baseline representations on CAG detection
in more detail. First, we used Singular Value Decomposition (SVD) for dimensionality reduction on the
word-based TF-IDF representations of the posts. Although a number of dimensionalities were tested
(50, 100, 200, 300, 400), this modification neither showed improvements with respect to sparse TF-IDF
representations. Nonetheless, training time increased considerably as the implementations are better
prepared for sparse presentations. Secondly, we segmented documents into character n-grams before
represent them by means of TF-IDF. Surprisingly the classification accuracy was much better (+10%)
in general. This time, the Passive-Aggressive and linear SVM classifiers attained about 70% of accuracy
in CAG identification by segmenting the input posts into a range of [1− 5] character-based n-grams. To
observe this performance, more than 9000 samples were needed (See Figures 1-3). Other n-gram ranges
did not perform better (e.g. 2− 5, 3− 5, 1− 6, 2− 6, etc.).

We also used word embedding-based representations to represent the posts as sentence embeddings.
Even when these embeddings showed state-of-the-art performance in STS, their performance in Aggres-
sion Identification was not better than the baseline methods presented above (see Figures 4 and 5). The
behavior of classifiers with sentence embeddings showed much more unstable and the performance di-
minished by 5% in general with respect to the character-based TF-IDF sparse representations. Although
the sparse representations are high dimensional (thousands of dimensions), 5% or less of their entries are
nonzero. Most state-of-the-art implementations of the classifiers are prepared to deal efficiently with this
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Figure 1: One versus rest accuracy of four learning machines in predicting Overtly Aggressive (OAG)
Facebook posts (development dataset). The left hand side plot are accuracies of classifiers on (hashing)
Bag of words vectors. The right hand side are plots of accuracies of same classifiers on TF–IDF vectors.

Figure 2: One versus rest accuracy of four learning machines in predicting Covertly Aggressive (CAG)
Facebook posts (development dataset). The left hand side plot are accuracies of classifiers on (hashing)
Bag of words vectors. The right hand side are plots of accuracies of same classifiers on TF–IDF vectors.

issue. Therefore, the classifier ends by learning from 100 or less nonzero entries by sample. Conversely,
sentence embeddings based on word embeddings are dense representations of 300 dimensions, which
adds complexity to the learning problem (varying dimensions of the embeddings did not offered im-
provements and the learning instability held). Furthermore, the original purpose of sentence embeddings
is to represent an approximation of each word semantics, and then of the whole sentence semantics. This
may result in much more complex patterns represented by sentence embeddings than what is needed for
aggression identification.

This additional complexity in their input space can lead to over-fitting of the classifiers.

4.2 Results of the Competition Stage (test dataset)
The Aggression Identification competition required participants to apply their systems on a test dataset.
This dataset consists of two files. The first one having a class distribution similar to the training set, and
the second one with a so-called “surprise” configuration.

Three runs were conducted on the TRAC-1 test dataset, that was splitted into two files: Facebook and
Social Media. There are 916 samples on the Facebook set, and 1257 samples on the Social Media set
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Figure 3: One versus rest accuracy of four learning machines in predicting Non-aggressive (NAG) Face-
book posts (development dataset). The left hand side plot are accuracies of classifiers on (hashing) Bag
of words vectors. The right hand side are plots of accuracies of same classifiers on TF–IDF vectors.
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Figure 4: One versus rest accuracies of PA, Perceptron y SVM classifiers on Overtly Aggressive (left)
and Non-aggressive (right) Facebook posts (development dataset). The input embeddings were WISSE
of 300 dimensions.

(Kumar et al., 2018). During the exploratory stage we selected the two classifiers that performed the best
in most experiments conducted, i.e. the Passive-Aggressive (PA) and the SVM classifiers. Therefore,
our run 1 was executed by using a PA classifier whose hyperparameters were the best ones found via
3-fold cross-validation on the training dataset; the run 2 was executed by a SVM classifier whose hy-
perparameters were the best ones found with same method than for PA. And the run 3 was the fusion of
both coupled with a probabilistic distribution of the classes. The PA and SVM implementations we used
are the provided ones by (Pedregosa et al., 2011) (for the SVM we used the SGD version, Stochastic
Gradient Descent). Furthermore, we selected the vector representation that best performed during the
exploration stage, i.e. character based n-gram TF-IDF sparse representations with n ∈ {1, 5}. Because
their low performance during the exploratory stage, we decided do not use the word embedding-based
representations during the competition stage.

Tables 1 and 2 shows our rank position on the English Facebook (2nd place) and Social Media (4th
place) tasks respectively.

The Figures 6 and 7 shows the confusion matrix (True label vs. Predicted label) measured on the
English Facebook and Social Media files respectively. The confusion matrix in the case of Facebook

146



0 2000 4000 6000 8000 10000 12000
training examples (#)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Classification accuracy as a function of training examples (#)
Passive-Aggressive
Perceptron
SGD

Figure 5: One versus rest accuracies of PA, Perceptron y SVM classifiers on Covertly Aggressive (CAG)
Facebook posts (development dataset). The input embeddings were WISSE of 300 dimensions.

Rank System F1 (weighted)
1 saroyehun 0.6425
2 EBSI-LIA-UNAM 0.6315
3 DA-LD-Hildesheim 0.6178
4 TakeLab 0.6161
5 sreeIN 0.6037
... ... ...
30 bhanodaig 0.3572

Random Baseline 0.3535

Table 1: Results for the English (Facebook) task. Our model EBSI-LIA-UNAM (ELU) is placed in 2nd
rank.

Rank System F1 (weighted)
1 vista.ue 0.6008
2 Julian 0.5994
3 saroyehun 0.5920
4 EBSI-LIA-UNAM 0.5716
5 uOttawa 0.5690
... ... ...

Random Baseline 0.3477
... ... ...
30 bhanodaig 0.1960

Table 2: Results for the English (Social Media) task. Our model EBSI-LIA-UNAM (ELU) is placed in
4th rank.

data, shows that the OAG and CAG classes are the most difficult to classify (with 52% error rate for
OAG, 53% error rate for CAG). For the Social Media file, the CAG and OAG classes were the most
difficult to categorize (with 53% error rate for OAG, 64% error rate for CAG). In both sets, the NAG
class was detected correctly (33% and 11% error rate).

5 Conclusion

The methodology that we adopted allowed us to observe in broad strokes the complexity of the problem
in question. On the one hand, word embeddings are possibly trained to represent much more complex or
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detailed patterns in the text (e.g., distributional semantics), which leads to over-fitting that is reflected in
the instability of the predictions of the classifiers. Probably the word embedding approach is not the best
option for this task. Indeed, text representations with classical methods show much better adaptation
to this problem, and are much less complex to interpret than word embeddings. Finally, the datasets
provided for the task allow for taking into account only linguistic evidence, we think better results require
additional data contextualizing other aspects of aggressions in cyberbullying. For example, sarcasm, a
pragmatic phenomenon, requires extra-linguistic knowledge to be processed properly. We would have
liked to include a sentiment analysis resource in our experimentation. Finally, further processing of the
data might have provided us with additional information. For example, it might have been possible to
use the degree of severity associated with certain forms to refine our analysis, or to try to specify whether
an insulting sentence implies a response that also contains intimidation.

The use of the Levenshtein algorithm could have allowed a more precise identification of insults. This
algorithm takes into account changes in character strings, which is particularly suitable for discussions
on social networks where non-homogeneous language is used (Baetens, 2013).
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Abstract

Social media platforms allow users to share and discuss their opinions online. However, a minor-
ity of user posts is aggressive, thereby hinders respectful discussion, and — at an extreme level
— is liable to prosecution. The automatic identification of such harmful posts is important, be-
cause it can support the costly manual moderation of online discussions. Further, the automation
allows unprecedented analyses of discussion datasets that contain millions of posts.

This system description paper presents our submission to the First Shared Task on Aggression
Identification. We propose to augment the provided dataset to increase the number of labeled
comments from 15,000 to 60,000. Thereby, we introduce linguistic variety into the dataset. As
a consequence of the larger amount of training data, we are able to train a special deep neural
net, which generalizes especially well to unseen data. To further boost the performance, we
combine this neural net with three logistic regression classifiers trained on character and word
n-grams, and hand-picked syntactic features. This ensemble is more robust than the individual
single models. Our team named “Julian” achieves an F1-score of 60% on both English datasets,
63% on the Hindi Facebook dataset, and 38% on the Hindi Twitter dataset.

1 Introduction

Social media platforms, such as Facebook, YouTube, Twitter, and Instagram, enable millions to publicly
share user-generated content. Regardless of different content types, such as text, photos, videos, and
events, a crucial point of these platforms is that users can discuss content. The opportunity to articulate
opinions and ideas online is a valuable good: It is part of the freedom of expression, which is declared
in the Universal Declaration of Human Rights. However, aggressive and/or hateful posts can disrupt
otherwise respectful discussions. Such posts are called “toxic”, because they poison a conversation so
that other users abandon it. Toxicity is manifold and comprises, for example, obscene language, insults,
threats, and identity hate. Such statements are not covered by the freedom of expression, because they
harm others. The boundaries of the freedom of expression are a controversial topic. In moderated online
discussions, it is the task of human moderators to identify toxic comments and potentially delete them.

An automatic identification of toxic posts could support (or even to some extent replace) the costly
manual moderation of online discussions. For example, it could draw the attention of moderators to
posts that have been automatically identified as toxic. Another advantage of the automatic identification
of toxic posts is that it allows the analysis of much larger datasets. For example, classifiers that were
trained on a rather small hand-labeled dataset have been successfully used to machine-label and analyze
datasets with tens of millions of posts (Wulczyn et al., 2017).

The First Shared Task on Aggression Identification (Kumar et al., 2018a) deals with the classification
of the aggression level of user posts at different social media platforms. It is part of the First Workshop on
Trolling, Aggression and Cyberbullying at the 27th International Conference of Computational Linguis-
tics (COLING 2018). The task is a three-way classification problem with the three classes “overtly ag-
gressive” (OAG), “covertly aggressive” (CAG), and “non-aggressive” (NAG). The training data consists

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
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of 15,000 aggression-annotated Facebook posts each in Hindi and English. Weighted macro-averaged
F1-scores serve as the evaluation metric: The individual F1-score of each class is weighted by the pro-
portion of the concerned class in the test set and the final F1-score is the average of these individual
F-scores of each class.

In this system description paper, we introduce our implemented system as submitted for the shared
task. Our approach is based on a recurrent neural network, more specifically, a bi-directional gated re-
current unit (GRU) layer with max pooling and average pooling. However, the relatively small size of
the training dataset is a strong limitation for deep learning approaches. Therefore, we propose to aug-
ment the training dataset: We use machine translation to translate each English comment into a foreign
language, e.g. French, and translate it back into English afterwards. The result of these translations is
another English comment that typically uses slightly different words compared to the initial comment.
Examples for these translations are given in Section 3.1 and the augmented dataset together with our
implementation is published online1.

Our contributions can be summarized as providing a:

1. data augmentation method that triples the dataset size,

2. neural network architecture based on a GRU layer for the task of Aggression Identification,

3. comparison of our results at the different subtasks and an error analysis of our approach.

Section 2 gives an overview of related work. Section 3 explains our approach and goes into detail about
the proposed data augmentation method and the neural network architecture. We lists our results at
the different subtasks in Section 4 and discuss how the proposed approach generalizes to unseen data.
Finally, we conclude and outline possible paths for future work in Section 5.

2 Related Work

While the shared task focuses on aggression identification, related work considers the broader field of
hate speech, offensive, and abusive language identification. First approaches to the problem of classifying
insulting messages use a decision tree and go back to Spertus (1997). A hand-written set of rules with
syntactic and semantic text features are the basis of this model. For a slightly different task, harassment
detection in the web, Yin et al. (2009) introduce contextual features, which consider a user’s previous
and succeeding posts as a context. The survey by Schmidt and Wiegand (2017) points out that bag-of-
word models are good features for hate speech detection, although they ignore word order and sentence
syntax. Further, the authors propose to generalize from particular words to clusters of words. To capture
the semantic similarity of words our approach uses the fastText model by Bojanowski et al. (2017).
According to the survey by Schmidt et al., positive, negative, and neutral words are promising features
for hate speech detection. Polarity classifiers for short texts, such as SentiStrength (Thelwall et al., 2010),
are suited to extract such words of polarity and we make use of a polarity classifier in our approach.

Previous work agrees that word n-grams are well-performing features for hate speech detection (No-
bata et al., 2016; Badjatiya et al., 2017; Warner and Hirschberg, 2012; Davidson et al., 2017; Schmidt
and Wiegand, 2017). Davidson et al. (2017) compared logistic regression, naive Bayes, decision trees,
random forests, and support vector machines, and conclude that logistic regression and support vector
machines are the best performing classifiers for hate speech detection. Based on these insights, we in-
clude word n-grams and logistic regression in our approach. Further, a combination of different models,
as in the multi-level approach by Razavi et al. (2010), can make use of each model’s strengths. Therefore,
we combine four different models in an ensemble.

One of the main limitation for research progress in the field of toxic comment classification is the low
amount of available accurately labeled data (Kennedy et al., 2017). Wulczyn et al. (2017) address this
issue by training a classifier on a small set of human-labeled comments in order to afterwards generate a
larger machine-labeled dataset. Recently, Kaggle’s Toxic Comment Classification2 made available more

1https://hpi.de/naumann/projects/repeatability/text%2Dmining.html
2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
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Figure 1: Given a social media post, we apply four different models and combine their predictions in an
ensemble to identify the aggression level of the post (OAG, CAG, NAG).

than 150,000 English, hand-labeled comments. Other shared tasks provide non-English hand-labeled
data, such as German tweets3. Besides this positive recent development of data sharing, fine-grained
labeling becomes a topic of broader interest, for example in the work of Van Hee et al. (2015). A
discussion on the challenges of identifying profanity vs. hate speech is given by Malmasi and Zampieri
(2018). The results demonstrate that it can be hard to distinguish between overt and covert aggression
in social media. The finer-grained labeling coincides with the demand for explanations of a classifier’s
decision. A human moderator that decides whether to delete an automatically identified toxic comment
might want to know a fine-grained reason, such as whether the comment contains an insult, a threat, or
identity hate.

3 Methodology and Data

Our approach is based on two main ideas: (1) increasing the amount of available training data by data
augmentation in Section 3.1 and (2) leveraging the larger amount of training data with a deep learning
approach in Section 3.3. In addition to that, we propose three other models besides the deep learning
approach. Figure 1 is a system overview that shows how the four models are combined in an ensemble.
We publish the augmented dataset and the implementation of our approach in python with Keras and
Tensorflow online4.

3.1 Data Augmentation Based on Machine Translation

The training dataset consists of 15,000 posts for the English task and 15,000 posts for the Hindi task. The
data collection methods that were used to compile the dataset are described in Kumar et al. (2018b). We
refer to the dataset with published training data as Facebook dataset, because it contains Facebook posts.
The other dataset, which has been provided only as a test dataset without training labels, is referred to as
Twitter dataset, because it contains tweets.

In the following, we present our data augmentation method, which is based on the following insight:
Machine translating a user comment into a foreign language and then translating it back to the initial
language preserves its meaning but results in different wording. This change in wording is essential for
our approach: If the translation did not change the wording, it could not augment our dataset, because
the dataset already contains the exact same comment. However, because the wording is different, the
translated comment adds to our dataset. Only if the meaning is preserved, we can assume that the
label (non-aggressive, covertly aggressive, overtly aggressive) of the initial comment also holds for the
translated comment. Thanks to the recent advances of neural machine translation and its continuously

3https://projects.cai.fbi.h%2Dda.de/iggsa/germeval/
4https://hpi.de/naumann/projects/repeatability/text%2Dmining.html
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improving accuracy, we can assume that machine translation preserves the meaning of posts. We give
two examples for the data augmentation. The first example shows that different translations use different
words, such as “health”, “wealth”, “(economic) growth”, and “prosperity”.

1. Initial English post: “Happy Diwali.!!let’s wish the next one year health,wealth n growth to our
Indian economy.”

2. English to French to English: “Happy Diwali., Wish the next year health, wealth and growth to our
Indian economy.”

3. English to German to English: “Happy Diwali, let us wish the next year health, prosperity and
growth of our Indian economy.”

4. English to Spanish to English: “Happy Diwali We wish the health, economic growth and health of
our next year!”

The second example is a rather short post and all its translations are similar. However, for example,
the abbreviation “’u” for the word “you” is resolved.

1. Initial English post: “AAP dont need the monsters like u”

2. English to French to English: “AAP does not need monsters like you”

3. English to German to English: “AAP does not need the monsters like you”

4. English to Spanish to English: “AAP does not need monsters like you”

We applied this data augmentation method also to the Hindi dataset. Therefore, each Hindi post was
machine-translated into English and afterwards translated back to Hindi. For Hindi, this method did
not work as well. Often already the intermediate step of translating to English failed in preserving the
meaning of the initial Hindi post. As a consequence, the meaning of the translated posts did not match
with the initial labels and the translated posts could not be used for training. We assume that the quality
of machine translations from Hindi to other languages is comparably worse due to a lower amount of
training data.

3.2 Data Pre-Processing
We propose a special tokenization method for hashtags and user mentions. Many hashtags in the dataset
are concatenations of multiple words. For example, the meaning of “#realsurgicalstrike”, “#death-
toPakistan”, and “#saysiamaproudchutiyawhodoentknowshitabouthistory” can only be understood if
the words are split correctly. In some cases, the full post contains only a hashtag, such as the post
“#THANKY0UTAKER” which is labeled as covertly aggressive. We propose to split the strings after
“#” and “@” symbols into their original words with a dynamic programming approach. Our assumption
is that the best splitting is the one that maximizes the product of each word’s individual probability of
occurrence. For example, the splitting “real surgical strike” is to prefer over the splitting “real surgicals
trike”, because the probability of “surgical” is higher than the probability of “surgicals” and the probabil-
ity of “trike” is higher than the probability of “trike”. A word’s probability of occurrence can be inferred
from a large corpus of natural language, such as Wikipedia. Another splitting strategy would be to split
at capitalized letters, but we did not explore this idea.

Our deep learning approach uses 300-dimensional, pre-trained word embeddings by fastText (Bo-
janowski et al., 2017). More specifically, we use the common crawl embeddings5 for the English tasks
and the Hindi Wikipedia embeddings6 for the Hindi tasks (Grave et al., 2018). In comparison to other
embedding methods, fastText embeddings do not suffer from out-of-vocabulary problems. A word that
has never been seen during training time is represented by embeddings of character n-grams.

5https://fasttext.cc/docs/en/english%2Dvectors.html
6https://fasttext.cc/docs/en/crawl%2Dvectors.html

153



InputLayer
input (None,	150, 300)
output (None,	150,	300)

SpatialDropout1D
input (None,	150,	300)
output (None,	150,	300)

Bidirectional	(CuDNNGRU)
input (None,	150,	300)
output (None,	150,	128)

G.Avg.Pool.1D
input (None,	150,	128)
output (None,	128)

Lambda
input (None,	150,	128)
output (None,	256)

Concatenate
input [(None,	128),	(None,	256)]
output (None,	384)

Dropout
input (None,	384)
output (None,	384)

Dense
input (None,	384)
output (None,	3)

Figure 2: The neural network uses GRUs, average pooling, and k-maximum pooling (Lambda layer).

3.3 GRUs for Aggression Identification
We propose a recurrent neural network based on GRUs. The network architecture is visualized in Fig-
ure 2. We use pre-trained, fixed fastText embeddings, obtained as described in the previous Section 3.2.
We pad all posts to sequences of 150 words. The word embeddings are input to a spatial dropout,
which blocks the embeddings of 10% randomly chosen input words. A bi-directional layer of 64 GRUs
processes the remaining 90% of input. The next layer performs global average pooling and global k-
maximum pooling independently on the sequence of the outputs of all GRUs. A k-maximum pooling
with k = 2 extracts not only the largest, but also the second-largest element of the previous layer. A
Lambda layer implements this non-standard pooling technique. The average, the maximum, and the
second-largest element are concatenated into one vector and a dropout of 10% is added to prevent over-
fitting. Finally, a dense layer with softmax activation outputs 3 class probabilities. The model is trained
for 2 epochs with a batch size of 32. We observe that the data augmentation slightly reduces the number
of epochs until overfitting starts.

3.4 Tf-idf on Character and Word N-Grams
We extract character n-grams of length 2 to 6 and limit the set to the 50,000 most frequent character
n-grams. We extract word n-grams of length 1 to 2 and filter English stopwords, but also all words that
occur in more than 50% of all documents or in less than 2 documents. We normalize the frequency of
occurrence of all n-grams using tf-idf. As the classifier, we choose logistic regression for both, word and
character n-grams. Based on the extracted n-grams, we train logistic regression models according to the
one-vs.-rest strategy: We train one classifier per aggression level. For each aggression level, all posts of
that level are positive and all other posts are negative training examples.

3.5 Hand-Picked Features
A set of hand-picked features captures various properties, such as punctuation and capitalization, but also
emoticons. Overall, a combination of 35 extracted features serves as input to three logistic regressions,
which are trained according to the one-vs.-rest strategy for each level of aggression. 25 of these features
capture emoticons with regular expressions for sad, happy, and neutral faces. The remaining 10 features
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capture, for example, the number of words, the proportion of uppercase characters to lowercase charac-
ters, the number of negation words, and also the polarity of the post. We apply the VADER sentiment
analyzer to extract polarity scores (Gilbert, 2014).

3.6 Ensembling

Word embeddings, word n-grams, character n-grams, and hand-picked features capture different prop-
erties of user posts and therefore have different strengths and weaknesses. For example, word n-grams
suffer from out-of-vocabulary problems, which makes them sensitive to obfuscated words. The dataset
contains posts that make extensive use of obfuscation, such as “Son of a B****”, “***k them!!!!”. Word
embeddings and word n-grams cannot capture the meaning of these obfuscated posts, but character n-
grams or the number of asterisks and exclamation marks as hand-picked features can.

For the four models, we analyze the pairwise Pearson correlation of their predictions as listed in
Table 1. The word n-gram and the character n-gram models have the highest correlation. In contrast, the
recurrent neural network and the word n-gram model have a rather low correlation. Their low correlation
motivates to combine their predictions, because we can assume that they complement each other well. If
they both have a similarly high F1-score, their combination outperforms the single models.

Class RNN-Word RNN-Char RNN-Hand Word-Char Word-Hand Char-Hand
OAG 0.7271 0.7489 0.4548 0.8417 0.4132 0.4229
NAG 0.8070 0.8241 0.4163 0.8844 0.3961 0.4213
CAG 0.6240 0.6516 0.1779 0.7687 0.1499 0.2102

Table 1: Pearson correlation of the different models and classes (RNN: recurrent neural network, Word:
word n-grams, Char: character n-grams, Hand: hand-picked features).

The different strengths and weaknesses of the proposed four models motivate their combination in an
ensemble. For each of the four models, we run 10-fold cross-validation and create out-of-fold predic-
tions. For each of the 10 runs, we also make predictions for the test set and average all 10 predictions per
model. We use the out-of-fold predictions to learn, what combination of the single models performs best.
Instead of a simple weighted average of the different models, we propose a stacking approach: Given a
comment, we extract features and based on these features, decide how to weight the different models’
predictions for this particular comment.

For each comment, we extract: (1) the length (number of characters), (2) the relative number of
uppercase characters (number of uppercase characters divided by the total number of characters), (3) the
relative number of non-alpha characters (number of non-alpha characters divided by the total number
of characters), and (4) the relative number of exclamation marks (number of exclamation marks divided
by the total number of characters). For english-language comments, we also extract the relative number
of how many words in the comment have a GloVe embedding (Pennington et al., 2014). Although we
use fasttext embeddings, which do not suffer from out-of-vocabulary problems, we include this feature
to measure how many uncommon words are used in the comment. Based on the extracted features, we
train a stacker on the out-of-fold predictions and combine all approaches in an ensemble. The stacker
uses gradient boosting trees. More precisely, we use 75 trees with a depth of 3, a bagging fraction of 0.8
and a feature fraction of 0.45.

4 Results

Table 2 lists our cross-validation results. The RNN, word n-grams and character n-grams perform equally
well on the English data. The data augmentation makes only a small difference overall. However, it
improves the F1-score of the RNN from 57.2% to 58.5%. On the Hindi data, character n-grams clearly
outperform all other models. We assume that the performance of the RNN could be improved with better
word embeddings, such as embeddings trained on Hindi social media posts. The hand-picked feature
selection is superior to the random baseline but inferior to all other models for both languages.
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Figure 3: Confusion matrices for the ensemble appproach on the English test datasets.

Table 3 lists our test set results. Our results on both English test sets are the most stable results across
all participating teams: We achieve an F1-score of 60.0% on both datasets, the Facebook dataset and
the Twitter dataset. These results show that our approach does not suffer from overfitting to the training
dataset and generalizes well to other datasets. Our approach achieves rank 6 out of 30 on the Facebook
dataset with an F1-score of 60.0% (F1-score of the top team: 64.2%). On the Twitter dataset, it achieves
rank 2 out of 30 with an F1-score of 60.0% (F1-score of the top team: 60.1%).

Our results on the Hindi test sets differ for the Facebook dataset and the Twitter dataset: Our approach
achieves rank 4 out of 15 on the Facebook dataset with an F1-score of 63.1% (F1-score of the top team:
64.5%). On the Twitter dataset, it achieves rank 8 out of 15 with an F1-score of 38.3% (F1-score of
the top team: 49.9%). The F1-scores of each team differ between the Facebook dataset and the Twitter
dataset by 13.1% on average. Therefore, we assume that the differences in classification performance are
inherent to the datasets.

System F1 En FB F1 En FB augm. F1 Hi FB
Random Baseline 0.3324 0.3395 0.3425
RNN 0.5722 0.5846 0.5413
Word N-Grams 0.5764 0.5766 0.5883
Char N-Grams 0.5803 0.5791 0.6103
Feature Selection 0.3966 0.3871 0.3701
Ensemble 0.6060 0.6084 0.6292

Table 2: F1-scores with 10-fold cross-validation on English Facebook dataset (En FB) and Hindi Face-
book dataset (Hi FB). F1-score of the RNN approach is improved on the augmented (augm.) dataset.

System F1 En FB F1 En SM F1 Hi FB F1 Hi SM
Random Baseline 0.3535 0.3477 0.3571 0.3206
Ensemble 0.6011 0.5995 0.6311 0.3835

Table 3: F1-scores on the test set. The ensemble achieves higher F1-scores on the test set than the single
models in the cross-validation.

Figure 3 shows the confusion matrix of the ensemble submission for the English test datasets. Fig-

156



OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

188 168 6

59 338 16

22 80 93

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Facebook

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

113 87 259

33 79 269

14 27 313

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Twitter

Figure 4: Confusion matrices for the ensemble approach on the Hindi test datasets.

ure 3b shows that the classifier works equally well for all three classes: overtly aggressive, covertly
aggressive, and non-aggressive. As to expect, the non-aggressive class is more often confused with the
covertly aggressive class than the overtly aggressive class. Similarly, the overtly aggressive class is more
often confused with the covertly aggressive class than the non-aggressive class. While on the English
Twitter dataset the classifier works well for non-aggressive posts and for overtly aggressive posts, it is
only slightly better than a random baseline for covertly aggressive posts. Covertly aggressive posts are
often misclassified as either non-aggressive or overtly aggressive. Figure 4a and 4b show the confusion
matrices of the ensemble submission for the Hindi test datasets. It is hard for the classifier to distinguish
overtly aggressive from covertly aggressive Facebook posts and covertly aggressive from non-aggressive
ones. For the Twitter dataset, the majority of the posts is misclassified as non-aggressive.

5 Conclusion

In this paper we considered the problem of aggression identification in social media posts. We presented
our submitted system for the First Shared Task on Aggression Identification (Kumar et al., 2018a) as part
of the First Workshop on Trolling, Aggression and Cyberbullying at the 27th International Conference
of Computational Linguistics (COLING 2018). Our approach leverages machine translation to augment
the training dataset and includes a GRU-based deep neural network for the classification. A combination
of four models makes our approach more robust and improves its ability to generalize to unseen data.

Across all participating teams, our approach achieves the most stable results: On the English dataset,
we achieve rank 6 out of 30 on the Facebook dataset with an F1-score of 60.0% and rank 2 out of
30 with an F1-score of 60.0% (F1-score of the top team: 60.1%). The results confirm the assumption
that an ensemble of different models is robust against changes of the dataset. In future, our approach
could be extended by augmenting also the test dataset. Further, we are confident that better suited word
embeddings would improve classification performance and that more labeled training data would give
the opportunity to train more complex neural network architectures.

References

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017. Deep learning for hate speech
detection in tweets. In Proceedings of the International Conference on World Wide Web (WWW), pages 759–
760. International World Wide Web Conferences Steering Committee.

157



Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics (TACL), 5:135–146.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection
and the problem of offensive language. In Proceedings of the International Conference on Web and Social
Media (ICWSM), pages 512–515.

CJ Hutto Eric Gilbert. 2014. VADER: A parsimonious rule-based model for sentiment analysis of social media
text. In Proceedings of the International Conference on Web and Social Media (ICWSM), pages 216–225.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. 2018. Learning word vec-
tors for 157 languages. In Proceedings of the International Conference on Language Resources and Evaluation
(LREC).

George Kennedy, Andrew McCollough, Edward Dixon, Alexei Bastidas, John Ryan, Chris Loo, and Saurav Sa-
hay. 2017. Technology solutions to combat online harassment. In Proceedings of the Workshop on Abusive
Language Online, pages 73–77. ACL.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and Marcos Zampieri. 2018a. Benchmarking Aggression Identi-
fication in Social Media. In Proceedings of the Workshop on Trolling, Aggression and Cyberbulling (TRAC).

Ritesh Kumar, Aishwarya N. Reganti, Akshit Bhatia, and Tushar Maheshwari. 2018b. Aggression-annotated Cor-
pus of Hindi-English Code-mixed Data. In Proceedings of the Language Resources and Evaluation Conference
(LREC).

Shervin Malmasi and Marcos Zampieri. 2018. Challenges in Discriminating Profanity from Hate Speech. Journal
of Experimental & Theoretical Artificial Intelligence, 30:1–16.

Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. 2016. Abusive Language De-
tection in Online User Content. In Proceedings of the International Conference on World Wide Web (WWW),
pages 145–153. International World Wide Web Conferences Steering Committee.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word repre-
sentation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543. ACL.

Amir H. Razavi, Diana Inkpen, Sasha Uritsky, and Stan Matwin. 2010. Offensive language detection using
multi-level classification. In Proceedings of the Canadian Conference on Advances in Artificial Intelligence
(Canadian AI), pages 16–27. Springer-Verlag.

Anna Schmidt and Michael Wiegand. 2017. A Survey on Hate Speech Detection Using Natural Language Pro-
cessing. In Proceedings of the International Workshop on Natural Language Processing for Social Media
(SocialNLP), pages 1–10. ACL.

Ellen Spertus. 1997. Smokey: Automatic recognition of hostile messages. In Proceedings of the National Confer-
ence on Artificial Intelligence and Conference on Innovative Applications of Artificial Intelligence (AAAI /IAAI),
pages 1058–1065. AAAI.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. 2010. Sentiment strength detec-
tion in short informal text. Journal of the Association for Information Science and Technology, 61(12):2544–
2558.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie Mennes, Bart Desmet, Guy De Pauw, Walter Daelemans, and
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Abstract
Comment sections of online news providers have enabled millions to share and discuss their
opinions on news topics. Today, moderators ensure respectful and informative discussions by
deleting not only insults, defamation, and hate speech, but also unverifiable facts. This process
has to be transparent and comprehensive in order to keep the community engaged. Further, news
providers have to make sure to not give the impression of censorship or dissemination of fake
news. Yet manual moderation is very expensive and becomes more and more unfeasible with the
increasing amount of comments. Hence, we propose a semi-automatic, holistic approach, which
includes comment features but also their context, such as information about users and articles.
For evaluation, we present experiments on a novel corpus of 3 million news comments annotated
by a team of professional moderators.

1 Comment Moderation at Online News Providers

Comment sections of online news providers have enabled millions of readers to share and discuss their
opinions on news topics publicly. While most people use such platforms to have constructive debates,
a tiny minority of individuals or interest groups misuse freedom of speech: by injecting abusive and
disruptive comments into online discussions, they spread hate and fear. Furthermore, malicious users
misuse the discussion platform to disseminate misinformation with the intent to mislead and provoke
readers: fake news. The moderation of online discussions is a huge effort for providers — and the only
known way to prevent such attacks, to watch the compliance of users (“netiquette”), and to keep up good
discussions.

The definition of inappropriate content is by no means clear and differs between different venues.
Many platforms have individual guidelines that users must adhere to and that moderators employ for
content assessment. Even with these guidelines there is no precise boundary between appropriate and
inappropriate comments. Not only obviously unlawful content, such as ethnic or racial slurs needs to be
removed, but the range is wider: personal attacks against other users and the editors, profanity, spam,
or off-topic conversations need to be detected and moderated. In addition, legal liability is an issue for
news providers and forces them to take action. Given the difficulty of the task, human moderators are
needed to manually check and possibly remove comments. Further, it is crucial for moderators to not give
the impression of censorship. This is especially the case if opposite positions on emotionally charged
issues are involved. Therefore, moderators have to make a difficult choice for each and every comment:
delete or not delete. With the increasing amount of comments also the costs for moderation increase
and manually checking and editing of user-submitted content becomes more and more unfeasible. As
a consequence, many large online media sites worldwide were forced to close their discussion areas or
downsize them significantly (prominent examples of the last years are Bloomberg, the Internet Movie
Database, and the US-American National Public Radio).

Based on a collaboration with a large online news provider, we propose a semi-automatic approach for
comment moderation in order to assist human moderators. To this end, it is important to deeply under-
stand the moderation process in the newsroom: moderators take notice of a potentially violating comment

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/
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if an attentive user flags the comment as offensive. Besides that, moderators follow discussions in the
comment sections preventively and check comments of newly registered users by default. In the event
of an inappropriate comment, the moderator can either partly edit or completely delete the comment.
Deletion is inevitable if a comment loses its original statement without the violating parts. To ensure a
transparent process, moderators leave a message that explains the specific reason for moderation. Users
who repeatedly post inappropriate comments can be banned temporarily or permanently. Moderators
can close down an article’s comment section entirely, if not only a single comment but the majority of
comments is inappropriate or the discussion gets off the subject. Although this means can only be the
last resort, selected articles are published even without a comment section at all. This shows how severe
the problem of moderating inappropriate comments has become for news sites and, unfortunately, how
individuals or interest groups successfully attack freedom of speech.

The guidelines of the collaborating news provider list the following attributes for inappropriate com-
ments: (1) insults, discrimination, and defamation, (2) unverifiable suspicions and insinuations that do
not rely on plausible arguments or credible sources, (3) advertisements and other commercial content, (4)
personally identifiable information of others, (5) copyright reserved texts, (6) quotations without sources,
and (7) web links to content that violate these terms of use. All these properties hinder a respectful dis-
cussion with other users. On the contrary, a good comment is respectfully worded, argues conclusively,
and cannot be misunderstood. It refers to the news article or the subject of discussion.

In order to meet the requirements of the broad definition of inappropriate comments, this paper ex-
plores a large set of features. In a holistic approach, we combine information about comments, corre-
sponding articles, and users in a logistic regression model. While we could have used a deep learning
approach, such black-box models do not fulfill the requirement of comprehensible classification results.
Moderators and readers both need to know the reasons for a classification result. As an advantage of our
model, we can give insights into how each feature influences the classification and which features make
a comment inappropriate in a specific context.

2 Related Work

The idea to automatically classify insulting messages with a rule-based system goes back to Sper-
tus (1997). A decision tree is trained on a hand-written set of rules with syntactic and semantic text
features serving as a basis. Despite the fact that surface-level features, such as bag-of-words, for the
most part ignore sentence syntax and even word order, they have strong predictive power (Schmidt and
Wiegand, 2017).

Davidson et al. (2017) compared several different classifiers for hate speech detection. Out of logistic
regression, naive Bayes, decision trees, random forests, and support vector machines (SVMs), the au-
thors conclude that logistic regression and SVMs perform best. We can confirm this observation with
our experiments. In a multi-level approach, Razavi et al. (2010) combine several classifiers with an
underlying dictionary of abusive and insulting phrases.

However, small datasets and different labeling schemes currently limit research progress in the field of
harassment detection in social media and comment streams (Kennedy et al., 2017). Wulczyn et al. (2017)
address this issue by providing machine-labeled data. To this end, a classifier is first trained on a small
set of human-labeled comments and afterwards used to generate a larger machine-labeled dataset.

More recently, approaches focus on capturing the semantics of sentences. Methods from word sense
disambiguation (Warner and Hirschberg, 2012) and subjectivity detection (Gitari et al., 2015) are ex-
plored to detect hate speech. With the rise of distributed dense vector representations, hate speech
detection is tackled using deep learning methods. Djuric et al. (2015) propose to learn distributed low-
dimensional representations of comments in order to use them as a feature for logistic regression. Nobata
et al. (2016) give a comprehensive overview of the various types of abusive language and distinguish
three main classes: profanity, inappropriate language and swear words; derogatory speech, personal at-
tacks; and hate speech, directed towards a particular ethnic or religious group. According to the authors,
intentional obfuscation, fluency and grammatical correctness of hate speech, make its detection a diffi-
cult challenge. The paper explores a variety of features, such as n-grams, linguistic features (length of
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comment or average word length), syntactic features (part-of-speech tags), and distributional semantics
features. We build on their set of features and extend their approach for the similar, broader task of
comment moderation.

Several authors suggest to distinguish separate subclasses of hate speech based on attributes of the
attacked groups, such as race, religion or ethnic origin (Warner and Hirschberg, 2012; Gitari et al.,
2015). Warner and Hirschberg (2012) observe that hate speech aimed against a specific group often
exhibits a high frequency of stereotypical words. Therefore, they create individual language models for
each attacked group and determine features, such as word unigrams, separately.

However, word-based models are prone to out-of-vocabulary issues. To this end, Schmidt and Wie-
gand (2017) propose to generalize exact words to more abstract concepts. They first create clusters of
words and then use cluster IDs as features. According to the authors, indicators for appropriate or inap-
propriate comments are the number of positive verbs, positive adjectives and politeness rules (e.g., “no
thanks”, “please”, “would you”). Polarity classifier for short texts, such as SentiStrength (Thelwall et
al., 2010), can be used to count the number of positive, negative, and neutral words in a comment. Our
approach makes use of such a polarity classifier and uses sentiment scores as an input feature.

Similar to our approach, Pavlopoulos et al. (2017a) propose a semi-automatic system to assist human
moderation teams rather than to replace them. The system tries to classify comments as abusive or non-
abusive and if the classification is uncertain a human moderator makes the final decision. Other work
of the same authors examines how deep learning with attention layers can be used to moderate user
comments and applies a recurrent neural network architecture (Pavlopoulos et al., 2017c; Pavlopoulos
et al., 2017b). This approach allows a machine, such as a deep neural network, to delete a comment if
its classification is certain enough. In our scenario, a machine that deletes comments automatically but
cannot give an comprehensible explanation for its decision is unthinkable.

Park and Fung (2017) compare one step and two step classification. They apply a convolutional neural
network as a multi-class classifier in order to detect abusive language. Similar research is conducted by
Gambäck and Sikdar (2017), who detect abusive language and also distinguish finer-grained subclasses.
Their experiments show a comparable performance for both methods. Finer-grained subclasses can help
to give reasons why a comment is classified as abusive.

Napoles et al. (2017b) focus on the complementary task and find “engaging, respectful, and informa-
tive conversations”. Similarly, Kolhatkar and Taboada (2017) propose to identify constructive comments.
Their metric of constructiveness (relevant remarks, specific points, and appropriate evidence) is set in
contrast to toxicity (hate speech, verbal abuse, offensiveness).

Most prior work in the domain of comment classification focuses on English-language datasets. Fur-
ther, the existing body of work often tackles only a subset of hate speech, such as attacks based on ethnic
origin or a specific domain, such as Twitter (Park and Fung, 2017; Badjatiya et al., 2017). In this work,
we combine these different approaches and apply them to holistic comment moderation. Our exemplary
scenario deals with comment sections at a large German online news provider.

3 Dataset

Our dataset consists of all comments published at a large German online news provider between January
1st, 2016 and March 31st, 2017. In total, there are about 3 million comments by 60k users associated
with 26k articles out of which 100k are marked as inappropriate. Each comment is annotated with
several moderation flags, which have been manually curated by professional moderators working at the
news provider. Based on these flags, we create the binary ground truth for each comment, representing
whether the comment is inappropriate or not.

Figure 1 visualizes that the amount of inappropriate comments varies over time, especially due to
special or unforeseen high-impact events. The share of inappropriate comments varies between roughly
2% and 10%. We indicate events possibly causing the temporary changes with labels in the figure. For
example, terror attacks typically result in emotional and controversial debates, which are prone to include
provocative inappropriate remarks. It is worth noting, though, that the general increase in comments
following those events might change the way moderators work. Under stress, moderators might choose
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Figure 1: The share of inappropriate comments (black) aggregated with a 4-day centered moving average
stands out at the date of specific news events. The trend of the total number of comments is shown
downscaled for comparison (light gray).

to follow stricter moderation policies. This decision – wittingly or unwittingly – might result in a higher
share of flagged comments, even though they do not seem to be objectively worse than similar comments
at a different point in time.

Figure 1 also shows that events that gain the most attention are related to social, political or security
issues. This circumstance is also mirrored in the news categories with the highest share of inappropriate
comments: the categories related to society and politics have a share of 4.1% and 3.4%, respectively,
while also containing the majority of all comments (70%). In contrast, the share in all other categories
combined is only 2.1%, being lowest in the business category (1.7%). Furthermore, posts are not dis-
tributed uniformly among the users: only about 6% of the users posted more than 200 comments, the vast
majority of roughly 48% of users have posted only once or twice. As to expect in a real-world dataset that
was not meant for academic research purposes, it is far from lab conditions. For example, surprisingly, a
single user posted 11,082 comments. 120 of these comments were flagged as inappropriate.

In addition to the platform’s guidelines as described in Section 1, we observe that links to foreign
language content have been removed by moderators. As not all users can be expected to understand
foreign languages, such content hinders them in joining the discussion. Furthermore, moderators remove
duplicate comments from the news site, which they do by flagging a duplicate just in the same way
as they would do for insults or hate speech. Duplicate detection and hate speech detection are quite
different tasks that ask for different approaches. For this reason, we filter exact duplicates in a pre-
processing step and resolve data inconsistencies with data cleansing techniques. We aim to detect abusive
and disruptive comments that have been moderated because of insults, discrimination, and defamation,
but also unverifiable suspicions, which do not rely on plausible arguments or credible sources. These
comments hinder a respectful discussion directly. We do not focus on comments flagged because of
copyright infringements, web links to inappropriate content, or personally identifiable information.

4 A Holistic, Semi-Automatic Approach to Comment Moderation

We define three different categories of features to classify a given comment:

• Comment features aim to model linguistic, syntactic and semantic properties of the comment’s text.
Further, comment metadata, such as publication date belong to this feature set.

• User features introduce information about the individuals behind comments and their behavior,
in particular the timespan between consecutive posts, previous inappropriate posts, and topics of
interest.
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• Article features relate to the news article referenced by a comment, for example its category, publi-
cation date or article author.

We propose a logistic regression model, implemented with the scikit-learn Python framework1. The
logistic regression model is trained in a supervised fashion on training data with binary labels. For a
given comment with information about the associated user and article, the model predicts a probability
of appropriateness. In order to decide about a binary label of appropriateness, we choose a probability
threshold that is tailored to achieve a high recall: we want to minimize our false-negative rate.

The set of presumably appropriate comments can be published instantly without any manual con-
tribution. In contrast to that, the set of presumably inappropriate comments is presented to a human
moderator for assessment. In practice, a high recall corresponds to the situation where moderators get
to see mostly all actually inappropriate comments. The downside of a lower precision is that moderators
also need to check a few actually appropriate comments. In a real-world scenario, this trade-off ensures
that moderators can be (almost) certain that no inappropriate comment slips through their inspection.

4.1 Comment Features
Comment features are derived from a comment’s text or describe a comment’s nesting level in the overall
thread structure of a discussion.

Linguistic Features Our linguistic features include character-level and word-level features. Neither
normalization, such as stemming or lemmatization, nor any other preprocessing is applied. As the most
basic feature, we consider a comment’s number of characters and number of words. The combination
of these two features describes the average word length of a comment. In our dataset, inappropriate
comments are on average shorter (48 words) than appropriate comments (61 words). Our other text
features focus mostly on extensive use of punctuation or capitalization of whole words. We assume that
extensive use of punctuation or capitalization of whole words indicates an aggressive tone.

Comments with web links to external pages frequently violate user guidelines. For example, the linked
page’s content might contain insults or advertisements. We count occurrences of “http” to capture web
links, but do not distinguish between internal and external links. Interestingly, inappropriate comments
contain on average less negation words (0.92), such as “not” or “never”, than appropriate comments
(1.28). In summary, our set of linguistic features for a comment includes: (1) the number of charac-
ters, words, and distinct words, (2) the number of question marks, exclamation marks, periods, colons,
quotation marks and uses of “http”, as well as (3) the ratio of uppercase to lowercase letters.

Syntax Features While the syntax of a comment might not inappropriate itself, it can still serve as
an indicator of inappropriateness. For example, the extensive use of personal pronouns might indicate
personal attacks against others. Similarly, comments with many adjectives might indicate extensive
descriptions or name-calling of other users or of organizations. To capture such behavior, we apply part-
of-speech tagging and count the number of adjectives, determiners, personal pronouns, and adverbs in
each comment.

Topic Features Off-topic comments that are not related to the article’s topic are also considered inap-
propriate. To measure the topical similarity of an article and a user comment, we apply topic modeling.
On a set of roughly 25,000 news articles, we learn a topic model with latent Dirichlet allocation. The
topical similarity is then used as a feature in our classifier. Further, we compare the tf-idf vector of the
comment with the tf-idf vector of its corresponding article and of inappropriate comments posted at this
article. One feature is the cosine similarity of these vectors. Another, similar feature is the Kullback-
Leibler divergence of the word frequency distributions of a comment and an article.

Word N-Grams The word cloud in Figure 2b illustrates German unigrams that are most frequently
used in inappropriate comments in our dataset. Besides unigrams, we include 2-grams and 3-grams and
thereby consider the context in which a word is used. The word cloud shows, for example, that mention-
ing German chancellor Merkel is already a strong indicator of an inappropriate comment. However, this

1http://scikit-learn.org/
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indication might change depending on the preceding word: a comment containing “Thank you Merkel”
is twice as likely to be inappropriate than a comment containing “Mama Merkel”.

Character N-Grams A German-language-specific challenge are arbitrarily long and rare compound
nouns. Coining new words extensively increases sparsity of the data: such words typically occur only
once in an entire corpus and are called “hapax legomena” by linguists. At test time, this phenomenon
leads to frequent out-of-vocabulary problems. Character n-grams do not suffer from such problems,
because they are able to capture substrings in compound nouns. Related work shows that character n-
grams can be successfully applied to detect abusive language in English-language content (Nobata et al.,
2016; Schmidt and Wiegand, 2017). Obfuscated words and unusual spellings typically pose problems
for word-based approaches due to a potential of high sparsity, but can be countered with character-based
techniques. For this reason, we add character n-grams ranging from length 3 to 5 to our feature set,
targeting also the German-specific challenge of compound nouns in particular.

Word2vec To capture the semantic meaning of words, we apply word embeddings. In particular, we
use a standard Word2vec approach and model each word as a 100 dimensional vector. The embedding
of an article or a user comment is simply the average embedding of all its words.

Structural Features Typical interfaces of discussion sections allow users to post their comments as
a reply to another comment. Thereby, a discussion thread can form a tree structure. In our dataset,
comments that are direct replies to an article have a higher probability of being inappropriate (4.0%)
compared to those that are replies to other comments starting at a depth of 3 (2.5%). Thus, the depth of
a comment in the tree, which is the nesting level, is used as a feature.

4.2 User Features

Our dataset also provides information about the user (author) of each posted comment. We define two
categories of features based on user information: time-based as well as history-based features. We model
four time-based features: the time in seconds since the user last posted an appropriate or an inappropriate
comment on the same or any other article. These values are an indicator of heated debates or possible
reactions to a previous comment being deleted by the editors, which is frequent in the dataset. For
example, if a comment is posted within 10 minutes after an inappropriate comment by the same user on
the same article, it has a 19% chance of being inappropriate compared to the global average chance of
around 3%.

The history-based features are statistics of a user’s comments prior to posting a particular comment.
In particular, we count the number of appropriate and inappropriate comments in the same category as
the article and globally. Note that since our dataset is limited to the timespan between January 2016 and
March 2017, we do not have access to historical information before that time. Therefore, our extracted
history-based feature values are only a narrow excerpt of a user’s full history. A user who posted only
few comments in our dataset might have been much more active in the time before the beginning of our
dataset.

4.3 Article Features

Each comment in our dataset is posted in the context of a news article. An article that was just published
a few hours ago still has lots of potential for discussion, whereas articles older than a few weeks rarely
get new constructive comments. As described in Section 3, the category of the article also influences its
probability to receive inappropriate comments. Controversial categories revolving around politics lead
to more inappropriate comments than categories about more mundane topics, such as sports. Based on
these observations, we define the following features: (1) time since the article’s publication, (2) time
since the last comment on the article, (3) time since the last inappropriate comment on the article, and
(4) category of the article.

Related work has shown that word n-grams are at the top of the best-performing features for hate
speech detection (Nobata et al., 2016; Badjatiya et al., 2017; Warner and Hirschberg, 2012; Davidson
et al., 2017; Schmidt and Wiegand, 2017). For this reason, we consider word n-grams as a baseline
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approach that all other features compete against. Nevertheless, we combine all single features into our
holistic approach as a large feature set for the logistic regression. To the best of our knowledge, especially
the context of comments, such as information about commenting users and referenced articles, has not
been applied so far and extends the state-of-the-art. Our approach could also be used for the sub-task of
hate speech detection or related tasks. The broad set of reasons for inappropriateness (as described, for
example, in platform guidelines) motivates our large feature set, which might be unnecessary large and
might include useless features in other scenarios. Further, other tasks could map probabilities of the linear
regression to binary labels differently. If these tasks do not require explanations for automatic decisions,
one might refrain from linear models at all in favor of recent deep learning approaches (Napoles et al.,
2017a; Badjatiya et al., 2017).

5 Evaluation

We split our dataset time-wise into training and test set in order to train only on past data and evaluate on
future data. Stratified sampling is employed to overcome effects of the imbalanced class distribution. The
cutoff timestamp is chosen such that 10,000 inappropriate comments remain in the test set. Randomly
sampled 10,000 appropriate comments from the remaining comments after the cutoff timestamp are
added to the test set. Thereby, a balanced class distribution is obtained in the test set. All comments
posted before that timestamp serve as training data. The regression model outputs probabilities of a
comment being inappropriate, but not a binary label. In order to be able to compare with our ground
truth labels, we map these probabilities to binary labels. To this end, all comments with a predicted
probability above a given threshold are marked as inappropriate and all comments with a probability
below that threshold are marked as appropriate.

With regard to use cases other than our real-world example, there could be scenarios with two thresh-
olds: one for almost certainly appropriate comments and one for almost certainly inappropriate ones.
Only comments between those two thresholds are left for manual assessment. A disadvantage is that the
decision to delete a comment could still be made completely automatic if the model is certain enough,
which is unthinkable in our scenario.

5.1 Results

Table 2a summarizes the results of our experiments. As can be seen in the table, we choose the threshold
in a way that at least 75% of the inappropriate comments are correctly classified, which corresponds to a
recall of 75%. The reasoning for this is that it is acceptable to present more comments than necessary to
the moderators, but it is important that clearly inappropriate comments do not slip through. On the one
hand, if the threshold is set for a higher recall, then the precision decreases until moderators do not profit
from machine support but have to check almost all comments. On the other hand, if the threshold is set
for a lower recall, more and more actually inappropriate comments are falsely classified as appropriate.
As a consequence, inappropriate comments are inadvertently published without intervention.

There are two different error types that can be distinguished. First, our classifier misses to flag an
actually inappropriate comment as inappropriate (false negative). Second, our classifier claims to have
flagged an inappropriate comment but the ground truth label considers the comment to be appropriate
(false positive).

After manual inspection for the first error type it turns out that false negatives are often not clearly
inappropriate or further context is needed for the classification. This might be due to the fact that the
moderation flags provided in our ground truth dataset have been created by different moderators who
interpret the user guidelines differently and therefore make different decisions. Further, different discus-
sions with different preceding comments might ask for more or less intervention by moderators.

As each comment in our dataset has been flagged by at most one moderator, there is no way to evaluate
the inter-rater reliability of these flags. Thus, similar comments posted at different times can be flagged
differently, which is a tough challenge for classification algorithms. Even a more sophisticated classifier
or more features might not help in situations where a team of moderators disagrees at the classification
of a particular comment. These hard decisions are another reason why we propose a semi-automatic
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Method Recall Precision F1-Measure

Linguistic 0.773 0.552 0.644
Syntax & Topic 0.757 0.541 0.631
Word N-Grams 0.782 0.559 0.652
Char N-Grams 0.778 0.649 0.708
Word2vec 0.756 0.630 0.687
Article 0.753 0.538 0.627
User 0.826 0.516 0.636

Combined 0.861 0.615 0.717
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Figure 2: Classification results and word cloud of indicative words.

approach that integrates machine learning into the manual process of comment moderation.
In the following, we discuss the performance of selected features on our dataset. The analysis of single

features is interesting because it helps to understand the result of an otherwise nontransparent automatic
classification result. For the support of human moderators, these features can serve as indicators for
inappropriate content and can provide explanations for suggested automatic decisions.

5.2 Discussion

Comment features The F1-score of character n-grams is exceeded only by the combined approach
feature. Further, it achieves the best overall precision, as listed in Table 2a. One reason for the strong
performance on character n-grams might be the complexity of the German language. Word-based mod-
els are prone to out-of-vocabulary issues and the German language allows to create very long compound
words, which are used infrequently. Character n-grams are more robust than word-level features regard-
ing compound words, neologisms and typos. Some extreme examples for compound nouns in our dataset
are “Landesrundfunkanstaltsselbstbedienungsläden” loosely translated as “self-service stores of public
service broadcasters” or “Stottertrottelkorbflechterautobahnlastkraftwagenfahrer” loosely translated as
“stuttering douchebag who weaves baskets and drives trucks on highways”. These nouns are unique in
our dataset and also will almost certainly never be used again in any other comment. Even though char-
acter n-grams do not capture whole words, they still capture the meaning of a comment well according
to our results.

As word embeddings perform comparably well and achieve the second-best F1-score, we further eval-
uate our approach of calculating a comment embedding by averaging the individual Word2vec embed-
dings. Therefore, we analyze words that are embedded in the neighborhood of the averaged word vectors.
Exemplary results2 are shown in Table 1. The examples demonstrate that the comment embedding is an
adequate way of determining the broader topic of a comment.

Article Features Article features describe the context a posted comment. The classification of a com-
ment as inappropriate only based on the article’s category or the time since the article’s publication
obviously cannot lead to satisfying results. Article features are not a good stand-alone indicator of ap-
propriateness. For example, in order to achieve a recall above 75%, entire categories would need to
be considered as inappropriate. Article features seem to be more of a supportive evidence rather than
stand-alone features.

User Features An extensive user history is available only for a small subset of all users. A reason
for that is the limited time span of the considered dataset. Since the available data covers roughly a
year, the observed overall number of comments posted by a user can be only a narrow excerpt of reality.
In our dataset, every user initially starts at a comment count of 0, and only later on our model learns

2All examples in this paper are translations from German into English.
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Table 1: Words in Vicinity of the Comment Embedding

Comment Undermining democracy: correct, if a court of arbitration is part of a treaty that is an effect of that treaty.
Thanks for the tip. DT negotiates, at least according to him, with “America First” in mind. The existing
treaties, especially NAFTA, were primarily disadvantageous to Joe Sixpack AND Juan Prez in both Mexico
AND the USA.. If Mexico does not like DT’s suggestions they can mutually cancel the treaty with the USA
and both profit. To rephrase it, it can only get better for the lower middle class and below.

Nearby Words free trade agreement, trade agreement, trade treaty, treaty, free trade contract

Comment The Kurdish population is being blackmailed by the PKK and hauled off into the mountains. If the Kurds
in the FRG are for the PKK, then they should live there.

Nearby Words Kurd, PKK, Kurdish area, Turkey, terrorist

to distinguish different users, for example based on the frequency of their comments We expect the
features to perform better with a complete user history. Nevertheless, several features show promising
results. The number of inappropriate comments by the user in the same article category and in total
in the past strongly correlate with a new comment by the user being inappropriate. The time since the
last inappropriate comment by the user also weakly correlates with a new comment by the user being
inappropriate.

6 Conclusions and Future Work

In this paper, we studied the task of comment moderation. In contrast to the sub-task of hate speech
detection, moderation needs to consider several other types of inappropriate comments, such as insults
and defamation, but also unverifiable suspicions, which do not rely on plausible arguments or credible
sources. Moderators ensure respectful, engaging, and informative discussions by editing or deleting
inappropriate comments that do not facilitate constructive debates or even contain unlawful statements.
This costly manual task puts a strain on the moderators, forcing more and more news sites to close
down their comment sections. In order to meet this challenge, we propose a semi-automatic approach for
assisting humans at comment moderation. Our holistic approach combines information about comments,
users, and articles in a logistic regression model.

Despite the recent success of deep learning for natural language processing, the lack of comprehensi-
bility of neural nets motivates the application of other models. For example, decision trees and regression
models can give reasons for their final prediction results. A particular feature with a particularly large
value or a combination of several features might be such a reason. In practice, moderators and users need
to understand the automatic decision process underlying a trained machine learning model and in partic-
ular why a comment is classified inappropriate. For the application in a newsroom and the integration
into the moderation process, it is important that classification results are comprehensible.

In future work, we plan to extend the explanatory aspect alongside the classification of comments.
Explanations could, for example, include details about the user’s comment history or highlight relevant
words in the posted text. Such explanations would help moderators to understand the reasons for an
automatic decision and explanations make the system and its decisions also more trustworthy. How-
ever, provided these explanations, malicious users will certainly use their criminal energy trying to fool
automatic moderation approaches.
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Abstract

Cyberbullying and cyberaggression are serious and widespread issues increasingly affecting In-
ternet users. With the widespread of social media networks, bullying, once limited to particular
places, can now occur anytime and anywhere. Cyberaggression refers to aggressive online be-
haviour that aims at harming other individuals, and involves rude, insulting, offensive, teasing or
demoralising comments through online social media. Considering the dangerous consequences
that cyberaggression has on its victims and its rapid spread amongst internet users (specially kids
and teens), it is crucial to understand how cyberbullying occurs to prevent it from escalating.
Given the massive information overload on the Web, there is an imperious need to develop in-
telligent techniques to automatically detect harmful content, which would allow the large-scale
social media monitoring and early detection of undesired situations. This paper presents the
Isistanitos’s approach for detecting aggressive content in multiple social media sites. The ap-
proach is based on combining Support Vector Machines and Recurrent Neural Network models
for analysing a wide-range of character, word, word embeddings, sentiment and irony features.
Results confirmed the difficulty of the task (particularly for detecting covert aggressions), show-
ing the limitations of traditionally used features.

1 Introduction

In recent years, social networking and micro-blogging sites have seen their popularity increased, at-
tracting an increasing number of users, who share their personal information and interact with others.
Additionally, social media sites allow users to publish content or photos and to comment or tag content
published by other users. As social media usage grows, other undesirable phenomena and behaviours
appear. Even when most of the time, Internet use is safe, online communications through social media
involve risks. In this context, users might have to deal with threatening situations like cyberaggression
or cyberbullying, amongst other undesirable phenomena (Whittaker and Kowalski, 2015).

With the widespread of social media networks, bullying, once limited to particular places or times of
the day (e.g. schools), can now occur anytime and anywhere (Chatzakou et al., 2017). Cyberaggres-
sion refers to aggressive online behaviour that aims at harming other individuals (Hosseinmardi et al.,
2015), and involves rude, insulting, offensive, teasing or demoralising comments through online social
media (Chavan and S S, 2015). Aggressions could target educational qualifications, gender, family or
personal habits, amongst other possibilities.

Given the dangerous consequences that cyberaggression has on its victims, and its rapid spread
amongst internet users (specially kids and teens), it is crucial to understand how it occurs to prevent it
from escalating. This has important applications on the detection of cyberextremism, cybercrime and cy-
berhate propaganda (Agarwal and Sureka, 2015). Nonetheless, several challenges hinder the successful
detection of abusive behaviour (Chatzakou et al., 2017; Nobata et al., 2016). First, the lack of grammar
correctness and syntactic structure of social media posts hinders the usage of natural language process-
ing tools. Second, the limited context provided by each individual post, causing that an individual post
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might be deemed as normal text, whilst the same post inserted into a series of consecutive posts might be
deemed as aggressive. Third, the fact that aggression could occur in multiple forms, besides the obvious
abusive language, for example it could be disguised as irony and sarcasm. Fourth, it is difficult to track
all racial and minority insults, which might be unacceptable to one group, but acceptable to another one.

This article reports the solution proposed by Isistanitos to the shared task of aggression detection (Ku-
mar et al., 2018a). To that end, several combinations of feature sets and algorithms were evaluated. The
remainder of this article is organised as follows. Section 2 describes related work regarding the detec-
tion of both aggressive content and bullying accounts. Section 3 describes the dataset used, the selected
features and the proposed model for detecting aggressive content in social media. Section 4 analyses the
obtained results. Finally, Section 5 presents the conclusions derived from the study, and outlines future
lines of research.

2 Related Work

Research into cyberaggression detection has increased in recent years due to its proliferation across so-
cial media, and its detrimental effect on people (Salawu et al., 2017). Cyberaggression or cyberbullying
detection can comprise four different tasks (Salawu et al., 2017): identification of the individual aggres-
sive messages in a social media data stream, assessment of the severity of the aggression, identification
of the roles of the involved individuals, and the classification of events that occur as a consequence of an
aggression incident.

Nobata et al. (2016) aimed at detecting hate speech on 2 million online comments from Yahoo! Fi-
nance and News. Four types of features were considered: n-grams, linguistic, syntactic, and embed-
ded semantic features. Comments were pre-processed by normalising numbers, replacing unknown
words with the same token, replacing repeated punctuation. Results showed that combining all features
achieved the best F-Measure results. Similarly, Chavan and S S (2015) aimed at distinguishing between
bullying and non-bullying comments. The selected features included TF-IDF weighted n-grams, the
presence of pronouns and skip-grams. Only the 3,000 highest ranked features according to χ2 were se-
lected. Experimental evaluation was based on approximately 6.5k comments from an unspecified site.
Posts were pre-processed by removing non-words characters, hyphens and punctuation. Additionally,
a spell-checker was applied to correct potential spelling mistakes. Results showed that the best perfor-
mance was achieved when considering pronouns and skip-grams.

Unlike the binary classification studied in (Nobata et al., 2016; Chavan and S S, 2015), Van Hee et al.
(2015) explored the fine-grained classification of cyberbullying events into 7 categories (non-aggressive,
threat/blackmail, insult, curse, defamation, sexual talk, defence and encouragement to the harasser). The
authors considered two types of lexical features: bag-of-words features (including unigrams, bigrams
and character trigrams) and polarity features (including the number of positive, negative and neutral
lexicon words averaged over text length, and the overall post polarity). The evaluation showed a high
discrepancy of results amongst the diverse classes, which was allegedly due to the extent to which posts
in each category are lexicalised.

In summary, most works have been based on content, sentiment, user, network-based features or a
combination of them. Content-based features include the extractable lexical items of documents (e.g.
aggressive or hate words), such as keywords, profanity, pronouns, part-of-speech tagging and punctuation
symbols. Sentiment features refer to certain keywords, phrases or symbols that indicate the sentiment of
emotion polarity of the content. User-based features represent those characteristics on users’ profiles that
can be used to judge the role played by such user in a series of online communications (e.g. age, gender
or sexual orientation). Finally, network-based features refer to metrics that can be extracted from the
social networks (e.g. the number of friends, number of followers, frequency of posting and how many
times posts were shared).

3 Methodology and Data

To automatically detect aggression in social network posts, the proposed approach combines several
feature extraction techniques with two well-known classification techniques. This section describes the
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dataset used (Section 3.1), the features selected for characterising aggressive content (Section 3.2) and
the predictive model defined (Section 3.3).

3.1 Dataset

The used dataset was presented in (Kumar et al., 2018b). The original version comprised both Hindi and
English posts related to pages and hashtags that are commonly discussed amongst Indians in Facebook
and Twitter. Particularly, more than 40 Facebook pages were analysed. Selected pages include news
sites, Web-based forums, political parties, student groups, and support and opposition groups revolving
Indian University current events. In the case of Twitter, several popular hashtags amongst Indians were
selected, including Indian vs. Pakistan cricket matches, election results, and beef ban. Since posts
were not curated during the recollection, the dataset includes posts in English, Hindi, and other Indian
languages, as well as mixed-language posts. Post were manually tagged into one of three aggression
levels:

Overt Aggressive (OAG) comprises posts in which the aggression is clearly expressed by certain
lexical features or syntactic structures that can be always considered aggressive.

Covert Aggressive (CAG) comprises posts in which the aggression is observed by the intent, but not
by their lexical or syntactic structure. Posts in this category might present common polite expressions
used in an insincere manner (e.g. irony or sarcasm).

Non Aggressive (NAG) comprises posts that convey no aggression at all. This category also includes
posts written in languages different than English and Hindi.

For the purpose of the Shared Task, the proposed approach was designed only for English posts. The
shared task organisers provided both training and validation English sets. Nonetheless, both sets also
included several posts written in other languages, which made even more difficult the already challenging
task of automatically detecting aggression.

3.2 Features for Characterising Aggression

Aggression is characterised by considering four different sets of features. The first feature set (referenced
as GloVe features) describes each post as a sequence of vectors, where each vector represents a word
within the modelled post. The vector representation of words is built using GloVe (Pennington et al.,
2014)1, a log-bilineal model with a least-squares objective that aims at estimating the probability of a
word given its context. The model was trained using the social media dataset presented in (Zubiaga
et al., 2015). Vector dimensionality was set to 300 as such value was reported to achieve high quality
results (Mikolov et al., 2013; Pennington et al., 2014). According to the average post length in the
training set, each post was represented by 23 vectors. For those posts having less than 23 words, zero-
vectors were added. Those words that are not defined in the GloVe model are also represented as zero-
vectors.

The second feature set (referenced as Sentiment features) also describes each post as a sequence of
vectors, where each vector represents the sentiments conveyed by a word according to the SentiWordNet
corpus (Baccianella et al., 2010). In this regard, SentiWordNet defines three sentiment scores for synsets
in WordNet, namely positivity, negativity, and objectivity. Considering that a particular word might have
associated several WordNet synsets, its associated vector will contain the average and standard deviation
of each score, i.e., the vector will be constituted as (Posavg, Negavg, Objavg, Posstd, Negstd, Objstd).
The number of vectors representing a post was set to the average number of words that were associated
to a WordNet synset, i.e. 10. The same strategies as for the GloVe features were adopted for dealing with
shorter post and words without associated synsets.

The third feature set (referenced as Composed features) represents posts as a concatenation of a TF-
IDF model, a sentiment analysis model, and several punctuation related features. First, the TF-IDF
model is built considering the stems of the words in the training dataset, obtained by means of the Porter
Stemmer (Porter, 1980). Then, the TF-IDF models are normalized using L-2 norm. The sentiment
analysis model includes four features describing the force of negative, positive and neutral sentiments,

1GloVe implementation: https://nlp.stanford.edu/projects/glove/
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Post Id Text Tokens

2018626 Puppies are way more

important

’pup’, ’upp’, ’ppi’, ’pie’, ’ies’, ’es ’, ’s a’, ’ ar’, ’are’, ’re ’, ’e w’, ’ wa’, ’way’, ’ay ’, ’y m’, ’ mo’, ’mor’,

’ore’, ’re ’, ’e i’, ’ im’, ’imp’, ’mpo’, ’por’, ’ort’, ’rta’, ’tan’, ’pupp’, ’uppi’, ’ppie’, ’pies’, ’ies ’, ’es a’, ’s

ar’, ’ are’, ’are ’, ’re w’, ’e wa’, ’ way’, ’way ’, ’ay m’, ’y mo’, ’ mor’, ’more’, ’ore ’, ’re i’, ’e im’, ’ imp’,

’impo’, ’mpor’, ’port’, ’orta’, ’rtan’, ’puppi’, ’uppie’, ’ppies’, ’pies ’, ’ies a’, ’es ar’, ’s are’, ’ are ’, ’are

w’, ’re wa’, ’e way’, ’ way ’, ’way m’, ’ay mo’, ’y mor’, ’ more’, ’more ’, ’ore i’, ’re im’, ’e imp’, ’ impo’,

’impor’, ’mport’, ’porta’, ’ortan’, ’puppi’, ’are’, ’way’, ’more’, ’import’

Table 1: N-gram TF-IDF features

and a composed score. These scores are obtained according to the Vader model (Hutto and Gilbert,
2014), which reported a F-Measure of 0.96 on Twitter. Additional features are added to account for
the negative, positive and neutral sentiment score conveyed by emojis, according to (Kralj Novak et
al., 2015). Interestingly, only 5.75% of the training posts had emojis, hence in case posts do not have
any emoji, features are set to zero. Finally, punctuation related features analyse whether posts have two
consecutive dots or commas, question marks, admiration marks, non-printable characters (such as emojis
or non-latin characters), and quote marks (“”).

Finally, the fourth feature set (referenced as N-gram TF-IDF features) represents posts as a normalised
TF-IDF model that considers not only the word stems, but also all the possible 3-grams, 4-grams, and
5-grams within the post. Adding n-grams to the word stems aims at capturing different misspellings
of words, which are fairly common within the considered dataset. Table 1 presents an example of the
tokenisation used for this feature set, in which the last five tokens are stems of the post words, whilst the
remaining tokens are n-grams.

3.3 Predictive Model
The prediction model comprises two probabilistic sub-models, a neural network and a Support Vector
Machines (SVM). The final prediction is obtained by averaging the class-probabilities predicted by the
sub-models and selecting the more probable class. The neural network considers the GloVe, Sentiment,
and Composed features, whilst the SVM considers the N-gram TF-IDF features.

Figure 1 outlines the architecture of the neural network, which was implemented using Keras2. Unless
specified otherwise, the hyper-parameters of each layer were set to their default value. The three input
layers correspond, from left to right, to the GloVe, Sentiment, and Composed features. The first layer,
which was applied to all the input layers, is a Gaussian Noise layer that introduces a noise of mean zero
and average standard deviation defined as:

Gstdev =
1

NF

NF∑

i=1

NI∑

j=1

(
Xj,i −Xi

)

where NF represents the number of features, NI the numbers of instances, Xj,i is the value of the
i-feature for the j-instance, and X̄i is the average value of the i-feature. From left to right, the average
standard deviations for the GloVe, Sentiment, and Composed features were approximately 0.15, 0.18, and
0.01. There were two reasons for using Gaussian Noise instead of a more traditional Dropout. Firstly,
GloVe and Sentiment features could be seen as vectors representing concepts. Hence, adding Gaussian
Noise can be seen as slightly changing the concept of a word hence working as data augmentation (Zhang
and Yang, 2018), while Dropout introduces more drastic changes to the vector. Secondly, the Composed
feature vectors are very sparse. For example, approximately 99.86% of the elements in the matrices
representing both the Kumar’s training and validation datasets are zeros. Hence, Dropout would have had
almost no impact in this representation. Then, GloVe and Sentiment features were processes by LSTM
layers (Hochreiter and Schmidhuber, 1997), which are well-known for their capabilities for processing
sequences. The last LSTM layers were set to return the last predicted value instead of a sequence. On

2François Chollet et al. 2015. Keras. https://keras.io.
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Figure 1: Neural Network

the other hand, the Composed features were processed by dense layers. The first dense layer used a relu
activation, whereas the second one a tanh activation function. The goal was to constrain the elements
in the output vector to values between −1 and 1, which is also a constrain imposed by LSTM layers.
Thereby, after concatenating the resulting outputs, no normalisation was needed. Then, to reduce a
possible overfitting, a Dropout layer was applied, which set 50% of the elements to zero. Finally, to
get the predictions, another relu and softmax activated dense layer were applied. The neural network
training considered a cross entropy loss function and weighted the classes using the “balanced” approach
of scikit-learn3. Optimisation was based on a stochastic gradient descent with a learning rate of 0.01
and a momentum of 0.1. The network was trained for 600 epochs. The selected neural network model
corresponded to the one achieving the highest classification performance over the validation dataset.

Finally, the SVM considered the N-gram TF-IDF features and was trained using the scikit-learn im-
plementation4. Parametrisation included a RBF (Radial Basis Function) kernel, in which C was set to
1 and gamma was set to 0.4, according to the experimental evaluation performed over the training and
validation sets. The SVM model was trained using N-gram TF-IDF, which considers both word stems
(i.e. word level features) and n-grams (i.e. character level features) because it obtained better results that
using only n-grams or stems.

4 Results

This section describes the results obtained during the design phase of the proposed model (Section 4.1),
as well as the results reported by the Shared Task on Aggression Identification organisers (Section 4.2).

4.1 Design phase results

This section outlines several experiments that were performed during the design phase to assess different
feature extraction techniques and classifiers. Such techniques and classifiers were evaluated by not only

3scikit-learn class weight: http://scikit-learn.org/stable/modules/generated/sklearn.utils.
class_weight.compute_class_weight.html

4scikit-learn C-Support Vector Classification: http://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html
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TF-IDF Tokenisation, stopword removal and
TF-IDF weighting.

Stanford Sentiment Overall sentiment of the post and
sentiment of each detected syntactic

structure.

Char The defined char-based features. word2vec Matrix representation based on
word2vec.

Lemma Only the lemma of the tokenised terms
are kept.

GloVe Matrix representation based on GloVe.

NER Only the recognised types of entities are
kept..

Barbieri Irony detection features based
on (Barbieri and Saggion, 2014).

POS-NVAA Only noun, verbs, adjectives and
adverbs are kept.

Hernandez Irony detection features based on (Farı́as
et al., 2016).

POS Tags Instead of considering the actual terms,
it considers their POS tags.

TF-IDF +
SentiWordNet

TF-IDF + sentiment polarity of the post
extracted with SentiWordnet.

POS-NVAA +
POS-Frequencies

POS-NVAA + frequency of the different
POS tags.

TF-IDF +
SentiWordNet + Emoji

TF-IDF + Hernandez TF-IDF + Stemmer +
Barbieri

TF-IDF + Stemmer

TF-IDF + Stemmer +
Hernandez

TF-IDF + Barbieri word2vec + GloVe TF-IDF + Char

TF-IDF + Stemmer +
Char

TF-IDF + POS Tags TF-IDF + Stemmer +
POS Tags

TF-IDF + Char + POS Tags

Table 2: Feature Extraction

considering the dataset provided by Kumar et al. (2018b), but also the one provided by Reynolds et
al. (2011). The latter dataset consists of approximately 3, 000 questions and answers collected from
FormSpring.me5. In this social media site, users can post questions and answer other users’ questions
with the option of anonymity. Posts were manually labelled into three categories: strongly aggressive,
weakly aggressive and non-aggressive. According to the authors, the best classification achieved an
overall accuracy of 81%, when considering features related to the number of curse words and their
intensity. For Kumar et al.’s dataset, the training partition was used for training, while the validation
partition was used for testing. As the Reynolds et al. dataset was not separated into training and test
set, it was randomly split 70% training and 30% test sets. The worst and best results obtained using the
described feature sets and classifiers are presented in Figure 2, as well as the results obtained for the
models submitted to the challenge.

Table 2 summarises the selected feature sets for characterising aggression. Those feature sets (except-
ing the word embedding based features, i.e., Word2Vec and GloVe) were assessed considering multiple
classification techniques, such as Näive Bayes, SVM with polynomial kernel, SVM with RBF kernel,

5https://spring.me/
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and fully connected shallow neural networks, i.e., a neural layer without hidden layers. Näive Bayes
and SVM with polynomial kernel were consistently outperformed by the other techniques regardless the
dataset and feature set under evaluation. Conversely, SVM with RBF kernel and fully connected shallow
neural networks obtained the best results. Moreover, using a Batch Normalization layer improved the
results of the neural network. Deeper dense neural networks were also tested, using up to 2 hidden layers.
Nonetheless, they presented two drawbacks. First, the training phase required more than the available
hardware resources. Second, in those cases in which the model could be trained, it overfitted the training
set. Thereby, deeper neural networks were disregarded. Word2Vec and Glove features were tested using
LSTM-based neural networks as these features are structured as a sequence of features rather than a set
of features.

For all the evaluated combinations of feature sets and classification algorithms, results for Reynolds
et al.’s dataset were higher than those of Kumar et al.’s dataset. Moreover, results varied at most 3% for
Raynolds et al.’s dataset, whilst for Kumar et al.’s dataset variations reached the 34%. This difference
could be caused by the fact that posts in Kumar et al.’s dataset were probably written by non native
nor Occidental English speakers. Hence, it is likely to find many typos, misused slang, or unusual ex-
pressions. Nonetheless, the different feature sets behaved similarly under both datasets. For instance,
TF-IDF+SentiWordNet outperformed every other feature set, whist StanfordSentiment and POS tags
achieved the worst performance for Reynolds et al.’s and Kumar et al.’s datasets, respectively. Interest-
ingly, different types of features showed the same behaviour for both datasets. For example, considering
simple textual features achieved for both datasets higher results than POS tags, lemmatisation, and word
embeddings. Moreover, adding more features, such as adding Char to TD-IDF+POS-Frequency or Emo-
jis to TF-IDF+SentiWordNet, did not improve results, hinting that some features could introduce noise
to post representation.

Finally, the statistical significance of results’ differences was tested. Since the data was shown not to
be normal, a Wilcoxon test analysis for related samples was performed over the results for the differ-
ent feature sets, where samples corresponded to the results for each classification algorithm. The null
hypothesis stated that no difference existed amongst the results of the different samples, i.e. classifica-
tion algorithms performed similarly regardless the feature set. Hence, the alternative hypothesis stated
that the differences amongst the results obtained for each feature set were significant and non-incidental.
In the case of Kumar et al., for most pairs of feature sets no statistically significant differences were
observed with a confidence of 0.01. Nonetheless, statistically significant differences were observed for
Barbieri and StanfordSentiment, which were shown to be statistically lower than feature sets involving
TF-IDF. On the other hand, in the case of Reynolds et al., no statistical differences were observed for the
different feature sets. In brief, simple textual features, such as TF-IDF, seem to have the same descrip-
tive capability than other more complex features for aggression detection using traditional classification
techniques. However, further research is needed to confirm this hypothesis.

4.2 Challenge results

For the purpose of the First Shared Task on Aggression Identification, two sets of predictions were
submitted for evaluation. The first set was generated considering the Neural Network described in Sec-
tion 3.3, whilst the second one was generated using the full method described in that section, i.e., the
average between the Neural Network and the SVM model. Table 3 presents the F-measure obtained for
the shared task, for both the Facebook and Twitter classification tasks. The Random Baseline presented
in this table was provided by the shared task organisation. Neural Network and Full Model are the re-
sults for Isistanitos’ models. Additionally, the last rows, for both tables present the results for the best
performing models for each task. Similarly as for the design phase evaluations, Isistanitos’ predictions
were better for the Facebook task. This situation highlights the differences amongst the different social
media sites, and the effect that their particular characteristics have over the performed task.

Figure 3 depicts the confusion matrices for both Facebook and Twitter task. From the obtained results,
it is possible to determine the class distribution in the test set. For the Facebook set, class distribution
was 15.72%, 15.50% and 68.78%, for the OAG, CAG and NAG classes, respectively. It is worth noting

183



System F1 (weighted)

Random Baseline 0.3535

Neural Network 0.5894

Full Model 0.5948

Best Performing (saroyehun) 0.6425

(a) Facebook Task

System F1 (weighted)
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Full Model 0.5480

Best Performing (vista.ue) 0.6009

(b) Twitter Task

Table 3: Results for the English task
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Figure 3: Confusion matrices

that this distribution differs from the one of the train set (22.57%, 35.34% and 42.09%, for the OAG,
CAG and NAG classes, respectively), which could affect the predictive power of the trained models. On
the other hand, for the Twitter set, the distribution was 28.72%, 32.86% and 38.42%, for the OAG, CAG
and NAG classes, respectively.

Table 4 shows the confusion matrices of the best submitted predictions per class and task. In the de-
picted confusion matrices, one of the classes is considered the positive class and the other two are merged
into the negative class, e.g. when analysing the NAG class, the posts actually belonging to that class are
considering positive, whilst the posts belonging to CAG and OAG are regarded as negative. For the
Facebook task, NAG had a high True Positive Rate (TPR) of 86.10%, but the True Negative Rate (TNR)
was only of 45.26%. For the other two classes, the TNR was higher than 90%, but the TP was lower than
50%. Interestingly, the TPR for CAG was 23.97%, evidencing that the classifier had severe problems to
detect posts with covert aggressions. In contrast, when analysing the Twitter task, the TNR of each class
was higher than the corresponding TPR. Particularly, the TNRs were 86.31%, 71.94%, and 78.13% for
NAG, CAG, and OAG respectively, whilst the TPRs were 63.12%, 42.32%, and 63.90%. Despite the
different results observed for the Facebook and Twitter tasks, it can be concluded that detecting covert
aggressions is more difficult and error prone that the detection of explicit aggressions.

It is worth noting that detecting CAG posts resulted particularly challenging as they are written without
openly using aggressive vocabulary. Moreover, the intent of such posts might be given by their context.
Since the CAG class was originally defined as “an indirect attack against the victim and is often packaged
as (insincere) polite expressions”, it might be necessary to know both reader and writer points of view
to understand the real intention. As a result, detecting CAG posts might not be feasible if only the
information regarding the individual posts is available.

The obtained results allowed inferring that the performance of the task is highly dependent on the
particularities of the social network analysis. For example, Kumar et al.’s dataset was gathered from
Indian Facebook and Twitter pages. In this sense, the dataset could encompass idiomatic expressions
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that could differ from those used by Occidental users, or with those presenting a more colloquial usage
of English. Additionally, given the cultural differences, the criteria for defining what an aggression is
and what it is not could differ, hence it could also occur that posts might have a hidden sense that the
English language might not be able to capture. In this context, the performance of certain techniques and
corpus commonly used for English natural language processing could be reduced.

Finally, after Kumar et al.’s gold standard was publicly released, the evaluations described in sec-
tion 4.1 were repeated. In this case, Kumar et al.’s training and validation sets were both used for training,
thus increasing the size of the training set, and testing was performed using Facebook and Twitter testing
sets. Figure 4 depicts the obtained results. When comparing these results with those obtained during
the design phase (Figure 2) for the Kumar et al.’s dataset, the Facebook test set obtained better results
in 66% of the cases, with differences up to 44%. This was expected as both Kumar et al.’s training and
validation sets were purely gathered from Facebook. However, such improvements were not statistically
significant. This might be due to the fact that feature sets performed differently for the validation dataset.
The Pearson correlation between the results obtained during the design phase and those for the Face-
book test set was −0.66 (p-value <0.01). This implies that the greater improvements were observed for
those feature sets that performed poorly during the design phase. For example, StanfordSentiment, which
achieved the worst performance in the validation dataset, presented the best results for the Facebook test
set. On the other hand, TF-IDF+SentiWordNet, which obtained the best performance for the validation
set, decreased its performance when considering the Facebook test set. In consequence, the negative
correlation shows that it was particularly challenging to predict the performance of a feature set for the
Facebook test set from the validation set.

Although the performance for the Twitter test set was slightly lower than the one observed for vali-
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dation dataset, such differences were statistically insignificant. Conversely than for the Facebook test
set, the correlation between the validation and test Twitter results was 0.9 (p-value <0.0001). Moreover,
TF-IDF+SentiWordNet did not achieved the best results as for the Facebook test set, even achieving
results a 7.58% lower than lemmatisation (the best performing feature set). Since the Twitter test set
has a similar class distribution to the original Kumar et al.’s training and validations sets, the observed
performance might be linked to the class distribution. Nonetheless, more research is required to confirm
this hypothesis.

As in section 4.1, a Wilcoxon test was performed with the results for both Facebook and Twitter test
set, defining the same hypotheses. When considering a confidence of 0.01, the null hypothesis could not
be rejected for any pair of feature sets. With a confidence of 0.05, the null hypothesis could be rejected
for some pair of features in both the Facebook (e.g. Barbieri and POS-NVAA, or StanfordSentiment
and TD-IDF) and the Twitter (e.g. StanfordSentiment and Barbieri, or TF-IDF and POS tags) test set.
Interestingly, the pair of feature sets showing statistically significant differences differed according to
the considered dataset. Since the same trained model was used for evaluating both datasets, it cannot
be stated that any feature set was inherently superior to another feature set. Hence, further studies are
required to assess the descriptive power of features.

5 Conclusions

Aggression in social media is a common issue currently affecting users. Considering the current rate of
posting, it is infeasible to manually curate social networks. Therefore, automatic approaches to detect
aggression are required, which need to be able to adapt to new aggressive behaviour as cyberaggressors
modify their behaviours to avoid detection. It is worth noting that other important applications of the de-
tection of aggressive content are the detection of cyberextremism, cybercrime and cyberhate propaganda.

This paper was developed in the context of the Shared Task of Aggression Detection (Kumar et al.,
2018a), which focused on detecting aggression on social media textual content. The proposed approach
integrated several textual representations including traditional character, word, sentiment and irony fea-
tures, and state-of-the-art approaches, such as word embeddings. Results suggested that automatically
detecting aggression is a rather complex task, specially when the aggression is covert. Since the shared
task was at a post level granularity, information that might be relevant for the task was unavailable. For
example, user profile (point of views, common expression, and general behaviour) and post context were
both unknown.

Regarding future work, the consideration of new information sources, such as user profiles or context
information could be explored. Other neural network architectures, such as CNN or BiLSTM, could
also be explored in this context. Another line of work is studying unsupervised machine learning algo-
rithms for feature generation. Considering that the presented approach is English specific, unsupervised
algorithms might help to extend the model to different languages without requiring a new corpus from
which to extract features. Finally, it could be analysed the adaptation of the proposed model to changes
in language usage to cope with the ever evolving nature of social media sites.
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Abstract

We describe the participation of team TakeLab in the aggression detection shared task at the
TRAC1 workshop for English. Aggression manifests in a variety of ways. Unlike some forms
of aggression that are impossible to prevent in day-to-day life, aggressive speech abounding on
social networks could in principle be prevented or at least reduced by simply disabling users that
post aggressively worded messages. The first step in achieving this is to detect such messages.
The task, however, is far from being trivial, as what is considered as aggressive speech can be
quite subjective, and the task is further complicated by the noisy nature of user-generated text
on social networks. Our system learns to distinguish between open aggression, covert aggres-
sion, and non-aggression in social media texts. We tried different machine learning approaches,
including traditional (shallow) machine learning models, deep learning models, and a combina-
tion of both. We achieved respectable results, ranking 4th and 8th out of 31 submissions on the
Facebook and Twitter test sets, respectively.

1 Introduction

Violence has always been present in human society. As it evolved and technology improved over time,
forms of violence changed as well. While only a few decades ago most of the physical and psychological
abuse occurred face-to-face, today a lot of psychological violence gets through to the victim via the
Internet, and in most cases, social networks. This kind of violence might even be worse, as it can take
place at any time, regardless of the physical distance between the victim and the perpetrator. Moreover,
social consequences that a person would endure for aggressive speech in real life are virtually absent
on the Internet, lowering the inhibitions of potential perpetrators. Although it is next to impossible to
prevent people from being rude in real-life conversations, violence through social networks might be
alleviated by simply making it impossible to send or share offensive content.

The first step on that path is figuring out which among the millions of messages or posts are indeed
aggressive. While it is always possible to rely on the users themselves, e.g., by allowing them to report
offensive and inappropriate content, the most common and fastest way to detect aggressive posts is by
using supervised machine learning. One option is to frame the task as a binary classification problem and
learn a model that discerns between aggressive and non-aggressive speech. In this context, we can define
aggressive speech as any kind of text which is offensive or inappropriate. A more ambitious alternative is
to subcategorize the aggressive speech into specific types such as racism, sexism, homophobia, trolling,
cyberbullying,1 etc. A successful system employing either approach would obviously be of significant
practical value, as it would facilitate detecting and intercepting the aggressive texts before they reach
their intended victim, as well as allow implementation of disciplinary measures to discourage aggressive
behaviour. This offers considerable motivation for pursuing this strand of research.

Building a system for aggressive text detection using machine learning was the goal at the TRAC1
shared task on aggression detection (Kumar et al., 2018). The goal was to build a system that can la-
bel messages from a given dataset as openly aggressive, covertly aggressive, or not aggressive. Open

1The difference between aggression and bullying is that aggression can be a one-off situation or remark that the perpetrator
does not necessarily recognize as being wrong, whereas bullying is a malicious and targeted approach of repeated aggression
where the perpetrator has an intent to harm the other person (Whitney and Smith, 1993).
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aggression in face-to-face conversation implies yelling, swearing, insulting and dominant attitude, while
convert aggression refers to gossiping, inappropriate sarcasm and non-constructive criticism. The ty-
pology is arguably challenging when it comes to applying it to online communication, as some of the
nuances required to recognize aggression are difficult to discern from text alone. The task turned out to be
challenging for human annotators, even though they could refer to context of each message. Expectedly,
the task turned out to be even more challenging for automated systems.

In this paper we describe our submissions to the shared task. We tackled the task using traditional
(shallow) machine learning models, namely logistic regression and support vector machine (SVM), as
well as deep learning models, namely convolutional neural networks (CNNs) and long short-term mem-
ory networks (LSTMs). To get the best of both worlds, we experimented with a combination of shallow
and the deep learning models. We achieved respectable performance, ranking 4th and 8th out of 31 teams
on the Facebook and Twitter test sets, respectively.

The rest of this paper is structured as follows. In Section 2 we give a brief overview of existing work
on aggression detection and related tasks. Section 3 presents the data set, while the machine learning
models we use are explained in Section 4. In Section 5 we present and discuss the results, followed by a
conclusion and ideas for future improvements in Section 6.

2 Related Work

Aggressive speech i.e., abusive language on the web, comes in many flavours, including racism, sexism,
homophobia, trolling, cyberbullying etc. Waseem et al. (2017) proposed a typology for various sub-types
of abusive language. Similarly, an annotation schema for socially unacceptable discourse practices was
proposed by Fišer et al. (2017). Focusing on microblogging, Founta et al. (2018) propose a character-
ization of abusive behaviour on Twitter. There is a considerable body of work dealing with detecting
various types of abusive language; a good overview can be found in (Schmidt and Wiegand, 2017).
While distinguishing between aggressive and non-aggressive speech is a already a challenging task, dis-
tinguishing between different subtypes of aggressive speech is of course even more difficult. This was
observed for the case of open vs. covert aggression by Malmasi and Zampieri (2018), and served as
primary motivation for this shared task (Kumar et al., 2018).

A separate issue, which further increases the difficulty of the task, is that there is no universally agreed-
upon definition of aggressive speech – a situation which negatively affects the reliability of annotated
data. A study by Ross et al. (2016) has shown that supplying hate-speech definitions to annotators can
better align their view with the definition, but this does not positively affect annotation reliability. A
related study by Waseem (2016) indicated that having expert knowledge during annotation can result in
less annotation effort, but this does not necessarily lead to overall better prediction models.

Initial studies dealing with the detection of aggressive speech (or its many subtypes) rely on tradi-
tional text classification techniques, such as the naive Bayes classifier (Kwok and Wang, 2013; Chen
et al., 2012; Dinakar et al., 2011), logistic regression (Waseem and Hovy, 2016; Davidson et al., 2017;
Wulczyn et al., 2017; Burnap and Williams, 2015), or support vector machines (SVM) (Xu et al., 2012;
Dadvar et al., 2013; Schofield and Davidson, 2017). For example, the work of Van Hee et al. (2015)
focuses on classifying different subtypes of cyberbullying using an SVM. In a similar vein, Malmasi and
Zampieri (2017) built a system to discern between hate speech and mere profanity using a combination
of traditional models. Recent work also features dictionary based approaches for detecting abusive lan-
guage in languages other than English (Tulkens et al., 2016; Mubarak et al., 2017). Other approaches
focus on users instead of single texts, such as the work of Ribeiro et al. (2018), where the goal was to
determine which social networks users resort to hate speech. They employed gradient boosting, adaptive
boosting, and a semi-supervised learning method. Notable is also the work of Nobata et al. (2016), who
employ a rich feature set and the regression model from Vowpal Wabbit (Langford et al., 2007), which
outperformed even deep learning-based models.

In recent years deep learning-based approaches have become increasingly popular for this task. Pitsilis
et al. (2018) worked on detecting offensive language in tweets using LSTM, while Gambäck and Sikdar
(2017) used CNN for hate speech classification. A CNN model was also used by Zhang et al. (2018),
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Text Label

Well said sonu..you have courage to stand against dadagiri of Muslims OAG
How does inflation react to all the after shocks of this demon...? NAG
Not good job.....this guis creating a problem n our socacity CAG
pakistani team a world racod 373 run in 20 over. NAG
I visited 5 atm but I cont able to withdraw from money..not working.. CAG
Your nation is neither islamic nor humane OAG

Table 1: An excerpt from the train set (OAG – openly aggressive, CAG – covertly aggressive, NAG –
not aggressive).

but in a combination with a gated rectified unit (GRU) layer. The work of Potapova and Gordeev (2016)
describes an approach to detect aggressive speech using CNN and random forest separately, but not their
combination. Similarly, Gao and Huang (2017) explore a logistic regression model with a rich set of
features and a bidirectional LSTM, without combining the models. Djuric et al. (2015) employ a logistic
regression layer on top of representations learned on a huge hate-speech data set using paragraph2vec (Le
and Mikolov, 2014). Several varieties of recurrent neural networks (RNN) as well as a CNN were also
evaluated in (Pavlopoulos et al., 2017), yielding good results. A survey of related work indicates that,
while both shallow and deep learning models have been extensively tested on this task, the approaches
that build on their combination are few and far between.

Approaches most related to ours explore combinations of traditional and deep learning methods. Bad-
jatiya et al. (2017) focus on detecting racism and sexism using a combination of models from different
paradigms, specifically LSTM in combination with gradient boosting. Similarly, Park and Fung (2017)
use logistic regression in combination with several variants of CNNs in a two step scenario. The first
step distinguishes between abusive and non-abusive texts, while the second step distinguishes between
different subtypes of abuse. The work most similar to ours is that of Mehdad and Tetreault (2016), where
an SVM metaclassifier is trained on outputs of a variant of SVM- and an RNN-based model.

3 Dataset

The shared task dataset consists of 15,000 Facebook messages (train and validation portion combined),
out of which 3,419 are labelled as openly aggressive, 5,297 as covertly aggressive, and 6,284 as not-
aggressive. Table 1 lists some examples from the dataset. As mentioned in the introduction, data la-
beling was a challenging task as there is a certain degree of subjectivity present when determining the
aggression type. From our experience, the most problematic are the openly vs. covertly aggressive cases,
in particular the messages that contain no swear words, since swear words usually imply open aggres-
sion. Their absence, on the other hand, does not mean that the message is not openly aggressive. We
also noticed that many of the texts had grammatical and typing errors, typical of user-generated content.
Moreover, a smaller number of texts were not in English. Finally, an additional difficulty is posed by
the fact that sometimes broader context is required to correctly classify a message. For example, the
text from the third row of Table 1 need not necessarily be covertly aggressive; whether this is the case
depends on what the speaker is referring to.

For the above reasons, performing this task manually is not trivial at all. This is also reflected in
the final scores of machine learning algorithms, which are relatively low – the top performing systems
on the shared task attained 0.64 and 0.60 weighted F1 measure on the Facebook and Twitter test sets,
respectively.

4 Models

4.1 Experimental setup
The dataset provided by the task organizers had already been split into a train and development part.
However, since it is not uncommon for the test data in such competitions to be unrepresentative of train
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data, we decided to use the official development set as held-out test data for all preliminary experiments
to avoid overfitting our models and to obtain a realistic performance estimate.

We first evaluate our models using 5-fold cross-validation on the train data (the official train set). In
each iteration of the cross-validation, models are fitted on four out of five folds, and they are used to
label the remaining fifth fold, which is also considered a validation fold. Model hyperparameters (details
below) are chosen (in each iteration separately) to maximize weighted F1-score on this validation fold,
making the obtained cross-validation score an optimistic estimate of true model performance. This also
produces five trained models, each trained on 4/5 of the train data. Labels on the held-out data, i.e.,
the official development set, are derived for each model by voting of these five models, which could
be considered a type of bagging. The main motivation for this slightly atypical setup is ensuring that
deep learning-based models have access to a validation fold in each iteration for regularization via early
stopping.

For producing the official test set labels, we used an identical setup, but used the union of train and
development sets as the train data and the official test set as the held-out test data.

4.2 Classification models

In order to classify the messages, we used three base models: logistic regression, CNN, and bidirec-
tional LSTM (BiLSTM). Apart for lowercasing and tokenization, we did not perform any additional
preprocessing.2 We next describe our models.

The first model we considered was logistic regression. We explored three variants, each based on
unigrams, bigrams, and character n-grams, respectively. For each of these variants we also include the
following additional features:

• Bad word occurrences – boolean feature which indicates if the text contains a word from a list of
inappropriate and likely offensive words, obtained from the web;3

• POS tags – number of occurrences for nouns, verbs, adverbs, adjectives, foreign words, and cardinal
numbers (a total of six numerical features). We extract the counts using the POS tagger from NLTK
(Loper and Bird, 2002);

• Text length in both characters and tokens (two numerical features);

• Capitalization features – the number of words that are capitalized and the number of words written
in all caps (two numerical features);

• Numerical tokens – the number of tokens that represent a number;

• Named entities – the number of named entities; three numerical features corresponding to counts of
named entities of type person, organization and location, respectively. We used the named entity
recognizer (NER) from NLTK (Loper and Bird, 2002) to extract the named entities;

• Sentiment polarity – a single numerical feature indicating sentiment polarity of the text. We used
the VADER (Gilbert, 2014) sentiment analysis system4 to predict the sentiment.

Although the final result did not change much after adding all of these features, we did observe minor
improvements. The only hyperparameter which was adjusted for this model is the inverse regularization
strength C, for which the search interval was {2−15, 2−14, ..., 25}. The measure that was maximized
was weighted F1-score on the validation fold of the train set. It is worth mentioning that we also tried
a linear SVM instead of logistic regression and got very similar results with a somewhat longer training
time.

2We did try to expand contractions (e.g., can’t → can not) and remove non alphanumeric tokens, but this did not have a
significant positive impact.

3https://www.cs.cmu.edu/˜biglou/resources/bad-words.txt.
4Available online at https://github.com/cjhutto/vaderSentiment.
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For deep learning models, we tried using a CNN and a BiLSTM network architectures. Inputs to both
models were GloVe (Pennington et al., 2014) 300-dimensional word embeddings trained on 840 billion
tokens from the Common Crawl or 200-dimensional word embeddings trained on 20 billion tweets.5

Since the train and dev data are from Facebook, we believed the Twitter-based embeddings might fare
better, as the messages from Facebook and tweets should be similar. For this reason, we tried both
types of embeddings in our experiments, yielding two variants of each deep learning model. For the
BiLSTM we used 100 units as the size of the hidden state and sigmoid transfer functions. The output of
the BiLSTM layer is fed into a fully connected layer with three output neurons and a softmax transfer
function. Both dropout and recurrent dropout hyperparameters were set to 0.2. Our CNN model used
a single convolution layer containing 50 filters of width 3 and 30 filters of width 5, using the ReLU
transfer function. This layer was followed by a max pooling layer and a dropout layer with a dropout
rate of 0.5. Similarly as for the LSTM, the output of this layer was fed into a fully connected layer
with three output neurons and a softmax transfer function. Both BiLSTM and CNN were trained by
minimizing categorical cross-entropy using Adam (Kingma and Ba, 2015), with learning rate values of
0.001 and 0.0005, respectively.6

We have also tested voting combination of seven models: three logistic regressions, two LSTMs, and
two CNNs. Logistic regressions differed in a way that sentences were vectorized (unigrams, bigrams,
and character n-grams) and deep learning models used two different embedings we mentioned. Hard
voting was used and ties were resolved by choosing the class that was most frequent in the train data.

Finally, we tried taking predictions of the seven models and feeding them into a metaclassifier. It
is worth mentioning that we only used hard predictions for the voting classifier, as opposed to using
probabilities of each class for the metaclassifier, although it does not seem that this had a significant
impact on the final result. The metaclassifier we used was an SVM with an RBF kernel. Hyperparameters
that were tuned were the inverse regularization strength C and the width of the kernel function γ. We
optimized these using grid search in the range of {0.001, 0.01, 0.1, 1, 2, 4, 8} for both hyperparameters.

5 Results

5.1 Preliminary evaluations
Before submitting the final results to the shared task organizers, we ran a number of preliminary eval-
uations. The results of our models using both 5-fold cross-validation on the train set as well as on the
development set are given in Table 2. In general, results of BiLSTM and logistic regression are com-
parable, while the standalone models perform slightly worse. Among the standalone models, the best
results were obtained with the BiLSTM, which is not surprising since this model is considered by many
to be the state of the art. The second-best result was achieved by logistic regression with word bigrams
as features, which is an interesting indicator that, although logistic regression is considered to be among
the simplest traditional machine learning models, it can yield satisfactory results on this task. Results
on the development set were slightly different, and this time logistic regression achieved the best results.
Moreover, what we find the most interesting is the fact that both combinations of the models (voting
and stacking with an SVM metaclassifier) yield somewhat better results than any of the seven standalone
models, indicating that combining models is useful.

5.2 Test set results
For the final testing the task organizers made it possible to submit up to three models. We decided to trust
the cross-validation scores more than those on the official development set and chosen (1) BiLSTM with
Common Crawl embeddings, (2) logistic regression with bigrams, and (3) SVM trained on predictions
of the seven models as our final submissions. Testing was conducted by the task organizers on two data
sets – one from Facebook, same as the train data, and another one from Twitter. On the Twitter test set
SVM had the best result among our models, as expected. Surprisingly enough, on the Facebook dataset
the best results were obtained by the BiLSTM-common model; we investigate the reasons for this in

5Both pretrained GloVe embeddings are available online at https://nlp.stanford.edu/projects/glove/.
6All the hyperparameters were chosen to maximize weighted F1-score on the validation fold of the train data.
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System F1 cross-validation F1 train/dev

Random Baseline 0.345 0.341

Logistic regression unigrams 0.560 0.567
Logistic regression char-ngrams 0.566 0.566
Logistic regression bigrams 0.570 0.583
BiLSTM-common 0.585 0.571
BiLSTM-twitter 0.575 0.561
CNN-common 0.570 0.561
CNN-twitter 0.562 0.580
Voting 0.591 0.595
SVM metaclassifier 0.603 0.603

Table 2: Results using cross-validation on the official train set (the first column) and on the official
development set (the second column). The designations next to the deep learning models refer to the
type of embeddings they were given as input.

System F1 Facebook F1 Twitter

Random baseline 0.354 0.347

saroyehun 0.642 0.592
EBSI-LIA-UNAM 0.632 0.572
DA-LD-Hildesheim 0.618 0.552
TakeLab 0.616 0.565
sreeIN 0.604 0.508
vista.ue 0.581 0.601
Julian 0.601 0.599
uOttawa 0.597 0.569

Table 3: Test set results of models which where in top 5 on either dataset. Our (TakeLab) model refers
to the the BiLSTM-common model and the SVM metaclassifier model for the Facebook and Twitter test
sets, respectively.

the error analysis section below. Table 3 shows the F1-scores of the five best models on each dataset.
There is an overlap, since two models were in top 5 on both the first and the second dataset. We ranked
fourth on the first dataset and eighth on the second dataset out of 31 competitors. We omit statistical
significance tests that compare our system to other systems, as we do not have access to their labels, but
instead refer to (Kumar et al., 2018) for additional comparison details.

5.3 Error analysis

We next analyse predictions of our best performing models on the test data, focusing on the erroneous
predictions. Figure 1 shows confusion matrices of our best models (BiLSTM-common for the Facebook
test set and logistic regression with bigrams for the Twitter test set). The matrices reveal that it was
much easier for our model to differ between open aggression and non-aggression than between covert
aggression and non-aggression, which is intuitive and in line with findings of Malmasi and Zampieri
(2018). Distinguishing between open and covert aggression was also quite challenging, especially on the
second dataset. We have also noticed that all labels were distributed more or less evenly over the second
dataset, which was the case with our train data as well. On the other hand, most of the sentences from
the first dataset were labelled non-aggressive, and our model had a tendency to predict covert aggression
when the sentence should have been labelled non-aggressive. There is a chance that this imbalance
caused the SVM to perform worse than expected.
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Figure 1: Confusion matrices of our best models. On the the Facebook (left) test set the matrix is for the
BiLSTM-common model. On the Twitter test set (right) the matrix is for the SVM metaclassifier model.

Tweet True
label Voting Predictions

me and my mate swapnil patel watching bat swapnil
patil!! too confused!! #indvsuae

N C C C N N C C N

wickets are falling faster than updates, lol #indvsuae C N C C N N N N N

its like pikachu vs team rocket today .. #indvsuae C N N N N N N N N

#shutdownjnu over democratic setup feeds these thugs C O C C O O O O C

#ShutDownJNU ,it has never been an educational
institution,must b handed over to Army to teach them

proper lesson.
O C O O C C C C C

If glorifying a terrorist can be jusified under FoS, then you
can say just any thing. #ShutDownJNU

C O O O O O O O O

Send Umar Khalid to Afzal before its too late. Don’t let
him become another Afzal Guru in real! #ShutdownJNU

#MadarsaJNU
O C C C C C C C C

Table 4: Tweets, true labels, prediction of the voting classifier, and predictions of all the seven models,
where O stands for open aggression, C stands for covert aggression and N for non-aggressive speech.
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Table 4 shows several interesting misclassifications made by voting combination of our models, as
well as predictions of every standalone model. 7 First three examples show misclassifications in which
non-aggression was confused with covert aggression. In the first two examples we can see that some
models were correct but the majority voted for the opposite class. Interestingly enough, none of the
models predicted open aggression. The third example was classified as non-aggression by all models
and we believe some human annotators would probably make the same decision. However, there are also
situations where all of our models are in agreement but the label they have assigned is obviously incorrect.
The remaining examples show cases where open and covert aggression were confused. Deciding between
open and covert aggression would have probably been the most difficult for human annotators, so it is not
surprising that this is challenging for machines too. Again, we can see that none of the models predicted
non-aggression in this situation. Examples in which open aggression is mistaken for non-aggression are
quite rare.

6 Conclusion and Future Work

In this paper we have proposed a machine learning model for the problem of detecting open and covert
aggression speech using shallow machine learning models, deep learning, and their combination. Among
standalone models, the best score was achieved by a bidirectional long short term memory network
(BiLSTM). However, combining BiLSTMs with Convolutional Neural Networks (CNN), and variants
of logistic regression via a support vector machine (SVM), that served as a metaclassifier, turned out to
offer improvements in some cases. This speaks in favor of the idea that combining deep learning models
with traditional ones through voting or stacking might result in the best performance. Even though the
potential of deep learning itself is evident and deep learning models often do have exceptionally high
standalone scores.

We have chosen logistic regression as the “representative” of traditional (shallow) models because it
had good initial results and it was fast and easy to optimize, but our experiments were not sufficiently
exhaustive to determine whether it really is the best traditional model for this task. However, the com-
bination of traditional and deep learning paradigms did prove promising. Consequently, an immediate
venue of future work would be adding other models into the voting ensemble and the SVM metaclassifier.
Another possibility would be to explore approaches that combine tree kernels with word-embeddings de-
rived from deep learning, such as the work described in (Plank and Moschitti, 2013; Kim et al., 2015).
We feel another promising direction for future work would be addressing the highly noisy nature of the
data. One option would be more rigorous preprocessing, such as using specialized tools for normaliza-
tion of social media text (Han et al., 2013; Baldwin et al., 2015). Finally, the data set could be improved
by adding additional context information, if possible, e.g., other social media posts collocated with the
post in question, or posts by the same user at other points in time.
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Abstract

This paper describes the participation of team DA-LD-Hildesheim from the Information Retrieval
Lab(IRLAB) at DA-IICT Gandhinagar, India in collaboration with the University of Hildesheim,
Germany and LDRP-ITR, Gandhinagar, India in a shared task on Aggression Identification work-
shop in COLING 2018. The objective of the shared task is to identify the level of aggression from
the User-Generated contents within Social media written in English, Devnagiri Hindi and Ro-
manized Hindi. Aggression levels are categorized into three predefined classes namely: ‘Overtly
Aggressive‘, ‘Covertly Aggressive‘ and ‘Non-aggressive‘. The participating teams are required
to develop a multi-class classifier which classifies User-generated content into these pre-defined
classes. Instead of relying on a bag-of-words model, we have used pre-trained vectors for word
embedding. We have performed experiments with standard machine learning classifiers. In addi-
tion, we have developed various deep learning models for the multi-class classification problem.
Using the validation data, we found that validation accuracy of our deep learning models outper-
form all standard machine learning classifiers and voting based ensemble techniques and results
on test data support these findings. We have also found that hyper-parameters of the deep neural
network are the keys to improve the results.

1 Introduction

Social media become the popular platform for the common man to the celebrities to discuss or to give
their opinions about any real-world events. In the last a few years, the growth of social media users was
enormous. With this large user base, a massive amount of User-generated content is posted continuously
on Social Media. Social media gives freedom of speech and anonymity to its users. However, often
Social media users abuse this liberty to spread abuses and hate through the posts or comments. On many
occasions, these User-generated contents are offensive or actively aggressive in nature. Many times, such
contents written in a way that might defame or insult individuals or groups of people without actually
using any explicit hate-related or abusive words. Genuine social media users may become the victim
of such abusive or hate comments. Recently, many cases of suicide have been reported by mainstream
media due to trolling or cyberbullying in social media.

Day by day, Anti-Social behavior like Abuse, trolling and cyberbullying is becoming more common
than before on the Social media platform. It is high time for researcher, industry to develop a system
which identifies problematic posts. Social media posts might contain words which can be considered as
either highly or open aggressive or have hidden aggression. Sometimes posts do not have any aggres-
sion. Based on these, posts or comments are classified into three classes namely: ‘Overtly Aggressive‘,
‘Covertly Aggressive‘ and ‘Non-aggressive‘ by the track organizers (Kumar et al., 2018a). Henceforth, in
rest of paper, we will denote these classes by these abbreviations namely: OAG, CAG, NAG respectively.
Table 1 shows the sample posts belonging to these classes.

Our approach for the shared task TRAC (Kumar et al., 2018a) is based on Machine Learning and
Deep learning. Track organizers have provided training and validation data as per the schedule. Ini-
tially, we have implemented all standard machine learning classifier along with voting based ensemble
technique and prepare baseline results on validation data. Thereafter, we have started to develop deep
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Id Text Class-label
1 Do you see further downside in bank nifty till expiry NAG
2 Demonitisation like a medicine, it might be sour but slowly and steadily CAG
3 Woman shame on u OAG

Table 1: sample post for each class

learning model for the multi-class classification. Since Dataset was created from Facebook posts and
comments, we have chosen fastText pre-trained vector for the word-embedding. Our deep learning mod-
els were based on Bidirectional LSTM, Convolution neural network. In section 3.2 we will discuss our
approaches. It is important to note that we did not engage in any specific pre-processing on the text
before they were fed into the deep neural net.

Results declared by track organizers show that our deep learning models perform top in the Social
media Hindi dataset, third in English Facebook dataset, fifth in Facebook Hindi dataset. So, overall our
models perform fairly well across all the datasets.

The rest of this paper is organized as follows. In section 2 we briefly discuss related work in this area.
In section 3, we present the corpus statistics and methodology. In section 4, we present results and give
the brief analysis. In section 5, we will give our final conclusions along with future works.

2 Related Work

Hate speech and sentiment analysis are the well studied are in the field of Natural Language Process-
ing. Aggression identification shared task (Kumar et al., 2018a) is more specific than hate speech and
sentiment analysis task. In (Xu et al., 2012) authors introduce cyberbullying to the NLP community.
They have performed various binary classification on tweets text with bullying perspective to determine
whether the user is cyberbully or not, from the sentiment perspective. They reported binary classification
accuracy around 81%.

In (Kwok and Wang, 2013), authors have tried to classify tweets against black or not. They have
collected two classes (racist and non-racists) of tweets and used the Naive Bayes classifier for binary
classification. The average accuracy for the binary classification was around 76 %. (Djuric et al., 2015)
also build a binary classifier to classify in between hate speech and clean user comments on a website.
Authors have proposed to learn distributed low-dimensional representations of comments using word
embedding model such as paragraph2vec model. Authors have created corpus comprises 56,280 com-
ments containing hate speech and 895456 clean comments from Yahoo finance. They have reported AUC
score around 0.8007 using CBOW paragraph2vec model against 0.7889 in the bag-of-words model using
term frequency.

In (Burnap and Williams, 2015), authors explore cyber hate on Twitter. They have collected tweets for
the specific domain in a two-week time window. Collection of 450,000 tweets was annotated as hateful
or genuine. They have performed binary classification using SVM, BLR, RFDT, Voting base ensemble
and hey achieved best F1-score of 0.77 in the voted ensemble. In (Malmasi and Zampieri, 2017), authors
have used NLP based lexical approach to address the multi-class classification problem. They have used
character N-gram, word N-gram and word skip-gram feature for the classification.

In (Schmidt and Wiegand, 2017), authors have described the key areas that have been explored to
detect hate speech. They have surveyed different types of features used for hate speech classification.
They have categorized features in Simple surface features, word generalization features, sentiment fea-
tures, linguistic features, lexical resources features, Knowledge-based features, and Meta-Information
features. Simple surface features include features like character level unigram/n-gram, word generaliza-
tion features include features like the bag-of-words, clustering, word embedding, paragraph embedding.
Linguistic features include PoS tag of tokens. list of bad words or hate words can be considered as lexical
resources. Existing knowledge base like ConceptNET, Bullyspace can be used as features.

Another type of problematic post is classified in the shared task eRisk(Losada and Crestani, 2016)
within the Cross-Language Evaluation Forum (CLEF). Here, risk situations regarding health and safety

200



are of interest and the research is dedicated to identifying such situations from social media data. In
the first classification task, posts which indicate depression of a user need to be found. To simulate the
identification of such condition early, the shared task provides 10% of the user data for 10 weeks.

Most of the approaches discussed above are the lexical approaches. Our approach is based on pre-
trained word embedding. We have developed deep learning models which implicitly learn features from
the text. Some of the lexical features like the length of the post, number of unique words are added
explicitly in our model but the system performance was degraded.

3 Methodology and Data

In this section, first, we describe the datasets used in the experiment in 3.1 and in section 3.2 we will
discuss our approaches in details

3.1 Dataset
Track organizers provided 15,001 aggression-annotated Facebook Posts and Comments each in Hindi
(Romanized and Devanagari script) and English for training and validation (Kumar et al., 2018b). Table
2 shows a detail description of the training and validation Dataset.

Class English Corpus Hindi Corpus
# Training # Validation # Training # Validation

NAG 5052 1233 2275 538
CAG 4240 1057 4869 1246
OAG 2708 711 4856 1217
Total 12000 3001 12000 3001

Table 2: Class distribution in the Training Dataset

Table 2 shows that there is class-Imbalance in the training data. For English corpus posts from NAG
class are the highest and OAG class is lowest. Similarly, for Hindi corpus, posts from OAG class are
the highest and NAG class is lowest. We will discuss the effect of class Imbalance on results in the
methodology section. Table 3 gives details of the test data corpus. It is worth to note that track organizers
provided an open domain Facebook corpus for training and validation but for testing, in addition to
Facebook English and Hindi corpus, a Twitter corpus dataset was provided from the completely different
domain for both English and Hindi languages.

Test Dataset # of posts
Facebook English Corpus 916
Twitter English Corpus 1257
Facebook mixed script Hindi Corpus 970
Twitter mixed script Hindi Corpus 1194

Table 3: Test Data Corpus statistics

3.2 Methodology
In this section, we describe our various runs in details. First, we have implemented all standard machine
learning classifiers like Multinomial Naive Bayes, Logistic Regression, SGD, KNN, SVC, Decision Tree,
Random forest, various voting based ensemble soft and hard classifier with different text representation
schemes like count based and TF/IDF to prepare baseline results. On the Facebook English Validation
dataset, we got the best-weighted F1 = 0.57 in Logistic Regression with TF/IDF text representation
scheme. KNN classifier gives worst weighted F1 = 0.36 on English Validation data. However soft voting
based Ensemble of Logistic Regression, Naive Bayes, and Random Forest gives best weighted F1 =0.58
with count-based text representation scheme. As discussed in section 3.1, there is a class imbalance in
the training Dataset. We have performed the experiments with equal class labels of training data but
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weighted F1 decreased substantially on validation data. So, we concluded that there is no need to tackle
the class imbalance for this dataset.

3.2.1 Word Embedding for Text representation

Initially, we have implemented both variants of Word2vec namely CBOW and Skip-gram for word-
embedding, but the accuracy was around 50%. We obtained the pre-trained Glove vector with different
dimensions, but the accuracy improved only marginally. Finally, we settled with fastText (Mikolov et
al., 2018) which is an extension of Word2vec. The fastText consider each word as N-gram characters.
A word vector for a word is computed from the sum of the n-gram characters. Word2vec and Glove
consider each word as a single unit and provide a word vector for each word. Since Facebook users
make a lot of mistakes in spelling, typos, fastText is more convenient than Glove and Word2vec. In the
followings, the main advantages of fastText are given over other embedding techniques.

1. fastText can generate word embedding for a word which is not processed during the training from its
N-gram character features. Word2vec and Glove can’t generate word embedding for unseen word.

2. For the rare word, fastText generates better word embedding than Word2vec and Glove due to the
n-gram character features

3.2.2 Model Architecture

Track organizers had provided four Datasets from the open domain of Facebook and Twitter for the test-
ing. For each dataset, we have submitted three runs. In this subsection, we will discuss the architecture
of our deep neural network models and machine learning models which we developed during the training
phase and tested on validation data.

Bidirectional LSTM This is our first deep neural network model which we developed to submit our
first run. There is two LSTM layer instead of one in Bidirectional LSTM. Bidirectional LSTM is the
extension of the single LSTM. Model parameters are as follows: Maximum features 10000 words; length
of the sequence is 500. We believe that embedding layer is the most critical layer for the model. fastText
(Mikolov et al., 2018) pre-trained vector is used for word embedding with embed size is 300. We have
designed simple bidirectional LSTM with two fully connected layers. We add dropout to the hidden
layer to counter overfitting. There are 50 memory units in LSTM and hidden layer. Adam optimization
algorithm is used to update the weight matrix. 3 epochs are sufficient for the model to get overfitted.

Single LSTM with higher dropout: This model is based on traditional LSTM model with higher
dropout. The first layer is an embedding layer with Maximum features 10000, The length of the sequence
is 1024(maximum length of comment in the dataset). We believe that embedding layer is the most critical
layer for the model. fastText (Mikolov et al., 2018) pre-trained vectors are used for word embedding with
embed size is 300. There are 64 memory units in LSTM layer plus one dense layer with 256 nodes. We
add dropout around 0.5 to counter overfitting in the hidden layer. Adam optimization algorithm is used
to update the weight matrix. 3 epochs are sufficient to get the best validation accuracy around 58.4 % on
English corpus and 61.1 % on Hindi corpus.

Model based on Convolution Neural Network This model is based on Convolution Neural Network.
The first layer is an embedding layer with maximum features 10000; the length of the sequence is
1024(maximum length of comment in the dataset). The fastText (Mikolov et al., 2018) pre-trained vec-
tors are used for word embedding with embed size is 300. We have added a one-dimensional convolution
layer with 100 filters of height 2 and stride 1 to target biagrams. In addition to this, Global Max Pooling
layer added. Pooling layer fetches the maximum value from the filters which are feed to the dense layer.
There are 256 nodes in the hidden layer without any dropout. Validation accuracy is around 58.9 % on
English corpus and 62.4 % on Hindi corpus.

202



Model based on Convolution Neural Network with different Filter height This model is by and
large same with previous CNN model except for different one-dimensional filters with height 2,3,4 to
target bigrams, trigrams, and four-grams features. After convolution layer and max pool layer, model
concatenate max pooled result from each of one-dimensional convolution layer, then build one output
layer on top of them. We have implemented this model from (Zhang and Wallace, 2015). There are 256
nodes in the hidden layer with 0.2 dropouts. Validation accuracy is around 57.6 % on English corpus and
62.4 % on Hindi corpus.

Model based Bidirectional GRU and Convolution Neural Network This model is the hybrid model
of Recurrent Neural Network and Convolution Neural network. The model contains one embedding layer
with pre-trained weight matrix from fastText, max features is 10000 and embed size is 300 followed by
bidirectional GRU layer with 128 units and one- dimensional convolution layer with 64 filters having
filter height 2. Validation accuracy is around 59 % on English corpus.

Voting based ensemble model This model is voting based ensemble model of Bidirectional LSTM,
Single LSTM, CNN, Logistic Regression, BIGRU with CNN, the soft ensemble of (random forest clas-
sifier, Naive Bayes classifier, Logistic Regression).

Model based on Logistic Regression During the training phase, we got best validation accuracy from
using logistic regression among all standard classifier. TF/IDF gives better accuracy than count based
text representation scheme. We have set logistic regression parameters like N-gram, minimum document
frequency using grid search. We have done little pre-processing on corpus like Non-ASCII character
removal. Stop words are not removed. Validation accuracy is around 57.8 % on English corpus and
59.18 % on Hindi corpus.

4 Results

In this section, we first present results on the validation dataset. Table 4 and 5 show results on the
English and the Hindi validation data corpus respectively.

Classifier Accuracy Precision Recall F1 (weighted) Text Repre. scheme
Naive Bayes 0.5734 0.58 0.58 0.57 count based
Logistic Regression 0.5768 0.56 0.56 0.56 TF/IDF
KNN 0.4415 0.42 0.44 0.38 Count based
Linear SVC 0.5631 0.56 0.56 0.56 0 TF/IDF
Decision Tree 0.4841 0.48 0.48 0.48 count base
SGD 0.5691 0.57 0.57 0.57 TF/IDF
Random Forest 0.5101 0.5 0.51 0.49 TF/IDF
Soft ensemble 0.5894 0.59 0.59 0.58 count based
Hard Ensemble 0.5751 0.57 0.58 0.57 count based
LSTM NN + fasttext 0.584 0.59 0.58 0.59 word embedding
Convolution NN + fasttext 0.589 0.58 0.59 0.58 word embedding
Convolution Ngram+fasttext 0.576 0.6 0.58 0.58 word embedding
BIGRU+FASTTEXT 0.59 na na na word embedding
Bidirectional LSTM + fasttext 0.5928 0.59 0.58 0.58 word embedding

Table 4: Results on English (Facebook) validation data

As we look at the result on validation data, we obtained best weighted F1 score and validation accuracy
for English dataset in the soft ensemble of Logistic Regression, Random Forest, and SGD and in the
Bidirectional LSTM. For Hindi corpus, we got the best weighted F1 score and validation accuracy in
Convolution Neural Network.
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Classifier Accuracy Precision Recall F1 (weighted) Text Repre. scheme
Naive Bayes 0.5718 0.59 0.57 0.56 TF/IDF
Logistic Regression 0.5991 0.62 0.6 0.59 TF/IDF
KNN 0.3318 0.43 0.33 0.34 Count based
Linear SVC 0.5784 0.58 0.58 0.58 0 TF/IDF
Decision Tree 0.5211 0.52 0.52 0.52 count base
SGD 0.5924 0.60 0.59 0.59 TF/IDF
Random Forest 0.5511 0.56 0.55 0.55 TF/IDF
Soft ensemble 0.5981 0.61 0.60 0.60 TF/IDF
Hard Ensemble 0.5944 0.60 0.59 0.59 TF/IDF
LSTM NN + fasttext 0.611 0.6454 0.6111 0.6042 word embedding
Convolution NN + fasttext 0.624 0.6278 0.6241 0.6244 word embedding
Convolution Ngram NN 0.624 0.63 0.62 0.62 word embedding

Table 5: Results on Hindi (Facebook) validation data

System F1 (weighted)
Random Baseline 0.3535
BiDirectional LSTM with fastText-run-1 0.5959
LSTM with higher dropout-run2 0.6178
N-Gram CNN-run-3 0.5580
top team saroyehun 0.6424

Table 6: Results for the English (Facebook) dataset

Table 6, 7, 8 and 9 shows our models results on different test datasets which are created from
Facebook and Twitter posts. Figure 1, 2, 3 and 4 show the confusion matrices for the each dataset.
One can observe that weighted F1 score on the test data is better than the validation dataset. Posts in
the datasets are related to different events. Without any given context, our model gives a weighted
F1 score around 0.6178 for English Facebook dataset and 0.6081 for Hindi Facebook Dataset. The
Hindi and English Social media test datasets were created from the Twitter with 3 or 4 domain like #
JNUShutdown, #Cricket2015, #demonetization. We have trained models on Facebook comments or
posts and tested on Twitter posts. It is worth to note that there are lexical differences between Twitter
posts and Facebook posts. Twitter posts are 140 characters long and the majority contain user mentions,
external URL, and Hashtags while most of Facebook posts are longer than Twitter posts does not have
Hashtags or user mentions in the text. However, our model gives a weighted F1 score around 0.5520 for
English Twitter dataset and for mixed script Hindi Twitter dataset, our model gives F1 weighted around
0.4992 in model based on Convolution Neural network.

4.1 Result Analysis
In this subsection, we will present result analysis. The results on validation data show that models based
on LSTM and CNN marginally outperform (around 2 % to 3%) standard machine learning classifiers
with respect to weighted F1- score and accuracy on Facebook English corpus and Hindi corpus. Table
10 shows tweets which belong to the CAG class are classified under the NAG class. Table 11 shows the
tweets which belong to NAG class are classified under the OAG class.

The main reasons for the posts which are failed to classified under CAG class are the unavailability of
the context and difference with the wisdom of the human assessor. Same reasons can be applied to the
tweets which are classified in OAG but actually they belong to NAG class.
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System F1 (weighted)
Random Baseline 0.3477
BIGRU-CNN-withfasttext-run-1 0.5486
CNN-withfastText-run-2 0.5520
BiDirectional LSTM with fastText-run-3 0.5423
Top team vista.ue 0.6008

Table 7: Results for the English (Social Media(Twitter) Dataset

System F1 (weighted)
Random Baseline 0.3571
CNN-withfastText-run-1 0.6081
N-Gram CNN-run-2 0.5965
logistic Regression with Tf/IDF -run-3 0.6034
top team na14 0.6450

Table 8: Results for the Hindi (Facebook) Dataset

Figure 1: Confusion Ma-
trix for EN-FB task

Figure 2: Confusion Ma-
trix for EN-TW task

Figure 3: Confusion Ma-
trix for HI-FB task

Figure 4: Confusion Ma-
trix for HI-TW task
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System F1 (weighted)
Random Baseline 0.3206
CNN-withfastText-run-1 0.4992
LSTM with higher dropout-run2 0.4579
voting based ensemble 0.4797
top team DA-LD-Hildesheim 0.4992

Table 9: Results for the Hindi (Social Media(Twitter)) Dataset.

Post-id Text Actual
Class

Predicted
Class

facebook-
467581

modi should learn from him how
what to communicate common
people not to corporate people.

CAG NAG

facebook-
442501

The name and the meaning has
changed of RBI to reverse bank
of India.

CAG NAG

Table 10: Tweets which are hard to classify in CAG class

Post-id Text Actual
Class

Predicted
Class

facebook-
408314,

Pakistan is a terrorist country
and no body would like to play
with Pakistan.

NAG OAG

facebook-
355578,

Gandhi Killer Ram (Nathu)
Temple in India Big Shame
4India.

NAG OAG

facebook-
400906

You have to goes for this facts in
U N O in USA and then you can
claims for Kashmir.

NAG OAG

Table 11: Tweets belongs to NAG but classified under OAG class
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5 Conclusion

After performing exhaustive experiments, we conclude that Deep Neural Network with proper word
embedding marginally outperforms all standard machine learning classifier and ensemble techniques.
The critical parameters for the models are the batch size and learning rate. We also concluded that higher
drop out will help to counter model overfitting and improvise a standard evaluation metric. CNN and
LSTM are the better models for these datasets. On the English test corpus, we obtained a better F1 score
for NAG class and poor F1-score for CAG class which supports the previous (Malmasi and Zampieri,
2017) findings. For the Facebook Hindi test corpus, the same seems not to be true. We obtained a
better F1 score for CAG class than NAG class. In the future, we will focus on various pre-trained word
embedding models and study how the word is represented by this model. we have planned to develop
deeper Neural nets and identify optimal parameters using grid search. It is also to be noted that the model
leads to poor result on test data created from the different source than the training corpus source.
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