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Prakruthi Karuna, Hemant Purohit, Özlem Uzuner, Sushil Jajodia, Rajesh Ganesan
Center for Secure Information Systems

George Mason University
{pkaruna, hpurohit, ouzuner, jajodia, rganesan}@gmu.edu

Abstract

Ever increasing ransomware attacks and thefts of intellectual property demand cybersecurity
solutions to protect critical documents. One emerging solution is to place fake text documents in
the repository of critical documents for deceiving and catching cyber attackers. We can generate
fake text documents by obscuring the salient information in legit text documents. However,
the obscuring process can result in linguistic inconsistencies, such as broken co-references and
illogical flow of ideas across the sentences, which can give away the fake document and render
it unbelievable.

In this paper, we propose a novel method to generate believable fake text documents by automat-
ically improving the linguistic consistency of computer-generated fake text. Our method focuses
on enhancing syntactic cohesion and semantic coherence across discourse segments. We conduct
experiments with human subjects to evaluate the effect of believability improvements in distin-
guishing legit texts from fake texts. Results show that the probability to distinguish legit texts
from believable fake texts is consistently lower than from fake texts that have not been improved
in believability. This indicates the effectiveness of our method in generating believable fake text.

1 Introduction

The rise in the number of cyberattacks, such as the WannaCry ransomware attack1, has put pressure on
governments and corporations to protect their intellectual property and critical documents. Traditional
cybersecurity solutions such as access-control, firewalls, malware scanners, intrusion detection and pre-
vention technologies are limited in keeping an attacker from stealing information once he penetrates a
computer network. Therefore, recent research has focused on content-based cybersecurity solutions for
deceiving an attacker (Rowe and Rrushi, 2016; Jajodia et al., 2016; Heckman et al., 2015) who may
succeed in gaining access to the network. These solutions generate and deploy documents with fake
content (called ‘honeyfiles’ or ‘decoy files’) in the data repositories of legit documents for misleading
attackers with false information. Fake documents can be either low interaction honeyfiles such as empty
documents with similar names as legit documents, or high interaction honeyfiles with believable but
non-informative content that can mislead the attackers (Whitham, 2017; Bowen et al., 2009). However,
generating fake content that can deceive a human reader and is indistinguishable from legit content is
a challenging task. This research investigates a novel linguistics approach to generate high interaction
honeyfiles with believable fake text that are capable of eliciting trust.

The state of the art methods for fake text document generation (Rauti and Leppanen, 2017; Whitham,
2017) are broadly categorized based on the nature of content generated as follows: (1) random character
generation, (2) generation based on random word and sentence extraction from a given public document
corpus, (3) rule-based and preset template-based text generation, (4) generation based on translation from
one language to another containing partial content from an existing document, and lastly, (5) generation
based on language models built from a collection of similar documents (Whitham, 2017; Voris et al.,
2012). However, several of the resulting automatically generated text suffers from lack of believability,

1https://www.tripwire.com/state-of-security/security-data-protection/cyber-security/10-significant-ransomware-attacks-
2017/
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i.e. linguistic inconsistencies and disfluencies give it away as fake text. Believability is essential to the
success of cyber deception (Voris et al., 2013). Our goal is to automatically generate believable fake
documents that can deceive attackers.

The believability of a given fake text for a human reader is difficult to assess (Bowen et al., 2009;
McNamara and Kintsch, 1996; Otero and Kintsch, 1992). Believability has two major factors: first, the
prior knowledge of a reader (attacker) and second, the characteristics of the text. While prior knowledge
can affect the believability of text, such knowledge can vary from attacker to attacker, resulting in differ-
ent degrees of believability for different attackers. Textual characteristics, on the other hand, can affect
believability even for attackers with no prior knowledge. We hypothesize that cohesion and coherence
of text are two major factors in this respect.

We define a fake text in this research as a modified version of a legit human-written text created
automatically by removing some sentences that contain salient information. We define a believable fake
text as the modified version of a fake text with higher cohesion and coherence than the fake text. Prior
research provides metrics for measuring cohesion and coherence based on linguistic characteristics of
text (McNamara et al., 2014; Lin et al., 2011; Lapata and Barzilay, 2005). Also, the literature on text
simplification and summarization provides techniques to improve cohesion and coherence of a given text
(Narayan, 2014; Siddharthan et al., 2011; Mani et al., 1999). However, the question of how to effectively
manipulate a given text to improve its cohesion and coherence so as to render it believable still requires
more investigation.

Our specific research questions are the following: a) how can we adapt existing NLP techniques to
automatically modify a given fake text to increase its cohesion and coherence? and b) what is the relation
between cohesion, coherence, and believability of a given text for a reader? We study syntactic cohesion
at the local sentence level and semantic coherence at the paragraph level. We evaluate our method
in two ways. First, we test for a statistically significant increase in the cohesion and coherence of a
believable fake text over its corresponding (unbelievable) fake text. Second, we conduct a ‘believability
test’ (Bowen et al., 2009) with human subjects for identifying the legit text from a given pair of legit and
believable fake texts. Our results show that the probability to distinguish a legit text against a believable
fake text is less than 50%, while that against a (unbelievable) fake text is greater than 50%. These results
indicate the effectiveness of our method in generating believable fake texts. Our specific contributions
are the following:

1. A novel computational method to increase the cohesion and semantic coherence of a fake text to
enhance believability.

2. An analysis of effects of this method on the human perception of text’s believability.

The rest of the paper is organized as follows. Section 2 describes the related work on cohesion and
coherence. Section 3 defines the required notations for our approach, which is described in Section 4.
Section 5 describes our experimental setup, followed by result analysis in Section 6.

2 Related Work

We describe three most relevant areas in the literature to guide our methodology for improving the
believability of a fake text.

2.1 Measuring Cohesion and Coherence of Text
McNamara et al. (2014) defines cohesion as “a characteristic of the text that can be computationally
measured”, whereas coherence is viewed as “the cognitive correlate of cohesion”. Though cohesion and
coherence measures have been used for evaluating student’s essays (Burstein et al., 2010; Miltsakaki
and Kukich, 2000), they are heavily used for evaluating automatically generated text summaries and
the output of machine translation (Lapata and Barzilay, 2005). These measures describe the overlap of
ideas in adjacent sentences or paragraphs. The publicly available systems of Coh-Metrix (McNamara et
al., 2014) and the Tool for Automatic Analysis of Cohesion (TAACO) (Crossley et al., 2016) provide
quantitative measures for cohesion, which are suitable to adapt in our research.
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Lapata and Barzilay (2005) have proposed a quantitative measure of coherence based on the degree
of connectivity across sentences using semantic similarity metrics. We adapt and extend their method to
calculate coherence across paragraphs by computing semantic similarity between adjacent paragraphs.

2.2 Methods to Summarize and Simplify Text

Text summarization methods select salient sentences to form a short summary of the given text (Nenkova
and McKeown, 2012; Erkan and Radev, 2004). Generated summaries are then smoothed to create a
coherent whole out of these salient sentences (Siddharthan et al., 2011; Mani et al., 1999).

Our goal is different from text summarization, as we find salient sentences to remove them in order to
reduce the knowledge that an attacker can comprehend from the document. Our approach then needs to
create a coherent whole out of the remainder of the document when salient sentences are deleted. While
both tasks (i.e., text summarization and believable fake document generation) find salient sentences, they
focus on cohesion and coherence of different types of text units.

Another relevant research is to simplify text at the sentence and lexical levels for smoothing the gener-
ated text. Sentence level methods simplify the grammatical constructions with fewer number of modifiers
(Narayan, 2014). Lexical level methods minimize the number of unique words occurring in the text (Mc-
Namara et al., 2014; Siddharthan, 2006). However, these methods are not designed to directly address
the problem of linguistic inconsistency across the sentences.

2.3 Measuring Believability of Computer-generated Fake Text

An approach to measure believability of a fake text depends on the type of fake text. Fake texts can be
categorized into three broad classes (Almeshekah and Spafford, 2016): manufacturing reality (curating
false information from multiple documents), altering reality (modifying information in an existing docu-
ment), and hiding reality (obscuring information in an existing document). A believable fake text lies at
the intersection of altering reality and hiding reality. Prior literature has investigated different methods to
compute the believability of such fake texts. Whitham et al. (2015) computed the difference between the
k-dimensional linguistic features (e.g., word count, sentence length) of a fake text and legit text in a data
repository. However this method does not evaluate the measure of believability for a human. Shabtai et
al. (2016) and Bowen et al. (2009) conducted a realistic test where human readers were asked to identify
the legit text from a pair of fake and legit texts. Similar to their work, we employ a believability test
(more details in Section 6) to evaluate the automatically generated believable fake text.

3 Notations and Definitions

A legit text document d is used to generate a fake text document d′, which is then used to generate
a believable fake text document d′′. Each of the documents d, d′, and d′′ consists of a sequence of
sentences S that are grouped into K paragraphs (denoted by ke). We define si ∈ S as a salient sentence
in d. The context of si is denoted by c(si), where c(si) consists of adjacent paragraphs containing 2x
number of sentences with x number of sentences before and after si respectively. We define sj to be a
sentence in c(si) that adjacently follows si. Document d is parsed to list the part of speech (POS) tags for
each of the words in d and the list of POS tags is represented by POS tag list. Pronouns are recognized
as p, noun phrases are recognized as n and a set of noun phrases are denoted by N . A noun phrase n
follows a regular expression pattern of Adjective ∗Noun+.

Our technical approach aims to increase the cohesion and semantic coherence of a given fake text. To
compute these two concepts, we use the measures of referential cohesion and semantic similarity based
coherence.

Referential cohesion measures the overlap of ideas by measuring the linguistic overlap in the content
words across adjacent paragraphs. We use the “adjacent overlap all para” metric provided by TAACO
(Crossley et al., 2016). This specific measure is defined as the number of overlapping lemma types that
occur in both ke and ke+1. We compute the referential cohesion of a document d as follows:
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Referential cohesion(d) =

count(K)−1∑
e=1

Referential cohesion(ke, ke+1)

count(K)− 1
(1)

where ke and ke+1 are adjacent paragraphs and count(K) is the number of paragraphs in d.
Semantic coherence measures the overlap of ideas by assessing semantic similarity between the adja-

cent sentences or paragraphs. We adapt the measure proposed by Lapata and Barzilay (2005) to compute
the coherence as follows:

Semantic coherence(d) =

count(K)−1∑
e=1

sim(ke, ke+1)

count(K)− 1
(2)

where sim(ke, ke+1) is a measure of semantic similarity between adjacent paragraphs ke and ke+1.
We compute semantic similarity between two adjacent sentences or paragraphs using the semantic

textual similarity system provided by UMBC-EBIQUITY-CORE (Han et al., 2013). This measure is
based on the assumption that if two text sequences are semantically equivalent, we should be able to
align their words or expressions. The alignment quality that serves as the similarity measure is computed
by aligning similar words and penalizing poorly aligned words. Words or expressions are aligned using
a word similarity model based on a combination of Latent Semantic Analysis (Deerwester et al., 1990)
and semantic distance in the WordNet knowledge graph (Mihalcea et al., 2006).

4 Problem Statement and Solution Methodology

Problem Statement - Given an original legit text document d, generate a fake text document d′ and a
believable fake text document d′′, where:

1. d′ is fake by not containing a salient sentence si that is present in d,

2. d′′ is believably fake by not containing a salient sentence si, and by following
the constraints: (Referential cohesion(d′′) − Referential cohesion(d′)) > 0, and
(Semantic coherence(d′′)− Semantic coherence(d′)) > 0.

Our proposed solution for believable fake text generation consists of two modules: A fake genera-
tion module and a believability module. The fake generation module consists of two operations: salient
sentence identification and salient sentence deletion. The believability module consists of three opera-
tions: coreference correction, singleton entity removal, and referential cohesion improvement. We next
describe each of these modules and link them to the specific functions provided in algorithm 1.

4.1 Fake generation module

Input: Legit text document d.
Output: Fake text document d′ and deleted sentence si.
Objective: Generate fake text by deleting a salient sentence.
Salient sentence identification: This operation identifies the most salient sentence si in d using the
LexRank algorithm (Erkan and Radev, 2004). LexRank computes sentence salience based on eigenvector
centrality on the sentence similarity matrix, where sentence similarity is computed using idf-modified
cosine similarity function.
Salient sentence deletion: This operation generates a fake text document d′ by deleting si from the
original document d.
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Algorithm 1: Believability module

Input: d′, si, POS tag list, θ
Output: d′′

1: procedure BELIEVABLE GENERATOR(d′, si, POS tag list, θ)
2: temp d′′ = COREFERENCE CORRECTION(d′, sj , POS tag list)
3: c(si) = SINGLETON ENTITY REMOVAL(si, c(si), θ) . c(si) is extracted from temp d′′

4: c(si) = REFERENTIAL COHESION IMPROVEMENT(si, c(si), θ)
5: d′′ = replace c(si) in d′ with the generated c(si)
6: return d′′

7: end procedure
8: function COREFERENCE CORRECTION(d′, sj , POS tag list)
9: if sj contains p then . p in POS tag list

10: compute coreference chains CC on d′

11: if (p resolved to n in CC) & (sj does not contain n) then . n in POS tag list
12: replace p with n
13: end if
14: end if
15: return d′

16: end function
17: function SINGLETON ENTITY REMOVAL(si, c(si), θ)
18: Parse Ns from si and Nc(si) from c(si)
19: for each n1 in Ns do
20: if (n1 not in c(si)) or (n1 occurs more than once in c(si)) then
21: Remove n1 from Ns

22: end if
23: end for
24: for each n1 in Ns do
25: n2 = FIND SEMANTICALLY SIMILAR(n1, Nc(si), θ) . n2 in Nc(si)

26: if REPLACEABLE(n1, n2) == TRUE then
27: Replace n1 with n2 in c(si)
28: end if
29: end for
30: return c(si)
31: end function
32: function REFERENTIAL COHESION IMPROVEMENT(si, c(si), θ)
33: Parse Nbefore from S ∈ c(si) preceding si and Parse Nafter from S ∈ c(si) succeeding si
34: for each n1 in Nbefore do
35: n2 = FIND SEMANTICALLY SIMILAR(n1, Nafter, θ) . n2 in Nafter

36: if REPLACEABLE(n1, n2) == TRUE then
37: Replace n1 with n2 in c(si)
38: end if
39: end for
40: return c(si)
41: end function

4.2 Believability module

Input: Fake text document d′, deleted sentence si, list of POS tags POS tag list and semantic
similarity threshold between noun phrases θ.
Output: Believable fake text document d′′.
Objective: Generate believable fake text by improving cohesion and coherence of text.
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Next, we describe the three key sequential operations in the believability module. These operations
are performed at the word level. The parts of speech of every word in d is recognized using Stanford’s
CoreNLP toolkit (accuracy on noun phrase tagging = 89.30%) and saved as a list - POS tag list.

Coreference correction (COREFERENCE CORRECTION(d′, sj , POS tag list)): The purpose of
this operation is to improve the ease of reading and to relate the noun phrases in c(si). It identifies the
coreference chains in the fake text using the Stanford’s CoreNLP toolkit. If a pronoun p in sj is resolved
to a noun n2, and n2 does not occur in sj then replace p with n2.

Singleton entity removal (SINGLETON ENTITY REMOVAL(si, c(si), θ): The purpose of this op-
eration is to hide the traces of si in c(si). Specifically, if there exists a noun phrase n1 in si that occurs
only once in c(si) after si has been deleted; then, n1 is replaced with a semantically similar noun phrase
n2 present in c(si) (FIND SEMANTICALLY SIMILAR(n1, Nc(si), θ)).

Referential cohesion improvement (REFERENTIAL COHESION IMPROVEMENT(si, c(si)), θ):
The purpose of this operation is to increase the cohesive relationships between the before and after parts
of si in c(si). First, we extract two lists of noun phrases Nbefore and Nafter from c(si). Nbefore is the
list of noun phrases that occur in c(si) before si, whereas the Nafter is the list of noun phrases that occur
in c(si) after si. Second, noun phrases in Nbefore and Nafter are compared to pair the noun phrase n1 in
Nbefore with a semantically similar noun phrase n2 in Nafter (FIND SEMANTICALLY SIMILAR(n1,
Nafter, θ)). Finally, n1 is replaced with n2 in c(si). An example of n1 and n2 are “methods” and
“techniques” respectively.

Both singleton entity removal and referential cohesion improvement operations replace the noun
phrase n1 with another noun phrase n2 provided n2 is semantically similar to n1. n1 and n2 are consid-
ered semantically similar if their similarity is above a threshold θ (θ=0.80 for high similarity). However,
the two operations choose the noun phrases for replacement based on different criteria. Also, both these
operations will replace n1 with n2 (REPLACEABLE(n1, n2)) based on the following constraints: (i) n2
does not occur in the sentence containing n1, (ii) n1 and n2 have the same plurality, (iii) n1 and n2 have
the same number of noun terms. After n1 is replaced by n2, a corrective operation is performed - if n1 is
preceded by ‘a’ or ‘an’, then it is changed to suit n2.

Next, we describe the experimental setup and the analysis of results.

5 Experimental Setup

This section presents the experimental design for testing the effectiveness of our approach. Our validation
experiments are as follows:

1. Statistical analysis - validates the statistical significance of the improvements in cohesion and
coherence of automatically generated believable fake text over the fake text.

2. Believability test - validates the following via human subjects: Does applying the believability
module generate believable fake texts that have lower probability of being discerned than fake text?

Data: We randomly selected 25 technical articles from Communications of the ACM - a leading technical
magazine. Based on the selected articles, we generated 3 sets of text documents. Each set contains 25
text documents as follows:

• Legit text set - First, we randomly extracted two to three consecutive paragraphs from each of the
25 original articles and created legit texts belonging to this set. The purpose of extraction is to limit
the size of the documents in this set to keep it comparable to the size of context modified by the
believability module.

• Fake text set - Next, using our fake generation module we identified the most salient sentence si in
the original article. We also identified the context c(si) (length of the context (2x) = 10) surrounding
the salient sentence. Subsequently, we generated fake documents by extracting paragraphs contain-
ing c(si) but without the salient sentence si.
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Fake text Believable fake text
p-value

Mean SD Mean SD
Cohesion 0.24 0.09 0.26 0.06 0.026
Coherence 0.37 0.10 0.40 0.09 0.013

Table 1: Comparing the change in cohesion and coherence of the fake and the believable fake texts.

Figure 1: Aggregated analysis of 625 responses per test case of selecting the text perceived as legit - (a)
given a pair of legit and fake texts (left), and (b) given a pair of legit and believable fake texts (right).

• Believable fake text set - Finally, we generated this set by improving the cohesion and coherence of
the texts in the fake text set using our believability module.

The aforementioned method to generate sets of documents is suitable as it helps keep the legit text,
fake text, and believable fake texts comparable. These texts are all extractions and modifications of
consecutive paragraphs from the same original article, having the same topicality, reading level, and
sharing the writing style of the same author(s).

6 Experiments and Results

This section details the experiments performed and their results.
Statistical analysis - For validating the statistical significance of the change in cohesion and coherence

measures, we used the two-tailed paired t-test. We compared the 25 pairs of fake and their corresponding
believable fake texts based on their cohesion and coherence measures. The results are as shown in Table
1. Looking at the p-values in the table, we can observe a statistically significant improvement in the
cohesion and coherence of the text due to the operations in the believability module.

Believability test - This is a well-defined test in the domain of cyber deception that is used to test and
measure the believability of a fake object. A perfectly believable fake text is one that is indistinguishable
in comparison to a legit text (Bowen et al., 2009). Bowen et al. (2009) have described the procedure to
conduct a believability test as follows: i) Choose two texts such that one is the believable fake text for
which we wish to measure its believability and the second is chosen at random from a set of legit texts.
ii) Select a human subject at random to participate in a user study. iii) Show the human subject the texts
chosen in step one and ask them to decide which of the two texts is the legit text. A perfectly believable
fake text is chosen with a probability greater than or equal to 50% (an outcome that would be achieved
if the human subject decided completely at random).

In order to observe the change in believability due to the operations in the believability module, we
conducted two types of believability tests. For the first type, we compared 25 pairs of believable fake and
its corresponding legit texts derived from the same original article. We then conducted the second type
of believability test where we compared 25 pairs of fake and its corresponding legit texts derived from
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Figure 2: Distribution per test pair for 25 human subjects, where the orange bar (left) for each pair
indicates the probability of identifying the legit text and blue bar (right) indicates the probability of
selecting the believable fake text as the legit text.

the same original article. We did not inform the subjects about the difference in the pairs apriori. We
showed each of the 50 pairs to 25 human subjects and asked them to identify the legit text. The human
subjects were recruited through classes in our university and through a crowdsourcing platform (the
highest trusted ‘level 3’ contributor set on Figure-Eight platform2). In total, we received 1250 responses
for selecting the legit text in each of the 50 pairs.

We evaluated the 1250 responses using the believability test’s performance metric - the probability of
selecting a fake or believable fake text as the legit text. Figure 1 shows the aggregated analysis of all
the 625 responses per type of believability test. Figure 1(a) shows the probability of a subject selecting
the fake text as a legit text to be only 44% (p-value: 0.037, two-tailed t-test), indicating that the subjects
were able to discern the legit text correctly for a statistically significant number of times. This probability
indicates the likelihood of a distinguishing factor in the text that helped the subjects to identify the fake
text. On the other hand, figure 1(b) shows a probability of 57% (p-value: 0.006, two-tailed t-test) for
selecting a believable fake text as a legit text. This result implies that the believable fake text is truly
believable for the subjects, and there may not exist a distinguishing factor that helped the subjects to
recognize the believable fake text as fake.

We further performed a fine-grained analysis to validate our hypothesis that an increase in the cohesion
and coherence of text would improve the believability of the text. For this analysis, we compared the
individual probability of selecting a believable fake text in a believable fake-legit text pair for each of
the 25 pairs. The results are as shown in figure 2. We found that 76% of the tests resulted in greater
than 50% probability for a subject to identify the believable fake text as legit. These results indicate the
positive effect of applying our believability module on the believability perception of fake text.

6.1 Limitations and Error Analysis
Our believability module is dependent on a semantic similarity model to provide us the similarity of
noun phrases. Measuring text similarity and alignment for comparing the meaning are challenging tasks
and open research questions. We chose UMBC-EBIQUITY-CORE because its similarity computation
is based on leveraging both distributed semantics (Latent Semantic Analysis) and semantic networks
(WordNet) for generalization. However, errors in the chosen model influences the performance of the
believability module to have fewer choices when substituting similar noun phrases. Also, our approach
is dependent on the POS tagger to identify noun phrases. If the tagger fails to annotate a noun or its
plural form accurately, then the identified candidates for substitution would not be the complete set of
nouns occurring in the document. These limitations can reduce the number of possible substitutions and
therefore, limiting the possible improvements in the cohesion and coherence of the fake text.

We also conducted an error analysis on the results of the believability test to understand the character-
istics of text that was not perceived as legit. In figure 2, out of the 25 pairs of believable fake-legit texts,
six pairs were such that the legit text was discerned. This could be a result of pre-existing complexity
in comprehending the text that was randomly chosen for generating the believable fake text. The char-
acteristics of hard to comprehend text includes a greater presence of infrequently used words and longer

2https://www.figure-eight.com/
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sentences. For instance, among the six pairs, we found sentences containing nearly 40 words in the cho-
sen text. These observations motivate our future work to improve the believability by also incorporating
other features of text comprehension that are beyond cohesion and coherence alone.

7 Conclusion and Future Work

We designed a novel computational linguistics method to enhance the believability of fake texts, which
are used in cybersecurity solutions to deceive cyber attackers. Our methods rely on improving the lin-
guistic consistency by increasing cohesion 1) at the sentence level via coreference correction between
sentences, and 2) at the paragraph level via semantic relatedness among entities. We evaluated the out-
come of our method using statistical techniques to measure the significance of improvements in the
cohesion, coherence, and believability of the generated text. We found that the increase in the values of
cohesion and coherence metrics for the believable fake text was statistically significant when compared
with the fake text. Further, the believability test showed that the probability to distinguish a legit text
from a believable fake text is lower than the probability to distinguish a legit text from a fake text. These
results prove our hypothesis that the computer-generated fake text with higher cohesion and coherence
leads to improvement in the believability of the text. These results further indicate the effectiveness of
our method in generating believable fake text for misleading potential cyber attackers and increasing the
cost of intellectual property thefts.

For the purpose of reproducibility, our dataset will be available upon request, for research purposes.
Our future work will explore an extension of the newly developed methods to analyze and address the
challenge of obscuring salient information at multiple locations in a given text. We will also experiment
with varied types of documents by domain including non-technical documents. The application of our
methods will help to create benchmark data repositories of both legit and fake text documents for cyber
deception research.
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